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A B S T R A C T

Public transit ridership forecasts have long played a role in understanding the potential success of a policy or
investment, but their limitations have led researchers and practitioners to identify other performance analysis
approaches. Accessibility, or the ease of reaching opportunities, has become very popular and widely used for
this purpose. But commonly used accessibility measures also embody weaknesses that are seldom acknowledged;
these limit their utility for truly understanding the benefits of transit investments. In this paper, we identify the
pros and cons of these competing approaches and offer a third strategy. Specifically, we describe how revealed
travel behavior data, potentially combined with near-term forecasts, can provide information about how current
public transit users will be affected by a new project. While acknowledging the limitations of this approach, we
demonstrate how accessibility can be misleading when applied without an understanding of ridership patterns.

1. Introduction

How should practitioners determine whether a particular public
transit capital investment or service change is good? This question is
omnipresent in public transit, since budgets are usually highly con-
strained, needs often outstrip what can feasibly be done, and the public
holds transit projects to a higher standard than highway investments.
Because public transit’s subsidies are much easier to track, the public
demands a higher level of accountability in their expenditure. A cynic
would argue that political considerations dominate transit investment
decisions, and they would not be wrong (e.g., Hamer, 1976; Kain, 1990;
Pickrell, 1992). But demonstrating that a rational basis exists for de-
termining how public transit investments can be prioritized and making
those methods more widely available to the public can diminish the
influence of rank politics over time.

Two approaches to public transit performance analysis are prevalent
today: (1) ridership forecasting and (2) access to opportunities (com-
monly referred to as accessibility or freedom) analyses. Ridership fore-
casting involves combining estimates of demographics, transit levels of
service, land use, and ridership to calibrate statistical models that
match observations in a base year. These models are subsequently ap-
plied to a future year to generate ridership estimates. Decades of
practice have emphasized the importance of forecasting future travel
demand and guiding near-term decisions using estimates of long-term
performance, even though forecasts often turn out to have been in-
accurate (Voulgaris, 2020a; Flyvbjerg et al., 2005). Nevertheless, ri-
dership estimates facilitate the creation of performance estimates, like

traditional cost-benefit measures, that can be used to compare between
possible investment strategies and/or service changes.

Accessibility-based approaches, sometimes referred to as freedom
analyses (Walker, 2018), are also very common in practice. Drawing
from the vast academic literature on accessibility (e.g., Geurs and van
Wee, 2004; Handy and Niemeier, 1997; Páez et al., 2012), this ap-
proach identifies the ease of reaching opportunities as the most im-
portant benefit of a transportation system (see also Martens, 2012,
2016). Typical implementations count the number of available oppor-
tunities (e.g., jobs, square feet of retail space, number of medical fa-
cilities) within a travel time threshold (e.g., 45 min) of every origin
location where walking to public transit service is viable. With ad-
vances in data availability through the General Transit Feed Specifi-
cation (GTFS) standard, as well as in open-source and/or widely
available network routing software such as OpenTripPlanner, travel
times throughout a network can be easily generated (Farber and Fu,
2017; Karner, 2018). Accessibility can be assessed for existing condi-
tions (Levinson, 2013; Allen and Farber, 2019) and for proposed system
changes (Pereira, 2019). In each case, results can be summarized for
population groups to determine their average accessibility levels
(Rowangould et al., 2016). In contrast to ridership forecasting, acces-
sibility analyses do not require information about future demographics
and land uses, although such data could be employed if available.

When evaluating public transit system performance, these two ap-
proaches embody multiple shortcomings that will be discussed further
below, but it is important to note that a third approach is available that
has many inherent advantages: current-year analysis. Assessing
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proposed performance in the current year requires a good under-
standing of who is using public transit in a region for what purpose,
usually gleaned from a high-quality (i.e., statistically controlled and
properly expanded) transit rider survey. The rider survey can be used to
calibrate a ridership model or to examine how a network change will
affect existing travelers by looking at differences in their before/after
trip characteristics including travel time, waiting time, number of
transfers, overall utility, and so on. Current-year model estimates can
also be compared to observed behavior data to understand uncertainty
and inform the interpretation of long-range projections. In analyzing
applications to its Capital Investment Grant (CIG) program, the US
Federal Transit Administration requires sponsors to assess project per-
formance based on current conditions; future-oriented analyses are
conducted only at the option of the sponsor (FTA, 2016).

In the interests of contributing to the debate and improving public
transit performance analysis, this paper argues that the prevailing ap-
proaches embody underappreciated shortcomings. First, those short-
comings are documented with reference to ridership forecasting and
typical access to opportunities approaches. An empirical example fol-
lows. The final section makes the case for near-term analyses focused on
the decisions that current travelers actually make, while engaging with
some of the criticisms this approach has faced from elsewhere in the
field. In the conclusions, some reflections are offered on the future of
public transit performance analysis.

The trouble with forecasts

In the language of demography, projections are conditional state-
ments about the future dependent on the veracity of the input data and
the posited relationships between inputs and outputs, whereas forecasts
are a demographer’s best guess as to the future that will come to pass
(e.g., Smith et al., 2013). One key difference in whether transportation
professionals are presenting projections or forecasts involves how they
perceive their role or how they are expected to comport themselves
based on the needs and requirements of their organization and/or their
superiors (Howe and Kaufman, 1979; Wachs, 2001). While discussions
of ethics have shifted to favor presenting multiple scenarios/projections
and interpreting their tradeoffs for the public, much of practice still
involves presenting a single forecast and defending its accuracy
(Klosterman, 2013; Wachs, 2001; Voulgaris, 2019).

There are multiple reasons why a single forecast is unlikely to be
correct. And ample empirical evidence exists documenting that public
transit ridership forecasts are almost always overestimated (Flyvbjerg
et al., 2005). Travel demand models—the workhorse tool within
transportation planning and the source of most public transit ridership
estimates—embody many well-known limitations. But these limitations
are seldom acknowledged by practicing transportation planners and
travel demand modelers when communicating results. These include
the following:

• Importance of input data. Projecting travel demand for any mode
requires information about future land uses, demographics, and
infrastructure. It is these inputs that often drive model outputs re-
gardless of paradigm (four-step, activity based, sketch planning,
etc.). Because of the importance of input data, models can be easily
made to produce estimates that make projects appear maximally
(un)attractive and systematic mischaracterizations are common
(Flyvbjerg et al., 2005; Wachs, 1989), although the situation may be
improving in the United States (Voulgaris, 2020b).

• Inability to anticipate unexpected events. Related to issues
with input data, broader socioeconomic shifts (e.g., recession/
depression, employment by sector, pandemic) and demographic
changes, such as the suburbanization of poverty, are difficult to
predict with any degree of accuracy, yet they fundamentally drive
future outcomes.

• Reliance on complex “black box” models. Travel demand models
are inherently and increasingly complex. They are difficult for the
lay public to understand, creating a barrier to public involvement
(Handy, 2008; Marcantonio and Karner, 2014). Consultants are
often relied upon to complete and analyze model runs, taking de-
cision-making power away from the public agencies tasked with
transportation decision-making.

• Expensive software. The industry has coalesced around several
vendors who provide the base software upon which travel demand
models are run (including Bentley Systems, Caliper Corporation,
PTV Group, and INRO). The software is objectively expensive to
operate and maintain, with annual licenses typically costing thou-
sands of dollars.

If these limitations are acknowledged and understood, model-based
projections can be exceptionally worthwhile, helping stakeholders un-
derstand how decisions made today are likely to affect future outcomes,
at least in terms of their magnitude and direction. It is also possible to
assess a projection’s quality; some are better than others, especially
when certain criteria are met and addressed (Voulgaris, 2019). The
Federal Transit Administration (FTA) has led an effort to standardize
public transit ridership forecasting by developing a tool called Simpli-
fied Trips-on-Project Software (STOPS). Through standardization, one
of the major limitations of model-based projections can be mitigated,
specifically the tendency to manipulate input data to obtain desired
outcomes.

STOPS also serves a regulatory purpose. It represents one approach
that CIG applicants can use to prepare FTA’s required current-year ri-
dership forecast (FTA, 2016). Making near-term instead of longer-term
projections generates multiple benefits. In describing its use of current-
year forecasts, FTA states that

project evaluation based on existing conditions provides the most
easily understood, most reliable, and most readily available in-
formation for decision-making…Use of current year data increases
the reliability of the projected future performance of the proposed
project by avoiding reliance on future population, employment, and
transit service levels that are themselves forecasts (FTA, 2016, 10).

Access to opportunities and “freedom” as an alternative

The well-known issues with forecasting have generated demand for
different performance assessment methods. If we cannot reliably pre-
dict the number of riders on public transit in the future, what should
planners and concerned members of the public do? Many have begun to
turn to accessibility measures that give a sense of how easily destina-
tions can be reached before and after a project or system change. These
types of analyses need not rely on uncertain future projections and
require only information about the proposed changes (and optionally
demographic data).

Accessibility indicators have substantial theoretical appeal as they
are rooted in the notion of travel as a derived demand and reflect
transportation’s fundamental purpose (Levine et al., 2019). People
travel not for its own sake, but to reach opportunities—accessibility
indicators capture the extent to which these connections are possible.
Well-designed accessibility measures are powerful planning tools; they
recognize that both transportation (e.g., increasing travel time, relia-
bility, affordability, or comfort) and land use (e.g., increasing density or
diversity) interventions affect transportation system performance and
travel demand (Handy and Niemeier, 1997). New methods for evalu-
ating accessibility and a proliferation of data sources are rapidly ex-
panding the frontier of accessibility analysis.

Cumulative opportunities measures are by far the most widely applied
accessibility measures in practice and in academic research (e.g., Golub
et al., 2013; Golub and Martens, 2014; Owen and Levinson, 2014).
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These quantify the opportunities that can be reached from a given
origin location, are calculated for a geographic unit (e.g., census tracts
or block groups), and most often use constant travel time thresholds
(e.g., number of destinations reachable within a 45-minute door-to-
door public transit trip) rather than information about how people
travel.

A representative example of the cumulative opportunities–based
approach is the analysis undertaken by Jarret Walker and Associates for
the Dublin bus network redesign (Jarrett Walker + Associates, 2018).
Bus network redesigns are becoming increasingly common. They typi-
cally seek to increase the number of high-frequency routes while
keeping an agency’s operating budget constant. This change usually
requires cutting peripheral service and redirecting resources saved into
routes likely to generate additional riders. The Dublin example shows
how changes in cumulative opportunities can be assessed before and
after a proposed system change.

Chapter 8 of the Dublin redesign’s 2018 Public Consultation Report
is entitled “Network Outcomes.”1 It presents two types of analyses. The
first tallies changes in the number of people and jobs located within
walking distance of frequent public transit. The second calculates
multiple different cumulative opportunities measures, providing esti-
mates of changes in the number of jobs accessible within specified
travel time thresholds. Fig. 1 shows a sample of the results, which
summarizes the change in the number of jobs accessible within 30 min
from origins located near transit stops in Dublin.

Fig. 1 also summarizes the number of jobs accessible from every
origin location, but it does not demonstrate precisely which jobs are
accessible. This information is contained in several appendices to the
report that summarize the spatial reach of public transit from one origin
using isochrones. An example isochrone map is shown in Fig. 2. The
utility of such a map is clear for area residents who have cause to travel
to or from the origin location shown; they can clearly see how a pro-
posed service change will affect their ability to reach specific places. All
possible isochrones (each appendix contains ~70 pages with one iso-
chrone each) can be summarized using a map like Fig. 1. This approach
loses directional information but enables one to visualize broader re-
gional trends.

Fig. 1's results can also be further summarized to generate regional
performance measures. For example, one of the key conclusions for
Dublin is that, “On average, Dubliners would be able to reach 18%more
jobs in 30min of travel time than today” (Jarrett Walker + Associates,
2018, 155). Although equations are not presented, this result is de-
scribed as a change in a population-weighted accessibility score. This
approach is commonly applied in the literature and is a reasonable way
to summarize the average accessibility change experienced by a ran-
domly selected resident. It can be calculated for different groups of
interest (e.g., Golub and Martens, 2014; Rowangould et al., 2016).

Despite its ubiquity, population-weighted accessibility is an im-
precise measure of the benefits of a public transit improvement because
it is not linked to the trips that people want or need to make (see also
Karner and Golub, 2015; Farber et al., 2016). In traditional travel be-
havior analysis, differences in the relative attractiveness of trip-mode
combinations before and after a change are assessed and converted to
equivalent time or money units, then interpreted as a measure of con-
sumer surplus (e.g., Niemeier, 1997; de Jong et al. 2007). These dif-
ferences can be interpreted as a measure of the “user benefits” of a
proposed system change (e.g., Chorus and Timmermans, 2009). Con-
veniently, they also represent changes in the ease with which oppor-
tunities can be reached—an alternative measure of accessibility (Handy
and Niemeier, 1997; Geurs and van Wee, 2004). Simpler measures such

as travel time changes can also be calculated and similarly interpreted
(e.g., Manaugh and El-Geneidy, 2012).

Beyond the Dublin example, the popularity of cumulative opportu-
nities accessibility measures can be seen in the sheer number of soft-
ware vendors and open-source solutions available for measuring and
assessing accessibility under different circumstances, as well as their
widespread use. CUBE Access and Remix are both examples of com-
mercially available software for calculating cumulative opportunities
accessibility, isochrones, and similar measures. Open-source solutions
include OpenTripPlanner Analyst and the Python Pandana library.
Examples in practice abound and include the Puget Sound Regional
Council’s (2018) regional transportation plan (Puget Sound Regional
Council, 2018), Virginia Department of Transportation’s SMART SCALE
project prioritization process (Virginia Department of Transportation,
2020), and the University of Minnesota Accessibility Observatory
(Owen and Levinson, 2014).

Despite the widespread popularity and mass appeal of cumulative
opportunities measures and isochrones, they embody two major lim-
itations for understanding infrastructure and policy impacts that are
scarcely acknowledged in the literature or in practice. These include the
following:

• Limited utility for assessing regional benefits. As demonstrated
in the Dublin example, isochrone maps can be prepared that show
the number of destinations that can be reached from any origin
location in a region. These types of maps can be profoundly useful
for individuals and businesses seeking to understand how a change
in transit service will affect their ability to reach opportunities or
customers (e.g., Stewart, 2017). Population-weighted average
changes in accessibility can also be calculated, but these do not
represent user benefits in the traditional sense since changes may or
may not be well aligned with the trips people want or need to make.

• No integration of public transit market information. The limited
utility of a regional benefit analysis based on access to opportunities
arises in part because of the absence of information about the public
transit market. It is entirely possible to imagine a scenario where
apparent accessibility increases substantially for large numbers of
people because of a proposed capital improvement or service change
but where the actual/future transit market is quite weak. If such an
investment or change is pursued on the grounds that it will increase
accessibility, it could ultimately perform worse in terms of helping
people reach their destinations by public transit than a comparable
change whose apparent access to opportunities benefit is smaller.

One immediate way to address these weaknesses is to refocus the
analysis to consider who is using public transit today, for what purpose,
and for what destination. These types of analyses are addressed in the
next section.

People-focused near-term analyses as an antidote

The central tenet of the near-term analysis focused on users pro-
posed here is that, in order to understand public transit system per-
formance, one must have a well-developed understanding of current
public transit riders and their travel patterns so that changes in trip
characteristics, overall utility, or consumer surplus can be calculated.
This perspective is surprisingly absent from contemporary transit per-
formance analyses, despite the ongoing importance of assessing quan-
tities such as changes in travel time and utility/consumer welfare across
planning practice (e.g., Manaugh and El-Geneidy, 2012; Niemeier,
1997; Martens and Di Ciommo, 2017).

This absence can be explained in part by the withering criticism
leveled at measures derived from revealed or modeled behavior from
various sources in the literature. Without exception, these sources argue
for access to opportunities approaches without acknowledging their

1 This document is also referred to as the Revised Network Report June 2018. It
was revised again in October 2020 to reflect responses to public feedback and
changes in network design. The performance measures presented in both the
2018 and 2020 versions are very similar.
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inherent limitations. For example, Pereira et al. (2017) highlight the
important role of constraints that exist outside of individual/household
control. These constraints (residential location, income, family struc-
ture, mandatory activity locations, etc.) interact with preferences to
determine revealed travel behavior outcomes. They argue that revealed
behaviors that seem to indicate disadvantage, such as long commute
distances, can only be considered problematic to the extent that they
arise because of constraints.

The notion of constraints versus preferences is important but can be
thoughtfully addressed. One simply needs to determine the appropriate
criteria that can be used to segment the population and home in on the
group of interest. For example, it has long been understood that some
public transit users have no other option while others freely choose to
ride (Garrett and Taylor, 1999; Taylor and Morris, 2015). Other work
has differentiated between car-less (constrained) and car-free (choice)
households using responses to attitudinal questions on a household
activity survey (Brown, 2017). That work has demonstrated both so-
cioeconomic as well as travel behavioral differences between house-
holds that choose to not have a vehicle and those that wish to but
cannot. Simply grouping all zero-vehicle households or all public transit
users together to calculate performance measures is inappropriate, but
with care, relatively homogeneous groups can be identified, and their
characteristics studied.

Another similar issue that is sometimes raised is the problem of
comparing baseline conditions between groups. Levine et al. (2019, 9)
describe a hypothetical situation in which women are found to have
shorter commute times than men. In this case, they state that we should
not conclude that women derive outsize benefits from the existing
transportation system. This is correct; differences between groups must

be understood in context. More travel at baseline can be positive or
negative. But a proposed system change that reduced commute times
for women more than men given existing travel patterns, or that en-
hanced available travel choices for women at a high rate, would pro-
vide valuable information to the public and decision-makers about
transportation system benefits. Changes are more straightforward to
interpret than baseline conditions.

Martens and Golub (2018) and Pereira et al. (2017) raise issues
related to travel patterns shifting over time as locations of family,
friends, and mandatory activity locations also shift. Walker (2018, 125)
makes the point most strongly, asking:

When you went shopping at a particular store, does it matter that
you could have gone shopping somewhere else, or shopped online
while in bed, or embraced an ascetic spiritual path of buying as little
as possible? A study of freedom would be intensely interested in
that, while conventional planning would merely record what you
did and use that to predict what you, despite your illusion of
freedom, will continue to do. (emphasis in original).

This line of argumentation misapprehends the nature of planning-
related analysis and falls prey to the individualistic nature of the iso-
chrone. When assessing regional transportation plan performance,
outcomes for individuals are never of concern. Instead, analysts ag-
gregate results over population groups, places, or the entire region to
determine performance. Even though an individual’s travel patterns
will likely change as circumstances change, including many different
people and their (revealed) travel within a single performance measure
ensures that the measures capture these variations in behavior. For the
same reason, travel surveys collected on a single day are used to

Fig. 1. Change in number of jobs and students accessible within 30min due to the Dublin bus network redesign (Jarrett Walker + Associates, 2018, 162).
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estimate regional travel demand models. Even though individual travel
patterns change from day to day, a random sample of individuals drawn
for a single day will reproduce regional travel patterns in all their
complexity.

Another argument against revealed behavior measures is that they
do not consider foregone trips or travel demand that might be

suppressed (Lovejoy, 2012; Nordbakke and Schwanen, 2015; Pereira
et al., 2017). This is also a fair point; given different circumstances,
individuals facing transportation-related constraints would be likely to
make different decisions. But this is where high-quality travel models
can play an important role by supporting near-term analysis (either for
the current year or one to five years from the present). The effects of

Fig. 2. Isochrone map showing gained (blue), lost (red), and retained (overlapping blue and red) 30-min cumulative opportunities accessibility from Dublin City
University – Main Campus under the Dublin bus network redesign (Jarrett Walker + Associates, 2018, Appendix A1). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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changes in level of service on various modes or changes in socio-
economic conditions can be simulated. What if all low-income house-
holds were suddenly given cars? What if local bus service suddenly
became more attractive? How would these changes shift travel patterns
and reveal potentially suppressed demand? At the end of the day, in-
dividuals have to make decisions about where to travel and when.

In addition to these critiques, there are also real challenges asso-
ciated with collecting revealed behavior data. Cost is a key factor.
Obtaining high-quality, statistically controlled transit rider survey data
can be expensive. A completed survey record can cost upwards of $50
when costs associated with survey design, data collection, cleaning, and
expansion are considered (Schaller, 2005). Other issues that plague
transportation data collection, such as survey fatigue, are less relevant
here since prospective survey respondents can easily be found on transit
vehicles, as well as at stops and stations. Nevertheless, transit rider
survey data collection methods continue to advance, and such data
collection is mandated by FTA for large public transit agencies, as part
of their Title VI program (FTA, 2012). Passively collected data har-
vested from cell phone and global positioning system traces can also be
used to evaluate various aspects of public transit service and ridership
(Welch and Widita, 2019), but collected data are not representative of
the general population and demographic information is almost always
missing (Chen et al., 2016; Wang et al., 2018). Smartphones also show
some promise for collecting data traditionally gleaned through travel or
activity diaries (Faghih Imani et al. 2020).

There are also two major benefits associated with people-focused
near-term analyses. The first is that public and transportation equity
advocates appear to be quite interested in how transportation infra-
structure investments and policy choices will affect the traveling public
given their current travel patterns (Marcantonio and Karner, 2014).
From the perspective of these advocates, inequities already exist within
the current system. These are reflected in racial and class differences in
terms of mode share, level of service, exposure to pollution, noise, and
other transport-related externalities (Karner et al. 2018). Without an

understanding of current inequities, the thinking goes, transport policy
and infrastructure decision-making cannot be expected to mitigate
them. The second is that near-term analyses mitigate many of the
shortcomings known about long-range forecasting. The difficulty of
projecting future land use characteristics and demographics, for ex-
ample, is not at all relevant when conducting near-term analyses since
those characteristics can reasonably be expected to be similar to those
that prevail today. Further, a near-term forecast can supplement and
inform long-range efforts by providing valuable comparative informa-
tion about model uncertainty.

An empirical example

To demonstrate some of the fundamental differences between re-
vealed behavior and access to opportunities measures, we calculated a
performance measure using multiple data sources representing travel
behavior and public transit level of service within the Metropolitan
Transit Authority of Harris County (colloquially known as Houston
METRO), roughly encompassing Harris County, Texas (USA) and the
city of Houston. The performance measure assesses the correspondence
between an origin’s most important destinations (as revealed using a
high-quality transit rider survey) and the destinations contributing most
to an origin’s access to opportunity score. Full details regarding data
sources and methods are provided in the Appendix.

In concept, the performance measure calculation proceeded as fol-
lows. For each block group in Harris County, a cumulative opportu-
nities measure was calculated. In this case, the measure was the total
number of jobs accessible using public transit within 45min, con-
sidering average performance across AM peak period, midday, and PM
peak period travel times. For each of these three periods, four randomly
selected departure times were used to estimate total travel time by
public transit (including walking to the transit stop, waiting for the
vehicle, in-vehicle travel time, any necessary transfers, and walking
to the destination) to each reachable destination. This step resulted in

Fig. 3. Kernel density plots illustrating the share of observed trip attractions (taken from the transit rider survey) found in the top N destinations that compose the
access to opportunities score. Each panel shows results for N values of 10, 50, 100, and 500. HBW =home-based-work, HBO = home-based-other, NHB =
non–home-based.
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12 matrices representing travel time between all regional origins and
destinations at different times of day. Job totals were associated with
each destination block group. For each origin, at each time slice, the top
N destinations contributing most to that origin’s accessibility score were
identified. For the purposes of demonstration, N was set to 10, 50, 100,
and 500.

Each block group with a transit trip production as identified in the
rider survey was associated with its attraction block groups. To be clear,
while the cumulative opportunities measure identifies a destination as
reachable if it is possible to travel there within 45min on public transit,
the rider survey data only identifies a production-attraction interchange
where a trip was actually made.

Once these two lists were assembled—the top N destinations con-
tributing to the cumulative opportunities score and all attraction trip
ends visited from a production end—we calculated the share of ob-
served trip attractions accounted for in the top access to opportunities
destinations for three trip types: home-based-work, home-based-other,
and non–home-based. Fig. 3 summarizes these results using kernel
density plots for the shares of observed trip attractions found in the top
N destinations contributing to an origin’s accessibility score. Results are
shown for four values of N (10, 50, 100, and 500). The area under the
curve between any two points along the x-axis represents the propor-
tion of all trip origins that have shares within that range.

The results shown in Fig. 3 achieve face validity. As N increases,
shares tend toward one. This is sensible; as the list of destinations
contributing to an accessibility score grows, the likelihood that actually
chosen destinations will be included in the list also grows. In general,
non–home-based and home-based-other trips see fewer of their attrac-
tion locations represented in the most important cumulative opportu-
nities destinations. The density curves for these two trip types plot
higher on the y-axis at zero, indicating that there are relatively higher
numbers of block groups whose destinations are not reflected in the
most important contributors to access to opportunities. This too appears
reasonable, as home-based-work trips will tend toward the major em-
ployment destinations that contribute most to accessibility scores.
Other trip purposes are more likely to be dispersed and not well re-
flected in the aggregate nature of a cumulative accessibility measure.

These results demonstrate a conceptual mismatch between the
places to which people need to travel, and the locations identified as
most important within a typical accessibility analysis. The purpose of
this empirical example is not to discredit commonly used accessibility
measures, but rather to highlight the value of an alternative approach
grounded in real-world travel behavior, aligned with trips actually
made.

Discussion and conclusions

Assessing transportation system performance under both base con-
ditions and alternative scenarios has been of interest to the profession
for decades. Yet not all performance analysis methods are created
equal. Within public transit performance analysis, the literature and
practice seem to be converging on the consensus that cumulative op-
portunities approaches are the preferred method both for commu-
nicating information to the public and determining whether certain
investments are worth pursuing. However, the downsides of these
analyses are almost never reported.

Importantly, the discussion presented in this paper should make

clear that simply increasing the accuracy, precision, or behavioral fi-
delity of a specific measure is not a desired end. Rather, our emphasis is
on developing performance measures that are meaningful. One key di-
mension of meaning, as applied in this paper, is the extent to which a
performance measure is linked to impacts on people and their travel.
Whereas access to opportunities measures the extent to which people
can in principle reach opportunities, such measures are substantially
limited in their ability to reveal how—across an entire region—the
benefits and burdens of a transportation system change are likely to be
distributed or felt. Near-term analyses should also be preferred in that
they produce results subject to much less uncertainty than longer term
forecasts.

No performance measure or analytical approach will ever be com-
pletely accurate or provide absolutely definitive information about
whether one course of action should be chosen over another.
Transportation decision-making processes are intensely political ex-
ercises, involve the expenditure of substantial amounts of public funds,
and create winners and losers. There is potentially a role for each of the
analytical approaches described in this paper during different types of
planning activities.

One additional limitation of a near-term analysis focused on people
is that any proposed changes to public transit in a region could have
real impacts on future-year origin destination travel patterns. Clearly,
an analysis focused on current-year travel will not capture these. A
future-year forecast could capture these types of changes, but access to
opportunities proponents would argue that long-range ridership fore-
casting will always come with high uncertainties and questions about
likely accuracy, so their approach is to be preferred (Walker, 2018). But
even access to opportunities approaches build in uncertainty arising
from how precisely zone-to-zone travel times will change, incomplete
pedestrian networks, and potential demographic changes.

While it is indeed true that travel forecasting models have per-
formed poorly in the past, this realization is an argument for improving
travel models so that they are more relevant to the decision-making
process, not ignoring the insights they provide. If long-range person-
based analyses are performed, an analyst should also prepare a near-
horizon or even current-year analysis, as this may help planners, ana-
lysts, and the public understand the uncertainties associated with long-
range forecasting, by examining the differences between observed and
predicted behavior.
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Appendix

The data used in the empirical example presented in this paper were gleaned from multiple sources, including:

• A production-attraction matrix from the 2017 transit rider survey conducted by the Houston-Galveston Area Council (H-GAC) and Houston
METRO. These data were collected between February and May 2017, two years after Houston’s comprehensive bus network redesign.
• Job location information from the US Census Bureau’s 2017 Longitudinal Employer-Household Dynamics Origin-Destination Employment
Statistics.
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• Travel times between all census block group origins and destinations in Harris County, Texas, calculated using OpenTripPlanner. To represent
travel on a typical weekday, we randomly sampled four departure times within 15-minute windows across three one-hour periods to represent the
morning peak (8–9 am), midday (12–1 pm), and the evening peak (5–6 pm). This resulted in 12 separate estimates of travel times that can be
combined to produce representative accessibility estimates.

We employed the cumulative opportunities accessibility measure described in Eqs. (A1)–(A3):

=
=

A O f c( )ik
j

J

j ijk
1 (A1)

= >f
c T
c T( )

1
0

ijk

ijk (A2)

=A med A k( )i ik (A3)

where Aik is the accessibility score for block group i at departure time k; Oj is the number of jobs at each destination block group j; J is the total
number of block groups; cijk is the travel time between block groups i and j at departure time k (considering walk access, waiting, in-vehicle, transfer,
and walk egress times); T is the desired travel time threshold; and med is the median operator. For this application, T is set to 45min.

This formulation of Ai is widely used in the literature and practice and is readily interpretable as the number of opportunities that can be reached
from each origin location within the travel time threshold. Calculating accessibility first for each departure time, and then subsequently taking the
median to represent an origin’s score, is preferable to first averaging travel times between origins and destinations and then calculating accessibility.
The former approach yields a more reasonable approximation of travel time between origins and destinations; locations with an infrequent but fast
connection may generate only a single travel time within the set of 12 because an upper threshold on calculated travel times is typically set by the
analyst to make the computations tractable (e.g., two hours). If travel times are simply averaged, origins and destinations with infrequent but fast
connections will appear to have a higher level of service than is actually the case.

The final performance measure summarized in the empirical example requires identifying sets of destinations using both the transit rider survey
data and the accessibility dataset. We used a block-group trip table in production-attraction format to mimic how access to opportunities is typically
associated with residential locations. In this format, the location of an attraction (e.g., a person’s workplace) would be associated with two trips from
the person’s production location (i.e., home). For home-based-work and home-based-other trips, this approach ensures identification of the most
important block groups that people visit from their homes. For non–home-based trips, the production location is where the trip originates, and the
attraction location is the trip destination. In all cases, the fully expanded, linked trip weights were used to tally trips, ensuring that the results
represented a typical day of travel on Houston METRO in 2017.

An intermediate step in the accessibility calculation requires identifying all destinations reachable from each origin. Define ExN as the set of N
destinations contributing the most to a block group’s accessibility score. Defining set E in this way is equivalent to sorting the list of destinations for
each origin block group in descending order and taking the top N elements. For each production block group x, define Dx as the set of all attractions
visited. With these definitions, the summary performance measure for evaluating the congruence between the people-focused measures and access to
opportunities measures can be defined using Eq. (A4):

=P D E
D

| |
| |i

i iN

i (A4)

where Pi is the share of revealed trip attractions that are accounted for in the top N destinations contributing to a block group’s accessibility score.
As N increases, Pi approaches unity.
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