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Performance Evaluation of Mobile Ad Hoc Networks in Realistic Mobility and 

Fading Environments 

 
Preetha Prabhakaran 

 
 

ABSTRACT 
 
 

Mobile Ad hoc Networks (MANETs) are wireless networks, which consist of a collection 

of mobile nodes with no fixed infrastructure, where each node acts as a router that 

participates in forwarding data packets. They are a new paradigm of wireless 

communications for mobile hosts that are resource-constrained with only limited energy, 

computing power and memory. 

 

Previous studies on MANETs concentrated more on energy conservation in an idealistic 

environment without taking into consideration, the effects of realistic mobility, 

interference and fading. The definition of realistic mobility models is one of the most 

critical and, at the same time, difficult aspects of the simulations of networks designed for 

real mobile ad hoc environments. The reason for this is that most scenarios for which ad 

hoc networks are used have features such as dynamicity and extreme uncertainties. Thus 

use of real life measurements is currently almost impossible and most certainly 

expensive. Hence the commonly used alternative is to simulate the movement patterns 

and hence the reproduction of movement traces quite similar to human mobility behavior 

is extremely important. 

 

The synthetic models used for movement pattern generation should reflect the movement 

of the real mobile devices, which are usually carried by humans, so the movement of 

such devices is necessarily based on human decisions. ‘Regularity’ is an important 

characteristic of human movement patterns. All simulated movement models are suspect 

 x



because there is no means of accessing to what extent they map reality. However it is not 

difficult to see that random mobility models such as Random Walk, Random Waypoint 

(default model used in almost all network simulations), etc., generate movements that are 

most non-humanlike. Hence we need to focus on more realistic mobility models such as 

Gauss Markov, Manhattan Grid, Reference Point Group Mobility Model (RPGM), 

Column, Pursue and other Hybrid mobility models. These models capture certain 

mobility characteristics that emulate the realistic MANETs movement, such as temporal 

dependency, spatial dependency and geographic restriction. Also a Rayleigh/Ricean 

fading channel is introduced to obtain a realistic fading environment. 

 

The energy consumed by the data, MAC, ARP and RTR packets using IEEE 802.11 

MAC protocol with the various mobility models in fading and non-fading channel 

conditions are obtained using ns-2 simulations and AWK programs. The realistic 

movement patterns are generated using three different mobility generators – BonnMotion 

Mobility Generator, Toilers Code and Scengen Mobility Generator. This thesis work 

performs an in-depth study on the effects of realistic mobility and fading on energy 

consumption, packet delivery ratio and control overhead of MANETs.  
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Chapter One 
 

Introduction 
 

1.1      Wireless LANs  
 

Wireless networking is an exciting technology that enables two or more computers to 

communicate using standard network protocols, but without network cabling. WLAN 

(Wireless Local-Area Network) is a category of local-area network that uses high-

frequency radio waves rather than wires to communicate between nodes such as 

computers, Internet devices or other appliances. It is a flexible data communication 

system implemented as an extension to or as an alternative for, a wired LAN within a 

building or campus. Wi-Fi networks use radio technologies called IEEE 802.11b or 

802.11a to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can 

be used to connect computers to each other, to the Internet, and to wired networks 

(which use IEEE 802.3 or Ethernet) [1]. Wi-Fi networks operate in the unlicensed 2.4 

and 5 GHz radio bands, with an 11 Mbps (IEEE 802.11b) or 54 Mbps (IEEE 802.11a) 

data rate or with products that contain both bands (dual band), so they can provide 

real-world performance similar to the basic 10BaseT wired Ethernet networks used in 

many work places, IEEE 802.11 being the IEEE standard for WLANs. WLANs are 

becoming more important due to increased interest in connection of mobile and 

portable computers mutually, or to the wired LANs. 

        1.1.1 Working of WLANs 

Wireless LANs use electromagnetic waves to communicate information from one 

point to another without relying on any physical connection. WLANs combine data 

connectivity with user mobility and enables movable LANs through simplified 

configurations. Radio waves are often referred to as radio carriers because they 
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simply perform the function of delivering information to a remote receiver. Data is 

modulated onto a radio carrier and then transmitted. At the radio receiver the data is 

extracted from the modulated signal by demodulation [2].   

 

Figure 1.1.  Typical WLAN Configuration 

In a WLAN configuration, as shown in Figure 1.1, an access point (AP), which is a 

transceiver device, connects to a wired network using a standard Ethernet cable. A 

single AP can function within a certain range and can support a small group of users. 

The AP receives, buffers, and transmits data between the WLAN and the wired 

network infrastructure.  End users access the WLAN through wireless LAN adapters, 

which are implemented as PC cards in notebook computers or use fully integrated 

devices within handheld computers [2]. 
 

1.1.2 Wireless LAN Technology Options 

There are various WLAN technology options. Each has its own advantages              

and disadvantages [3]. They are: 
 

Direct-Sequence Spread Spectrum Technology: Figure 1.2 represents a Direct – 

Sequence Spread Spectrum (DSSS) which generates a redundant bit pattern for each 



 3

bit to be transmitted. This bit pattern a chip or chipping code. The longer the chip, the 

greater the probability that the original data can be recovered. Even if one or more 

bits in a chip are damaged during transmission, statistical techniques embedded in the 

radio can recover the original data without the need for retransmission. To an 

unintended receiver, DSSS appears as low-power wideband noise and is rejected by 

most narrowband receivers. 

 

Figure 1.2.  Direct-Sequence Spread Spectrum 

Frequency - Hopping Spread Spectrum Technology: Figure 1.3 represents a 

Frequency - Hopping Spread Spectrum (FHSS) which uses a narrowband carrier that 

changes frequency in a pattern known to both transmitter and receiver. To an 

unintended receiver, FHSS appears to be short – duration impulse noise.  
 

 

Narrowband Technology: A narrowband radio system transmits and receives user 

information on a specific radio frequency. Narrowband radio keeps the radio signal 
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frequency as narrow as possible just to pass the information. Undesirable crosstalk 

between communications channels is avoided by carefully coordinating different 

users on different channel frequencies. 

 
Figure 1.3.  Frequency - Hopping Spread Spectrum 

 

In a radio system, privacy and non-interference are accomplished by the use of separate 

radio frequencies. The radio receiver filters out all the radio signals except the ones on 

its designated frequency. 

1.1.3 Classification of WLANs  
 

   

Infrastructure Network: In an infrastructure network, as shown in Figure 1.4, the 

wireless devices communicate with a central node that in turn can communicate with 

wired nodes on that LAN. They are comprised of WLANs connected to wired LANs 

and contain access points to channel network traffic. 
 

Ad hoc Network: Ad hoc network is comprised of wireless devices that communicate 

with each other in a peer-to-peer mode. Ad-hoc mode is useful for establishing a 

network where wireless infrastructure does not exist. Figure 1.5 depicts a single hop 
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and multi-hop ad hoc network configurations. In single hop ad hoc mode, there is no 

routing operation and hence only one-to-one communication, while in a multi-hop ad- 

hoc mode the network nodes communicate via other nodes.  

 

Figure 1.4.  Schematic of a WLAN Infrastructure Network 

 

Figure 1.5.  Schematic of a WLAN Ad hoc Network – Single hop and Multi-hop 

Configurations 
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1.2 Mobile Ad hoc Networks (MANET) 
 

Mobile and wireless technology is growing at a rapid rate. Ad hoc networks are a 

consequence of the ceaseless research efforts in mobile and wireless networks. They 

are a new paradigm of wireless communications for mobile hosts. Each MANET is a 

set of wireless mobile hosts forming a temporary, dynamic autonomous network 

without the aid of any established infrastructure or centralized administration, such as 

base stations or mobile switching centers [4][5].  

Wireless technologies such as General Packet Radio Service, Wi-Fi, Home-RF, and 

Bluetooth make it possible to access the Web from mobile phones, print documents 

from PDAs, and synchronize data among various office devices. However, such 

applications rely at some point on mobility support routers or base stations, and it is 

often necessary to establish communication when the wired infrastructure is 

inaccessible, overloaded, damaged, or destroyed [6]. 
 

However, MANETs do not rely on any fixed infrastructure but communicate in a self-

organized way. Nodes communicate with each other without the intervention of 

centralized access points or base stations. All nodes share the responsibility of 

network formation and management. Also they all behave as routers and take part in 

the discovery and maintenance of routes to other nodes in the network.  
 

In areas in which there is little or no communication infrastructure, or the existing 

infrastructure is expensive or inconvenient to use, wireless mobile users may still be 

able to communicate through the formation of an ad hoc networks. Their main 

advantages are the lower costs, inherent scalability, portability, mobility, ease of 

installation and their suitability to free unlicensed spectrum [5]. Ad hoc networks 

have received growing research attention during the last decade. This is partly due to 

significant developments in local area wireless technologies that are now starting to 

enable low cost wireless network build-out for local area communications. Such 

networks are emerging first of all in corporate environments especially through 

WLAN technologies, and similarly WLAN is also taking more and more footprint in 
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residential solutions. They are applied most commonly in situations such as military 

tactical operations, emergency cases, target tracking, law enforcement, rescue 

missions during disaster, virtual classrooms, and conferences [7].   
 

The strength of ad hoc networks resides in the diversity of computer networking and 

the growth of wireless over IP that patches the Internet together. Ad hoc networks are 

seen as the potential market for embedded network devices in multiple environments 

such as vehicles, mobile telephones and personal appliances. They are considered the 

infrastructure-less that will allow the users to create their Personal Area Networks 

(PANs) [8]. 
 

Wireless Personal Area Networks (WPANs) are short-range wireless networks that 

permit communication between wireless devices at a distance of around 10 meters. 

Bluetooth is a WPAN standard used for short distance transmission of digital voice 

and data that supports both, point-to-point and multipoint applications between 

mobile phones, computers, personal digital assistants (PDAs) etc,. It transmits in the 

unlicensed 2.4 GHz band and uses the frequency hopping spread spectrum technique. 

IEEE 802.15 is the working group of IEEE that develops standard protocols and 

interfaces for WPANs. 

 
1.3       Research Challenges of MANETs        

      1.3.1   Throughput 

One of the fundamental challenges in MANETs research is how to increase the 

overall network throughput while maintaining low energy consumption for packet 

processing and communications. The low throughput is attributed to the harsh 

characteristics of the radio channel combined with the contention-based nature of 

medium access control (MAC) protocols commonly used in MANETs. The notorious 

near-far problem undermines the throughput performance in MANETs [9]. Further, 

concurrent wireless transmissions in an ad-hoc network limit its throughput capacity, 

because they create mutual interference [10].  
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When two mutually out of range hosts compete over a common host, undetectable 

receiver side collisions result. When two mutually out of range hosts compete over a 

common host, undetectable receiver side collisions result. In other words, due to the 

limited transmission range of mobile stations, multiple transmitters within range of 

the same receiver may not know one another’s transmissions, and hence are in effect 

“hidden” from one another. When these transmitters transmit to the same receiver at 

around the same time, they do not realize that their transmissions collide at the 

receiver. This so-called “hidden terminal” problem degrades the throughput 

significantly. The near-far SNR problem has a significant effect on the performance 

of an ad-hoc network. It causes collisions which results in loss of efficiency 

(reduction of throughput). One solution might be to use RTS/CTS signaling, but it 

may not help much in a multi-hop ad hoc network due to the difference between the 

transmission range and sensing/interference range and also due to the fact that it 

increases control signal overhead [4].     

 

Figure 1.6.  Hidden Terminal Scenario 

Figure 1.6 represents the hidden terminal problem [13] where: 

 A talks to B 

 C senses the channel 

 C does not hear A’s transmission (out of range) 

 C talks to B 

 Signal from A and B collide 

 Causes wastage of resources, mainly throughput 
   

Another problem related to segment overlapping in ad hoc networks is the exposed-

terminal problem [4]. In this case the problem arises when the sensing mechanism 
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prevents parallel transmission, from two or more terminals, toward receivers that would 

not observe collision as the receivers are located far apart [11]. In exposed terminal 

scenario the free channel is not used, resulting in loss of efficiency. Hence hidden 

terminal problem and exposed node problem are conflicting [12]. 

 

Figure 1.7.  Exposed Terminal Scenario 

Figure 1.7 illustrates the exposed terminal problem [13] where: 

 B talks to A 

 C wants to talk to D 

 C senses channel and finds it to be busy 

 C stays quite (when it could have ideally transmitted) 

 Lower effective throughput due to underutilization of channel 
 

1.3.2   Multi-path Fading 
[ 

This is caused by multipath propagation of radio frequency (RF) signals between a 

transmitter and a receiver. Multipath propagation can lead to fluctuations in the 

amplitude, phase, and angle of the signal received at a receiver. If there is a strong 

LOS (Line Of Sight) between the transmitter and the receiver, diffraction and 

scattering are not the dominant factors in the propagation of the radio waves. 

However, in the absence of a LOS between the transmitter and the receiver, 

diffraction and scattering become the dominant factors in the propagation. Typically, 

the received signal is a sum of the components arising from the above three 

phenomena. The strength of the received signal fluctuates rapidly with respect to time 

and the displacement of the transmitter and the receiver [14]. 
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A fundamental characteristic of mobile wireless networks is the time variation of the 

channel strength of the underlying communication links. Such time variation occurs 

at multiple time scales and can be due to multipath fading, path loss via distance 

attenuation, shadowing by obstacles, and interference from other users. The impact of 

such time variation on the design of wireless networks parameters throughout the 

layers, ranging from coding and power control at the physical layer to cellular 

handoff and coverage planning at the networking layer [15]. 
 

 
1.3.3 Energy Utilization  

MANETs face power problems because of a lot of reasons [16] such as,  
 

 Battery power is limited 

 Recharging or replacing batteries may be difficult. 

 Large relay traffic in multi-hop routing might cause faster depletion of the 

node power source. 

 Increased battery size increases the size and weight of the node, while 

decreased battery size results in less capacity. 

 Consumption of battery charge increases with an increase in the transmission 

power. 
 

Power control in MANETs has recently received a lot of attention for two main 

reasons. First, power control has been shown to increase spatial channel reuse, hence 

increasing the overall (aggregate) channel utilization. This issue is particularly critical 

given the ever-increasing demand for channel bandwidth in wireless environments. 

Second, power control improves the overall energy consumption in a MANET, 

consequently prolonging the lifetime of the network [17]. Portable devices are often 

powered by batteries with limited weight and lifetime, and energy saving is a crucial 

factor that impacts the survivability of such devices.  

 

Energy efficiency is one of the most important aspects in mobile networks. Power is 

arguably the scarcest resource for mobile devices, and power saving has always been a 

major design issue for the developers of mobile devices, wireless communication 
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protocols and mobile computing systems. It is not practically possible to recharge or 

change batteries every other hour, or to carry a heavy battery pack, power puts many 

limitations on operations of a mobile device [18]. Computing ability is sacrificed 

because high performance processor needs more power. Also transmission range and 

bandwidth are restricted due to the fact that long range high bandwidth transceivers 

consume much energy.  
 

1.3.4 Mobility 

An ad hoc network consists of nodes that communicate with each other without the 

help of pre-existing infrastructure. The links between the nodes may change and the 

network adapts rapidly to the new situation. The freedom of movement makes wireless 

communication very attractive. But at the same time mobility brings challenges owing 

to bandwidth and power constraints, limited or no infrastructure and mobility of users. 

When a link between two nodes that is in use disconnects, the routing protocol needs to 

adapt to the new situation. This creates a cost both in the amount of control traffic and 

in the message delay i.e., frequent route changes due to mobility of the nodes would 

increase the signaling overhead and end-to-end delay which is required to establish a 

route [19]. When signaling overhead increases the energy consumed by the network 

will in turn increase which leads to a reduced network lifetime. Also because of the 

quick topology changes due to mobility of the nodes, ordinary routing protocol fails to 

give good performance.  Since nodes are mobile most of the time a lot of undesirable 

effects such as disconnection, bit errors, reduction in throughput, etc. take place In 

order to evaluate the impact of mobility while simulating a MANET routing protocol, it 

is crucial that the underlying mobility model accurately emulates real-world node 

mobility or at least the essential characteristics. 
 

   1.3.5   Scalability 
 

Over the last decade, many mobile ad hoc routing protocols have continually been 

designed and refined. However, most of the designs have been for small to mid size 

networks, especially those with low node density. As a result, most mobile ad hoc 
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routing protocols suffer large performance degradations when used in large-scale 

networks. Performing route discovery in a large or high-density network using reactive 

protocols, for instance, can be expensive due to network-wide broadcast floods. Using a 

proactive protocol in a highly mobile network, on the other hand, also causes 

significant performance degradations due to large amount of resource spent on updating 

the routing tables. While many proposed optimizations have been done to mitigate the 

shortcomings of ad hoc routing protocols in large-scale networks, most of the proposals 

were designed to address problems related to specific routing protocols in specific 

environments [20].  
 

Wireless communication systems for military and commercial infrastructures have been 

significantly scaled up in their sizes as well as complexities. Such systems are 

analytically intractable and simulation is a common alternative to explore the behavior 

of large-scale, complex wireless network systems. However, existing popular 

simulation tools such as OPNET [21] or ns-2 [22], which have contributed to the 

wireless communication community in the design and evaluation of new protocols, are 

not capable of simulating large-scale network models as the execution times of those 

simulation tools can be unreasonably long. Moreover, the memory requirement to 

simulate such systems physically limits the maximum number of network nodes with 

the existing simulation tools [15].  

 
1.4    Motivation    
 
 

A majority of the previous studies on MANETs concentrated on energy utilization, 

throughput, scalability and packet drop rate in an idealistic environment without giving 

much importance to the effects of realistic mobility and fading. A lot of interesting 

details about routing energy overheads of various ad hoc routing protocols were 

obtained from [23]. The mobility models were classified into entity and group mobility 

models [24]. Reference [25] studied the effect of RPGM on various performance 

metrics such as throughput and control overhead. In [26] the effect of random waypoint 

model, RPGM model and Manhattan grid model on the overall energy consumption 
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was compared. But energy-goodput, network lifetime, packet drop rate, throughput 

performance, scalability, etc were not analyzed in detail in the presence of fading with 

realistic mobility models. There have been many schemes to extend the use of mobile 

ad hoc routing protocols to environments much larger than the traditionally small and 

low-density ad hoc networks. Such large-scale mobile ad hoc networks are 

characterized by high node density and high mobility [20].  
 

The commonly used free space model is computationally efficient but ignores many 

losses that are common in wireless signal propagation. Accurate simulation of wireless 

networks requires realistic models of the channel propagation medium. An in-depth 

analysis of the effects of high mobility of MANETs on the performance three 

prominent ad hoc routing protocols; DSR, AODV (reactive protocols) and DSDV 

(proactive protocol) under realistic mobility and multi-path fading environments was 

not performed before.  Earlier, the effects of realistic mobility characteristics (temporal 

dependence of velocity, spatial dependence of velocity, and geographic restrictions) on 

the performance of various ad hoc routing protocols in multi-path fading conditions 

was not studied in detail. 

1.5    Research Objectives 
 
This thesis work performs an in-depth study on the effects of realistic mobility and 

fading on energy consumption, packet delivery ratio and control overhead of MANETs. 

It addresses the issues regarding the effect of realistic mobility characteristics on energy 

efficiency. Network scenarios which mimic realistic environments are used and the 

effects of various mobility models on protocol performance are to be observed. The 

simulations are carried out using ns-2 (Network Simulator).  

 

The energy consumed by the data (CBR – Constant Bit Rate) and control packets using 

IEEE 802.11 MAC protocol with the various realistic mobility models in multi-path 

fading channel conditions are obtained. These results are also compared with those 

obtained for random waypoint mobility model [27]. We also generate snapshots of the 

node movement in the various mobility models so that a lucid understanding of their 
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characteristics is possible. We evaluate the effects of realistic mobility and fading 

environment on scalability based on protocol performance metrics such as Packet 

Delivery Ratio (PDR) and Control Overhead.  
 

1.6    Thesis Organization  
 
The rest of the thesis is organized as follows. Next Chapter briefly describes the related 

literature review and background of the fading channel, IEEE 802.11 MAC, ad hoc 

routing protocols and realistic mobility models. Chapter 3 investigates the effects of 

multi-path fading and realistic mobility characteristics – temporal dependency, spatial 

dependency and geographic restriction on the energy utilization, throughput 

performance, scalability and packet drop rate of MANETs. Chapter 4 describes our 

network environment, simulation settings and mobility generators. In Chapter 5 the 

simulation results are presented and in Chapter 6, we present our conclusions and 

discuss future work. 

 

1.7    Summary 
 
In this chapter, we briefly studied wireless LANs and mobile ad hoc networks. The 

main challenges faced by MANETs both in research and real environments were 

discussed. Next we presented the motivation for the thesis and an overview of how it is 

organized. 
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Chapter Two 

 
Literature Review and Background 

 
2.1    Literature Review 

 
Reference [28] investigated the impact of wireless fading channel models on the accuracy 

and evaluation time of large-scale simulation models. In [29], Bernard Sklar addresses 

Rayleigh fading, primarily in the UHF band, which affects mobile systems. It also studies 

the fundamental fading manifestations and the types of degradation. A simple method for 

modeling small scale Ricean (or Rayleigh) fading is introduced in [30]. It also 

demonstrates a computationally efficient way to model small-scale fading statistics 

within a packet level simulator. A set of physical layer factors such as signal reception, 

path loss, fading, interference, noise computation and preamble length are presented in 

[31] to evaluate the performance of ad hoc routing protocols such as DSR and AODV.  

 

In [32], Hong Jiang et al. analyzed the performance of three routing protocols – AODV, 

DSR and STAR compared in terms of control overhead, amount of data delivered and 

average latency in packet delivery. Reference [23] focuses on the energy consumption 

and studies the ‘range effects’ of DSR, AODV and DSDV and how changes to 

transmission power and transmission radius affect the overall energy consumed by 

routing related packets using the random waypoint mobility model. But in [33] Juan-

Carlos Cano et al. measured and compared energy consumption behavior of DSR, 

AODV, DSDV and TORA by varying pause time, maximum node speed, number of 

traffic sources, number of nodes, simulation area and sending rate. 
 

Amit Jardosh et al., proposed to create a more realistic movement model through the 

incorporation of obstacles which are used to restrict both node movement as well as 

wireless transmissions [34]. In [35], Bor-rong Chen et al. performed an energy-based 

comparison of AODV, DSR, DSDV and TORA using three different mobility models: 
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RW model, RPGM model and MG model. They showed significant energy conservation 

performance difference among mobility models. Fan Bai et al., developed a framework 

called ‘IMPORTANT’ (Impact of Mobility on Performance Of RouTing protocols for 

Ad hoc NeTworks) [36] to evaluate the impact of different mobility models such as 

random waypoint (RW) model, reference point group mobility (RPGM) model, freeway 

model and Manhattan grid (MG) model on the performance of popular MANET routing 

protocols (DSR, AODV and DSDV) and also proposed various protocol independent 

metrics such as spatial dependence, temporal dependence and geographic restrictions to 

capture interesting mobility characteristics. 

 
 

2.2 Fading Channel 
 

 
Fading is a variation of signal power at receivers caused by the node mobility or 

environmental changes that create varying propagation conditions from transmitters [37].  

There are three main mechanisms that impact radio propagation in wireless channels: 

Reflection, Diffraction and Scattering as shown in Figure 2.1.  

 

Reflection occurs when an electromagnetic wave impinges on a smooth surface with very 

large dimensions when compared to the wavelength of the radio wave. It may interfere 

constructively or destructively at the receiver. Diffraction occurs when the path of the 

electromagnetic wavefront is obstructed and deviated by an impenetrable body of large 

dimensions as compared to the RF signal wavelength. Diffraction is also called 

shadowing because the diffracted field can reach the receiver even when shadowed by an 

impenetrable obstruction. Scattering occurs when the radio channel contains objects of 

dimensions that are on the order (or less) of the electromagnetic wavelength, causing 

energy from a transmitter to be radiated in many different directions. Scattering results in 

a disordered or random change in the incident energy distribution [14]. 
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Figure 2.1.  Illustration of Fading Mechanisms  

There are two major categories of fading: Large Scale Fading, Small Scale Fading. Large 

Scale Fading is the “loss” that most propagation models try to account for. They are 

mostly dependant on the distance from the transmitter to the receiver. It is also known as 

“Large Scale Path Loss”, “Log-Normal Fading”, or “Shadowing”. Small Scale Fading is 

caused by the superposition or cancellation of multipath propagation signals, the speed of 

the transmitter or receiver, and the bandwidth of the transmitted signal as illustrated in 

Figure 2.2. It is also known as “Multipath Fading”, “Rayleigh Fading”, or simply as 

“Fading”.  

 
Figure 2.2.  Multi-path or Rayleigh Fading 
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MANET scenarios undergo fading which presents Rayleigh or Ricean distributions, 

depending on the geometrical conditions [37].  Rayleigh fading is the fading in a channel 

due to the interference caused between the direct signal and the same signal traveling 

over different paths, resulting in out-of-phase components incident at the receiver [38]. 

The fading with the Rayleigh distribution is used for mobiles with no line of sight 

(NLOS) between the transmitter and the receiver. Rayleigh fading with strong line of 

sight content is said to be Ricean fading. The signal level from the Ricean path with 

respect to the power from Rayleigh paths can be controlled by a parameter called Ricean 

‘K’ factor [14]. The additive white Gaussian noise (AWGN) model is used to model an 

idealistic channel condition where no signal fading occurs. 

 
 

2.3    IEEE 802.11 Medium Access Control (MAC) 
 
 

IEEE 802.11 is the most widely adopted protocol standard for wireless local area 

networks (WLANs). It specifies two different modes: the infrastructure mode and the ad 

hoc mode. A special device, Access Point (AP), must be presented as the central point of 

each Basic Service Set (BSS) in the infrastructure mode. Communications inside a BSS 

happen only between AP and stations, and AP usually connects to the wireline network 

as the gateway to the Internet. The architecture of infrastructure mode is like a cellular 

network where a Base Station is the center of each cell. In the ad hoc mode, current 

standards are built on an environment where stations in a grouup are all within each 

other’s transmission range, and they communicate in a peer-topeer fashion. In other 

words, the ad hoc mode of 802.11 supports only single-hop ad hoc networks, referred to 

in the specification as Independent Basic Service Sets (IBSSs) [18].  

 
IEEE 802.11 Architecture: IEEE 802.11 networks are comprised of Stations, Wireless 

Medium, AP (Access Points) and a DS (Distribution System), as shown in Figure 2.3.  
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Figure 2.3 Schematic of IEEE 802.11 Network Architecture [41] 

 

Station: It is any device which as a IEEE 802.11 MAC (Medium Access Control) and 

Physical layer interface to the wireless medium. It maybe a laptop computer or a PDA 

(Personal Digital Assistant). 
 

Access Point (AP): It is a device found within an IEEE 802.11 network, which provides 

the point of interconnection between the wireless station and wired network. There are 

various types of access points and base stations used in both wireless and wired networks. 

These include bridges, hubs, switches, routers and gateways. The differences between 

them are not always precise, because certain capabilities associated with one can also be 

added to another. 
 

Distribution System (DS): A DS is a logical element of IEEE 802.11 network that 

provides a means of connecting multiple AP’s together [39]. 

 
IEEE 802.11 MAC mainly relies on two techniques to combat interference: physical 

carrier sensing and RTS/CTS (request-to-send / clear-to-send) handshake (also known as 

“virtual carrier sensing”). Ideally, the RTS/CTS handshake can eliminate most 

interference. However, the effectiveness of RTS/CTS handshake is based on the 

assumption that hidden nodes are within transmission range of receivers. Resolving 

hidden terminal problem becomes one of the major design considerations of MAC 

protocols. IEEE 802.11 DCF (Distributed Control Function) is the most popular MAC 

protocol used in both wireless LANs and mobile ad hoc networks (MANETs) [40].  This 

protocol generally follows the CSMA/CA (Carrier Sense Multiple Access / Collision 
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Avoidance) paradigm, with extensions to allow for the exchange of RTS-CTS (request-

to-send/clear-to-send) handshake packets between the transmitter and the receiver. These 

control packets are needed to reserve a transmission floor for the subsequent data 

packets. Nodes transmit their control and data packets at a common maximum power 

level, preventing all other potentially interfering nodes from starting their own 

transmissions. Any node that hears the RTS or the CTS message defers its transmission 

until the ongoing transmission is over. While such an approach is fundamentally needed 

to avoid the hidden terminal problem, it negatively impacts the channel utilization by not 

allowing concurrent transmissions to take place over the reserved floor [17].  

 
2.4    Routing Protocols 

   
Routing protocols are categorized as proactive and reactive protocols. Proactive routing 

protocols DSDV (Destination Sequenced Distance Vector Routing) are table-driven 

protocols; they always maintain current up-to-date routing information by sending control 

messages periodically between the hosts which update their routing tables. Reactive or 

on-demand routing protocols are the ones which create routes when they are needed by 

the source host and these routes are maintained while they are needed. DSR (Dynamic 

Source Routing) and AODV (Ad hoc On-demand Distance Vector Routing) are the most 

popular reactive routing protocols. 

 
2.4.1 Dynamic Source Routing (DSR) Protocol 

 
The Dynamic Source Routing (DSR) [41] is an on-demand routing protocol that is based 

on the concept of source routing. Mobile nodes are required to maintain route caches that 

contain the source routes of which the mobile is aware. Entries in the route cache are 

continually updated as new routes are learned.  The protocol consists of two major 

phases: a) route discovery, and b) route maintenance. When a source wishes to 

communicate with a destination, a source starts with a route discovery by flooding a 

route request packet. The route request message contains the address of the destination 

along with the source node’s address and a unique identification number. Each node 

receiving the packet checks whether it knows of a route to the destination, if not, it adds 
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its own address to the route record of the packet along its outgoing links. A node discards 

the route request, if it finds its own address already recorded in the route.   

A route reply is generated when either the route request reaches the destination itself, or 

when it reaches an intermediate node that contains in its cache an unexpired route to the 

destination. When the destination receives a request packet, it may simply reverse the 

recorded route to reach the source or may use the same route discovery procedure toward 

the original source. Route maintenance is accomplished through the use of route error 

packets and acknowledgements. The route error packets are generated at a node when the 

data link layer encounters a fatal transmission problem. When a route error packet is 

received, the hop in error is removed from the node’s route cache and all the routes 

containing the hop are truncated at that point. In addition to route error messages, 

acknowledgements are used to verify the correct operation of the route links. 

 

2.4.2 Ad hoc On-Demand Distance Vector (AODV) Routing Protocol 
 

The Ad hoc On-demand Distance Vector (AODV) routing protocol [42] builds on the 

DSDV (Destination Sequenced Distance Vector) algorithm. It is an improvement on 

DSDV because it typically minimizes the number of required broadcasts by creating 

routes on an on-demand basis, as opposed to maintaining a complete list of routes as in 

the DSDV algorithm. It is classified as a pure on-demand route acquisition system.  

When a source wishes to send a message to some destination and does not already have a 

valid route to that destination, it initiates a route discovery process to locate the other 

node.  It broadcasts a route request (RREQ) packet to its neighbors, which then forward 

the request to their neighbors, and so on, until either the destination or an intermediate 

node with a recent route to the destination is located. AODV uses destination sequence 

numbers to ensure that all routes are loop-free and contain the most recent route 

information. Route maintenance is carried out by the use of link failure notification 

message (an RREP with an infinite metric) which is propagated by upstream neighbors 

(which notice a node’s movement) to each of its active upstream neighbors to inform 

them of the erasure of that part of the route. AODV additionally uses hello messages 

which are periodic local broadcasts made by a node to inform each mobile node of other 
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nodes in its neighborhood. Hello messages can be used to maintain the local connectivity 

of a node.  

 

2.4.3 Destination-Sequenced Distance-Vector (DSDV) Routing Protocol 
 

The Destination-Sequenced Distance-Vector (DSDV) routing protocol is a table-driven 

protocol requiring every node to periodically propagate routing information updates 

throughout the network [43]. Each node periodically broadcasts its routing table to all of 

its neighbor nodes and this route information will be propagated from the source node 

through the network until it reaches the destination node. Route maintenance in DSDV is 

different from that in DSR and AODV. Whenever significant changes of topology 

happen, e.g. a MN (Mobile Node) detects a break in the link or it discovers a new 

neighbor in its proximity, MNs will broadcast its routing table. Each node receiving this 

information should also broadcast the topology update to its neighbors [44].  In DSDV, 

each node maintains a routing table indexed by sequence numbers, and listing the next 

hop for every reachable destination. The sequence numbers enable the mobile nodes to 

distinguish stale routes from new ones. To maintain table consistency each node 

periodically transmits the routing table over the network.  

 
2.5 Mobility Models 

 
2.5.1 Random Waypoint Model (RW) 
 
 
It is a ’benchmark’ model to evaluate the MANET routing protocols, because of its 

simplicity and wide availability. This mobility model includes pause times between 

changes in direction and/or speed. An MN (Mobile Node) begins by remaining in a 

particular location for a certain pause time. Once this time expires, the MN chooses a 

random destination in the network area and a speed that is uniformly distributed between 

[minspeed, maxspeed] and travels toward the new destination, as shown in Figure 2.4. 

Upon arrival, the MN pauses for a specified time period before repeating the process 

again. To generate the node trace of the RW model the ‘setdest’ tool from the CMU 

Monarch group is used which is included in ns- 2 [35] [45]. 
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Figure 2.4.  Traveling Pattern of a Mobile Node using Random Waypoint Mobility Model 

 
 
2.5.2    Gauss Markov Model (GM) 
 
In this model, the velocity of mobile node is assumed to be correlated over time and 

modeled as a Gauss-Markov stochastic process. It is a temporally dependent mobility 

model where the degree of dependency is determined by the memory level parameter α. 

By tuning this parameter various scenarios are obtained: (i) α = 0 then the model is 

memoryless, (ii) α = 1 then the model has strong memory and (iii) 0 < α <1 then the 

model has some memory [46].  

 

Figure 2.5. illustrates the traveling pattern of an MN using the GM mobility model.  This 

mobility model can eliminate the sudden stops and sharp turns encountered in the random 

walk mobility model  by allowing past velocities to influence future velocities (i.e) 

introducing temporal dependency of velocity. 
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        Figure 2.5.  Traveling Pattern of a Mobile Node using Gauss Markov Mobility Model 

2.5.3 Manhattan Grid Model (MG) 
 
This model emulates the movement pattern of mobile nodes on streets defined by maps. 

It is useful in modeling movement in an urban area. Maps are used in this model which is 

composed of a number of horizontal and vertical streets.  
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Figure 2.6.  Traveling Pattern of a Mobile Node using Manhattan Grid Mobility Model 
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The mobile node is allowed to move along the grid of horizontal and vertical streets on 

the map. At an intersection the MN can turn right, left or go straight as depicted in Figure 

2.6. This model has high temporal dependency of velocity as well as spatial dependency 

of velocity. Also it imposes geographic restrictions on the movement of the MN [36] 

[46]. 

 

2.5.4 Reference Point Group Mobility (RPGM) Model 
 
In an ad hoc network there are a lot of scenarios where it is necessary to model the 

behavior of MNs as they move together. Group mobility can be used in military 

battlefield communication, rescue operations, tracking etc [45]. Each group has a logical 

center (group leader) that determines the group’s motion behavior. Initially, each member 

of the group is uniformly distributed in the neighborhood of the group leader. 

Subsequently, at each instant, every node has a speed and direction that is derived by 

randomly deviating from that of the group leader. Figure 2.7. illustrates the traveling 

pattern of three MNs moving together as one group.   

 
Figure 2.7.  Traveling Patterns of Three Mobile Nodes using Reference 

 Point Group Mobility Model 
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The movement of the logical center for each group, and the random motion of each 

individual MN within the group, are implemented via the RW Mobility Model. However, 

the individual MNs do not use pause times while the group is moving.     

 

2.5.5   Pursue Mobility Model (PM) 
 
It emulates scenarios where several nodes attempt to capture a single mobile node ahead. 

This mobility model could be used in target tracking and law enforcement. The node 

being pursued moves freely according to the RW model. The current position of an MN, 

a random vector, and an acceleration function are combined to calculate the next position 

of the MN. By directing the velocity towards the position of the targeted node, the 

pursuer nodes try to intercept the target node as seen in Figure 2.8 [45]. 

 

 
 

Figure 2.8.  Movement of Mobile Nodes using Pursue Mobility Model 

 

2.5.6   Column Mobility Model (CM) 
 
The column mobility model represents a set of mobile nodes (e.g., robots) that move in a 

certain fixed direction. This mobility model can be used in searching and scanning 

activity, such as destroying mines by military robots [45]. This model represents a set of 

MNs that move around a given line, which is moving in a forward direction. For the 
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implementation, an initial reference grid is defined as shown in Figure 2.9. Each MN is 

then placed in relation to its reference point in the reference grid; the MN is then allowed 

to move randomly around its reference point via an entity mobility model such as RW 

model or random walk model. 

 

 
 

Figure 2.9.  Movement of Mobile Nodes using Column Mobility Model 

 

2.6    Summary 
 

In this chapter, we reviewed some of the previous research done in evaluating the effect 

of multi-fading, energy consumption and mobility on the performance of routing 

protocols in MANETs. We then briefly described the fading channel, IEEE 802.11 MAC, 

routing protocols and mobility models that are considered in our network simulations.  
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Chapter Three 
 

Factors Influencing MANET Performance in Realistic Environments 
 

 

3.1     Network Simulations in Realistic Environments 
 

Mobile ad hoc network performance can be evaluated through the use of simulation 

as it provides the capability to analyze the effect of different protocol parameters on 

different performance metrics in various network scenarios. Previously, most of the 

simulations of MANETs were done using RW mobility model as a default model. In 

this entity model, the Mobile Node (MN) moves in a random fashion with a specific 

pause time. But the scenarios in which ad hoc networks are implemented, the node 

mobility may not be randomized. Hence it is necessary to evaluate MANET 

performance with traveling patterns that emulate human movements. Figure 3.1 

shows the network simulation settings of a MANET in an unrealistic environment 

incorporated with RW mobility model, two ray ground reflection radio model and 

CBR traffic.  
 

Two ray ground propagation model considers the direct path and the ground 

reflection path when calculating the received signal power of each packet. Though it 

is more accurate than the free space model, which assumes the ideal propagation 

condition that there is only one line-of-sight path between the transmitter and receiver 

[47], this model does not take into consideration the effect of multi-path fading on the 

wireless channel.  
 

Figure 3.2 illustrates the network simulation environment created for our MANET 

performance evaluation. We incorporated mobility models with realistic movement 

characteristics such as temporal dependence of velocity, spatial dependence of 

velocity and geographic restrictions. The mobility models are broadly categorized as 

Entity and Group mobility models [48]. Entity mobility model specifies individual 
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node movement. Group mobility model describes group movement as well as 

individual node movement inside groups. The entity models considered were GM 

Model and MG Model. The group mobility presented was RPGM model, CM model 

and PM model.  Table 3.1 tabulates the mobility models used for our simulations and 

the realistic mobility characteristics they exhibit.   

 
Figure 3.1.  Network Simulation in an Unrealistic Environment 

 

3.2   Temporal Dependency of Velocity 
 
Temporal dependence of velocity indicates the similarity in the velocities of a node 

within a specified time interval [48]. In most real life scenarios, the speed of vehicles 

and pedestrians will accelerate incrementally. The direction change will also be 

smooth. Hence the velocity at current time period is dependent on the previous epoch, 

i.e., the velocities of a node at different time slots are correlated [35] [45]. So the 

mobility model should have some memory to prevent extreme mobility behavior, 

such as sudden stop, sudden acceleration and sharp turn, which may frequently occur 
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in the trace generated by the RW model.  Hence we use GM model so that the role of 

temporal dependence of velocity on MANET performance can be understood. 

 

 
Figure 3.2. Network Simulation in a Realistic Environment 

 
 
 

3.3  Spatial Dependency of Velocity 
 
Spatial dependence of velocity indicates the similarity in the velocities of two nodes 

that are within a specified transmission range from each other, i.e., the velocities of 

different nodes are correlated in space [48]. In some scenarios such as battlefield 

communication and museum touring, the movement pattern of a mobile node may be 

influenced by a certain ’group leader’ node in its neighborhood [35] [45]. Hence, the 

mobility of various nodes is indeed correlated. But the RW model considers a mobile 

node as an entity that moves independently of other nodes. So we need to consider 
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using group mobility models like RPGM model, CM model and PM model that 

characterizes inter-dependent movement of nodes. 

 

3.4 Geographic Restriction of Movements 
 
RW and its variants assume that the mobile nodes can move freely within the 

simulation field without any restrictions. However, in realistic applications in urban 

area settings, the movement of a mobile node may be bounded by obstacles, 

buildings, streets or freeways [35] [45]. As the nodes movement is subject to the 

physical conditions they will move in a pseudo-random fashion on a predefined path. 

Some realistic mobility models incorporate the predefined paths and obstacles into 

the mobility models. We use MG mobility model in our simulations which restricts 

the movement of the mobile node to the pathway in the simulation field. 

 
Figure 3.3. Pathway Map of Manhattan Grid Mobility Model 

 

In mobility models with geographic restrictions, the predefined pathways restrict and 

partly define the movement path of nodes even though there exists a certain level of 

randomness.  Hence the pathway of the simulation field is a key element for 

characterizing the geographic constraint of a mobility model. The pathway map used 

for MG mobility model is illustrated in Figure 3.3. 
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Table 3.1 Mobility Models and their Movement Characteristics 

 
 

MOBILITY  
MODELS 

 
TEMPORAL 

DEPENDENCE OF 
VELOCITY 

 
SPATIAL 

DEPENDENCE OF 
VELOCITY 

 
GEOGRAPHIC 

RESTRICTIONS/ 
OBSTACLES 

 
Random Waypoint 

 
No 

 
No 

 
No 

 
Manhattan Grid 

 
Yes 

 
No 

 
Yes 

 
Gauss Markov 

 
Yes 

 
No 

 
No 

 
RPGM 

 
No 

 
Yes 

 
No 

 
Column Motion 

 
No 

 
Yes 

 
No 

 
Pursue Motion 

 
No 

 
Yes 

 
No 

 
 

3.5      Effect of Multi-path Fading Channel  
 

Figure 3.4 illustrates the effect of Rayleigh fading on a signal’s envelope. The time 

interval corresponding to two adjacent small-scale fades is on the order of a half 

wavelength (λ / 2).  

 

        Figure 3.4.  Time-Sequenced Rayleigh Fading Envelope 
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3.6      Scalability of a Network 

 
As wireless ad hoc networks used for security and commercial purposes have 

significantly magnified in their sizes over the years, it is necessary to explore the 

behavior of large scale, complex wireless network systems in realistic ad hoc 

environments. Thus there is a need to use high performance simulation tools to 

achieve scalability to large networks [28]. But due to the limitations in the network 

simulator (Ns-2) used for our simulations the number of nodes in our network 

designed is around 50. Performance metrics such as packet delivery ratio (PDR) and 

control overhead are employed to analyze the scalability of the mobile ad hoc 

network when simulated in a fading environment with realistic mobility models. 

 
3.7      Summary     

 
This chapter reviews the need for realistic ad hoc scenarios in simulations, some of 

the important realistic movement characteristics and the mobility models that were 

used in our simulations.  It explains the effect of Rayleigh fading on a signal. The 

scalability of MANETs is also discussed briefly.  
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Chapter Four 
 

Network Simulation Environment 
 

 
4.1       ns-2 (Network Simulator) 

 
4.1.1 Origins 

 
         The simulations are carried out using ns-2 (26th release). ns-2 is a discrete event, 

object oriented, simulator developed by the VINT project research group at the 

University of California at Berkeley targeted at networking research. ns-2 provides 

substantial support for simulation of TCP, routing, and multicast protocols over wired 

and wireless (local and satellite) networks. ns-2 began as a variant of the REAL 

network simulator in 1989 and has evolved substantially over the past few years. In 

1995 ns-2 development was supported by DARPA through the VINT project at LBL, 

Xerox PARC, UCB, and USC/ISI. Currently Ns development is supported through 

DARPA with SAMAN and through NSF with CONSER, both in collaboration with 

other researchers including ACIRI.  
 

ns-2 has always included substantial contributions from other researchers, including 

wireless code from the UCB Daedelus and CMU (Carnegie Mellon University) 

Monarch projects and Sun Microsystems. The simulator has been extended by the 

Monarch research group at CMU to include: nodes mobility, a realistic physical layer 

that includes a radio propagation model, and the IEEE 802.11 Medium Access 

Control (MAC) protocol [25].  
 

4.1.2  Functional Description   
 
ns-2 is a simulator, written in C++ with an OTcl (Object Tool Command Language) 

interpreter as a front-end. C++ is used for detailed protocol implementation which 

efficiently manipulates bytes, packet headers, and implements algorithms that run 
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over large data sets. On the other hand OTcl is ideal for slightly varying parameters 

and simulation configurations, or quickly exploring a number of scenarios. One of the 

main advantages of the split-language implementation of ns-2 is its object oriented 

design, which allows for easy replacement of the software modules involved in a 

simulation - for example a routing protocol, a network application, or a propagation 

model.  

 

The process of configuring the set of modules required to perform a particular 

simulation, starting from the physical interface model up to the application layer, is 

known as plumbing, and is usually performed by an OTcl script. When testing a new 

protocol, or implementing a simulation model, we need to write the code with the 

correct bindings to the OTcl interface, and afterwards instruct the plumbing script to 

employ the newly created modules during simulation setup.  

 

MobileNode is the basic nsNode object with added functionalities like movement, 

ability to transmit and receive on a channel that allows it to be used to create mobile, 

wireless simulation environments. The class MobileNode is derived from the base 

class Node. MobileNode is a split object. The mobility features including node 

movement, periodic position updates, maintaining topology boundary etc are 

implemented in C++ while plumbing of network components within MobileNode 

itself (like classifiers, dmux , LL, Mac, Channel etc) have been implemented in Otcl 

[49].  

 

Figure 4.1 illustrates the plumbing for the network stack objects of a MANET node 

that uses the DSDV routing protocol: an application layer module, the routing 

protocol, the address resolution protocol (ARP) module, a link layer (LL) object, an 

interface queue, the MAC protocol, and the physical interface with the channel’s 

radio propagation model [50]. 
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Figure 4.1.  Schematic of a MobileNode under the CMU Monarch's Wireless 

Extensions to ns-2 [25] 
 

4.1.3 Modifications to ns-2   
 
The Ricean (or Rayleigh) propagation model with a Ricean K factor of 0 is included 

so as to incorporate Rayleigh fading in the channel. A dataset containing the 

components of a time-sequenced fading envelope is pre-computed. With a few simple 

mathematical operations during the simulation run, this single lookup table can be 

used to model a wide range of parameters. The parameters to be adjusted are the time-

averaged power, P, the maximum Doppler frequency, fm, and the Ricean K factor. 

The signal power from the LOS path with respect to the NLOS paths can be 
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controlled by the Ricean K factor. Although the dataset represents a limited length 

time sequence, long simulations can be performed by using this limited dataset over 

and over again. The dataset is constructed so that there are no discontinuities when 

the sequence repeats. It is assumed that the small scale fading envelope is used to 

modulate the calculations of a large scale propagation model (two-ray ground or some 

other deterministic model) [30].     

 

The Rayleigh (Multipath) Fading modeled in our simulations has the values as shown 

in Table 4.1: 

Table 4.1.  Multipath Fading Model Parameters 

 

PARAMETER 

 

VALUES 

Distribution Ricean - Gaussian components 

Fm 20 Hz 

N 15584 

Fs 1000 Hz 

Ricean K Factor 0 

MaxVelocity 2.5 / 5.0 

LoadRiceFile rice_table.txt 

 

 
4.2       Mobility Generators 
 
 

4.2.1 The setdest Mobility Generator 
 
The RW model is most commonly used mobility model in research of MANETs. This 

model is provided by the setdest tool in the standard ns-2 distribution [51]. 

Usage:  The syntax [52] to run “setdest” with arguments is as shown below: 

Syntax: ./setdest [-n num_of_nodes] [-p pausetime] [-s maxspeed] [-t simtime] [-x 

maxx] [-y maxy] > [outdir/movement-file] 
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4.2.2    BonnMotion Mobility Generator 

BonnMotion is Java-based software which creates and analyses mobility scenarios. It 

is developed within the Communication Systems group at the Institute of Computer 

Science IV of the University of Bonn, Germany. It serves as a tool for the 

investigation of mobile ad hoc network characteristics. The scenarios generated in 

this mobility generator can be exported for ns-2 or GloMoSim. The mobility models 

that are supported are RW model, GM model, MG model and RPGM model [53]. 

Table 4.2. Parameters used to Generate Manhattan Grid Movement Pattern  

 

 

 

 

 

 

 

 

             
             
 
 
 
 
 
 
  
 
 GAUSS MARKOV MOBILITY MODEL: 

 
 
Usage: All applications described above are started via the "bm" wrapper script [54].  
 
Syntax:  ./bm <parameters> <application> <application parameters> 
 

 

PARAMETER 

 

VALUES 

Model Manhattan Grid 

Mobility Generator BonnMotion  

Number of  Nodes 49 

Simulation Time 600 

X Dimension 500 

Y Dimension 500 

Number of Rows 7 

Number of Columns 7 

Maximum Pause Time 0.1 

Pause Probability 0.1 

Mean Speed  Varied as speed varies from  

5 m/s to 80 m/s 
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Here, the parameters for simulating the mobility models are those described in the 

Tables 4.2, 4.3 below and the application can be a mobility model or e.g. the Statistics 

application used to analyze the scenario characteristics.  

 

We generate MG movement files for five different speeds: 5 m/s, 20 m/s, 40 m/s, 60 

m/s and 80 m/s and export them so that it can be used for simulations in ns-2. High 

speeds of around 80 m/s are reasonable whenever a MANET includes highly mobile 

nodes such as helicopters, police, military and other emergency vehicles.  

Table 4.3.  Parameters used to Generate Gauss Markov Movement Pattern  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 

 

 

 

 

GM movement files for five different speeds: 5 m/s, 20 m/s, 40 m/s, 60 m/s and 80 

m/s were generated and then exported them to be used for simulations in ns-2. The 

angle standard deviation can be varied between 0 and 1.  

 

 

PARAMETER 

 

VALUES 

Model Gauss Markov 

Mobility Generator BonnMotion  

Number of  Nodes 49 

Simulation Time 600 

X Dimension 500 

Y Dimension 500 

Random Seed 1 

Angle Standard Deviation 0 

Maximum Pause Time 0.1 

Pause Probability 0.1 

Maximum Speed  Varied as speed varies from  

5 m/s to 80 m/s 
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4.2.3 Scenario Generator 
 

It is a tool to generate MANET mobility scenarios for ns-2. The mobility models that 

have been implemented include RW model, PM model, GM model and CM model. 

Also hybrid models can be constructed so that realistic ad hoc situations such as 

disaster, conference, etc. can be implemented in simulations [55]. 

 

We use this mobility model to generate PM Model for a group of 50 mobile nodes. 

The movement patterns for five different speeds: 5 m/s, 20 m/s, 40 m/s, 60 m/s and 

80 m/s was generated.  

 

Usage:  The syntax used is as shown, 
 

Syntax:  ./scengen > outdir/movement-file. 
 

The script takes two inputs: "model-spec", which contains the default parameters, and 

normally does not need to be changed and the other is the scenario specification file 

"scen-spec", which describes the scenario needed. The “scen-spec” for pursue 

mobility model was generated and the movement file was obtained. The nodes 

pursuing the runaway node have a direction that at any instant of time will be in a 

straight line towards the runaway node. 

 

The parameters which model the PM model used in our simulations is as shown in 

Table 4.4. 

 
 

4.2.4 Mobility Generator – Toilers Code 
 

“Toilers” is an ad hoc research group at Colorado School of mines [56]. We use the 

mobility model codes developed by this group to generate the movement patterns for 

RPGM and CM models.   
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Table 4.4. Parameters used to Generate Pursue Movement Pattern  

 

PARAMETER 

 

VALUES 

Model Pursue Motion 

Mobility Generator Scenario Generator 

Start time 0 Seconds 

Stop time 600 Seconds 

Number of Nodes 50 (one node being pursued by 

the rest) 

X Dimension 500 

Y Dimension 500 

Maximum Speed of Leader 

(Pursued) Node 

Varied as 10 m/s, 25 m/s, 45 

m/s, 65 m/s and 85 m/s. 

Maximum Speed of other 

(Pursuer) Node 

Varied as 5 m/s, 20 m/s, 40 m/s, 

60 m/s and 80 m/s. 

Minimum Speed of Leader 

(Pursued) Node 

 

5 m/s 

Minimum Speed of other (Pursuer) 

Node 

 

0 m/s 

 

Usage (For RPGM): ./rpgm <Number of groups>  <Number of nodes group> 

<Reference point separation>  <Max-X>  < Max-Y> <End time> <Speed Mean> 

<Speed Delta> <Pause time> <Pause time delta> <’N’ or ‘G’>  

where, N is ns-2 file format and G is Gnuplot file format. The values for the different 

parameters used to generate the RPGM movement pattern is shown in Table 4.5. 

 

We generate five different group scenarios for RPGM model so as to study the effect 

of inter-group dependency of the mobile nodes on the performance of different 

routing protocols. The number of groups in RPGM is varied from: 1, 2, 5, 10 and 25 
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keeping the number of nodes in the network scenario constant at 50.  The different 

scenario movement files generated are as shown in Table 4.6. 

Table 4.5.  Parameters used to Generate Gauss Markov Movement Pattern  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

 

 

 

The parameters used for CM model are similar to those described for RPGM.  

 

Usage (For Column-Line): ./col-line <Number of groups>  <Number of nodes group> 

<Reference point separation>  <Max-X>  < Max-Y> <End time> <Speed Mean> 

<Speed Delta> <Pause time> <Pause time delta> <’N’ or ‘G’>  

Where, N implies ns-2 Mobility file format and G is Gnuplot file format. 

 

PARAMETER 

 

VALUES 

Model RPGM 

Mobility Generator Toilers Code 

Number of Groups Varied as 1, 2, 5, 10 and 25 

Number of  Nodes per Group Varied from: 50, 25, 10, 5 and 2 

depending on number of groups 

to keep the number of nodes in 

all cases constant. 

Simulation Time 600 

X Dimension 500 

Y Dimension 500 

Number of Rows 7 

Number of Columns 7 

Pause Time 0.1 

Pause Delta 0.1 

Mean Speed  Varied as speed varies from 5 

m/s to 80 m/s 
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Table 4.6.  Different RPGM Scenarios Simulated 
 

GROUP SCENARIO NUMBER OF GROUPS NUMBER OF NODES 

PER GROUP 

RPGM1 1 50 

RPGM2 2 25 

RPGM3 5 10 

RPGM4 10 5 

RPGM5 25 2 

 

 
4.3 Traffic Generation 

 
We generate 12 Constant Bit Rate (CBR) traffic connections with send rate of 4 and 

packet size of 512 bytes for UDP sources. The source-destination pairs are spread 

over the network as shown in Figure 4.2.  

Random traffic connections of CBR can be setup between mobile nodes using a 

traffic-scenario generator. This script is available in ns-2 [52]. It can be used to create 

CBR and TCP traffics connections between wireless mobile nodes.  

Syntax: ns cbrgen.tcl [-type cbr] [-nn nodes] [-seed seed] [-mc connections] [-rate 
rate] 

 
4.4  Network Scenario 
 

Two different scenarios are considered based on the mobility models used. For the 

Entity Mobility models like RW model, MG model and GM model we use the 

Scenario A. For Group Mobility models like RPGM model, PM model and CM 

model we conduct experiments using the Scenario B. 

 
Scenario A: We generated an ad hoc network with 49 highly mobile nodes. The 

simulation area is 500 m x 500m and the simulation time was set to 600 seconds. 
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Figure 4.2 shows the initial position of the nodes and the connections through which 

the traffic flows. 

 
 

Figure 4.2.  Network Schematic Showing Initial Node Positions 
 

Scenario B: This scenario models the mobile nodes in groups. Based on the number 

of groups generated, we consider five different group scenario cases as shown in 

Table 4.7. Figure 4.3 illustrates the group scenario 4 where five groups were formed 

with ten mobile nodes in each group.   

 
Table 4.7.  Different Group Scenarios Simulated 

 

SCENARIO NUMBER OF GROUPS NUMBER OF NODES 

PER GROUP 

Group Scenario 1 1 50 

Group Scenario 2 2 25 

Group Scenario 3 5 10 

Group Scenario 4 10 5 

Group Scenario 5 25 2 

 

Source 

Sink 
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The simulation area is set to be 500 m x 500 m. Simulations are run for 600 seconds 

for 50 nodes. Each data point represents an average of at least five runs with identical 

traffic models, but different randomly generated mobility scenarios. 

 
Figure 4.3. Illustration of Group Scenario 3  

 
 

4.5 Energy Consumption Model 
 

According to the specification of the Network Interface Card (NIC) modeled, the 

energy consumption varies from 230mA in receiving mode to 330mA in transmitting 

mode, using 3.3V or 5.0V voltage supply [69]. All nodes are equipped with IEEE 

802.11 NICs with data rates of 2 Mbps. The energy expenditure needed to transmit / 

receive a packet p is: E(p tx / rcv) = i * v* t p Joules, where i is the current value, v 

the voltage, and t p the time taken to transmit / receive the packet p. Packet 

transmission time, t p = (packet-size in bits / 2 * 106) sec. In our simulations, the 

measured values of a Cabletron Roamabout 802.11 DS high rate NIC operating in 

base station mode is used. Table 4.8 shows the power consumption values of the four 

modes: Transmit mode, Receive mode, Idle mode and Sleep mode. 
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Table 4.8.  Power Consumption Values 
 
 

Transmit Mode 1400 mW 

Receive Mode 1000 mW 

Idle Mode 830 mW 

Sleep Mode 130 mW 

 
 
4.6  Performance Evaluation 

 
The following performance metrics are considered in our simulations: 
 
 
Energy-Goodput: It is defined as the ratio of the total bits transmitted to the total energy 

consumed, where the total bits transmitted are calculated for application layer data 

packets only and the total energy consumed captures the entire energy utilization of the 

network with all the control overhead included. The unit for energy-goodput is bits/J. 

 

Packet Delivery Ratio (PDR):  PDR is the ratio between the number of packets received 

by the end-point application and the number of packets originated at the source-node 

application. 

 

Packet Overhead (Control Overhead): Packet Overhead is the number of per-hop non-

data packets in the network per originating data packet. In case of CBR applications, 

this is directly proportional to the number of per-hop routing packets in the network. 

 
4.7 Summary 

 

This chapter focused on the network simulation environment used for our research. It 

also briefly explained the mobility and traffic generators used to generate movement 

and traffic patterns. Finally the performance metrics that were used to determine 

protocol performance was presented.  
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Chapter Five 
 

Experimental Results 
 
5.1 Scalability in Mobile Ad hoc Networks 
 

Scalability of a protocol can be obtained by measuring the protocol performance in 

different scalable scenarios.  Traditionally ad hoc networks have been used under 

small and low-density environments. Large-scale mobile ad hoc networks are 

characterized by high node density, high mobility and large number of nodes. 

Protocol performances were evaluated based on Packet Delivery Ratio (PDR) and 

Control Overhead. 
 

 

As mentioned earlier, two sets of analysis are made to evaluate the performance of 

MANETs with entity mobility models and group mobility models. In [28] scalability 

analysis for MANETs was performed using DSR and DSDV considering only 

Random Waypoint Mobility model. Our simulations encompass scalibility analysis 

for some of the most popular entity and group mobility models cited in Chapter 2.  

 
5.1.1 Scalability Analysis using Entity Mobility Models 

 

The Random Waypoint (RW) model is the default model which does not include any 

of the realistic mobility characteristics mentioned in Chapter 3. Manhattan Grid 

model has geographic restrictions incorporated in it through the use of pathway 

graphs. It was initially expected to have high degree of spatial dependency as the 

mobility of a node is subjective to the movement of the nodes ahead of it, in the lane. 

But from [37] we understand that Manhattan Grid (MG) model has negligible spatial 

dependence of velocity as the positive degree of spatial dependence (due to nodes 

traveling in same direction) is cancelled out by the negative degree of spatial 

dependence (due to nodes traveling in opposite direction).  Gauss Markov (GM) 
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mobility model has a high degree of temporal dependence as the velocity of the node 

is correlated over time and modeled as a Gauss Markov stochastic process [35].  

 

The maximum speed is increased from 5 m/s to 80 m/s. We keep the network density 

constant for all our simulations and hence any changes in protocol performance can 

be directly attributed to the mobility model used and the variation in speed.   

 

Packet delivery ratio is strongly influenced by the number of packets that are 

dropped, either at the source nodes or at intermediate nodes. Most packets being 

dropped are at the intermediate nodes which are mainly due to network congestion or 

broken links.   

 

 
Figure 5.1. PDR Analysis for Various Routing Algorithms using Random Waypoint 

Mobility Model 
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Figure 5.2. PDR Analysis for Various Routing Algorithms using Manhattan Grid 

Mobility Model 

 
Figure 5.3. PDR Analysis for Various Routing Algorithms using Gauss Markov 

Mobility Model 
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From Figures 5.1, 5.2 and 5.3 we observed that DSR has a higher PDR with RW model 

than AODV and DSDV. But its performance degrades significantly with MG and GM 

models in comparison with AODV and DSDV. One main reason for this performance 

drop in DSR can be attributed to the fact that control overhead increases more drastically 

as speed increases from 5 m/s to 20 m/s, when MG or GM models were used instead of 

RW model. Higher control overhead is needed to repair the more frequently occurring 

link breakages. Surprisingly, from Figures 5.4, 5.5 and 5.6 we observe that the control 

overhead produced by MG model and GM model on AODV and DSDV is lesser when 

compared to that produced by using RW model.   

 

 
Figure 5.4.  Control Overhead Analysis for various routing algorithms using Random 

Waypoint Mobility Model 

 
 

Comparing the PDR analysis made for RW and MG mobility models, we can conclude 

that when there are geographic restrictions associated with the movement of a mobile 

node in a MANET, there are more link breakages and hence there are more packets being 

dropped by forwarding nodes. When more packets are dropped more retransmissions 

takes place and there is higher network congestion leading to lower PDR values.  As the 
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speed increases the PDR decreases gradually when GM mobility model is used. Here 

again there are more broken links when compared to RW model.  

 
Figure 5.5. Control Overhead Analysis for Various Routing Algorithms using 

Manhattan Grid Mobility Model 

 
Figure 5.6. Control Overhead Analysis for Various Routing Algorithms using Gauss 

Markov Mobility Model 
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5.1.2 Scalability Analysis using Group Mobility Models 

 

The effect of spatial dependence of velocity on the protocol performance in MANETs 

is a major concern when ad hoc networks are utilized in military operations, rescue 

missions, tracking and law enforcement, where a group of mobile nodes work and 

move together to achieve a particular goal. The scalability of a MANET using group 

mobility models is analyzed through simulations carried out in ns-2 using the 

Scenario B mentioned in Chapter 4.  

 

It has been proved that the single group mobility has a higher value for degree of 

spatial dependence than that of multiple group mobility [56]. Hence the degree of 

spatial dependence of velocity decreases as we go from Group Scenario 1 to Group 

Scenario 5. These scenarios were explained in detail in Chapter Four. This analysis 

gives a lucid understanding of the effect of the degree of spatial dependence on the 

scalability of a protocol when used in a mobile ad hoc network.  

 

 
 

Figure 5.7. PDR Analysis for DSR using RPGM Mobility model for Various Speeds 
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Figure 5.8. PDR Analysis for DSR using RPGM Mobility Model for Various Group 
Scenarios 

 
 

 
 

Figure 5.9. PDR Analysis for AODV using RPGM Mobility Model for Various Speeds 
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Figure 5.10. PDR Analysis for AODV using RPGM Mobility Model for Various 
Group Scenarios 
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Figure 5.11. PDR Analysis for DSDV using RPGM Mobility Model for Various 
Speeds 

 

 
Figure 5.12. PDR Analysis for DSDV using RPGM Mobility Model for Various 

Group Scenarios 
 

The following conclusions can be made from the PDR analysis made when using 

RPGM mobility model: 

 

 Considering five different group scenarios, for DSR, as speed increases from 

5 m/s to 80 m/s, the PDR decreases from 1.0 to about 0.41. Whereas for 

AODV the PDR decreases from 1.0 to about 0.54 and for DSDV, the PDR 

decreases from 1 to 0.726. These results are graphically depicted in Figures 

5.7, 5.9 and 5.11. 

 

 In all cases (DSR, AODV, DSDV), the PDR is a maximum at 5 m/s for all 

group scenarios and a minimum for 80 m/s. 

 

 From Figures 5.8, 5.10 and 5.12 we can infer that as the degree of spatial 

dependence of velocity decreases from Scenario: RPGM1 to Scenario: 

RPGM5, PDR decreases in general but DSR shows a more drastic decrease 
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than AODV or DSDV. From the graphs it can be inferred that DSDV shows 

more consistent values when compared to DSR and AODV.  

 
Figure 5.13. Control Overhead Analysis for DSR using RPGM Mobility Model for 

Various Speeds 

 
Figure 5.14. Control Overhead Analysis for AODV using RPGM Mobility Model for 

Various Speeds 
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Figure 5.15. Control Overhead Analysis for DSDV using RPGM Mobility Model for 

Various Speeds 

 

The following conclusions can be made from the control overhead analysis made 

when using RPGM mobility model: 

 

 From Figures 5.13, 5.14 and 5.15 we infer that the control overhead is 

maximum for speeds of 80 m/s and minimum for 5 m/s for DSR, AODV and 

DSDV. These results can be directly related to the PDR results explained 

earlier.   

 

 Control overhead is very less in DSR (maximum – 43526 control packets) 

compared to AODV (maximum – 60648 control packets) and DSDV 

(maximum – 65755).   
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 The control overhead increases very steeply in AODV as speed increases from 

5 m/s to 80 m/s. This is because there is more flooding of route discovery and 

route request packets as there are more route changes as mobility increases.  

 
 

Figure 5.16. Control Overhead Analysis for DSR using RPGM Mobility Model for 

Various Group Scenarios 

 
 DSDV is least affected by variation in speed. Because DSDV is a distance-

vector protocol, it is responsible for periodically announcing its routing table 

to all one-hop neighbors. Since DSDV routing tables contain a list of next-hop 

entries for every node in the ad hoc network, the size of this routing update is 

independent of a node’s transmission range or power level. DSDV can be 

expected to be less sensitive to higher mobility rates and hence there is not 

much change (increase) in the number of link breakages as speed is increased 

from 5 m/s to 80 m/s. Hence we do not find a drastic increase in the control 

overhead produced, as depicted in Figure 5.18. 

 

 In DSR, there is a considerable increase in the control overhead produced as 

the scenario transforms from a single group to multiple groups. DSDV shows 
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very slight increase, whereas AODV is the worst affected as the control 

overhead increases drastically as we move from a single group scenario to a 

multiple scenario. This behavior is depicted by Table 5.1. 

 
Figure 5.17. Control Overhead Analysis for AODV using RPGM Mobility Model for 

Various Group Scenarios 

 
Figure 5.18. Control Overhead Analysis for DSDV using RPGM Mobility Model for 

Various Group Scenarios 
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Table 5.1. Maximum Control Overhead Produced for Single and Multiple Group 

Scenarios when Implementing RPGM Mobility Model 

 
 

ROUTING 

PROTOCOL 

 

MAXIMUM CONTROL-OVERHEAD  

SINGLE GROUP SCENARIO 

(Control Packets) 

 

MAXIMUM CONTROL-OVERHEAD 

MULTIPLE GROUP SCENARIO 

(Control Packets) 

 

DSR 

 

2903 

 

40821 

 

AODV 

 

16238 

 

76100 

 

DSDV 

 

61929 

 

63638 

 

 

 
 

Figure 5.19. PDR Analysis for DSR using Column Mobility Model for Various Speeds 
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Figure 5.20. PDR Analysis for DSR using Column Mobility Model for Various Group 
Scenarios 

 
 

 
 

Figure 5.21. PDR Analysis for AODV using Column Mobility Model for Various 
Speeds 
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Figure 5.22. PDR Analysis for AODV using Column Mobility Model for Various 
Group Scenarios 

 
 

 
 

Figure 5.23. PDR Analysis for DSDV using Column Mobility Model for Various 
Speeds 
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Figure 5.24. PDR Analysis for DSDV using Column Mobility Model for Various 
Group Scenarios 

 
The following conclusions can be made from the PDR analysis made when using 

Column mobility model: 

 Considering five different group scenarios, for DSR, as speed increases from 

5 m/s to 80 m/s, the PDR decreases from 1.0 to about 0.4. Whereas for AODV 

the PDR decreases from 1.0 to about 0.52 and for DSDV, the PDR decreases 

from 1 to 0.75. These results are graphically depicted in Figures 5.16, 5.18 

and 5.20. 

 

 In all cases (DSR, AODV, DSDV), the PDR is a maximum at 5 m/s for all 

group scenarios and a minimum for 80 m/s. 

 

 From Figures 5.17, 5.19 and 5.21 we can infer that as the degree of spatial 

dependence of velocity decreases from Scenario: Column-Line1 to Scenario: 

Column-Line3, PDR decreases in general but DSR shows a more drastic 

decrease than AODV or DSDV. From the graphs it can be inferred that DSDV 

shows more consistent values when compared to DSR and AODV.  
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These results are compared to those obtained with RPGM performance and it is found 

that they are similar. Column Mobility model can be derived from the RPGM 

mobility model implementation and this is the underlying reason for such a 

comparable performance behavior.  

 
 

Figure 5.25. Control Overhead Analysis for DSR using Column Mobility Model for 
Various Speeds 

 
 

The following conclusions can be made from the control overhead analysis made 

when using Column mobility model: 
 

 From Figures 5.25, 5.27 and 5.29 we infer that the control overhead is a 

maximum for speeds of 80 m/s and a minimum for 5 m/s for DSR, AODV and 

DSDV. These results can be directly related to the PDR results explained 

earlier.   
 

 Control overhead is very less in DSR (maximum – 43526 control packets) 

compared to AODV (maximum – 60648 control packets) and DSDV 

(maximum – 65755).  
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 The control overhead increases very steeply in AODV as speed increases from 

5 m/s to 80 m/s. This is because there is more flooding of route discovery and 

route request packets as there are more route changes as mobility increases.  

 

 

 
 

Figure 5.26. Control Overhead Analysis for DSR using Column Mobility Model for 
Various Group Scenarios 

 
 
 

 Although DSDV produces the maximum control overhead with column 

mobility model, it is least affected when the speed increases from 5 m/s to 80 

m/s, as depicted in Figure 5.29.  

 

 Table 5.2 illustrates the maximum variation in control overhead produced as 

the scenario is transformed from a single group to multiple groups. DSR 

shows a considerable increase in control overhead and AODV has a drastic 

increase, whereas DSDV is the least affected protocol. 
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Table 5.2. Maximum Control Overhead Produced for Single and Multiple Group 

Scenarios when Implementing Column Mobility Model 

 
 

ROUTING 

PROTOCOL 

 

MAXIMUM CONTROL-OVERHEAD  

SINGLE GROUP SCENARIO 

(Control Packets) 

 

MAXIMUM CONTROL-OVERHEAD 

MULTIPLE GROUP SCENARIO 

(Control Packets) 

 

DSR 

 

4415 

 

43526 

 

AODV 

 

25995 

 

60648 

 

DSDV 

 

65755 

 

64230 

 
 
 

 
 

Figure 5.27. Control Overhead Analysis for AODV using Column Mobility Model 
for Various Speeds 
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Figure 5.28. Control Overhead Analysis for AODV using Column Mobility Model 

for Various Group Scenarios 
 

 
Figure 5.29. Control Overhead Analysis for DSDV using Column Mobility Model for 

Various Speeds 
 

Pursue mobility model is mostly used in target tracking and law enforcement, where a 

group of mobile nodes attempt to capture a single node ahead of them. Pursue motion 

model is also derived from RPGM mobility model. 
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Figure 5.30. Control Overhead Analysis for DSDV using Column Mobility Model for 

Various Group Scenarios 
 

From Figure 5.31 it was observed that the PDR is almost at a value of 1.0 for all three 

routing algorithms. Though the control overhead remains almost same for all speeds, 

for all three routing protocols, the control overhead produced by DSR 

 
Figure 5.31. PDR Analysis for Various Routing Algorithms using Pursue  

 Mobility Model 
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Figure 5.32. Control Overhead Analysis for Various Routing Algorithms using 

Pursue Mobility Model 

 
is very less (Maximum = 5038 control packets) when compared to AODV (Maximum 

= 19618 control packets) and DSDV (Maximum = 69227 control packets).  

 

In summary, the following inferences are made from the scalability analysis carried 

out with group mobility models: RPGM model, Column model and Pursue model. 

 

 In RPGM and Column models, as the network transforms from being a single 

group scenario to multiple group scenarios, there is lesser homogeneity and 

therefore there is less route formations between nodes in different groups. 

This results in longer route formations to transmit data across nodes of 

different groups.  

 

 In Pursue model, the distribution of nodes is more homogeneous and hence 

there are shorter route formations between nodes.  
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 Although DSR has a high PDR and low control overhead at lower speeds, it 

has to be noted that there is a drastic drop in performance as speed increases 

and hence we need to consider the consistency of the protocol performance 

when the mobile ad hoc network is scaled to include more number of nodes 

and operate in high mobility conditions. As speed increases more route 

changes take place and hence more routing packets are transmitted which in 

turn has an effect on the packet delivery of the network. 

 

 DSR performs better with group mobility scenarios which have high degree of 

spatial dependence than with those which are less homogeneous (multiple 

groups).  

 

 DSDV seems to be more reliable routing protocol to be used in group mobility 

scenarios with less homogeneity (multiple groups) as there is no severe effect 

on protocol performance when speed increases or when the degree of spatial 

dependency decreases.  As speed increases, more route changes take place and 

hence there is a need for more frequent updates of the routing table which 

increases routing overhead and hence reduces PDR values.   

 

 In DSDV, when degree of spatial dependency (homogeneity) decreases, all 

the route formations within a group are usually stable even when mobility 

increases as the nodes are more closely packed among themselves and hence 

these routes need not be updated frequently. This helps to maintain the control 

overhead constant or at the least there is less variation of control overhead. 

Hence even when the single group transforms to multiple group scenarios, 

there is very little performance drop.  

 

 AODV performs similar to DSDV when the degree of spatial dependence of 

velocity (homogeneity) decreases, but there is a more visible drop in protocol 

performance than DSDV.  
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5.2 Energy Utilization in Mobile Ad hoc Networks 
 

In this section we study the effect of realistic mobility characteristics such as 

temporal dependence of velocity, spatial dependence and geographic restrictions on 

the energy utilization in MANETs.  Higher the energy-goodput value better is the 

energy utilization. 

 
            5.2.1  Energy-Goodput Analysis using Entity Mobility Models 
 
 Random Waypoint model, Manhattan Grid model and Gauss Markov model are the 

three entity models used. From the energy-goodput analysis in Figure 5.33 made the 

following conclusions can be made: 

 

DSR and DSDV perform well in terms of energy with all speeds when Random 

Waypoint model is used. DSR produces the least number of routing packets and 

hence consumes less energy. DSDV on the other hand is less sensitive to variation in 

speeds, as discussed previously and hence the routing packets generated remains 

almost constant. This contributes to a consistent energy-goodput for all speeds from 5 

m/s to 80 m/s. 

 
Figure 5.33. Energy-Goodput Analysis of Various Routing Algorithms using Random 

Waypoint Mobility Model 
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The energy performance of AODV decreases drastically as speed increases from 5 

m/s to 20 m/s. This can be attributed to the fact that as speed increases the topology 

changes frequently which in turn cause more route changes and hence more routing 

packets are produced which consumes more power. So the energy-goodput decreases 

drastically. 

 
 

Figure 5.34. Energy-Goodput Analysis of Various Routing Algorithms using 
Manhattan Grid Mobility Model 

  
Figure 5.34 analyzes the energy performance of DSR, AODV and DSDV using 

Manhattan Grid mobility model. Comparing this with Figure 5.33 we infer the effect 

of geographic restrictions on the energy utilization of a mobile node in a MANET.  

The energy-goodput of DSR decreases steadily from 262 bits/J to 83 bits/J as speed 

varies from 5 m/s to 80 m/s.  This steep fall in energy-goodput can be attributed to the 

geographic restrictions such as predefined pathways which are incorporated into the 

Manhattan Grid mobility model. In DSDV, energy-goodput reduces from 245 bits/J 

to173 bits/J but AODV is affected very little by the geographic restrictions present. 

The energy performance of DSR is better than DSDV and AODV at lower speeds but 

DSDV performs better as speed increases. AODV shows the worst performance as 

shown in Figure 5.34. Energy utilized by both DSR and AODV increases as speed 
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increases but energy-goodput value of DSDV almost remains constant after a certain 

speed. Hence reactive routing protocols are more sensitive to the variation in speed 

than proactive protocols.  

 
Figure 5.35. Energy-Goodput Analysis of Various Routing Algorithms using Gauss 

Markov Mobility Model 
 

For increasing speeds, the energy performance of DSR and AODV with Gauss 

Markov mobility model is slightly worse than its performance with Manhattan Grid 

model. This may be because reactive protocols are more affected by temporal 

dependence of velocity. DSDV on the other hand performs slightly better with Gauss 

Markov model than with Manhattan Grid model.  

 

5.2.2 Energy-Goodput Analysis using Group Mobility Models 
 

The effect of spatial dependence of velocity on the energy performance of DSR, 

AODV and DSDV is analyzed in this section.  From Figures 5.39 and 5.40 it can be 

understood that the energy-goodput of DSR drops from about 340 bits/J to around 

250 bits/J as the scenario is transformed from single group to multiple groups (i.e) as 

the degree of spatial dependence of velocity decreases the energy-goodput also 
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decreases.  But the energy-goodput of the various multiple group scenarios is almost 

of the same level.  

 
 

Figure 5.36. Energy-Goodput Analysis of DSR using RPGM Mobility Model 
for Various Speeds 

 
 

Figure 5.37. Energy-Goodput Analysis of DSR using RPGM Mobility Model  
for Various Group Scenarios 
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From Figures 5.41 and 5.42, as speed increases from 5 m/s to 80 m/s the energy-

goodput decreases gradually from 336 bits/J to 75 bits/J.  Similar to DSR, as the 

degree of spatial dependency decreases also the energy-goodput decreases gradually.  

In case of DSDV the energy-goodput decreases minimally when considering DSR 

and AODV.  As speed increases from 5 m/s to 80 m/s the energy-goodput decreases 

from around 245 bits/J to 206 bits/J.  

 

 
 

Figure 5.38. Energy-Goodput Analysis of AODV using RPGM Mobility Model for 
Various Speeds 

 
 
 

Again in DSDV as the degree of spatial dependence of velocity in RPGM decreases, 

the energy-goodput decreases, but this drop is small when compared to the drop 

obtained using AODV or DSR. Thus we conclude that though DSR and AODV have 

high energy-goodput at lower speeds, DSDV maintains a moderate energy-goodput 

for all speeds.  
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Figure 5.39. Energy-Goodput Analysis of AODV using RPGM Mobility Model for 

Various Group Scenarios 
 

 

 
 

Figure 5.40. Energy-Goodput Analysis of DSDV using RPGM Mobility Model  
for Various Speeds 
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Figure 5.41. Energy-Goodput Analysis of DSDV using RPGM Mobility Model  
for Various Group Scenarios 

 
 

 
 
 

Figure 5.42. Energy-Goodput Analysis of DSR using Column Mobility Model  
for Various Speeds 
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Figure 5.43. Energy-Goodput Analysis of DSR using Column Mobility Model  

for Various Group Scenarios 
 

 The energy-goodput performance of Column mobility model is similar to those 

displayed by RPGM. This can be easily comprehended from Figures 5.45, 5.46, 5.47, 

5.48, 5.49 and 5.50.  

 
Figure 5.44. Energy-Goodput Analysis of AODV using Column Mobility Model for 

Various Speeds 
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Figure 5.45. Energy-Goodput Analysis of AODV using Column Mobility Model for 
Various Group Scenarios 

 
 

 
 

Figure 5.46. Energy-Goodput Analysis of DSDV using Column Mobility Model for 
Various Speeds 
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Figure 5.47. Energy-Goodput Analysis of DSDV using Column Mobility Model for 
Various Group Scenarios 

 
 

 
 

Figure 5.48. Energy-Goodput Analysis of Various Routing Algorithms using Pursue 
Mobility Model 
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 DSR shows excellent energy performance at lower speeds with Pursue mobility 

model. Even though at higher speeds the energy-goodput decreases slightly, DSR 

shows better performance compared to AODV. As discussed previously DSR 

performs better with mobility models that have more homogeneity. It is believed that 

as speed increases and the pursuer nodes catch up more closely with the pursued 

node, there is more closer route formations with the pursued node and hence 

homogeneity decreases (or the degree of spatial dependence of velocity decreases) 

and hence the energy performance of DSR diminishes as shown in Figure 5.51.  The 

same explanation applies to the drop in energy-goodput in AODV. DSDV shows the 

worst performance of the three routing protocols.  But the energy-goodput of DSDV 

remains constant for all speeds from 5 m/s to 80 m/s. 

 
5.3 Summary 
 

In this chapter we analyze the scalability of MANETs using entity and group mobility 

models. We also study the energy performance of ad hoc networks in detail. The 

effect of realistic mobility characteristics on the overall performance of mobile ad hoc 

networks was explored.  
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Chapter Six 
 

Conclusions and Future Work 
 

6.1 Conclusions 
 

The protocol performance such as, scalability and energy utilization of a mobile ad 

hoc network is affected by the movement pattern of mobile nodes in realistic 

environments. The effect of realistic mobility characteristics such as temporal 

dependence of velocity, spatial dependence of velocity and geographic restrictions on 

the protocol performance is studied in detail. From the performance analysis carried 

out, the following conclusions can be made: 
 

When there are geographic restrictions associated with the movement of a mobile 

node in a MANET, as in Manhattan Grid model, or when there is a high degree of 

temporal dependence of velocity, as in Gauss Markov model, there are more link 

breakages and hence there are more packets being dropped. When more packets are 

dropped more retransmissions takes place leading to the generation of more control 

packets and hence lower PDR values as speed increases.  
 

One main reason for this performance drop in DSR can be attributed to the fact that 

control overhead increases more drastically as speed increases from 5 m/s to 20 m/s, 

when MG model or GM model was used instead of RW model. AODV and DSDV 

are more stable when operating with mobility models that have less homogeneity 

such as MG, GM and also group mobility models with multiple groups.  We observe 

that DSR performs better with mobility models where the nodes have more 

homogeneity (higher degree of spatial dependence of velocity). 
 

In RPGM model and Column model as the network transforms from being a single 

group scenario to multiple group scenarios, there is lesser homogeneity and hence 
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there is less route formations between nodes in different groups. This results in longer 

route formations to transmit data across nodes of different groups. In Pursue model, 

the distribution of nodes is more homogeneous and hence there are shorter route 

formations between nodes.  

 

Although DSR has a high PDR and low control overhead at lower speeds, it has to be 

noted that there is a drastic drop in performance as speed increases and hence we 

need to consider the consistency of the protocol performance when the mobile ad hoc 

network is scaled to include more number of nodes and operate in high mobility 

conditions. As speed increases more route changes take place and hence more routing 

packets are transmitted which in turn has an effect on the packet delivery of the 

network. DSR performs better with group mobility scenarios which have high degree 

of spatial dependence than with those which are less homogeneous (multiple groups).  

 

DSDV seems to be more reliable routing protocol to be used in group mobility 

scenarios with less homogeneity (multiple groups) as there is no severe effect on 

protocol performance when speed increases or when the degree of spatial dependency 

decreases.  As speed increases, more route changes take place and hence there is a 

need for more frequent updates of the routing table which increases routing overhead 

and hence reduces PDR values but in DSDV, when degree of spatial dependency 

(homogeneity) decreases, all the route formations within a group are usually stable 

even when mobility increases as the nodes are more closely packed among 

themselves and hence these routes need not be updated frequently. This helps to 

maintain the control overhead constant or at the least there is less variation of control 

overhead. Hence even when the single group transforms to multiple group scenarios, 

there is very little performance drop. AODV performs similar to DSDV when the 

degree of spatial dependence of velocity (homogeneity) decreases, but there is a more 

visible drop in protocol performance than DSDV.  
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6.2 Future Work 

 

Previously, most of the simulations of MANETs were done using Random Waypoint 

mobility model as a default model. But the scenarios in which Ad hoc networks are 

implemented are not random in nature as in most cases the mobile nodes are operated 

by humans whose movements may more likely follow a certain deterministic pattern. 

Hence it is necessary to evaluate MANET performance with realistic mobility 

models. Simulations are a valuable tool for learning and comparing wireless protocols 

and techniques, but simulations generally succeed because we will always be able to 

find the right protocols and configure it to work well in any particular scenario.  

 

Real-world ad hoc networks face problems that don't generally occur in simulation.  It 

is true that unlike simulator experiments, test-bed experiments cannot be perfectly 

reproduced. Interference and radio propagation conditions change between each 

experiment, and are out of the experimenter's control. However, experimental results 

are generally repeatable, and executing the same experiment many times produces 

more consistent results [73]. The realistic movement patterns used in our simulations 

can be integrated into a suitable testbed such as Ad hoc Protocol Evaluation (APE) 

Testbed [74] or Network Emulation Testbed (Netbed) [75].  

 

We can incorporate error models in our simulations to understand the effect of packet 

loss on the performance of the network. By doing this we will be able to mimic the 

realistic ad hoc environment more effectively. Error model simulates link-level errors 

or loss by either marking the packet's error flag or dumping the packet to a drop 

target. We also need to study the effect of node density on the scalability of a network 

in any mobility conditions.  
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