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Isolation and Identification of the O-linked-β-N-aetylglucosamine (O-GlcNAc) Modified 

Proteins in the Developing Oocytes of Xenopus laevis 

Sreelatha Paspuleti 

                                                  ABSTRACT 

Oocyte development in Xenopus laevis spans six morphologically distinct stages 

(stage I-VI), and is associated with a decrease in protein O-GlcNAc levels. As a first step 

in elucidating the role of O-GlcNAc in developing oocytes, initial efforts were focused on 

isolation and identification of fifteen modified proteins that decrease during oocyte 

development. Stage I oocytes due to their high amounts of these proteins, were used as 

starting material for purification. Multiple affinity and specific antibody based purifica-

tion technique were initially used in an attempt to enrich the O-GlcNAc proteins. Due to 

the unique properties of the proteins ultimately identified, these techniques were unable 

to provide sufficient material for sequencing. However, differential centrifugation 

coupled with 2D-gel electrophoresis was highly successful. The majority of isolated 

proteins were strongly basic in nature with pIs 8-10. Coomassie stained bands from 2D-

analysis were trypsin digested, and peptides were sequenced by mass spectroscopy 

(Finnigan LCQ). Mass data were interpreted by Bioworks software, and protein 

sequences were compared to multiple protein databases. Initially, six proteins were 

identified as Thesaurin a (42Sp50), cytoplasmic mRNA binding protein p54, y-box 

homolog, Xp 54 (ATP dependent RNA helicase p54), Vg1 RNA binding protein variant A, 
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Zygote arrest 1(Zar1) and Poly (A) binding protein (PABP). Thesaurin a, the main 

component of 42S particle of previtellogenic oocytes (stages I-III) is involved in tRNA 

storage and possess low tRNA transfer activity; y-box factor homolog and Xp54 are 

present in oocyte mRNA storage ribonucleoprotein particles; Vg1 RBP variant A 

associates mVg1 RNA to microtubules in order to translocate to the vegetal cortex; Zar1 

is involved in oocyte-to-embryo transition; and PABP initiates mRNA translation. This 

study is the first to characterize these oocyte specific proteins as O-GlcNAc modified 

proteins. Overall, the presence of several O-GlcNAc proteins in oocytes, the reduction in 

their levels/ O-GlcNAc levels, and the variation in maturation time in the presence of 

HBP-flux modulators in developing oocyte indicates O-GlcNAc may play important roles 

in metabolism, cell growth and cell division of X. laevis oocytes. Therefore, identifying 

the remainder of these proteins and elucidating the O-GlcNAc role in their function is a 

worthwhile pursuit. 
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Chapter 1 

Introduction 

1. The use of Xenopus laevis oocyte as a model system for the cell developmental 

studies involving O-GlcNAc modified proteins: 

1.1 Statement of the Problem 

O-linked-β-N-Acetylglucosamine (O-GlcNAc) modification characterized two 

decades ago [1] has been found to be ubiquitous in metazoans and is a dynamic post-

translational modification of many nuclear and cytosolic proteins. Subsequent studies 

have found the modification on a wide variety of proteins suggesting the diversity in fun-

tions of this modification [2]. Importantly, the levels of O-GlcNAc in different types of 

cells changes in response to the external stimuli, such stress [3], insulin signaling [4], 

glucose metabolism [5-7], and cell cycle progression [7] suggesting a potential regulatory 

role for O-GlcNAc modified proteins in many cellular processes. Additionally, changes 

in O-GlcNAc have been linked to diseases such as Alzheimer’s [5], diabetes [8], and 

cancer [9] highlighting its potential clinical importance.  

As one approach to investigating the possible function of O-GlcNAc in cell 

growth and division, oocytes from the South African clawed frog, Xenopus laevis were 

selected as a model system. This oocyte system has long been used as a general model for 

the study of growth and differentiation as well as analysis of cell cycle processes in eu-

karyotes [10]. Interestingly, recent reports have demonstrated that changes of O-GlcNAc 
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levels in oocytes impact the oocyte growth and maturation [11-13], although the exact 

function of the modification and the role of modified proteins are still unclear.  

For instance, the toxic effect of the galactosyl capping of O-GlcNAc residues 

observed in maturing Xenopus laevis oocyte has suggested the possible role of the O-

GlcNAc in the aster formation during meiosis [12].  A delayed progesterone stimulated 

maturation of the fully grown oocytes when incubated with compounds which elevate O-

GlcNAc levels, and  a reduction in O-GlcNAc levels of developing oocyte during the 

stage progression (stage I-VI) have indicated that one or more O-GlcNAc modified pro-

teins may be critical for oocyte maturation and development [11,13].  

In addition, the decrease in O-GlcNAc levels during the stage progression [11] 

(stage I-VI) is in correlation to the increase in O-GlcNAc removal activity of O-

GlcNAcase. The reduction in levels that occurs especially in high molecular weight pro-

tein (> 36 kDa) reflects the metabolic transition from glycolytic to gluconeogenic state 

[11]. A similar phenomenon of O-GlcNAc levels was observed during the transition of 

cell to malignancy, indicating the fully grown oocyte (stage VI) has at least some charac-

teristics in common with a malignant cell where the regulation of the modification is also 

altered [11].  

All these experimental findings suggest that the O-GlcNAc modification might 

play some important regulatory role in connecting cell growth, division and metabolism. 

As one step in elucidating these connections in a developmental system, it is important to 

first isolate and identify the modified oocyte proteins that change during oocyte deve-

lopment. Since a relatively large fraction of stage I oocyte proteins are O-GlcNAc 

modified, these oocytes were used as source for the studies described herein [11]. 
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1.2 Introduction to Xenopus laevis oocyte 

 The oocyte of Xenopus laevis, the South African Clawed frog (Figure 1.2.1.1) is a 

good model system for biochemical studies for several reasons. First of these is the avail-

ability of abundant literature on its anatomy, morphology and metabolism [10]. Second, 

the frogs being highly adaptable and resistant to infection can be easily maintained at low 

cost in the laboratory. Third, because of continuous and asynchronous oogenesis, the 

oocytes in all stages of development can be obtained from the ovary of an adult female 

frog. The ovarian tissue regenerates in two to three months and oocyte can be harvested 

up to four times from each frog [13]. Finally, in particular, the stage VI oocyte due to its 

large sizes can be used with ease for semi-quantitative microinjection studies that have 

proven instrumental in understanding the control of cell proliferation and the regulation 

of cell cycle [15, 16].  

1.2.1 Oogenesis 

 Oogenesis is defined as the process of formation of ova or unfertilized eggs from 

the oogonia. The process is comprised of two phases, the first phase is a growth phase 

and second phase is a maturation phase.  The oogonia enter meiosis I and become arrest-

ed at prophase I, where they are termed oocytes. At the prophase I arrest, the oocytes 

begins accumulating a large store of mRNA, mitochondrial DNA, and proteins required 

for the initial rapid cell divisions, along with a large amounts of yolk proteins and gly-

cogen also required for post-fertilization. This first phase is further sub-divided into six 

major stages based on the morphology and anatomy of the growing oocyte [17] (Figure 

I.2.2.1). During this stage progression, the oocyte transforms from a small and trans- 

parent stage I to large and banded stage VI oocyte that are described stage-wise in 



4

Figure 1.2.1- Female Xenopus laevis (South African Clawed Frog) Female frogs 
larger than males. An average frog weighs approximately 130-150 g and capable 
regenerating the ovarian tissue in three-four weeks. They are maintained in tanks 
containing room temperature dechlorinated water and approximately 1 liter of water per 
frog). They are fed twice to thrice a week with the nutrient rich frog brittle. (Nasco) 
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Figure 1.2.2.1- The different stages of Xenopus laevis oocytes during oogenesis. Two 
phases of the oogenesis (formation of egg for fertilization) are displayed. The first phase 
constitutes the oocyte growth, and further sub-divided into six major stages (I-VI) based 
on the features such as, diameter, pigmentation color and the amount of yolk protein in 
the cytoplasm. The second phase is maturation of fully grown oocyte (stage VI) where 
the oocyte undergoes germinal vesicle breakdown (GVBD) on progesterone stimulation. 
Figure from the website: http://www.luc.edu/depts/biology/dev/xenoogen.htm. 
 
 

 

 

 

 
 
Stage I oocytes-   clear and transparent (50-300 µm) 
Stage II oocytes-  white and opaque (300-450 µm) 
Stage III oocytes- lightly pigmented all over (450-600 µm) 
Stage IV oocytes- yolk protein deposition at the upper animal hemisphere (600-1000 µm) 
Stage V oocytes-  accumulating yolk and have darker pigmented color (1000-1100 µm) 
Stage VI oocytes- fully grown and have progesterone receptors on their plasma    
membrane (1100-1300 µm) 
Stage VI oocytes undergo meiosis when exposed to the steroid progesterone producing a 
white spot at the animal pole.  
 

 

 

 

 

 

Stage 

 
Maturing oocyte  Stage progression of oocyte
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detail in the following section 1.2.3. 

In the maturation phase, the fully grown oocyte (stage VI) forms an unfertilized 

egg upon stimulation with the steroid hormone, progesterone [18]. The stimulated oocyte 

arrested at the G2/M border resumes meiosis I, and progresses through meiosis II to be-

come once again arrested at metaphase II. A white spot, the attachment of meiotic spindle 

to plasma membrane was formed on the animal hemisphere of stage VI oocyte indicating 

the breakdown of the oocyte nucleus or germinal vesicle (GVBD) [19]. The formation of 

white spot on the animal hemisphere is the most obvious external indication of oocyte 

maturation (Figure 1.2.1.1). Thus the stimulated oocyte undergoes a number of morpho-

logical and biochemical changes prior to arrest at the metaphase II. The result of matur-

ation process is a matured oocyte or unfertilized egg that is now ready for fertilization. 

1.2.2 Oocyte Development 

 As found in the frog ovary, oocytes are arrested at prophase I between the second 

growth phase (G2) and the mitotic phases (M). They undergo a significant change from a 

small transparent oocyte at stage I to a large banded oocyte by stage VI with a distinct 

brown hemisphere or so called animal pole and green vegetal hemisphere or vegetal pole 

[17]. The nucleus and majority of the metabolic functional organelles are found in appro- 

ximately 0.5 µl of the animal hemisphere while the equal sized vetegal hemisphere 

contains mainly yolk protein and glycogen in stages IV-VI (Figure 1.2.2.1). The small 

stage I oocytes range from 50 to 300 µm in diameter with a transparent cytoplasm and 

visible germinal vesicle (nucleus). The clear cytoplasm contains a microscopic yellowish 

mitochondrial mass and stains intensely for RNA and lightly for polysaccharides. These 

oocytes are previtellogenic, which means they are not involved in active accumulation of 
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the yolk proteins. In the ovary, the interspersed oocytes from all stages of development 

are surrounded by three layers; the innermost follicular epithelium, the middle theca 

made up of connective tissue containing blood vessels and fibroblasts, and the outermost 

surface epithelium [17].  

 The white and opaque stage II oocytes are 300-450 µm in diameter, and com-

prises of 45% of the Stage II to VI oocyte population. At this stage, the acellular vitelline 

envelope begins to develop. At Stage III, the visible pigmentation and the vitellogenesis 

(the process of active accumulation of the yolk proteins) are initiated. These oocytes are 

tan or light brown in color but with no visible differentiation of the animal and vegetal 

poles. They range from 450-600 µm in diameter and RNA synthesis peaks at this stage. 

The stage IV oocytes range in size from 600-1000 µm. They show the clear different-

tiation of the animal and vegetal poles. The animal pole is dark brown in color contain-                             

ing the nucleus. Stage V grow from 1000-1200 µm in diameter and develops a distinct 

boundary between the dark brown animal and the greenish yellow vegetal hemispheres 

[17]. 

 Stage VI oocytes are post vitellogenic. The two distinct brown animal and light 

greenish yellow vegetal hemispheres separated by an unpigmented 0.2 mm wide equa-

torial band. The nucleus is eccentrically situated near the animal pole, and a clear polari-

zation of nuclear envelope becomes visible [17]. The fully grown oocyte is 1,000,000 

times the volume of typical somatic cell [10]. Half of the volume consists of the yolk pro-

teins while the nucleus is now 300-400 nm in diameter [10]. These oocytes at the G2/M 

border arrest are responsive to the hormone, progesterone and upon stimulation undergo 

germinal vesicle breakdown (GVBD) into an unfertilized egg.   
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1.2.3 Protein synthesis during oogenesis 

The Xenopus oocytes arrested at prophase I have accumulated massive amounts 

of yolk proteins, lipids and maternal mRNA required for the series of cell divisions that 

take place during maturation, fertilization and embryogenesis. Therefore a fully grown 

oocyte (stage VI) as described above is an abnormally large cell with a bloated nucleus 

referred to as the germinal vesicle. The contents of this unusual cell are summarized in 

the table 1.5.1 [20]. Table 1.5.1 shows that the oocyte at stage VI consists of largest 

amounts of yolk protein, ribosomal protein mRNA, mitochondrial DNA and rGTP (pre-

cursors). Whereas non-yolk proteins, heat shock 70 mRNA, oocyte chromosomal DNA, 

and dTTP (precursors) were present in lowest amounts. The accumulation of mRNA is 

completed by the end of stage II of oogenesis. However, the lampbrush chromosomes 

that exhibit transcription rates higher than those typical for somatic cells remains active 

during the entire period of oogenesis [21-23]. The estimated rate of poly (A) mRNA 

entry into cytoplasm in stage III and VI oocytes is approximately 1.4 ng per day. Even 

though, this is a small percentage of the total maternal mRNA, the actual amount of 

message that enters the cytoplasm is quite high due to the enormous rate of nuclear RNA 

synthesis [23]. The DNA microinjection experiments show that maternal transcripts are 

responsible for most of the protein synthesis during oogenesis, not the DNA injected into 

the oocyte nucleus [24]. 

The non-yolk proteins are accumulated in the oocytes by endogenous protein 

synthesis and yolk deposition by micropinocytosis of vitellogenin synthesized by the 

adult frog in the liver [25, 26]. The rate of protein synthesis increases over 100-fold dur-

ing the stage progression from stage І-VI. A similar increasing trend was observed in the 
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Table 1.2.3.1- Composition of a Xenopus oocyte, full grown and without follicles 

cells. 

(Total Volume, 1 µl; yolk-free volume 0.5 µl; GV volume 40 nl) 

 

Component Weight Number of components  % of total in     
   cytoplasm 

DNA    
Oocyte chromosomal      12 pg - None 
Nucleolar (rDNA)      25 pg 2 x 106 rDNA repeats None 
Mitochondrial 
 

 4000 pg ~108 gemones 
 

100% 

RNA     99% 
Ribosomal protein m-RNA        5 µg 1012  ribosomes   99% 
5S      60 ng 1012   99% 
tRNA      60 ng 1.5 x 1012   99% 
snRNA U1   0.07 ng 8 x 108   90% 
polyA+RNA      80 ng 5 x 1010 (if 2500 bases long)  
Ribosomal protein m-RNA      10 ng 2 x 1010 - 
Actin mRNA      ~1 ng 5 x 108 - 
Heat-shock 70m RNA 
 

0.004 ng 106 - 

Protein    
Yolk    250 µg - 100% 
Non-yolk      25 µg 5 x 1014 ( 30 K protein)   90% 
Histones    140 ng 5 x 1012   50% 
Nucleoplasmin    250 ng 5 x 1012   98% 
RNA polymerase I and II  ~ 105 x somatic cell - 
RNA polymerase III 
 

 5 x 105 x somatic cell  - 

Precursors    
dTTP      10 pmol - - 
rGTP    250 pmol - - 
Methionine      40 pmol - - 
 

This table is from ‘Microinjection and Organelle Transplantation Techniques. Methods 

and Applications’. Edited by Celis J. E; Graessmann A; Loyter, A. (1986) 
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amount of ribosomal RNA, and approximately 2% of the ribosomal RNA was found to 

be engaged in protein synthesis during oogenesis [27]. An additional two fold increase is 

observed when maturation is induced in the oocyte [28]. Gurdon et al. have demonstrated 

that the stage VI oocytes have spare translational capacity, that is injected mRNAs are 

translated in addition to endogenous messages [29]. However, the latter studies have 

shown that the translational capacity of the oocyte is not uniform for different classes of 

messages. The injected messages that are translated on the free cytosolic polysomes were 

expressed, whereas the ones that are translated on the endoplasmic reticulum resulted in 

the accumulation of these injected mRNA [30]. This non-uniformity in the translation of 

mRNAs was apparently due to the limited availability of one of the translational machi-

nery, the ribosomes on endoplasmic reticulum in the oocyte [31]. 

1.2.4 Gluconeogenic metabolism 

In addition to the accumulation of yolk protein, the developing oocyte synthesizes 

a large amount of glycogen that is used as the source of energy during embryogenesis 

(from gastrulation stage onwards) [32]. Incorporation of microinjected 32P-labelled glyco-

lytic intermediates, such as 32P-labeled phosphoenolpyruvate and glucose-6-phosphate 

into UDP-glucose and then presumably into glycogen in the stage VI oocytes, fertilized 

eggs, and cells of cleaving embryos has suggested that basic metabolism in these cells is 

gluconeogenic and glycogenic until the embryo reaches the late blastula stage [33]. In-

terestingly, rapid incorporation of 32P-glucose-6-phosphate into ATP, inorganic phospha-

te and creatine phosphate in stage II oocytes and not in stage VI oocytes also indicated a 

metabolic transition from glycolytic to gluconeogenic state [33]. Since enolase is thought 

to out-compete pyruvate kinase for any phosphopyruvate, and the activity of the fructose 
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1, 6-bisphosphate is low in the stage II and VI oocytes [33], the inorganic 32P is found in 

very low amounts compared to typical cells. This indicates that the oocyte metabolism is 

mainly gluconeogenic, and very little energy is derived from glycolysis. However, the 

(U-14C)glucose microinjection  into the oocytes Stage VI) of Caudiverbera caudiverbera, 

the Chilean frog, and Xenopus laevis (data not shown) has demonstrated glycogen syn-

thesis by an indirect pathway involving glycolytic breakdown of glucose to lactate, which 

is then converted into glycogen via an apparently connected gluconeogenic pathway [34]. 

Therefore glycogen synthesis might be possible in both direct and indirect pathways in 

amphibian oocytes.   

Since there is no glycogen breakdown until the gastrulation, the amino acids es-

pecially glutamine are used as the carbon source for cellular energetics and macromole-

cular synthesis in the fertilized egg and in the oocytes [33]. A similar type of metabolism 

where glutamate is a major energy source has also been observed in some tumor cells 

[35, 33] might explain some of the decreases in O-GlcNAc levels in these cells [36]. 

1.3 Introduction to O-linked-β-N-acetylglucosamine modification 

 The glycosidic linkage of the β-N-acetylglucosamine through the hydroxyl side 

chains of serine or threonine residues of proteins is termed as the O-linked-β-N-acetyl-

glucosamine (O-GlcNAc) modification (Figure 1.3.1). The modification occurs in many 

nuclear and cytosolic proteins of metazoans [1, 37]. This novel post-translational modifi-

cation was first discovered in murine lymphocytes by Torres and Hart in 1984. Since the 

first characterization, a myriad of proteins have been found to bear this modification [2] 

(Table1.2.1). Most of these O-GlcNAc modified proteins are also phosphoproteins. In an 

analogous manner to O-phosphorylation, the modification is regulated by a unique set of 
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proteins that add and remove the modification in response to cellular stimuli [7]. Given 

the dynamic nature of O-GlcNAc modification, and the fact that in at least in some cases 

it acts as an alternative to protein phosphorylation, this modification has increased the 

complexity of the regulatory processes in the cell [2, 9, 38-41].  

The O-GlcNAc modification is added to protein by a ubiquitous enzyme, uridine 

diphospho-N-acetylglucosamine: polypeptide β-N-acetylglucosminyl transferase or O-

GlcNAc transferase (OGT). The OGT gene that is present on the X chromosome was 

shown to be essential for cell viability [42]. OGT is a soluble protein found in the cytosol 

but more predominantly in nucleus was first characterized in rat liver extract by the Hart 

group [43]. The enzyme composed of three subunits in an α2β conformation with two 110 

kDa α-subunits and one 78 kDa β-subunit [44]. The UDP-GlcNAc level in the cell regu-

lates the enzyme activity of the α-subunit with a low apparent Km 545 nM for UDP-

GlcNAc that can change with the concentration of UDP-GlcNAc and the other regulators 

[45]. OGT contains an N-terminal tetratricopeptide repeat (TPR) domain and C-terminal 

catalytic domain [46, 47]. The C-terminal domain that resembles glycogen phosphorylase 

superfamily of glycosyl transferase hypothesized to contain two Rossman type folds and 

UDP-GlcNAc binding site [47]. Whereas, the N-terminal TPR domain mediates protein-

protein interaction that appears to be necessary for the enzyme self-association, as well as 

the substrate recognition [48-52]. The crystal structure of human OGT has shown that 

homodimeric TPR domain containing 11.5 TPR repeats form an elongated superhelix, 

and its concave surface is lined by a conserved array of asparagines. This asparagines ar-

ray shows marked similarity to the array in armadillo (ARM) repeat proteins, importin α 

and β-catenin, and thus suggesting that the TPR domain of OGT uses a similar mecha-  
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Figure 1.3.1- O-linked β-N-acetylglucosamine (O-GlcNAc) modified protein.  
N-acetylglucosamine group in β-linkage at the hydroxyl group of the serine, Ser residue  
of the protein.  
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Table 1.3.1- List of the O-GlcNAc modified proteins classified based on their 
functions. Table from the review ‘Proteomic Approaches to Analyze the Dynamic 
Relationships between Nucleocytoplasmic Protein Glycosylation and 
Phosphorylation’ by Whelan, Stephen A.; Hart, Gerald W. (Circulation research, 
(2003), 93, 1047-58).  

 
 
 
Functional Subgroup                                                    Protein                                             Reference from the above review  
                                                                                                                                                                 paper 
 
Chaperones    Heat shock protein 27 (HSP27)   90, 102 
     Heat shock cognate 70 (HSC70)   96* 

Heat shock protein 70 (HSP70)   104 
     Heat shock protein 90 (HSP90)   96* 
 
Chromatin    Chromatin associated proteins   105 
 
Cytoskeleton 
 

Actin-based   Ankyrin G     106 
     Cofilin      96* 
     E-cadherin     107* 
     Myosin      108* 

Protein band 4.1     109 
Synapsin                  110 
Talin      111 

      
Intermediate Filaments               Keritins 8, 13, 18     112, 113 

     Neurofilaments H, M, L    114, 115 
 

Microtuble-based                α-tubulin     104* 
     Dynein LC1      96* 
     Microtubule associated proteins 2 & 4    

(MAP 2 & 4)     116 
     Tau      16 
 

Other    Adenovirus type 2 & 5 fiber proteins  117, 118 
Assembly protein 3 & 180 (AP-3 & AP-180) 119, 120  
β-Amyloid precursor protein (β-APP)  23 
β-Synuclein     121 

     Piccolo      96* 
     Plakoglobin     122 
 
Kinases and Adaptor Proteins               Casein Kinase II (CKII)    63 
                  Glycogen synthase kinase-3β (GSK-3β)  63 

Insulin receptor substrate 1 & 2 (IRS-1 & -2) 27, 28,    
                                                                                             67 

                  PI3-kinase (p85)     28 
   
Metabolic Enzymes    Enolase       96* 

Endothelial nitric oxide synthase (eNOS)   72 
Glyceraldehyde-3-phosphate dehydrogenase   
(GAPDH)     96* 
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Glycogen synthase (GS)    70 
Phosphoglycerate kinase (PGK)   96* 
Pyruvate kinase (PK)    96* 
UDP-glucose pyrophosphrylase (UGP)   96* 

 
Nuclear Hormone Receptors  Estrogen receptor-α & β (ER-α & -β)  17, 123, 
124   
     V-erbA      125* 
 
Nuclear Pore Proteins (NUP)  Nup 62      126 
     Nup 153, 214, 358    127 
     Nup 180      128 
     Nup 54, 155     96* 
 
Phosphatases     Nuclear tyrosine phosphatase p65   129 
     Phosphatase-2a inhibitor (i2pp2a)   96* 
 
Polymerases     RNA Pol II     15 
 
ProtO-oncogenes                 c-Myc      14 
 
RNA binding proteins   40S ribosomal protein S24 (40SrpS24)  96* 
     Elongation factor 1-α (EF-1)   96* 
     Eukaryotic initiation factor 4A1 (EIF 4A1)    96* 
     Ewing-sarcoma RNA-binding protein (EWS) 96, 130 
     RNA binding protein G (hnRNP G; La-antigen) 131 
      
Transcription factors     AP-1 (c-fos and c-jun)    132* 
     β-catenin     107 

CAAT box transcription factor (CTF, NF-1)  132* 
    

Cyclic AMP response element-binding protein  
(CREB)      95 
ELF-1 (Ets transcription factor)   26 

     Enhancer factor 2D (EF-2D)   96* 
     Hepatocyte Nuclear Factor 1 (HNF-1)  133 
     KIAA0144, Oct1     96* 

NF-κB      134 
     OGT interacting protein 106 (OIP-106)  38 

p53      135 
Pancreatic/duodenal homeobox-1 protein   
(PDX-1, IPF-1, STF-1)    136 

     PAX-6      137 
     Pancrease-specific transcription factor (PTF-1) 138* 
     Human C1 transcription factor (HCF)  96* 

Serum Response Factor (SRF)   91 
     Sp1      132 

Ying Yang 1 (YY1)    139 
 
Tumor suppressors   Retinoblastoma protein (Rb)  
 unpublished 
 
Viral Proteins    Baculovirus gp41 tegument protein    140 

HCMV UL32 (BPP) tegument protein  141 
NS26 Rotavirus Protein    142 
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SV-40 large T-antigen    
 unpublished 

     Virion basic phosphoprotein   143 
 
Other     Annexin 1     96* 
     Collapsin response mediator protein-2 (CRMP-2) 121 

Elongation initiation factor-2 associated    
67 kDa (EIF2α p67)    144 

     Gaba-receptor interacting protein-1 (GRIF-1)  
     & Splice variants     38 
     Glut-1 & 4     145 
     Nucleophosmin     96* 
     Peptidyl prolylisomerase (PPI)   96* 

Proteosome component C2   96* 
     O-GlcNAc transferase (OGT)   29 

Q04323, UCH homolog    96* 
     Sec23, human homolog (hhSec23)   96* 
     Ran      96* 
     Rho GDP-dissociation inhibitor 1 (RhO-GDI α) 96* 
     Ubiquitin carboxy hydrolase (UCH)  121 
*These identifications are still considered putative as supporting structural work has not been published. 
 

nism of protein-protein interaction [52]. A group of proteins known as O-GlcNAc 

interacting proteins (OIP) exists that mediate the interactions between the tetratrico-

peptide repeats of enzyme and the substrates [53]. 

Even though, OGT is found in all tissues examined, the levels of expression differ 

among tissues. In addition, the levels of expression are not correlated to the activity, im-

plying that the enzyme is regulated post-translationally [43, 46]. For example, OGT is 

modified by both tyrosine phosphorylation and O-GlcNAcylation [51], although the role 

of these modifications on the localization and the activity of enzyme are unknown. At the 

substrate level, both the Km and Vmax for a variety of substrates is altered by the UDP-

GlcNAc levels. The enzyme has apparent Km for UDP-GlcNAc ranges from 0.05 µM-4.8 

mM in cell extracts. The UDP-GlcNAc levels are in turn depends on extracellular signals, 

the state of nutrition, development and differentiation [51, 54-59]. OGT remains active 

across the physiological range of UDP-GlcNAc in the absence of UDP, a potent inhibitor 

(Ki 200 nM) [45, 60].  



17

 The removal of O-GlcNAc group is accomplished by a specific enzyme, β-N-

Acetylglucosaminidase (O-GlcNAcase) with a neutral pH optimum that is predominantly 

localized to the cytosol. The enzyme is characterized from both rat spleen and human 

brain. The ubiquitous enzyme is abundantly found in the brain, placenta and pancreas 

[61, 62]. O-GlcNAcase has molecular weight of 106 kDa, and exists as a αβ heterodimer 

with a 54 kDa α-subunit and 51 kDa β-subunit. The enzyme is found in both cytoplasm 

and nucleus. Unlike, the more general specificity of lysosomal hexoaminidases with aci-

dic pH optima, the neutral enzyme is not inhibited by GalNAc or its analogs, and shows 

no other glycosidase activity. In addition, the enzyme does not cross-react with the anti-

bodies against the lysosomal hexoaminidases [61,62]. However, similar to lysosomal 

hexoaminidases, O-GlcNAcase has a Km = 1.1 mM for a general glycosidase substrate 

paranitrophenyl-GlcNAc [63]. In contrast, streptozotocin (STZ) a glucosamine nitroso-

urea specifically inhibits O-GlcNAcase and not other hexoaminidases [64]. Another 

strong inhibitor of O-GlcNAcase is O-(2-acetamido-2-deoxy-D-glucopyranosylidene) 

amino-N-phenylcarbamate (Ki =54 nM PUGNAc) [65, 66].  Interestingly, O-GlcNAcase 

retains the enzymatic activity upon cleavage by caspase-3 releasing the regulatory doma-

in from the catalytic moiety, indicating that removal of O-GlcNAc may play a role in cell 

death process [63]. Many soluble nuclear and cytosolic proteins as shown in table 1.3.1 

are the targets of OGT and O-GlcNAcase. Many of the proteins characterized so far, such 

as Estrogen Receptor β (ERβ), tau, SV-40 large T antigen, c-Myc oncogene, eNOS, RNA 

polymerase II and αβ-crystallin show that O-GlcNAc and O-phosphate groups compete 

for the same site [67-72]. However, in some proteins, there is a synergistic interplay of O- 

GlcNAc and O-phosphate [73], and in all likelihood an antagonist and/or even no connec- 
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Figure 1.3.2- Schematic diagram of the hexosamine biosynthetic pathway and the 
dynamic processing of O-GlcNAc modification by O-GlcNAc transferase and O-
GlcNAcase. The diagram represents the substrates, enzymes and inhibitors of the 
hexosamine biosynthetic pathway (HBP) and during the regulation of O-GlcNAc 
modification.  
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tive effect may well be formed as more proteins are analyzed. 

 The galactosyl capping studies using β-D-1-4-galactosyltransferase in Xenopus 

maturing oocyte have demonstrated the deleterious effect of the blocking the addition and 

removal of O-GlcNAc, thus suggesting this post-translational modification may play a 

significant role in cellular regulation [12, 74]. However, structural changes may also have 

played a role in these outcomes. In another study, the elevation of O-GlcNAc using 

PUGNAc has shown no effect on the cell growth rate [65]. The contradicting results 

might be due to the rapid turnover of the PUGNAc and the replacement of it every 48 

hours. As mentioned earlier, the OGT deletion studies in ES cells, embryonic fibroblast 

or tissue using Cre-lox technology [75] is lethal, suggesting that OGT is essential for life 

at single cell level [42, 76]. Since the substrate specificity of OGT changes at different 

concentrations of UDP-GlcNAc, the O-GlcNAc levels on key regulatory proteins, in-

cluding OGT can be modulated by altering the extracellular glucose levels through the 

hexosamine biosynthetic pathway (as shown in the Figure 1.3.3) [77-87]. The change in 

O-GlcNAc levels to different signals based on its nutritional state modulating the overall 

behavior of the cell suggests that O-GlcNAc is a nutritional sensor [41, 63, 82, 88, 89]. 

For instance, the glucose starvation and forskolin treatment led to decreased glycosy-

lation and increased degradation of Sp1, transcription factor and synthetic peptide throu-

gh the ATPases in 19S regulatory subunits [90]. Apart from being a nutritional sensor, O-

GlcNAc is also a stress sensor [91]. In many other parallel studies, an increase in the O-

GlcNAc levels due to increase in glucose flux into the cells is observed in response to the 

stress such as heat shock, UV, hypoxia, reductive, oxidative and osmotic stress [3]. 

Interestingly, the rapid induction of heat shock proteins (HSP) such as HSP70 and HSP40 
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with the increase in O-GlcNAc shows that O-GlcNAc mediates stress tolerance [3]. 

However, the studies on diabetes have associated hyperglycemia with the increased cell 

death in several systems that might be due to the down-regulation of AKT activation [92-

94]. The paradox may be due to the differences in the sensitivities of tissues/ cells to 

insulin, the dependence on AKT signaling or the basal cell death rate to that of induced 

cell death rate [91].   

1.4 Earlier findings of the studies on O-GlcNAc modification in oocytes of Xenopus 

laevis  

Recent reports have demonstrated that changes of O-GlcNAc levels in oocytes are 

related to the oocyte growth and maturation [11, 95], the exact function of the modifica-

tion and the role of the modified proteins are still unclear. Slawson et. al. demonstrated 

delayed progesterone stimulated maturation of the fully grown oocyte when incubated 

with compounds such as glucose, glucosamine and PUGNAc before progesterone stimu-

lation [11]. Additionally, when the oocytes were incubated with the glutamine-fructose-6- 

phosphate amino trasferase (GFAT) inhibitor, DON (6-diazonorbenzene) that reduces 

UDP-GlcNAc synthesis, nullified the glucose effect on the maturation. While the total 

cellular O-GlcNAc content apparently does not change during progesterone stimulation 

[11], another study has showed an approximate 4.5-fold increase in the O-GlcNAc con-

tent, mainly on two cytoplasmic proteins, one of 97 kDa, identified as β-catenin and 

another unidentified 66 kDa protein [13]. Microinjection of GlcNAc has delayed proges-

terone-induced maturation in Xenopus oocytes without any change in O-GlcNAc content 

suggesting that the modification could regulate protein-protein interactions required for 

the cell cycle kinetic [13]. Like Sp1 transcription factor, β-catenin is also stabilized by O-
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GlcNAcylation [83, 13]. In addition, the microinjection of galactosyl transferase (GalT) 

into the progesterone-stimulated oocyte was shown to be toxic [12]. This GalT toxicity 

was reported due to the galactosyl capping of the O-GlcNAc residues that appear to dis-

rupt aster formation during the meiosis or causes any other cellular effects. Thus, the O-

GlcNAc modification might be facilitating the protein–protein interactions necessary for 

the maturation process of the oocyte. Thus, showing one or more modified proteins might 

be critical for oocyte maturation.  

In addition to the maturation of oocyte, the development of oocytes has also been 

associated with changes in O-GlcNAc levels [11]. A gradual decrease in the O-GlcNAc 

levels was observed as during the oocyte progression from the stage I to stage VI along 

with a concommitant increase in the activity of O-GlcNAcase. Analysis of the oocyte 

proteins of all the stages I-VI has clearly demonstrated the reduction of O-GlcNAc levels 

in the high molecular weight proteins (>36 kDa) and herein, this thesis [11]. This reduce-

tion in turn correlates with the metabolic transition of oocyte from glycolytic to gluco-

neogenic state [33]. In addition, no incorporation of 3H-glucosamine into proteins in the 

stage VI suggested very low levels of new O-GlcNAc modification in this stage [96]. 

Interestingly, a similar phenomenon of change in O-GlcNAc levels was observed during 

the transition of cell to malignancy, indicating the fully grown oocyte (stage VI) may 

have more characteristics in common with a malignant cell where the regulation of O-

GlcNAc modification is disrupted [36].  
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Chapter 2 

Materials and Methods 

2.1 Materials: 

2.1.1 Reagents: 

Reagents used in immunoprecipitation and polyacrylamide gel electrophoresis 

were obtained from Biorad (Richmond, CA), Fisher (Atlanta, GA), Pierce (Rockford, IL) 

and Sigma (St. Louis, MO). Anti-mouse RL-2 antibody was purchased from affinity Bio-

reagents (Golden, CO), and CTD110.6 was a generous gift from Dr. Gerald Hart and lab-

oratory at Johns Hopkins University, Baltimore MD. The Immobilized pH Gradient 

(IPG) strips and IPG buffer, both in the range of pH 3-10 and pH 6-11 were obtained 

from Amershams Biosciences (Piscataway, NJ). Collagenase, Anti-mouse IgM conju-

gated agarose beads, and streptozotocin were purchased from Sigma (St. Lousie, MO). 

Secondary antibodies anti-mouse and anti-rabbit IgG were obtained from Biorad (Her-

cules, CA). The affinity column material, agarose wheat germ agglutinin beads were 

obtained from Vector Laboratories (Burlingame, CA). Nanopure water is used in the 

preparation of the buffers. Spectra dialysis tubing of MW 10,000 cut-off and Amicon 

centricons of MW 3,000-30,000 cut-off was purchased from Fisher Scientific. The pro-

tein standards used were Biorad High range molecular weight and Invitrogen Bench-

mark prestained protein ladder. All the other reagents used were as per the ACS quality. 
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2.1.2 Equipment:  

Mini-gel cassette and Genie Electroblotter were obtained from Idea Scientific 

(Minneapolis, MN). Conductivity meter and power supply for the electrotransfer were 

obtained from Biorad, while UV/ visible spectrophotometer from Pharmacia Biotech. 

Amershams EttanTM IPGphorTM Isoelectric focusing system was borrowed from Bio-

chemsitry Department, USF and 6.0 Dexon 3/8 Circle Reserve Cutting surgical needle 

along with absorbable suture or non-absorbable suture from Davis and Geck, Inc. (Pearl 

River, NY) and Ethicon (Somerville, NJ), were obtained. OptimaTM TL-100 Ultra-

centrifuge obtained from Beckman Instruments, Inc., (Palo Alto, CA) 

2.1.3 Animals:  

Female Xenopus laevis frogs were purchased from Nasco (Fort Atkinson, WI) and 

maintained at room temperature (20-22 oC) and fed with Frog brittle from Nasco two to 

three times a week   

2.1.4 Buffers and Solutions:  

The oocyte medium called Oocyte Ringers solution 2 (OR-2) (Wallace et al., 

1973) was composed of 82.5 mM NaCl, 2.5 mM KCl, 1.0 mM MgCl2, 5 mM HEPES pH 

7.8, 2 mM sodium pyruvate, 10,000 units penicillin, and 10 mg streptomycin. The oocyte 

homogenization buffer (Ten β) was comprised of 50 mM Tris–HCl (pH 7.4) containing 5 

mM EDTA, the phosphatase inhibitors, 100 mM NaF and 25 mM β-glycerol phosphate; 

and in addition, the protease inhibitor 2 mM PMSF, and the O-GlcNAcase inhibitor 

 5 mM streptozotocin are added before use. Note: The stock solution of 200mM PMSF 

was prepared in isopropanol and stored. 
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For immunoprecipitation with RL-2 antibody, the immunocomplexed beads were 

washed with Wash Buffer 1 containing 150 mM NaCl, 10 mM HEPES pH 7.4, 1% Triton 

X-100, 0.1% SDS and Wash Buffer 2 with the same composition as Wash Buffer 1 with-

out salt. For immunoaffinity purification with CTD110.6 antibody required the washing 

buffer, radioimmunoprecipitation assay (RIPA) buffer containing TBS (136.9 mM NaCl, 

2.7 mM KCl, and 24.8 mMTris-HCl, pH 7.6)  along  with detergents such as 1% 

IGEPAL, 0.5% deoxycholate and 0.1% SDS was used to wash the immunoaffinity 

column before elution with 1M GlcNAc in TBS, pH 7.6. 

In affinity chromatography, the binding buffer used for equilibrating the agarose 

wheat germ agglutinin beads contains 10 mM HEPES, pH 7.8. The used beads were 

stored in the storage buffer containing 10 mM HEPES, pH 7.5, 0.15 M NaCl, 20 mM 

GlcNAc and 0.08% sodium azide. The proteins of interest were eluted off the column 

using a buffer containing 10 mM HEPES, pH 7.8 with 0.3 M NaCl and 0.5 M GlcNAc. 

The column can be regenerated with 0.1% acetic acid buffer, pH 3.0 with 1 M NaCl. 

 In one-dimensional (1D) gel electrophoresis, the samples were diluted with 

protein solubilizing mixture (PSM) in the ratio 1:1. PSM is a 50 mM Tris-HCl buffered 

solution (pH 7.5) containing 2.5% (w/v) SDS, 25% (v/v) sucrose, 0.25 mg/ml pyronin Y, 

25 mM Tris-HCl /2.5 mM EDTA and 1.5% β-mercaptoethanol. The resolving gel requir-

ed 41.5% stock acrylamide solution (5.6 M acrylamide and 97mM bis-acrylamide), 

resolving buffer (2 M Tris pH 8.9), 20% SDS 10% ammonium persulfate and TEMED 

(N, N, N’, N’-tetra-methyl-ethylenediamine). For the stacking gel, same materials except 

for 4% acrylamide and stacking buffer (0. 5 M Tris pH 6.7) was required. The SDS 
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electrophoresis buffer containing 25 mM Tris-base pH 8.3, 195 mM glycine and 0.1% 

(w/v) SDS was used to run the SDSPAGE. 

 In two-dimensional (2D) gel electrophoresis, the samples were solubilized in the 

IEF sample buffer containing 7 M urea, 2 M thiourea, 4% (w/v) CHAPS, 60 mM DTT, 

0.2% (v/v) IPG buffer (pH 6-11 or pH 3-10), and 0.002%(w/v) bromophenol blue. The 

IPG strips were reswelled in rehydration solution containing 8 M urea, 2% (w/v) CHAPS, 

0.2% (w/v) DTT, 0.5% (v/v) IPG buffer (pH 6-11 or pH 3-10) and 0.02% bromophenol 

blue. The 2nd dimension equilibration buffer contained 2% (w/v) SDS, 50 mM Tris-HCl 

pH 8.8, 6 M urea, 30% (v/v) glycerol, 0.002% bromophenol blue and 100 mg of DTT or 

250 mg iodoacetamide. The 0.5% agarose sealing solution containing 0.002% bromo-

phenol blue was used to seal the IPG strip on SDS gel. All other solutions and buffers 

used were similar to that of 1D-gel electrophoresis. 

The molecular weight markers used for molecular weight comparison were used in 

either the unstained form or prestained (dye modified) form. The prestaining (modifica-

tion with dye) of these proteins alters the molecular weight and relative migration (Mr) 

through the gel, the relative molecular weights of both forms (normal/prestained) are 

presented. The protein standards included carbonic anhydrase (Mr 31 000/ 37 000), oval-

bumin (Mr 45 00/50 000), serum albumin (Mr 66 200/ 75 000), phosphorylase b (Mr 

97400/ 100 000), β-galactosidase (Mr 116 250/ 150 000) and myosin (Mr 200000/ 

250000) respectively for unstained or stained.   

The gel staining solution, Coomassie blue staining solution contains 80% stock solu-

tion and 20% methanol (stock solution contains 1 g of Brilliant blue G250, 11.6 ml of 

85% H3PO4 acid and 100 g (NH4)2SO4 diluted to one liter).  
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 For electroblotting, cold (4oC) transfer buffer containing 50 mM Tris, 192 mM 

glycine (pH 8.3) and 20% methanol was used. (Note: The pH of the solution is not mea-

sured) 

For CTD110.6 immunoblotting, the buffers used were TBS-HT (136.9 mM NaCl, 2.7 

mM KCl, and 24.8 mMTris-HCl pH 8.0/ 0.3% Tween-20) and TBSD (136.9 mM NaCl, 

2.7 mM KCl, and 24.8 mMTris-HCl pH 8.0/ 0.25% deoxycholate/ 1% Triton X 100/ 

0.1% SDS). The CTD110.6 antibody, monoclonal mouse IgM was stored at 0.2ug/ul in 

TBST (136.9 mM NaCl, 2.7 mM KCl, and 24.8 mMTris-HCl pH 8.0, with 0.05% Tween-

20)/ 3% BSA in -70 °C freezer until needed. A stock dilution of antibody (1:500) was 

prepared in TBST/ 3% BSA/ 0.01% sodium azide stored at 4 °C and used for two weeks 

to one month.  

The RL-2 immunoblot requires PBST (136.9 M NaCl, 2.7 mM KCl, 5 mM Na2HPO4, 

and 2 mM KH2PO4 pH 7.2/ 0.05% Tween-20) and high salt PBST (HSPBST) (479 mM 

NaCl, 3 mM KCl, 5 mM Na2HPO4, 2 mM KH2PO4 pH 7.2, 0.05% Tween-20). The RL-2 

antibody, monoclonal mouse IgG1 was aliquoted in PBST (136.9 M NaCl, 2.7 mM KCl, 

5 mM Na2HPO4, and 2 mM KH2PO4 pH 7.2, with 0.05% Tween-20) and 3% BSA and 

stored at -70 °C. A stock antibody dilution of 1: 500 in PBST/ 3% BSA/ 0.01% sodium 

azide stored at 4 °C lasts for a month. 

The membrane staining solutions are 1% India ink in TBST (0.3% Tween) and 0.2% 

Ponceau S stain (stock solution contains 2% Ponceau S in 5% acetic acid) for nitrocellu-

lose, and 0.1% (w/v) Coomassie blue R in 50% methanol and 10% acetic acid is used for 

PVDF membranes. 
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The gel staining solution, Coomassie blue staining solution contains 80% stock solu-

tion and 20% methanol (stock solution contains 1 g of Brilliant blue G250, 11.6 ml of 

85% H3PO4 acid and 100 g (NH4)2SO4 diluted to one liter).  

2.2 Methods 

2.2.1 Oocyte harvesting and isolation: 

Mature Xenopus frogs were maintained in the tanks filled with dechlorinated tap 

water at room temperature. The animals were fed with Nasco vitamin fortified frog brittle 

two or three times per week. To obtain the oocytes, first a healthy frog without surgical 

scars or with clearly healed prior incisions was anesthetized by immersing in NaHCO3 

buffered solution of MS 222 (500 mg of MS222 and 10 mEq of NaHCO3 in one liter de-

ionized water) in a tank for 10-20 minutes. Later it was placed on its back on a bed of ice, 

and the ovarian tissue was surgically removed through incision on the ventral surface. 

The muscle incision was sutured with absorbable suture and the skin with non-absorbable 

suture. An injection of Xylazine hydrochloride (10 mg/kg) was given intracoelomically. 

The animal was transferred to an empty recovery tank and allowed to recover at room 

temperature. Once the frog flipped on its stomach, room temperature water was added 

until it covered the animal and monitored for 30 minutes. The frog was kept under obser-

vation for two–three days, and if apparently normal was transferred back to one of the 

common holding tanks until the ovarian sacs were regenerated [19]. 

The excised ovarian tissue was cut into small sections (~ 1 cm2) and washed with 

OR-2 solution to remove all the debris. Then ovarian tissue in fresh OR-2 solution was 

incubated in collagenase (1 mg/ml) for approximately 4 hours to free the oocytes from 

collagen. Later the turbid supernatant of oocytes freed from ovarian tissue framework 



28

was carefully decanted without disturbing the sedimented oocytes to remove the unreac-

ted collagenase and fresh OR-2 containing Ca+2 was added. Being smaller in size and 

lighter than the other stages, the stage I and II oocytes do not sediment quickly. There-

fore, these oocytes in the fresh OR-2 solution can be separated from the rest by a series of 

swirling followed by a quick decantation of the supernatant containing mostly stage I and 

II oocytes. Oocytes in this supernatant were sorted into stage I and II in a petridish under 

a microscope.  Typically 1000-1500 stage I oocytes were isolated from a healthy frog. 

2.2.2 Homogenization of the oocytes 

The sorted oocytes were transferred to a test tube (200 µl) and the liquid carefully 

removed with a pipet. Oocytes were then washed twice with two volumes of ice cold Ten 

β that was removed by 20 µl pipette, and then followed by the addition of fresh ice cold 

Ten β, approximately 1ul per stage I oocyte, and 10 µl per stage VI oocyte was added. 

Oocytes were then homogenized on ice in Ten β by rapidly drawing and expelling them 

from the 200 µl pipette tip. For stage VI oocytes an equivalent volume (1:1) of ice cold 

Freon (1, 1, 2-trichloro-trifluoro-ethane) was added to remove yolk protein and lipid [97], 

and the solution mixed thoroughly. The solution is centrifuged at 12,000 x g at 4 °C for 

ten minutes to remove the yolk proteins and membrane materials. The aqueous superna-

tant was carefully collected without disturbing the pellet at the Freon/buffer interface and 

stored at -20 °C. Previous work has demonstrated that the Freon does not change the 

protein profile in stage VI oocyte [98]. Same procedure was used to homogenize the 

stage IV and V oocytes using 5 µl of Ten β per oocyte to lyse the oocytes, and followed 

by Freon extraction to remove the yolk. While, the stage II and III were homogenized in 

the same manner as the stage I, except the stage III requires 3 µl of Ten β per oocyte. 
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2.2.3 Protein Estimation: 

 The protein concentration of the homogenate was estimated using Bradford micro 

protein assay (Biorad). Pure bovine IgG (Biocompare, CA) (stored as 1 mg/ml in H2O at 

-20 °C) was used to obtain the standard curve using protein concentrations from 2 ug to 

20 ug. First, six dilutions of protein standard were prepared by thorough mixing with 200 

ul of reagent and nanopure water. After incubation at room temperature for 5 minutes, the 

absorbance was read at 595 nm on a spectrophotometer. In the same way, the sample 

solution was prepared in triplicate and absorbances were recorded at 595 nm. The protein 

amount in the samples was calculated from the standard curve. 

2.2.4 Immunoprecipitation with RL-2 antibody: 

The O-GlcNAc modified proteins were immunoprecipitated using mouse 

monoclonal RL-2 antibody, monoclonal mouse IgG1 to form an immunocomplex with 

the Anti-rabbit IgG preabsorbed Protein A trisacryl beads [99]. All the steps of the proce-

dure were performed at 4°C. Each experiment was performed with three samples. The 

immunoprecipitation was carried out using the homogenate of the stage I and a few stage 

II (<10%) oocytes, with the final concentration of protein 1-2 µg/ µl using Ten β.  

 The homogenate was incubated with RL-2 antibody (5 µg for every 1mg of 

protein) and protein A trisacryl beads (50 µl) that were preabsorbed by overnight incuba-

tion with Rabbit Anti-mouse IgG (50 µg) and left overnight on the rotating mixer. Later 

the immunocomplex with the beads was harvested by centrifugation at 10,000 x g for 10 

minutes to collect the pellet. This procedure was repeated after each washing step using 

Wash Buffer 1 and Wash Buffer 2. Then the pellet was solubilized with PSM as mention-
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ed in the above procedure. All the fractions, the supernatant, washes and pellet were 

analyzed by silver staining the gel and CTD110.6 antibody immunoblotting.  

2.2.5 Immunoaffinity purification using CTD110.6 antibody 

 This method employed CTD110.6 antibody, mouse monoclonal IgM that speci-

fically binds to the modified proteins to the Anti-mouse IgM conjugated agarose column 

[100]. All the steps of the procedure were performed at 4°C. Each experiment was per-

formed with three separate samples. The immunoprecipitation was carried out using the 

homogenate of the stage I and a few stage II (<10%) oocytes, with the final concentration 

of protein 1-2 µg/µl using Ten β.  

First to preclear so as to reduce non-specific binding, the homogenate was incu-

bated with the Anti-mouse IgM conjugated agarose beads for one hour on the rotating 

mixer, and centrifuged at 10,000 x g for 10 minutes to collect the supernatant. The pre-

cleared homogenate was then incubated with CTD110.6 antibody (5 µg for every 1mg of 

protein) and Anti-mouse IgM conjugated Agarose beads (50 µl) for 3 hours on the rotat-

ing mixer. Next the slurry was transferred into the column (1.5 cm x 6.5 cm) and the flow 

through was collected. The column was then washed twice with five volumes of RIPA 

buffer and once with two volumes of TBS. After washing the column, the proteins were 

eluted three times, each with two volume of 1 M GlcNAc in TBS after 20 minutes incu-

bation. The eluted fractions were precipitated by overnight incubation with ten volumes 

of cold methanol at -20 °C. Samples were centrifuged at 10,000 x g for 15 minutes and 

the pellets were solubilized in PSM by vortexing for 1-2 minutes and boiling for two 
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minutes. All fractions, the flow through, the washes and the elutions were analyzed by 

silver staining and RL-2 immunoblotting. 

2.2.6 Affinity chromatography: 

The affinity chromatography was based on agarose wheat germ agglutinin column 

that specifically binds to all the terminal N-acetyl glucosamine residues on proteins 

[101], and thus enriching the sample with proteins of interest. Initially, the affinity puri-

fication was performed using binding buffer containing 10 mM HEPES, pH 7.8 and 0.15 

mM NaCl (as per the maufacturer’s instructions). Later, the low salt conditions using the 

same binding buffer without NaCl were employed for affinity purification of the sample, 

in order to enhance binding to the wheat germ agglutinin [102]. Homogenate (typically 1 

mg) with a final concentration of approximately 1-2 µg/µl was incubated with 100 µl of 

agarose wheat germ agglutinin (WGA) beads for two hours on the rotating mixer. Before 

incubation with the protein mixture, the beads were washed with binding buffer to re-

move salt and N-acetylglucosamine (GlcNAc) present in the storage medium and were 

resuspended in the binding buffer. The incubated mixture was poured into a column (1.5 

cm x 6.5 cm). Next the affinity column was washed five times with five column volumes 

of binding buffer. Elutions were performed with two column volumes of the elution 

buffer containing 0.5 M GlcNAc. Then, the eluted beads were regenerated using regene-

ration buffer at pH 3.0. Once regenerated, the beads were stored in the storage buffer. 

The eluted fractions were concentrated and pooled using ultra-centrifugation device 

with10,000 MW cut-off. The concentrated samples were solubilized with 2x PSM.   
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2.2.7 Differential sedimentation for enrichment of O-GlcNAc modified proteins: 

 Stage I oocytes were first homogenized in ten β as mentioned in the previous 

sections, and centrifuged at 1,000 x g for 10 minutes to remove cell debris and unlysed 

cells. The collected supernatant was then centrifuged at 10,000 x g for 10 minutes and the 

pellet was stored at -70 oC for further analysis. Later, the supernatant at 10,000 x g was 

further centrifuged at 100,000 x g for one hour and the fractions were stored at -70 oC. 

All the above fractions were analyzed by 1D/ 2D gel electrophoresis.   

2.2.8 One-dimensional gel electrophoresis: 

Samples were further separated and analyzed on either 8-10% SDS-polyacryl-

amide minigel (9.5 cm x 6.5 cm) (SDS-PAGE) that was made following the protocol of 

Laemmili [103]. The resolving gel was made from appropriate dilutions of  41.5% stock 

acrylamide solution (5.6 M acrylamide and 97mM Bis-acrylamide) with resolving buffer 

(2 M Tris pH 8.9), nanopure water, 20% SDS 10% ammonium persulfate and TEMED 

(N, N, N’, N’-tetra-methyl-ethylenediamine). The mixture was degassed for a minute 

before adding ammonium persulfate and TEMED. The stacking gel was made in a same 

manner except the final percent acrylamide was 4%, and stacking buffer (0.5 M Tris pH 

6.7) was used instead of  resolving buffer. Gels were run at room temperature at 15 

mamps for approximately 1-2 hours, usually 40-50 minutes after the dye has completely 

left the gel.  
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2.2.9 Two-Dimensional Gel Electrophoresis: 

 For higher resolution, the samples were subjected to two-dimensional (2D) Gel 

Electrophoresis. The method has two discrete steps. In the first step (first-dimension), the 

proteins were separated based on their isoelectric points using 7cm Immobilized pH gra-

dient (IPG) strips of pH 6-11 or pH 3-10 NL from amershams. The proteins focused at 

their characteristic pI on the IPG strip were further analyzed based on their molecular 

weight in the second step (second-dimension) using SDS-PAGE. 

IEF was performed in four main steps, the sample preparation, the rehydration of 

the IPG strips, the sample loading and the isoelectric focusing. First, the sample was pre-

pared by dialyzing against low concentration Tris buffer, pH 7.4 (5 mM Tris, 0.1% 

IGEPAL and 1 mM DTT) using dialysis tubing with a 10,000 M.W. cut off to reduce the 

concentration of salts including Tris that interferes with IEF. The dialyzed sample was 

solubilized with IEF buffer in a ratio of 1:6. The pH range of IEF buffers depends on the 

pH range of the used strip. Note: If the samples are too diluted (<3 µg/µl) following dia-

lysis, should be concentrated by ultra filtration or acetone precipitation [104]. The second 

step of IEF involved rehydration of IPG strip as per supplier’s instructions. The dry IPG 

strip was soaked overnight with the gel-side down in rehydration solution containing the 

appropriate IPG buffer with the overlay of DryStrip Cover Fluid. A 7cm IPG strip requir-

es 125 µl of rehydration solution [105].   

 Sample loading constitutes the third step in isoelectric focusing (IEF). For the 

IEF, the IPG strip was first positioned on the Ettan IPGphor Cup Loading Strip Holder as 

per the manufacturer’s instructions. The sample was applied to the rehydrated strip by the 
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sample cup application method. For a basic IPG strip, the sample was applied at the ano-

dic end and at the center for a whole pH range IPG strip to avoid significant extremes of 

pH that can lead to loss of O-GlcNAc modification and/or protein precipitation. The final 

step comprises of isoelectric focusing (IEF) of the samples by using Ettan IPGphor Iso-

electric Focusing System (Amershams). According to the instructions given in the man-

ual, ‘2D-Gel Electrophoresis using immobilized pH gradients, Principles and Methods’, 

the IEF was performed on the rehydrated strip at constant amperage of 50 µA at 20oC, 

and ramping the voltage initially in a gradient mode to 500 V for 1 m and 4000 V for 1h 

30 m, and later in a step and hold mode to 5000 V for 45 m.  

 After the IEF, the IPG strip was transferred to 10ml screw capped tube and was 

either stored at -70 oC or analyzed by SDSPAGE in the second step. The second dimen-

sion consists of a 1 mm thick, 10% laemmili SDSPAGE polymerized in between two 

glass plates with one plate protruding out, to position the IPG strip; and 4% stacking gel 

with two small wells and a larger well. Prior to positioning the strip on gel, the strip was 

incubated in equilibration buffer for first 15 minutes with 100 mg of DTT. This was fol-

lowed by 15 minutes incubation in equilibration buffer with 250 mg of Iodoacetamide. 

Subsequently, the equilibrated strip was briefly immersed in the SDS electrophoresis 

buffer to lubricate, and later the plastic ends of the strip were carefully trimmed to adjust 

its length according to the size of 2nd dimension. The lubricated strip was then loaded on 

to the prestacked second dimension gel with the plastic side against one of the glass 

plates and sealed into place using the agarose sealing solution described before. With the 

protein standards and sample loaded at left of the gel, the gel electrophoresis was 
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performed at amperage of 10 mA for 15 minutes and continued for 40 minutes after the 

dye runs off.  

2.2.10 Gel Staining methods 

 The staining was performed usually to obtain overall protein profile of the sample 

resolved on SDS PAGE. Generally, the gel was first incubated in the fixing solution to 

enhance the staining. The method of staining completely depends on the requirement of 

the experiment. 

2.2.10.1 Coomassie Blue staining 

 The gel was fixed in a solution containing 20% methanol, 10% Acetic acid with 

constant shaking for a total of 20 minutes changing solutions once after 10 minutes. The 

gel was rehydrated by soaking in nanopure water for 15 minutes with constant shaking. 

The rehydrated gel was then incubated overnight in the G-250 coomassie blue staining 

with 20% methanol with constant shaking. The stained gel was destained for two hours in 

deionized water to get rid of the background staining [106]. 

2.2.10.2 Silver Staining 

 The proteins separated by SDSPAGE were stained by using Biorad Silver stain kit 

(as per the instructions given by the manufacturer) The gel, after electrophoresis was in-

cubated in fixing solution containing 40% methanol and 10% acetic acid for 30 minutes 

minimum. The fixed gel was immersed in oxidizing solution (K2Cr207) for five minutes. 

The gel was then washed with nanopure water for a maximum of 15 minutes, changing 6-

7 times especially in the first 5 minutes. After washing the excess oxidizer, the gel was 
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immediately transferred to the Silver solution containing 8% silver reagent and incubated 

for 20 minutes. Next, the gel was quickly rinsed in nanopure water for a maximum of 30 

seconds and immediately the developer (6.4 g/200 ml) was added to the gel. The deve-

loping solution is changed once brown or smoky precipitate appears. This step was 

repeated until a stain of desirable intensity was obtained. Then use 5% acetic acid to stop 

the staining for 15 minutes. All steps were performed on a shaker. 

2.2.11 Gel Drying 

 Drying of the gel was done by various methods. In one of the method, the gel was 

dried using Idea scientific Gel drying frame. (as per the instructions of manufacturer). 

The gel was first incubated in 10% ethanol and 5% glycerol for 30 minutes. The gel was 

then sandwiched between the wet gel drying membranes, and left encased in the gel dry-

ing plastic frame to dry. In another method, the gel was thoroughly rinsed with nanopure 

water and placed on a wet filter paper covered with the wet cellophane paper. The gel 

was left in the heated gel dryer (Biorad) for one hour to dry. 

2.2.12 Immunoblotting 

The analysis of the samples on the SDSPAGE was followed by transfer of the 

proteins to nitrocellulose or PVDF membranes. [107] Both the hydrophobic membranes 

were first equilibrated in transfer buffer for 15 minutes. The PVDF membrane being 

highly hydrophobic was initially wetted by methanol (5 seconds) and followed immer-

sions in nanopure water (5 minutes) with constant shaking. The Genie transfer apparatus 

(Idea Scientific) was used to transfer the proteins for 2-3 hours at a constant voltage of 12 

volts at 4oC in the cold (4oC) transfer buffer.  
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2.2.12.1 CTD110.6 immunoblotting 

The blot after the transfer was immediately incubated in the blocking solution, 

TBS-HT for 2-3 hours at room temperature with constant shaking. Typically all incuba-

tions were carried out in carefully cleaned parafilm boats containing 20-50 ml solution. 

Next the blot was transferred to the 1o antibody (CTD110.6 antibody) in TBS-HT at a 

dilution of 1:5,000 and incubated overnight at 4 oC with constant shaking.  The incubated 

blot was then washed 2 x 10 minutes with TBS-D and later 3 x 10 minutes each with 

TBS-HT. Next the blot was incubated in the 2o antibody (Goat anti-mouse IgM) at a dilu-

tion 1: 15,000 in TBS-HT for 1 hour at room temperature with constant shaking. Follow-

ed by the washing step as mentioned above and then the dried blot was treated with the 

Super Signal chemiluminescent substrate (Pierce) for 5 minutes again following manu-

facturer directions. Immediately the blot was dried and transferred to the cassette and 

exposed to film for 30 seconds or longer. To demonstrate the specificity of the CTD110.6 

antibody, a duplicate blot was produced using the same protocol as above, except the 

primary antibody solution contained 15 mM N-Acetylglucosamine as a competing sugar. 

2.2.12.2 RL-2 immunoblotting 

 Nitrocellulose immunoblots using RL-2 antibody were allowed to dry after trans-

fer to improve recovery of antigenic sites. The dried blot was first soaked in the PBS at 

70 oC in water bath for one hour with constant shaking. The wet blot was then blocked 

using high salt PBST (HSPBST) with 3% BSA at room temperature for two hours with 

the constant shaking. Typically all incubations were carried out in carefully cleaned para-

film boats containing 30-50 ml solution. Following blocking the blot was transferred into 
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a solution containing the primary antibody, RL-2 in HSPSBT with 3% BSA at a dilution 

of 1: 5,000 and incubated with modest shaking for two hours.  The incubated blot was 

then washed 5 x 10 minutes with HSPBST with 0.01% BSA. The washed blot was trans-

ferred to the secondary antibody, goat anti-mouse IgG in PBST with 3% BSA at a dilu-

tion of 1: 20,000 at room temperature for one hour. The blot was then washed 8 x 10 min-

utes with PBST and the dried membrane was treated with Super signal chemilumine-

scence for 5 minutes. The blot was quickly dried and placed in the cassette and exposed 

to the film for half a minute and longer [36]. 

2.2.13 Wheat germ agglutinin affinity blotting 

 The proteins resolved by the SDSPAGE were transferred to PVDF (Polyvinyl 

difluoride) membrane. The blot was blocked in a TBST (0.05% Tween 20) solution 

containing 5% BSA for two hours at room temperature with constant shaking. Once 

again, all incubations were carried out in carefully cleaned parafilm boats containing 30-

50 ml solution. After blocking, the blot was rinsed with TBST, and incubated in HS-

TBST (1 M NaCl) with the WGA-HRP at 1: 10, 000 dilution [108] for 2 h at room temp-

erature. The blot was then washed 3 x 10 minutes with HS-TBST and then 5 x 10 minutes 

TBST. The washed blot was developed at room temperature using freshly prepared 3mM 

DAB (diaminobenzidine) and 3% peroxide in 50 mM Tris-HCl (pH 7.6). Typically deve-

loping times were from 10 minutes to 20 minutes. The developed membrane was then 

washed with PBS and dried.  
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2.2.14 Membrane staining methods 

 Once again, the staining method was used to visualize the overall protein profile 

of the sample transferred on to the membrane, and the method of staining was chosen 

based on the requirement of experiment.  

2.2.14.1 India ink staining: 

 The nitrocellulose/PVDF membrane was first soaked in PBST with 0.05% tween 

20 for 10 minutes. If the membrane is nitrocellulose, it was then treated with 1% KOH 

solution for 5 minutes to enhance India ink staining. The blot was incubated in PBS for 

30 minutes with one change of solution after 15 minutes. Then the blot was incubated for 

one and half an hour at 37 oC and one hour at room temperature with PBST, 0.3% tween 

20 with changes of the solution every 30 minutes. On completion of washing, the blot 

was incubated overnight in 1% India ink staining solution. The blot that was washed with 

PBST twice for a few seconds gives a permanently stained membrane [109]. Note: The 

membrane was first stripped with a glycine solution if it had been previously immuno-

blotted. This staining method is more sensitive than other methods with high level of 

detection (100 ng).  

2.2.14.2 Ponceau S staining 

 Ponceau S stain can be used for nitrocellulose membranes with a detection limit 

of 1ug protein. First, the membranes were incubated in 2% Ponceau S for 20-30 minutes 

until the stained bands appear. Then, the stained membrane was destained in nanopure 

water to remove the background. This stain is a reversible. 
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2.2.14.3 Coomassie staining 

 This method is used for staining PVDF membranes with detection limit of 1.5 µg 

of protein. The membrane is incubated in 0.1% Coamassie stain for 5-10 minutes. Once 

the stained bands appear, it is destained with a 50% methanol/10% acetic acid (v/v) 

solution to remove the background. 

2.2.15 Membrane stripping methods  

  The immunoblot was incubated in 200mM glycine, pH 3.0 for 20 minutes at 

room temperature with constant shaking. The blot was then washed 3 x 10 minutes with 

PBST [110]. For affinity bolt, β-mercaptoethanol method was used. First the membrane 

was incubated in the stripping buffer containing 62.5 mM Tris pH 6.8, 2% (w/v) SDS, 

and 100 mM β-mercaptoethanol for 30 minutes at 60 oC. Next, the stripped blot was 

washed 3 x 10 minutes in TBST 

2.2.16 Identification of the protein bands of interest 

 Once 2D-gels of oocyte (stage I) proteins were sufficiently stained with coomas-

sie so that identification was possible, the protein bands of interest immediately were 

excised for protein sequencing. Being sure to wear gloves and taking care not to intro-

duce any contaminants, protein material ( ie. keratin). In order to identify these bands, the 

2D-pattern of proteins in coomassie stain was compared to the 2D-pattern of O-GlcNAc 

modified proteins in the CTD110.6 immunoblot. The bands that matched the ones in the 

immunoblot by the distances traveled in both the dimensions were selected to be seque-

nced. The selected protein bands were cut as close to the stained portions to get rid of 
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extra gel using a razor. Each of these gel pieces containing the protein was then placed 

separately into a 1.5 ml eppendroff tube that was previously washed with acetonitrile to 

remove dust and keratin, and stored at -20oC. 

2.2.17 Mass Spectrometric peptide sequencing and identification of proteins 

The protein bands that were identified as O-GlcNAc modified by using the 

CTD110.6 immunoblot All the protein bands of interest were excised from the coomassie 

stained gel and sent to John Hopkins   The peptide sequencing and identification was 

performed by the Dr. Stephen A Whelan at John Hopkins University using the MS/MS 

peptide sequencing coupled with database search as described in the following three 

steps. 

1. In gel digest: 

The excised protein bands of the G-250 commassie stained 2D-gel were first 

chopped into small pieces. Then the gel pieces were destained by washing three times 

with 100 mM NH4HCO3 for 10 minutes each and dehydrating with acetonitrile for ano-

ther 10 minutes. The dehydrated gel pieces were vacuum dried and rehydrated in 20 µl of 

10 ng/µl trypsin (Promega, mass spectrometry grade) in 50 mM NH4HCO3 on ice for 45 

minutes. Once the gel pieces were hydrated, excess trypsin was removed and gel pieces 

covered with 50 mM NH4HCO3, pH 8.0 were left overnight at 37 oC for digestion. Once 

digested, the peptides were extracted with 50 µl of 50 mM NH4HCO3 and then, followed 

by three washes with 50 µl of 5% formic acid/ 50% acetonitrile solution for 20 minutes 

each. The extractions were pooled and vacuum dried. The extracted peptides were sus-

pended in 0.1% Trifluoro acetic acid (TFA) and passed through Vydac C18 silica Micro-
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spin columns (The Nest Group Inc.) and eluted with 75% acetonitrile and 0.09% TFA. 

The purified peptide mixture was once again vacuum dried.  

2. LC-MS/MS Analysis: 

 The vacuum dried and purified peptides were resuspended in 1% acetic acid and 

loaded on a 10 cm x 0.075 mm column packed with 5 µm diameter C18 beads using N2 

pressure. The column was then washed with 1% acetic acid and then the peptides were 

separated by a 75 minute gradient of increasing methanol at a flow rate of 190 nl/minute 

directing effluent into the source (Finnigan LCQ). The LCQ was operated in an automatic 

mode collecting a MS scan (2 x 500 ms) of the peptide mixture, followed by two MS/MS 

scans (3 x 750 ms) of the two high intensity peptides with a dynamic exclusion set at 2 

with a mass gate of 2.0 Da. 

3. Mass data analysis: 

In order to identify the proteins, the MS/MS data was interpreted using Bioworks 

software. The MS/MS spectra of the peptides were searched against several protein data-

base including Xenopus laevis database (downloaded from NCl, National Institutes of 

Health at Frederick, MD) using the bioworks software. The MS/MS protein or peptides 

spectra were identified based on “Best hits” in the Xenopus laevis database search. The 

“Best hits” were those showing high degree of confidence that is the Xcorr > 2.5 and the 

dX-corr for the second entry > 0.1 [111]. At the same time, the data was also manually 

inspected for accuracy.  
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Chapter 3 

Results and Discussion 

3.1 Confirmation of the presence of high O-GlcNAc modified proteins in the stage I 

oocytes compared to the stage VI oocytes per unit mass:   

 Slawson et. al. [11] have shown the presence of high levels of O-GlcNAc in stage 

I oocytes, and a dramatic reduction in the levels during stage progression (I-VI) of ooge-

nesis. As a first step in elucidating the possible role of O-GlcNAc modification in deve-

loping oocytes, the initial efforts were focused on isolation and identification of these 

modified proteins. Prior to beginning the purification process, a series of experiments 

were performed to confirm and reexamine the modified proteins of interest, and to exam-

ine the specificity of the proteins to CTD110.6 antibody (Figure 3.1.1 & 3.1.2 respec-

tively). Every experiment was repeated three separate samples to confirm the results.  

Several immunostained bands above 30 kDa were reduced in the intensity while pro-

gressing from stage I to VI. Figure 3.1.1 shows that the protein bands # 1-14 at 

approximately 29, 48, 52, 63, 66, 70, 76, 84, 90, 101, 106, 116, 128, and140 kDa respect-

ively were of initial interest. Competition for antigen binding with 15mM/30mM N-

acetylglucosamine for CTD110.6 antibody demonstrated the specificity of all the above 

mentioned protein bands. (Figure 3.1.2) For comparison and as a control, the cytosolic 

fraction of a glioma cell line (contributed by Aaron Mathews) that is rich in the O-

GlcNAc modified proteins also clearly demonstrated the specificity, but interestingly  
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Figure 3.1.1- CTD110.6 immunoblot of one-dimensional gel separation of proteins 
from oocytes at stages I, II, III and VI. Approximately 20 µg of proteins each of 
oocytes at stages I, II, III and VI were individually separated on the 8% gel and immuno-
blotted with CTD110.6 antibody as described in Methods. The figure represents an auto-
radiogram of the blot showing the pattern of O-GlcNAc modified proteins in oocytes at 
different stages and the decreasing trend on O-GlcNAc levels during stage progression of 
oogenesis. The arrows on the left-hand side show the protein bands of interest # 1-14 at 
approximately 29, 48, 52, 63, 66, 70, 76, 84, 90, 101, 106, 116, 128 and140 kDa 
respectively. 
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Figure 3.1.2- Competition with 15mM N-Acetylglucosamine to show specificity of O-
GlcNAc modified to CTD110.6 antibody. Approximately 20 µg each of proteins from 
the cytosolic fractions from glioma cell line treated with 8 mM GlcNAc for 3 hours and 9 
hours and the oocytes at stage I were individually separated, and immunoblotted with 
CTD110.6 antibody in absence and presence of 15mM/ 30mM GlcNAc. The figures 
represent the autoradiograms of the blots (a) without GlcNAc, (b) with 15 mM GlcNAc, 
and (c) with 30 mM GlcNAc while incubating the membrane with CTD110.6 antibody. 
The complete or partial disappearance of the bands in (b) and (c) indicates the specificity 
of the O-GlcNAc modified protein bands to CTD110.6 antibody. 
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Figure 3.1.3- RL-2 immunoblot of one-dimensional gel electrophoretic separation of 
proteins from oocytes at stage I. Approximately 20 µg of protein was separated on the 
10% gel and immunoblotted with RL-2 as described in Methods. The figure represents an 
autoradiogram of the blot showing a pattern of O-GlcNAc modified proteins in stage I 
oocytes similar to that shown by CTD110.6 antibody. The difference is in the intensity of 
specific bands especially the bands around 50 kDa.  The positions of molecular weight 
marker are shown with arrows on left. 
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shows quite a different pattern of modified proteins. A similar pattern of oocyte modified 

proteins was observed using RL-2, another antibody recognizing with slightly different 

affinity but overlapping specificity to CTD110.6 antibody. Since stage I oocytes contain-

ed the largest amounts of these proteins per unit mass, these oocytes were used to isolate 

the O-GlcNAc modified proteins of interest. A few stage II oocytes (15% by number) 

that show a highly similar pattern of the modification were included to increase the amo-

unt of starting material so as to improve yields. Even though, the stage I oocytes are rela-

tively abundant in the O-GlcNAc modified proteins, the total amount of these pro-teins in 

an oocyte is still small. Therefore, the strategy was to use a minimum number of purifica-

tion steps to enhance overall recovery of proteins. 

First step of the scheme was to examine the two-dimensional (2D) gel electro-

phoresis ability to directly separate the proteins of interest in quantities sufficient for 

sequencing. In addition, the level of detection of coomassie that used to stain the protein 

bands to be sequenced is low (1 ug). Depending on the success of this approach, the next 

step was to partially purify or enrich using various affinity technologies coupled with 2D-

gel electrophoresis. The enrichment techniques attempted were immunoaffinity methods 

using the O-GlcNAc specific antibodies such as CTD110.6 and RL-2, affinity chromato-

graphy using the lectin, wheat germ agglutinin that specifically binds to the terminal N-

acetylglucosamine residues; and differential sedimentation based on association of this 

protein with complex high molecular weight aggregates in the cell.            

3.2 Two-dimensional gel analysis of the stage I and VI oocytes: 

To examine and compare the 2D-pattern of the total proteins in stage I and VI 

oocytes, the whole cell homogenates were individually analyzed by 2D-gel electropho-
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resis and immunoblotted with CTD110.6 antibody. Both samples were separately resolv-

ed by using two IPG strips with different pH ranges while performing IEF. In order to 

view all the oocyte modified proteins an IPG strip of full pH range 3-10 (Non-linear) was 

used. The non-linear range was initially selected since it gives a better resolution of the 

proteins within the range of pH 5-8, the range where generally the majority of cellular 

proteins are focused. Surprisingly, the majority of the modified proteins seen on one-

dimensional SDS PAGE were not present on the final blot. The 2D analysis of stage I at 

this pH range 3-10 showed only three faint modified protein bands # 1-3 at approximately 

29, 65 and 69 kDa respectively across an approximate pH range 5-8 on probing with 

CTD110.6 antibody. (Figure 3.2.1 a) However, the India ink total protein stain of same 

blot stripped using the glycine method showed the presence of several other proteins 

bands on the membrane. (Figure 3.2.1 b) Similar results were obtained with three sep-

arate samples. This suggests that the absence of the other bands of interests might be due 

to the unlikely hydrolysis and loss of the modification at the moderately low pH range. 

Alternately, and more likely the proteins might have focused off strip due to the steep rise 

in the pH near the end of non-linear pH strip, and as we all see later the very basic nature 

of the majority of proteins of interest. In addition to above reasons, the proteins get focus-

ed slightly at different regions due to the changes in the pH of the IPG buffer used during 

the IEF that might also explain the absence of the proteins that focus in pH range 8-10 in 

the later 2D-gel electrophoresis [112]. 

In the same manner, the proteins of stage VI oocytes were analyzed by 2D-gel 

electrophoresis and compared to the 2D-patterns of total proteins and O-GlcNAc modi-

fied proteins of the stage I oocytes. Similar results were obtained with three separate 
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Figure 3.2.1- Two-dimensional gel electrophoresis of oocyte proteins (stage I) using 
isoelectric focusing with pH range 3-10 in the horizontal dimension and SDS-PAGE 
(10%) in the vertical dimension. Approximately 100 µg of protein from oocytes at stage 
I was separated and immunoblotted with CTD110.6 and later the blot was glycine stripp-
ed and stained with India ink as described in Methods. Figures (a) Autoradiogram show-
ing three faint bands at 29, 65 and 69 kDa respectively, and (b) India ink stain showing 
the overall 2D-pattern of the proteins of oocyte stage I. On the left hand side of the gel, 
20 ug of the stage I was separated on one-dimension acts as reference.  
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Figure 3.2.2- Two dimensional gel electrophoresis of oocyte proteins (stage VI) by 
isoelectric focusing with pH range 3-10 in the horizontal dimension and SDS-PAGE 
(10%) in the vertical dimension. Approximately 100 µg of protein from oocytes at stage 
VI was separated and immunoblotted with CTD110.6 and later the blot was glycine 
stripped and stained with India ink as described in Methods. Figures (a) Autoradiogram 
showing four bands # 1-4 at approx. 32, 35, 45 and 66 kDa respectively, and (b) India ink 
stain showing the overall 2D-pattern of the proteins of oocyte stage VI. On the left hand 
side of the gel, 20 ug of the stage VI was separated on one-dimension acts as reference.  
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samples. Once again, the CTD110.6 immunoblot of stage VI oocyte proteins on the 2D-

gel with pH range of 3-10 showed four small bands at approximately 32, 35, 45 and 66 

kDa across an approximate pH range 5-8. (Figure 3.2.2 a) While the India ink stain of the 

stripped membrane gave the overall 2D-picture of the stage VI oocyte proteins. (Figure 

3.2.2 b) In comparison to 2D-pattern of stage I oocyte proteins, the 2D-pattern of stage 

VI was once again quite different as clearly shown in India ink stain (Fig 3.2.2 b). Parti-

cularly, the protein bands of stage I oocytes that are focused at the extreme right of the 

membrane (around pH 10) were completely absent in stage VI oocytes. Careful 

examination of the India ink stains of the glycine stripped blots of stage I and stage VI 

oocytes have showed a large fraction of the stage I oocyte proteins, unlike that of stage 

VI were focused mainly at cathodic end of the IPG strip indicating that majority of stage I 

oocyte proteins are basic in nature. 

Assuming that most of the O-GlcNAc modified proteins of interest in stage I were 

basic in nature and thus, suggesting that the proteins were focused off the IPG strip, the 

more basic range of pH 6-11 was selected for IEF. The stage I analyzed within this pH 

range showed the majority of the modified proteins resolved into 12 discrete protein 

bands within the pH range of 8-10. (Figure 3.2.3 a) These protein bands were numbered 

as 1-2, 3a, 3b, 7, 8a, 8b, 8c, 9a, 9b, and 10 as indicated in figure were approximately at 

28, 35, 37, 49, 55, 58, 62, 67, 91 and 98 kDa respectively. Among these bands, the bands 

# 1-3 are clustered together (as seen in Figure 3.2.3 b) originated from the big band # 1 at 

29 kDa in 1D-gel, and the bands # 4-10 corresponds to bands # 2-6 and 9-11 respect-

ively in the 1D-gel. However, the high molecular weight bands (> 100 kDa) do not ap-

pear due to proteolytic degradation or precipitation of these proteins during IEF. This is  
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Figure 3.2.3- Two-dimensional gel electrophoresis of oocyte proteins (stage I) by 
isoelectric focusing with pH range 6-11 in the horizontal dimension and SDS-PAGE 
(10%) in the vertical dimension.  Approximately 100 µg of protein from oocytes at 
stage I was separated and immunoblotted with CTD110.6 and later the blot was glycine 
stripped and stained with India ink as described in Methods. Figures (a) Autoradiogram 
showed the modified proteins mainly focused at approx. pH 8-10, and 12 distinct bands # 
1-2, 3a, 3b, 7, 8a, 8b, 8c, 9a, 9b and 10 were identified at 28, 35, 37, 49, 55, 58, 62, 67, 
91 and 98 kDa respectively, and (b) India ink stain showing the overall 2D-pattern of the 
proteins from stage I oocyte. On the left-hand side of gel, 20 µg of protein of stage I was 
separated on one-dimension acts as reference.  
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Figure 3.2.4- Two-dimensional gel electrophoresis of oocyte proteins (stage VI) by 
isoelectric focusing with pH range 6-11 in the horizontal dimension and SDS-PAGE 
(10%) in the vertical dimension.  Approximately 100 µg of protein from oocytes at 
stage VI was separated on 10% two-dimensional gel and analyzed by CTD110.6 
immunoblotting and later the blot was glycine stripped and stained with India ink as 
described in Methods. Figures (a) Autoradiogram showed the modified proteins mainly 
focused at approx. pH 7-10, and showing band # 1, 2, 3a. 3b. 4a-c, 5, and 6 at around 22, 
25, 26, 43, 49, 63 and 65 kDa respectively with pI 7.8, 8.8, 8.2, 8.4, 7.1, 7.9, 8.5, 9.1, 6.9 
and 10 resp.; and (b) India ink stain showing the overall 2D-pattern of the proteins of 
oocyte stage I. On the left-hand side of the gel 20 µg of protein of stage VI was separated 
on one-dimension acts as reference. 
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the limitation of the 2D-technique that was used.  The India ink stain of the stage I have 

shown that most of the basic proteins were O-GlcNAc modified proteins. (Figure 3.2.3 b) 

Thus, the results of the 2D separation with pH range 6-11 substantiated the earlier find-

ings, and indicated the majority of the oocyte proteins from a stage I oocyte were basic in 

nature, like most of the ribosomal proteins [113]. 

  While the stage VI oocyte proteins in pH range 6-11 were resolved into a very 

different pattern to that of stage I. In stage VI, the majority of proteins focused within pH 

range of 7-10, with bands that were numbered as 1, 2, 3a, 3b, 4a-c, 5, 6 and 7 at approxi-

mately 22, 25, 26, 43, 49 63 and 65 kDa respectively with approximate pI 7.8, 8.8, 8.2, 

8.4, 7.1, 7.9, 8.5, 9.1, 6.9 and 10 respectively. (Figure 3.2.4 a) Once again, the India ink 

stain of the stage VI oocytes have showed quite a different 2D-patterns of whole oocyte 

proteins from that of the stage I oocytes. (Figure 3.2.4 b) In addition to the differences in 

isoelectric points (pIs) of the proteins, there were fewer O-GlcNAc modified proteins of 

stage VI oocytes were apparent.  

3.3 Immunoprecipitation with RL-2 antibody 

Since, the proteins separated from the whole homogenate were not enough and 

sufficient to see by the coomassie staining, we felt the need to enrich the samples with O-

GlcNAc modified proteins. Initially, the enrichment of O-GlcNAc modified proteins was 

attempted by the immunoprecipitation with O-GlcNAc specific antibodies such as RL-2 

antibody. The immunoprecipitations with RL-2 antibody was successful in enriching at 

least some of O-GlcNAc modified proteins of interest as shown by results in the 

CTD110.6 immunoblot (Figures 3.3.1 a). Approximately 20 µg of protein from oocytes at 

stage I in lane 1, one tenth of the total immunoprecipitate in lane 2, and approximately 20 
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µg of supernatant in lane 3 (this amount was estimated taking into account the dilution 

and the concentration of original sample) were separated on 8% SDS PAGE and immu-

noblotted with CTD110.6 antibody. The second lane containing immunoprecipitate 

showed a few of the protein bands of interest namely those at 37, 54 and 62 kDa. The 

high intensity bands at 50 and 75 kDa in the same lane were of denatured antibodies. The 

RL-2 immunoprecipitation performed without the sample (the negative control) clearly 

showed the presence of these bands (Figure 3.3.1 c). Thus, the presence of foreign pro-

teins such as heavy chains of the denatured antibodies, which get resolved at nearly the 

same regions as proteins of interest in one-dimensional gel electrophoresis interfered with 

the detection of the O-GlcNAc modified proteins.  

In addition, huge difference in the band intensities of immunoprecipitate and 

supernatant lanes in the silver stain clearly indicated large portions of O-GlcNAc modi-

fied proteins remained in the supernatant. (Figure 3.3.1 b) The huge protein band at 

around 60 kDa in supernatant of the silver stain (shown by an arrow in Figure 3.3.1.b) 

appeared to be ‘Protein A’ conjugated to trisacryl beads used in RL-2 immunoprecipition. 

This band appears as a large non-illuminated area in the same region of supernatant lane 

on immunoblotting with CTD110.6 antibody (Figure 3.3.1.a). Since all the protein bands 

of interest in that region were completely concealed by this large Protein A band, it be-

comes difficult to estimate the O-GlcNAc modified proteins remaining in supernatant. In 

order to reduce the contamination with the Protein A, immunopurification by column 

method was attempted. But also gave poor results (Data not shown). Increasing the RL-2 

concentrations in immunoprecipitation also did not significantly improve the yields, but 

increased the level of interference with immunoblot detection. (Data not shown) Thus, 
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Figure 3.3.1- One-dimensional gel electrophoresis of the RL-2 immunoprecipitate of 
stage I oocytes. Approximately 20 µg of protein from oocytes at stage I in lane 1, one 
tenth of the total immunoprecipitate in lane 2, and approximately 20 µg of supernatant in 
lane 3 (this amount is estimated taking into account the dilution and the concentration of 
original sample) were separated on 8% SDS PAGE and immunoblotted with CTD110.6 
antibody and stained with silver as described in Methods.(a) Autoradiogram of 
CTD110.6 immunoblot and (b) silver stain showing few protein bands of interest appro-
ximately at 37, 59 and 62 kDa in the RL-2 immunocomplex; and (c) Autoradiogram of 
CTD110.6 immunoblot with RL-2 immunocomplex and RL-2 immunocomplex without 
oocyte proteins (representing a negative control) were loaded in lane 1 and 2 respectively, 
showing the bands at 50, 75 and 100 kDa might be the bands of antibody.  
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another approach was investigated. 

3.4 Immunoaffinity purification using CTD110.6 antibody  

To reduce the contamination of the samples with the foreign proteins (antibodies), 

the separation was performed using an anti-mouse IgM-agarose immunoaffinity column, 

where the antibody is covalently linked to the agarose bead while retaining its ability to 

specifically bind to CTD110.6 antibody (IgM sub-type). The proteins were eluted with a 

solution of TBS buffer containing 1 M N-acetylglucosamine and concentrated by meth-

anol precipitation that also removes the majority of N-acetylglucosamine. All the collect-

ed column fractions and the precipitated elutions were analyzed by RL-2 immunoblotting 

and silver staining (Figure 3.2.2 a and b). Approximately 20 ug of stage I oocyte proteins 

(original sample) in lane 1, one half of the eluted proteins in lanes 2, 3 and 4, and appro-

ximately 20 ug of flow through (this amount was estimated taking into account the dilu-

tion and the concentration of original sample) in lane 5, one tenth of RIPA washes in lane 

6 and 7, were separated on 8% SDS PAGE and analyzed by RL-2 immunoblotting. The 

analysis showed most of the O-GlcNAc modified proteins were in the flow through and 

washes (Figure 3.4.1.a). Thus, indicating poor binding of O-GlcNAc modified proteins to 

the column. Once again, the band at 60 kDa in both the flow through and washes that 

concealed the protein bands of interest. While some of this appears to be due to leaching 

of antibody from the column, it also represents the presence of BSA. BSA used as 

stabilizer in the stock solution of the CTD110.6 antibody used in the immunoprecipita-

tion. Since so much of the proteins of interest were found in the flow through, this mate-

rial was incubated with a new set of beads to see if the yield could be improved. On the 

analyzing the collected fractions, once again the elutions of the immunoaffinity puri- 
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Figure 3.4.1- One-dimensional gel electrophoresis of the CTD110.6 immuno-
affinity purified proteins of stage I oocytes.  Approximately 20 ug of stage I oocyte 
proteins (original sample) in lane 1, one half of the eluted proteins in lanes 2, 3 and 4, 
and approximately 20 ug of flow through (this amount was estimated taking into 
account the dilution and the concentration of original sample) in lane 5, one tenth of 
RIPA washes in lane 6 and 7, were separated on 8% SDS PAGE and analyzed by RL-
2 immunoblotting and silver stained as described in Methods. (a) Autoradiogram of 
RL-2 immunoblot (8% gel) showing few protein bands approximately between 50-60 
kDa in the immunopurified sample and most of the modified proteins in the flow 
through and washes; (b) silver stain of 10% SDS Gel showing the presence of majo-
rity of proteins in the flow through. (c) Autoradiogram of RL-2 immunoblot (8% gel) 
whose lanes representing fractions of repeated immunoprecipitation of flow through. 
The faint bands around 50-60 kDa indicated no improvement in the yield using 
immunoaffinity purification of the flow through. 
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fication showed very weak bands at 50 kDa, and with majority of the proteins again in 

the flow through and washes. (Figure 3.4.1 c) The results was also confirmed with silver 

staining that demonstrated very low protein content in the elutions compared to the flow 

through. (Figure 3.4.1 b) 

In an attempt to improve the yield, the batch-wise incubation method was adopted 

as a way of exposing more of the column material to the proteins for longer periods of 

time. Most of the protein bands of interest were detected on analyzing CTD110.6 immu-

noaffinity eluants following the same procedure of RL-2 immunoblotting. Again some of 

the bands were concealed by the heavy chains of antibodies at 60 and 100 kDa. These 

bands are confirmed as bands of the antibodies because similar bands at region of same 

molecular weight appeared when the anti-mouse IgM-agarose beads were resolved by 

SDS PAGE, and immunoblotted with RL-2 antibody (Figure 3.4.2 a). In addition, the 

presence of considerable amounts of O-GlcNAc modified proteins in the flow through 

indicated that significant amounts of proteins were still not being captured with this techi-

que (Figure 3.4.2 a). Further purification of the immunopurified material by 2D-gel elec-

trophoresis showed that the O-GlcNAc modified proteins were not in most cases suffi-

ciently separated from contaminating immunoglobulin and BSA, which was clearly 

visible in the RL-2 immunoblot as shown in the Figure 3.4.2 b. Three protein bands on 

the extreme right of the membrane which are indicated by the arrows in the Figure 3.4.2 b 

appeared to be well separated in the immunoblot. However, the India ink stain of this blot 

after glycine stripping showed a huge smear in that region indicating the presence of 

additional protein and would thus, confound sequencing of the O-GlcNAc modified 

proteins (Data not shown). These streaking and smear that were also observed in the  
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Figure 3.4.2- One-dimensional and two-dimensional gel electrophoresis of CTD110.6 
immunoprecipitate (Batch-wise incubation method) of stage I oocytes. 
Approximately 20 µg of protein from oocytes at stage I, a quarter of the total immuno-
precipitate collected, and a volume of supernatant representing 20 µg compared to Homo-
genate (stage I) were loaded in the first three lanes of 10%1D-Gel; and nearly half of the 
immunocomplex was separated on 10% 2D-gel along with 20 ug of proteins of oocytes at 
stage I on left hand side of the gel as a reference and immunoblotted with RL-2 antibody 
as described in Methods. Autoradiograms of (a) 1D-gel showing most of the protein 
bands of interest in immunocomplex along with the bands of foreign proteins, and (b) 
2D-gel showing vertical and horizontal streaking of the foreign proteins that overlaps the 
protein bands of interest pointed out using arrows. 
                                                                                           

                 (a)1D- Gel Electrophoresis                           (b) 2D- Gel Electrophoresis 
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immunoblot might be due the presence of the agarose beads conjugated anti-mouse IgM 

in the immunoprecipitate. Even though, kits are available to remove some of the contami-

nating proteins, typically not all immunoglobulin and albumin were removed. Therefore, 

it was decided not to pursue the method, because of already low yields and potential loss 

of sample in additional steps.  

3.5 Affinity chromatography 

To overcome the problems of low yields and contamination with the foreign 

proteins mainly antibody, lectin affinity chromatography using agarose wheat germ 

agglutinin was used in an attempt to enrich the samples with O-GlcNAc modified 

proteins. This procedure has been used with some success in non-Xenopus somatic cell 

systems [114]. To first assess the potential effectiveness of this tool for our Xenopus 

system, oocytes stage I and stage VI were analyzed by the wheat germ agglutinin (WGA) 

affinity blotting. WGA binds to all glycoproteins with terminal N-Acetylglucosamine 

residues and thus, can bind to both O-GlcNAc modified proteins and glycoproteins with 

terminal GlcNAc on N-linked oligosaccharide chains. As expected the pattern of modi-

fied proteins from the affinity blot was similar but not identical to that observed in the 

immunoblots with CTD110.6 and RL-2 antibodies (Figure 3.1.1 and 3.1.3). For instance, 

the bands at 50 and 97 kDa of stage VI oocytes shown by arrows in Figure 3.5.1 appeared 

in the affinity blot, but did not show up in the previous shown immunoblots. While 

appearance was at a similar molecular weight on 1D-analysis, the proteins seen at 50 and 

97 kDA in stage VI are likely not the same as those in stage I samples. This is likely due 

to the affinity of WGA for all the carbohydrate containing proteins, with terminal N-

acetylglucosamine residues on some N-linked carbohydrate containing proteins. 
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Figure 3.5.1- WGA Affinity blot of the oocytes at stages I and VI. Approximately 20 
µg of proteins from oocytes at stage I and stage VI were separated on the 10% SDS gel 
and probed with WGA-HRP. The blot showed all the bands that appeared on the 
immunoblots with CTD110.6 and RL-2 in comparatively lower intensities due to the low 
sensitivity of colorimetric detection. The bands of stage VI shown by arrows are absent in 
the CTD110.6 immunoblot of the same system.  
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Moreover, only the most prominent bands were visible on the affinity blot due to lower 

sensitivity of the colorimetric detection method suggested for use by manufacturer. 

Attempts to use the chemiluminescent detection resulted in very high backgrounds that 

could not be sufficiently reduced with the standard blocking agents such as BSA, tween 

20. (data not shown) Note non fat dry milk a popular blocking agent cannot be used with 

CTD110.6 and RL-2 antibodies, since one or more carbohydrates in the solution reduces 

the antibody signal and gives high background. 

Once the affinity of WGA for the proteins of interest was verified, the affinity 

purification was initially performed at approximately 0.15 M NaCl as per the manufac-

turer’s instructions, and later the concentration of salt was reduced to less than 0.1 M 

NaCl as suggested by a published study [102], in order to maintain the weak intermole-

cular interactions in protein complexes and improve yields. The results of both the 

experiments as shown in Figure 3.5.2 a & b demonstrated that low salt conditions im-

proved yields of affinity purification. In both experiments, the proteins bound to the 

column were eluted using the binding buffer containing 0.15 M NaCl and 0.5 M GlcNAc. 

The collected fractions were pooled, desalted and concentrated by ultra-filtration using 

centricon-10 in order to proceed to 2D-gel electrophoresis, the next purification step. 

Once again, all the collected fractions were analyzed by CTD110.6 immunoblotting are 

shown in Figures 3.5.2 a and b represents the affinity purification at low salt (> 0.1 M 

NaCl) and high salt (0.15 M NaCl) conditions respectively. The second lane in the Figure 

3.5.2 a shows the sample from the pooled elution contained all of the target bands, 

whereas the second lane in the figure 3.5.2 b did not show the bands at 54, 57 and 82 

kDa. Thus, indicating that low salt binding conditions maximized both the yield and  
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Figure 3.5.2- One-dimensional gel electrophoresis of affinity purified proteins from 
oocytes at stage I. Approximately 20 µg of proteins from oocytes at stage I, a quarter of 
the pooled elution of the affinity purified proteins at two different conditions, 0.1 M NaCl 
and 0.15 M NaCl, estimated volume containing 20 µg calculated using the concentration 
of the homogenate (stage I) were separated in the first three lanes of the 10% gel and 
immunoblotted with CTD110.6 antibody as described in Methods. Autoradiograms of the 
affinity purification (a) at low salt conditions (< 0.1 M) showing almost all the protein 
bands of interest in elutions and (b) high salt conditions (0.15M) salt showing bands at 
35, 59, 69 and 97 kDa only. 
 

                    (a) Affinity purification                             (b) Affinity purification                        
                 in lower salt (< 0.1 M NaCl)                      in higher salt (0.15M NaCl) 
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number of O-GlcNAc modified proteins. Therefore, the enrichment was qualitatively 

successful in concentrating all the modified proteins of interest. However, the yield was 

only 20% apparently due to the loss of proteins by aggregation and precipitation during 

the concentration process. Hence, in order to acquire sufficient amounts of protein for se-

quencing, with this technique we would need to start with a larger amount of the oocyte 

material which unfortunately is a limiting factor in our process of purification.  

3.6 Differential Sedimentation 

 To overcome the problem of low initial proteins available from stage I oocytes, an 

another method was sought that minimized sample loss while still achieving enrichment 

of O-GlcNAc modified proteins. To this end, it was noted that the proteins of interest 

tended to precipitate in stored homogenates suggesting that the proteins tend to form high 

molecular weight complexes. Based on this hypothesis, the enrichment of the O-GlcNAc 

modified proteins was attempted by simple differential sedimentation. First, centrifuga-

tion of the lysed oocytes at 1,000 x g for 10 minutes was performed in order to sediment 

any unlysed cells and large cell debris. The supernatant-1 (that is collected after 1,000 x 

g) was then centrifuged at 10,000 x g for another 10 minutes, to further fractionate the 

homogenate (stage I oocyte) into supernatant-10 and pellet-10. The supernatant-10 was 

fractionated again by ultra-centrifugation at 100,000 x g for one hour into supernatant-

100 and pellet-100. All the fractions were resolved on 10% SDS PAGE and analyzed by 

CTD110.6 immunoblotting (Figure 3.5.1 a). Later, this blot was stripped with glycine 

solution, and stained with India ink (Figure 3.5.1 b). All the lanes contained approxima-

tely 20 µg of oocyte proteins.  The O-GlcNAc protein pattern in the supernatant-1 and 

supernatant-10 was similar to the earlier patterns of stage I. But the pellet-10 in the lane 2  
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Figure 3.6.1- One-dimensional gel electrophoresis of proteins from oocytes at stage I 
fractionated by Differential Sedimentation. The homogenate of the stage I oocytes 
(after 1,000 x g) was fractionated by the centrifugation at 10,000 x g and 100,000 x g, 
and 20ug each of the collected supernatants and pellets were separated on 10% ID-Gel 
electrophoresis and analyzed by CTD110.6 immunoblotting and later glycine stripped 
CTD110.6 blot was stained by India ink as described in Methods. (a) Autoradiogram 
showing few O-GlcNAc modified proteins in the pellet at 10,000 x g and the distribution 
of protein bands of interest in both the supernatant and the pellet collected at 100,000 x g 
where majority of O-GlcNAc modified proteins were found in pellet; (b) India ink stain 
of the glycine of the blot showing the concentration of the proteins bands of interest in 
the pellet at 100,000 x g. 
                                                                                                              

 

                   a. CTD110.6 immunoblot                   b. India ink stain of glycine stripped                   
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of India ink stain (Figure 3.5.1 b) showed the presence of large amounts of unmodified 

proteins indicating the centrifugation at 10,000 x g concentrated the proteins of interest in 

the supernatant-10. Thus, the centriguation of lysed oocytes at 10,000 x g can be per-

formed to remove the unlysed oocytes and debris without significant loss of desired 

proteins. In contrast, the ultra-centrifugation of supernatant-10 at 100,000 x g for 1 hour 

had sedimented the majority of modified proteins as shown in the Figure 3.6.1 a. Interest-

ingly, the India ink stain (Figure 3.6.1 b) revealed the fact that the majority of the 

oocyte’s unmodified proteins remained in the supernatant-100. Therefore, this method 

not only enriched the target proteins, but also minimized the loss of these proteins.  

 The enriched samples analyzed by 2D-Gel Electrophoresis across the pH range 6-

11, as expected showed the same 2D- pattern of the modified proteins as that of whole 

homogenate of stage I oocytes (Figures 3.6.2 a and 3.2.3 a). In addition, the majority of 

the proteins were basic in nature and were better resolved on the IPG strip, pH 6-11 as 

shown in Figure 3.6.2 a. Once again, the modified proteins were mainly focused in the 

pH range 8-10. Interestingly, these protein bands appeared at slightly lower molecular 

weight than that of the whole homogenate. The high electrophoretic mobility of the pro-

teins might be due to the presence of few non-modified proteins in the sample. The 

estimated molecular weights of these protein bands # 1-7, 8a, 8b, 9a, 9b, 10, 11a and 11b 

in Figure 3.6.1a were 21, 23, 36, 46, 47, 53, 52, 54, 83, 87 and 108 respectively. In 

addition, the intensity of protein bands of the pellet-100 (figure 3.6.2 a) is higher than that 

of the homogenate (Figure 3.2.3) showing successful enrichment of O-GlcNAc modified 

proteins. Competition experiments with 15 mM GlcNAc demonstrated specificity throu-

gh the reduction in the intensity of all the bands as seen in Figure 3.6.2 b, especially in 
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Figure 3.6.2- Two-dimensional gel electrophoresis of pellet at 100,000 x g from stage 
I oocytes by isoelectric focusing with pH 6-11 in the horizontal dimension and SDS-
PAGE (10%) in the vertical dimension. Approximately 100 µg of protein from oocytes 
at stage I was separated and analyzed by CTD110.6 immunoblotting without and with 15 
mM GlcNAc as described in Methods. (a) Autoradiogram of immunoblotting in the 
absence of GlcNAc showed the modified proteins mainly focused at approx. pH 8-10, 
and 10 distinct bands # 1-4, 5a, 5b, 6, 7, 8a, 8b, 9a, 9b,10, 11a and 11b were identified at 
21, 23, 36, 46, 47, 53, 52, 54, 83, 87 and 108 kDa respectively. On the left-hand side of 
gel, 20 µg of protein of stage I was separated on one-dimension acts as reference. (b) 
Autoradiogram of immunoblotting in the presence of 15mM GlcNAc showed the 
modified proteins mainly focused at approx. pH 8-10, showing all bands nearly reduced 
in the intensity. 
 

                                                   (a) Without GlcNAc 
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Figure 3.6.3- Two-dimensional gel electrophoresis of pellet at 100,000 x g from stage 
I oocytes by isoelectric focusing with pH 3-10(NL) in the horizontal dimension and 
SDS-PAGE (10%) in the vertical dimension. Approximately 100 µg of protein from 
oocytes at stage I was separated and analyzed by CTD110.6 immunoblotting as described 
in Methods. (a) Autoradiogram of immunoblot showed all the bands focused at the 
extreme right due to the non-linearity of the IPG strip. On the left-hand side of gel, 20 µg 
of protein of stage I was separated on one-dimension acts as reference. 
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the case of bands # 5a, 5b, 11a, 11b and 4. 

In addition, the 2D-Gel Electrophoresis using a full range IPG strip, pH 3-10 

(non-linear) again showed the majority of the proteins bands of interest focused across 

the pH range 8-10 substantiating that most of the modified proteins are basic in nature. 

(Figure 3.6.3) However, the protein bands of interest are not well separated due to the 

sharp rise in the pH of the non-linear IPG strip (with an extended region across pH 5-8). 

Since the extended region on the IPG strip was pH 5-8, some of the neutral and weakly 

acidic proteins did separate (Highlighted by an arrow in the Figure 3.6.3). Especially the 

band 3a at pH 6-7 spotted in 2D-gel analysis of the homogenate (stage I) showed up once 

again in this 2D-gel (as shown with an arrow in Figure 3.2.3 a). 

3.7 Identification and selection of the modified protein bands for sequencing 

 Once the scheme of purification was finalized as shown in the flow diagram, 

Figure 3.7.1, the proteins were isolated by differential sedimentation coupled with 2D- 

gel electrophoresis and coomassie stained for peptide sequencing by mass spectrometry. 

The 2D-separated proteins from stage I oocytes that are sufficiently stained with Cooma- 

ssie nearly showed all the fifteen protein bands of interest. (Figure 3.7.2) Since the stain-

ed protein pattern was very much similar to the 2D-patterns observed earlier, the protein 

bands of interest could be easily identified by superimposing the CTD110.6 immunoblot 

of the stage I oocyte and by their positions on the gel. The identified protein bands shown 

in the Figure 3.7.2 by using arrows were carefully excised wearing gloves to avoid conta-

mination.  
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Figure 3.7.1- Scheme for isolation and identification of the O-GlcNAc modified 
proteins 
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Figure 3.7.2- Two-dimensional gel electrophoresis of pellet at 100,000 x g from stage 
I oocytes by isoelectric focusing with pH 6-11 in the horizontal dimension and SDS-
PAGE (10%) in the vertical dimension. Approximately 100 µg of protein from oocytes 
at stage I was separated on 10% two-dimensional gel, and stained by coomassie as des-
cribed in Methods. The stain showed all the fifteen distinct bands # 1-4, 5a, 5b, 6, 7, 8a, 
8b, 9a, 9b,10, 11a and 11b were identified at 21, 23, 36, 46, 47, 53, 52, 54, 83, 87 and 
108 kDa respectively, mainly focused at approx. pH 8-10. On the left-hand side of gel, 20 
µg of proteins of stage I was separated on one-dimension acts as reference. 
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3.8 Mass Spectroscopy and database search 

Gel containing proteins were treated with trypsin and extracted as described in the me-

thods. The in-gel digested peptides of four protein bands were analyzed by LC-MS/MS 

and the MS/MS was interpreted using Bioworks software. All the MS/MS spectra identi-

fying proteins or peptides reported in the appendix C were “best hits” or “best matches” 

in a Xenopus database search with an Xcorr > 2.5. The spectral data were also manually 

inspected for accuracy. First, the mass fingerprint of trypsin digested peptides was obtain-

ed, and then 5 to16 peptides that are easily ionizable were fragmented further. The 

fragmentation of peptides resulted in two types of peptide fragment ions, the N-terminal 

and the C-terminal ions. These fragment ions were labeled based on the type of bond 

cleavage as a, b and c for C-terminal ions and x, y and z for N-terminal ions as shown in 

the Figure 3.8.1. These peptide fragment ions were fed into the mass spectroscopy 

instrument to obtain a CID (Collision induced dissociation) spectrum of each peptide. 

The spectrum of each peptide revealed the peaks of all the fragments, from a molecular 

ion to a final product ion formed during fragmentation. Moreover, this dissociation into 

the peptide fragment ions helps to differentiate the isomers of amino acids or amino acids 

with nearly the same molecular masses, for example isoleucine from leucine and 

glutamine from lysine respectively.  

In order to identify a protein, we need both the mass fingerprint of the protein (by 

MS scan) and the spectra of few peptide spectra for a given protein (by MS/MS scan).  

Figures 3.8.2 & 3.8.2, and Tables 3.8.1 & Table 3.8.2 provides an example of mass data 

analysis of one of the protein identified as Vg1 RNA binding protein variant A 

(Vg1RBP). The spectral data for rest of the identified proteins are given in Appendix C. 
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Figure 3.8.1- General fragmentation pattern of peptide and sequence nomenclature 
for mass ladder 

 

 

 

 

 

 

 

 

Figure 3.8.2- MS/MS spectrum of a protein band # 9a identified as Vg1 RNA 
binding protein variant A. CID spectrum/ product ion spectrum of a peptide 
ITGHFYASQLAQR of the Vg1 RBP showing the peaks of all the peptide fragment ion 
in the order of their molecular masses.   
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Table 3.8.1- Mass data of a peptide of Vg1 RBP variant A. Table lists out the masses 
of all the peptide fragment ions of the peptide ITGHFYASQLAQR 
 

 

Table 3.8.2- Peptide sequences of Vg1 RBP. Sequences of sixteen peptides of Vg1 RBP 
along with their ionic masses, positions, mass percentages and amino acids percentages 
were given. The total protein coverage of 20.62% by mass is a decent % to obtained the 
sequence of the protein. 
 
 

 

 

 

 

 

 

 

 

 

 

AA M+nH A A* Ao B B* Bo C X Y Y* Yo
 I 115.10 86.10 69.07 68.09 114.09 97.07 96.08 131.12 1491.77 1474.74 1473.76
 T 216.15 187.14 170.12 169.13 215.14 198.11 197.13 232.17 1404.67 1378.69 1361.66 1360.68
 G 273.17 244.17 227.14 226.16 272.16 255.13 254.15 289.19 1303.62 1277.64 1260.61 1259.63
 H 410.23 381.23 364.20 363.21 409.22 392.19 391.21 426.25 1246.60 1220.62 1203.59 1202.61
 F 557.30 528.29 511.27 510.28 556.29 539.26 538.28 573.31 1109.54 1083.56 1066.53 1065.55
 Y 720.36 691.36 674.33 673.35 719.35 702.33 701.34 736.38 962.47 936.49 919.46 918.48
 A 791.40 762.39 745.37 744.38 790.39 773.36 772.38 807.42 799.41 773.43 756.40 755.42
 S 878.43 849.43 832.40 831.42 877.42 860.39 859.41 894.45 728.37 702.39 685.36 684.38
 Q 1006.49 977.48 960.46 959.47 1005.48 988.45 987.47 1022.51 641.34 615.36 598.33 597.35
 L 1119.57 1090.57 1073.54 1072.56 1118.56 1101.54 1100.55 1135.59 513.28 487.30 470.27 469.29
 A 1190.61 1161.61 1144.58 1143.60 1189.60 1172.57 1171.59 1206.63 400.19 374.22 357.19 356.20
 Q 1318.67 1289.66 1272.64 1271.65 1317.66 1300.63 1299.65 1334.69 329.16 303.18 286.15 285.17
 R 1474.77 1445.77 1428.74 1427.75 1473.76 1456.73 1455.75 201.10 175.12 158.09 157.11

Sequence MH+ %by Mass Position %byAA’s
ESKIPFTGQFLVK 1493.84 2.29 24 - 36 2.19
IPFTGQFLVK 1149.67 1.76 27 - 36 1.69
AIDTLSGK 804.45 1.23 53 - 60 1.35
VIEVEHSVPK 1136.63 1.74 67 - 76 1.69
PQSEVPLR 925.51 1.42 201 - 208 1.35
FTEEIPLK 976.54 1.49 282 - 289 1.35
ILAHNNFVGR 1140.63 1.75 290 - 299 1.69
FAGASIK 693.39 1.06 446 - 452 1.18
IAPAEGPDAK 968.51 1.48 453 - 462 1.69
MVIITGPPEAQFK 1430.77 2.19 465 - 477 2.19
LKEENFFGPK 1208.63 1.85 486 - 495 1.69
EENFFGPK 967.45 1.48 488 - 495 1.35
VPSYAAGR 820.43 1.26 506 - 513 1.35
DQTPDENDQVVVK1486.70 2.28 538 - 550 2.19
ITGHFYASQLAQR 1491.77 2.28 551 - 563 2.19
IQEILAQVR 1069.64 1.64 565 - 573 1.52

Protein Coverage

By Mass 13475.2

% by Mass 20.62

By Position 122

% by AA’s 20.57
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Figure 3.8.3- Sequence of Vg1 RNA binding protein variant A Sequnce is 
downloaded from http://www.expasy.org/sprot/ and sequences in red are the ones 
analyzed by mass spectrometry to sequence the peptide and identify the protein band # 9a  
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gi|2801766|gb|AAB97457.1| KH domain-containing transcription factor B3 [Xenopus
laevis]�gi|3172447|gb|AAC18597.1| Vg1 RNA binding protein variant A [Xenopus
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AQSGQPQPRRK
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Figure 3.8.2.showed all the peaks of the peptide fragment ions obtained from a peptide 

ITGHFYASQLAQR of Vg1RBP. The mass data given in the table 3.8.1 for the spec-

trum of peptide provides the sequence and molecular masses of the fragment ions. These 

overlapping fragment ions were aligned on the basis of their masses to identify the 

sequence of the peptide. All these operations were carried out by software programmed to 

operate mass spectroscopy instrument, Bioworks software was used for Finnigan LCQ in 

this study. Table 3.8.2 one of the outputs of this program that summarizes the number of 

peptides sequenced for one protein and protein coverage (by the portions of protein se-

quenced) percentages by mass and number of amino acids for protein identification. The 

sequenced peptides were then matched against one or more databases, and the protein 

with highest hits (matching the most peptides) in Xenopus laevis database with Xcorr > 

2.5 was selected. The Xcorr >2.5 is the value used to determine efficacy of match [111].  

The Figure 3.8.2 shows the sequence of the identified protein that was downloaded from 

http://www.expasy.org/sprot/. Figure 3.8.2 shows some portions of sequence highlight-

ed in red were the sequenced peptides used in the protein identification. 

The seven mass-analyzed protein bands were identified as following: Band # 3 as  

 Zygote arrest 1 protein, Band # 4 as an oocyte specific form of elongation factor-1 alpha 

(42Sp50/thesaurin a), Bands # 7, 8a and 8b as Cytoplasmic mRNA binding protein p54 (y 

box factor homolog), Band # 9a as Vg1 RNA binding protein variant A, and Band # 10 as 

poly (A) binding protein. One peptide out of the protein bands around 50 kDa was identi-

fied as Xp54, RNA helicase with very high Xcorr. Most probably, the signals of other 

peptides of this protein might be lost or submerged among the strong signals of peptides 

from other proteins during mass analysis. The identified proteins are well characterized 
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proteins of Xenopus laevis oocytes. However, none of these proteins have previously 

been shown to be modified with O-GlcNAc. As oocyte specific proteins, they have been 

shown to play significant roles in the regulation of translation or intracellular mRNA 

translocation during the oogenesis. While, one of the proteins has been shown to play an 

important role in the oocyte-to-embryo transition.  

 Zygote arrest 1 (Zar1), protein band # 3 is an ovary-specific maternal factor that 

plays an important role during the transition of oocyte to embryo [115].  This 34 kDa 

protein is 295 amino acids long and found in multiple tissues including lung, muscle and 

ovary. Zar 1 mRNA is specifically synthesized in oocytes. Zar 1, localized predominantly 

in cytoplasm of oocytes, rapidly disappears at the two-cell stage of embryogenesis, sug-

gesting a critical role in the oocyte-to-embryo transition [116]. Presence of an atypical 

eight cysteine Plant Homeo Domain (PHD) motif at C-terminus, suggests that the protein 

might act as a translational activator, repressor or cofactor, and/ or form complexes that 

modulate chromatin. In addition, Zar 1 is found to be essential for female fertility in mice 

[116]. The gradual disappearance of O-GlcNAc of protein or reduction in their levels 

suggests a role for O-GlcNAc in regulating the function of this protein.  

Thesaurin a (42Sp50), the protein band # 4 was the first to be identified, and is 

homologous to eukaryotic EF-1 α and prokaryotic EF-Tu that recruits aminoacyl tRNA to 

the A-site of ribosome [117]. There are three forms of elongation factor-1 α in Xenopus 

laevis, two of them are oocyte specific forms, Thesaurin a and EF-1 α and third one is 

somatic form implying its absence in the oocyte, and present in embryo and adult cells 

only. Thesaurin a, consistent with our identification, is an early oocyte form, and unlike 

the other oocyte specific EF-1 α O, thesaurin a is exclusively and abundantly found in 
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previtellogenic oocytes (stage I, II and III) of Xenopus laevis [117]. In addition, thesaurin 

a is uniformly distributed throughout the cytoplasm with a one-order of magnitude lower 

activity than that of the EF-1 α O that is concentrated in the mitochondrial mass (Balbiani 

body) [117].  

Thesaurin a is a major component of the 42S ribonucleoprotein (RNP) particle 

that in addition includes of thesaurin b (40 kDa protein), tRNA, and 5S RNA. [117] The 

main function of the 42S particle in oocytes is long-term storage of tRNA and 5S RNA. 

Thesaurin a show specific binding to tRNA, whereas thesaurin b specifically binds to 5S 

RNA. Even though, thesaurin a binds to tRNA, GTP and GDP like EF-1 α O, it has rela-

tively low affinity for these ligands and low tRNA transfer activity. However, inspite of 

its low activity, the thesaurin a can presumably function as a substitute for EF-I α due to 

its high concentration in previtellogenic oocytes. Theusarin a differs from EF-1 α by its 

binding properties. Thesaurin a binds more strongly to GTP than GDP, and charged 

tRNA than uncharged tRNA, whereas the opposite is the case for EF-1 α.  Since thesaurin 

a does not binds GDP weakly, the replacement of GDP can occur in the absence of the 

GDP/GTP exchange factor, EF-1 βγ. Thus, 42S particle containing thesaurin a can fully 

function as a substitute for both EF-1 α and EF-1 βγ in the previtellogenic oocytes, that is 

replaced by the EF-1 α O at the beginning of vitellogenesis, and which in turn is replaced 

by the somatic form of EF-1 α at the beginning of the embryogenesis [117] However, the 

presence of thesaurin a only in the earlier stages of oogenesis and its existence as a main 

component of the 42S particle with one order of magnitude low tRNA transfer activity 

also suggests the major function of thesaurin a is to store tRNA for later use during ooge-

nesis and perhaps, early embryogenesis.  
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Even though, phosphorylation has not yet been demonstrated in thesaurin a, a 

genetically distant related form of EF-1 α from rabbit reticulocytes was reported to be 

phosphorylated [118]. Interestingly, this protein when phosphorylated dissociates from 

complexes of mono- and polyribosomes thus affecting the rate of polypeptide chain 

elongation, suggesting a regulatory role in translation for this post-translational modifi-

cation. In another study, EF-1 α was immunoprecipitated with CTD110.6 antibody from 

rat liver extract suggesting that it might be O-GlcNAc modified or associated with pro-

teins that are modified [119]. Now that thesaurin a has been identified as an O-GlcNAc 

containing protein, the role of this modification can be investigated. It is partially attract-

tive to speculate that the disappearance of thesaurin a at the beginning of vitellogenesis, 

might  be due to the removal of O-GlcNAc group from the protein, and thus, may lead to 

its proteasomal degradation as reported in the case of transcription factor, Sp1 [91].  

 While tRNA and 5SRNA stored along with thesaurin in complexes referred as 

thesaurisomes, oocyte maternal mRNA storage is also stored in a nontranslated ribo-

nucleoprotein (RNP) complexes for the rapid translational recruitment during embryonic 

development, after mid-blastula stage [120]. The protein bands # 7, 8a and 8b were iden-

tified as Cytoplasmic mRNA binding protein p54, y box factor homolog is one of the non-

ribosomal proteins associated with mRNAs in the RNP complexes. It can inhibit transla-

tion in vitro, and also has been considered as a putative translational regulator in vivo. 

This protein is found in two states in cells, a heterodimer form with p56 (another y-box 

factor) found free in cytoplasm or complex form with ribonucleoprotein particles. By 

stage II of oogenesis, the highest concentration of p54 is achieved and the levels of the 
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proteins were maintained throughout oogenesis and into early embryogenesis, but after 

gastrulation it is no longer found in soluble form. 

This p54 is a basic protein with a high content of arginine residues (11%) with 

predicted to pI > 9 that is very near to our experimental value of pI 8.7. The protein’s 

RNA binding site containing four arginine rich “basic/ aromatic islands” that are similar 

to the RNA-binding domain of bacteriophage mRNA antiterminator proteins and tat pro-

tein of human immunodeficiency virus [120]. In addition, the C terminal domain of the 

protein is homologous to the small E. coli cold-shock proteins These proteins are highly 

expressed at very low temperature and may protect the cells from damage due to freez-

ing, by inhibiting translational initiation. By inference, from the cold shock proteins, the 

p54 may be involved in the partial blocking of translational initiation processes in an 

adaptive measure to store the untranslated mRNA for later use in early embryogenesis.  

In addition, the in-vitro studies have demonstrated that phosphorylation activates RNA 

binding [120]. The maintenance of p54 levels thoroughout the oogenesis in contrast to 

our observations where O-GlcNAc modified p54 is reduced might be due to the degly-

cosylation of these proteins in the later stages. Alternately, since our observations are 

based on the changes per unit mass, if total amount of protein is fixed while the oocyte 

enlarges and accumulates other proteins its relative amount would be reduced. Since the 

protein bands # 8a and 8b were also identified as y-box factor homolog, p54 suggests that 

the protein has different pI. This pI difference might be due to the different levels of 

phosphorylation of this protein. Highly phosphorylated protein is more acidic than less 

phosphorylated forms. Thereby, indicating that O-phosphorylation might be alternating 

with O-GlcNAcylation in this proteins. 
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 Similar to y-box proteins, Xp54 (ATP dependent RNA helicase p54) is abundant 

and an integral component of stored mRNP particles [121]. This protein belongs to the 

family of DEAD-box RNA helicases that regulate RNA secondary structure in translation 

initiation, splicing and ribosome biosynthesis. It possesses ATP-dependent RNA helicase 

activity [121] High levels of Xp54 are expressed during early oogenesis, and are totally 

missing in adult tissue. Earlier studies suggested that the Xp54 might represent expres-

sion of an oocyte specific gene. High levels of Xp54 transcripts in small oocytes correla-

tes to maximum production of stored mRNP particles, the levels is later on reduced may 

reflect relatively its low net production of mRNP particles in later stages of oogenesis and 

embryogenesis. Xp54 has multiple potential Caesin kinase 2 phosphorylation sites, with 

four out of five of these sites located near the C-terminus. It has been suggested the heli-

case activity might be regulated in two possible ways. One is by the addition or removal 

of phosphate groups, and the other by the availability of cofactor at appropriate stages of 

development. Since levels of Xp54 maximal remains fairly constant throughout ogenesis 

up to blastula, the decrease O-GlcNAc form seen in the stages suggests deglycosylation 

of the protein during the oogenesis.  

In addition to the above proteins involved in storage of the tRNA and mRNA, the 

band # 9a was identified as an O-GlcNAc modified protein, Vg1 RNA binding protein 

(RBP) variant A. This protein associates Vg1RNA to the microtubules in order to trans-

locate the RNA to the vegetal cortex [122] is identified as the O-GlcNAc modified pro-

teins. The translocation of Vg1RNA requires intact microtubules and a 3’ untranslated 

region (UTR) cis-acting element (termed vegetal localization element, VLE). This 

Vg1RBP has five domains, four K homology (KH) and one RNA recognition motif 
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(RRM) domains. The KH domains of Xenopus Vg1RBP appeared to mediate cytoplasmic 

trafficking, RNA binding and self association to homodimer [122]. However, the RRM 

does not have any role in the above mentioned processes although the sequence suggests 

potential for RNA binding [123]. This protein specifically binds to the VLE and is homo-

logous to the micro-filament-binding zipcode binding protein (ZBP-1) that is involved in 

β-actin mRNA localization. The  Vg1RBP  appears to bind independently at two distinct 

sites in the VLE, and these binding sites represent a cis-acting element required for local-

ization via the microtubule dependent pathway that oocurs in late stage III-early IV 

oocytes. Interestingly, O-GlcNAc modified protein disappears during the stage progress-

sion, indicating the modification may have some role to play in activating the protein 

after previtellogenesis (at stage III), perhaps through modulation of protein-protein 

associations.   

The protein band # 10 has been identified as Poly (A) binding protein (PABP). 

This cytoplasmic 71 kDa protein is 633 amino acid long, binds to Poly (A) tail of adeny-

lated mRNA and acts as positive regulator of translation [124]. PABP contains four RNA 

recognition motif (RRM) domains, three of which can act independently of each other in 

RNA binding, whereas the fourth one in the N-terminal region shows no detectable RNA 

binding activity [125]. Even though, Western blot analyses did not detect the Poly (A) 

binding proteins in oocytes or early embryos, but whole mount immunocytochemistry of 

oocytes (unpublished data) and direct analysis of oocyte messenger ribonucleoprotein 

particles [126] reveal the presence of this protein. Overall, these Northern and Western 

analyses suggests that the expression of PABP is not constitutive, but is instead 
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modulated in oocytes and the developing embryos [124]. This protein is localized in the 

cell types and subcellular domains that are most active in protein synthesis [124].  

In immature oocytes, the cytoplasmic polyadenylation element (CPE) in 3’ 

untranslated region (UTR) of maternal mRNA is bound by CPEB, which in turn bound 

by Maskin, which in turn bound by eIF4E [127, 128]. The progesterone stimulation in-

duces CPEB phosphorylation and polyadenylation. Polyadenylation, through PABP 

destabilizes the Maskin-eIF4E complex, and leads to the binding of eIF4G with eIF4E 

that stimulates translation. Interestingly, the cyclin B which associates with protein kin-

ase cdk1 to form MPF in Xenopus oocytes was found to be translated by this  polyadeny-

lation binding (PAB)-mediated stimulation [128]. Thus, the protein involved in the regu-

lation of cyclin B1 mRNA translation that is essential for the embryonic cell cycle [128]. 

Since these cytosolic proteins are found in association with RNA and/ or other 

proteins, the characteristics of the proteins in these high molecular weight particles likely 

explains all the difficulties encountered during the initial purification attempt. Immuno-

affinity and affinity methods depend on the availability of O-GlcNAc binding sites on the 

proteins. These sites may not be accessible in the particles due to steric constraints in the 

native associated state. Thus, explaining the low yields from these technologies. How-

ever, the presence of these proteins in the high molecular weight complexes provided an 

opportunity to both enrich samples with O-GlcNAc modified proteins and achieve high 

yields using differential sedimentation centrifugation. The complex formation had no 

effect on the ability to detect the O-GlcNAc modification by immunoblotting. Since this 

technique involves SDS-PAGE analysis prior to blotting. The denaturation of the com-
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plexes during this process makes the O-GlcNAc available for antibody interaction and 

thus detection.  

Apart from the proteins isolated thus far, there are some neutral proteins that need 

to isolated and identified in order to get the overall picture of the oocyte proteins showing 

the changes in their levels or the O-GlcNAc levels during the stage progression. In addi-

tion to the proteins associated to high molecular weight particles, there are a few soluble 

proteins left behind in the supernatant-100. These proteins which also show changes in 

the O-GlcNAc levels during oocyte development might play an important role in regula-

ting the cellular processes of the oocyte. Since these proteins constitute a small percent-

age of total oocyte proteins, they need to be enriched by WGA affinity chromatography 

at low salt conditions, and later resolved by 2D-gel electrophoresis for protein sequencing 

and identification. 
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Chapter Four 

Conclusion 

 The proteins that are identified thus far are among the most abundant, O-GlcNAc 

modified cytosolic proteins of Xenopus laevis oocytes (stage I) and largely basic in 

nature. Thesaurin a, y-box factor homolog, and Xp 54 (ATP dependent RNA helicase 

p54) that store tRNA and mRNA respectively as the ribonucleoprotein (RNP) complexes 

are found in maximum levels at early oogenesis. In addition, thesaurin a is an oocyte 

specific EF-1 α form that is present only in previtellogenic oocytes. Earlier studies have 

characterized these oocytes proteins as regulators of protein translation or as masking 

(repressing translation) proteins for mRNA or as involved in RNA translocation during 

oogenesis. The regulation of translation is crucial during the oogenesis, since the oocytes 

store mRNA and tRNA for the post-fertilization series of cell divisions until mid-blastula, 

a period where transcription is severely limited. In the same manner, the intracellular 

mRNA localization that leads to asymmetric protein synthesis is necessary for the pattern 

formation during early embryogenesis.  

 Interestingly, the zygote arrest 1 that is ovary specific protein has been suggested 

to play a critical role during the oocyte-to-embryo transition. Additionally, the presence 

of PHD motif also indicate a possible role as transcriptional activator, repressor or cofac-

tors that are essential during the developmental process. On the other hand, the Poly (A) 

binding protein has a role in initiating the protein translation. Importantly, the cyclin B1 

mRNA of Xenopus oocytes was shown to be translated by this polyadenylation binding. 
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Thus, indicating a role in regulating the cell cycle. To summarize, all the identified 

proteins play crucial roles in the developmental process, and the changes in the O-

GlcNAc levels might be modulating their activities like the O-phosphorylation. 

Finally, the high content of arginine residues in these proteins explains their basic 

nature, and these arginine rich regions facilitate the possible interactions with RNA. The 

O-GlcNAc on the proteins involved in the packaging, translocation and translation of 

RNA suggest that O-GlcNAc may play a role in the modulating the interactions. In addi-

tion, the sudden disappearance of O-GlcNAc modified thesaurin a that is at the stage III 

of oogenesis might be due to the deglycosylation leading to proteosomal degradation. 

Therefore, in order to understand the putative role of O-GlcNAc modification on this 

oocyte specific proteins, these proteins need to further studied. In addition, there are some 

more modified oocyte proteins that needs to be identified in order understand the signi-

ficance of these proteins and the potential function of O-GlcNAc in the developmental 

process of oocyte. The findings of this investigation could be a significant contribution to 

the biochemistry of oocyte development and more generally to O-GlcNAc mediated cell-

ular processes. In addition, it adds several more proteins to the growing list of O-GlcNAc 

modified proteins.  
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Appendix A: Abbreviations 
 
O-GlcNAc N-acetylglucosamine attached to a serine or threonine 

 
GlcNAc N-acetylglucosamine 

 
O-GlcNAcase N-acetyl-β-glucosaminidase 

 
mRNA Messenger RNA 

 
DNA Deoxy ribonucleic acid 

 
GVBD Germinal vesicle breakdown 

 
tRNA Transfer RNA 

 
snRNA Small nuclear RNA 

 
rGTP Guanosine triphosphate 

 
dTTP Deoxyribothymidine 5’ –triphosphate 

 
UDP-glucose Uridine Diphosphoglucose 

 
HSP Heat shock protein 

 
OGT O-GlcNAc  Transferase 

 
PUGNAc O-2-acetamido-2-deoxy-D-glucopranosylidene 

 
STZ Streptozotocin 

 
WGA Wheat germ agglutinin 

 
GFAT Glutamine: Fructose-6-phosphate amidotranferase 

 
DON  6-diazo-5-oxonorleucine 

 
OR-2 Oocyte ringers buffer 2 

 
HEPES 4-2-hydroxymethyl-1-piperazine ethanesulfonic acid 

 
BSA Bovine serum albumin 

 
Tris Tris-hydroxymethyl-aminomethane 
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IgG Immunoglobulin type G 
 

IgM Immunoglobulin type M 
 

UDP Uridine diphosphate 
 

SDS Sodium dodecyl sulfate 
 

PAGE Polyacrylamide gel electrophoresis 
 

TEMED N, N, N’, N’-tetra-methyl-ethylenediamine 
 

PVDF Polyvinyl difluoride 
 

PBS Phosphate buffer saline 
 

RL-2 Monoclonal Antibody against O-GlcNAc 
 

CDT110.6 Monoclonal Antibody against O-GlcNAc 
 

PBST Phosphate buffered saline with Tween 20 
 

HSPBS High salt phosphate buffered saline with Tween 20 
 

CTD C-terminal domain 
 

TBST Tris buffered saline with Tween 20 
 

TBS-HT Tris buffered saline with high Tween 20 
 

TBS-D Tris buffered saline with high detergent 
 

DAB Diaminobenzidine 
 

ATP Adenosine triphosphate 
 

Glc Glucose 
 

Gal Galaactose 
 

PMSF Phenylmethyl-sulfonyl fluoride 
 

EDTA Ethylene-diamine tetracetic acid 
 

HRP Horse radish peroxidase 
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1D-gel  One-dimensional gel 
 

2D-gel Two-dimensional gel 
 

RIPA Radioimmunoprecipitation assay 
 

IPG Immobilized pH gradient 
 

IEF Isoelectric focusing 
 

NL Non-linear 
 

DTT Dithiothretol 
 

CHAPS 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate 
 

MS 222 Tricaine methyl sulfonate 
 

PSM Protein solubilizing mixture 
 

RBP RNA binding protein 
 

Vg 1 RBP Vegetal 1 RNA binding protein 
 

VLE Vetegal localization element 
 

EF-1 α Elongation factor-1 alpha 
 

RNP Ribonucleoparticle 
 

EF-1 α O Elongation factor alpha (oocyte specific form) 
 

CK 2 Casein kinase 2 
 

UTR Untranslated region 
 

KH K Homolog 
 

ZBP-1 Zipcode binding protein 
 

HBP Hexosamine biosynthetic pathway 
 

Zar 1 Zygote arrest 1 
 

Xp54 ATP dependent RNA helicase p54 
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PABP Poly (A) binding protein 
 

CPE Cytoplasmic polyadenylation element 
 

CPEB Cytoplasmic polyadenylation element binding protein 
 

eIF Elongation initiation factor 
 

pI Isoelectric point 
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Appendix B: Structures of some of the discussed and used sugars and inhibitors 
                                                                                               
 
 
 
 
                                                                                                                                                                        
 
                                       
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Glucosamine

Glucose

N-Acetylglucosamine 

Galactose
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Guanosine 5’-triphosphate

Uridine diphosphate-N-acetylglucosamine 
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                  Inhibitors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Streptozotocin 

6-Diazo-oxonorleucine 

PUGNAc 
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Appendix C: Mass data analysis of Thesaurin a, p54 (y-box factor homolog), 
Xp54 RNA helicase, Zygote arrest 1 and Poly (A) binding protein 

 

Figure 1-Mass spectrum of a peptide of Elongation factor (Thesaurin a)(42Sp50) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elongation factor 1-alpha (EF-1-alpha) (42Sp50)
gi|416929|sp|P17506|EF11_XENLA Elongation factor 1-alpha (EF-1-alpha) (42Sp50) (Thesaurin A)�gi|64489|emb|CAA79605.1| 42Sp50 [Xenopus laevis] 

MTDKAPQKTHLNIVIIGHVDSGKSTTTGHLIYKCGGFDPRALEKVEAAAAQLGKSSFKFAWILDKLKAERERGITIDISLWKFQTNRFTITIIDAPGHRDFIKN
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LGRFAARDLKQTVAVGVVKSVEHKAGAAARRQVQKPVLVK

Sequence MH+ % by Mass Position % by AA’s
VEAAAAQLGK 957.54 1.89 45 - 54 2.16

FTITIIDAPGHR 1340.73 2.65 88 - 99 2.59

RFDEVVR 920.50 1.82 169 - 175 1.51

FDEVVR 764.39 1.51 170 - 175 1.30

IGGIGTVPVGK 997.60 1.97 259 - 269 2.38

KLEDNPGLLK 1126.65 2.22 389 - 398 2.16

FFDYPPLGR 1111.56 2.19 418 - 426 1.94

Protein coverage Totals
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Figure 2- Mass data analysis of a peptide Xp54, RNA Helicase (only one peptide was 
found with High Xcorr). 
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Figure 3- Mass data analysis of a peptide of p54, y-box factor homolog 
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AA M+nH A A* Ao B B* Bo C X Y Y* Yo
 S 89.05 60.04 43.02 42.03 88.04 71.01 70.03 1795.82 1778.80 1777.81
 V 188.12 159.11 142.09 141.10 187.11 170.08 169.10 1708.79 1691.77 1690.78
 G 245.14 216.13 199.11 198.12 244.13 227.10 226.12 1609.72 1592.70 1591.71
 D 360.16 331.16 314.14 313.15 359.16 342.13 341.15 1552.70 1535.68 1534.69
 G 417.19 388.18 371.16 370.17 416.18 399.15 398.17 1437.67 1420.65 1419.66
 E 546.23 517.23 500.20 499.22 545.22 528.19 527.21 1380.65 1363.63 1362.64
 T 647.28 618.27 601.25 600.26 646.27 629.24 628.26 1251.61 1234.58 1233.60
 V 746.34 717.34 700.32 699.33 745.34 728.31 727.33 1150.56 1133.54 1132.55
 E 875.39 846.38 829.36 828.37 874.38 857.35 856.37 1051.49 1034.47 1033.48
 F 1022.46 993.45 976.43 975.44 1021.45 1004.42 1003.44 922.45 905.43 904.44
 D 1137.48 1108.48 1091.45 1090.47 1136.47 1119.45 1118.46 775.38 758.36 757.37
 V 1236.55 1207.55 1190.52 1189.54 1235.54 1218.52 1217.53 660.36 643.33 642.35
 V 1335.62 1306.62 1289.59 1288.61 1334.61 1317.59 1316.60 561.29 544.26 543.28
 E 1464.66 1435.66 1418.63 1417.65 1463.65 1446.63 1445.64 462.22 445.19 444.21
 G 1521.68 1492.68 1475.65 1474.67 1520.68 1503.65 1502.67 333.18 316.15 315.17
 E 1650.73 1621.72 1604.70 1603.71 1649.72 1632.69 1631.71 276.16 259.13 258.15
 K 1778.82 1749.82 1732.79 1731.81 1777.81 1760.79 1759.80 147.11 130.09 129.10

MSSEVETQQQQPDALEGKAGQEPAATVGDKKVIATKVLGTVKWFNVRNGYGFINRNDTKEDVFVHQTAIKKNNPRKYLRSVGDGETVEFDVVEGEKGAEAANVT
GPEGVPVQGSKYAADRNHYRRYPRRRGPPRNYQQNYQNNESGEKAEENESAPEGDDSNQQRPYHRRRFPPYYTRRPYGRRPQYSNAPVQGEEAEGADSQGTDEQG
RPARQNMYRGFRPRFRRGPPRQRQPREEGNEEDKENQGDETQSQPPPQRRYRRNFNYRRRRPENPKSQDGKETKAAETSAENTSTPEAEQGGAE

Sequence MH+   % by Mass Position % by AA’s
MSSEVETQQQQPDALEGK 2004.92 5.79 1 - 18 5.94
EDVFVHQTAIK1286.67 3.72 60 - 70 3.63
SVGDGETVEFDVVEGEK 1795.82 5.19 80 - 96 5.61
FPPYYTRRPYGR 1572.81 4.54 172 - 183 3.96
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Figure 4- Mass data analysis of a peptide of Zygote arrest 1, Zar 1 

Sequence of Zar 1 

MYPAYNPYSYRYLNPRNKGMSWRQKNYLASYGDTGDYCDNYQRAQLKAILSQVNPNLTPR        
LCRANTRDVGVQVNPRQDASVQCSLGPRTLLRRRPGALRKPPPEQGSPASPTKTVRFPRT  
IAVYSPVAAGRLAPFQDEGVNLEEKGEAVRSEGSEGGRQEGKQGDGEIKEQMKMDKTDEE  
EAAPAQTRPKFQFLEQKYGYYHCKDCNIRWESAYVWCVQETNKVYFKQFCRTCQKSYNPY  
RVEDIMCQSCKQTRCACPVKLRHVDPKRPHRQDLCGRCKGKRLSCDSTFSFKYII  
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Figure 4- Mass data analysis of a peptide of Ploy (A) binding protein (PABP) 

Sequence of PABP 

QPADAERALDTMNFDVIKGRPVRIMWSQRDPSLRKSGVGNIFIKNLDKSIDNKALYDTFS  
AFGNILSCKVVCDENGSKGYGFVHFETQEAAERAIDKMNGMLLNDRKVFVGRFKSRKERE         
AELGARAKEFTNVYIKNFGDDMNDERLKEMFGKYGPALSVKVMTDDNGKSKGFGFVSFER         
HEDAQKAVDEMYGKDMNGKSMFVGRAQKKVERQTELKRKFEQMNQDRITRYQGVNLYVKN  
LDDGIDDERLRKEFLPFGTITSAKVMMEGGRSKGFGFVCFSSPEEATKAVTEMNGRIVAT  
KPLYVALAQRKEERQAHLTNQYMQRMASVRVPNPVINPYQPPPSSYFMAAIPPAQNRAAY  
YPPGQIAQLRPSPRWTAQGARPHPFQNMPGAIRPTAPRPPTFSTMRPASNQVPRVMSAQR  
VANTSTQTMGPRPTTAAAAAASAVRAVPQYKYAAGVRNQQHLNTQPQVAMQQPAVHVQGQ  
EPLTASMLAAAPPQEQKQMLGERLFPLIQAMHPTLAGKITGMLLEIDNSELLHMLESPES  
LRLKVDEAVAVLQAHQAKEAAQKVVNATGV PTA  
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