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PRACTICAL BEHAVIORAL MODELING TECHNIQUE OF POWER

AMPLIFIERS BASED ON LOADPULL MEASUREMENTS

Jiang Liu

ABSTRACT

Accurate linear and nonlinear models for devices and components are essential

for successful RF/microwave computer aided engineering (CAE). The modeling tech-

niques can be categorized in different levels based on the abstraction of the model

as well as the application of the models at various design phases. This dissertation

deals with behavioral modeling techniques for nonlinear RF components, especially

amplifiers.

There is an increasing demand for accurate behavioral models of RF and mi-

crowave components, or integrated circuit (IC) blocks used in wireless system de-

signs. Accurate behavioral models help designers evaluate and select the appropriate

components at simulation phase, thereby cutting development cost.

However, there isn’t a practical (or flexible) solution for accurate and effective

behavioral model generation. This dissertation tries to tackle this problem. Power

amplifiers and devices are the main components studied in this dissertation.

The primary focus is on the characterization of the loadpull performance of power

amplifiers and devices. Major contributions of this dissertation include development

of advanced loadpull measurement procedures, large-signal load-aware behavioral

model, and a load-aware behavioral model with memory-effect capabilities.
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There are two advanced loadpull measurements documented in this dissertation:

the AM-PM loadpull measurement and the digital demodulation loadpull measure-

ment. These two measurements may have been used internally by some research

groups, however, according to the best knowledge of the author, they haven’t re-

ceived much attention in the literature. This is the first published work on these two

topics.

It is shown in this work that the AM-PM performance can be strongly depen-

dent on the load conditions. This property provides important information about

the nonlinearities of power amplifiers and is used herein to create better behavioral

models.

This newly developed digital demodulation loadpull measurement procedure en-

ables system designers to evaluate power amplifiers directly against digital commu-

nication system parameters such as error vector magnitude (EVM). Two example

measurements are given to demonstrate the measurement system setup and the cor-

relations between traditional nonlinear figure-of-merits and system metrics.

A new behavioral modeling technique / procedure is developed based on loadpull

AM-AM and AM-PM measurements. The large-signal scattering function theory is

applied in the technique to formulate the model. The created model is able to auto-

matically detect the load impedance and generate corresponding nonlinear properties.

Three example models are presented to demonstrate the capability of this technique

to predict accurately the output power contours, 50 ohm large-signal S21, and 3rd

order intermodulation products (through additional file-based model).

Finally, a modeling technique is demonstrated to enable predicting the linear

memory effect within a varying load condition. The nonlinear block used in the

traditional two-box model structure is replaced with the large-signal loadpull model

mentioned above. By adding this new feature, the resulting model is able to predict

x



the load-related AM-AM and AM-PM properties, which will improve the accuracy of

ACPR prediction.
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CHAPTER 1

INTRODUCTION

1.1 Background and motivation

Computer aided engineering (CAE) software packages play an important role in

research and development of wireless communication systems. They help predict

the component or sub-system performance prior the hardware prototype implemen-

tation, cut the development cost and reduce the time to market. Accurate mod-

els for devices/sub-systems are the key for the successful application of CAE soft-

ware. If the models are not accurate, no matter how fast or precise the simulators

are, the final simulation results won’t match prototype measurements. A significant

amount of research has been devoted towards the development of various types of

devices/components models.

In general, there are three types of modeling techniques widely used in CAE

tools. They are physical device modeling, equivalent circuit modeling and behavioral

modeling. Physical device models provide the most complex and complete informa-

tion about the device studied; however they require substantial computer resources,

detailed device information typically unavailable to designers. Physical models are

therefore not suitable for circuit designs.

Equivalent circuit models can be considered as an abstraction of the physical mod-

els; circuits of elemental electrical components are arranged in physically-motivated

topologies to represent the electrical characteristics of the devices. The main chal-

1



lenge of this technique is to find a proper circuit structure and optimize the elements’

values to match the performance of the devices.

Behavioral models are another level of abstraction of the device. They are a set of

mathematical expressions, and corresponding fitting coefficients, that can represent

the input-output relationship. Behavioral models provide the minimal set of input

information about the device construction as compared to other two types of models.

They also require the least amount of simulation time and are suitable for system

level designs [1].

Behavioral models can be derived from two different approaches. The first ap-

proach is to measure samples of the component of interest and to create the model

based on the measurement results. The second approach is to use simulation data

from low-level models (physical models or equivalent models) and create the behav-

ioral models for higher level simulation to reduce the simulation times. Figure 1.1

illustrates the two approaches.

Behavioral modeling is receiving more and more interest recently. This is be-

cause of the increasing integration level in wireless products, e.g. cellular phones and

personal digital assistants (PDA). Designers prefer to using off-the-shelf functional

components, like low noise amplifiers (LNA) and power amplifiers (PAs), directly in

their products to minimize the discrete components in the system and cut the final

cost. Accurate behavioral models for these components are very important for this

practice to be successful.

This has motivated the research work documented in this dissertation. Specifi-

cally, this dissertation tries to address the behavioral modeling problems for power

amplifiers, which are an important component in current wireless systems.

2
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1.2 Contribution of the dissertation

An ideal behavioral model for an power amplifier should be able to predict the

nonlinear performance, such as gain compression and intermodulation distortion at

different input power levels under various source/load conditions. Moreover, it should

be able to predict the dynamic effects of amplifiers under modulated signal stimuli.

Lots of research using different approaches has been done to achieve this goal. How-

ever, according to the literature review that is given in Chapter 2, this goal hasn’t

been met yet.

The dissertation documents a behavioral model that can meet the requirement of

an accurate nonlinear power amplifier model through easily obtained measurements.

The contribution of this dissertation can be summarized as the following:

3



• Two advanced loadpull measurement procedures have been developed for be-

havioral modeling;

• A behavioral modeling technique is demonstrated to create large-signal scat-

tering function model based on loadpull gain and phase compression; example

models have been illustrated showing the effectiveness of this technique;

• A new behavioral model is proposed to combine the loadpull model with the

linear filtering model to enable the prediction of memory effect at different

load conditions; this feature makes the model ready for accurate system level

modeling.

1.3 Organization

The organization of this dissertation is listed below. In chapter 2, a detail lit-

erature review about the current behavioral modeling efforts is provided. Different

techniques are introduced briefly and their limitations are discussed.

In chapter 3, two advanced loadpull measurement procedures are presented, namely

loadpull AM-PM measurement and loadpull EVM measurement. It is shown in the

chapter that the load impedances will affect the phase compression property of am-

plifiers. This information is used later to develop the large-signal behavioral models.

Also the EVM of an amplifier under various load conditions is measured and com-

pared with the intermodulation distortion. Similarities are observed for these two

figure-of-merits.

Chapter 4 is devoted entirely to introduce the proposed modeling technique based

on loadpull gain and phase compression measurements. General review of the large-

signal scattering function theory is given. The proposed model exploits the same

concept by extending the small-signal S-parameter model to address the nonlinear

4



effects. An optimization process is developed to fit the model parameters to match the

measurement datasets. Three example models are presented that show the capability

of this modeling technique for predicting nonlinear performance under varied load

situations.

A new behavioral model is proposed in Chapter 5 to predict the memory effect

under varied loadpull conditions. This is achieved by combining the model designed in

Chapter 4 and a linear filtering function. Experimental results are given out proving

the effectiveness of this method. In Chapter 6, conclusions are drawn and future

studies are recommended.

5



CHAPTER 2

LITERATURE REVIEW ON CURRENT BEHAVIORAL MODELING

TECHNIQUES FOR POWER AMPLIFIERS

2.1 Introduction

Generally speaking, the models used in CAE tools can be grouped into three cat-

egories: physical device models, equivalent circuit transistor models and behavioral

models. Physical device models are based on the description of carrier transport

physics. These kind of models provide invaluable insight into how the devices operate

as well as their electrical properties, such as DC, AC and transient performances.

However, The completeness of these models require detailed (often proprietary) in-

formation about device geometries and fabrication properties. The models generate

huge demand for computing power, as well. Therefore, they are not suitable for circuit

designs.

Equivalent circuit models are composed of electrical elements such as resistors,

capacitors, inductors, and nonlinear current or voltage sources, which can characterize

the electrical properties of transistors. There are all kinds of equivalent circuits for

different types of transistors, such as BJT, CMOS or MESFET. This kind of modeling

technique doesn’t depend on the device physics to derive the electrical properties

from the carrier transport equations. Compared with physical device models, the

equivalent models require much less computation power. However, the limitation

associated with this modeling technique is that it is difficult to come up with a

suitable circuit structure and fit the parameters to match the measured properties.

6



Behavioral models provide another level of abstraction to represent the device

performance. They are a set of mathematical expressions that describe the essential

electrical properties. Most of the time, only the input-output relationship is of in-

terest. So the behavioral modeling reduces to find a suitable equation to match the

output to the input. Typically, a simulation using behavioral models will require the

least amount of time. The cost of this technique is that the model is only as accurate

as the data given and the appropriateness of the equations to represent the measured

behavior.

In this research, the focus is on the behavioral modeling of nonlinear power am-

plifiers. Power amplifiers (PAs) are critical components in wireless communication

systems. Often they are the final stage for the signal amplification. They provide high

gain to the input signal, enabling the signal to transmit through the radio channel

and be detected by the receiver. On the other hand, they can create large in-band

and out-of-band distortion and interference that needs to be taken care of, otherwise

the output signal won’t be detected correctly. Hence, their performance, to a large

extent, decides whether the whole system can work properly or not. Accurate models

of PAs are required for system evaluation and verification.

Numerous modeling techniques have been reported in the past several years. The

research efforts range from simulating the compression properties of a PA under one-

tone stimulus to capturing transient input-output relationship in the time-domain.

In Section 2.3, the basic theories of these modeling techniques are reviewed and

summarized. Despite these reported techniques, there are still some questions that

need to be answered. In Section 2.4, several of the problems are pointed out for the

current research methods. These problems will be addressed in the dissertation. To

begin, let’s briefly review in the following section the basic nonlinear phenomena that

are incurred by the PAs.

7



2.2 Introduction of nonlinear phenomena

The power amplifiers (PA) nonlinear effects are usually presented in frequency

generation and distortion. Typical nonlinear phenomena include the following:

• harmonic distortion

• AM-AM and AM-PM conversion

• intermodulation and intercept point

• adjacent channel power ratio

• dynamic range.

The following example is provided to illustrate these concepts.

One simple way a nonlinear PA can be represented is by the polynomial function

shown in Equation 2.1:

y(t) = k1x(t) + k2x(t)2 + k3x(t)3 (2.1)

where x(t) and y(t) are the input and output signal of the component respectively. We

will use this representation of PA nonlinearity to illustrate and define the above listed

nonlinear phenomena. Assume the input signal x(t) is a single stimulus frequency,

i.e.

x(t) = A cos(ωt) (2.2)

by substituting x(t) into Equation 2.1, following expression is obtained through ex-

pansion:

y(t) =
1

2
k2A

2 + (k1A +
3

4
k3A

3) cos(ωt) +
1

2
k2A

2 cos(2ωt) +
1

4
k3A

3 cos(3ωt) (2.3)

8



Although there is only one frequency excitation ω at the input, several new fre-

quencies, 2ω and 3ω, are generated due to the nonlinear operation of the PAs. These

frequencies are defined as the harmonics of the excitation frequency, i.e. mω, where

m is an integer. Often the excitation frequency is also called fundamental frequency.

The harmonic distortion (HD) is defined as the ratio of the harmonic to the funda-

mental response. For the single-tone example shown above (Equation 2.3, the second

harmonic distortion denoted as HD2 can be written as

HD2 =
k2A

2

2k1A
(2.4)

Notice that the fundamental tone consists of two items, one from the original input

and the other from the third order mixing product of 2ω − ω, k3x(t)2. This part

is considered as interference from higher order harmonics that contaminates the first

order linear response. When computing the HD, only the response of the fundamental

frequency should be considered.

AM-AM and AM-PM are defined as the shift in amplitude or phase of the fun-

damental tone at the output port due to the changes in the input signal amplitude.

For this example, the fundamental tone at the output is k1A + 3
4
k3A

3, including a

linear term and the contribution of the 3rd order mixing product. Because the output

power is finite, k3 has to be a negative value to make a stable system. This causes

compression in the fundamental frequency power level. This is denoted as AM-AM

effect or gain compression. One figure of merit for AM-AM is the 1dB compression

point (P1dB), where the gain decreases by 1 dB compared to the original value.

Furthermore, if the 3rd order product is not in-phase with the input, that would

cause the phase shift in the fundamental tone, which can be easily observed in the

9



frequency domain according to:

Y (ω) = k1A +
3

4
k3A

3ejθ (2.5)

where θ is the phase difference of the linear and 3rd term. This effect is referred to

AM-PM conversion. Obviously, AM-PM occurs when the PA is driven into a high

compression region. Figure 2.1 shows the AM-AM and AM-PM effect of an ISL3990

power amplifier. The compression and phase shift of the fundamental tone are obvious

with the increment of the input tone. The 1dB compression point occurs at the input

level of -6 dBm.
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Figure 2.1 AM-AM and AM-PM performance of ISL3990 PA at 5.24 GHz.

Now let’s assume the input x(t) is a two-tone excitation, i.e.

x(t) = A(cos(ω1t) + cos(ω2t)) (2.6)

the expansion of Equation 2.1 leads to the result shown following:
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y(t) = k2A
2 + (k1A +

9

4
k3A

3)(cos(ω1t) + cos(ω2t))

+
1

2
k2A

2(cos(2ω1t) + cos(2ω2t))

+k2A
2(cos(ω1t − ω2t) + cos(ω1t + ω2t))

+
1

4
k3A

3cos(3ω1t) + cos(3ω2t))

+
3

4
k3A

3(cos(−ω2t + 2ω1t) + cos(ω2t + 2ω1t)

+cos(ω1t − 2ω2t) + cos(ω1t + 2ω2t)) (2.7)

For this case, besides the harmonics of the fundamental input tones, more fre-

quency components are observed that obey the relationship mω1 ± nω2, the mixing

of the two input excitation tones. These components are defined as the intermod-

ulation (IM) products. Figure 2.2 shows a typical output spectrum of a nonlinear

component.

D
C

Figure 2.2 Output spectrum of a nonlinear component under two-tone excitation.

Of the multiple IM products, 2ω1 − ω2 and 2ω2 − ω1 are of most interest because

they are close to the fundamental frequency and difficult to filter out. The power level

of these two IMs, 3
4
k3A

3, is proportional to the cube of the input signal amplitude A,

11



while the fundamental tone at the output is approximately linear to that, assuming

the input power level is low and neglecting contribution from other IM products.

There is a 3:1 ratio between the amplitudes of the IM3 and the fundamental tone,

which can be observed from Figure 2.3.

Noise Floor

IP3

1dB

Fund. tone

3rd IM

P1dB Input Power Level (dBm)

Output
Level
(dBm)

Dynamic Range 1
1

1
3

Figure 2.3 Illustration of the third order intercept point concept.

As can be seen, the extrapolation of the power of the fundamental and the third

order IM (IM3) products will intersect. The intersection point is defined as the third

order intercept point (IP3). Although this point is totally a theoretical value, it is a

useful quantity to estimate the IM3 distortion.

For digital communication applications where complex modulation techniques are

utilized, the sinusoidal representation of the stimulus signal is no longer valid to

simulate the distortion effect. For this situation, ACPR is often used to represent

the distortion effect. As the name implies, ACPR represents the spectral leakage to

the nearby channels due to the distortion effect and is quantified as the power ratio

between the adjacent channel and the main channels, as defined in Equation 2.8:

12



ACPR =
Padjacent

Pmain

(2.8)

Obviously, the ACPR measurement depends on the definition of the main channel

and the adjacent channel (which is often given out in the specifications of wireless

communication systems, like W-CDMA or IS-95). Figure 2.4 illustrates the spectral

regrowth effect. Significant power leakage out of the main channel can be seen in the

figure.
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Figure 2.4 Illustration of the spectral regrowth effect and the ACPR concepts. The
main channel and adjacent channel are give out, which will be used for ACPR calcu-
lation.

Another important concept is the dynamic range (DR), shown in Figure 2.3, that

defines the region where the nonlinear component preserves linear performance due

to low power input. It is limited at the lower side by the noise floor while the upper

level is usually equal to 1dB compression point.

The measurement result of a real PA is given out in Figure 2.5 to demonstrate

the IM effect. Measured IM3, IM5 and IM7 (third, fifth and 7th order IM products)

13



and the fundamental frequency are illustrated. Notice there is a drop in IM3 power

level around an input power of -13 dBm. This phenomenon is often called as “sweet

spot” where the IM distortion will be much better than at other power levels. This is

caused by the destructive summation of different contributors to the IM3. This effect

can be exploited in PA designs to get higher output power level and efficiency and at

the same time maintain low IM3 distortion.
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Figure 2.5 Measurement example of IMs of a MAX2371 amplifier.

Obviously, the example model shown in Equation 2.1 cannot predict the higher

order IM products, simply because of the low order of the polynomial. This also

demonstrates the importance of modeling for accurate simulation and prediction of

circuit/system performance. In the following section, current state of art modeling

techniques for PAs are introduced in detail.
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2.3 Review of behavioral modeling techniques of PAs

There are two practical approaches to model PAs: circuit-level modeling and

behavioral modeling. In circuit-level modeling, one has to have a good knowledge of

the PA’s structure; the model performance relies greatly on the accurate model for the

nonlinear devices used in the circuit. Figure 2.6 gives an example 1.9GHz PCS power

amplifier design using a packaged FET device, lumped components and distributed

matching circuits. The accuracy of the simulation of the PA depends on the models

for the elements in the circuits, especially the nonlinear FET device. Usually the

nonlinear devices such as BJTs or MOSFET are represented by an equivalent circuit,

in which one or several nonlinear elements are included. These nonlinear elements

are often referred as the basic nonlinearities [2]. Typical nonlinear elements include:

• nonlinear conductance

• nonlinear transconductance

• nonlinear resistance

• nonlinear transresistance

Behavioral modeling, on the other hand, is simply a mathematical and/or data-

file-based characterization of the essential nonlinear properties of the given circuit

[1]. It treats the PA system as a black box; the only thing that matters is the

relationship between the input and output signals. Once the input/output signals

are obtained, either from measurements or simulation, mathematical equations, data-

file-based look-up-table (LUT) or neural network structures can then be created to

replicate and predict the performance of the PAs. This method is especially useful

for system engineers who are only interested in the interaction of the PAs with other

blocks in a system. That’s because by using behavioral models, the simulation time
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Figure 2.6 An example 1.9 GHz PCS power amplifier.

will be decreased significantly, therefore increasing the engineers’ productivity. In fact,

behavioral modeling is indispensable because it is practically impossible to simulate

the entire system at the transistor level with the complex digitally modulated signal

as the input [1].

The input-output relationship of a PA is described by the nonlinear parameters

introduced in the Section 2.2. AM-AM and AM-PM are two most widely used param-

eters in PA behavioral modeling, because these parameters capture significant part

of the PA nonlinearities and they can be easily modeled. A model that predicts only

the AM-AM and AM-PM effects is often referred to a memoryless model, or mild

memory model. Here “memoryless” PA means that the current output signal from

the PA under study is only determined by the current input signal and is not affected

by previous input or output signal samples. A “memory” model indicates that the

current output signal is affected by both the present input as well as previous in-

put/output signals. The “memory” effect can be observed, in the frequency-domain,

as the asymmetric IMD performance of IM products, e.g. power level differences for
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the upper and lower IM3 and IM5. Or it is shown as the dynamic AM-AM and

AM-PM curves by looking at the time-domain signal samples. The memory effect is

caused by several issues, including input and output tuned network, low frequency

dispersion, electrothermal interactions and bias circuitry [3], [4]. Memory effects of

a PA influence the performance of the system significantly, and therefore, need to be

treated carefully [5].

2.3.1 Memoryless models

Among the varieties of the mathematical expressions for AM-AM and AM-PM

modeling, Saleh’s model and the polynomial functions are utilized and reported ex-

tensively in the literature. Equation 2.1 given in Section 2.2 is a typical polynomial

model for a PA. The model can be easily created using curve-fitting algorithm if the

measured data is available. One can use separate expressions to model the AM-AM

and AM-PM respectively, or using complex power series to integrate the two effects

together [6]. By increasing the order of the polynomial, accurate replication of the

AM-AM and AM-PM data can be obtained. The polynomial models are widely uti-

lized for PA characterization [6, 7, 8, 9, 10, 11]. Zhou pointed out that polynomial

is not suitable for strong nonlinearities such as hard limiters but are appropriate for

weakly nonlinear devices [12]. A significant limitation of this method is that the

model may behave badly for extrapolation.

Saleh proposed in [13] two rational functions to model the AM-AM and AM-

PM effects of a travelling-wave tube amplifier (TWTA). This model is utilized in

[14, 15, 16, 17]. The models are given out in Equation 2.9 and Equation 2.10:

A(r) =
αar

1 + βar2
(2.9)
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Φ(r) =
αφr

2

1 + βφr2
(2.10)

The application of this model needs to be careful because this model was developed

primarily for TWTAs and it may not suitable for solid-state power amplifier (SSPA)

modeling. As mentioned in [18], SSPAs have a more linear performance in the small-

signal region (low power) than TWTAs in the saturation region (high power); the

output power of the SSPAs tends to approach asymptotically a saturation value while

TWTAs may present a “roll-over” effect.

Ghorbani [19] proposed a similar model and added two more fitting elements to

remedy the limitation of the Saleh’s model, as shown in Equation 2.11 and 2.12.

Intuitively, the last item in the function should help compensating the “roll-over”

effect.

A(r) =
x1r

x2

1 + x3rx2

+ x4r (2.11)

φ(r) =
y1r

y2

1 + y3ry2

+ y4r (2.12)

Rapp [20] presented an AM-AM model that aims at SSPAs . In Equation 2.13, α

is the saturation level at the output and β is the smoothing factor [18].

A(r) =
r

(1 + (
|r|

α
)2β)

1

2β

(2.13)

White [18] compared the previous 3 mathematical models and proposed a new 4

parameter expression that aims at Ka-band SSPAs, as given out in Equation 2.14.

Compared to the limitations in Rapp’s model in reproducing the gradual transition

between linear region and saturation region, the White’s model uses an exponential

term to describe this gradual transition and a Rayleigh term to linearize the typical
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operating of the Ka-band SSPAs.

A(r) = a(1 − e−br) + cre−dr2

(2.14)

White also proposed an AM/PM model, given in Equation 2.15. However, this

model is not good for this purpose, since it cannot represent the nonlinear progression

of the phase changes with respect to the input amplitude.

φ(r) =











f(1 − e−g(r−h)), r ≥ h

0, r < h

(2.15)

The hyperbolic tangent function is also a very powerful nonlinear transforma-

tion for modeling the targeted curves. Since hyperbolic tangent function is bounded

between -1 and 1, it can characterize the property that the output power from a am-

plifier is limited. A simple application of this function in amplifier modeling is shown

in Equation 2.16 and Equation 2.17. The equation is the extension of the functions

utilized in [21].

A(r) = a tanh(b|r|) + c|r| (2.16)

Φ(r) = d + e|r| tanh(|r|) (2.17)

These modeling methods are used to model the AM-AM and AM-PM measure-

ment results of a power amplifier sample shown in Figure 2.1 for performance com-

parison. This power amplifier is designed for 802.11a wireless local area network

(WLAN) applications. Figure 2.7 illustrates the performance of different models on

AM-AM prediction. The Ghorbani model’s performance is not acceptable, as can be

seen from the figure. All the other models can match the measured dataset (black)

closely, except the early “roll-over” effect the Saleh model presents. However, when
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the input signal exceeds the measurement range, the performance of the extrapolation

from different models is quite different. Polynomial model and White model increase

significantly. Rapp model is kept flat, simulating the saturation level. And the Tanh

model presents the decrement. Since the output power of a general power amplifier

tends to drop to some extent when the input power hits the saturation region, the

Tanh model and the Saleh model are more realistic. Among these two models, Tanh

model has a better match for measurement dataset. Therefore, the Tanh model has

the best performance among the six mathematical models for this example amplifier.
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Figure 2.7 Comparison of different models for a power amplifier sample. This power
amplifier is designed for 802.11a WLAN applications at 5.2 GHz.

Besides the mathematical models described above, several other models are also

reported. Hischke et al. [22] applied third order spline function in amplifier mod-

eling. Spline function is composed of multiple polynomials connected at specified

break points. Compared to polynomial functions, it has more flexibility and is good
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at modeling sharp transitions. However, since most PAs have smooth transition char-

acteristics, it is not a good option considering the added complexity.

O’Toole et al. [23] used neural network-Bessel transform to model the behavioral

of a memoryless PA. The reported ACPR simulation result using wideband code

division multiple access (WCDMA) signal shows 1 dB improvement over traditional

behavioral models. Fourier-exponential series is also applied to model PAs’ transfer

characteristics to help design efficient predistorter [24].

Honkanen et al. [25] and [26] proposed a bipolar amplifier model that has a

substantiated semi-physical basis. The transfer characteristic of the bipolar amplifier

at low input power region is represented by an exponential function that takes into

account the bias condition. The saturated region is modeled by Rapp’s model to

capture the smooth transition between the two regions. A cross-over factor is added to

model the weak conduction of the transistors at very low input power levels. Usually

this effect is concealed by noise floor and cannot be observed from gain compression

measurement. Two-tone measurements are required to reveal it. The detailed model

is listed in Equation 2.18

Vout(Vin) =
sign(Vin)V

′

out(|Vin|)

(1 + (
V

′

out(|Vin|

A0

)2p)
1

2p

(tanh(|Vin|))
1

c (2.18)

where V
′

out(|Vin|) is:

V
′

out(|Vin|) =











ekVb(ekVin − 1), Vin + Vb ≤ Vin,tr

v(Vin + Vb) + b − ekVb + 1, Vin + Vb > Vin,tr
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Good IM3 and IM5 simulation results are reported. The limitation of the model is

that this method is based on the BJT physics and cannot be used for FET amplifiers

due to the physical differences of the input/output transfer processes.

2.3.2 Memory effect modeling

The memory effect of a PA describes the input-output relationship in time-domain

and can be observed in dynamic AM-AM and AM-PM curves. When inspected in

frequency domain using two-tone measurements, it is shown in the IM asymmetry and

IMD variation [27]. The memory effect is more significant in systems that have large

signal bandwidth, e.g. WCDMA multi-carrier system and 802.11a WLAN system.

Reasons for the memory effect include ([27], [28] and [29]):

• frequency response of the match networks,

• Non-constant impedance in DC bias circuits,

• nonlinear capacitances of the transistors,

• and self-heating effects

As an example of the memory effect, a Murata GaAs XM5060 power amplifier

sample was measured at different carrier frequencies. Figure 2.8 and Figure 2.9 illus-

trate the variation of the gain and phase of the power amplifier at different frequencies

[30] [31]. According to the figures, this amplifier has less distortion at the higher fre-

quencies (higher P1dB and less AM-PM distortion) and a smaller gain compared to

lower frequencies. Notice that the variation of the gain/phase may be different for

different PAs, depending on the circuit design.

Based on the fact that the AM-AM and AM-PM curves are similar to each other,

Poza [32] was able to simulate the frequency effect by scaling and shifting the gain
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Figure 2.8 Measured AM-AM of a Murata XM5060 PA for 5GHz 802.11a WLAN
applications.
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filter AM-AM AM-PM

Figure 2.10 Two box model: nonlinear effect and memory effect are separated into
two blocks [13].

curves. This is a straightforward approach and can be easily implemented. The

downside is that the curves measured at different frequencies may not maintain their

shape, which determines that this method is at best an approximation. Saleh ex-

tended his memoryless model [13] by finding the model parameters at any frequency

and grouping them together to provide frequency dependency. The limitation of this

method, similarly to Poza’s model, lies in that the shape of the curves is determined

by the rational functions and is not flexible for PAs with varying shapes of AM-AM

and AM-PM curves. Elaborate fitting algorithms are needed for best fit.

The disadvantage of the previous methods is that they use one-tone measurement

results, assuming the memory effect captured in this way is accurately enough. How-

ever, as pointed out in [33], when a wideband signal is passed through the system,

the model cannot predict the interaction between the instantaneous tones. Another

limitation is that the model cannot predict the variation in the AM-AM and AM-PM

with varying tone spacings, which usually appears in two-tone measurement results.

To capture the dynamic properties of the gain and phase compression, several

models have been proposed, e.g. [32, 13, 34, 35]. Generally, these models have

a two-box or three-box structure, as shown in Figure 2.10 and Figure 2.11. The

underlying assumption is that the nonlinear effect and the memory effect can be

separated without losing accuracy.
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Memoryless NL model

Memory Effect

filter

Figure 2.11 Three box model:two filter functions are used to model the memory effect
[35].

Launay [34] applied moving average (MA) filter to address the problem, which is

shown in Equation 2.19 and 2.20. One frequency is chosen as the reference and the

coefficients of the nonlinear model is derived by fitting the model to the AM-AM and

AM-PM measured results. At this frequency, the filter attenuation is unitary. Then

the coefficients of the filter are estimated by solving Equation 2.21

G(z̃) =
∑

anz̃
n (nonlinear model) (2.19)

H(f) =
P−1
∑

k=0

ak(Ve)e
j2πkf/P (filter model) (2.20)

P−1
∑

k=0

ak(Ve)e
j2πfjTek =

Ve(fref )

Ve(fj)
(2.21)

fj is the jth frequency, Te is the sampling period, and P is the size of the MA filter.

Similarly, a multi-tap polynomial model is proposed in [5] and [36]. This method

characterizes the in-phase and quadrature components separately. A two-tap model

shows the estimated ACPR error is within 0.7 dB [36]. In [37] the authors used

a Wiener filter to model the small-signal memory effect and the Saleh model for

nonlinearity. The Wiener filter used in this case basically is a convolution operation
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on the input signal. Optimal memory length (taps of the Wiener filter) can be found

to obtain the minimum mean-square error (MSE).

To observe the PAs’ performance in a realistic situation, digitally modulated sig-

nals and multi-sine signals are used in PA measurements and characterization, such

as the work reported in [38], [39], and [40]. Auto-regression moving average (ARMA)

models are derived from these measurements, which can be generalized in Equa-

tion 2.22:

A(q)y(t) = qnk
B(q)

C(q)
u(t) +

D(q)

F (q)
e(t) (2.22)

where u and y are input/output signals; A, B, C, D, F are polynomial functions;

q is the delay operator. The model fit reported in [38] is within the order of 96%.

[39] also points out that different modulated stimulus may result in different order

of memory length. For example, 11th order nonlinear ARMA model is sufficient

for binary phase shift keying (BPSK) modulation, while 23rd order is required for

minimum shift keying (MSK) to obtain similar accuracy.

In [35, 33] the authors gave a detail description and analysis of the two-tone

measurement procedure utilized for PA modeling. A three-box model was developed

based on the obtained dataset. Generally speaking, this model can be treated as an

improved version of Poza and Saleh model.

Carvalho and Pedro [41] studied the origin for the asymmetric IMD performance

observed in power amplifiers. A describing function combined with small-signal model

was used to model the large-signal IMD performance. Ku et al [42] emphasized on

the effect of the frequency spacing of the input tones on the IMD performance. A

two-dimensional transfer function (frequency tone spacing and input signal power

level) was developed to characterize the long time constant memory effects. A par-
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Figure 2.12 Illustration of the parallel wiener model [42].

allel Wiener model was created based on the frequency dependent transfer function.

Figure 2.12 illustrates the model structure.

Maziere [43] constructed a new memory model by characterizing the relationship

between the input and output envelope information. The model was based on the

nonlinear differential equation shown in Equation 2.23. Only first order approxima-

tion was used in the paper.

ỹ(t) = fNL(x̃(t),
dx̃(t)

dt
,
d2x̃(t)

d2t
, · · · ,

dnx̃(t)

dnt
) (2.23)

It turns out that the first time derivative of the input signal x(t) is the “key param-

eter for the characterization of the nonlinear slow dynamics, including group delay,

thermal dependence and spurious modulation of bias point” [43]. Through the time

derivative, the previous samples are taken into account in the model, thus capturing

the “memory” effects. This approach is quite similar to the time domain state-space

modeling technique reported in [44] and [45], in which nonlinear ordinary differential

equations are formalized to describe the relationship between the terminal currents

and voltages.
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Figure 2.13 Illustration of the Volterra-series based nonlinear model.

The memory models introduced above characterize the frequency-dependent prop-

erties of PAs using linear filter(s) and separate it from the memoryless nonlinear part.

Volterra-series based models, on the other hand, take a different route and treat the

memory and memoryless properties together [46], as shown in Figure 2.13.

The basic form of the Volterra series is :

y(t) =
∞

∑

n=0

Hn[x(t)] (2.24)

where

Hn[x(t)] =

∫

∞

−∞

· · ·

∫

∞

−∞

hn(τ1, τ2, · · · , τn)x(t − τ1)x(t − τ2) · · · x(t − τn)dτ1dτ2 · · · dτn

(2.25)

hn(τ1, τ2, · · · , τn) is so called nth order Volterra kernel. This can be considered as an

nth-order impulse response [2]. Its corresponding Fourier transform is given by:

Hn(ω1, ω2, · · · , ωn) =

∫

∞

−∞

· · ·

∫

∞

−∞

hn(τ1, τ2, · · · , τn)e−j(ω1τ1+ω2τ2+···+ωnτn)dτ1dτ2 · · · dτn

(2.26)

Therefore, Volterra-series PA modeling is to find the nth order kernel In fact,

the 1st order kernel can be considered as the linear gain of the PA, while the 3rd,

5th order kernels describe the corresponding IM products. Thus, the output signal

is simply a summation of all the contributing items. Since the nth kernel has time

constants, if modeled properly, it can represent the memory effects. The limitation of
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the Volterra series modeling technique is that it is only suitable for weakly nonlinear

devices. When used to describe the hard nonlinear performances, it will require very

high order model which makes the kernel determination process difficult and tedious.

Large-signal scattering function model has been proposed [47, 48, 49]. The basic

idea is to extend the small-signal S-parameter concept into nonlinear region through

nonlinear describing functions. Elaborate measurement systems were developed to

test power amplifier or devices and extract the model. In Chapter 4, this concept will

be studied in detail.

Besides all the modeling methods reviewed above, there are still several other

techniques, such as dynamic neural network and nonlinear time series that approach

the problem from the time domain, and describing function in frequency domain, as

summarized in [1] and [3].

2.4 Proposed research topics

In last section, current state of art memoryless and memory modeling techniques

have been reviewed. Although with all the advances in this area, still there are some

questions that haven’t been answered correctly.

Generally, a behavioral model will be used in a simulation schematic with pre-

ceding and following blocks (e.g. input or output matching networks) to predict the

system performance. Therefore, it is vital for the behavioral model to be able to detect

automatically the source and load impedances and adjust its response accordingly.

It has been widely acknowledged that the performance of power amplifiers is

significantly affected by the source and load impedances they are embedded in. This

effect is called source-pulling or load-pulling. There are special measurement setups

that are dedicated to capture these effects, such as the loadpull measurement systems

provided by Maury Microwave [50] and Focus Microwave [51].
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However, most of the behavioral models discussed so far don’t provide this ca-

pability (except the large-signal scattering function models and the models having

small-signal S-parameter blocks). In most cases, the load effects on the nonlinearities

are not studied or not emphasized.

Therefore, how can we create a nonlinear behavioral model that can address the

limitation mentioned above? What measurements should be taken for creating such

a behavioral model? These are the main questions this dissertation will try to answer

in the following chapters.

2.5 Conclusion

In this chapter, an extensive literature review has been presented on the cur-

rent research status of behavioral modeling for power amplifiers / devices. Modeling

techniques covered include mathematical memoryless models, filter-based two-box

and three-box memory models, Volterra series based memory models and large-signal

scattering function models. Two research topics have been proposed that are aimed

to solve two aspects of the limitations of current modeling techniques.

The first research topic is on behavioral modeling of load-related nonlinearities of

power amplifiers based on loadpull measurements. The second topic is on integration

of memory effect modeling with the loadpull behavioral model to predict the memory

effect under various load conditions. The ultimate goal is to develop a behavioral

modeling technique or procedure that can easily generate behavioral models for power

amplifiers or device that are based on loadpull measurements for system simulations

and are ready for practical non-50 ohm applications.
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CHAPTER 3

ADVANCED LOADPULL MEASUREMENTS

3.1 Introduction

Loadpull measurement has been widely used in characterization of devices and

components. It provides valuable insight about the device performance under different

source / load conditions and different power levels. This is very important information

for power amplifier designers. Traditional loadpull measurements include one-tone

and two-tone measurements, generating measured datasets for gain compression, 3rd

intercept point (IP3), power added efficiency (PAE) and adjacent channel power ratio

(ACPR). A thermal imaging loadpull measurement has also been described in [52].

However, with the advanced development in the baseband algorithms as well as

the more and more complex modulation techniques, the traditional metrics like P1dB

and IP3 obtained through one-tone or two-tone stimuli cannot predict the system

performance completely, because:

• the nonlinear phase performance is not characterized properly;

• the testing signals don’t reflect the realistic complex modulated RF signals. The

performance of a transistor is closely related to the stimulus signal [53].

Two loadpull measurement procedures are developed to address these two limita-

tions. Both measurement procedures are based on the Automated Test System (ATS)

from Maury Microwave. Section 3.2 presents an AM-PM loadpull measurement pro-

cedure developed using the Agilent’s 8719D vector network analyzer. Although the
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AM-PM loadpull measurement procedure is available through some commercial mea-

surement systems (e.g, Maury’s ATS system), it is not as a routine procedure as

the gain compression measurement is. Therefore, in Section 3.2, the detail analysis

and instruction are given on how to make this measurement. Example measurement

results are given out for an Maxim 2373 low noise amplifier sample and a Fujitsu

L-band GaAs FET power device sample.

Section 3.3 presents a digital demodulation loadpull measurement procedure based

on the Agilent 89610 vector signal analyzer (VSA). This new measurement procedure

provides the hardware designers the capability to study the system performance (such

as error vector magnitude (EVM)) directly in loadpull measurement. Example mea-

surement results are given for Intersil 3984 power amplifier and Fujitsu L-band GaAs

LDMOS device. Part of the results has been documented in [54].

3.2 AM-PM loadpull measurement procedure

3.2.1 Introduction

High spectral efficiency and data rate can be achieved through advanced digital

modulation techniques like 16 Quadrature amplitude modulation (QAM) or 64 QAM,

which apply both amplitude and phase modulation. The nonlinear amplitude (AM-

AM) and phase (AM-PM) compression of an amplifier, therefore, deteriorates the

modulation quality. For example, Park reports the simulated AM-AM and AM-PM

effects on ACPR with respect to the power back-off consideration [55]. These two

nonlinear effects have been studied extensively and accurately modelled in 50 ohm

condition, e.g. [13] [18] and [19].

The loadpull AM-AM measurements have been widely applied to evaluate the

performance of power amplifiers and devices [56], [57]. However, the AM-PM per-

33



formance under loadpull conditions hasn’t been given enough attention so far. Part

of the reason is that the phase compression doesn’t deteriorate legacy system per-

formance significantly as gain compression does. Also the modulation techniques

used were not very complex. This phase compression cannot be ignored anymore for

modern complex modulation techniques, which apply closer phase distance between

symbol points.

Therefore, in this study a measurement procedure is developed to characterize the

load impedance’s effects on the phase compression of the nonlinear amplifier. The

developed AM-PM loadpull measurement procedure is based on the Agilent 8719D

VNA and the Maury Automated Test System (ATS).

3.2.2 Introduction of a typical VNA structure and processing steps

Before starting the discussion of the developed measurement system, let’s review

the system structure and the data processing steps of a typical VNA. This review

will help understand how the measurement procedure is designed. Figure 3.1 shows

the system diagram of the Agilent 8719D VNA [58]. Although only the 8719D VNA

is discussed in this paper, a similar procedure can be developed for other kinds of

VNAs, as well.

A typical VNA is composed of four parts: the synthesized source, test set, vector

receivers and display device [58]. A phase lock loop (PLL) circuit is used to syn-

chronize the source and the receivers to make the S-parameter ratio measurements.

The test set is used to separate the signal into R, A and B channels. A/R repre-

sents the S11 or S22 reflection coefficient measurement, while B/R for the S21 or S12

transmission measurement.

Figure 3.2 illustrates the data processing algorithm used in the 8719D VNA. The

sampled signal is first converted to digital signal through the ADC and filtered. If
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Figure 3.1 System diagram of HP8719D.

ratio measurements are desired, like S11, the RATIO calculation will be performed on

the sampled signals; otherwise the input signal will be kept constant and passed to

the next stage. After an averaging process, the data is stored in a “RAW” array for

further correction using the calibration error arrays obtained through the calibration

process. Then the corrected data arrays will be formatted in the desired format and

displayed on the screen.
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Figure 3.2 Data processing flow diagram of the HP8719D VNA.

3.2.3 AM-PM measurement through vector receiver setup

To measure AM-PM, one can either measure the swept power S21 or use the VNA

as a vector receiver and measure the absolute vector value of the B2. For the first

method, the input power level is swept and the S21 is collected at each power level.
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The compression property can be derived by setting the S21 obtained at the lowest

input power level as the reference and comparing the other S21 values to it. By

comparing the amplitude of the S21s, one gets the AM-AM; comparing the phase,

one gets the AM-PM measurements.

The advantage of the power swept S21 method is that the procedure is built-in

and the measurement is straightforward. The data processing is also convenient.

However, this method is not flexible because it is bundled to the internal source. If

it is used together with other instruments in a loadpull measurement, the integration

will be troublesome since extra switches may be required.

The vector receiver method can overcome these shortcomings. By inspecting the

data processing steps given out above, one notices that VNAs configured as a vector

receiver perform the absolute vector measurements of the incoming signals to A/B/R

ports. The sampled incoming signal is a complex value. If the input power sweeps,

the measured result will be an array of complex values. The AM-PM information is

contained in this RAW data array, in fact. Instead of going through all the ratio and

correction processing, the RAW data array can be used directly to get the results.

As for the calibration consideration, the magnitude of the result can be corrected

through receiver calibration procedure to remove the possible distortion caused by

the system hardware. The phase can be calibrated in similar way as well.

There are some extra hardware setup steps required. The VNA needs to be

synchronized with the external synthesizer. It needs to know which port (vector

receiver) the incoming signal is sent to. The frequency of the incoming signal cannot

be swept, otherwise the synchronization will be lost.

A custom 8719D VNA driver was developed to support extraction and analysis

of the RAW data arrays. The measurement system diagram is shown in Figure 3.3.

The incident signal is coupled to the R IN port while the reflected and transmitted
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signals are sampled through the input and output couplers. The sampled signal at

Port 2 is stored in RAW data array. The AM-PM information can be extracted from

the RAW data array by comparing the phase of the complex data array to the first

value in the array (corresponding to small-signal phase).

R IN

R OUT

VNA

1 2

Tuner
Source 

Tuner
Load Power

Meter
DUT

EXT REF IN

EXT REF OUT

Figure 3.3 AM-PM loadpull measurement system diagram.

The extra setup steps regarding to the 8719D VNA are given below for the purpose

of completeness. The sequence of the panel buttons to be pressed is given out for

each step.

• System - Instrument Mode - Tuned Receiver (set the VNA in vector receiver

mode);

• Menu - CW Freq - set the CW frequency of interest;

• Meas - Input Ports - B (channel B is used to sample the signal);

• Meas - Testport - 2 (test port 2 is selected as the sampling port).

3.2.4 Example AM-PM results

Two DUTs were measured using this developed AM-PM loadpull system. One

device is a Maxim 2373 low noise amplifier (LNA) sample; the other is an FLL120MK

high power GaAs FET sample from Fujitsu. First of all, the validity of the developed
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system should be checked against the VNA. Figure 3.4 shows the comparison of

the measured AM-PM and AM-AM datasets for the LNA sample under 50 ohm

condition from the two methods. Obviously, the result obtained using the loadpull

system presents good agreement with the HP8719D result at small signal levels. The

discrepancy at the high power levels is because of the significant harmonic signals

generated.
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Figure 3.4 Comparison of measured AM-AM and AM-PM results from the VNA and
the loadpull system for the LNA sample at 900 MHz .

Figure 3.5 presents an example AM-PM loadpull measurement result. The AM-

PM compression is measured at six load impedances. For different load impedances,

the characteristics of the gain compression and the phase compression change dra-

matically. At load points that cause high gain compression, the phase compression is

also significantly different from the mild compressed cases.

Similar observation can be made from the measured results for the GaAs FET

device sample at 2.14 GHz. As shown in Figure 3.6, at load points where the device

shows lower gain compression, it also has smooth AM-PM curves. On the other hand,

load points associated with high gain compression cause significant phase compression
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Figure 3.5 AM-AM and AM-PM loadpull measurement results at 900 MHz for the
LNA sample.

even at low power levels. Since conjugate load causes higher gain, it suggests that the

AM-PM compression will be high near the conjugate load area on the smith chart.
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Figure 3.6 AM-AM and AM-PM loadpull measurement results at 2.14 GHz for the
high power GaAs FET sample.

From the modeling viewpoint, this additional information suggests that the non-

linear model for amplifiers should be able to adjust its gain and phase compression

properties with respect to different load conditions.
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3.3 Digital Demodulation loadpull measurement procedure

In this section, we introduce an innovative digital demodulation loadpull measure-

ment procedure that directly characterizes system performance of a power transistor

(or amplifier) under various test conditions, together with the traditional nonlinear

metrics, e.g. gain compression and intermodulation distortion (IMD). The key pa-

rameter under study in this section is the error vector magnitude (EVM).

3.3.1 Definition and measurement of EVM

EVM is a metric that quantifies the quality of digital modulated signals. It is de-

fined as the magnitude of the phasor differences between an ideal reference signal and

the measured transmitted signal after it has been compensated in timing, amplitude,

frequency, phase and dc offset [59]. It can be computed (3.1):

EV MRMS =

√

√

√

√

√

√

√

N
∑

i=1

|Sideal(i) − Smeas(i))|2

N
∑

i=1

|Sideal(i)|2
(3.1)

where Sideal(i) and Smeas(i) are the ith normalized ideal complex reference con-

stellation point and the measured symbol respectively [60]. Because it changes con-

tinuously during every symbol transition, EVM is defined as the root-mean-square

(RMS) value of the error vector over time.

Some studies have already been reported to successfully predict the EVM based

on one-tone [61] [62] [63] or two-tone distortion [64] of power amplifiers. However,

most of the work deals either with a matched 50 ohm condition or provides only the

simulation results with respect to the load tuning. This new measurement procedure,

as demonstrated in the following sections, provides a much more realistic and complete
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view of the performance of the DUT, including measurement validation of both power

and source/load impacts.

Before proceeding to the discussion of the EVM loadpull measurement, let’s re-

view how a typical EVM measurement is done. Fig. 3.7 illustrates the measurement

diagram [65]. The input RF signal is first down-converted to the low intermediate

frequency (IF) so that the ADC can sample it adequately and down-convert it to

baseband for further processing. The LO is not directly phase-locked to the incoming

signal (unlike the VNA ratio measurement), therefore, it will introduce some fre-

quency offset. The frequency offset will be translated into a phase rotation in the

time domain and can be estimated and compensated through a digital processing

algorithm. In fact, frequency offset is one of the measurement capabilities of a VSA.

RF IN
ADC DEMOD

I/Q
REF I/Q

MEAS. I/Q

EVM

Results

MOD

ΣEstimated
Bitstream

Figure 3.7 EVM measurement diagram.

Based on the sampled data stream, the ideal constellation points are recovered by

first demodulating the incoming stream and then re-modulating the obtained digits.

The RMS EVM is computed through averaging all the frames used in the measure-

ment. To make the RMS EVM accurate, a large number of frames are required, e.g.

802.11a WLAN specification [66] requires at least 20 frames.

3.3.2 Measurement system and calibration consideration

The EVM loadpull measurement system is developed based on the Automatic

Tuner System (ATS) from Maury Microwave and the 89610A Vector Signal Ana-
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lyzer (VSA) from Agilent Technologies. Fig. 3.8 shows the integrated system setup.

The ATS controls all the instruments in the measurement system and coordinates

the measurement procedure. The digital demodulation measurement is performed by

the VSA. An in-house program is developed to access the VSA measurement results

through the common object model (COM) API interface. The program can auto-

matically adjust the input range setup for the VSA so that the input signal can be

sampled and evaluated at proper levels to obtain the optimal measurement results.

The RMS EVM is averaged over several readings and then collected by the program

and ported to ATS for contour analysis.

Source 
Tuner

Supply
Bias

DUT Load
Tuner

Controller
Tuner

VSA

Meter
PowerPre

Amp

GPIB Bus

Source
ESG

Figure 3.8 Illustration of the digital demodulation loadpull measurement system.

As the digitally modulated RF signal passes through the measurement system,

some errors will be introduced, mainly due to the distortion effects of the driver

amplifier preceding the DUT and the down-converter. The distortion of the down-

converter can be minimized by adjusting the step attenuator. However, the distortion

caused by the driver amplifier is difficult to separate. The system EVM (acting as the

EVM noise floor for the measurement system) should be evaluated before performing

further measurements to make sure the driver amplifier is linear enough.
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This can be done by plugging a THRU between the source and load tuners and

measuring the EVM associated with the THRU. A flat EVM curve across the power

range of interest indicates a linear system. Otherwise, additional care should be

taken regard to measured results close to the EVM noise floor indicated by the thru

measurement.

Fig. 3.9 compares the system EVM and that associated with the DUT. Obviously

from this figure, we can tell that the system presents significant nonlinearities due to

the driver amplifier. The distortion of the driver amplifier dominates at the low and

mid power range until the nonlinear power amplifier starts dominating.
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Figure 3.9 Comparison of the system EVM and measured EVM of the DUT.

Fig. 3.10 demonstrates similar phenomenon for the ACPR measurements. As can

be seen, the ACPR appeared at low input power levels (up to 17dBm) is mainly the

contribution of the the nonlinear driver amplifier.

Fig. 3.11 compares the measurement system EVM and the DUT EVM for a low

power amplifier. In this measurement setup, there is no requirement for a driver

amplifier. Therefore, the system shows little distortion; the system EVM is quite flat
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Figure 3.10 Comparison of the system ACPR and measured ACPR of the DUT.

across the whole power range. This result again emphasizes the importance of linear

driver amplifier for accurate EVM measurements.

3.3.3 Example loadpull EVM measurement results

In this section, the loadpull EVM measurement datasets for two devices are

demonstrated. The first device under study is a high power GaAs FET sample from

Fujitsu. The typical output power at 1dB compression point is 40 dBm with a gain

of 10 dB. The PAE is around 40% [67]. The load related gain and phase compression

properties have been shown in Fig. 3.6.

The FET was studied at 2.14 GHz using an OFDM modulated signal to explore

its capability to handle multi-carrier signals which have high peak-to-average power

ratio (PAPR). High PAPR signals pose high requirements on the linearity of power

amplifiers.

Fig. 3.12 compares the transducer gain (GT) and EVM performance in an example

sourcepull measurement. The load is set at conjugate match and the input power is
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set at 22 dBm. Similar comparison is shown in Fig. 3.13 for a loadpull measurement.

In both case, the test signal was a 64 carrier OFDM modulated signal.

Typically, the goal of the source tuning is to get the best gain out of the DUT,

while the load tuning optimizes the total output power. If a multi-carrier signal

passes through the DUT with high gain, the chance is much higher for the peaks of

the signal getting distorted due to the limited power handling capability of the DUT.

On the other hand, by tuning the load to obtain the maximum output power,

the signal is allowed to swing to the largest extent possible, which provides the best

signal fidelity. Therefore, we might expect the EVM performance to degrade when

the source impedance approaches the conjugate match, and better EVM performance

for load impedance optimizing the output power. This point is demonstrated in Fig.

3.12 and Fig. 3.13.

Fig. 3.14 presents a better illustration of the source/load influence. Shown in the

figure are two EVM surfaces.The lower surface is for the source pulling measurement.

Comparing to Fig.3.12 and Fig. 3.13, one can see that the EVM degrades significantly
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Sourcepull transducer gain and EVM contours
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Figure 3.12 Transducer gain and EVM contours for example sourcepull measurement.
The ΓL is -0.72827-j*0.40883. The optimal ΓS for the GT is -0.67904-j*0.60152. The
maximum GT is 10.75 dB. The maximum EVM (13.75%) appears at ΓS of -0.68003-
j*0.58930.
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Loadpull transducer and EVM contours
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Figure 3.13 Transducer gain and EVM contours for example loadpull measurement.
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The maximum GT is 10.87 dB. The maximum EVM (16.86%) appears at ΓL of
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Figure 3.14 Sourcepull / loadpull EVM measurements; Pin is set at 22 dBm.
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around the high gain region on the source Smith chart.The EVM load contour is

relatively smoother. This might be not a perfect way to evaluate the source or

load-pull effect on the EVM or other parameters. A better way is to evaluate these

parameters under constant output power levels.

Fig. 3.15 shows an load tuning example to obtain the improved EVM. Two sets

of swept power EVM measurements are compared. In one case, the load is tuned to

obtain the optimum GT, while in the other case, the load is tuned for better EVM.

The source is kept at conjugate matching point. The tuned EVM is about 2.5-3.5%

better than the former case, with 0.5 dB loss of gain.
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Figure 3.15 Improvement of the EVM performance by tuning the load.

The second device studied is an Intersil 3984 WLAN power amplifier sample. Tra-

ditional one-tone and two-tone loadpull measurements are performed first, followed

by the EVM loadpull measurements. The power amplifier is studied at 2.45 GHz.

Figure 3.16 compares the transducer gain contours with the EVM contours at

constant output power levels. The output power is 15 dBm in (a) and 18 dBm in

(b). Similarity can be found for this two contours. Notice that the optimal load
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impedances for these two merits are different, which means tradeoffs can be made

based on different application requirements.

The ACPR contours and the EVM contours are compared in Figure 3.17. Both

measurements were obtained using the 54 Mbps OFDM modulated signal. The mea-

surement results demonstrate the close relationship between the two figure-of-merits.

The optimal load impedances for these two merits are very close to each other in both

cases.

Similarly, the IP3 and the EVM contours are compared in Figure 3.18. At low

output power level (a), the optimal load impedances for the IP3 and EVM are very

close; for high output power level (b), the difference become significant. Therefore,

instead of resorting to the IP3, engineers can optimize their designs against the EVM

performance, which will provide better correlation between the simulation results and

the system performance of the final products.

3.4 Conclusion

In this chapter, two loadpull measurements are presented. An AM-PM loadpull

measurement system is introduced which is based on Agilent 8719D and Maury ATS

system. It is shown that the load impedances affect the AM-PM characteristic sig-

nificantly. The example measurements suggest loads that are close to conjugate load

impedance will cause higher AM-PM compression and the characteristics will be much

different from other cases. Modeling engineers need to be aware of this fact and take

the load into account.

A newly developed digital demodulation loadpull measurement procedure is de-

scribed thereafter. The evaluation of the system linearity is discussed. The impor-

tance of the driver amplifier is emphasized. Example measurement results are given,

demonstrating the possible tradeoffs between the traditional figure-of-merits and the
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GT: 16.8671 to 30.3085 dB, 10 steps
EVM: 5.4102 to 16.4836%, 10 steps
Constant Pout at 15 dBm

(a)

GT: 17.915 to 29.2604 dB, 10 steps
EVM: 10.5791 to 15.8445%, 10 steps
Constant Pout at 18 dBm

(b)

Figure 3.16 Comparison of the GT and EVM contours at constant output power
level of 15 and 18 dBm.
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ACPR: −57.7069 to −39.3408 dBc, 10 steps
EVM: 5.4102 to 16.4836%, 10 steps
Constant Pout at 15 dBm

(a)

ACPR: −57.1581 to −33.4528 dBc, 10 steps
EVM: 10.5791 to 15.8445%, 10 steps
Constant Pout at 18 dBm

(b)

Figure 3.17 Comparison of the ACPR and EVM contours at constant output power
level of 15 dBm and 18 dBm.
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IP3: 18.9019 to 31.0355 dBm, 10 steps
EVM: 5.4102 to 16.4836%, 10 steps
Constant Pout at 15 dBm

(a)

IP3: 22.6216 to 29.8459 dBm, 10 steps
EVM: 10.5791 to 15.8445%, 10 steps
Constant Pout at 18 dBm

(b)

Figure 3.18 Comparison of the IP3 and EVM contours at constant output power
level of 15 dBm and 18 dBm.
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EVM. The designers might be able to use this information to improve their designs

by tuning load impedances to find the better performance with respect to the EVM.

This practice helps the designers communicate with system engineers using common

metrics to come up with the system specification.
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CHAPTER 4

LARGE-SIGNAL SCATTERING FUNCTION MODEL BASED ON

LOADPULL MEASUREMENT DATASETS

4.1 Introduction

Small-signal Scattering parameters are widely used in RF and microwave engi-

neering to characterize linear and mildly nonlinear devices and components. They

can be thought of as a simple frequency domain behavioral model for the network

studied, characterizing the relationship between the in-going and out-going wave-

forms at specific frequencies one at a time. Obviously, S-parameters deal with linear

transferring relationships only, since the input and output frequencies are identical

and no new frequencies are generated. However, with the advance of modern wireless

communication systems, more and more demands are generated for nonlinear oper-

ation of devices and amplifiers to get better transmission efficiency and less power

consumption. This causes distortion effects, such as harmonics and spectral regrowth,

as introduced in Chapter 2. The classical S-parameter theory is no longer suitable

for this situation.

Large-signal scattering function theory is proposed to address this limitation. In

general, this theory extends the small-signal theory to take into account not only

the fundamental, but also harmonics at different ports. The contribution of all these

spectral components is formulated into nonlinear functions, therefore, making it pos-

sible to characterize the nonlinearities. A specific measurement system, called a
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large-signal network analyzer (LSNA), is required to measure and derive this type of

large-signal behavioral model.

This theory hasn’t been widely applied due to the limited access to such specialized

(and costly) systems. Therefore, one question is asked: is it possible to derive practi-

cally useful large-signal behavioral models using more widely available measurement

systems (for this study, the loadpull measurement system)?

This is the main research topic presented in this chapter. By closely studying

the large-signal scattering function theory, the author comes to a conclusion that

useful large-signal models can be derived from the loadpull measurement system,

although some advanced measurement procedures are required. The procedure for

deriving the behavioral model will be explained and example modeling results will be

demonstrated that show good performance.

This proposed modeling technique also provides a solution to fully utilize the

loadpull measurement dataset. Although the loadpull measurement has been widely

applied in power devices (or amplifiers) characterization and design, derivation of an

accurate behavioral model from the dataset still presents as a huge challenge. Most

of the time, the loadpull measurement datasets are only used for observation of the

optimal load points or as a verification for the device modeling. There are some

commercially available solutions in current microwave circuit simulation software,

such as the Advanced Design System (ADS) [68] and the Microwave Office [69], to

generate behavioral models from the measurement datasets, however, the model has

limitations, as will be pointed out in the chapter. The method proposed in the chapter

shows an analytical way to exploit the datasets and presents significant advantages

over the existing approaches.

The theory of the large-signal scattering function is introduced in Section 4.2.

The limitations of the current modeling techniques are elaborated in Section 4.3. The
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detail derivation and optimization process of the proposed method is then presented

in Section 4.4. Three example models are constructed. Their simulation results are

compared with measurement results in Section 4.5. Good agreements observed prove

the effectiveness of the proposed modeling technique.

4.2 Introduction of large-signal scattering function theory

4.2.1 Small-signal network analysis

An N-port linear network can be fully characterized by capturing the relationship

between the current and voltage at each port. For example, a two port network as

shown in Figure 4.1, can be fully described through Z, Y, ABCD or S-parameters.

1
transmission

two-port

I

V

I1 2

2V

Figure 4.1 Two port network with the voltage and current definition.

For example, the Y parameter for this two-port network is given in Equation 4.1:







i1

i2






=







y11 y12

y21 y22













v1

v2






(4.1)

where in and vn are the current and voltage at port n, ymn is the admittance from port

n to port m with port m shorted. The Y-parameter can be determined using short

circuited outputs, i.e. the ymn can be determined through Equation 4.2 by shorting
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the port i:

ymn =
im

vn

∣

∣

∣

vm=0
(4.2)

Similarly, Z parameter is defined in Equation 4.3. To obtain the Z-parameter,

open circuited outputs are required, as indicated in Equation 4.4.







v1

v2






=







z11 z12

z21 z22













i1

i2






(4.3)

zmn =
vm

in

∣

∣

∣

im=0
(4.4)

However, when dealing with high frequencies, these parameter definition is no

longer suitable. First, the ideal short and open circuit are difficult to obtain at high

frequencies. Second, the voltage and the current are difficult to measure at high

frequencies. Therefore, the scattering parameter is proposed to solve these problems.

The idea is to measure the incident, reflected and transmitted waveforms to capture

the performance of the network studied. The ingoing wave a and outgoing wave b are

defined as:

a =
v + Z0 · i
√

2Re(Z0)
b =

v − Z∗

0 · i
√

2Re(Z0)
(4.5)

where Z0 is the reference impedance.

The S-parameter is defined in Equation 4.6, as a function of frequency f :







b1(f)

b2(f)


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
=







s11(f) s12(f)

s21(f) s22(f)













a1(f)

a2(f)






(4.6)
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The S-parameter can be determined by terminating all other ports instead of port

j with matched loads to avoid reflection and interference.

sij(f) =
bi(f)

aj(f)

∣

∣

∣

∣

ai(f)=0

(4.7)

The Z, Y or S-parameters can be considered as behavioral models, since they deal

with only the port variables and don’t require information about the internal structure

of the network. All the network parameter sets have one important assumption, that is

the network is linear and superposition is valid. When the network shows nonlinear

effects, typically through the generation of new frequencies (harmonics or mixing

products), the Z, Y or S-parameters are no longer valid and more advanced methods

are required to characterize the network.

4.2.2 Theory of the large-signal scattering function

The large signal scattering function has been proposed to extend the applicability

of the small-signal (linear) S-parameter concept. The idea of the large-signal S-

parameter was in exist since 1997. There are lots of publications on this concept, e.g.

[47], [48], [70]. Recently, a new broadband version of the original theory was presented

[71], which extends this modeling technique to add the frequency dimension.

As introduced in [47] and [72], the large-signal scattering function can be consid-

ered as a linearization that relates the incident and reflected wave coefficients of a

weakly nonlinear time-invariant device. “Weakly nonlinear” means that the output

signals are a stable, single-valued, and continuous function of the input signals around

the large-signal operating point [72]. It also hints that the spectral components in

the output signals are linear combinations with integer coefficients of the frequencies

at the input port.
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The input and output variables are defined in the frequency domain as depicted in

Figure 4.2: Aij denotes the complex number representing the jth spectral component

of the incident voltage wave at port “i” and Bij denotes in a similar manner the

scattered voltage waves. The relationship between the input and output wave signals

can be described by Equation 4.8, with all the spectral components normalized to

A11 in phase.

Bij = Sij(Re(A11), Re(A12), Im(A12), · · · , Re(A2N), Im(A2N)) (4.8)

A2N

DUTPort 1 Port 2

A11 A12 A1N

B12B11 B1N B21 B22 B2N

A21 A22

Figure 4.2 The input and output variables for a two-port network used in the large-
signal scattering function are composed of the fundamental tones as well as the har-
monics for both the incident and reflected waves [47].

The Sij is called “large-signal scattering function”. It is a complex multi-dimensional

nonlinear function. If there is only one large tone present at the input and all other

harmonic signals are relatively small, it is possible to simplify (or linearize) the multi-

dimensional nonlinear function Sij. Based on this assumption, the superposition

principle holds for the harmonics, which can be expressed in Equation 4.9 [47] , [71]:

Bij(|A11|) =
∑

q

∑

l=1,··· ,M

Siq,jl(|A11|)P
j−lAql +

∑

q

∑

l=1,··· ,M

Tiq,kl(|A11|)P
j+lA∗

ql (4.9)
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Tp1,k1 = 0 (4.10)

where P is the phase of A11. This equation shows that the scattered wave Bij,

the jth harmonic at port i, is the sum of incident waves and their conjugates of

lth harmonic at port q incident waves. The introduction of the complex conjugate

terms of the incident waves is the consequence of the linearization around the time-

varying operating point established by the single large-amplitude tone in the absence

of perturbation [71] [72]. Equation 4.10 is required to include the fundamental tones

in Equation 4.9. Siq,jl and Tiq,jl are dependent on the magnitude of the A11 that

models the nonlinear performance of the amplifiers or devices.

4.2.3 Creation of the large-signal scattering function model

The large-signal scattering function of a device can be derived from measurement

results using LSNA. A LSNA (sometimes called vector nonlinear network analyzer, or

VNNA) is composed of the testset, down-converter, digitizer and analysis software,

as shown in Figure 4.3. The source 1 is a signal generator that can generate CW

signals as well as modulated signals, if required. Source 2 provides the perturbation

signal to port 1 or 2 through the switch. This signal simulates the small perturbation

signal presented in the model.

The measurement system requires specific multi-tone phase calibration, in addi-

tion to the traditional VNA calibration (such as the SOLT or LRM calibration) and

absolute power calibration. The phase calibration normalizes all the fundamental and

harmonic spectral components to the phase of A11, the dominant tone at the port 1.

To obtain the coefficients in the large-signal behavioral model for a device, several

measurements are required. Let’s use an example to explain this process. If we are

interested in the scattered wave B21, the fundamental tone at port 2. Assume this
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SRC 1

IF

DIGITIZER

PC

TESTSET

LO

SRC2

Figure 4.3 Functional block of the LSNA.

wave variable is determined by the input large signal tone A11 at one specific power

level and the spectral components at port 2, including A21, A22 and A23. The B21

can be written in Equation 4.11:

B21 = S21,11A11 + S22,11A21 + T22,11A
∗

21P
2

+S22,12A22P
−1 + T22,12A

∗

22P
3 + S22,13A23P

−2 + T22,13A
∗

23P
4 (4.11)

There are 7 unknown coefficients for this specific power level and frequency. Since

superposition holds, as the theory assumes, the 7 coefficients can be obtained through

three measurements:

• measurement with only the large-signal A11 present;
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• two measurements with the small-signal perturbation A21 at different phase

relative to the A11;

• two measurements with the small-signal perturbation A22 at different phase

relative to the A11;

• two measurements with the small-signal perturbation A23 at different phase

relative to the A11;

By combining all these measurement datasets and applying a least-square-error fit,

the 7 coefficients can be determined thereafter. By sweeping the amplitude of the A11,

we will get a table for the 7 coefficients corresponding to each input signal amplitude.

Then either a look-up-table (LUT) model or an fitting function (e.g. ANN model)

can be used to implement the large-signal model in commercial microwave simulation

software to simulate the device performance.

If only the fundamental frequency is considered in the large-signal model, that is

the harmonic spectral components don’t appear in the model, the large-signal model

is reduced to so called the “Hot” S22 method [49]. Equation 4.12 illustrates this

model:

B2 = S21(|A1|)A1 + S22(|A1|)A2 + T22(|A1|)P
2A∗

2 (4.12)

As pointed out in [48], the measurements are actually a combination of passive

and active (harmonic) loadpull measurements, since the second synthesizer injects

signals to the DUTs to simulate the variation in the load. This analogy suggests

the possibility to approximately create the large-signal model from a general loadpull

measurement dataset.
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4.3 Current loadpull-based modeling technique and their limitations

There are several existing techniques to utilize the loadpull dataset for modeling

purposes [73], [74] and [75]. Some commercial microwave simulation software

packages provide the capabilities to read the loadpull data files into the simulator for

linear or nonlinear simulation [68] and [69].

Generally these techniques can be grouped into two categories: file-based modeling

and analytical modeling. As the name hints, the file-based techniques provide a

solution to directly access the loadpull data file through some indexing design to find

out the device performance according to a set of rules. [68], [69], [73] and [74]

belong to this category.

Carlson [74] described a novel method to integrate the loadpull dataset in mi-

crowave simulation software for optimization of the load condition for different goals

(e.g. output power or IP3). Instead of sweeping the amplitude and phase of the

reflection coefficient of the load ΓL, the author proposed to sweep the resistance and

capacitance based on the observation of the small-signal S22 seen at the output port

of the DUT. This method can capture the frequency effect through the capacitance,

which makes the data processing easier. However, this method has its limitation in

that it only provides a way to observe the loadpull data file and find the optimal

load points for specific goals. It doesn’t provide a usable behavioral model for general

simulation purposes.

Olah et al [73] introduced a systematic method to create behavioral models based

on the loadpull data file. The method has three steps:

• scattered data interpolation: triangulation is used to generate a set of triangular

mesh; the contours are plotted by traversing these triangular patches;
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• convert the triangulated scattered data to a grid (regular or uniform data) for

easy usage in simulators;

• calculate the incident and scattering waves as functions of load impedances

using the gridded datasets; the results are stored in a file for access during

simulation.

The limitation about this method is that it requires the storage of large data files;

a lot of the information might be redundant. For example, when the input signal

level is low, a simple small-signal S-parameter model is enough to predict the gain

at various loads. However, this method would utilize the stored B1 and B2 for every

possible load, which will require a large data file. The extensive file access operation

makes this method inefficient.

Another limitation of this method is that the file-based model requires a large

number of testing load points to be able to interpolate or extrapolate smoothly on

the Smith chart. Figure 4.4 illustrates this problem. As can observed, the file-based

model doesn’t extrapolate the output power contours properly. Analytic models are

able to overcome this problem, as will be demonstrated in the examples in Section 4.5.

[75] is an example of the use of analytic methods to model the loadpull perfor-

mance of a device. By expanding the linear S-parameter through a nonlinear S21

function, the model was able to predict the gain compression effects. This is often

called “large-S21” method. This technique provides a simple solution to predict the

nonlinear performance of the DUT based on the loadpull measurements. However,

the large-S21 model has limited accuracy in predicting the gain/phase compression

and intermodulation performance at different load conditions.

Due to the limitation of the current modeling techniques based on the loadpull

measurement datasets, a new approach is proposed to address the limitations. The
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Pout comparison (Pin at −30 dBm): file−based model vs. measurement

File−based Model
Measurement

Figure 4.4 The interpolation and extrapolation problem with the file-based model.
This is due to the insufficient testing points. However, as will be shown in later
sections, analytic models have better performance in interpolation and extrapolation.

new modeling technique exploits the large-signal scattering function theory and de-

rives the relationship between the incident and scattering waves through the loadpull

measurement datasets. The detail analysis is given in the following section.

4.4 Behavioral model based on loadpull gain and phase compression mea-

surements

A power amplifier can be treated as a two-port network, as shown in Figure 4.5. A

typical one-tone loadpull measurement gives information about the source impedance

(or reflection coefficient, ΓS), load impedances(or reflection coefficient, ΓL), the input

power (Pin), the measured delivered power (Pout).

For simplicity, suppose the device is unilateral (i.e. S12 = 0), the input impedance

of the port 1 can be expressed as Equation 4.13. This constrain can be removed if
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DUT

ΕS

ΖS

1

V1

ΓS ΓIN ΓOUT ΓL

ΖLV2

I 2

Figure 4.5 Diagram of a two-port network with a voltage source of Es and source
impedance of ZS. The load impedance is ZL

the input port reflected power is captured in the loadpull measurement.

Zin = Z0
1 + ΓIN

1 − ΓIN

= Z0
1 + S11

1 − S11

(4.13)

Based on the given information, the voltage and current at port 1 can be calculated

through the following steps:

ZS = Z0
1 + ΓS

1 − ΓS

(4.14)

Pin =
E2

S

8Re(ZS)
(4.15)

ES =
√

8Re(ZS)Pin (4.16)

V1 = ES
Zin

Zin + ZS

(4.17)

I1 =
V1

Zin

(4.18)
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Therefore, the incident and reflected waveforms at port 1 are calculated as:

A1 =
V1 + I1Z0
√

2Re(Z0)
= V1M1 (4.19)

B1 =
V1 − I1Z0
√

2Re(Z0)
= A1S11 (4.20)

M1 =
Z0 + Zin

Zin

√

2Re(Z0)
(4.21)

The incident and reflected waveforms at port 2 are characterized based on the

large-signal scattering function theory, as shown in Equation 4.22 and Equation 4.23.

The phase of the A11, P , is absorbed into the T22 coefficient.

B2 = S21A1 + S22A2 + T22A
∗

2 (4.22)

A2 = B2ΓL (4.23)

Combining Equation 4.22 and 4.23 gives:

B2 = S21A1 + S22B2ΓL + T22B
∗

2Γ
∗

L (4.24)

Equation 4.24 is an implicit expression for B2; it can be further transformed to

an explicit function to simplify the model generation. Assume S21, S22 and T22 are

represented as:

S21 = c1 + jc2

S22 = c3 + jc4

T22 = c5 + jc6
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where ci, i = 1, · · · , 6 are unknowns to be determined.

Suppose B2 = B2r + jB2i and A1 = A1r + jA1i. B2r and B2i are the real and

imaginary parts of B2 respectively. A1i and A1i are the real and imaginary parts of

A1 respectively. Equation 4.24 can be rewritten as:

(c1 + jc2)A1 + (k1 + jk2)B2 + (m1 + jm2)B
∗

2 = 0 (4.25)

where

k1 + jk2 = (c3 + jc4)ΓL − 1 (4.26)

m1 + jm2 = (c5 + jc6)P
2Γ∗

L (4.27)

Arrange the real and imaginary part and we can get:







c1A1r − c2A1i

c1A1i + c2A1r






+


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k1 + m1 −k2 + m2

k2 + m2 k1 − m1
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B2r

B2i






= 0 (4.28)

By solving the linear function 4.28, the real and imaginary part of B2 can be

derived as:


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

B2r

B2i






=

1

D







(k1 + k2 − m1 − m2)c1 (−k1 + k2 + m1 − m2)c2

(k1 − k2 + m1 − m2)c1 (k1 + k2 + m1 + m2)c2













A1r

A1i







(4.29)

where D = k2
1 − k2

2 − m2
1 + m2

2.

Obviously, in order to obtain the B2r and B2i, the measurements for both the

magnitude and phase are required. This is why it is important to obtain the loadpull

AM-PM datasets. The loadpull AM-AM measurements provide the optimization
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criteria for the magnitude, while the loadpull AM-PM measurements set up the rule

for the phase optimization.

The magnitude can be derived from the delivered output power. The output

power at port 2 is determined by the A2 and B2 through:

Pout =
1

2
(|B2|

2 − |A2|
2)

=
1

2
|B2|

2(1 − |ΓL|
2) (4.30)

Since the output power is known through the measurement, the B2 can be ex-

pressed as:

|B2| =

√

2Pout

1 − |Γ2
L|

(4.31)

Optimization process can be applied to obtain the 6 unknown coefficients c1 to c6.

The least-mean-square (LMS) errors for the magnitude and phase can be represented

by Equation 4.4 and 4.4.

errmag =

∑

n

((B2
2r + B2

2i) − (
1

1 − |ΓL|2
Pout))

2

n
(4.32)

errphase =

∑

n

(Φ(
A2 + B2

A1 + B1
) − AM-PM)

n
(4.33)

where n is the number of load points used in the optimization process. AM-PM

is the phase compression data obtained through the loadpull AM-PM measurement.

It is the phase difference between the voltages at the input and output ports. The
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Optimize  

Measurements
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Model Formulation
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and

Simulations
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Criteria?

Save and exit

YES

NO

Coefficients

Figure 4.6 The flowchart of the Matlab program created for the behavioral model
optimization based on the loadpull AM-AM and AM-PM datasets.

input and output voltages are the sum of the incident and reflected waves at the port

respectively.

The analysis given above has been implemented in a Matlab program [76]. Fig-

ure 4.6 demonstrates the procedure to generate the behavioral model based on the

loadpull datasets. Notice that the loadpull datasets can come from either the measure-

ments or from simulations, depending on the applications of this modeling technique.

4.5 Experimental result 1: measurement-based behavioral model

To demonstrate the modeling technique proposed in previous section, three exam-

ple models are created and compared with existing techniques. The three examples

are chosen so that they show two types of applications of this behavioral modeling

technique. The first two example models are created based on measurement results,

showing an efficient way to integrate measurement results into design. The third ex-
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Figure 4.7 Illustration of the MAXIM 2373 LNA sample.

ample is based on the simulation results, which will lead to decrement in computing

complexity and therefore the simulation time.

4.5.1 Example model of a packaged RFIC LNA

The first example component used is an MAX2373 low noise amplifier (LNA).

Figure 4.7 shows this component. This component was characterized at 900 MHz.

Loadpull gain and phase compression measurements were performed. Two tone load-

pull measurements were performed as well. The Matlab modeling program was used

to process the measurement data files and generate the model coefficients through

the unconstraint nonlinear optimization procedure. In addition, a file-based model is

created for characterizing the 3rd order intermodulation products.

The model was implemented in ADS 2004A using the frequency domain defined

device (FDD). The advantage of using this device is that it provides the ability to

define the behavior of individual frequency components separately. The model only re-

quires two setup parameters: the fundamental frequency (RFfreq), and the frequency

spacing (fspacing). For one tone simulation, the fspacing is set at 0. Therefore, the

model requires minimum interaction from the users and makes it easy for usage.
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Figure 4.8 Comparison of the measured and simulated gain and phase compression
at 50 ohm.

The measurement condition is summarized in the following:

• Frequency: 900 MHz;

• Input power: -30 dBm to 5 dBm;

• Two tone frequency spacing: 100 KHz;

• AGC Bias: 1.3875 V;

• Vcc bias: 2.775 V.

Figure 4.8 compares the measured and simulated gain and phase compression

performance of this LNA at 50 ohm condition. The model predicts the compression

property correctly.

Figure 4.9 shows the simulated output power contours compared with the mea-

sured result. The input power is low at -30dBm. Good agreement is observed. In

fact, the large signal model reduces to small-signal S-parameter model when the in-

put signal is low enough. The variation of the output power with respect to the load
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Pout comparison (Pin at −30 dBm): behaviroal model vs. measurement

BEH. Model
Measurement

Figure 4.9 The simulated output power contours are compared with the measure-
ments. The input power is at -30dBm.

can be characterized through the small-signal S-parameter. Detailed analysis can be

found in [77]. Compared with the file-based model, obviously the analytic model

provides much better interpolation and extrapolation characteristics.

However, the small-signal S-parameter cannot predict accurately nonlinear effects

associated with large input signal. The simple large-S21 model provides limited pre-

diction accuracy, compared with the proposed model, as shown in Figure 4.10. In

this figure, the measured output power contour at input signal of -5dBm is compared

with the large-signal model in (a) and the model based on the large-S21 technique in

(b). By looking at (a), one can see that the proposed behavioral model does a decent

job in predicting the change in the load impedance for optimal output power perfor-

mance. However, the simple large-S21 modeling technique assumes the compression

properties at all load points are the same. This explains why the large-S21 model

behaves different from the proposed large-signal model.

Since only the fundamental tone is considered in the model generation, its ca-

pability to predict the intermodulation products is limited. Therefore, a file-based
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Better prediction of the 
optimal load impedance 

(a)

Large−S21 Model
Measurement

The large−S21 model cannot 
predict the optimal load 
impedance correctly.  

(b)

Figure 4.10 Comparison of simulated and measured output power contours. The new
model and the large-S21 model are compared side by side, showing the improvement
of the new model to predict the changing optimal load impedance.

Table 4.1 List of the 6 example load reflection coefficients used to test the LNA
model.

(a) 0.56723+j*0.03630 (b) 0.36904+j*0.40569
(c) 0.75532+j*0.50893 (d) 0.77211+j*0.16110
(e) 0.17539+j*0.76875 (f) 0.30559-j*0.57057

model is implemented for prediction of the 3rd order intermodulation products. A

contour interpolation algorithm is utilized during the generation of the data file.

Figure 4.11 illustrates the comparison of the measured and simulated IP3. The

input power is -20dBm. As can be seen, the behavioral model does a good job

predicting the IP3 performance over a defined region.

Six load impedances are chosen as examples to test the large-signal model. The

simulated fundamental tone and the 3rd order intermodulation product are compared

with the measurement results. The reflection coefficients of the 6 example loads are

listed in Table 4.1 and plotted in Smith Chart, as shown in Figure 4.12. The load

examples are chosen to spread over the Smith Chart.

The simulated results are compared with corresponding measurement datasets

in Figure 4.13. Good agreements can be observed for all cases. Also given out
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Figure 4.11 Comparison of the measured and simulated IP3 using the large-signal
behavioral model.

a

b
c

d

e

f

Figure 4.12 Illustration of the six load impedance examples on the Smith Chart. The
six loads spread in a large area, showing the robustness of this model to predict the
nonlinear effect in a wide load range.
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are the simulated results obtained from the large-S21 model. The large-S21 model

presents good performance for limited set of load points, such as at (a), (d), (e),

and (f). However, at (b) and (c) the simulation results show significant discrepancies.

Therefore, the new large-signal behavioral model provides better performance against

the large-S21 behavioral model.

Figure 4.14 shows the errors in the simulated fundamental tone at different loads.

As can be seen, the new model has much less errors compared with the large-S21

model. Similarly, Figure 4.15 illustrates the errors in the simulated IM3 at different

loads. Again, the new model has better performance compared with the large-S21

model.
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Figure 4.13 Comparison of the measured and simulated Pout and IM3 at 6 load
impedances.
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Figure 4.14 The errors of the simulated fundamental tone at 6 loads are plotted.
The blue curves represent the errors associated with the newly developed model; the
red curves represent the errors associated with the large-S21 model. The new model
presents better performance, compared with the large-S21 model.
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Figure 4.15 The errors of the simulated 3rd order intermodulation product at 6 loads
are plotted. The blue curves represent the errors associated with the newly developed
model; the red curves represent the errors associated with the large-S21 model. The
new model presents better performance, compared with the large-S21 model.
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Figure 4.16 Illustration of the ISL3984 power amplifier sample.

4.5.2 Example model of a PA sample

The second example component used is an Intersil power amplifier (ISL3984).

Figure 4.16 shows the tested ISL3984 power amplifier sample. Loadpull gain and

phase compression measurements were performed on this power amplifier sample at

2450 MHz. The measurement condition is summarized below:

• Frequency: 2450 MHz;

• Input power: -20 dBm to 0 dBm;

• Two tone frequency spacing: 100 KHz;

• Bias: 3.3 V.

To verify the performance of the behavioral model, a swept power harmonic simu-

lation is done in 50 ohm condition, i.e. the source and load impedances are at 50 ohm.

The simulated gain and phase compression curves are compared to the measured data

in Figure 4.17. Good agreement can be seen in the figure.
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Figure 4.17 Comparison of the simulated and measured gain and phase compression
in 50 ohm.

Figure 4.18 compares the simulated and measured output power contours at input

power level of -20dBm. The source impedance is set to be conjugately matched. The

ΓS is 0.34051 + j ∗ 0.58271. As can be seen, the two datasets agree very well.

Similar to the LNA model, a file-based model is created for the simulation of IM3.

Figure 4.19 compares the simulated and measured IM3 contours at input power level

of -20dBm. The file-based model predicts the 3rd order intermodulation product

accurately under various load conditions.

Six load impedances are chosen as examples to test the large-signal model. The

simulated fundamental tone and the 3rd order intermodulation product are compared

with the measurement results. The reflection coefficients of the 6 example loads are

listed in Table 4.2 and plotted in Smith Chart, as shown in Figure 4.20. The load

examples are chosen to spread over the Smith Chart.

The simulated results are compared with corresponding measurement datasets in

Figure 4.21. Good agreements can be observed between the simulated results from

the proposed model and the measurements. Also given out are the simulated results
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Pout comparison (Pin at −20 dBm): behvairoal model vs. measurement

BEH. Model
Measurement

Figure 4.18 Comparison of the simulated output power contour with the measured
dataset.

IM3 comparison (Pin at −20 dBm): behvairoal model vs. measurement

BEH. Model
Measurement

Figure 4.19 Comparison of the simulated IM3 contour using the behavioral model
with the measured dataset.

Table 4.2 List of the 6 example load reflection coefficients used to test the PA model.

(a) 0.62561+j*0.39360 (b) -0.36966+j*0.09652
(c) 0.19215+j*0.33529 (d) 0.87741+j*0.07210
(e) 0.61180+j*0.627895 (f) 0.52078-j*0.53337
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Figure 4.20 Illustration of the six load impedance examples used to test the behavioral
model developed for the ISL3984 on the Smith Chart. The six loads spread in a large
area, showing the robustness of this model to predict the nonlinear effect in a wide
load range.

obtained from the large-S21 model. The large-S21 model presents good performance

for limited set of load points, such as at (a), (b), (d), and (e). However, at (c) and

(f) the simulation results show significant discrepancies. Therefore, the new large-

signal behavioral model provides better performance against the large-S21 behavioral

model.

Figure 4.22 shows the errors in the simulated fundamental tone at different loads.

As can be seen, the new model has much less errors compared with the large-S21

model. Similarly, Figure 4.23 illustrates the errors in the simulated IM3 at different

loads. Again, the new model has better performance compared with the large-S21

model.

Through the comparison results illustrated from the two example models, the

validity of the model has been proved. The behavioral model derived from the loadpull

gain and phase compression measurements can predict the performance of the DUT

under various load conditions and input power levels accurately to some extent.
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Figure 4.21 Comparison of the measured and simulated Pout and IM3 at 6 load
impedances.
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Figure 4.22 The errors of the simulated fundamental tone at 6 loads are plotted.
The blue curves represent the errors associated with the newly developed model; the
red curves represent the errors associated with the large-S21 model. The new model
presents better performance, compared with the large-S21 model.
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Figure 4.23 The errors of the simulated 3rd order intermodulation product at 6 loads
are plotted. The blue curves represent the errors associated with the newly developed
model; the red curves represent the errors associated with the large-S21 model. The
new model presents better performance, compared with the large-S21 model.
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This measurement-based behavioral modeling technique is also demonstrated as

simple solution to integrate the loadpull measurement datasets with commercial CAE

softwares. The resulted model provides the invaluable insights for designers to study

nonlinear components at system levels without losing much accuracy.

4.6 Experimental result 2: simulation-based behavioral model

We have discussed the measurement-based behavioral modeling approach in pre-

vious section. The second behavioral modeling example will demonstrate the process

to derive a abstract model based on the simulation datasets. An equivalent circuit

model for the 30 Watts Cree UGF21030 LDMOS power transistor is used to create

the simulation datasets. This circuit model was developed by Modelithics [78].

This model was simulated at 2.17 GHz under swept power and various load con-

ditions. The simulated AM-AM and AM-PM datasets were used to create the large-

signal behavioral model. The simulation setup for generating the test datasets is

given below:

• Frequency: 2170 MHz;

• Input power: 0 dBm to 35 dBm;

• Two tone frequency spacing: 100 KHz;

• Bias: Vgs is 4 V and Vds is 25 V (biased for deep Class AB amplifier).

Figure 4.24 compares the simulated results from the behavioral model and the

circuit model for the gain and phase compression. Good agreements are achieved for

the 50 ohm case.

Figure 4.25 and Figure 4.26 show the delivered power simulated under loadpull

conditions, at two input power levels (10 dBm and 30 dBm). The source reflect
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Figure 4.24 Comparison of the simulated gain and phase compression under 50 ohm
condition: behavioral model vs. circuit model.

coefficient is set at −0.55244− j ∗ 0.23757. For the small input power level (10 dBm),

the behavioral model presents almost identical performance as the circuit model.

Even at high power levels (e.g. 30 dBm), the behavioral model still does a good job

to predict the drift in the optimal load impedance for the output power.

As one example to demonstrate the importance to have the loadpull AM-PM

information in the model creation, two behavioral models were created, one optimized

with the AM-PM information and one without.

Figure 4.27 compares the IM3 contours simulated by the behavioral models with

and without the AM-PM information. The results are obtained through Envelope

simulation of the behavioral model. Obviously, the loadpull AM-PM information

does help the large-signal model to do a better job to predict the intermodulation

performance. This comparison proves the importance of having the loadpull infor-

mation for creating a large-signal behavioral model based on loadpull measurements.

Notice that not like the previous two example models, the IM3 prediction here doesn’t

depend on file-based models.
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Pout comparison (Pin at 10 dBm): behvairoal model vs. circuit model

BEH. Model
CIR. Model

Figure 4.25 Comparison of the simulated Pout contours from the behavioral model
and the circuit model at constant Pin of 10 dBm.

Pout comparison (Pin at 30 dBm): behvairoal model vs. circuit model

BEH. Model
CIR. Model

Figure 4.26 Comparison of the simulated Pout contours from the behavioral model
and the circuit model at constant Pin of 30 dBm.
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Without LP AM−PM
With LP AM−PM

Figure 4.27 Comparison of the simulated IM3 contours from behavioral models: one
optimized with loadpull AM-PM information and one without.

Figure 4.28 compares the simulated IM3 contours from the behavioral model (with

the AM-PM information) and the circuit model. In general, the model predicts the

trend of the IM3 performance. However, since only the fundamental tone is utilized

in the model generation, its ability to predict the IM3 is limited. To get better results

for the intermodulation products, either file-based model can be used or additional

loadpull harmonic measurements will help.

Figure 4.29 evaluates the performance of the behavioral model under two tone

stimuli against that of the circuit model. The input power is set to sweep in the

simulation. Again, both behavioral models are evaluated. High level agreements can

be observed for the simulated datasets from both models.

Notice the difference between the two behavioral models. The model without the

AM-PM information predicts a false sweet spot in the IM3 curve. This is avoided

through including the AM-PM information in the model generation process.
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IM3 comparison (Pin at 10 dBm): behaviroal model vs. circuit model

BEH. Model
CIR. Model

Figure 4.28 Comparison of the simulated IM3 contours from the behavioral and
circuit models.
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Figure 4.29 Comparison of the simulated IM3 from the circuit model and the behav-
ioral models. Behavioral model 1 is created with the loadpull AM-PM information,
while behavioral model 2 isn’t. The simulated IM3 Behavioral model 2 shows a fake
sweet spot, showing the importance to have the loadpull AM-PM information in the
model generation process. The ΓL is at −0.80213 − j ∗ 0.08629.
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.

Table 4.3 Simulation time comparison: behavioral model vs. circuit model. Loadpull
harmonic balance simulation at three input power levels is performed for this test.

Type 10 dBm 20 dBm 30 dBm
BEH. Model 2.55 sec 2.66 sec 2.89 sec
CIR. Model 3.08 sec 3.95 sec 4.05 sec

One advantage using behavioral models instead of circuit models is that behavioral

models require less simulation time. This will become important when simulating a

complete design system, which usually contains dozens of transistors or more.

Table 4.6 compares the simulation time using the behavioral model and the circuit

model. The loadpull harmonic balance simulation for 100 load points is performed

at three different input power levels: 10 dBm, 20 dBm and 30 dBm. This test

was performed on a workstation with a Pentium-4 CPU and 1 GB memory. The

behavioral model requires less simulation time, especially at high power levels, as can

be observed from the table.

4.7 Conclusion

In this chapter, a behavioral modeling technique is presented that is based di-

rectly on the loadpull gain and phase compression measurements. Developed from

the large-signal scattering function theory, this technique shows the possibility to

generate the large-signal scattering function model using traditional loadpull mea-

surement systems. The large-signal scattering function theory is presented and the

analogy between the LSNA and the loadpull measurement systems is drawn. A de-

tail analysis of the model generation process is given out. Three example behavioral

models are created to demonstrate the capability of this new technique. Two of them

are based on measurements, while one is based on the simulation dataset from a

equivalent circuit model. These models are studied from different aspects, including
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the one tone loadpull and power swept simulation, two tone loadpull and power swept

simulation. Good agreements are observed between the model simulated results and

measurements, showing the strong capability of this modeling technique.
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CHAPTER 5

MEMORY EFFECT MODELING OF POWER AMPLIFIERS IN

LOADPULL CONDITIONS

5.1 Introduction

The memory effect in a power amplifier exhibits itself either in the frequency

domain as asymmetric spectrum, or time domain as the dynamic AM-AM and AM-

PM behavior. This effect is caused by several issues, including input and output tuned

network, low frequency dispersion, electrothermal interactions and bias circuitry [3],

[4]. The memory effect behavioral modeling of power amplifiers often deals with

time domain samples, typically obtained through vector signal analyzers (VSAs) or

microwave transition analyzers (MTAs) [39] [79]. The reason to study the test signal

in time domain is that the memory effects can be observed easily in time domain

through the dynamic AM-AM and AM-PM nonlinear phenomena.

Figure 5.1 shows a typical time domain measurement setup. The baseband I/Q

signal is generated through the PC software and downloaded to the arbitrary wave-

form generator (AWG). The signal generator accepts the modulated signal from the

AWG and up-converts it to the desired frequency. The modulated signal is used to

drive the DUT; the output signal is down-converted and sampled through the vector

signal generator (VSA). The input signal to the DUT can be obtained by directly

applying the input signal to the VSA input port. Similar operations, such as down-

conversion and sampling, will be performed on the input signal. The input and output
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samples should be aligned in time so that the correct input-output response can be

derived.

I & Q

DAC

LO

Signal Analyzer
AWG

DAC
DAC

Signal Generator
RF Switch 

DUT

BOX

QI

LO

o90

Figure 5.1 Example measurement setup to obtain the time-domain test signal [79].

Once the input and output samples are obtained, the modeling problem is reduced

to matching the input samples to the output samples through elaborate mathematical

expressions. This has been studied extensively in digital signal processing area [80]

[81], although mostly the baseband engineers deal with linear processing. By adding

nonlinear blocks in the processing algorithms, a behavioral model can be created that

captures both the memory and distortion effects of the amplifier under study.

Lots of modeling techniques have been reported to characterize the memory effect

of a power amplifier [34, 79, 82, 83, 84, 85]. Generally speaking, these modeling

techniques can be grouped into two categories :

• two-box or three-box modeling techniques [34] [82] and [85] that separate the

linear memory effect from the nonlinear behavior and treat them different math-

ematically; typically, look-up-table or polynomials are used to model the non-

linear gain and phase compression, while linear filtering functions are used to

fit the linear memory effect;
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• integrated nonlinear modeling techniques [79], [83] and [84], which exploit the

capabilities of multi-tap polynomial or dynamic neural network structures to

model both the memory effect and the nonlinear gain and compression behavior.

5.1.1 Filtering modeling of memory effects

To simply the modeling problems of the nonlinear amplifiers, the two-box or three-

box model structures are proposed that are composed of the linear dynamic time

invariant systems and static nonlinear system, e.g [39], [34] and [85]. Successful

results have been reported by using these techniques. For example, the method

proposed in [82] adopts a two-box modeling structure that has a linear finite impulse

filtering (FIR) block and a nonlinear function block. The model diagram is shown

in Figure 5.2. The output signal from the FIR block is given in Equation 5.1. This

output signal of this memory model can be expressed in Equation 5.2.

u(n) Linear
Filter AM/PM LUT

AM/AM and 
|x(n)|

Complex
Multiplier

x(n)
Gq

Gi

x(n)

y(n)

Figure 5.2 Model diagram combining linear filtering and nonlinear LUT sections [82].

x(n) =
M

∑

i=0

aiu(n − i) (5.1)

y(n) = (Gi + jGq)x(n) = Gx(n) (5.2)
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where x(n) and y(n) are the discrete-time input and output samples; the Gi and Gq

are the output of the nonlinear block. M represents the memory span determining

how many past samples are utilized to predict the current output sample.

Generally, the modeling process utilizing the two-box or three-box structure in-

volves two steps. The first step involves de-embedding the static nonlinearity from the

data samples. The second step is to identify the coefficients of the filtering function

through optimization.

5.1.2 Neural network modeling of memory effects

Several neural network structures are reported to model the memory effects. One

common feature of the reported works is that all of them utilize delayed taps to

model the memory effects. The delayed taps are basically a way to combine the

current and past values to predict the current output. In general, the output signal

can be described by Equation 5.3:

y(n) = fANN [y(n − 1), y(n − 2), · · · , y(n − p), x(n), x(n − 1), · · · , x(n − q)] (5.3)

where x(n) and y(n) are the discrete-time input and output samples; p and q stand

for the memory spans for the input and output samples. fANN is a nonlinear neural

network function.

Isaksson et al [79] proposed using delayed-tap radial basis function neural network

(RBFNN) to model the dynamic AM-AM and AM-PM distortion. The RBFNN

model can be adjusted through the number of neurons (M) in the hidden layer and

the number of delay taps (L) to fit the training series. It is shown in the paper

that this type of neural network has better performance than the one-tap parallel

Hammerstein model.

95



Fully recurrent neural network (FRNN) is another type of dynamic neural net-

works having the capability of learning and then representing the input-output be-

havior of systems. Luongvinh et al [83] use this network structure to model the

memory effects of an amplifier. By using global feedback (feeding the output back

to the input), and local interconnections in FRNN (connecting the neurons in the

hidden layers), the ability of the network to model nonlinear dynamics of systems can

be enhanced. In the reported work [83], a WCDMA signal is used as the training sig-

nal. A three-layer FRNN of 10 delay taps and 10 hidden neurons and tanh activation

function is constructed.

A time delay neural network (TDNN) is proposed by Ahmed et al [86] to model

the memory effect of the PA. The performance of the neural network models utilizing

unity and non-unity time delay taps are compared. It is shown that non-unity delay

taps will give better results.

Wood et al [87] discusses a modeling method that combines the polynomial based

“System Amplifier” model in ADS that models one frequency AM-AM and AM-PM

properties and a ANN to model the dynamic properties of the amplifier under test.

The ANN is trained upon the difference between the output signals of the System

Amplifier and the amplifier under test, over the range of the frequencies and power

levels. The dynamical variables that are used are time delays in the port voltages.

5.2 Limitation of current modeling techniques and proposed solution

When we consider using a behavioral model in a simulation, one of the important

feature is that the model needs to provide the capability to adjust its performance

according to the environment it is embedded in. In this study, the source and load

impedances are the main factors that the model should be able to adjust performance
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to. If we apply this criteria to the techniques discussed above, we will find the

limitation of these modeling techniques.

The modeling techniques discussed above deal with power amplifiers operating in

one specific load impedance, most likely 50 ohm condition. When the load condition

changes, the gain and phase compression properties of the amplifier might change as

well. However, the modeling techniques discussed above don’t provide the capability

to predict this change. This limits the applicability of these models in real world

design work, in which the design engineers tend to optimize their products through

careful loadpull analysis and matching networks design.

An improved behavioral model is proposed in this chapter to address this limi-

tation. This improved model is basically a two-box model that combines the load-

aware large-signal scattering function behavioral model and the linear filtering func-

tion model. As shown in Chapter 4, the large-signal scattering function model is

capable of predicting the loadpull gain and phase compression. Therefore, it is an

excellent candidate. FIR filtering function is utilized to characterize the linear mem-

ory effect, similar to [82]. The proposed model is illustrated in Figure. 5.3. The

mathematical expression of this model is given in Equation 5.4.

FIR FILTER
x(t) y(t)

G(|x(t)|,ZL)*exp(j*Phase(|x(t)|,ZL)

g(t)

LoadPull 
Gain/Phase Model

Figure 5.3 Diagram of the proposed memory effect model with the load-related
nonlinear gain/compression characterization feature integrated.

y(t) = FIR(x(t)) ∗ G(|x(t)|, ZL)expjΦ(x(t),ZL) (5.4)
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where x(t) and y(t) are input and output time domain samples; FIR() is the linear

filter; G() and Φ() are the nonlinear gain and phase compression models.

The advantages of this modeling technique includes:

• Compared to the traditional memory effect modeling techniques (as discussed

in Section 1), this new technique can adjust the AM-AM and AM-PM nonlin-

ear functions corresponding to the load conditions; this model provides better

performance in situations where the load impedance changes;

• Compared to the continuous-wave (CW) loadpull AM-AM and AM-PM model,

this new model provides extra capability through the linear block to predict the

frequency response of the power amplifier when a wideband modulated signal

is applied.

This model diagram is quite similar to the model proposed by Asbeck et al. [88],

who used an additional parameter to characterize the dynamic effects associated

with time-varying parameters, such as supply voltage or instantaneous temperature.

The difference here is that the additional parameter in this new model is the load

impedance, that is used to adjust the performance of the nonlinear block.

One important assumption for this modeling structure is that the linear memory

effect is independent of the load conditions. The extracted memory effects from

different time-domain measured samples at different load impedances should remain

the same.

The linear memory effect was conceived to solve the problem with the memoryless

narrow-band models such as the AM-AM and AM-PM models. The problem appears

when the input signal bandwidth is large enough compared to the system bandwidth,

that a CW representation of the system is no longer valid [3].
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Therefore, the linear memory effect represents the residual linear frequency re-

sponse of the system that cannot be characterized by the nonlinear AM-AM and

AM-PM models. Conceptually, it is resulted from the frequency response of the in-

put and output tuning network. Since these networks are linear in general, the source

and load impedances won’t change their behavior. In the proposed model, the linear

block will remain constant regardless of the source or load conditions.

5.3 Experimental results

To demonstrate the effectiveness of the proposed model, an example model is

developed. Due to the current limitation of the measurement capabilities, the example

model is derived from the simulation results of an equivalent circuit transistor model.

Specifically, the same Cree 30 Watts LDMOS model discussed previously in Chapter

4 is used in this study.

A 54Mbps WLAN OFDM signal is used as the stimulus to drive the power device.

The simulation schematic is shown in Figure 5.4. The simulation setup is listed below:

• RF carrier frequency: 2.17 GHz;

• RF power: 20 dBm;

• Vgs (gate voltage): 4 V;

• Vds (drain voltage): 25 V;

• Time Step: 20 ps;

• Stop Time: 80 us;

The dynamic AM-AM and AM-PM are calculated through Equation 5.5 and 5.6,

using the time domain input and output samples. y(t) and x(t) are complex input
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Figure 5.4 Simulation schematic setup: WLAN 54 Mbps OFDM source is used.

and output time samples, respectively. Due to the memory effect, the gain and phase

compression will demonstrate dynamic behavior under modulated stimuli, which is

shown in Figure 5.5.

AM AM =
∣

∣

y(t)

x(t)

∣

∣ (5.5)

AM PM = Φ
(y(t)

x(t)

)

(5.6)

Figure 5.5 compares the dynamic and static AM-AM and AM-PM performances.

By “static”, we mean the AM-AM and AM-PM obtained under CW stimuli. The

dynamics shown in the AM-AM and AM-PM obtained under modulated signal stimuli

is an evidence of the memory effect.

The linear effect is extracted by subtracting the nonlinear AM-AM and AM-PM

from the dynamic curves. Figure 5.6 shows the extracted linear memory effect.
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Figure 5.5 Comparison of static and dynamic AM-AM and AM-PM effects. 54 Mbps
WLAN signal is used in the modulation simulation setup.
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Figure 5.6 Extracted linear memory effect from the dynamic AM-AM and AM-PM
effect.
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To validate our assumption of the independence of the linear memory on the load

impedances, several load impedances are chosen and the simulated results are com-

pared with each other. Figure 5.7 compares the linear memory effects extracted at

three different load conditions. The extracted memory effects at these cases demon-

strate consistent behavior. The same comparison has been done at several other load

conditions; similar results were observed. This consistency proves the validity of the

assumption to some extent.
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Figure 5.7 The memory effect behaves independently on the load impedances.

The limitation of the traditional memory effect modeling techniques working in a

loadpull condition will be demonstrated in Figure 5.8 and Figure 5.9. Suppose we are

interested in the performance of an power amplifier at two load impedances. The two

loads cause different nonlinear CW AM-AM and AM-PM effects. If the nonlinear

block within the model diagram cannot detect the load condition and always uses

the same nonlinear function to extract the linear effect, it is very possible that the

extracted result won’t be linear and will show some residual nonlinearity. Figure 5.8

illustrates this effect.
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Figure 5.8 Bad extraction of the linear AM-AM and AM-PM distortion.

The nonlinear block in the model is the main contribution to the spectral regrowth.

Therefore, if the nonlinear block doesn’t reflect the actual AM-AM and AM-PM

performance, the predicted spectrum regrowth might be significant different from the

desired one, as can be seen in Figure 5.9. Two simulated output spectrums from

behavioral models are compared with the simulated result from the circuit model.

One of the two behavioral models utilizes the correct AM-AM and AM-PM functions

while the other utilizes the AM-AM and AM-PM corresponding to a different load

condition. The significant difference between the “bad prediction” and the circuit

model simulated result is caused by the nonlinear modeling.

A behavioral model based on the simulation datasets of the LDMOS model is

developed. The nonlinear block is the same model as used in chapter 4, which is

a large-signal scattering function model derived from the loadpull gain and phase

compression simulation. The linear memory effect is characterized by a 5-tap FIR

filter. The coefficients are fitted to the extracted linear memory effect. The model is

implemented in ADS using the FDD component.
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Figure 5.9 Illustration of influence of nonlinear AM-AM and AM-PM compression
on the output spectrum. In (a), the new model can adjust its nonlinear AM-AM and
AM-PM model to adapt to the load condition and predict the spectrum correctly. In
(b) the traditional two-box model cannot predict the spectrum correctly because its
nonlinear model is developed for 50 ohm. The simulated load impedance is 67.0 + j*
93.8 ohm.

To demonstrate the limitation of the CW loadpull model predicting the dynamics

of the AM-AM and AM-PM performance, Figure 5.10 compares the simualted results

from the new behavioral model with the linear block and the CW loadpull model. As

can be seen, the dynamic effect of the circuit model is captured through the addition

of the linear block, which is not predicted by the CW model.

Figure 5.11 compares the predicted memory effect from the linear filtering block

with the extracted data. The 5-tap model parameter is listed in Table 5.3.

Table 5.1 The optimized 5-tap FIR coefficients.

B1 B2 B3 B4 B5
0.8787 0.0744 0.1144 -0.1027 0.0343

Figure 5.12 compares the simulated output signal from the behavioral model with

that of the circuit model. The modulated signal is a 54 Mbps WLAN signal (which

uses 64 QAM modulation). The two datasets present good agreement.
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Figure 5.10 Illustration of the effect of the linear block. By adding the linear block to
the nonlinear model, the new model can predict the dynamics shown in the AM-AM
and AM-PM performance. This is not captured by the CW loadpull model.
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Figure 5.11 Comparison of the simulated linear memory effect: circuit model vs.
behavioral model.
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Figure 5.12 Comparison of the simulated output power: behavioral model vs. circuit
model. 54 Mbps WLAN signal is used as the input signal.

To explore the capability of this behavioral model to handle different modulated

signals, a 6 Mbps WLAN signal (QPSK modulated) is used as the input signal in the

simulation. Figure 5.13 compares the results and verifies that the behavioral model

can handle different modulated signals.

Figure 5.14 shows the comparison of the output spectrums obtained from the

behavioral model and the circuit model. The output spectrums from two models

are very similar. This is expected because the simulated time samples from the two

models agree to each other very well and that the spectrum is obtained through

Fourier analysis of the time domain signal.

The ACPR associated with the upper and lower sideband is simulated for three

load impedances, i.e. 67.0 + j* 93.8 ohm, 50 ohm and 5 ohm. Table 5.2 and Table 5.3

compare the simulated lower and upper ACPR of the circuit model with that of the

behavioral model. The average input power is set at 20 dBm. The load is 67.0

+ j* 93.8 ohm. The newly proposed model presents better performance against

the traditional two-box model, since the traditional two-box model cannot adapt its
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Figure 5.13 Verification of the behavioral model with a 6 MBps WLAN signal. The
simulated output signals from both behavioral model and circuit model match very
well.

−4 −2 0 2 4

x 10
7

−30

−20

−10

0

10

20

30

40

Frequency

P
ow

er
 S

pe
ct

ur
m

 M
ag

ni
tu

de
 (

dB
)

CIR. Model
BEH. Model

Figure 5.14 Comparison of the simulated and measured output spectrum of the
example power amplifier.
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performance with respect to the load conditions. Compared to the CW loadpull

model, the new model has better prediction, due to the addition of the linear block.

Table 5.2 Comparison of the simulated ACPR for lower sideband (67.0+j*93.8 ohm).
Average input power is set at 20 dBm.

Lower Sideband Difference
Circuit model -34.477

Loadpull two-box beh. model -33.516 0.961
Traditional two-box beh. model -37.003 2.526

CW loadpull beh. model -33.241 1.236

Table 5.3 Comparison of the simulated ACPR for upper sideband (67.0+j*93.8 ohm).
Average input power is set at 20 dBm.

Upper Sideband Difference
Circuit model -33.639

Loadpull two-box beh. model -33.215 0.324
Traditional two-box beh. model -35.682 2.043

CW loadpull beh. model -32.72 0.919

Table 5.4 and Table 5.5 compare the simulated lower and upper ACPR of the

circuit model with that of the behavioral model. The load is 50 ohm. For this case,

the traditional and the new two-box loadpull model have the same performance,

because the nonlinear blocks in both models characterize the AM-AM and AM-PM

at 50 ohm very well.

Table 5.4 Comparison of the simulated ACPR for lower sideband (50 ohm). Average
input power is set at 20 dBm.

Lower Sideband Difference
Circuit model -37.513

Loadpull two-box beh. model -37.003 0.51
Traditional two-box beh. model -37.003 0.51

CW loadpull beh. model -36.610 0. 903
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Table 5.5 Comparison of the simulated ACPR for upper sideband (50 ohm). Average
input power is set at 20 dBm.

Upper Sideband Difference
Circuit model -35.188

Loadpull two-box beh. model -35.682 0.494
Traditional two-box beh. model -35.682 0.494

CW loadpull beh. model -36.17 0.982

The upper and lower ACPR simulated from different models at 5 ohm load are

compared in Table 5.6 and Table 5.7. As can be seen, the new model predicts the

ACPR better than the other two behavioral models.

Table 5.6 Comparison of the simulated ACPR for lower sideband (5 ohm). Average
input power is set at 20 dBm.

Lower Sideband Difference
Circuit model -33.573

Loadpull two-box beh. model -32.805 0.767
Traditional two-box beh. model -37.003 3.43

CW loadpull beh. model -32.423 1.15

Table 5.7 Comparison of the simulated ACPR for upper sideband (5 ohm). Average
input power is set at 20 dBm.

Upper Sideband Difference
Circuit model -32.489

Loadpull two-box beh. model -32.073 0.416
Traditional two-box beh. model -35.682 3.193

CW loadpull beh. model -31.767 0.722

5.4 Conclusion

In this chapter, we proposed a new behavioral model to characterize the memory

effect in loadpull conditions. This new model combines the load-aware large-signal

scattering function model developed in Chapter 4 with a linear filtering block. This

model has the same two-box structure as some of the traditional modeling techniques
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do. The reason to include the load dependency as the additional feature to the

existing two-box modeling technique is to capture the load-related gain and phase

compression variation. Without this capability, the linear memory effect may not

be extracted correctly, as demonstrated in Figure 5.8. Also without this load-aware

capability, the model is not suitable for some applications where engineers might

experience different load conditions to optimize their designs.

An example behavioral model is created based on the simulation results of an

LDMOS circuit model. Results have been given to demonstrate the improvement

of the new model over the traditional memory models and the CW loadpull model.

The performance of the new model to predict the output signals from the power

device under wideband modulated signals (WLAN) is compared to the circuit model

performance. Good prediction of the output spectrums and ACPRs is observed.

From these comparison results, the model shows promise for real world applications.

A program has been developed in Matlab to automate the model generation process.
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CHAPTER 6

CONCLUSIONS AND FUTURE STUDY

6.1 Conclusions

Behavioral modeling has received significant interest recently. This is primarily

because of the changes in the current design practices. More and more engineers tend

to use off-shelf IC blocks, such as LNAs and PAs, in their designs to simplify the

product structure, minimize the discrete components, reduce design complexity, and

cut the time to market. This new design methodology generates significant demand

for accurate behavioral models for these blocks, since it is often the case that the

details of the circuit are proprietary and models are not provided along with the

devices. Power amplifiers are the main component of interest in this dissertation.

Through the literature review given in Chapter 2, it is found that most of the

reported behavioral models are not suitable for many practical applications. One of

the specific feature that is missing is the capability to work adaptively in a loadpull

condition. The previously proposed models deal with constant load condition (usually

50 ohm) and don’t provide the capabilities to adjust the model behavior with respect

to varying source and load impedances. On the other hand, engineers tend to study

these off-shelf components under different load conditions to optimize their designs.

Therefore, there is a gap between the academic research results and many practical

applications.
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Large-signal scattering function theory provides an elegant solution to this prob-

lem by studying the nonlinear effects of the amplifier under realistic driving signals.

Specific instrumentations have been developed to generate this kind of model. Since

the limit access to the instrument, this theory hasn’t been widely accepted yet.

The primary focus of this dissertation is to come up with a practical and low-cost

behavioral modeling technique based on the widely available measurement systems

(in this research, the loadpull measurement systems are of interest). The main feature

that is pursued is the capability to predict the loadpull performances of IC blocks.

The proposed modeling technique is based on loadpull gain and phase compres-

sion measurements. AM-AM measurement under various load conditions is a common

routine in current loadpull measurement systems. However, AM-PM loadpull mea-

surement hasn’t received as much attention. It is found in this dissertation that this

information is important for deriving accurate behavioral models to predict the non-

linear effects of power amplifiers. By incorporating these two measurement datasets

in the modeling process, it is possible to create a behavioral model that can capture

the load-related nonlinearities of a power amplifier.

Three example behavioral models are developed using this technique. The first

two models are derived from loadpull AM-AM and AM-PM measurements. The

performance of the derived models are compared with simple large-S21 models. Ac-

cording to the results, the new models provide better prediction of gain compression

at different load conditions than the large-S21 models do. By applying a file-based

model, the models can reproduce the intermodulation products. The capability of

the large-S21 models predicting the IM3 performance is, however, limited.

The third example model is given as a demonstration on how to create an abstract

behavioral model from a circuit-level model. The example model is derived from

the simulated loadpull AM-AM and AM-PM datasets. It is verified under different
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conditions, including 50 ohm gain and phase compression, one-tone loadpull and two-

tone loadpull simulations. The results show good agreements between the simulated

datasets from the circuit-level model and the abstracted behavioral model.

The second problem this dissertation tackles is to improve the loadpull model de-

veloped in Chapter 4 to include the memory effect modeling capability. As presented

in the literature review, the current memory effect modeling techniques haven’t taken

into account the load-related gain and phase compression performance of a power

amplifier. Most of the models can only work properly in one load condition, typically

50ohm. When the load is changed, it is very likely that the models will fail.

To fix the problem, one can simply add a load-aware nonlinear model, like the

one proposed in Chapter 4, and combine it with the linear block. The new model

assumes the same two-box structure. The resulted model can be flexible enough to

be applied in varying load situations. One important assumption for this modeling

technique is that the linear memory effect is independent on the load conditions,

which is confirmed through the simulation result of an LDMOS circuit model.

An example behavioral model is derived based on a LDMOS circuit model simula-

tion results. The upper and lower ACPRs are simulated and compared with different

behavioral models. According to the example results, the loadpull model with the

memory effect captured shows its advantage in predicting the spectral regrowth and

ACPR, compared with the traditional two-box model as well as the CW loadpull

model.

6.2 Recommendation for future studies

Although the proposed modeling technique has solved some problems, there are

still lots of areas that can be improved.
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First of all, the proposed modeling technique is based on the loadpull AM-AM

and AM-PM measurements. According to the analysis of the modeling technique

given in Chapter 4, only the fundamental tones at the input and output ports of the

power amplifier under study are correlated through the incident and scattering wave

variables. No harmonics are taken into account during the model creation process.

Therefore, the resulted model, even though being capable of predicting the com-

pression properties correctly, cannot predict the time domain input and output signal

correctly. The time domain signal predicted by the model will be a perfect sinusoidal

signal. However, the actual time domain signals at the input and output ports are

no longer sinusoidal signals when the input signal is high. They are composed of

multiple harmonics, depending on how hard the device is driven.

One approach to re-create the distorted time-domain signal is to take the higher

harmonics into account at both the input and output ports, just like the large-signal

scattering function modeling technique proposed in [47, 71]. Harmonic loadpull mea-

surement may be useful towards this improvement. The improvement comes at the

cost of increasing complexity in the model and the required measurements, which also

makes the model difficult to be derived and applied in practical applications.

This harmonic loadpull measurements can be done through traditional loadpull

measurement systems or through the LSNA system. The LSNA system, in essence,

is an active loadpull measurement system. It offers integrated calibration and mea-

surement capabilities that are powerful and flexible to meet different requirements.

It also provides post-analysis capability to process the measured data and display in

appropriate formats. By using a LSNA, it would be easier to get a complete large-

signal scattering function model. The down-side of this approach is its high cost and

therefore limited accessability.
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The proposed loadpull memory model has been proven to be able to give better

prediction of the power amplifier performance under digital modulated signals than

traditional . The results given in Chapter 5 are based on simulation datasets. The-

oretically the memory effect is independent on the load conditions. However, this

hasn’t been verified experimentally, due to the instrument limitation. A two port

vector signal analyzer is required to verify this statement experimentally. The main

purpose to have this instrument is to sample and measure the input and output sig-

nal synchronously. Otherwise, some digital processing steps are required to align the

input and output streams.

Two steps are involved in the measurement to study the load effect on linear

memory effect. The input and output signals of the power amplifier under study

should be sampled and measured simultaneously at various load conditions. The

linear memory effect can be extracted by removing the nonlinear AM-AM and AM-

PM effects from the output signal samples. For each load condition, the corresponding

AM-AM and AM-PM compression curves measured using the CW signal is used

in the extraction process. The remaining signal after the extraction is the linear

memory effect for different load conditions. By comparing these signals, we can find

out whether the load conditions will have significant effects on the linear memory

performance. The experimental verification of the loadpull memory model will be

another area for the future study.

Currently the proposed memory effect model has a two-box structure. However,

according to [3], the two-box structure has limitations in predicting the nonlinear

memory effect, or long-term memory effect. A dynamic feedback path is required to

represent this effect attributed to electrothermal and/or bias circuitry dynamics. The

limitation of the two-box structure is one of the reason for the differences observed

between the ACPRs simulated from the new model and the circuit model. Therefore,
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it would be interesting to see how the addition of the feedback path into the model

helps improving the model performance.
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