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USE OF RANDOM SUBSPACE ENSEMBLES ON GENE EXPRESSION 

PROFILES IN SURVIVAL PREDICTION FOR COLON CANCER PATIENTS 

 

Vidya Kamath 

ABSTRACT 

Cancer is a disease process that emerges out of a series of genetic mutations that 

cause seemingly uncontrolled multiplication of cells. The molecular genetics of cells 

indicates that different combinations of genetic events or alternative pathways in cells 

may lead to cancer. A study of the gene expressions of cancer cells, in combination with 

the external influential factors, can greatly aid in cancer management such as 

understanding the initiation and etiology of cancer, as well as detection, assessment and 

prediction of the progression of cancer. 

Gene expression analysis of cells yields a very large number of features that can be 

used to describe the condition of the cell. Feature selection methods are explored to choose 

the best of these features that are most relevant to the problem at hand.  Random subspace 

ensembles created using these selected features perform poorly in predicting the 36-month 

survival for colon cancer patients. A modification to the random subspace scheme is 

proposed to enhance the accuracy of prediction. The method first applies random subspace 

ensembles with decision trees to select predictive features. Then, support vector machines are 

used to analyze the selected gene expression profiles in cancer tissue to predict the survival 

outcome for a patient. 
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The proposed method is shown to achieve a weighted accuracy of 58.96%, with 

40.54% sensitivity and 77.38% specificity in predicting 36-month survival for new and 

unknown colon cancer patients. The prediction accuracy of the method is comparable to the 

baseline classifiers and significantly better than random subspace ensembles on gene 

expression profiles of colon cancer.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Cancer is a disease process that emerges out of a series of genetic mutations that 

cause seemingly uncontrolled multiplication of cells [1,2]. The progress made in the area 

of molecular genetics in recent years has made it possible to profile the different 

combinations of genetic events or alternative pathways in cells that may lead to cancer. A 

study of the gene expressions of cancer cells, in combination with the external influential 

factors has shown promise in several areas of cancer management [1,3], such as 

understanding the initiation and etiology of cancer, as well as detection, assessment and 

prediction of the progression of cancer [3]. 

 

1.2 Overview of genetics 

The fascinating diversity of traits amongst living beings and the transmission of 

traits through generations of a species led scientists and biologists to investigate the 

nature of heredity since the late 1600s [4]. Use of science, reason and observation led to a 

series of landmark discoveries that yielded a deeper insight into the functioning of living 

beings.  Table 1.1 shows a limited list of the contributors to classical genetics along with 

their contributions to the field.  
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Table 1.1: Landmark events in the era of classical genetics [4] 

Period Contributor Contribution to genetics 

1651 William Harvey Identification of the egg as the basis of life 

1665 Robert Hooke 
Discovery of cells as the basic unit of 

organisms 

1677 Antoni van Leeuwenhoek Discovery of sperms 

1801 Erasmus Darwin 
Evolution of life based on progress, 

development and metamorphosis 

1815 Jean Baptiste Lamarck Evolution based on acquired characteristics 

1833 Robert Brown Description of the cell nucleus 

1858 Charles Darwin Evolution by natural selection 

1865 Gregor Mendel 
Law of segregation and law of independent 

assortment for peas 

1880 Eduard Strasburger Description of mitosis 

1888 Gottfried Waldeyer Discovery of chromosomes 

1890 August Weismann Description of meiosis 

1909 Wilhelm Johannsen 
Definition of “genotype”, “phenotype” and 

“genes” 

1926 Hermann J. Muller Proposal that the gene is the basis of life 

1944 
Oswald Avery, Maclyn 

McCarty, Colin MacLeod 
Establishment of DNA as genetic material  

1953 Watson, Crick Double-helix model of DNA 

 

The era of classical genetics focused on understanding the functional behavior of 

cells. Cells were identified as the basic unit of life, and chromosomes as the basis of 

individual traits of the cell. However, it was not until the era of molecular genetics that 

scientists began to investigate the structural and functional properties of the 

chromosomes.  

The discovery of deoxy-ribonucleic acid or DNA as the molecular basis of 

chromosomes ushered in the era of molecular genetics [4]. In 1953, Watson and Crick [5] 

deduced the geometric configuration of the components of DNA along a stretch of the 

molecule.  

Molecular genetics involves the analysis of the exact functioning of DNA at a 

molecular level in the transmission of traits, and sustenance of life [2,4,6]. DNA serves as 

the repository of information that determines the genetic variability of an organism. It is a 

polymeric molecule that encodes the genetic information for an organism in an 
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arrangement of nucleic acid bases along the polymer chain [5,7]. A gene is a length of 

nucleic acids which is responsible for the transmission and expression of a hereditary 

characteristic [7]. Four nucleic acid bases thymine (T), adenine (A), cytosine (C) and 

guanine (G) are arranged in a specific sequence in a gene. This sequence determines the 

amino acid sequence of the polypeptide chain synthesized through the transcription or 

expression of the gene. A gene can be treated as a sentence that gives the step-by-step 

instructions for the production of the protein [7]. Each “word” in this sentence is 

described by a sequence of three nucleic acid bases (refer to Section 1.3). 

 

1.3 Structure and function of DNA 

Structure of DNA 

 The basic molecular sub-unit of DNA consists of a deoxyribose sugar, attached to 

a phosphate molecule on one end, and one of the four nucleic acid bases on the 

other[5,7]. 

 

   

(a)      (b) 

Figure 1.1: Structure of DNA (a) Basic unit of DNA (b) DNA double helix 

reproduced with permission from: http://www.biology-online.org 

 

These basic molecular units attach to other such units at the 3’ and the 5’ position 

of the molecules, forming a long chain of polymeric molecules like “beads on a chain”. 

Base (A, G, T, C) 

0’ 

Deoxyribose sugar 

Phosphate 

2’ 3’ 

5’ 

4’ 

1’

1 
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Further, each unit can attach to another unit at the position of the nucleic acid base. These 

bases cannot undergo non-specific binding: Adenine (A) bonds exclusively with Thymine 

(T), and Guanine (G) bonds exclusively with Cytosine (C) [7]. The bonds between the 

bases bring together two polymeric DNA chains like the rungs of a ladder, with the two 

individual strands forming the parallel sides of the ladder. Due to the oblique angle at 

which each of these two types of bonds can occur, the ladder twists to form a double helix 

structure [5,7].  

 

Function of DNA 

The central dogma of molecular genetics [7] describes the three fundamental 

phases in genetic information processing: 

 

Figure 1.2: The central dogma of genetic information processing 

 

Replication 

 Biosynthesis of DNA occurs during cellular division or reproduction [7]. During 

replication, the DNA molecule functions as a template for the synthesis of two replicate 

Replication:    DNA serves as a template  

                       for additional DNA 

synthesis 

Transcription: DNA provides a template  

                       for mRNA production 

Translation:    mRNA furnishes a template  

                       for protein synthesis 

Replication 

Transcription 

Translation 

Protein 

RNA 

(working template) 

DNA 

(master template) 
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molecules which are fundamentally identical to the parent DNA. During the first stage of 

replication, the double stranded DNA unwinds itself to expose two single DNA strands. 

Each of these strands serves as a template, directing the growth of the nucleotide base 

sequence for the synthesis of a new complimentary strand, from the 3’ to 5’ end of the 

single-stranded template. Each of these two new complementary strands combine with 

one of the parent strands to form the two replicate DNA molecules. This type of synthesis 

is termed “semi-conservative” [7], since the parent DNA is entirely contained in the 

product DNAs: one of the parent strands is found in one replicate molecule, while the 

other strand is found in the second replicate.  

The structural stability intrinsic to the formation of the base pairs reinforces the 

fidelity of DNA replication [7]. However, the rare occurrence of errors at the level of 

DNA replication could result in genetic mutations. Three basic types of errors may arise 

[7]: 

 

i. Substitution, or a mismatch in base pairing during the formation of the new 

complimentary strands, results in the substitution of one base pair for another at a 

particular point in the molecule.  

ii. Deletion, or the loss of a specific base pair from a particular point in the molecule 

iii. Insertion, or the addition of a specific base pair at a particular point in the molecule. 
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Figure 1.3: Process of DNA replication 

  

Transcription 

 The genetic message encoded in a DNA molecule via the nucleotide base 

sequence is instrumental in the formation of a specific protein [7]. However, DNA is not 

directly used in the formation of a protein. Instead, mRNA (messenger RNA) is first 

synthesized as a working template from the DNA master template through the process of 

transcription [7]. Hence, the genetic information contained in DNA is transfered to the 
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mRNA molecule via the process of transcription. Only one of the complementary DNA 

strands may be used in transcription at a time, depending on the gene being transcribed 

[7]. Synthesis of mRNA proceeds just like in DNA replication. However, the RNA base 

Uracil (U) is used instead of the DNA base Thymine (T). Once synthesized, the newly 

formed mRNA molecule is released from the DNA template, which then resumes its right 

handed helical form. The newly formed mRNA is then transported to the cytoplasm of the 

cell, the site of translation [7]. 

 

 

 

 

 

 

 

 

Figure 1.4: Transcription and translation; images reproduced with permission from 

Dennis O’Neil, copyright©2005 by Dennis O’Neil 

 

Translation 

The synthesis of a protein molecule from an mRNA template occurs through the 

process of translation [7]. A protein is synthesized by translating the mRNA nucleotide 

base sequence into the amino acid sequence of a primary polypeptide by means of a 4-

letter, 64-word genetic code (Figure 1.5). Each triplet (or codon) in the mRNA sequence 

of bases gives instruction for one amino acid to be included into a growing polypeptide 
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chain [7]. Thus, the linear arrangement of codons along the mRNA template dictates the 

types and the linear arrangement of amino acids in the final protein product[7].  

A ribosomal complex within the cell aids in setting the phase of the genetic 

message. Reading of the mRNA template occurs here, and protein synthesis proceeds 

along the 5’ to 3’ direction. [7]. As the genetic code is read at the ribosomal level, each 

codon is recognized by a particular transfer RNA (tRNA) molecule. This tRNA transports 

the amino acid specified by the codon to the site of protein synthesis.  

 

 

 

 

 

 

 

 

 

 

Figure 1.5: The genetic code [7] 

 

Initiation of protein synthesis occurs at the AUG codon or the start-word by 

activating the ribosomal complex to set the phase of translation [7]. Subsequently, the 

ribosome shifts one triplet down the mRNA in the 3’ direction during translation and the 

2nd Position 1st 

Position 
(5` end) U C A G 

3rd Position 
(3` end) 

U 

 

Phe 

Phe 

Leu 

Leu 

 

Ser 

Ser 

Ser 

Ser 

Tyr 

Tyr 

STOP 

STOP 

Cys 

Cys 

STOP 

Trp 

U 

C 

A 

G 

C 

 

Leu 

Leu 

Leu 

Leu 

 

Pro 

Pro 

Pro 

Pro 

His 

His 

Gln 

Gln 

Arg 

Arg 

Arg 

Arg 

U 

C 

A 

G 

A 

 

Ile 

Ile 

Ile 

Met 

 

Thr 

Thr 

Thr 

Thr 

Asn 

Asn 

Lys 

Lys 

Ser 

Ser 

Arg 

Arg 

U 

C 

A 

G 

G 

 

Val 

Val 

Val 

Val 

 

Ala 

Ala 

Ala 

Ala 

Asp 

Asp 

Glu 

Glu 

Gly 

Gly 

Gly 

Gly 

U 

C 

A 

G 



 9 

appropriate tRNA brings the amino acid encoded by the new codon into position. This 

process continues until one of the three stop-codons (UAA, UAG, or UGA) is 

encountered [7].  

The initiator codon-ribosome complex partitions the mRNA base sequence into 

codons to determine the reading frame of the translation [7]. A phase-shift mutation 

(DNA deletions and insertions) in the gene modifies this reading frame. For example, 

Figure 1.6 shows three ways in which the genetic code could be read, depending on the 

position or phase of the first base pair. Addition or deletion of a base pair from the 

genetic sequence changes the sequence of the base pairs translated, and this can radically 

change the protein structure [7].  

 

 

 

 

Figure 1.6: Phase shift in the reading frame of the genetic code 

1.4 Cancer 

1.4.1 Cancer vs normal cells 

Reproduction through cell division is essential for body growth and tissue repair. 

Cells that are constantly sloughed off the surface, such as cells of the skin and intestinal 

lining, reproduce themselves almost continuously [2]. The initiation signals for cell 

division are not fully understood, but surface-volume relationships are deemed to be 

important [1,2,6]. The volume of a cell dictates the amount of nutrients needed for the 
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cell to survive. The need for nutrients grows in proportion to the size of the cell. 

However, the cell surface of the plasma membrane gradually becomes inadequate to 

transfer nutrients to the cell and flush the waste products out of the cell. When the cell 

reaches such a critical size, cell division is initiated to produce two daughter cells that are 

each smaller in size. Cell division is also influenced by other mechanisms including 

availability of space, and chemical signals such as growth factors and hormones released 

by neighboring or distant cells [6]. Normal cells employ the phenomenon of contact 

inhibition to stop proliferating when they begin touching. When cells break free from 

these normal controls of cell division, they begin to divide wildly thus turning into cancer 

cells [1,2,6]. 

It is estimated that four to seven mutational events must occur between an initial 

normal state and a final stage of malignancy of a cell [1]. For example, some epithelial 

cancers, such as skin cancer and colon cancer, follow a sequence that includes [2,6]: 

i. Hyperplasia (“increased numbers of regularly arranged normal cells” [2])  

ii. Dysplasia (“increased numbers of normal cells with some atypical cells and some 

abnormal arrangement of cells but with no major disturbance of tissue structure” [2])  

iii. Carcinoma-in-situ ( “a severe form of dysplasia, with numerous atypical cells, major 

disturbance of tissue structure but no invasion of surrounding tissue” [2]) 

iv. Invasive cancer (“spread of altered cells derived from one tissue into adjacent different 

tissues” [2]).  

The risk of developing invasive cancer at the site of a dysplastic lesion is greater 

than developing cancer from normal tissue, and the risk of invasive cancer developing 

from a carcinoma-in-situ lesion is greater that developing it from a dysplastic lesion. 
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Table 1.2: Characteristics of normal vs cancer cells [6] 

Normal Cells Cancer Cells 

• Reproduce themselves exactly 

• Stop reproducing at the right time 

• Stick together in the right place 

• Become specialized or 'mature' 

• Self destruct if they are damaged 

• Reproduce continuously 

• Don't obey signals from other neighboring cells 

• Don't stick together 

• Don't become specialized, but stay immature 

• Don't self-destruct or die if they move to another part of the body 

Alteration of cell behavior that transforms the cell from normal to cancerous is 

permanently maintained and transmitted to descendant generations of the cell through the 

chromosomes, the genetic component of the cell [2,6]. Normal cellular activity does not 

require all genes to be operational within the cell, however, a relatively intact set of 

chromosomes is vital. Each cell is furnished with a complete chromosome set during the 

process of reproduction, when each daughter cell receives a replica of the chromosomes 

of the parent cell. The delicate balance of the integrated genetic system may be disrupted 

is a chromosome or parts of a chromosome are lost from or added to the genome through 

some error during cell division. Such an error may have fatal consequences, not only in 

the cells affected but eventually in the whole organism [2,6].  

Cancer cells evolve along pathways that define the fate of the tumor [1,2]. Once 

transformed into cancerous cells, growth becomes more rapid, and cell types of a less 

normal nature appear in the tissue [2,6]. The ability of the abnormal cells to invade 

surrounding tissues becomes more evident. The cell then undergoes a series of 

physiological alterations that could collectively encourage malignant growth [1,2,6]. 

These changes include self-sufficiency in growth signals; insensitivity to growth-

inhibitory signals;  evasion of programmed cell death; limitless replicative potential; 

sustained angiogenesis and tissue invasion and metastasis [1,2]. 
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Figure: 1.6: Stages of development of cancer  

images reproduced with permission from: www.cancerhelp.org.uk 

 

The cancer cells are classified according to a grade based on how normal the cell 

appears to be. The more normal a cancer cell is, the lower its grade. The more abnormal 

or less well-developed a cancer cell is, the higher its grade. The sequence of events that 

cause the cells to change from dysplasia to carcinoma-in-situ to low-grade malignancy to 

high-grade-malignancy could possibly be programmed in the genetic material of the cell 

at the time of the first essential change from normal to cancerous state[1,2].  

 

1.4.2 Causes of cancer 

Mutations of genes alter the behavior of the cell that may ultimately cause the cell 

to become cancerous [1,2,6]. While innumerable factors, such as the DNA replicative 

state, the repair potential and the hormonal status of the host are likely to be promotional 

factors for cancer initiation, exposure of the cell to carcinogens is also a likely cause  of 

cancer [2]. Almost all known carcinogens have been shown to be capable of irreversibly 

binding to genetic material in receptive animal tissues. This occurs either as a 

consequence of direct chemical reaction or metabolism of reactive metabolites [2]. The 

initial event in carcinogenesis is the introduction of certain inheritable defects causing the 

cells divide incorrectly. Here, genetic material is divided disproportionately between 
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daughter cells. This results in a mixed population of cells in both cancerous and pre-

cancerous lesions that compete with each other for nutrients and survival. Selective 

survival of the most aggressive of these cells could lead to tumor progression [2].  

At least three distinct kinds of genes are important in making a cell cancerous: 

oncogenes, tumor suppressor genes and DNA repair genes [2]. 

i. Oncogenes are genes that encourage the cell to multiply. These are normal cellular 

genes that when inappropriately activated cause the cell to multiply without stopping.  

ii. Tumor suppressor genes are genes that stop the cell multiplication. These genes 

produce proteins that act to slow or regulate mitogenic activity. When these genes are 

impaired, the cell are not inhibited from multiplying uncontrollably and malignant 

progression occurs. 

iii. DNA repair genes are genes that repair the other damaged genes. They genes aid 

in detection and facilitation of the correction of errors in the genetic code.. 

 

1.5 Microarray technology for gene expression analysis 

DNA microarray chips are employed to analyze the genetic behavior of tissue [3]. 

An in-depth description of the behavior of cells may be obtained by analyzing the DNA 

of the cells. It is important to understand and locate the presence of mutations in genes 

that are important to the functioning of the cell, as well as to detect the genes that are 

active in the cell. Manual analysis of all the genes in any cell would take an 

extraordinarily long time. The time lag for such manual processing may be unacceptable 

while attempting to make decisions regarding treatment options for patients based on the 

possible genetic mutations in the tissue. Microarray technology alleviates this problem in 
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the following ways: microarray technology can follow the activity of many genes at the 

same time, compare the activity of genes in diseased and healthy cells, determine any 

mutations in a gene, and categorize diseases into subgroups while acquiring results very 

rapidly [3]. 

 

1.5.1  Techniques 

Each cell in the body ideally owns the exact copy of the entire genome as every 

other cell [2,6,7]. However, only a small set of these genes are active in any one cell, and 

the functioning of these genes aid in understanding the functioning of the cell. Directly 

measuring the DNA of a cell will not aid in quantifying the level of expression of a gene. 

However, the number of copies of each mRNA in a cell indicates the level of activity of 

the gene that corresponds to that mRNA. Labeling these copies of mRNA and counting 

them will then directly indicate the level of activity of the corresponding genes. A sample 

of the tissue may be analyzed in isolation, to understand the behavior of the cell in its 

natural environments, or the sample tissue may be subjected to two or more different 

kinds of environment in order to analyze the genetic behavior of the tissue under different 

conditions. Further, one kind of tissue may be compared with another kind to analyze the 

difference in gene expressions and activity in the two tissue types. In general, gene 

expression analysis techniques involves three major steps: preparing the DNA chip, 

carrying out the reaction and collection and analysis of data [3,8]. 
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Preparing the DNA chip 

The first step to being able to analyze the gene activity is to list out the genes that 

need to be monitored. The sequences or parts of the sequences of these genes must be 

specified. A piece of each gene is synthesized as a short strand DNA, or oligonucleotide, 

a few base pairs long (for example, Affymetrix DNA chips [8] use 25 base pairs). Each 

short strand of DNA is fixed on a tiny spot on a slide. Billions of copies of each strand are 

affixed on the same spot of the slide. Several thousand such genes may be converted into 

short strands and fixed to the glass slide for analysis. 

 

Carrying out the reaction 

 The next step is to convert the DNA of the target cell into mRNA under the 

environmental conditions being studied. If more than one environmental condition of the 

cell is used, the mRNA obtained under each condition is labeled with a fluorescent stain 

separately to make it easy to identify the level of activity under the different conditions. 

This is achieved by reverse transcribing the mRNA into complementary DNA or cDNA.  

By introducing modified fluorescent bases into the DNA during hybridization, the 

cDNA can be conveniently tagged with different colors, such as red and green, for 

different experimental conditions. The one or more sets of cDNA are then combined and 

hybridized onto the DNA chip in a special chamber. 
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Figure 1.7: Hybridization of RNA with cDNA, image reproduced with permission: 

Wosik, E. cDNA-Detailed Information, Connexions Web site. 

http://cnx.rice.edu/content/m12385/1.2/, Sep 30, 2004 

 

Collection and analysis of data 

The final step is to measure the amount of each type of cDNA hybridized to any 

spot on the DNA chip. If multiple conditions are used, not just the total amount of 

hybridization, but the relative levels of hybridization of the two types of cDNA on any 

one spot of the chip are important. Color laser scanners, one for each color used in 

tagging the cDNA, are used to scan the DNA chip. Each color scan indicates the amount  

of that color cDNA hybridized to all spots on the chip. By combining the information on 

the color scans, one can measure the relative expressions of genes under the different 

experimental conditions. The results will indicate which genes are turned on, and to what 

level of activity under the experimental conditions. Alternately, the fluorescence of a 

single color will indicate the expression level of a gene under the target conditions.  
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Oligonucleotide arrays  

Two of the several types of microarray technology available today for DNA 

analysis are cDNA, or complementary DNA chip and Short oligonucleotide arrays [8]. 

cDNA chips measure the relative abundance of a spotted DNA sequence in two DNA or 

RNA samples by assessing the differential hybridization of these two samples to the 

sequence on the array. Here, probes are defined as DNA sequences spotted on the array. 

Short oligonucleotide arrays, such as Affymetrix chips [8] on the other hand, use 

“probesets” for measurement. Each gene is represented by 6-20 oligonucleotides of 25 

base-pairs (or 25-mers). Each 25-mer is called a “probe”. Two complimentary probes are 

created for a 25-mer that has to be analyzed: A perfect match probe is a 25-mer exact 

compliment of the target probe and mismatch probe is a 25-mer, same as the perfect 

match, but with a single homomeric base change for the middle (or 13
th

) base. 

 

 

Figure 1.8: Perfect-match and mismatch probes form a probe-pair 

 

 

A perfect-match and mismatch combination for a 25-mer sequence of a gene is 

called a “probe pair”, and about 16-20 probe-pairs form a “probeset”. The addition of the 

mismatch pair to the experiment helps in measurement of non-specific binding and the 

background noise [8]. 

….TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC

TTACCCAGTCTTCCTGAGGATACACCCA

TTACCCAGTCTTGCTGAGGATACACCCA

Perfect match 

Mismatch 

mRNA reference sequence 

reference sequence 

Probeset 
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1.6 Overview of bioinformatics methods for gene expression analysis 

 Advancements in the area of molecular genetics have enabled the mapping of the 

entire human genome. About 30,000 genes of the human genome have been mapped 

today [9], and specific information regarding the genes actively expressed in various 

tissue types has made it possible to identify the normal functioning of cells in the body. 

The introduction of microarray technology allowed the analysis of several thousands of 

genes in a single experiment [8]. This explosion of information makes it possible to 

thoroughly investigate the expression of genes in tissues [3]. The genetic activity in 

normal cells could be compared with the activity in tumor cells [13], and tumors of 

different types may be distinguished [14]. Several investigators have worked towards 

mining meaningful information from the thousands of genes acquired from the 

microarray experiments in order to distinguish between various diseased conditions of 

tissues [10,11,12]. In the area of cancer management, the two main areas of research have 

been class discovery and class prediction [13]. Class discovery involves identifying 

previously unrecognized tumors, and class prediction involves present or future 

assignment of the tumor to a previously discovered tumor type. 

 Golub et al [13] analyzed two types of acute leukemia, (ALL: acute lymphoblastic 

leukemia and AML: acute myeloid leukemia), to develop a general strategy for 

discovering and predicting types of cancer. Neighborhood analysis was used to identify a 

set of informative genes that could predict the class of an unknown sample of leukemia. 

Each informative gene was used to cast a weighted vote on the class of the sample, and 

the summation of the votes predicted the class of the sample. Self-organizing maps 

(SOM) were used to cluster tumors by gene expression to discover new tumor types.  
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 van ‘t Veer et al [15,16] utilized a hierarchical clustering algorithm to identify a 

gene expression signature that could predict the prognosis of breast cancer. Two 

subgroups were created, using the clustering technique, with genes that were highly 

correlated with the prognosis of cancer. The number of genes in each cluster was then 

optimized by sequentially adding subsets of 5 genes and evaluating the power of 

prediction in a leave-one-out cross-validation scheme. Expression profiles of tumors with 

a correlation coefficient above the optimized sensitivity threshold were classified as good 

prognosis, and the rest as poor prognosis. 

 Alon et al [17] distinguished between normal and tumor samples of colon cancer 

using a deterministic annealing algorithm. Genes were clustered into separate groups 

sequentially to build a binary “gene tree”, and tissues were clustered to create a “tissue 

tree”. Genes that showed strong correlation were found closer to each other on the “gene 

tree”, and tissues with strong similarities were found close together on the “tissue tree”. A 

two-way ordering of genes and tissues was used to identify families of genes and tissue 

based on the gene expressions in the dataset. 

 Glinsky et al [14] identified an 11-gene signature that was shown to be a powerful 

predictor of a short interval to distant metastasis and poor survival after therapy in breast 

and lung cancer patients, when diagnosed with an early-stage disease. The method 

clustered genes exhibiting concordant changes of transcript abundance. The degree of 

resemblance of the transcript abundance rank order within a gene cluster between a test 

sample and a reference standard was measured by the Pearson correlation coefficient. 

 Ramaswamy et al [18] analyzed a 17 gene signature to study the metastatic 

potential of cancer cells in solid tumors. Genes were selected based on a signal-to-noise 
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metric followed by a hierarchical clustering to determine the individual correlations for 

the selected genes. The results of the algorithm were tested using Kaplan-Meier survival 

analysis techniques. 

 Eschrich et al [19] showed that molecular staging of colorectal cancer, using the 

gene expression profile of the tumor at diagnosis, can predict the long-term survival 

outcome more accurately than clinical staging of the tumor. A feed-forward-back-

propagation neural network was used with 43 genes to predict the molecular stage of a 

tumor sample. 

  

1.7 Outline of the thesis 

 While the main goal of the study is to develop a classifier scheme using a random 

subspace ensemble to improve the accuracy of survival prediction for colon cancer 

patients, it is essential to have a fundamental understanding of the microarray gene 

expression data and methods generally used to analyze this data. Chapter 2 describes the 

microarray gene expression data used in the study.  

 Chapter 3 introduces the general method used to analyze gene expression data, 

including feature selection and classification. A brief description of some of the 

algorithms used at various stages of the analysis is given. The chapter concludes with a 

description of methods used to evaluate and measure the performance of the classifiers. 

 Chapter 4 introduces the concept of random subspaces and describes three 

methods of creating random subspace ensembles, highlighting the merits and demerits of 

each method. 
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 Chapter 5 describes the experiments conducted with feature selection methods and 

the various baseline classifier experiments on the colon cancer gene expression dataset. A 

detailed description of the experiment with random subspace ensembles is presented next. 

The chapter is concluded with a verification of the results. 

 Finally, a discussion on the proposed method, its merits and potential 

improvements are presented in Chapter 6, followed by conclusions from the study.   

 In addition to the experiments with colon cancer data, the proposed method was 

tested on datasets with different clinical measures (leukemia and gender). A description 

of these experiments is presented in the Appendix Section A. 
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CHAPTER 2 

 

GENE EXPRESSION DATA FOR ANALYSIS OF COLON CANCER 

Colorectal cancers are the second most common cause of cancer-related deaths in 

developed countries and the most common GI (gastro-intestinal) cancer [20]. Colon cancer 

develops as polyps in the intestinal wall, and could progress slowly to a severe stage cancer if 

left unchecked. A common and well-accepted method of clinical staging of colon cancer is 

the Duke’s classification (Table 2.1) of colon cancer [2,6]. However, Duke’s staging system 

has been shown to be inadequate in determining prognosis for patients diagnosed with stages 

B or C of colon cancer [19]. Molecular staging, on the other hand has shown promise in 

predicting prognosis for patients based on the gene expression profile of the tumor [19]. 

 

Table 2.1: Dukes classification (modified by Turnbull) [2] 

Stage Description 

A Limited to bowel wall 

B Extension to pericolic fat; no nodes 

C Regional lymph node metastasis 

D Distant metastasis (liver, lung, bone)  

 

The goal of this study is to analyze gene expression patterns to predict the 36 month 

survival rate for colon cancer patients. The samples used for the study were categorized 

based on the patient prognosis of cancer rather than the clinical staging. Samples were 

classified as good prognosis cases if the patient survived greater 36 months, and bad 
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prognosis if the survival was less than 36 months. Thus all patient used for the study had to 

have been followed for at least 36 months.  

121 samples of colorectal adenocarcinoma were selected from the Moffitt Cancer 

Center Tumor bank and include 37 samples with bad prognosis and 84 samples with good 

prognosis.  The samples included all four Dukes stages of colon cancer. The evidence of 

survival, as well as patient information such as family history of cancer, and treatment 

history was acquired from the cancer registry. Each tissue sample used for the microarray 

analysis was taken during surgical resection of the tumor from the primary site of tumor and 

verified as adenocarcinoma of the colon by a pathologist. 

The gene expression microarray used to analyze these tumor cases was the 

Affymetrix Human Genome U133 Plus 2.0 Array [8]. Each microarray experiment measured 

the expression levels of 54675 probesets (refer to Section 1.5.1). These expression levels 

were normalized using the Robust Multichip Average (RMA) [21] method to yield features 

values in log-2 scale for analysis.  
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CHAPTER 3 

 

METHODS FOR GENE EXPRESSION ANALYSIS 

3.1 Introduction 

DNA microarray analysis generates information about the level of expression of 

genes in a target cell or tissue type [3,8].  Normal and cancerous cells are expected to exhibit 

differential expressions of certain genes. For example, abnormally high levels of expression 

of oncogenes, that ordinarily regulate the multiplication of cells [1,2], could indicate a 

tendency of the cell to proliferate without control. The genes that are instrumental in the 

onset and progression of cancer are likely to be expressed differently than in normal tissue, 

with alterations in their expression levels as the cancer progresses. Identifying these 

differentially expressed genes, and analyzing their expression patterns as the cancer 

progresses will aid diagnosis and prognosis of cancer.  

Microarray gene expression analysis involves studying the expression patterns of the 

genes across varying environmental conditions of the tissue, such as tumor cells treated with 

different types of drugs or radiation therapy, or across the different stages of development of 

the cancer [22]. The aim of these analyses is to identify a set of genes that are reliably 

expressed differently across the different stages of cancer. However, most microarray 

experiments yield a very large number of features for analysis [8] . In practical situations, it is 

reasonable to assume that only a subset of these features truly represent the distinction 

between the stages of cancer, as well as between cancerous and normal tissues. Hence, 
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methods to reduce the dimensionality of the feature set are used in the first stage of analysis, 

to obtain a minimum useful set for classification. This feature selection may be done in a 

supervised or unsupervised manner [23]. While supervised techniques use the underlying 

class information to select features, unsupervised techniques use empirical evidence in the 

data to decide whether or not a feature would aid classification. 

In general, classifiers are used to analyze a set of samples and separate them into 

groups, such that the characteristics of each group reflect the characteristics or features of the 

individual samples of the group. These defining features are governed by the context of 

analysis. In practical situations, even when the best feature set is used, it is often difficult to 

identify features that unambiguously separate groups from one another, as well as predict the 

classes of new samples. Hence, classification methods aim at uncovering patterns that best 

describe the distinction between these groups. These patterns are learned from training 

samples and later used in predicting the class of new and unseen samples. 

 

 

 

 

 

 

Figure 3.1: A typical setup for microarray gene expression analysis 

  

Thus, a typical microarray gene analysis experiment would follow the steps shown 

in Figure 3.1. The first stage in analyzing gene expressions is to select a limited set of 

Input: 
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Feature Selection: 

 
Pick a set of features 

that will aid 

classification 

Classifier: 

 

Build a classifier to 
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the classes, using 

the selected features 

Microarray expression analysis 
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features that would aid the classification stage in identifying the important patterns that 

distinguish between the classes. The features that may confuse the classification are 

dropped from consideration. A classifier is then built to learn patterns from these selected 

features in order to distinguish between the classes or conditions under consideration.

 The knowledge gained by this classifier in learning the patterns from the training 

samples is evaluated to ensure that the patterns may be generalized to unseen samples. A 

measure of performance of the classifier will indicate the expected performance of the 

classifier in predicting the class of an unseen sample. 

  

3.2 Supervised feature selection 

Supervised feature selection methods use the underlying class information of all 

the samples to make a decision regarding the importance of a particular feature in 

distinguishing between the classes. Statistical techniques such as the student’s t-test [24] 

and survival analysis [25,26], which attempt to capture the biological relevance of a 

feature, are used to retain a minimal set of features that would be best able to distinguish 

between the classes. 

 

Student’s t-test 

The student’s t-test is used to determine whether the means of two groups are 

statistically different from each other [24]. This analysis assumes normally distributed 

data, with mean, µ and variance, σ. The two groups for comparison are created by varying 

one or more features that characterize the samples. The aim of the t-test is then to 
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determine if the distribution of the samples changes due to the variation of the feature/s, 

and if so, whether the change can be detected easily.  

The null hypothesis for a t-test is that the two groups are not different from each 

other, and hence have the same mean. A t-statistic is computed from the samples of the 

two groups and is treated as “evidence” for or against the null hypothesis. The computed 

statistic is compared to a standard measure to decide whether to accept or reject the null 

hypothesis. Strong evidence for being able to detect a difference between the two groups 

would suggest rejection of the null hypothesis. 

 

 

 

 

 

 

 

Figure 3.2: Formulation of the t-test; reproduced with permission from: 

http://www.socialresearchmethods.net/kb/stat_t.htm  

 

Figure 3.2 shows the distributions of two groups with individual means. In a basic 

sense, the distance between the two means can be used as a measure of difference 

between the groups, and gives an indication of the distinction between the groups. 

However, as shown in Figure 3.3, the distinction between the groups may be influenced 

by the relative spread of the two groups.  
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  (a)                (b)         (c) 

Figure 3.3: Three cases with equal difference in means (a) medium variability  

(b) high variability (c) low variability; reproduced with permission from: 

http://www.socialresearchmethods.net/kb/stat_t.htm 

 

Thus, a true measure of the difference between the two groups can be obtained by 

computing a score that measures the difference between their means relative to the spread 

or variability of their distributions.  

The t-statistic is computed as the ratio of the difference between the two means 

and the standard error of the difference:  

 

 

 

 

The t-statistic indicates the ease of distinguishing between two groups in presence 

of variability due to the inherent variability of the data or noise in measurement. A 

standard t-statistic is computed based on the degrees of freedom available and 

significance level desired for the test. A significance level (α), commonly set at 0.05 

indicates that 5 times out of 100, a significant difference between the means could be 

found merely by chance, even if there was none. The computed t-statistic is compared 

with the standard t-statistic to obtain a p-value for the test. The p-value indicates the 

probability of making an error in distinguishing between the two groups.  
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 A p-value of less than the α-level indicates that the difference between the two 

groups is statistically significant, and hence, the null hypothesis is rejected.  

The ability of each feature in the microarray dataset to predict the classes for new 

samples can be examined using the described t-test. The p-value for each feature is 

univariately computed at a significance level α=0.05. All features with p-values less than 

0.05 are considered by convention to have statistically significant power to discriminate 

between the two groups of patients.  

 

Survival analysis 

When dealing with problems in cancer research, a common endpoint is 

determining whether a patient will survive for a certain period of time. Here, “death” is 

considered to be an event and survival analysis [25,26] attempts to model the time-to-

event, to predict the fraction of the population that could survive past a certain time. Of 

those that survive, the analysis tries to predict the rate at which these patients would fail 

or die. Survival models may be viewed as ordinary regression models where the response 

variable is time.  

However, this analysis also needs to account for missing data or information on 

patients who could not be followed for the entire duration of the study for various 

reasons. This introduces the concept of censoring in survival analysis [25]. It may be 

known that a patient had colon cancer, but died at an unknown time before data collection 

began. This is known as left censoring. Right censoring occurs when a patient may have a 

date of death at a future unknown date. When a sample is both left and right censored at 

the same time, the sample is said to interval censored. Another possibility of an 



 30 

incomplete event is delayed-entry, when the patient does not enter the study until a certain 

event occurs.  

Kaplan-Meier (KM) curves [25,26] are used to plot the probability of survival of 

the population against intervals of time. For each interval, the survival probability is 

computed as the ratio of the number of patients alive at that time point with the number of 

patients at risk. All patients who are alive and reached the time point are considered to be 

“at risk”. Patients who either die before the time point or are “lost” for the study are not 

counted as “risk” patients. “Lost” patients are censored. Further, patients who have not 

yet reached the time point are not considered as “risk” patients.  

 The probability of survival to any point is estimated from the cumulative 

probability of surviving each of the preceding time intervals. This formula, also known as 

the Kaplan-Meier Product-Limit formula [25] is given by: 

 

                        where    n: total number of cases, 

            

 

Figure 3.4: A sample Kaplan-Meier curve 
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 The computation thus far has been shown on a single group of samples. In DNA 

analysis for prediction of survival for colon cancer patients, two groups of samples are 

used: a group that survived less than 36 months, and a group that survived greater than 36 

months. Survival curves for both of these groups may be shown on a single graph. The 

next task is then to determine whether or not these two KM curves are statistically 

equivalent.  

 

Figure 3.5: Comparison of two sample K-M curves using log-rank test 

 

The log-rank test [25] can be used for this purpose. This test is basically a large 

sample chi-square test that uses as its test criterion a statistic that provides an overall 

comparison of the two KM curves.  

where   Oi observed score for the group i

   Ei expected score for the group i 

 

∑
−++

−−++
=−

j jjjj

jjjjjjjj

ii
nnnn

mmnnmmnn
EOVar

)1()(

))((
)(

21

2

21

21212121
 

 

where     nij is the number of samples in group mij ; i, =1,2 

)(

)( 2

ii

ii

EOVar

EO
statisticrankLog

−

−
=−−

Survival Cluster (in months) 

Month 

S
u
rv

iv
al

 D
is

tr
ib

u
ti

o
n
 Cluster 1 

Cluster 2 

P < 0.001 

Log rank test 



 32 

Under the null hypothesis that the two KM curves are statistically equivalent, the 

log-rank test statistic is approximately chi-square with one degree of freedom [25]. Thus, 

a p-value may be obtained at an α (say 0,05) confidence level from the chi-square 

distribution tables. At p-values less than the confidence level α, the null hypothesis is 

rejected, and hence the two curves are considered to be statistically different. 

The features of the microarray gene expression data with significant p-values from 

the log-rank test are retained as features useful in discriminating between the two classes 

of patients, divided based on survival times.  

 

3.3 Unsupervised feature selection  

Unsupervised feature selection does not use any a priori information regarding the 

class information or distribution of samples amongst the classes in order to select 

features. Many unsupervised feature selection methods analyze some statistical 

measurement made on the samples in order to identify a small set of features that help in 

separating the samples into distinct groups. A feature is selected based on the strength 

that demonstrates its ability to separate the samples into the required number of classes. 

These methods may be categorized as quantitative methods and qualitative methods. The 

quantitative methods use statistical quantities such as the expression level or a measure of 

variability to reduce the feature set, while the qualitative method attempts to identify 

features that are relevant to the problem at hand. 
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Expression level threshold 

While conducting a microarray gene expression analysis experiment, a minimum 

level of hybridization of cDNA to the DNA chip is required to reliably translate the 

activity of the gene to an expression level. This imposes a lower limit on the level of gene 

expression that may be considered useful for detection and analysis [8]. The expression 

level threshold method of feature selection can be used to reduce the number of features 

for classification based on a minimum expression level for each feature. However, it is 

difficult to find a crisp cut-off value for this threshold, and it is possible to find at least a 

few samples that have expression levels that are marginally higher than the threshold. 

Thus, it may not be possible to eliminate a feature based purely on the expression level 

below a threshold. A second limitation must then be imposed to successfully eliminate 

features. This limitation will only allow a feature to be eliminated if at least a pre-

determined percentage of the samples display expression levels below the threshold 

value. Thus, feature selection by expression level threshold is parameterized by two 

threshold values: t, the expression level threshold and p, the threshold for minimum 

percentage of samples below t.  

This method of feature selection will aid in identifying the features with 

meaningful gene expression levels and would potentially aid in classifying the samples 

into the relevant classes.  

 

Measures of variability 

Features that tend to have similar values for samples belonging to different classes 

exhibit low variance across samples of both classes. Since classifiers attempt to learn 
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patterns that can distinguish samples of distinct classes, features with low variance rarely 

aid in classification. Researchers have often used the 2-fold expression change as a 

measure of variability [30]. However, this approach has been questioned. In general, 

measures of variability are used to select a set of features that display sufficient variability 

between classes. Parametric or non-parametric measures of variability may be used, 

depending on the distribution of the expression levels of the features.  

 

Statistical variance: Measure of variability 

Statistical variance [24] is a parametric measure of variability. This measure 

assumes a normal distribution of the feature values, with a mean µ and variance σ [24]. 

Mathematically, the statistical variance is defined as: ∑
=

−−=
N

i

i NYYs
1

22 )1/()( , where Y  

is the mean of the data, and N is the number of samples. It can be observed that the 

variance is roughly the arithmetic average of the squared distance from the mean. 

Squaring the distance from the mean has the effect of giving greater weight to values that 

are further from the mean. Thus, although the variance is intended to be an overall 

measure of spread, it can be greatly affected by the tail behavior, or the values at the 

extreme ends of the distribution. 

Feature selection may be achieved using the statistical variance measure of 

variability by discarding all features that exhibit a variance lower than a pre-determined 

threshold across all the samples. The retained features would be better suited to aid 

classification than the discarded features. 
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Median of absolute deviation from the median  

A non-parametric measure of variability is the median of absolute deviation from 

the median (MAD) [24]. Mathematically, MAD is defined as:  

|)(| YYmedianMAD i

)
−=  

where Y
)

 is the median of the data and |Y | is the absolute value of Y.  

Since the median is at the middle of a distribution, the value is not as sensitive to 

the values at the extreme ends or tails of the distribution as are the mean and variance. 

Further, since the computation of MAD does not use the sample size, the MAD value is 

expected to be a stable measure of variability, especially in the case of small sample sizes.  

Feature selection using MAD involves discarding all features that exhibit MAD 

values below a pre-determined threshold. As described earlier, such features with low 

variability across classes are considered to be ineffective in predicting the underlying 

classes, and hence can be safely eliminated from consideration. 

 

Selection of biologically relevant genes 

For several decades, researchers across the world have been studying the genetic 

behavior of cancer [1,2,3,10,11,12]. Attempts have been made to pinpoint gene mutations 

that may be strongly indicative of the cancerous nature of cells, as well as genes that are 

predictive of cancer progression [10,11,12]. It is reasonable to assume that these genes, 

when over or under expressed in a cancerous tissue, would exhibit expression 

characteristics that are significantly different from genes that are not associated with the 

presence or progression of cancer.  
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A careful analysis of the characteristics of these “cancer-related” genes could 

yield an insight into the behavior of genes that control the progression of cancer. Hence, 

these genes could be identified [27,28,29] and separated from the rest of the genes in the 

microarray dataset based on the expression patterns. 

 

3.4  Classifiers for gene expression analysis 

Some of the classification methods that have been used for gene expression 

analysis include Neural Networks [31,32,33], Support Vector Machines [31,34], and 

Decision Trees [31,35]. The following sections review the basic methodologies of each of 

these classifiers that will be used to baseline performance measurement for the analysis of 

the colon cancer gene expression data to predict survival.  

 

3.4.1 Feed-forward back propagation neural network  

A neural network is a massively parallel distributed processor [31,32,33] made up 

of simple processing units. It resembles the brain in two respects: 

i. Knowledge is acquired by the network from the environment through a learning 

process.  

ii. Inter-neuron connection strengths, known as synaptic weights, are used to store 

the acquired knowledge. 

A feed-forward-back-propagation neural network [31]typically consists of at least 

three layers. The first layer is the input layer followed by one or more layers of hidden 

units or computational nodes, ending in a layer of output nodes. The learning algorithm 

employs a forward pass and a backward pass of signals through the different layers of the 
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network. The forward pass involves the application of an input vector to the sensory 

nodes of the network. The effect of this input vector is propagated through the layers of 

the network, producing a response at the output layer of the network. While the weights 

of the nodes are fixed during the forward pass, they are adjusted according to an error-

correction rule during the backward pass.  This error signal is computed by subtracting 

the actual response of the network from a desired or target response. The error signal is 

then propagated backward through the network against the direction of synaptic 

connections, adjusting the weights to make the actual response of the network closer to 

the desired response. 

 

 

Figure 3.6: Architecture of feed-forward-back-propagation neural network 

 

3.4.2  Support vector machines  

Support vector machines are algorithms which use linear models to represent non-

linear boundaries between classes [31,34]. Input feature vectors are transformed into a 

higher dimensional space using a non-linear mapping. Hyperplanes are defined in this 

high dimensional space so that data from any two class categories can always be 

Input layer 

I0 

I1 

I2 

I3 

I4 

O0 

O1 

Hidden layer Output layer 

Processing units 



 38 

separated. The hyperplane that achieves the highest separation of the classes is known as 

the maximum margin hyperplane and generalizes the solution of the classifier.  

 

 

 

 

 

Figure 3.7: A maximum margin hyperplane in a support vector machine [31] 

 

The maximum margin hyperplane is completely defined by specifying the vectors 

closest to it. These vectors are called support vectors. Since these vectors have the 

minimum distance to the plane, they uniquely define the hyperplane for the learning 

problem. Thus, the maximum margin hyperplane can be completely reconstructed given 

these support vectors, and all other training instances can be deleted without changing the 

position and orientation of the hyperplane.  

 Consider a simple two-class problem with two attributes or features, a1 and a2. A 

hyperplane separating the two classes may be written as: 

22110 awawwx ++=  

where the three weights, wi are to be learned. 

This may be expressed in terms of the support vectors. Suppose we define a class 

variable y with a value 1 if it belongs to class 1 else -1.  
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Then, the maximum margin hyperplane is defined as: 

∑ •+= aiaybx ii )(α  

where: yi  :  the class value of the training instance a(i) 

b, αi : the numeric parameters that have to be determined by the learning    

     algorithm: these parameters determine the hyperplane 

 a : vectors representing the test instance 

 a(i) : support vectors 

 a(I)•a : dot product of the test instance with one of the support vectors 

 

The support vectors are the training samples that define the optimal separating 

hyperplane and are the most difficult patterns and also the most informative patterns for 

the classification task. A constrained quadratic optimization technique is used to learn the 

parameters b and αi [34]. 

 

3.4.3  C4.5 decision trees 

Decision trees are learning algorithms that employ the “divide and conquer” 

strategy [31]. Decision trees are constructed by creating nodes at various levels by testing 

certain attributes. The first step is to select an attribute to be placed at the root node. At 

every node, a comparison of an attribute value with a constant is made. When using 

discrete attribute data, this makes one branch for each possible value of this attribute. 

This process splits up the samples into subsets for each value of the attribute. 

The process is then repeated recursively for each branch, using only those samples 

that reach the branch. When a node attribute cannot split the samples into any more 
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subsets, a leaf node is created. Leaf nodes give a classification that applies to all samples 

that reach the leaf.  

An unknown sample is classified by routing it down the tree according to the 

value of the attributes tested in successive nodes. When a leaf is reached the instance is 

classified according to the class assigned to the leaf.  

 

 

 

 

  

Figure 3.8: Structure of a decision tree 

 

The structure of a decision tree is governed by the rules used to select the attribute 

to split on, at each node or branch. Given a set of attributes to choose from, the best 

choice for splitting the data is the attribute that produces subsets of samples that are most 

distinct from each other. This choice is made by measuring the purity of the daughter 

nodes at each split [31]. The best decision is made when the purest daughter nodes are 

created. 

 

The C4.5 algorithm: 

C4.5 [31] is a variant of the basic decision learning approach that uses the concept 

of information gain as a measure of purity at each node. The information gain can be 
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described as the effective decrease in entropy resulting from making a choice as to which 

attribute to use and at what level. 

entropy(pi) = -pilog(pi) 

 where pi = (# samples at node i)/(total samples at parent node) 

For each attribute that is tested as a potential splitting attribute, the entropy of the 

subsets created by the split is measured and compared to the entropy of the system prior 

to the split. The attribute that yields the maximum information gain by splitting the 

dataset is chosen as the best split or test attribute. By considering the best attributes for 

discriminating among cases at a particular node, the tree can be built up of decisions that 

allow navigation from the root of the tree to a leaf node by continually using attributes to 

determine the path to take [31]. The decision tree can be simplified using pruning 

techniques to reduce the size of the tree according to a user-defined level. Pruning will 

yield decision trees are more generalized [31]. 

 

3.5 Evaluation of classifiers 

The task of machine learning is to “learn” or acquire knowledge about input data. 

This can be achieved by looking for and describing patterns in the input data. This 

acquired knowledge can be then used to predict patterns in unseen samples. The quality 

of knowledge gained in this process is determined by the samples used to train the 

system. The samples have to be representative of all characteristics that may be 

encountered to ensure that predictions on unknown samples are accurate. It should also be 

ensured that the machine learning system infers the correct patterns in the data. Methods 

to evaluate and predict performance on seen and unseen data help in ensuring this. 
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While measuring the performance of a learning algorithm, a measure of the 

success rate, or alternately, the error rate is used [31]. This is measured by comparing the 

results of classification on each of the training samples to the actual class to which the 

sample belongs. Thus, the success rate will indicate how well the algorithm has learnt the 

characteristics of the training samples. However, this gives no indication as to how the 

algorithm will behave when asked to predict the class of a new and unknown sample. The 

error in prediction may also be computed by testing the classification of test samples. If 

these test samples are taken from the same pool of data that was used for training, the 

measured success rate will be highly optimistic [31], and will not realistically indicate 

future performance. It is therefore necessary to set aside a set of samples that will not be 

used for training, but used for testing purposes only. 

Generally in DNA analysis problems, the number of samples available for 

inferring gene activity and mutation is very small in comparison to the number of features 

available [3,8]. Separating a set of samples for testing will further reduce the number of 

samples available for training the learning algorithm. While it is beneficial to have a good 

size test set to rigorously test the prediction accuracy of the classifier, it is equally 

important to ensure that the samples used for training are representative of the population. 

A set of samples is generally held out as a completely independent test set while the rest 

are used for training. A smaller set from these training samples may be held out as a test 

set while training the classifier. Training and test performances are measured on this set 

to tune the learning algorithm. The independent test set is then used to validate the 

performance of the algorithm. Several methods have been used to address this issue [31]. 
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A simple validation method is a hold-out procedure [31] that involves dividing the 

dataset into a fixed number of partitions. All but one partition is used to train the 

classifier and the left-out partition is used for testing. The training-and-testing procedure 

is repeated enough number of times (called folds) so that each partition is used as a test 

set exactly once. This method is known as Cross-Validation [31], and a variable number 

of partitions may be used depending on the number of samples available. Ideally, the 

samples in each partition should represent a proportional selection of samples from all the 

classes under consideration to ensure that the classifier learns all the classes equally well, 

and is not over-trained on any one class. 

Leave-One-Out-Cross-Validation (LOOCV) [31] leaves out a single sample for 

testing, while training on the rest. This method is useful when a very small number of 

samples are available, since it increases the number of train-test procedures that can be 

performed. However, this method does not ensure that the classifier learns all the classes 

well. Since only one sample is used to test the prediction accuracy in each fold, the 

classifier may predict the majority class for each sample, and still achieve high prediction 

accuracy. Further, this method of cross-validation may be computationally expensive. 

A reasonable method of cross-validation is stratified n-fold cross-validation [31]. 

The sample set is divided into n partitions such that each partition is stratified in 

proportion to the number of samples in each class. This ensures that each the classifier is 

trained proportionally well to learn all the classes. Further, each test set will require the 

classifier to predict all classes, yielding a more realistic measure of the classifier 

performance. Although ‘n’ can take any value, n=10 has been experimentally shown in 

literature to achieve the a reasonable estimate of error [31]. 
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Figure 3.9: 10-fold cross-validation scheme 

 

3.6 Accuracy of classification 

In the context of predicting the survival time for patients with colon cancer, the 

performance of a classifier can be evaluated using a confusion matrix, as shown in the 

Table 3.1. 

Table 3.1: Confusion matrix 

 
                              Classified As 

True condition 
Short term survival (positive) Long term survival (negative) 

Short term survival (positive) 
True Positive 

(a) 

False Negative 

(b) 

Long term survival (negative) 
False Positive 

(c) 

True Negative 

(d) 

 

The most common measure of performance is the accuracy of classification, 

defined as: 
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Accuracy is a good measure to use if samples are distributed equally amongst both 

the classes. However, in cases where an unequal distribution of the samples may be 

expected, a weighted accuracy computation will yield a better estimate of how well the 

classifier performed in both the classes. 

 

Weighted Accuracy: 2/








+
+

+ dc

d

ba

a
 

 

While dealing with clinical information however, measures of sensitivity and 

specificity [36] are used to gauge the performance in each class separately. 

 

Specificity: 
ba

a

+
       Sensitivity: 

dc

d

+
 

 

Here, it can be observed that sensitivity is merely the probability that the patient 

will survive less than 36 months, given that the classifier predicted short term survival. 

Specificity is the probability that the classifier will predict long term survival given that 

the patient survived greater than 36 months. 

  Sensitivity is also the true positive rate and specificity is the true negative rate. 

Weighted accuracy reports the average of these rates, and hence may be used as a 

convenient measure to evaluate the performance of the classifier.
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CHAPTER 4 

 

RANDOM SUBSPACE ENSEMBLES FOR GENE EXPRESSION ANALYSIS 

 

4.1  Introduction 

Traditionally, classifiers have been used to uncover patterns from input features 

that can explain the observed characteristics of the samples, as well as make predictions 

on unseen samples [13-19]. The training stage uses a set of samples drawn from a larger 

population. If the total number of observed features that describe the population is very 

large, feature selection methods can be used in an attempt to pick a small set of features 

that adequately describe the patterns of differences between the classes in the population. 

Since the classifier learns these patterns from a limited set of features describing limited 

samples, there is a risk associated with over-training the classifier, or over-fitting the 

patterns to the samples at hand [31]. If the samples chosen for training do not adequately 

represent the population, the patterns learned would be specific in identifying these 

samples, and hence may not be general enough to identify or predict classes of unseen 

samples. The patterns learned could also be highly dependent on the features used to train 

the classifier. If a different feature set was used for training, a different set of patterns 

could be learned. With different configurations of learning parameters, different 

classifiers would be created. Some of these classifiers could be successful in accurately 

predicting classes of unknown samples, while others could have varying degrees of 

weaknesses depending on the feature set used to train the classifier. Further, use of 
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different sets of features may help in identifying different types of patterns, all of which 

may be important in completely describing the population. Random subspace ensembles 

[35] may be used to take advantage of this variation in performance due to different 

selection parameters in order to create a classification scheme that performs better than 

any single classifier [35]. 

  

4.2 Random subspace ensembles 

The goal of creating ensembles of classifiers is to combine a collection of weak 

classifiers into a single strong classifier [35]. One way to create ensembles of classifiers is 

to divide the entire space of features into subspaces.  Each subspace is formed by 

randomly picking features from the entire space, allowing for features to be repeated 

across subspaces. If enough such random subspaces are formed the subspaces may 

optimally represent all the important features in the subspaces.  

 

  

  

 

 

 

 

 

 

 

Figure 4.1: Creation of random subspace ensembles 
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One classifier is trained on each random subspace of features, using all the 

training samples. Thus, each classifier is built on one random projection of the feature 

space. A large number of such classifiers are created. If each classifier were tuned to learn 

a few characteristics of the population, then a judicious ensemble of these classifiers 

would be better at identifying samples from the entire population than any one classifier. 

Depending on the characteristics learned by each classifier, different kinds of 

ensembles could be created. Voting techniques used on ensembles typically assume that 

all the random subspaces created are useful in some way in describing the classes. 

Alternately, if some of the random subspaces are found to be ineffective in describing the 

classes, while some others are very effective, then an ensemble could be created by using 

only the effective subspaces, while discarding all other subspaces. 

 

4.3 Voting techniques to create random subspace ensembles 

 A general approach to the combination of random subspaces in an ensemble is the 

use of the majority voting technique [35]. Here, all the classifiers created are retained for 

use. Since each classifier is built from a random subset of the feature space, a single 

classifier may learn only a small section of the characteristics of the population. If the 

entire feature space is assumed to be important in describing the population, then each 

classifier created plays a role in describing the population. When a new and unknown 

sample from the population has to be analyzed, each classifier is considered to be equally 

capable in classifying the sample.  
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The majority voting technique uses each classifier to individually predict the class 

of a new sample. Then, a simple majority vote amongst the predictions is used to decide 

the final classification of the sample.  

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Random subspace ensemble classifier using the majority voting technique; 

here the number ‘c’ of trees built is varied from 1 to 2000  

 

 An alternate voting technique is to use weighted majority voting instead of a 

simple majority. In this technique, the classifiers are not considered to learn equally well. 

While all classifiers are assumed to play a role in describing and distinguishing the 

patterns of the classes, some classifiers are deemed to be better at classifying samples 

than others. These “better” classifiers are given a higher weight in the voting, while the 

“poorer” classifiers are given a lesser weight. As in the simple majority voting case, all 

the random subspace classifiers are used to individually predict the class of a new and 

unseen sample. The quality of the classifier in predicting the class is typically defined by 

the field of application. The individual predictions are weighted by the quality of the 

classifier, before computing the majority class prediction. The majority class from the 

weighted vote is used as the prediction for that sample. 
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4.4 Selection of good subspaces  

 The voting techniques to create ensembles of classifiers, described in the previous 

section, work well when most of the features are useful in describing the characteristics of 

the population. In typical gene expression analysis problems, the number of features used 

for classification is very large. Although feature selection methods help in reducing the 

number of features for classification, these methods cannot ensure that every feature 

considered for classification is indeed important for prediction. It is reasonable to assume 

that in gene expression analysis problems, a subset of random subspaces may be created 

that are completely ineffective for classification. Including these ineffective subspaces in 

the ensemble may bias the classification in an undesirable manner. Hence, one approach 

to creating a good ensemble of classifiers is to discard these subspaces from consideration 

altogether. Alternatively, a small set of effective classifiers may be retained for creating 

the ensemble classifier.  

 Consider a set of random subspaces of ‘r’ features selected from a set of ‘a’ 

features. If the number ‘c’ of random subspaces created is large enough to cover the 

feature space sufficiently, allowing for features to be repeated across subspaces, then at 

least a few subspaces are likely to include a majority of the “good” features. An effective 

classifier can be created by picking only these random subspaces with the “good” 

features.  

 A simple method to identify a good random subspace is to estimate the accuracy 

of the subspace in predicting the classes of a set of samples. Each random subspace is 

trained on a set of samples, such that the classifier learns patterns from this set in order to 

make class predictions on unseen samples. Hence, the quality of a random subspace can 
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be assessed by determining the prediction accuracy of the subspace classifier on test 

samples. In addition to this measure of quality, a random subspace may be assessed on 

the accuracy of learning the training samples. Although optimistically biased [31], 

training accuracy of a classifier reflects the ability of the classifier to learn the patterns of 

classes from the given training data. Classifiers built on subspaces that have a large 

number of good features should be able to learn predictive patterns better than classifiers 

built on poorer features. Hence, selecting a random subspace that has a combination of 

good classifier testing and training accuracies should ensure an overall more accurate 

classifier ensemble. 

 In order to estimate the accuracy of the selected feature subspace, the gene 

expression dataset is split into three separate subsets of samples. These are the 

independent test set (10% of the total samples), the training set (81% of the samples), and 

the validation set (9% of the samples). The random subspace classifiers are built on the 

training set (81%) and each classifier is tested on the samples in the validation set (9%). 

The performance of a classifier on the validation set, along with its training accuracy, is 

used to determine the predictive quality of the classifier. A classifier is chosen as the best 

random subspace classifier based on the condition of the highest validation set accuracy 

and in case of ties, a secondary condition of the best training accuracy is used. The 

features used by this classifier are selected as good features for the task.  

To ensure that the selection process is relatively independent of the samples used 

for training, the gene expression dataset is split into the training and validation subsets in 

many different ways, so as to create different combinations of samples for training and 

validation. Consider 10 different ways of creating these subsets. The procedure of 
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selecting features, described above, is repeated for each of these 10 sets of data. Thus, for 

each of the 10 sets of training and validation samples a set of features is selected that can 

best describe 81% of the samples, and is tested by predicting the classes for 9% of the 

samples. The union of these 10 sets of selected features describe 90% of the samples 

(81% training samples+ 9% validation samples). The ability of this union of features to 

predict the class of unknown samples is tested with the help of the samples held out as the 

independent test set (10% of the samples). A classifier is built using these features by 

training on the 90% of the samples (81% training and 9% validation). This classifier is 

used to predict the class of each independent test sample. The weighted accuracy (see 

Section 3.6) of these predictions would indicate the expected performance of the 

classifier in predicting the class of new samples. 

To further ensure that the prediction accuracy is not particularly tuned to the 

combination of training, validation and independent test samples, the gene expression 

dataset is split into these three subsets in several different ways. Consider 10 different 

ways of creating these subsets. Each of the 10 ways yields a weighted accuracy of 

prediction on the 10% of the independent samples for that set. The individual sample 

predictions on all 10 independent test sets are used to create the confusion matrix for the 

classifier scheme (see Section 3.6), and the weighted accuracy of the classifier scheme is 

computed from this matrix as a measure of performance. 

In an experimental setup (Figure 4.3), this described procedure may be achieved 

by using a 10-fold cross-validation scheme. To illustrate the use of the described 

procedure on a gene expression dataset, consider a hypothetical gene expression dataset 

with 1000 samples and 50,000 features (probesets). Each fold of the 10-fold cross-
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validation creates an independent test set with a distinct 100 samples (10%), and a 

training set with 900 samples (90%). An additional 10-fold cross-validation performed on 

each 900-sample training set, provides 810 samples (81% of the overall samples) for 

training, and 90 samples (9% of the overall samples) for validation. Therefore, for each of 

the 10 sets of the data (the 10 folds), 100 samples are held out as an independent test set, 

and 10 internal sets, each with different combinations of 810 training and 90 validation 

samples, are created from the 900 training samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Classification scheme for selecting good subspaces 

 

 

For each training set of 810 samples, a preliminary feature selection using a t-test 

is performed, and the best 5000 features, ranked according to significant t-test p-values 

(see Section 3.2), are retained for use. Random subspace classifiers are created on these 

810 training samples using the selected 5000 features. Consider creating 100 random 

subspaces that have each been created by randomly picking 200 features from the 5000 
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input features. For each random subspace of 200 features, a single decision tree is built by 

training on all of the 810 samples. The decision tree selects, from this random subspace 

of 200 features, the best features to distinguish between the classes. The prediction 

accuracy of each decision tree (random subspace classifier) is tested on the corresponding 

90 validation samples. 

Each of the random subspace classifiers is trained on the same set of 810 samples 

and tested on the same set of 90 samples, and the classifier with the highest validation set 

accuracy and training accuracy is selected. The features used by the selected classifier are 

identified. 

This procedure of selecting good features is repeated on each of the 10 sets of 810 

training and 90 validation samples for a given fold of the data, yielding 10 possibly 

distinct sets of good features. The union of these features is then used to train a single 

classifier on the 900 samples (90%; the 81% training and 9% validation samples 

combined), and tested on the 100 held-out independent test samples (10%).  

This process is repeated for all 10 folds. The individual predictions on all the 

independent test samples are used to create the confusion matrix (see Section 3.6) for the 

system. The weighted accuracy computed from this matrix estimates the expected 

performance of the classifier scheme in predicting the classes of new samples. 
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Figure 4.4: Scheme to select good features for classification with 

typical values of the random subspace parameters (a,r,c) for a given 10-fold cross-validation specified in parenthesis  
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CHAPTER 5 

 

RESULTS  

 

5.1  Introduction 

The colon cancer gene expression dataset, described in Chapter 2, was used to 

create classifiers to predict survival prognosis for patients. First, supervised and 

unsupervised feature selection methods were explored to choose the best method for 

predicting survival. A series of baseline classifier experiments were conducted using the 

basic experimental scheme described in Section 3.1. Random subspace ensembles were 

created using the majority voting technique as well as the proposed technique of selecting 

“good” classifiers (Chapter 4). The performance of these random subspace ensembles was 

compared to the baseline classifier performance. Finally, the results were further tested 

and verified in a series of additional experiments. 

 

5.2  Supervised feature selection  

T-test 

A t-test was used on each feature in the training dataset at a significance level of 

α=0.05. The null hypothesis for the test was that the mean expression level for the two 

prognosis groups was equal. A feature was considered to be significant in predicting 

survival for a colon cancer patient if the p-value for the feature, as determined by the t-

test was less than 0.05.  



 57 

# features retained at a t-test p-values

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

t-test p-value

#
 f

e
a

tu
r
e
s 

r
e
ta

in
e
d

 

Figure 5.1: Number of features with a specified t-test p-value 

 

Figure 5.1 shows the significance of the features in distinguishing between the 

two classes for all the samples, at the 0.05 level. All features with p-values less than 0.05 

were considered to be significant for prediction, and features with lower p-values were 

considered to be stronger predictors than features with higher p-values. There were 5901 

features found to be predictive features for classification. Since the t-test could aid in 

selecting a small number of features that were highly significant for prediction, the test 

was found to be a good feature selection technique for predicting survival for colon 

cancer patients. This test aided in reducing the number of features for classification, while 

ensuring that the retained features were indeed strong predictors of survival. 

 

Survival Analysis: 

The dataset was analyzed with respect to the two classes using the survival 

analysis techniques described in Section 3.2. Two Kaplan-Meier survival curves were 

5901 features significant at level 0.05 
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plotted for each feature, one curve for each of the two classes. A feature was considered 

effective in predicting survival if the survival curves for each of the two classes were 

statistically different. A log-rank test was used at the significance level of 0.05 to test if 

the survival curves were significantly different. All features with log-rank p-values less 

than 0.05 were considered to significant in predicting survival times for the patient. 

 

# features retained at a log-rank p-value 

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

log-rank test p-value

#
 f

ea
tu

re
s 

re
ta

in
ed

 

Figure 5.2: Number of features with a specified log-rank test p-value for comparing 

Kaplan-Meier curves of the two survival classes 

 

 

It can be observed from Figure 5.2 that only 4676 features in the experiment 

demonstrate the ability to predict survival. Hence, when censored samples are expected to 

be included in the experiment, survival analysis could be a reliable feature selection tool.  
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5.3 Unsupervised feature selection 

Quantitative Methods: Expression Level Threshold 

Low expression levels recorded during microarray analysis may be attributed to 

noise in measurement or other undesirable effects. Feature selection by expression level 

threshold was used to eliminate features that seemed to arise from sources other than 

expression of genes. The experiment was parameterized by the threshold value t  (3.5 <= t 

<= 14.5) for the expression level and the threshold p (85% <= p <= 100%) for minimum 

percentage of samples below t. The goal of this experiment was to identify an operating 

pair (t,p) such that a maximum number of non-informative features were discarded.  
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Figure 5.3: Graph of the number of features retained as the two threshold values 

of expression level and minimum percentage value are varied 

 

Figure 5.3 shows the number of features retained at each point (t,p). It can be 

observed that the number of discarded features remains fairly constant as ‘p’ is varied 

from 85% to 100% for most values of ‘t’. Also, the number of discarded features drops 

very slowly for lower values of  ‘t’, making it difficult to clearly identify a threshold that 
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could distinguish between informative features and noise. Given the difficulty in selecting 

appropriate threshold values, as well as the insignificant drop in the number of features at 

low threshold values, the method was not considered as a suitable feature selection 

method for gene expression analysis. 

 

Quantitative Methods:  Measures of Variability 

The statistical variance method of feature selection was used to eliminate features 

that did not have high enough variability to be useful for classification. All features with 

variances below a cut-off threshold t ( 0.05 <= t <= 8.0) were considered for elimination.  
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Figure 5.4: Graph of the number of features retained as the threshold for 

variance is varied 

 

Figure 5.4 shows that a large number of features may be dropped with values of t 

<0.5. The selection of a threshold for variance could be made by either choosing the 

desired number of features for classification, or simply by the value of the variance. In 

either case, care has to be taken to ensure that truly predictive features are not dropped 
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from consideration. The p-values of a t-test at significance level of 0.05 were used to 

determine if any predictive features were eliminated. The filter based purely on variance 

does not take into account the effects of central tendency, such as the mean value, as the 

t-test does. Hence, at each threshold value of variance below 0.5, at least 25% of the 

eliminated features were found to be predictive, thereby rendering this feature selection 

method ineffective for the purpose of classification.  

Feature selection with MAD was used to eliminate features with low variability. 

All features with MAD values less than a threshold t (0.05 <= t <= 3.5) were considered 

to be ineffective for classification and therefore removed.  
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Figure 5.5: Number of features retained as the threshold for MAD values is varied 

 

Figure 5.5 shows that a large number of features may be dropped with values of 

0.1 < t < 0.5. Here, the threshold could be chosen by specifying the desired number of 

features for classification, or by choosing an optimal value of variability below which the 

classifier would not be able to distinguish between classes. As described in the section on 

the experiments with statistical variance, a t-test at significance level of 0.05 was used to 
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determine if predictive features were eliminated due to the MAD threshold value. At each 

threshold value t < 0.5, at least 25% of the eliminated features were found to be 

predictive. Thus, feature selection with MAD was not found to be useful for gene 

expression analysis. 

 

Qualitative Methods: Selection of biologically relevant genes 

A careful list of all genes associated with cancer was created to study the 

characteristics of expression levels in known cancer genes [27,28,29]. A total of 5687 

cancer related genes, described by 9149 probesets, were used for this experiment (refer to 

Section 1.5.1).  

 In order to determine if the cancer-related genes had any distinctive expression 

patterns in the colon cancer dataset, a smoothed histogram of the mean expression levels 

of these probesets was compared to the smoothed histogram of the mean expression 

levels of all the probesets in the dataset. To make a fair comparison of the curves, each 

histogram was normalized for the number of probesets used. If the cancer related genes 

were expected to have distinctive characteristics, then the two histograms would show 

different characteristics in terms of spread and central tendencies. 

However, as shown in Figure 5.6, both histograms have very similar 

characteristics. It can be inferred from the graphs that the set of cancer-related genes that 

were used for this analysis do not display characteristics that are significantly different 

from genes that are not associated with cancer progression. Thus, a study of the gene 

expression patterns of cancer-related genes would not aid in identifying the most 

predictive features for classification. 
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(a)  

Histogram of mean expression levels of cancer genes
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(b) 

Figures 5.6: Histogram of the mean level of gene expressions across all samples 

(a) all genes (b) cancer-related genes 

 

 

5.4  Baseline experiments with colon cancer gene expression data 

The gene expression data for prediction of survival for colon cancer patients was 

used to conduct three main experiments with three different classifiers: Neural Networks, 

Support Vector Machines and C4.5 Decision Trees. Each experiment was setup as a 10-

fold cross-validation, with the t-test as the feature selection method. The top a features 

(100<= a <= 10000) from the entire dataset were selected within each fold of the cross-

validation to avoid pre-selection bias [31]. Since the distribution of the samples across the 

two classes was not balanced, the weighted accuracy (see Section 3.6) of each experiment 

was computed as a measure of success. 
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Figure 5.7: Basic classifier block for the baseline gene analysis experiment  

the parameter a was varied (100 <= a <= 1000) 

 

 

Since the parameter a could take on several different values, the accuracies of the 

classifier for each value of a (100 < a < 10000) was explored, to determine the optimal 

configuration of the classifier scheme. 

The Neural Network used for this experiment was Quickprop [33], a fast 

implementation of the Feed-forward-back-propagation network described in Section 

3.4.1. The network was designed with 10 hidden units and two output nodes. The training 

of the classifier was designed to halt either when the net error dropped to zero, or in 500 

epochs [33]. The Support Vector Machine experiments used the implementation in 

WEKA (31). A linear kernel was used with standard normalization. The USF 

implementation of C4.5 decision trees [35] was used to test the accuracies of single 

decision trees at the various parameter settings.  
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Figure 5.8: Performance of baseline classification schemes 

 

 Figure 5.8 shows that none of the baseline classifiers were able to achieve 

weighted accuracies higher than 58.47%. For all three classifiers, the highest accuracies 

were achieved when 3000-4000 features were used. This suggests that the best features 

for prediction are in the top 4000 features of the t-test p-values. The observation is 

supported by the results of feature selection with t-tests, which indicate that the top 4000 

features are highly significant in prediction. As lower numbers of features are used the 

accuracies drop possibly due to inadequate features to represent the sample 

characteristics. As higher numbers of features were used, the useful features start being 

overwhelmed by the non-predictive features, resulting in inaccurate classifiers.  
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5.5 Majority voting to create ensembles 

Random subspace ensembles were created using the majority voting technique 

described in Section 4.3. The basic classifier block shown in Figure 5.9 was used in the 

10-fold cross-validation scheme (refer to Figure 3.9) to create a single ensemble classifier 

from a set of classifiers built on random subspaces within each fold. A t-test was used on 

the training samples within each fold to choose the best ‘a’ features for classification   

(100 <= a <= 1000). Random subspaces were created by picking features randomly from 

this set of selected features. Individual decision trees were built on each random subspace 

and used to predict the class of each test sample. The actual class of each test sample was 

decided based on the majority prediction of all the trees within the fold. The confusion 

matrix for the final classifier was created by using the predictions of all the test samples. 

The weighted accuracy computed from this matrix was used as a measure of performance 

of the classifier. 

 

 

 

 

 

 

 

Figure 5.9: Basic classifier block to create random subspace ensembles using majority 

voting technique (used within the 10-fold cross-validation scheme, Figure 3.9); see Table 

5.1 for experimental values of parameters (a,r,c) 
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Several experiments were conducted for the various values of the design 

parameters, random subspace size (r), number of random subspaces (c) and the number of 

features used for classification (a). The values of these parameters used for the 

experiment are listed in Table 5.1. 

 

Table 5.1: Range of parameters used for majority voting technique  

using random subspace ensembles 

Parameter Description Min value Max value 

a Top features selected from t-test 5000 10000 

r Size of random subspace 50 2000 

c Number of random subspaces/trees 1 2000 

 

If all the features selected from the t-test feature selection stage are predictive in 

nature, a random subspace ensemble created using a majority voting technique is 

expected to yield higher accuracies as a larger number of subspaces are created (refer to 

Appendix Sections A.1 and A.2 for details). A larger number of subspaces of a given size 

ensure better coverage of the feature space, and hence the ensemble of classifiers is 

expected to learn the patterns in the samples more accurately.   
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Figure 5.10: Random subspace ensembles (a=5000,r=200,c)  

vs single decision tree (a=5000,r=200,c=1) 
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The weighted accuracy of ensembles created with varying values of (a,r,c) were 

compared to the accuracies of single classifiers created from a single random subspace 

(a,r,c=1). It can be observed from Figure 5.10 that, contrary to the expected outcome, 

there is a decrease in accuracy as the number of random subspaces is increased. This 

indicates that a large number of the random subspaces created are probably not very 

effective in describing the sample classes.  

In order to investigate the nature of these subspaces, the decision tree built on 

each random subspace was tested on the 10% held-out test samples from a single 90%-

10% split of the data. The weighted test accuracies of these subspace classifiers were 

analyzed to identify the subspaces that represented the sample classes well, and those that 

did not. 

 

Figure 5.11: Weighted test accuracies of 2000 random decision trees 

 

Figure 5.11 shows the spread of the weighted test accuracies of 2000 decision 

trees created from random subspaces of size 200 features from the top 5000 t-test features 
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(random subspace parameters are (a=5000, r=200, c=2000)). If the top 5000 features as 

determined by the p-values of a t-test at significance level 0.05 are predictive in nature, 

and the combination of these features is also predictive, then all random subspaces 

created from these 5000 features would be expected to perform accurately. However, less 

than 7% of the 2000 random subspaces created were found to have accuracy higher than 

80%.  

An analysis of the training accuracies for each decision tree for the corresponding 

test accuracies indicated that while a few random subspace classifiers seemed to have 

learned the training samples well, the performance on test samples was poor. Only a few 

subspace classifiers had been able to learn the training samples well and were able to 

generalize the knowledge enough to predict classes of test samples accurately (Fig 5.12). 

 

 

 

 

 

 

 

 

 

Figure 5.12: Weighted training and testing accuracies of  

100 random classifiers built from random subspaces 
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5.6 Selection of good subspaces  

Figures 5.11 and 5.12 indicate that only a small subset of the random subspaces 

generated on the input features are effective for prediction. The classifiers created on 

random subspaces that generate high test and train accuracies simultaneously are 

considered as good classifiers. The basic scheme to select good subspaces or features is 

described in Section 4.4. A 10-fold cross-validation scheme was used to split the 121-

sample colon cancer gene expression dataset (see Chapter 2) into 10 sets of training 

(90%) and independent test (10%) sets. For each fold, an additional 10-fold cross-

validation created 10 sets of training samples (81%) and validation samples (9%). A t-test 

was used on each of the 81% training sets to select the best 5000 features from the total of 

54675 features, ranked according to the t-test p-values at the significance level of 0.05. 

200 features were picked randomly from this set of 5000 features to create a random 

subspace. 100 such random subspaces were created. For each random subspace, a single 

decision tree was built on the training samples (81%), and the training accuracy was 

recorded. The decision tree was tested on the 9% validation set. The decision tree with 

the highest validation accuracy and the highest training accuracy was selected as the best 

classifier for that training and validation set of samples. The features used by this tree 

were selected as good features for the sub-fold.  

Each of the 10 training and validation sets for a selected fold produces a set of 

good features. The union of these features sets was used to train a single classifier on the 

90% training samples for that fold. This single classifier was tested using the independent 

test set (10%) to estimate the prediction accuracy. Ten such classifiers were built, one for 

each fold of the cross-validation scheme. The predictions of these classifiers on the 
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individual independent test samples were collectively used to create the confusion matrix 

for the classifier scheme. The weighted accuracy of prediction for the classifier was 

computed from this matrix. 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Classification by selection of good subspaces 

  

Experiments were performed with three different classifiers (neural networks, 

support vector machines and decision trees) for prediction, using the scheme shown in 

Figure 5.13.  

58.96 58.2

54.36

0

10

20

30

40

50

60

Support Vector Machines Neural Network Decision Trees

W
e
ig

h
te

d
 a

v
e
r
a

g
e
 a

c
c
u

r
a

c
y

 (
%

)

 

Figure 5.14: Weighted accuracies of neural networks, support vector machines and 

decision trees; these classifiers were trained on the union of the best features created by 

selecting good random subspaces (Section 5.6) 
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 Support vector machines were found to achieve the highest accuracy and the use 

of decision trees resulted in the poorest accuracy of prediction. The performance 

measures for the best classifier are listed in Table 5.2. 

 

Table 5.2: Confusion matrix for the performance of the support vector machine trained on 

the union of the features created by selecting good random subspaces 

(LT: survival less than 3 years, GT: survival greater than 3 years) 

 

 

 

 

 

 

 The classifier was used to predict one of two classes for each test sample. These 

two classes (survival less than 3 years and survival greater than 3 years) were used as two 

groups to draw survival K-M curves. The p-value for the log-rank test to compare the 

curves indicates that the two predicted classes are significantly different from each other. 

As can be observed in Figure 5.15, the percentage of patients surviving across time in the 

poor prognosis class (LT) decreased at a higher rate than the patients in the good 

prognosis category (GT). While the survival curves are significantly different when using 

a survival cut-off point of 36 months, a clear cut-off in the survival values cannot be 

observed for the two classes. Hence, a more optimal cut-off point in survival may yield 

better accuracy of prediction.  

LT GT 
Classified as 

                          True class  

15 22 LT 

19 65 GT 

      

Weighted accuracy  58.96 % 

Total accuracy  66.12 % 

Sensitivity  40.54 % 

Specificity 77.38 % 
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Figure 5.15: Survival curves for the predicted classes; the survival curves are statistically 

different at significance of 0.05 as determined by a log-rank test  

 

Analysis of features used by the classifier 

The t-test was used to select the best features for prediction on 81% of the 

samples. Since this selection was repeated on a different set of 81% training samples each 

time, a different set of features may be selected for use depending on the patterns of the 

training samples within the classes, with a minimum of 5000 unique features selected 

across the entire experiment. A larger number of unique features would indicate that the 

predictive strength of the features varied depending on the samples used for training. A 

total of 24998 unique features were selected by the t-tests across all the folds. This 

suggests some features were found to be predictive only when specific samples were used 

for training. 

The random subspaces were created by picking 200 features randomly from the 

best 5000 features determined by the t-test. Decision trees, built on these random 
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subspaces, selected the best of these 200 features to create the tree. Each tree on an 

average used 10 features selected from the random subspace. Since the 10 features sets 

were used to create the union of features for classification, it is expected that between 10 

and 100 unique features would be used by a single classifier. The entire classifier scheme 

including 10 such classifiers used a total of 744 features. Hence, each classifier used an 

average of 74.4 unique features. 667 of these 744 features used for classification were 

found to be unique. 

Features that are truly predictive would ideally be found to be the best features 

across multiple folds of the cross-validation scheme. Figure 5.16 shows the repetition of 

features across three or more folds using the classifier described in Section 5.6. Since 

these features were selected as predictive features for various combinations of training 

samples, they are expected to be the most predictive for the samples used in the study. 
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Figure 5.16: Repetition of features across two or more folds 

of the cross-validation scheme 
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5.7 Verification of results  

 In order to help verify the results of classification, a few additional experiments 

were performed to test the effect of randomization of the samples and the features 

subspaces on classification accuracy.  

The proposed method uses randomization of the samples into train and test sets at 

each fold of the cross-validation, and in the creation of the training and validation sets. 

Further, the random subspaces select features from a pool at random, with a few 

repetitions of the features. The reliability of the classifier results can be ensured if the 

results are repeated with different random selections at every stage. 

 To investigate the reliability of the classifier scheme, a series of experiments were 

conducted to vary the configuration of the samples and feature subspaces. The first 

experiment was a re-run of the experiment three times with constant parameters for the 

entire classifier scheme. Since the parameters for partitioning of the data into the various 

training, validation and independent test sets split the samples into exactly the same 

configuration for each of these experiments, the only source of variation in results was the 

randomization in creation of subspaces.  

Three additional experiments were conducted to change the parameters of the 

cross-validation schemes. In the first of these experiments, the initial random seed used to 

create the split of samples into the independent test and train sets was varied. The second 

of the experiments varied the split of samples into the training and validation sets, and the 

third experiment varied both the splits simultaneously.  
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Figure 5.17: Variation in the weighted accuracy for prediction of survival for colon 

cancer with changes in randomization of the samples and feature subspaces; the 

accuracies reported here are the averages of experiments for each randomization 

 

It can be observed from Figure 5.17 that the weighted accuracy from the 

verification experiments varies by 3.36%, indicating that the classification scheme is 

relatively stable in spite of changes in the samples used for training. 

 The next step in verifying the stability of the classifier is analyzing the features 

used for classification by each experiment. Repetition of features used would indicate that 

the feature selection at the random subspace stage was relatively invariant to the 

randomization of samples and subspace generation. Figure 5.18 shows the number of 

features that were used by a total of 8 experiments, including two experiments with 

randomization of the subspaces, and two each for the randomization for splitting the data 

into the various test, train and validation sets. It can be observed that several features 

were repeatedly picked as the best predictors in spite of the various randomization effects 

in the verification experiments. 
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Repetition of features across folds
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Figure 5.18: Number of features repeatedly selected as the most predictive features across 

all the experiments to test variability of results 
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CHAPTER 6 

 

DISCUSSION AND CONCLUSION 

 

6.1  Discussion  

The proposed classifier scheme using random subspace ensembles, described in 

Section 5.6, achieved a weighted accuracy of prediction of 58.96% for colon cancer 

microarray data. Several features used by the classifier in the final prediction of samples 

were found to be repeated across at least three folds of the cross-validation scheme. 

Further, the survival times for each predicted class for this classifier were found to be 

significantly different (Figure 5.15), indicating that the features used for prediction are 

collectively predictive in nature for the colon cancer gene expression data.  

 

 

 

 

 

 

 

Figure 6.1: Survival curves for two genes, split on the median, repeated across three folds 

in the classifier scheme described in Section 5.6 
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Figure 6.1 shows two survival K-M curves and the corresponding log-rank tests 

for two of the features that were repeated across three folds of the cross-validation 

scheme. Since these features were picked as the most predictive features in three of the 

folds, they would be expected to be individually predictive. However, Figure 6.1 indicates 

that while the K-M curves for feature B are significantly different, indicating good 

predictive value for the feature, the K-M curves for feature A are not significantly 

different. This suggests that although the selected features may not be individually 

significant in prognostic value, a set of features in combination could be good for 

prediction of survival. The goal of the classifier is then to select an optimal set of features 

that can collectively predict the outcome of colon cancer in terms of survival. 

Although the proposed method using random subspaces improved the weighted 

accuracy (Sections 5.5 and 5.6), the success of any of the classifiers generated is clearly 

not optimal. This could indicate that the colon cancer dataset probably includes sub-

groups of patients within each of the survival groups. These sub-groups may exhibit 

unique characteristics that are not sufficiently described by the group as a whole. In other 

words, the two survival groups could likely be heterogeneous in gene expression 

characteristics. The voting technique to create random subspace ensembles would work 

well in simple cases (refer to Appendix Sections A.1 and A.2) where the groups for 

classification consist of homogeneous gene expression characteristics. While working 

with a more complex or heterogeneous set of samples, the simple voting technique would 

confuse the classification since all the sub-groups would not be adequately represented. In 

such cases, the proposed technique of selecting the best feature subspaces across multiple  
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folds may work well by generalizing the feature space to include a majority of the sub-

groups within the training samples.  

 

Future work 

The classifier scheme of creating random subspace ensembles, by selection of the 

best feature subspace, has been shown to work at least as well as the baseline experiments 

in the task of predicting 36-month survival for colon cancer patients. However, Figure 

5.15 suggests that a dichotomization on survival time points other than 36 months may 

lead to a more accurate classifier. The proposed method could be used with other survival 

time thresholds, to investigate the split of the training samples for highest accuracy of 

prediction.  

Further, the configuration of the random subspaces used with C4.5 decision trees 

was selected based on the results of the baseline experiments. Experimentation with 

variations of the configuration would help in identifying a potentially more accurate 

classifier scheme and selection of features that are more robust in survival prediction. The 

described method used the random subspace classifier with the best validation and 

training accuracy for selection of features. Selection of multiple subspaces rather than a 

single best random subspace may enhance the accuracy of survival prediction by 

including better descriptors of the classes. 

In the description of the proposed method, C4.5 decision trees have been used 

with the random subspaces to select good features for classification. Support vector 

machines or neural networks were used with these good features to train on the training 

samples. These classifiers were used for prediction of classes for new samples. Use of the 
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same type of classifier at the feature selection stage as well as final classification could 

yield a simpler model. However, the effect of such a model on the accuracy of prediction 

may be assessed only through experimental evidence. 

 

6.2 Conclusion 

Gene expressions of cancer tissue at different stages of development are expected 

to have unique signatures. Identification of these signatures would aid in prognosis of 

cancer, and prediction of long-term survival for the patient. Gene expressions of colon 

cancer tissue were studied for the purpose of predicting 36-month survival for the cancer 

patient. Microarray technology enables analysis of gene expressions by generating 

information for thousands of genes. A t-test was used to select a set of the most promising 

features for prediction. Random subspace ensembles created using these selected features 

yielded poor accuracy in survival prediction for the colon cancer data. A modification to 

the random subspace technique was proposed, that selected the most accurate feature 

subspace amongst all the random subspaces, created as the most predictive features. 

These predictive features were used by support vector machines to classify samples into 

two survival groups with a weighted accuracy of 58.96 %. The accuracy of this classifier 

was shown to be comparable to any of the baseline classifiers tested on the same dataset 

in predicting the class of new and unknown samples. Further, the method was tested on 

other gene expression datasets (see Appendix Sections A.1 and A.2) and shown to work 

with prediction accuracies comparable to the accuracies of the baseline classifiers.
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Appendix A:  Application of the proposed method on various gene expression  

   datasets 

 

 

  The proposed method has been applied to the analysis of the gene expression of 

colon cancer in order to predict survival. The method was shown to work with prediction 

accuracy comparable to other classifier schemes discussed in the literature. In order to test 

the merit of the proposed method on analysis of gene expression profiles, the method was 

used to analyze two datasets with different class characteristics. The first dataset used was 

the publicly available leukemia dataset [13], with two main classes: ALL (acute 

lymphoblastic leukemia) and AML (acute myeloid leukemia). The second dataset 

constituted gender information, extracted from the colon cancer survival dataset. The two 

classes in this case were male and female patients. The description of the experiments for 

each of these datasets is outlined in the following sections. 

 

A.1 Analysis of leukemia data 

Data Description: 

  The leukemia gene expression dataset consists of two variants of leukemia, Acute 

Lymphoblastic Leukemia (ALL) and Acute Myeloid Leukemia (AML). The dataset 

includes a total of 7129 normalized features or probesets. The 38 samples in the dataset 

include 27 samples of ALL and 11 samples of AML.  
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Appendix A: (Continued)  

Baseline Experiments: 

  Basic classifier experiments were conducted to obtain a baseline performance 

measure on the dataset. The three classifiers used were Neural Networks, Support Vector 

Machines and C4.5 Decision Trees. 

The t-test was used as an initial feature selection to reduce the number of 

features used for classification. Since the number of samples in the two classes was 

unequal a weighted accuracy was used to measure the success of classification. 
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Figure A.1: Classifier performance with ALL-AML:  

neural networks, support vector machines and C4.5 decision trees 

 The Neural Networks performed consistently, with an accuracy of 95.45%, with 

all values for the feature selection method (100 <= a <= 5000). Support Vector Machines 

achieved a high accuracy of 97.37%. Decision trees however, deteriorated in performance 

as the number of input features increased, with the maximum accuracy occurring at the 

lowest number of features.  
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Appendix A: (Continued) 

Random subspace ensembles using majority voting technique: 

 The majority voting technique (Figure 5.9) was used in the creation of random  

subspace ensembles to predict classes of samples from the ALL-AML dataset. The  

experiment was tested at various parameters of (a,r,c) (Table 5.2), using the weighted 

accuracy to measure the performance of the ensemble. The performance of the ensembles 

was compared with the performance of a single decision tree built on a single random 

subspace selected from the same set of a features.  
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Figure A.2: Random subspace ensembles (a=5000,r=200,c) 

vs. single decision tree (a=5000,r=200,c=1) on the ALL-AML dataset 

 

  The accuracy of the ensemble increases as the number of subspaces increases. The 

increasing number of subspaces ensures better coverage of the feature space. Since all the 

features seem to be predictive in nature, the accuracy of the ensemble increases as more 

predictive features are added to it. Each of these random subspace ensembles has a better 

predictive accuracy than a single decision tree (Figure A.1).   
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Appendix A: (Continued) 

Random subspace ensembles by selection of good classifiers: 

The proposed method of using random subspaces ensembles by selecting the good 

classifiers within the cross-validation scheme (Figure 5.13) was tested on the ALL-AML 

dataset. 100 random subspaces, each of size 200, selected from the top 5000 t-test 

features, were used to create the ensembles. Support Vector Machines were used for 

classification. The performance of the method, assessed by computing the weighted 

accuracy of prediction on the 10%, held-out independent samples, is shown in Table A.1.  

 

Table A.1: Confusion matrix for the performance of the proposed method on the 

leukemia gene expression dataset 

 

 

 

 

 

 

 

 

A.2 Analysis of gender data 

Data Description: 

 The colon cancer dataset (refer to Chapter 2) was split into two classes based on 

gender: MALE and FEMALE. The dataset consisted of 135 samples, with 68 female and  

67 male patients. Each sample was characterized by 54675 normalized features/probesets. 

 

 

ALL AML 

Classified as  

                       True 

class  

27 0 ALL 

2 9 AML 

      

Weighted accuracy  90.91 % 

Total accuracy  94.74 % 

Specificity 100.0 % 

Sensitivity 81.81 % 
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Appendix A: (Continued) 

Baseline Experiments: 

 Basic classifier experiments were conducted to obtain a baseline performance 

measure on the dataset. The two classifiers used were Neural Networks and Support 

Vector Machines. The t-test was used as an initial feature selection to reduce the number 

of features used for classification. Weighted accuracy was used to measure the success of 

classification. 
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Figure A.3: Classifier performance with gender dataset:  

neural networks and support vector machines 

 

Random subspace ensembles using majority voting technique: 

 The majority voting technique (Figure 5.9) was used in the creation of random  

subspace ensembles to predict gender of samples the dataset. The experiment was tested  

at various parameters of (a,r,c) (Table 5.2), using the weighted accuracy to measure the 
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Appendix A: (Continued) 

performance of the ensemble. The performance of the ensembles was compared with the 

performance of a single decision tree built on a single random subspace selected from the 

same set of a features. 
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Figure A.4: Random subspace ensembles (a=5000,r=200,c) 

vs. single decision tree (a=5000,r=200,c=1) on gender dataset 

 

  As expected, the accuracy of the ensemble increases as the number of subspaces 

increases. The increasing number of subspaces ensures better coverage of the feature 

space. Since all the features seem to be predictive in nature, the accuracy of the ensemble 

increases as more predictive features are added to it. Each of these random subspace 

ensembles has a better predictive accuracy than a single decision tree (Figure A.1).  
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Appendix A: (Continued)  

features, were used to create the ensembles. Support Vector Machines were used for 

classification. The performance of the method, assessed by computing the weighted 

accuracy of prediction on a 10-fold cross-validation, is shown in Table A.2. It is observed 

that the proposed method creates a classifier that predicts classes of unknown samples 

with accuracy comparable to that obtained using the majority voting technique of creating 

random subspace ensembles.  

 

Table A.2: Confusion matrix for the performance of the proposed method on the gender 

gene expression dataset 

 

 

 

 

 

 

MALE FEMALE 
Classified as  

                     True class 

60 8 MALE 

4 63 FEMALE 

      

Weighted accuracy  91.13 % 

Total accuracy  91.11 % 

Specificity 88.23 % 

Sensitivity 94.02 % 
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