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Figure 28 EGF Stimulation of Telomerase Activity is Transcription-Dependent 
PA-1 and SW 626 cells were incubated ± 2 ng/mL EGF for 0, 30, 45 minutes, 1 and 2 
hours in triplicate and examined by RT-PCR for hTERT mRNA.  Results are expressed 
as mRNA expression normalized to corresponding β-actin mRNA levels.  * indicates the 
statistical significance of hTERT mRNA levels in PA-1 and SW 626 cells treated with 2 
ng/mL EGF compared to untreated controls.  Graphical representations provided below 
of respective blots showing net intensities of hTERT in PA-1 and SW 626 cancer cells 
relative to β-actin mRNAs. 
 

EGF-induced telomerase activity is Pyk2-dependent  

 To determine whether Pyk2 was a mediator in EGF-induced telomerase activity 

in human ovarian cancer cells, SW 626 cancer cells were transfected with c-Myc tagged 

wild type Pyk2 (Pyk2 WT) or c-Myc tagged kinase deficient Pyk2 (Pyk2 KD) and treated 

cells with 2 ng/mL EGF and ± 50 ng/mL EGFR inhibitor, AG 1478, an hour prior to 

collection.  After 48 hours, protein lysates were obtained and tested for transfection 
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efficiency via Western blot analysis for Pyk2 protein levels (Figure 29, inset).  To study 

the effect of Pyk2 on telomerase activity, PCR-ELISA was performed.  Pyk2 KD reduced 

EGF-mediated induction of telomerase activity by 47% compared to EGF treated SW 626 

cells (Figure 29).   In contrast, SW 626 cells transfected with Pyk2 WT demonstrated 

increased telomerase activity by 54%.  Furthermore, SW 626 cells transfected with Pyk2 

WT and treated with 2 ng/mL EGF showed an increase in telomerase activity by 64% 

compared to EGF treated SW 626 cells (Figure 29). 

EGF-stimulated telomerase activity is ERK 1/2 dependent 

In agreement with Maida et al [176], EGF increased ERK 1/2 phosphorylation in 

ovarian cancer cells (Figure 30).  Western blot and densitometric analyses showed that 

EGF increased ERK 1/2 phosphorylation by 34% and 52% in PA-1 and SW 626 ovarian 

cancer cells, respectively (Figure 30, inset).  Cells treated with U0126 showed a 

significant decrease in EGF-mediated ERK 1/2 phosphorylation by 71% and 39% in PA-

1 and SW 626 ovarian cancer cells, respectively (Figure 30, inset).  In agreement with 

results obtained in Figure 26, EGF stimulated telomerase activity by 47% in PA-1 and 

SW 626 cells.  Inhibition of ERK 1/2 by U0126 abrogated EGF-stimulated telomerase 

activity by 84% and 76% in PA-1 and SW 626 cells, respectively (Figure 30), confirming 

a role for ERK 1/2 in EGF-stimulated telomerase activity in ovarian cancer cells.   

To determine whether Pyk2 induction of telomerase was also ERK 1/2-dependent, 

Western blot analyses were performed (Figure 31, inset).  ERK1/2 phosphorylation 

increased in EGF-treated SW 626 cells when compared to untreated controls.  ERK 1/2 
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phosphorylation was also increased in all Pyk2 WT transfected SW 626 cells.  In 

contrast, ERK 1/2 phosphorylation decreased in all Pyk2 KD transfected SW 626 cells 

(Figure 31, inset).   

 

Figure 29 EGF Stimulation of Telomerase Activity is Pyk2-Dependent 
SW 626 cells were transfected with Myc-tagged Pyk2-KD or Pyk2-WT and treated with 
± 2 ng/mL EGF and ± 50 nM EGFR inhibitor AG 1478 and assayed for telomerase 
activity by PCR-ELISA.  Results were expressed as mean optical density at 490 nm for 
triplicate samples ± S.E.  p values indicate the statistical significance of EGF treated cells 
vs. untreated control (*), Pyk2 KD transfected cells vs. untreated control (~), Pyk2 KD + 
EGF vs. EGF treated cells (~~), Pyk2 KD + EGF + AG 1478 vs. EGF treated cells (~~~), 
Pyk2 WT vs. untreated control (^), Pyk2 WT + EGF vs. EGF treated cells (^^), Pyk2 WT 
+ EGF + AG 1478 vs. EGF treated cells (^^^).  (A, inset) Cell lysates were analyzed for 
Pyk2 expression and ERK 1/2 phosphorylation by Western blot.  β-actin was used as 
loading control.  For telomerase analysis, results were expressed as mean optical density 
at 490 nm for triplicate samples ± S.E.   
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Figure 30 EGF Stimulation of Telomerase Activity is Via the ERK 1/2 Signaling 
Pathway 

Cultures of PA-1 and SW 626 cells were treated with ± 10µM U0126 and ± 2 ng/mL 
EGF for 1 hour in 0.1% FBS.  Cells were then harvested and analyzed for telomerase 
activity.  Results were expressed as mean optical density at 490 nm for triplicate samples 
± S.E.  p values indicate the statistical significance between EGF treated cells vs. 
untreated controls (*), U0126 treated cells vs. untreated controls (~), and EGF + U0126 
treated cells vs. EGF treated cells (`).  (A, inset) Western blot analysis was performed to 
confirm U0126 inhibition of ERK 1/2 phosphorylation.  β-actin was used as the loading 
control.   
  

hTERT core promoter region is required for EGF stimulation of hTERT promoter 

activity 

 Reporter assays were performed using full length, deletion promoter constructs, 

and deletion core promoter constructs to identify the hTERT promoter region responsive 

to EGF (Figure 31).  The full length hTERT promoter (PGL3-1375) was induced by EGF 
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by 61% compared to endogenous promoter activity (Figure 31).  However, EGF 

stimulated maximal activity at the core hTERT promoter regions (PGL3-181) by 67% 

compared to endogenous core promoter activity (Figure 31).  The hTERT core promoter 

contains two c-Myc binding sites and five Sp1 binding sites known to be activators of 

hTERT transcription [312].  To further evaluate the binding sites responsive to EGF-

mediated induction of telomerase within the core promoter, hTERT luciferase reporters 

containing mutations of E-box 1 (hTERT/-181E1/m), E-box 2 (hTERT/-181E1, 2/m), and 

all Sp1 sites (hTERT/-181Sp1/m) were performed [220].  Luciferase assays showed that 

EGF-induced hTERT promoter activity was abrogated by mutation of Sp1 sites.  In 

contrast, mutation of E-box 1 did not affect EGF-induced hTERT promoter activity.  

Interestingly, mutation of E-box 1 and 2 showed a decrease, but not complete abrogation, 

in core promoter transactivation when compared to the full core promoter activity.  My 

results suggest that Sp1 binding sites within the hTERT core promoter are essential and 

that E-box 2 might be important in EGF-induced telomerase activity in human ovarian 

cancer cells.   

To confirm specificity of EGF induction of the hTERT core promoter, reporter 

assays were also performed on SW 626 cells treated with 2 ng/mL EGF and either 50 nM 

EGF receptor inhibitor AG 1478, 10 µg/mL ERK 1/2 inhibitor U0126 (Figure 31).  EGF 

failed to induce activity of the 1375-bp and 181-bp regions of the hTERT promoter when 

co-treated with AG 1478 (Figure 31).  Co-treatments with EGFR inhibitor, AG 1478, also 

confirmed the importance of Sp1 and E-box 2 in EGF-mediated transactivation of the 
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hTERT core promoter.  In addition, U0126 significantly suppressed EGF-mediated 

induction of luciferase activity of the 1375-bp and 181-bp regions of the hTERT 

promoter (Figure 31). 

To confirm EGF-stimulated of telomerase activity was Pyk2-dependent in ovarian 

cancer cells, reporter assays were also performed on SW 626 cells transfected with 

hTERT core promoter or hTERT core promoter mutations, Pyk2 WT or Pyk2 DN and 

treated with ± 2 ng/mL EGF (Figure 32).  Overexpression of wild type Pyk2 significantly 

enhanced EGF-mediated hTERT core promoter transactivation, while the kinase deficient 

Pyk2 significantly blocked EGF-mediated transactivation of the core promoter (Figure 

32).  These findings suggest that Pyk2 is an important mediator of EGF-mediated 

stimulated telomerase in ovarian cancer cells.  
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Figure 32 Pyk2 Drives hTERT Core Promoter Activity 
SW 626 cells were transfected with hTERT core promoter and deletion hTERT core 
promoter luciferase constructs along with pCMV-β-galactosidase expression vector and 
co-transfected with ± c-Myc-tagged Pyk2-KD and ± Pyk2-WT.  An hour prior to 
collection, cells were treated with ± 2 ng/mL EGF.  GFP was used to monitor transfection 
efficiency.  Results were expressed as the mean luciferase activity ± S.E. from triplicate 
samples.  p values indicate statistical differences between luciferase assays in EGF 
treated cells vs. untreated control (*), Pyk2 DN + EGF treated cells vs. Pyk2 DN treated 
cells (~), and Pyk2 WT + EGF treated cells vs. Pyk2 WT treated (^).   
 

EGF-Mediated Telomerase Activity is c-Myc- and Sp1-Dependent  

Since binding sites for transcription factors, c-Myc and Sp1, are present within the 

hTERT core promoter, Western blot (Figure 33, inset), PCR-ELISA (Figure 33), and 

reporter analyses (Figure 34) were performed using c-Myc and Sp1 siRNAs to confirm 

whether these transcription factors are important in EGF-mediated telomerase activity.  

SW 626 cells were transfected with ± 0.5 µM c-Myc siRNA ± 1 µM Sp1 siRNA and 

treated with ± 2 ng/mL EGF.  c-Myc and Sp1 siRNAs reduced endogenous c-Myc and 

Sp1 protein levels in SW 626 cells when transfected with their respective siRNAs and 
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abolished EGF-mediated increased c-Myc and Sp1 levels compared to c-Myc and Sp1 

siRNAs untransfected controls as determined by Western blot analyses (Figure 33, inset).  

In addition, c-Myc and Sp1 siRNAs were sufficient to decrease endogenous telomerase 

activity by 50% and 65%, and decreased EGF-mediated telomerase activity by 47% and 

46%, respectively (Figure 33).  Furthermore, reporter assays using hTERT full length, 

core promoter, and core promoter mutated constructs were performed to confirm that c-

Myc and Sp1 are important transcription factors in EGF-mediated telomerase activity.  

Compared to endogenous promoter activity, the full length hTERT promoter was 

inhibited by c-Myc and Sp1 siRNAs by 67% and 80%, respectively, and EGF-induced 

full length hTERT promoter activity was inhibited by 63% and 50%, respectively (Figure 

34A).  When both siRNAs were transfected into the cells, EGF-mediated telomerase 

activity was reduced by 75% (Figure 34A).  In regards to the hTERT core promoter, 

endogenous hTERT core promoter activity was inhibited by Sp1 and c-Myc siRNAs by 

67% and 33%, respectively (Figure 34A).  EGF-induced hTERT core promoter activity 

was suppressed by 67% and 44% in the cells transfected with Sp1 and c-Myc siRNAs, 

respectively (Figure 34A).  When both Sp1 and c-Myc siRNAs were combined, EGF-

mediated hTERT core promoter activity was inhibited by 78% (Figure 34A).  To confirm 

that EGF-mediated telomerase activity in ovarian cancer cells require Sp1 and c-Myc 

transcription factors, reporter assays using mutant core promoter reporter plasmids and 

Sp1 and c-Myc siRNAs were performed (Figure 34B).  The results revealed that 

abrogation of Sp1 sites significantly reduced responsiveness to EGF (Figure 34B).  Even 

though, abrogation of the E-boxes by substitution mutations still allowed for some EGF-
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induced hTERT activation, indicates that c-Myc along with Sp1 may play a role in EGF-

mediated telomerase activity in ovarian cancer cells (Figure 34B).   

 

Figure 33 EGF-Mediated Telomerase Activity is c-Myc- and Sp1-Dependent 
SW 626 cells were transfected with ± 0.5 µM c-Myc siRNA ± 1 µM Sp1 siRNA and 
treated with ± 2 ng/mL EGF for an hour prior to collection.  Cells were then harvested 
and analyzed for c-Myc and Sp1 expression by Western blot (Inset) and telomerase 
activity by PCR-ELISA. For Western blot analyses, β-actin was used as loading control.  
p values indicate the statistical significance of EGF treated cells vs. untreated controls 
(*), c-Myc, Sp1 transfected cells vs. untreated controls (~, ~~), c-Myc, Sp1 transfected + 
EGF treated cells vs. EGF treated cells (^, ^^), and c-Myc and Sp1 transfected + EGF 
treated cells vs. EGF treated cells (**).  For telomerase analyses, results were expressed 
as mean optical density at 490 nm for triplicate samples ± S.E.  
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Discussion 

The EGFR is overexpressed in over 70% of primary ovarian cancers [313] and 

has been directly associated with poor postoperative prognosis due to, in part, 

chemotherapy resistance [314-316].  Furthermore, the activation of the EGFR signaling 

pathway in cancer cells is associated with increased cell proliferation, angiogenesis, 

metastasis, and decreased apoptosis [317].  Since EGF receptors are constitutively 

activated in ovarian cancer and EGF, an EGFR ligand, promotes OSE cell growth, the 

potential contribution of EGF in the regulation of telomerase activity was examined.  A 

better understanding of this signaling pathway, then, could provide insight on developing 

effective chemotherapeutic drugs.  These experiments showed EGF stimulates telomerase 

activity in a transcription-dependent manner by activating the Sp1 and c-Myc binding 

sites within the hTERT core promoter via the Pyk2/ERK 1/2 signaling pathway (Figure 

35).   

The core promoter region contains an E box binding factor and putative protein 

binding sites for transcription factors Sp1 and AP2 [138].  E box binding proteins are 

known to heterodimerize with a variety of transcription factors with helix-loop-helix 

domains including Myc-related family members and Max-related family members [228].  

c-Myc may form dimers with Max which then bind to specific E-box binding sites to 

transactivate the hTERT promoter.  However, c-Myc can also dimerize with Mad1 at the 

same binding site to suppress hTERT transcription [229].  Interestingly, Budiyanto et al 

showed a correlation between c-Myc and Sp1 transcription factors and EGFR when 

squamous cell carcinoma cell line treated with EGFR inhibitor, AG 1478, significantly 
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reduced the expression of c-Myc and Sp1.  In addition, they showed that AG 1478 

increased the level of Mad-1 protein expression [178].  These results and my luciferase 

reporter assays results are consistent with the notion that Sp1 and c-Myc cooperate to 

activate hTERT transcription and telomerase activity [138, 146, 318]. 

However, previous studies have also shown that EGF can regulate telomerase in 

vulvar cancer and squamous cell carcinoma through Ets-mediated transactivation of 

TERT via the MAPK signaling pathway [176, 178].  In contrast, my results show that 

Sp1 and c-Myc transcription factors appear to be the major transcription factors involved 

in EGF-mediated stimulation of telomerase in ovarian cancer cells.  Yet, neither c-Myc 

and Sp1 siRNAs transfections nor E-box and Sp1 mutated binding sites in the hTERT 

core promoter did not completely abolish all promoter activity in my studies.  Therefore, 

since Ets binding sites in the hTERT core promoter were intact in all of my experiments, 

Ets may account for non-c-Myc and/or Sp1-mediated hTERT activity.   

Of particular interest, these experiments provide novel findings that Pyk2 kinase 

activity was essential for EGF-mediated telomerase activity in ovarian cancer cells 

(Figure 35).  So, Pyk2-mediated telomerase activity may represent a novel molecular 

mechanism by which Pyk2 regulates tumor cell proliferation and/or apoptosis to confer 

increased tumor cell survival.  Pyk2 along with other nonreceptor tyrosine kinases such 

as focal adhesion kinase (FAK), are important signaling effectors linking integrin and 

growth factor receptor signaling to cell proliferation, migration, survival, and apoptosis in 

many cell types [304, 319].  FAK is the prototypical signaling effector coupling integrin-

matrix interactions to intracellular signaling events [320].  It is rapidly activated 
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following integrin engagement and exerts downstream effects by serving both as an 

effector kinase as well as a scaffold protein for various molecules including Src and PI-3-

K [321].  A variety of extracellular signals that elevate intracellular calcium 

concentrations and stress signals mediated by tumor necrosis factor (TNF-α) or 

ultraviolet (UV) irradiation lead to activation of Pyk2 [304, 319, 321].  Pyk2 has been 

implicated in the regulation of migration and invasion of glioma, endothelial, smooth 

muscle cells, and intestinal cells [322-325].  In tumors, Pyk2 expression decreases with 

increasing tumor grade in prostatic adenocarcinoma [301].  Likewise, Meyer et al showed 

that hyperactivation of receptor tyrosine kinase, FGFR3, in multiple myeloma cells 

recruited Pyk2 leading to activation of proliferative and/or anti-apoptotic signaling 

pathways [326].   

Consequently, the clinical relevance of my research in current developmental 

efforts of monoclonal antibodies and receptor tyrosine kinase inhibitors (TKIs) where 

binding of EGF growth or active active site of the kinase are blocked is two fold.  Since 

EGF increases telomerase activity and Pyk2 plays an important role in signal transduction 

of EGF/EGFR interactions, further studies pursuing either monoclonal antibody to EGF 

or TKIs for EGFR may lead to more effective and/or improved drugs development for 

ovarian cancer.   
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Figure 35 Schematic Representation of the Proposed Signaling Pathway for 
EGF-Induced of Telomerase Activity in Ovarian Cancer Cells 

The data of this chapter show that EGF stimulation of telomerase activity was mediated 
by Sp1 and c-Myc transcription factors within the hTERT core promoter in an ERK 1/2 
/Pyk2-dependent manner. 
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Chapter V 

Conclusions 

Re-expression of telomerase in cancers maintains genomic stability of critically 

shortened telomeres allowing for continuous cell proliferation and immortalization [327].  

As a clinical consequence, however, the re-expression of telomerase in cancers suggests 

that telomerase may be an important target for chemotherapeutic intervention [328, 329].  

By specifically targeting telomerase, it may be possible to restore normal telomeric 

attrition resulting in cellular senescence and apoptosis.  Therefore, it is important to 

identify positive and negative regulators of telomerase activity in order to develop novel 

therapies against telomerase.   

Novel findings herein indicated that VEGF is not limited to regulation of 

endothelial cell growth and survival, but also appears to regulate telomerase activity in 

ovarian cancer cells via an ERK 1/2 transcription-dependent activation of the Sp1 binding 

sites within the 976- to 378-bp hTERT promoter region.  These findings provide a 

plausible mechanism for the presence of VEGF receptors in non-endothelial cells.  

Consequently, the effectiveness of anti-angiogenic therapies may function to suppress 

new blood vessel growth from local endothelial cells to ovarian tumors as well as to 

inhibit telomerase activity within the tumor cells.   

This study also identified telomerase as a novel molecular target of LPA.  As a 

positive upstream regulator of VEGF, LPA-mediated telomerase activity in ovarian 
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cancer was also found to occur in an ERK 1/2-dependent manner to activate the Sp1 

binding sites within the 976- to 378-bp hTERT promoter regions.  Therefore, while most 

clinical trials focus on LPA as a potential biomarker for ovarian cancer, this study 

provides novel information on the function of LPA that may contribute to the malignant 

phenotype of ovarian cancer. 

Furthermore, this study reported that the anti-tumorigenic role of vitamin E role in 

ovarian cancer is two fold.  Vitamin E suppressed endogenous telomerase activity and 

abrogated LPA-induced telomerase activity in ovarian cancer cells.  Though in vivo 

testing and clinical studies need to be performed to further evaluate the clinical 

usefulness of vitamin E for chemotherapeutic efficacy, the present study shows that, by 

targeting telomerase, supplemental vitamin E may be a valuable adjuvant for prevention 

of ovarian cancer and/or improved sensitivity to standard chemotherapeutic agents.   

Lastly, this study demonstrated that EGF-induced telomerase activity in ovarian 

cancer cells is ERK 1/2- and Pyk2-dependent.  EGF-mediated telomerase activity 

activated c-Myc and Sp1 binding sites within the hTERT core promoter region.  Since 

overexpression of EGFR correlates with increased metastasis, decreased survival, and 

poor prognosis, further studies on the inhibition of EGFR-associated tyrosine kinases 

currently in clinical trials for the treatment of solid tumors, including ovarian cancer are 

warranted as they may block major signaling pathways for telomerase activation as a 

mechanism of antitumor activity of these drugs. 

Interestingly, VEGF, LPA, and EGF all transduced activation of telomerase in 

ovarian cancer cells through the activation of ERK 1/2.  These findings are consistent 
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with the notion of MAPK as a cellular central hub controlling the effects of growth 

factors and stresses on cellular proliferation and differentiation [330, 331].   

In this study, VEGF-, LPA-, and EGF-elicited transcriptional effects on the 

hTERT gene were mediated by Sp1 and c-Myc transcription factors with VEGF and LPA 

targeting Sp1 binding sites within the 976- to 378-bp hTERT promoter regions and EGF 

targeting Sp1 and c-Myc binding sites within the hTERT core promoter.  Consequently, 

c-Myc and Sp1 appear to be major transcription factors associated with hTERT 

transcription and it is not surprising, then, that they are overexpressed with malignant 

transformation [229, 318].  The ability of multiple growth factors to positively regulate 

telomerase using redundant pathways in ovarian cancer indicates both the importance of 

telomerase activation to maintain the malignant phenotype as well as the complexity of 

telomerase regulation.  

In summary, chemosensitivity is a crucial prognostic factor for ovarian cancer and 

levels of or changes in telomerase may predict therapeutic outcome.  Understanding the 

mechanisms that positively and negatively regulate telomerase, especially those that 

involve VEGF/LPA, EGF, and vitamin E, could enhance cellular sensitivity to 

chemotherapeutic agents resulting in an improved therapeutic efficacy and clinical 

outcome.    
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