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Abstract

Urban transit riders’ use of mobile communication devices has grown markedly in 
recent years. Studies evaluating the usage of these devices have generally focused on only 
one or two points in time, limiting their ability to describe long-range trends. To foster 
insights into this issue, this study evaluated data from 15,531 passenger observations 
collected on 156 commuter trains on the metropolitan commuter rail system of Chicago, 
Illinois, from 2010 through 2015. The data show that the rate of technological usage is 
following an S-shaped pattern among passengers. The share of passengers using mobile 
communication devices at observed points grew sharpest during the first three years, 
rising from 25.6% in 2010 to 47.8% in 2013, a compounding annual rate of 23.1%. Between 
2013 and 2015, the share rose to 56.2%, an annualized rate of just 8.4%. Over the five-year 
period, the share of passengers conducting visually-oriented activities on their devices 
increased at a faster rate than usage as a whole, whereas the share of passengers engaged 
in audio-only tasks has dropped. Multiple regression analysis shows that the rate of 
device usage on trains is highest on outbound trips (traveling away from downtown) and 
positively related to the income associated with the route traveled, with differences of 
more than five percentage points between lines of varying levels of affluence. 
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Introduction

Many passengers on urban transit systems routinely use mobile communication devices 
(“mobile devices”) while making their journey. Mobile devices such as smartphones 
and tablet computers enable passengers to perform work or leisure activities, access 
travel information, and insulate themselves from the noise and distractions normally 
experienced during their trip. As devices have become smaller, less costly, and more 
sophisticated, the range of activities performed by passengers has grown sharply. 

This study documented the changing prevalence of mobile device use among commuter 
rail riders in metropolitan Chicago to assess how changes in technology affect the way 
passengers allocate their time while using commuter rail. The study draws upon 15,531 
unique passenger observations collected on 156 suburban Metra trains in the Chicago 
metropolitan area between 2010 and 2015. Although other studies have explored the 
use of mobile devices on transit systems, this study is unique in providing a time-series 
assessment for a five-year period, allowing the authors to gauge how the use of mobile 
devices has changed over time and to identify trends in technology use by travelers that 
may aid in the planning and management of urban transportation.

The results can help guide the discussion about how transit agencies can take advantage 
of a growing range of digital activities available to passengers as well as respond to the 
“digital divide” that persists among various income groups in the use of technology. 
Finally, the data can help transit agencies evaluate the need for enhancements that 
support technology use among passengers that have been unable or hesitant to 
extensively use mobile devices as part of their journey.

Background

As recently as the late 1980s, most electronic devices were too bulky and had a battery 
life that was too limited to be conveniently brought onto buses and trains (Farley 2005). 
Passengers generally had little or no ability to communicate with anyone except fellow 
travelers onboard. When communication technology first became available to travelers, 
it was available exclusively on intercity (longer-distance) services rather than on urban 
public transit. The first commercial cellular phone service in the United States was 
introduced in early 1969 on Metroliner trains between New York and Washington, DC 
(Farley 2005), and airline carriers first installed cellular phones in the early 1980s, which 
could be used by customers paying with a credit card. By the late 1990s, pay phones 
also had become available on many intercity rail-passenger routes in Europe and North 
America. 

Technological innovation made spectacular advances by the late 1990s as cell phones 
and laptop computers became smaller, less expensive, and more sophisticated. These 
advances were followed, in the early 2000s by devices oriented toward multitasking, 
such as smartphones. More recently, tablets and e-readers have further enhanced the 
ease of personal entertainment and communication for passengers, a topic discussed in 
detail later in this paper. 
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Some public transit operators have responded to these trends by investing in Wi-Fi 
systems on buses, and a smaller number have done so on commuter trains. The transit 
system in Albuquerque, New Mexico, for example, installed Wi-Fi on its trains in 2005, 
making it a pioneer in expanding internet access for passengers. In 2008, the transit 
operator in Boston (MBTA) launched a pilot program for the installation of Wi-Fi and 
has since made it available on nearly the entire system (MBTA 2013). In 2009, the Bay 
Area Rapid Transit (BART) system began providing wireless service on a portion of its 
system, and since then, commuter rail operators in Miami, Minneapolis-St. Paul, and 
New Jersey have also selectively installed Wi-Fi. Transportation systems outside the US 
also have offered these amenities to their passengers.

Nevertheless, the number of commuter rail systems that have installed Wi-Fi on their 
entire fleet remains relatively small. In Chicago, the suburban operator Metra did 
not offer Wi-Fi at the time data were collected for this study. The provider initially 
determined that offering the amenity on all its railcars was cost-prohibitive but adopted 
a plan for introducing Wi-Fi service on an experimental basis in selected cars on some of 
its trains in 2016 (Metra 2015). 

Relevant Literature

The literature on the adoption of technology is shaped by Everett Rogers’ seminal work 
Diffusion of Innovations, which attempts to explain how, why, and at what rate new 
ideas and technology spread through cultures. A major contribution of Rogers’ work lies 
in his categorization of technology adopters based on their propensity to embrace new 
ideas, including the popular term “early adopter.” His work shows that rates of adoption 
tend to follow an S-shaped pattern that is affected by innovations, communication, 
social influences, and other factors (Rogers 1962). By the time the “late majority” adopts 
a technology, growth has sharply diminished (Figure 1).

FIGURE 1.
S-curve model of diffusion 

process (adopted from  
Rogers 1962).



The S-Curve of Technological Adoption

 Journal of Public Transportation, Vol. 20, No. 2, 2017 4

Several decades would pass before mobile communication devices became a factor 
in decisions relating to urban travel. Gradually, however, as cell phones and other 
devices became prevalent, research drew upon Rogers’ ideas to explore the complex 
interactions between technology and travel behavior (Andrew 2010; Golob and Regan 
2001). Kim et al. (2008) examined how people use technology to plan for personal 
and business travel, while Yoshii and Sasaki (2010) studied how technology affects the 
need for non-business travel, focusing particularly on consumer behavior and online 
shopping. Much has changed, of course, since these studies were published.

Brakewood et al. (2014) use a stated preference survey of passengers on a pair of 
commuter rail lines in the Boston region to assess the degree to which passengers use 
mobile communication devices for mobile ticketing. The study concludes that among 
the approximately 76% of riders that used smartphones in 2012, 26% used them for 
mobile ticketing and 50% used them for making mobile purchases at other merchants. 
A related strand of research explored the varying rates of technology use by different 
socioeconomic groups while traveling (Jackson et al. 2008; Kim et al. 2008). A consulting 
firm, Ninth Decimal (2015), tracked the types of devices used by consumers when 
researching and purchasing tickets for transportation as well as the share of consumers 
relying on public Wi-Fi for these tasks. 

Windmiller et al. (2014), through a survey of passengers on the light rail system in St. 
Louis, showed that passengers who use smartphones or access electronic messages, 
including emails and texts, tend to be more satisfied with their travel experience. 
These passengers also report greater feelings of personal security at transit stations and 
higher service quality when making connections. This study also demonstrated how 
rates of technology use are rising; whereas just 52% of passengers used their phone’s 
text messaging capability in 2008, the number rose to 88% in 2012. A study by Tang 
and Thakuriah (2010), focused on bus routes in Chicago, concluded that providing 
passengers access to real-time information on their smartphones fosters a slight increase 
in ridership compared to routes on which this was unavailable. The study isolates this 
effect while controlling for a wide variety of neighborhood-specific variables. Following 
a similar theme, Barbeau et al. (2010) explored how new mobile apps enhance rider 
experience by providing real-time information about their trips, including alerting 
customers when to disembark or enabling riders to signal the driver to stop. Guo et 
al. (2015) observed 1,739 passengers and surveyed 686 to evaluate usage patterns on 
the bus system in Vancouver, British Columbia. Their study used a predictive model to 
evaluate the factors (such as crowding and waiting conditions) that affect how riders 
spend their time.

Particularly relevant to the present study is the analysis of how mobile communication 
use affects the perceived cost of travel. Some of the most extensive research on this 
topic has been undertaken by Mokhtarian and Solomon, whose 2001 paper provides a 
framework for evaluating the value of time spent on buses and trains (Mokhtarian and 
Salomon, 2001). Their analysis, based on a study of residents in the San Francisco Bay 
Area, contested the notion that travel is purely a derived demand by providing evidence 
that many travelers take pleasure in the trip itself and benefit from the activities they 
conduct while making the trip. A later paper by Mokhtarian and Salomon (2014) 
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evaluated the utility that passengers gain from time spent traveling via train through 
Great Britain and showed that travelers derive significant benefit from the technology 
they bring with them. Lyons et al. (2012) employed similar methods to measure how 
rail passengers in Great Britain spent their travel time from 2004 and 2010. Not only 
did technology use dramatically increase for the three types of trips evaluated over this 
period—commuting, business, and leisure—but certain activities, such as listening to 
music, more than doubled in most categories considered. 

Several other studies evaluated some of the psychological aspects of having the 
ability to use technology. Jain and Lyons (2008) were early contributors to this area of 
research by exploring how time spent traveling often is perceived as a gift that affords 
travelers transition time in such a way that it fills a need for “experiencing distance and 
the opportunity for gearing up to the destination’s demands” (83). Another benefit 
these authors identify is providing a “time out,” i.e., the opportunity to escape from 
obligations and provide “backstage” time to make a mental transition from one activity 
to another.

Ohmori and Harata (2008) showed that the amount of personal space available 
influences technology activity, and Holley et al. (2008) postulated that the value of 
travel time on trains is closely linked to passenger ability to perform tasks using devices. 
The interaction between technology use and traveler behavior also is explored by Simun 
(2000), Bull (2000), and Skanland (2011).   

The final group of relevant research looks specifically at the effects of personal 
technology across modes on longer distance intercity trips. Hess and Spitz (2015), 
evaluating data from the Northwest and West Coast corridors, concluded that a desire 
to use technology has a positive effect on the propensity to travel by train and bus 
compared to driving for trips between 200 and 350 miles. Nevertheless, their research 
also shows that the importance passengers place on using mobile devices is small when 
compared to other factors, such as schedule convenience. Russell et al. (2011) observed 
bus and train riders in New Zealand, concluding that bus travelers are less apt to use 
mobile devices than train riders.

In summary, a rich body of literature explores the ramifications of the growing use of 
mobile communication devices on transit. What remains less clear is how the rate of 
growth in mobile device usage has changed in recent years, and the extent to which 
growth has followed the S-shaped pattern postulated by Rogers (1962). This study seeks 
to fill this gap in the literature by presenting findings from a five-year observational 
study on mobile device usage by commuters in one metropolitan region. 

Chicago’s Commuter Rail System

The metropolitan Chicago region offers a rich environment for exploring the use of 
mobile communication devices in urban travel. It is home to one of the most extensive 
commuter rail systems in North America and consists primarily of routes that date 
back to the 1800s and radiate from the central city (known as “The Loop”). Most of 
these routes were operated by profitable railroads through the 1950s or 1960s until the 
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private automobile became affordable to a wider range of income groups. As services 
became increasingly unprofitable, Chicago-area residents approved a referendum in 
1973 to create the Regional Transportation Authority to subsidize commuter rail, bus, 
and rail rapid-transit services in the metro area.

The region’s commuter rail system, branded as Metra, currently has a 292,000 average 
weekday ridership over 11 main lines and 4 branch lines radiating out of downtown 
Chicago (APTA 2016). These lines depart from one of four downtown terminals to 237 
outlying stations. Metra owns, maintains, and directly operates four of these main lines 
as well as three branches, and the others are operated under contract with private 
railroads. Metra’s ridership has grown markedly in recent years; after modest declines 
in 2012, partially due to a fare increase, ridership grew 3% in 2013 and 12% in 2014. 
Ridership was also up slightly in 2015 (Metra 2016).

There is limited research on the factors affecting technology use among Chicago-area 
transit riders. Two studies looked specifically at factors affecting technology use among 
this group. Frei and Mahmassani (2011) administered a survey to Chicago Transit 
Authority passengers and determined that demographic issues and the quality of the 
environment significantly affect technology use. Older adults were found to be less 
likely to use devices than younger travelers, and females more likely than men. The 
other body of work relies on various passenger surveys commissioned by Metra. A 2011 
survey showed that about half of all Metra riders used a smartphone during their trip, 
27% carried a laptop, and 6% had a wireless card they could use while traveling (Metra 
2013). Relatively few passengers (about 11%) report being willing to pay a fee for wi‐fi 
on board. A 2014 survey showed that 66% of passengers noted that the ability to “read/
work/nap” was important to them (Metra 2015). The survey, however, did not include 
questions focusing specifically on mobile devices. 

Methodology

The data presented below were part of Technology in Travel, a multi-year project 
that involved direct observation of passengers on various modes of transportation 
between 2010 and 2015. To measure the use of mobile communication devices among 
passengers, a data team passed through the aisles of buses and trains to record data 
on passenger technology device usage. Data collectors traveled as regular fare-paying 
passengers and collected data in real-time settings. To allow for greater consistency in 
comparisons among modes, this study considered only weekday trips.  

Data collection began 10 minutes after leaving the station to ensure that passengers 
had time to get situated. Data were collected only on weekdays between 8:30 AM and 
7:30 PM. The sample size differed by train, depending on the passenger load and time 
available for data collection. The data collection team adhered to a consistent protocol 
when responding to situations that created issues for data quality. For example, when 
two passengers are using the same device, only the passenger most closely situated 
to the device was counted as using the device, making our estimates conservative. 
Passengers who appeared to be below grade-school age (5th grade or younger) 
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were excluded from the observational count. Passengers using a set of earbuds or 
headphones plugged into an electronic device and who appeared to be sleeping were 
counted as using an audio device. Only when clear and unobstructed views were 
possible did the team record data of passengers sitting on upper levels of gallery cars. 
“Quiet cars” (in service only during peak periods), in which talking is banned, were not 
included in the sample. The number of riders observed on routes extending north, 
northwest, west, south, and southwest of the city was based on each region’s share of 
total ridership. The number of observations by region is depicted in Figure 2. 

 
 
FIGURE 2.  Passenger observations on commuter rail services in metropolitan Chicago, 2010–2015.  
     Sample size by regional subcategory. 
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In addition to counting the number of passengers using an electronic device, data 
collectors also categorized each type of observed device use based on the type of 
activity being conducted by passengers (Table 1). Categories denoted whether a 
passenger was using a mobile device and, if so, whether the task was strictly audio (such 
as listening to music or talking on a cellular phone), visual, or audio-visual in orientation 
(these tasks typically involve using an LCD screen). Tablets and e-readers (including 
“phablets”—mobile devices that straddle the size of smartphones and tablets) were 
broken out into a separate category from other visually-oriented (LCD) devices starting 
in 2012. 

TABLE 1.
Type of Activity Recorded

Activity Description

No technology being used Passenger not engaged with personal electronic device.

Audio activities
Passenger engaged in a task such as those involving cellphones or 
music players that can be used with earphones, speakers, or headsets, 
using only audio functions of mobile communication devices. 

Visual or audiovisual activities 
on devices, not including iPads, 
Kindles, and other tablet use

Passenger engaged in visual or audiovisual features on laptop 
computers, Blackberries and other smartphones, DVD players, and 
iPods (includes any traveler looking at LCD screen for purpose of 
engaging in activity more substantial than placing a phone call).

Visual or audio-visual activities 
on iPads, Kindles, and other 
tablets or “phablets”

Same as Category 2 except focusing specifically on tablet and 
“phablet” use. Category introduced in 2012 to capture how small, 
lightweight devices affect traveler behavior.

Data collection on passenger use of mobile devices began in 2010 and continued 
annually through 2015. For the first two years of the study (2010 and 2011), data were 
collected from December through March. In the following years (2012–2015), data 
were collected between January and May. The above issues may affect comparisons 
between the first two years of data collection and the last three years if it is assumed 
that technology use on transit varies considerably by month. The experience with this 
project suggests that this change in the months during which data collection occurred 
does not considerably change the conclusions presented herein. 

As noted in Table 2, the number of passenger observations gradually grew from about 
1,400 in 2010 and 2011, to 2,737 in 2012, 3,478 in 2013, and more than 4,000 in the 
final year. The sample was purposely expanded to allow for the analysis of sub-regional 
differences in usage (a topic considered in this paper by evaluating the effects of income 
differences along different lines). The number of trains sampled rose from 14 in 2010, 
to 18 in 2011, 24 in 2012, 36 in both 2013 and 2014, and 42 in 2015. The sample included 
at least 2,000 passengers on trains operating south, southwest, west, northwest, and 
north from downtown Chicago (Figure 2) and included both rush hour and non-rush 
hour. The number of observations was limited so that no single train accounted for 
more than 8% of all observations through 2013 and no more than 5% in subsequent 
years. Measures of onboard crowding were not considered due to the carrier’s ability 
to provide seats to the overwhelming majority of riders. (Some passengers nonetheless 
choose to stand rather to take empty seats when trains are nearly full, suggesting that 
this variable may be worthy of consideration in future analysis).
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Descriptive Statistics

The data show a gradual increase in technology use between 2010 and 2015 as well as a 
shift toward more sophisticated technologies. Perhaps the most salient result is that the 
share of passengers using mobile commuication devices gradually rose over the five-year 
project period despite changes in the economic performance of the regional economy. 
At randomly-selected points, 25.6% of passengers were engaged with technology in 
2010, compared to 38.2% in 2012, 54.4% in early 2014, and 56.2% in 2015 (Figure 3). Since 
2014, more than half of passengers have been engaged with personal devices at the 
observed points, compared to slightly over a quarter in 2010.

FIGURE 3.
Percent of commuter 

rail riders using mobile 
communication devices at 

observed points. 

Although the methodology does not allow for measurement of the percentage of 
passengers who use technology at some point during the trip (which Metra estimates 
to be as high as 90%), the results suggest the intensity of technological engagement has 
risen steadily over the five-year period. The change in usage between each interval is 
statistically significant (99% confidence interval) with the compounding rate of growth 
from 2010–2013 being 23.1%, compared to just 8.4% from 2013–2015. 

Observations also show that e-reader and tablet usage (tracked as a separate category) 
has been on the rise since 2012. The small sizes and quick boot-up times of these devices 
make them well-suited for space-confined environments and trips of shorter duration. 
Unlike laptops and notebook computers, tablets and e-readers (including “phablets”) 
can be stored easily in a briefcase or purse and take up much less room when in use. In 
2012, the first year tablets were measured as a distinct category, just 4.9% of passengers 
were using tablets or e-readers. That share rose to 6.4% in 2013, 7.9% in 2014, and 9.3% 
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in 2015. As a result, by 2015, about 1 in 11 passengers was using a tablet or e-reader 
compared to just 1 in 20 in 2012. The share of all mobile devices users engaged with 
tables and e-readers rose from 12.8% in 2012 to 16.5% in 2015, suggesting that, although 
these devices are becoming more common, they remain far less prevalent than other 
types of devices. 

As more travelers turn to sophisticated devices, such as tablets and e-readers, they 
increasingly diminish the time spent solely on audio-oriented functions, such as 
cellphone calls and listening to music. The share of Metra riders performing visually-
oriented tasks at randomly-observed points rose from 13.9% in 2010 to 44.0% in 2015 
(Figure 4). 

FIGURE 4.
Percent of commuter rail 

riders engaged in visually-
oriented tasks at observed 

points.

Both Figure 3 and Figure 4 align with the S-curve of technology adoption originally 
proposed by Rogers (1962). The dotted lines on these figures show how neatly the 
S-shaped curve fits to the collected data. Both figures shows accelerating growth in 
device use through 2013, followed by a deceleration, suggesting a flattening-out effect, 
perhaps due to the growing saturation of mobile devices in the general population. 
Figure 4 shows a slightly more pronounced S-shaped pattern than Figure 3, with use of 
visually-oriented activities growing at a compounding annual rate of 34.9% from 2010 
to 2013, compared to just 12.3% between 2013 and 2015. This suggests that additional 
gains likely will continue to be made at a much slower rate in the coming years. The 
policy implications of this are discussed in the conclusion. 

The data collected allow for a comparison of technology use by time and direction 
of travel. As noted in the Appendix, in the most recent year surveyed (2015), the use 
of technology was significantly higher on outbound trips than inbound trips, which 
provides evidence that technology use may be more pervasive (and beneficial) to 
travelers after their workday than before, although the authors cannot determine 
whether activities are work- or leisure-related. Technology use on outbound trips 
during the peak period exceeds that on inbound trips during the peak by an even 



The S-Curve of Technological Adoption

 Journal of Public Transportation, Vol. 20, No. 2, 2017 11

wider margin. Both results are statistically significant at a 0.05 level. Please refer to the 
Appendix for details. 

Explanatory Model

A multiple regression model was developed to further investigate changing patterns 
of technology use on commuter trains. The analysis encompasses 148 trains surveyed 
between 2010 and 2015 for which at least 20 observations were recorded on each train. 
(Eight of the 156 trains had fewer than 20 observations and were omitted due to their 
small sample size.) The dependent variable is the proportion of passengers on a train 
using mobile devices, and the independent variables are listed in Table 2. 

TABLE 2.
Independent Variables 

Independent Variables

PEAK
Trains observed between 7:00–9:30 AM and 3:30-7:00 PM Monday through 
Friday assigned a value of 1. 

OUTBOUND Trains traveling outward from central city assigned a value of 1. 

PEAKFLOW
Trains servicing inbound commuters during morning peak period and 
outbound during evening peak assigned a value of 1. 

YEARS Number of years passed since first year of data collection (2010). 

YEARS2 Square of years passed since first year of data collection (2010). Used to capture 
nonlinear relationship. 

INCOME
Average household income in ZIP codes of all suburban stops served on Metra 
line where data collected, derived from American Community Survey data 
from 2010. Income measured in $1,000 annually. 

Interaction Terms

PEAK*YEARS
Number of years multiplied by peak travel designator to determine if peak 
period differential has risen or declined over time.

INCOME*YEARS
Number of years multiplied by income of a route to determine if effects of 
income have risen or declined over time.

OUTBOUND*YEARS
Number of years multiplied by outbound designator to determine if outbound 
differential has risen or declined over time.

Using a proportion as the dependent variable can lead to certain biases because 
values are bounded between 0 and 1. The authors, therefore, considered two sets of 
results: with and without a Tobit transformation of the dependent variable. The Tobit 
transformation involves a logarithmic transformation using the formula ln(p/(1-p). This 
adjustment results in a dependent variable that is normally distributed but generates 
coefficients that lack simple intuitive interpretations. 

The vast majority of dependent values are clustered near the middle of the range, 
between 0.3 and 0.7, and not censored from above or below, and there are no values 
in the dataset at the extreme ends of the distribution (i.e., less than 0.1 and more than 
0.9). The discussion below, therefore, focuses primarily on the standard model, with the 
Tobit results provided in the Appendix. This standard model also has the advantage 
of generating coefficients that have a simple and straightforward interpretation. The 
independent variables used in the model are provided in Table 3. 
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Model 1:
Time of Day, 
Direction of 

Travel, + Changes 
Over Time

Model 2:
Time of Day, 
Direction of 

Travel + Changes 
Over Time 

(Nonlinear)

Model 3:
Direction of 

Travel + Changes 
Over Time 

(Nonlinear), 
Route Income

Model 4:
Direction of 

Travel, Changes 
Over Time 

(Nonlinear), 
Route Income, 
Income-Time 
Interaction

Coeff. P Value Coeff. P Value Coeff. P Value Coeff. P Value

INTERCEPT 0.282** (0.000) 0.243** (.000) 0.123* (0.023) 0.102 (0.278)

PEAK 0.021 (0.259) 0.025 (0.175) 0.022 (0.263) 0.021 (0.253)

OUTBOUND 0.042* (0.026) 0.039* (0.037) 0.020 (0.051) 0.035 (0.053)

YEAR 0.066** (0.000) 0.123** (0.000) 0.120** (0.000) 0.129** (0.003)

YEAR2 -0.014* (0.018) -0.012* (0.031) -0.012* (0.031)

INCOME 0.002** (0.009) 0.002 (0.109)

INCOME*YEAR -0.000 (0.793)

R2 0.399 0.422 00.449 0.450

ADJ. R2 0.386 0.406 00.430 0.426
 
Dependent variable: Proportion of travelers using mobile communication devices 
Observations = 148 trains. 
*Significant at 0.05.
**Significant at 0.01.

The dependent variables PEAK, OUTBOUND, and PEAKFLOW relate to the type and 
timing of service provided. The variable YEARS represents the number of years elapsed 
since the base year, 2010, and is intended to capture the average change in technology 
per year due to exogenous factors that have occurred over time, such as changing 
consumer habits and greater adoption of 3G and 4G services. A polynomial (squared) 
version of this variable, YEARS2, captures the nonlinear relationship observed in Figures 
3 and 4. 

The INCOME variable is the mean of the median household income in the zip codes 
where suburban Metra stations are located for each line. Tabulating these values 
involved collecting data from 140 ZIP codes in which Metra stations are located. Values 
were tabulated by Metra line; the Union Pacific–North line, for example, is located in 
the ZIP code with the highest household income ($99,600), followed by the BNSF line 
($82,580). The Metra Electric ($60,360) and South Shore lines ($56,000), both serving 
the south part of the region, have the lowest income values. Although INCOME is a 
simplified estimate, it serves as a useful measure of the affluence of the corridor in 
which the train operates. Income may be important due to the “digital divide” that 
exists in the adoption of technology as well as the higher opportunity cost affluent 
passengers face when spending time on the train. Three interaction terms are used to 
evaluate how the effects of these variables have changed over time. 

The analysis considered four models using the proportion of technology use as the 
dependent variable and the independent variables discussed above. The models are 
discussed below, and the statistical results are presented in Table 4. 

TABLE 3.
Results of Multiple  
Regression Model
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Using Any Technology Conducting Visual Task

Sample Size Yes No Yes No

Peak 2,925 56.4% 43.6% 45.7% 54.2%

Off-Peak 1,823 55.8% 44.2% 41.0% 59.0%

X2=0.1656 X2=10.2156*

Inbound 1,844 51.1% 48.9% 36.9% 63.1%

Outbound 2,904 59.5% 40.5% 48.3% 51.7%

X2=32.2167* X2=60.2585*

Peak Inbound 1,207 49.0% 61.0% 36.4% 63.6%

Peak Outbound 1,718 62.7% 57.3% 52.1% 49.9%

X2=46.7688* X2=67.0287*

* Denotes significance at 0.01 level.  

Model 1: Basic Linear Model

This model evaluates how technology use has changed over time while controlling for 
the direction of travel (OUTBOUND), the time of travel (PEAK), and the number of 
years that passed since 2010 (YEAR). The results shows that the proportion of riders 
using mobile devices has risen an average of 6.6% annually (YEAR) and that this change 
is statistically significant. The OUTBOUND variable was also significant and indicates 
that device use is 4.2% higher on outbound trips than on inbound trips. The time of 
travel (PEAK) did not have a statistically significant impact on rates of mobile device 
use. The addition of the OUTBOUND*YEAR variable did not significantly improve the 
model’s predictive ability (it produced a coefficient that was positive but not statistically 
significant) and was dropped. Model 1 explains 39% (Adj. R2 = 0.386) of observed 
variations in mobile device use. 

Model 2: Nonlinear Rate of Growth in Technology Use

Model 2 is similar to Model 1 but includes both the YEAR and YEAR2 variable to assess 
whether the use of devices changed in a nonlinear manner. The coefficient for YEAR 
remains positive and significant, whereas coefficient for YEAR2 is negative and also 
statistically significant. This indicates that although device use increased, it did so at a 
declining rate, a finding consistent with the S-shaped pattern in Figures 2 and 3. The 
OUTBOUND variable remains statistically significant, although its coefficient value 
decreased slightly. 

Model 3: Effects of Income

Model 3 considers how device usage is affected by the average income of the commuter 
line by adding the INCOME variable to Model 2. The INCOME variable is statistically 
significant and indicates that for each $1,000 of average income on the line, there is an 
increase of 0.21% in device use among passengers riding that line. This suggests that the 
highest-income line has observed device use that is about 6% higher than the lowest 

TABLE 4.
Rates of Technology Use by 

Time and Direction of Travel
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income line in our study. Inclusion of the INCOME variables results in the OUTBOUND 
variable being no longer significant, suggesting that the affluence of riders has a greater 
impact on device usage rates than does the direction of travel. 

Model 4: The Changing Effects of Income over Time

The final model evaluates how the effects of income have changed over time by 
considering an interaction variable between income and years of time elapsed since 
2010 (INCOME*YEARS). Although the INCOME coefficient remains roughly the same, 
it is no longer significant in this model; the interaction variable INCOME*TIME is also 
not significant. Based on these results, there is little evidence to suggest that the effects 
of income are falling significantly over time even as mobile device ownership expands. 
Nevertheless, the coefficient is negative, and it is possible that this effect could be 
definitively demonstrated with a larger sample. The addition of the interaction term 
lowered adjusted R2 from 0.430 to 0.426.

A variety of other variables also were considered, including PEAKFLOW (indicating 
whether the train involved a traditional commuting schedule), but this variable 
was not significant when the OUTBOUND variable was included. The interaction 
effects between either OUTBOUND and PEAK with YEARS also were not statistically 
significant in any of the models. 

Conclusions

Metra faces two distinct trends with regard to the use of mobile communication 
devices. First, passengers continue to shift toward more visually-intensive activities that 
are difficult or impossible to safely perform when using other forms of transportation, 
such as biking, driving, or walking. This suggests the intensity of activities being 
conducted is growing. At the same time, the overall rate of growth of device use by 
passengers has slowed. Mobile device usage is following the S-shaped pattern identified 
by Rogers (1962). Cultivating further gains in technology use may require efforts to 
cater to the “late majority” (those skeptical of innovation or with less financial liquidity) 
or “laggards” (those who often have an aversion to change). The findings indicate that 
rates of device use also are influenced by income, supporting claims that a digital 
divide persists on the basis of average income. Although the data show that traditional 
commuters traveling outbound are the heaviest users of mobile devices, the adoption 
of technology has progressed far enough along the S-curve that the differential in usage 
between the peak/off-peak periods is small. 

The declining rates of growth in device use suggests that agencies should exercise 
caution in spending large sums to add amenities such as Wi-Fi to commuter trains, 
as the opportunities for expanding passenger use of technology may have fallen. 
Nevertheless, “tech-friendly” amenities may positively contribute to broader passenger 
satisfaction. Some of the most attractive opportunities may exist along routes serving 
lower-income riders, where technology use has not progressed as far along the S-curve 
as on higher-income lines. Although ubiquitous Wi-Fi service may be cost-prohibitive, 
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providing working electrical outlets and developing apps that improve the on-board 
experience may be reasonable short-term moves. Likewise, the prevalence of mobile 
device use among travelers may provide new opportunities for transit agencies to 
collect advertising revenue by partnering with “smart city” technology companies that 
provide real-time and geographically-specific advertising to passengers. 

APPENDIX 

The results from 2015 show that 56.4% of passengers on peak-period trips used 
technology, compared to 55.8% on off-peak trips (Table 4). This difference, however, 
is not statistically significant. An estimated 59.5% use technology on outbound trips, 
compared to 51.1% on inbound trips, a difference significant at a 0.01 level. A gap also 
was observed among inbound and outbound passengers with respect to visual tasks 
(see column b of Table 4). On outbound trips, 48.3% were engaged in visual tasks, 
compared to 36.9% on inbound trips. Furthermore, the share of technology use on 
outbound trips during the peak period exceeded that on inbound trips during the peak 
by 61.7% to 49.0%, a statistically significant difference. The gap was much smaller for 
off-peak trips. 

A summary of the regression analysis with the Tobit transportation is shown in Table 5. 

TABLE 5.
Results of Multiple Regression 

Model with Tobit
1. Time of day, 

Direction of 
Travel, + Changes 

Over Time

2. Time of day, 
Direction of travel 

+ Changes Over 
Time (Nonlinear)

3. Direction of 
Travel + Changes 

Over Time 
(Nonlinear), 

Route Income

4. Direction of 
Travel, Changes 

Over Time 
(Nonlinear), Route 
Income, Income-
Time Interaction

Coeff. P Value Coeff. P Value Coeff. P Value Coeff. P Value

INTERCEPT -0.961** (0.000) -1.12** (0.000) -1.63** (0.000) -1.83** (0.000)

PEAK 0.021 (0.410) 0.089 (0.315) 0.070 (0.428) 0.023 (0.763)

OUTBOUND 0.074* (0.024) 0.192* (0.033) 0.179* (0.045) 0.025 (0.053)

TIME 0.288** (0.000) 0.524** (0.000) 0.501** (0.000) 0.626* (0.002)

TIME2 -0.0054 (0.052) -0.048 (0.078) -0.050 (0.054)

INCOME 0.003* (0.023) 0.010 (0.060)

INCOME*TIME -0.001 (0.466)

R2 0.363 0.380 0.403 0.435

ADJ. R2 0.350 0.363 0.381 0.411

Dependent variable: Proportion of travelers using electronic devices with TOBIT transformation
Observations= 148 trains
*Significant at 0.05. 
**Significant at 0..01.
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