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Fig. 4. Time series (1977–2017) of Siex (µmol·L−1), at the SCML in the CalCOFI sampling area. (A and B) Interpolated values of Siex at the depth of the SCML
for (A) June/July 2004 (season with most negative SCML Siex values) and (B) June/July 2007 (approximate time of cruise). Small circles depict CalCOFI sampling
stations, while large circles display locations of incubations and metatranscriptomes. Dashed lines separate inshore–transition–offshore zones. (C–E) Average
spring–summer (April–September) fraction of SCMLs with negative Siex for each zone. A and B time points in C–E correspond to the areal contour plots in
A and B. Red and blue series show two different Siex estimates using a source upwelling isopycnal of 26.5 kg·m−3 and 25.8 kg·m−3, respectively. (E) There
is a significant monotonic increasing trend (nonparametric Mann–Kendall test P < 0.002) in the extent of negative Siex for the inshore region since 1990
(dashed lines are linear regressions for each source isopycnal). Shaded regions show when the NPGO index is positive.

also determined Siex at a global scale at 50 m depth using data
from the 2013 World Ocean Atlas (42) (SI Appendix, section 6).
Our results highlight the subsurface of coastal upwelling zones
as potential hotspots of diatom Fe deficiency (Fig. 5). The CC
(Figs. 4 and 5A) and the Humbolt/Peru Current (Fig. 5B) sys-
tem show the largest negative Siex signals at 50-m depth, while
the Benguela and Canary Currents (Fig. 5 C and D) display
negative signals to a lesser extent. The Oman upwelling zone
and the North Arabian Sea also appear to have notably Fe-
deficient (Fig. 5E) Siex values in the subsurface. The greatest
spatial extent of subsurface diatom Fe deficiency appears to
overlap with well-known high-nutrient low-chlorophyll regions,
such as the Subarctic North Pacific (43) and the Pacific equa-
torial upwelling zone (44). It is worth noting that many regions
with negative Siex values identified in our analysis also over-
lie or potentially overlap with oxygen minimum zones (OMZs)
and/or anoxic OMZs (45) where denitrification and anammox
can decouple the cycling of H4SiO4 from NO3 and may impart
a nonspecific signal to Siex. However, the occurrence of denitri-
fication/anammox above the upwelling source isopycnal would
counter any signal of iron-limited diatom uptake and push Siex in
a positive direction. Phytoplankton iron (co)limitation has been
experimentally identified in surface waters from many of the neg-
ative Siex regions identified here (7, 43, 44, 46, 47), but few studies
have investigated the potential for iron limitation at the depth
ranges of SCMLs in these regions. We find that subsurface waters
of many major oceanic upwelling regions display a biogeochem-
ical imprint of diatom iron deficiency (negative Siex), which is
consistent with our experimental and time series results from
SCMLs in the CC.

Conclusions
The diagnosis of nutrient limitation in situ is a critical step
toward better understanding fluxes of energy and matter in
marine ecosystems. Our results suggest a strong coastal to off-
shore gradient in the combined effects of iron and light on
SCML phytoplankton of the southern CC, a highly productive
eastern boundary upwelling regime, and potentially upwelling
zones worldwide (Fig. 5). The shallower inshore and inner tran-
sition zone SCML communities, which represent maxima in both
diatom biomass and productivity, appear particularly susceptible
to Fe limitation or Fe/light colimitation. It is less obvious whether
deeper SCML communities from the oligotrophic offshore zones

can be Fe deficient, but we do observe a significant effect of Fe +
light on total Chl a concentrations and notably high expression
of phytoplankton Fe-stress genes in situ. Based on our results
we speculate that oligotrophic SCMLs may experience periods
of Fe/light colimitation or Fe serial/single limitation, but fur-
ther direct observations in the oligotrophic ocean are needed to
confirm this hypothesis.

Persistent diatom Fe (co)limitation at SCMLs likely has
downstream consequences for the carbon cycle. For example,
increased diatom silicification may enhance particulate carbon
export efficiency by increasing sinking rates and shielding cells
from grazing in productive upwelling zones (5, 6). Furthermore,
historical biogeochemical patterns of diatom iron deficiency at
the CC subsurface appear to track dominant modes of cli-
mate variability in the North Pacific, which may be due to
regional atmospheric patterns that decouple the nitracline, the
ferricline, and the depth of the SCML. Biogeochemical mod-
els predict increased upwelling and NO3 fluxes to the southern

Fig. 5. Global distribution of Siex (µmol·L−1) at 50-m depth relative to an
upwelling source isopycnal of σθ = 26.5 kg·m−3. Data are from the 1◦-
resolved annual (1955–2012) mean isosurface 2013 World Ocean Atlas. A–E
highlight mean negative Siex upwelling regions. The solid black line in the
Southern Ocean shows the outcropping of the σθ = 26.5 kg·m−3 isopycnal.
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CC under anthropogenic climate change (48, 49), which may
drive diatom communities at the SCML toward Fe limitation
if the associated Fe fluxes do not increase proportionally. This
potential atmospheric–biogeochemical linkage demonstrates a
connection, mediated by iron, by which the changing climate may
influence carbon cycling and primary productivity in SCMLs of
the CC and potentially other eastern boundary currents.

Materials and Methods
Method details are available in SI Appendix. Samples for total dissolved
iron concentrations, iron-binding ligand concentrations, and incubation
experiments were collected and processed as described in refs. 4 and 24.
Dissolved Fe was measured as in ref. 4 and Fe-binding ligands were mea-
sured as in ref. 50. The transcriptomic data (including all relevant methods)
were introduced in a prior publication (26). Macronutrients were sampled
using a rosette sampler and analyzed following the standard operating
procedures from the California Current Ecosystem Long-Term Ecological
Research program. Triplicate or duplicate 4-L incubations were conducted
in acid-cleaned polycarbonate bottles, housed in a Percival incubator at
16 ◦C with a 12:12 light:dark cycle at a high- and low-light treatment
and added Fe (SI Appendix, Table S3). Primary productivity and photo-

physiology were measured as described in refs. 17 and 26. CalCOFI and
World Ocean Atlas hydrographic and nutrient data were downloaded
from new.data.calcofi.org and https://www.nodc.noaa.gov. The Siex proxy
(SI Appendix, section 13A) at SCML depths was calculated as Siex = [µmol
H4SiO4·L−1] − ([µmol NO3·L−1] × RSi:NO3), where RSi:NO3 is the micromolar
ratio of H4SiO4 to NO3 at σθ = 25.8 kg·m−3or 26.5 kg·m−3.
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