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Abstract Top predators often have large home ranges and
thus are especially vulnerable to habitat loss and fragmen-
tation. Increasing connectance among habitat patches is
therefore a common conservation strategy, based in part on
models showing that increased migration between subpop-
ulations can reduce vulnerability arising from population
isolation. Although three-dimensional models are appro-
priate for exploring consequences to top predators, the
effects of immigration on tri-trophic interactions have rarely
been considered. To explore the effects of immigration
on the equilibrium abundances of top predators, we stud-
ied the effects of immigration in the three-dimensional
Rosenzweig-MacArthur model. To investigate the stability
of the top predator equilibrium, we used MATCONT to
perform a bifurcation analysis. For some combinations of
model parameters with low rates of top predator immigra-
tion, population trajectories spiral towards a stable focus.
Holding other parameters constant, as immigration rate is
increased, a supercritical Hopf bifurcation results in a sta-
ble limit cycle and thus top predator populations that cycle
between high and low abundances. Furthermore, bistabil-
ity arises as immigration of the intermediate predator is
increased. In this case, top predators may exist at relatively
low abundances while prey become extinct, or for other
initial conditions, the relatively higher top predator abun-
dance controls intermediate predators allowing for non-zero
prey population abundance and increased diversity. Thus,
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our results reveal one of two outcomes when immigration
is added to the model. First, over some range of top preda-
tor immigration rates, population abundance cycles between
high and low values, making extinction from the trough of
such cycles more likely than otherwise. Second, for rel-
atively higher intermediate predator migration rates, top
predators may exist at low values in a truncated system with
impoverished diversity, again with extinction more likely.

Keywords Tri-trophic interactions · Three-dimensional
Rosenzweig-MacArthur model · Bifurcation · Supercritical
Hopf bifurcation · Bistability · MATCONT · Predator
conservation

Introduction

Top ecosystem predators typically have expansive habitat
requirements (Holt 1993) making them especially vulnera-
ble to habitat loss. Loss of such predators is a major con-
servation concern due to their unique functional roles, cas-
cading effects on community structure, control of species’
abundance at lower trophic levels, and hence maintenance
of biodiversity (Sergio et al. 2006). Top predators also influ-
ence the behavior of individuals in trophic levels beneath
them, an effect that often propagates to ecosystem-level
consequences (Beschta 2003; Ripple and Beschta 2004;
Heithaus et al. 2007). Thus, habitat modifications with con-
comitant decreases in top predator numbers is one of the
key conservation issues of recent decades. Examples of
once-common North American top predators that are now
rare include grizzly bears (Ursus arctos horribilis) because
of habitat loss (Wielgus 2002), lynx (Lynx canadensis)
because of habitat fragmentation (Koehler et al. 2008), and
cougars (Puma concolor) because of hunting and exploita-
tion (Robinson et al. 2008).
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Isolation of subpopulations is implicated in local extinc-
tions (Diamond 1984; Holyoak and Lawler 1996; Hill et al.
1996), and thus, connectivity between subpopulations is
often suggested as a way to stabilize populations of such
top predators (Rodriguez and Delibes 2003; Miotto et al.
2011). This connectivity is a way of increasing effective
patch size, which is important, because in general, extinc-
tion rates of many organisms are inversely correlated with
patch size (Holt 1993). Even though the community- and
ecosystem-level effects of predators are mediated by cas-
cading trophic relations, the effects of predator immigration
on communities of three interacting species have rarely
been considered. We use a mathematical model to show
that, counter-intuitively, increased immigration can both
destabilize top predator population dynamics and generate
bistability. In both cases, the potential for top predators to
tend to low densities is increased. Thus, when tri-trophic
species interactions are taken into consideration, it appears
that immigration itself may actually further endanger popu-
lations of large predators.

These results are counter-intuitive because both spatially
implicit (e.g., Hanski 1994) and spatially explicit (e.g.,
Bascompte and Sole 1996) mathematical models pre-
dict population persistence to be enhanced by immigra-
tion. Indeed, immigration stabilizes otherwise chaotic one-
dimensional difference equation models, such as the Ricker
model (Holt et al. 1983; McCallum 1992; Stone 1993),
although it destabilizes the discrete logistic map (Holt et al.
1983), and can either stabilize, or destabilize, simple two-
species continuous-time systems (Holt 2002). To illustrate
stabilization, we add immigration to the predator equa-
tion of the classic two-dimensional Rosenzweig-MacArthur
model and consider the effect of increasing the migration

parameter μ from zero. With predator immigration μ ≥ 0,
the model is

dx

dt
= x(1 − x) − αxy

1+βx
, (1)

dy

dt
= μ + αxy

1+βx
− δy, (2)

where α is the maximum attack rate of predators on prey, β
is the prey density at which predator attack rate is one half
the maximum, and δ is the predator mortality rate. Figure 1
shows that as migration of the predator varies, dynam-
ics change qualitatively. The dotted lines represent stable
oscillations and are generated with migration rate μ = 0.0.
The resulting limit cycle surrounds an unstable focus, for
which the Jacobian matrix has a complex conjugate pair of
eigenvalues with positive real part. First, increasing preda-
tor immigration slightly to μ = 0.25 generates a stable focus
represented by the dashed curve (i.e., complex conjugate
eigenvalues with negative real part) and second, increasing
predator immigration further to μ = 1.25 results in a stable
node (i.e., real, negative eigenvalues), drawn as a solid curve
culminating at the asterisk. This simple example illustrates
why, in practice, migration corridors have been advocated to
allow migration between subpopulations (reviewed in Holt
(1993), pp. 82–83).

Instability, nevertheless, arises because of additional non-
linearities in the population interaction terms when an equa-
tion is added for a top predator. Indeed, evidence from some
empirical systems reveals that population cycles are likely
generated through three-trophic-level interactions (Krebs
et al. 1995). We found such oscillations in our bifurcation
analysis of the three-dimensional Rosenzweig-MacArthur
model. This suggests that in the presence of some

Fig. 1 Changes in dynamics of
the modified two-dimensional
Rosenzweig-MacArthur model
as predator immigration rate μ is
varied. For μ = 0 (dotted curve),
predator and prey oscillate in a
limit cycle (i.e., eigenvalues are
0.04 + 0.23i, 0.04 − 0.23i). As μ
is increased to 0.25, these
oscillations die out
exponentially resulting in a
stable focus (dashed curve) and
the system has eigenvalues of
−0.07 + 0.8i, −0.07 − 0.8i.
Finally, for μ = 1.25, predator
and prey populations move to
equilibrium abundances at a
stable node (the asterisk
approached by the solid curve)
with eigenvalues −0.68, −0.27
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levels of immigration, top predator population abun-
dance may cycle and therefore periodically visit relatively
low densities. Such unexpected results, including such
phenomena as the paradox of enrichment (Rosenzweig
1971), frequently arise in nonlinear dynamics. Indeed,
other studies have similarly found immigration to some-
times be destabilizing (Holt 1985; Kuang and Takeuchi
1994). Thus, to the extent that model dynamics repre-
sent those of real ecosystems, our results suggest that
practical strategies for enhancing inter-patch migration
should be informed by modeling studies that explore suit-
able migration rates to avoid introduction of destabilizing
oscillations.

The classic three-dimensional Rosenzweig-MacArthur
model

In fully dimensional form, the three-dimensional
Rosenzweig-MacArthur model is,

dX

dT
= RX(1 − X/K) − AxXY

Bx + X
, (3)

dY

dT
= Cx,yAxXY

Bx + X
− AyYZ

By + Y
− δyY, (4)

dZ

dT
= Cy,zAyYZ

By + Y
− δzZ, (5)

where X represents the resource (prey), Y represents
the primary consumer, often called the predator or inter-
mediate predator, and Z represents a secondary con-
sumer, our “top predator.” The parameters in Eqs. 3–5
are described in Table 1.

Table 1 Parameters of the fully dimensional three-dimensional
Rosenzweig-MacArthur model and their descriptions

Parameter Description

R Prey population growth rate

K Prey carrying capacity

Ax Maximal attack rate of Y on X

Bx Prey density at which Y is half saturated

Cx,y Factor to convert X to Y

Ay Maximal attack rate of Z on Y

By Y density at which Z is half saturated

δy Non-predation mortality of Y

Cy,z Factor to convert Y to Z

δz Mortality of Z

Comparison to the two-dimensional
Rosenzweig-MacArthur model

Equations 3–5 have been analyzed extensively, but analy-
ses use different non-dimensionalization and reparameter-
ization schemes, resulting in different final forms of the
model. Perhaps the most common scheme scales out R

and K (e.g., Hastings and Powell 1991; Kuznetsov and
Rinaldi 1996). We wish to facilitate comparison of a classic
feature of the more familiar two-dimensional Rosenzweig-
MacArthur model, however, and so we instead follow
(Kuznetsov et al. 2001) and intentionally retain these (ini-
tially). Then, after our comparison, we pursue a different
parameterization.

Some model simplification allows us to take advantage
of published parameter values (see, e.g., Kuznetsov et al.
2001) and so we begin by factoring Bx and By from the
denominators of the functional responses and then renaming
1

Bx
≡ bx and 1

By
≡ by . Finally, we rename Ax

Bx
≡ ax and

Ay

By
≡ ay yielding,

dX

dT
= RX(1 − X/K) − axXY

1 + bxX
, (6)

dY

dT
= Cx,yaxXY

1 + bxX
− δyY − ayYZ

1 + byY
, (7)

dZ

dT
= Cy,zayYZ

1 + byY
− δzZ. (8)

We used the parameter values in Table 2 and a numer-
ical continuation algorithm (described later) to solve for
the equilibria of Eqs. 6–8 over a range of values of K to
generate Fig. 2. The y−axis values are equilibria of the
X, Y , and Z populations, respectively. For small values of
K (the left end of the x−axis), only the prey population
can invade the system; predators and top predators are sta-
ble at abundance zero. After the transcritical bifurcation at
T Cy , intermediate predators can invade the system and all
increases in K are translated into predator biomass; prey
abundance remains constant. After the second transcritical

Table 2 Parameters values used in Eqs. 6–8 to generate Fig. 2

Parameter Value Parameter Value

R 1 δy 0.3

ax 0.09 ay 0.1

bx 0.1 by 0.2

Cx,y 1 Cy,z 1

K Varies δz 0.29
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Fig. 2 Solution diagram for Eqs. 6–8 demonstrating the paradox of
enrichment in the three-dimensional Rosenzweig-MacArthur model.
X0, Y 0, Z0 represent the equilibria of X, Y , and Z, respectively. For
the interval 0 < k < T Cy , only prey can invade the system. Between
T Cy < k < T Cz, the predator invades the system and all increases in
k are translated into predator biomass. Between T Cz < k < H , the top

predator invades the system and both prey and top predator increase in
biomass while the intermediate predator remains constant. At the point
H , a supercritical Hopf bifurcation occurs leading to stable limit cycles
for all species. The paradox is that enriching the environment such that
it can support more prey destabilizes the populations generating low
population abundances at the low point of the limit cycle

bifurcation at T Cz, however, top predators invade the sys-
tem and increase along with prey as K is increased further,
while predator abundance remains constant. A supercriti-
cal Hopf bifurcation occurs at point H whereby the stable
focus loses stability (represented by the dashed curves)
and a limit cycle appears (limit cycle minima and max-
ima represented by solid lines surrounding the dashed
curves).

This is a three-dimensional version of the classic para-
dox of enrichment, typically shown in the two dimensions
of prey and predator. The paradox is that enriching the envi-
ronment (increasing the carrying capacity of the prey in the
absence of predator regulation) can lead to low population
abundances at the low points of cycles. Thus, we see that
nonlinear feedbacks from the two-dimensional case persist
in the three-dimensional model. Our key result, namely that
immigration can destabilize dynamics for a given value of
K , demonstrates that other similar counter-intuitive results
(e.g., Doebeli 1995) emerge after the addition of the third
nonlinear equation. Indeed, in still higher dimensions even
more possibilities exist. For example, Boer et al. (2001)
found that top predators in a four-dimensional chemostat
model may even go extinct as the environment is increas-
ingly enriched.

The conventional reparameterization

Having compared the two- and three-dimensional
models, we return to Eqs. 3–5 and consider a more

conventional non-dimensionalization of the three-
dimensional model. The non-dimensionalization is
reproduced in detail in Appendix A and the resulting
equations are,

ẋ = x(1 − x) − αxxy

1 + βxx
, (9)

ẏ = αxxy

1 + βxx
− δyy − αyyz

1 + βyy
, (10)

ż = αyyz

1 + βyy
− δzz. (11)

This model has a long and distinguished history in
generating insights into tri-trophic ecosystem dynamics.
Additionally, these have become the workhorse equations
for understanding dynamics of three-dimensional nonlin-
ear systems (Hastings and Powell 1991; Kuznetsov and
Rinaldi 1996; van Voorn et al. 2010). We therefore use
this model as our base model to which we then add
immigration.

The three-dimensional Rosenzweig-MacArthur model with
constant immigration

We modified the system of Eqs. 9–11 to include μx , μy ,
and μz representing constant immigration of prey, predators,
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and top predators, respectively, generating the system of
equations,

ẋ = μx + x(1 − x) − αxxy

1 + βxx
, (12)

ẏ = μy + αxxy

1 + βxx
− δyy − αyyz

1 + βyy
, (13)

ż = μz + αyyz

1 + βyy
− δzz. (14)

Our approach therefore follows Holt’s study of the two-
dimensional Rosenzweig-MacArthur model (Holt 2002).
Including migration in such models corresponds to model-
ing what Amarasekare (2008) calls extinction-immigration
dynamics, where the state variable is species abundance as
opposed to patch occupancy patterns. For the purposes of
the first part of this study, we set μx = 0 and μy = 0.01
and varied μz. This corresponds to stationary prey and rel-
atively less-mobile predators, with varying mobility of top
predators (μz) to simulate more or less connectivity between
habitat patches. Such variability in mobility across species
and trophic levels is widely accepted (Wiens 1989).

Continuing equilibria with MATCONT

The equilibria of Eqs. 9–10 are well known (e.g., van Voorn
et. al 2010) and are listed in Table 3.

The final equilibrium in Table 3 is,

x∗ = βx−1+
√

(βx+1)2− 4αxβxδz
αy−βyδz

2βx
, (15)

y∗ = δz

αy−βyδz
, (16)

z∗ = f (x∗)−δx

αy−βyδz
, (17)

with

f (x) = αxx

1 + βxx
. (18)

Numerous software packages exist that allow one to
compute such equilibria numerically, then vary a focal

Table 3 Equilibria of the non-dimensionalized three-dimensional
Rosenzweig-MacArthur model and their descriptions

Equilibrium Description

(0, 0, 0) Trivial equilibrium

(1, 0, 0) Prey-only equilibrium

(
δy

αx−δyβx
, (1 − x∗)(1 + βxx∗)/αx, 0) Prey and intermediate

predator equilibrium

(x∗, y∗, z∗) Three-species equilibrium

parameter, and repeatedly recompute the equilibrium at the
new parameter value. This procedure is known as “equi-
librium continuation” because we “continue,” i.e., continu-
ously reevaluate, the equilibrium, in some parameter space.
We used MATCONT, which is a Matlab�-based contin-
uation program to continue the equilibrium analogous to
(x∗, y∗, z∗) above, except that the equilibrium we were
interested in was for Eqs. 12–14.

During the process of continuing such equilibria, spe-
cial points called singularities can emerge (Govaerts et al.
2011, pg.14). Numerous test functions that have regular
zeros at such singularities have been devised (see, e.g.,
Kuznetsov (2004), pp. 526–527 for detecting saddle-node
and Hopf bifurcations). For example, at a saddle-node bifur-
cation point, the determinant of the system of linearized
equations (i.e., the Jacobian matrix) goes to zero because
one eigenvalue vanishes. Similarly, at a Hopf bifurcation
point, the real part of a pair of eigenvalues passes through
zero, which is captured by a test function involving the
bialterate matrix product (explained in Kuznetsov (2004),
pp. 528–529).

Bifurcation results

To enhance our intuition about what results to expect in
our bifurcation analysis, we first added immigration to
the simpler three-species model with the linear functional
responses of Lotka-Volterra dynamics. Specifically,

ẋ = μx + x(1 − x) − α1xy, (19)

ẏ = μy + α1xy − δ1 − α2yz, (20)

ż = μz + α2yz − δ2z. (21)

When an equilibrium of Eqs. 19–21 exists, it is known
to be stable. The immigration terms in these equations do
not cause bifurcations of those stable equilibria, except that
immigration in higher trophic levels can cause extinction in
lower trophic levels. But, what about the more complicated
case of Eqs. 12–14?

Table 4 Parameter values from the literature (van Voorn et al. 2010)
for the three-dimensional Rosenzweig-MacArthur model

Parameter Value Parameter Value

αx 5 δz 0.015

βx 3 μx 0

δy 0.25 μy 0.01

αy 0.1 μz varies

βy 2
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Fig. 3 The three-dimensional Rosenzweig-MacArthur model
approaching a stable focus with top predator immigration μz = 0.01

We used published values of the parameters of Eqs. 9–11,
which we reproduce in Table 4 (van Voorn et al. 2010).

We began our bifurcation analysis by seeking an equilib-
rium to continue. For the parameter values in Table 4, with
μz = 0.01, the system comes to a focus (point equilibrium
approached in a spiral), which we show in the (y, z)-plane
in Fig. 3.

With initial values (x0, y0, z0) = (0.6, 0.2, 11.5), the
system approaches the equilibrium point, in Fig. 3, namely
(x∗, y∗, z∗) = (0.6700, 0.1986, 12.7617). When continued
(i.e., monitored as top predator immigration μz varies), this
equilibrium undergoes a supercritical Hopf bifurcation as
the focus loses stability and a limit cycle appears, as shown
in Fig. 4. In the figure, the solid curves above and below

the dashed unstable equilibrium represent the maximum and
minimum values attained by the stable limit cycle.

As can be seen in the figure, as μz is increased further,
the supercritical Hopf bifurcation is reversed, and this limit
cycle disappears, returning the system to a stable focus.
These bifurcations are plotted in the (μz, z)-plane. Recall
that the y−axis value is rescaled (i.e., amplified by a frac-
tion of the prey carrying capacity K) and so it is not the
rather minimal difference between say, 13 at the unstable
equilibrium and 12 at the low point on the limit cycle that is
the issue. Instead, it is the onset of cycling that is the issue.
In unscaled predator units, such cycling brings the predator
population abundance close to the extinction axis.

Of course, as other parameters are varied, the location
in μz − z∗ space as well as the nature of the stable limit
cycle vary. For example, by simultaneously varying μy , the
mid-level predator immigration rate, along with μz, we can
trace a curve of Hopf bifurcations in the (μz, μy) space, as
in Fig. 5. Below this curve lie immigration parameter pairs
that generate limit cycles (see inset) and above the curve,
the immigration parameter pairs generate stable nodes (right
of the hump, see inset) and stable foci (left of the hump, no
inset).

Other phenomena arise for other values of the remaining
parameters. For example, with non-zero μy = 0.3, a saddle-
node bifurcation has yielded three equilibria. Two of these
are unstable, however, (the dotted portions of the s-curve in
Fig. 6). Nevertheless, a stable alternative to the upper sta-
ble equilibrium exists. All initial conditions below the upper
dotted portion of the curve evolve towards the stable equi-
librium at the relatively straight solid line. All points along
this solid curve are obviously lower equilibrium values of
top predator. But, these points are further distinguished by
the prey being absent from the system. The two predators

Fig. 4 Top predator densities at
which Hopf bifurcations occur
as μz is varied
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Fig. 5 Curve of Hopf
bifurcations generated by
varying μz and μy

simultaneously
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0

0.005

0.01

0.015

0.02

Fig. 6 Bistability between a
predator only equilibrium (solid
straight line), maintained by
immigration, and a higher top
predator equilibrium (solid
portions of the s-curve) for
which all species are present
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Fig. 7 Wedge of limit points of
the s-shaped fold bifurcation in
the two parameter space of μy

and μz (solid lines). The dashed
line represents parameter pairs
for which the prey can invade
the system
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are maintained in the system by immigration in the absence
of the prey. Only for relatively high values of top predator
immigration does the top predator “control” the interme-
diate predator to levels at which the prey can invade the
system.When that happens, top predator abundance tends to
the upper equilibrium. Thus, for relatively low values of top
predator immigration, diversity is decreased in the system,
and top predators exist at a more vulnerable equilibrium
level.

In MATCONT, it is possible to continue the so-called
“limit points” in Fig. 6 (i.e., the turning points of the
s-curves) in a two-parameter space. The previous figure
revealed that these bifurcations exist, but Fig. 7 reveals what
happens to these bifurcations as parameters vary. We chose
μy and μz as our bifurcation parameters and continued the
bifurcation points to see how they vary as these two param-
eters vary (Fig. 7). Similarly, in Fig. 7, we add a dashed
line representing the transcritical bifurcation whereby prey
can invade the system, despite immigration rates of the
intermediate predator. Notice that this occurs at relatively
higher values of top predator immigration suggesting that
prey can only invade the system when top predators control
intermediate predators sufficiently to release the prey from
predation pressure.

Discussion

Top ecosystem predators often contribute disproportion-
ately to ecosystem functioning by, for example, enhancing
diversity in trophic levels beneath them (e.g., Paine 1966).
Thus, conservation efforts are often devised to enhance
top predator persistence. Because such predators are typ-
ically wide ranging, with expansive habitat requirements,
they are especially vulnerable to habitat loss. A staple
of top predator conservation strategies has therefore been
to increase effective habitat size by promoting migration
between interconnected habitat patches. Although previous
work has shown that this approach can stabilize inher-
ently unstable predator and prey interactions (see, e.g., Holt
1993; Ruxton 1996), analysis of the relatively simple three-
dimensional Rozensweig-MacArthur model with immigra-
tion shows how easy it is for this approach to backfire (also,
see Holt (2002), for a similar result in two dimensions).

Migration-driven limit cycles

For example, we have shown that for certain levels of immi-
gration of top predators, the stable point equilibrium of
the system undergoes a supercritical Hopf bifurcation and
becomes unstable, while stable population cycles emerge.
These cycles persist over a sizable range of immigration
values, with first increasing, and then decreasing amplitude

of the cycles, as immigration rate increases. As immigra-
tion levels are increased further, however, the bifurcation
is reversed during which the population cycle disappears
and the stable equilibrium once again gains stability. Thus,
our results demonstrate that increased migration is not a
panacea for population persistence. In fact, at some levels,
immigration can destabilize top predator populations.

Abdllaoui et al. (2007) similarly found that limit cycles
can emerge as density-dependent migration increases in
two-patch predator and prey models. When considering
larger numbers of patches in a lattice, Blasius et al. (1999)
found that not only did populations cycle, but the popula-
tions became phase synchronized, although local peak pop-
ulations were uncorrelated. Similarly, for small metacom-
munities following chemostat dynamics with non-random
dispersal of the lowest trophic level (nutrients in their case),
Suzuki and Yoshida (2012) demonstrated the conditions
under which local populations became synchronized thus
increasing the risk of simultaneous extinctions.

Nevertheless, the stabilizing effects of immigration that
we demonstrated earlier for the two-dimensional case
are also present in the three-dimensional Rosenzweig-
MacArthur model. For example, Ruxton (1996) showed that
adding immigration to the prey equation can reduce the
extent to which the model exhibits chaotic behavior. Indeed,
this model is well-known for generating chaotic dynamics
in realistic parameter regimes (McCann and Yodzis 1996),
and in fact, the entire class of models to which it belongs
can generate chaos (Klebanoff and Hastings 1994). Besides
being undesirable because of the possibility of abnormally
low population abundances, chaotic dynamics can be tran-
sient and populations can suddenly disappear (Hastings
1996). Although McCann and Yodzis (1996) demonstrated
that chaos is possible in this model for a wide variety
of biologically realistic parameter combinations, those are,
nevertheless, not in the range that we explored here.

Migration-driven bistability

Furthermore, when intermediate predator immigration is
also increased, the possibility of bistability arises. Two sta-
ble states exist and initial conditions determine which is
ultimately realized. For example, for initial conditions in
the basin of attraction of the lower equilibrium, the top
predator population settles on a relatively low equilibrium
value. For these lower values of top predator abundance,
prey are missing from the system and both predator species
are maintained by immigration. Thus, both intermediate and
top predators exist in sink populations for this case. Only
once top predator immigration exceeds a threshold value
can the prey invade the system because top predator abun-
dance is then adequate to keep intermediate predator density
relatively low. When intermediate predator density is at
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such low values, prey are released from predation pressure
sufficiently to maintain non-zero population abundance.

Bistability arises in numerous models of ecosystem
dynamics. For example, in a tri-trophic chemostat model
with few patches, Suzuki and Yoshida (2012) found that dis-
persal of nutrients generates bistability. Similarly, Goldwyn
and Hastings (2011) found multistability in a many-patch
system. Furthermore, when patches are fewer, extinction
becomes much more likely; Wilson et al. (1998) found
a strong effect of lattice size whereby extinctions were
more likely for models of smaller areas. In his tri-trophic
metapopulation model, Jansen (1994) found results similar
to ours in that top predator dispersal can both destabilize
dynamics and generate bistability. In his model formula-
tion, dispersal is non-instantaneous, generating a time lag
in predator reactions to prey density. Dispersal is instan-
taneous and space is implicit in our model, however, and
so the finding of bistability is apparently quite general.
Although bistability can arise in one-dimensional models
(e.g., Drury 2007) and two-dimensional models (e.g., Drury
and Lodge 2009) that include a type III functional response,
we are not aware of one- or two-dimensional models with
a type II functional response, such as the two-dimensional
Rosenzweig-MacArthur model has, exhibiting bistability.

These results do not imply that tri-trophic interactions
always undermine the benefits of increased immigration
among subpopulations, but they do suggest the need for
awareness of the possibility of destabilization. For example,
at high levels of immigration in each population, the dynam-
ics of the model are stabilized. Destabilization only occurs
at intermediate values of migration. Migration between sub-
populations is common (e.g., cougars (Cooley et al. 2009))
and has been shown to contribute to global persistence,
for example through the rescue effect, and distribution of
risk arising from natural disasters. These mechanisms of
persistence are thought to be especially relevant in the
case of top predators because such predators are typically
large-bodied, relatively rare, have sparser populations, and
are wide-ranging with large habitat requirements (Wielgus
2002).

Our results suggest the need for further modeling studies,
however. Specifically, there appears to be a need to study
the dynamical consequences of both emigration and immi-
gration in local populations with a coupled patch model.
Jansen (1994) used Lotka-Volterra-style interactions in a
three-species metapopulation model and found that migra-
tion of upper trophic levels can destabilize interactions with
trophic levels below them. Those results, in conjunction
with ours, suggest that there are complexities that arise in
analyses of food chains at the landscape level. Neverthe-
less, organismal behavior is often more complex than that
which our models portray. For example, in our model, top
predator migration is constant, while in reality, migration is

likely to vary with food availability, which in turn can be
related to top predator density itself. Thus, including more
complex behavioral mechanisms may erode the possibility
of bistability.

We conclude that while migration between patches can
increase the fraction of patches occupied, at intermediate
levels, it can cause local populations to visit the small
sizes in the troughs of cycles at which they are subject
to local extinction through demographic and environmental
stochasticity (Sole and Montoya 2006). Immigration there-
fore presents a dilemma for management of top predator
populations, e.g., lynx reintroductions that rely on adequate
migration from surrounding source populations.

In conclusion, we note that exhaustive bifurcation analy-
sis of this model, considering μx , μy , and μz, is a significant
task that still remains to be completed. Future work could
consider bifurcations resulting from varying these three
parameters in a more comprehensive manner. In contrast,
our study has focused on a few bifurcations selected for
their relevance to the well-known and widely adopted con-
servation strategy of increasing immigration among top
predators. Our results show that this strategy can back-
fire, which should be considered a possible outcome of
actions aimed at improving immigration corridors for top
predators.
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Appendix A

To non-dimensionalize the model, we begin by relegating all
the units of our state variables to constants thus transforming
the uppercase state variables into constants multiplied by
unitless lowercase state variables (e.g., Brown 1991). Thus,
the uppercase state variables of the model become,

T ≡ ct t, X ≡ cxx, Y ≡ cyy Z ≡ czz. (22)

Substituting these expressions for the uppercase variables
into the model yields,

cx

ct

dx

dt
= Rcxx

(
1 − cxx

K

)
− Axcxxcyy

Bx + cxx
, (23)

cy

ct

dy

dt
= Cx,yAxcxxcyy

Bx + cxx
− dycyy − Aycyyczz

By + cyy
, (24)

cz

ct

dz

dt
= Cy,zAycyyczz

By + cyy
− dzczz. (25)
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We can immediately simplify these equations by dividing
through each equation by cx , cy , and cz, respectively, and
multiplying each by ct , which yields,

dx

dt
= Rctx

(
1 − cxx

K

)
− ctAxxcyy

Bx + cxx
, (26)

dy

dt
= Cx,yctAxcxxy

Bx + cxx
− ctdyy − ctAyyczz

By + cyy
, (27)

dz

dt
= Cy,zctAycyyz

By + cyy
− ctdzz. (28)

We next factor Bx and By from the denominators of the
functional responses in Eqs. 26–28 and group the parame-
ters yielding,

dx

dt
= Rctx

(
1 − cxx

K

)
− ctAxcy

Bx

xy(
1 + cx

Bx
x
) , (29)

dy

dt
= Cx,yct cxAx

Bx

xy(
1 + cx

Bx
x
) − ct dyy − ctAycz

By

yz(
1 + cy

By
y
) ,(30)

dz

dt
= Cy,zct cyAy

By

yz(
1 + cy

By
y
) − ct dzz. (31)

We are now in a position to remove certain parame-
ter groups. According to the pi theorem (Brown 1991),
with p as the number of original parameters and u as the
number of fundamental units, we need only retain p −
u parameters, the remaining ones being set equal to 1.
Furthermore, we are free to rename the remaining param-
eter groups with single parameters, thus simplifying the
equations.

Equations 3–5 had ten original parameters. There are four
fundamental units including time, abundance of X, abun-
dance of Y , and abundance of Z. Thus, we must retain six
parameter groups to represent these units. We know that we
wish to remove R and K and so we set,

Rct ≡ 1, and
K

cx

≡ 1, (32)

which means that ct = 1
R
and cx = K .

Similarly, because they are equal in the conventional
form of the model, we set the coefficient of the related
functional response to be equal. Specifically,

ctAxcy

Bx

= Cx,yct cxAx

Bx

and
ctAycz

By

= Cy,zct cyAy

By

,

(33)

and solve these for cy and cz, yielding,

Table 5 Renaming of nondimensional parameter groups to arrive at
Eqs. 43–45, the conventional representation of the three-dimensional
Rosenzweig-MacArthur model

Parameter group New parameter

AxCx,yK

RBx
αx

AyCy,zCx,yK

RBy
αy

cx

Bx
βx

cy

By
βy

dy

R
δy

dz

R
δz

(34)

cy = Cx,ycx, (35)

= Cx,yK, (36)

and

(37)

cz = Cy,zcy, (38)

= Cy,zCx,yK. (39)

Making these substitutions for ct , cx , cy , and cz in the
model yields,

dx

dt
= Rctx

(
1 − cxx

K

)
− AxCx,yK

RBx

xy(
1 + cx

Bx
x
) , (40)

dy

dt
= Cx,yKAx

RBx

xy(
1+ cx

Bx
x
) − dy

R
y− AyCy,zCx,yK

RBy

yz(
1+ cy

By
y
) , (41)

dz

dt
= Cy,zCx,yKcAy

RBy

yz(
1 + cy

By
y
) − ct dzz. (42)

We are now free to rename the remaining parame-
ter groups with single Greek letters, with subscripts as
needed,

With these parameter names, we have arrived at the con-
ventional, non-dimensional form of the three-dimensional
Rosenzweig-MacArthur model,

ẋ = x(1 − x) − αxxy

1 + βxx
, (43)

ẏ = αxxy

1 + βxx
− δyy − αyyz

1 + βyy
, (44)

ż = αyyz

1 + βyy
− δzz (45)
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where ẋ ≡ dx
dt
, x represents prey population density,

y represents predator population density, z represents top
predator population density, the αi represent scaled maximal
attack rates, the βi represent the inverse of the prey density
at which predators become half-saturated (i ∈ {x, y}), and
the δj represent scaled non-predation mortality (j ∈ {y, z}).
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