
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

Molecular Medicine Faculty Publications Molecular Medicine 

2011 

Predictive Power Estimation Algorithm (PPEA) - A New Algorithm Predictive Power Estimation Algorithm (PPEA) - A New Algorithm 

to Reduce Overfitting for Genomic Biomarker Discovery to Reduce Overfitting for Genomic Biomarker Discovery 

Jiangang Liu 
Indiana University School of Medicine 

Robert A. Jolly 
Lilly Research Laboratories 

Aaron T. Smith 
Lilly Research Laboratories 

George H. Searfoss 
Lilly Research Laboratories 

Keith M. Goldstein 
Lilly Research Laboratories 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.usf.edu/mme_facpub 

 Part of the Medicine and Health Sciences Commons 

Scholar Commons Citation Scholar Commons Citation 
Liu, Jiangang; Jolly, Robert A.; Smith, Aaron T.; Searfoss, George H.; Goldstein, Keith M.; Uversky, Vladimir 
N.; Dunker, Keith; Li, Shuyu; Thomas, Craig E.; and Wei, Tao, "Predictive Power Estimation Algorithm 
(PPEA) - A New Algorithm to Reduce Overfitting for Genomic Biomarker Discovery" (2011). Molecular 
Medicine Faculty Publications. 454. 
https://digitalcommons.usf.edu/mme_facpub/454 

This Article is brought to you for free and open access by the Molecular Medicine at Digital Commons @ University 
of South Florida. It has been accepted for inclusion in Molecular Medicine Faculty Publications by an authorized 
administrator of Digital Commons @ University of South Florida. For more information, please contact 
digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/mme_facpub
https://digitalcommons.usf.edu/mme
https://digitalcommons.usf.edu/mme_facpub?utm_source=digitalcommons.usf.edu%2Fmme_facpub%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/648?utm_source=digitalcommons.usf.edu%2Fmme_facpub%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usf.edu/mme_facpub/454?utm_source=digitalcommons.usf.edu%2Fmme_facpub%2F454&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


Authors Authors 
Jiangang Liu, Robert A. Jolly, Aaron T. Smith, George H. Searfoss, Keith M. Goldstein, Vladimir N. Uversky, 
Keith Dunker, Shuyu Li, Craig E. Thomas, and Tao Wei 

This article is available at Digital Commons @ University of South Florida: https://digitalcommons.usf.edu/
mme_facpub/454 

https://digitalcommons.usf.edu/mme_facpub/454
https://digitalcommons.usf.edu/mme_facpub/454


Predictive Power Estimation Algorithm (PPEA) - A New
Algorithm to Reduce Overfitting for Genomic Biomarker
Discovery
Jiangang Liu1,3,4, Robert A. Jolly2, Aaron T. Smith2, George H. Searfoss2, Keith M. Goldstein2, Vladimir N.

Uversky4,5,6, Keith Dunker3,4, Shuyu Li1, Craig E. Thomas2*, Tao Wei1*

1 Translational Science, Lilly Research Laboratories, a Division of Eli Lilly & Co., Indianapolis, Indiana, United States of America, 2 Toxicology, Lilly Research Laboratories, a

Division of Eli Lilly & Co., Indianapolis, Indiana, United States of America, 3 School of Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana,

United States of America, 4 Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America,

5 Department of Molecular Medicine, University of South Florida, Tampa, Florida, United States of America, 6 Institute for Biological Instrumentation, Russian Academy of
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Abstract

Toxicogenomics promises to aid in predicting adverse effects, understanding the mechanisms of drug action or toxicity, and
uncovering unexpected or secondary pharmacology. However, modeling adverse effects using high dimensional and high
noise genomic data is prone to over-fitting. Models constructed from such data sets often consist of a large number of
genes with no obvious functional relevance to the biological effect the model intends to predict that can make it
challenging to interpret the modeling results. To address these issues, we developed a novel algorithm, Predictive Power
Estimation Algorithm (PPEA), which estimates the predictive power of each individual transcript through an iterative two-
way bootstrapping procedure. By repeatedly enforcing that the sample number is larger than the transcript number, in each
iteration of modeling and testing, PPEA reduces the potential risk of overfitting. We show with three different cases studies
that: (1) PPEA can quickly derive a reliable rank order of predictive power of individual transcripts in a relatively small
number of iterations, (2) the top ranked transcripts tend to be functionally related to the phenotype they are intended to
predict, (3) using only the most predictive top ranked transcripts greatly facilitates development of multiplex assay such as
qRT-PCR as a biomarker, and (4) more importantly, we were able to demonstrate that a small number of genes identified
from the top-ranked transcripts are highly predictive of phenotype as their expression changes distinguished adverse from
nonadverse effects of compounds in completely independent tests. Thus, we believe that the PPEA model effectively
addresses the over-fitting problem and can be used to facilitate genomic biomarker discovery for predictive toxicology and
drug responses.
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Introduction

Many preclinical candidate compounds do not achieve

regulatory approval because of organ toxicity and lack of adequate

safety margins. Up to half of these compounds are terminated

from development due to hepatotoxic effects including necrosis,

steatosis, cholestasis, proliferation, inflammation, and bile duct

hyperplasia (BDH) [1]. It has been well-documented that

biomarkers that identify incipient damage that lead to preclinical

and clinical toxicities will enable better decision-making during

drug development [2]. Particularly valuable are translational

biomarkers that bridge preclinical testing species and humans as

they can expand the usefulness of the former for detection of

human liabilities [3].

Although a sole biomarker is appealing as it can be less

expensive to measure, and the results are easier to interpret than a

panel of markers, there are few examples in preclinical testing or in

clinical practice wherein a single measurement is considered

definitive for target organ toxicity. Multiple markers are required

to capture the biological heterogeneity of organs involved,

individual variations and disease or toxicity processes [4].

Microarray technology allows us to observe and assess the

expression of thousands of genes simultaneously in each sample

and machine learning algorithms can be applied to identify gene

signatures or biomarkers from microarray data. Numerous recent

studies have demonstrated that gene expression signatures not only

outperform traditionally used clinical parameters in toxicity or

disease outcome prediction, but also contribute to a better

understanding of the biological mechanism [5–10]. However,

gene signatures proposed to be correlated to the same biological

phenotype by different researchers differ widely and often have

very few genes in common [11–12]. This lack of congruence raises

PLoS ONE | www.plosone.org 1 September 2011 | Volume 6 | Issue 9 | e24233



doubts about the reliability and robustness of the reported

predictive signatures. Analysis of the situation has led to

suggestions that the different gene sets may result, at least in part,

from over-fitting [13–15]. Over-fitting is a concern when the

number of training samples is small and the number of genes

relatively large, as in this situation it is straightforward to obtain a

classifier that correctly describes the training data, but performs

poorly on an independent set of data.

Over-fitting has been closely examined in several studies [16–

17]. Two studies in logistic and Cox regression showed increasing

bias and variability, unreliable confidence interval coverage, and

problems with model convergence as events per variable (EPV)

declined below 10, and especially below five, leading to the rule of

thumb that logistic and Cox models should be used with a

minimum of 10 EPV [18–19]. Therefore, feature selection is

commonly performed before sample classification is even attempt-

ed to alleviate the above stated problem. Although numerous

reports for feature selection have been published, and some

techniques have been claimed better than others [13,20–22], to

date, no single recommendation in the literature is given for

methods in either the feature selection or the classification of

microarray data [22-23].

Feature selection algorithms fall mainly into two broad

categories, the filter model or the wrapper model [24–26]. The

widely accepted filter techniques are single-feature based and have

been demonstrated to be effective for improving sample

classification accuracy. Some of them are statistical tests (t-test,

F-test) [27], non-parametric tests like TNoM [28], S2N ratio

(signal to noise ratio) [29], etc. However, these methods share a

limitation in that the interaction with classifier and feature

dependencies has been completely ignored. However, interactions

between genes are important for numerous - if not all - biological

functions [30–31]. Although the wrapper methods use the

interactions between features, perform multivariate gene subset

selection, and incorporate the classifier’s preference or bias into

the search and thus offer an opportunity to construct more

accurate classifiers, the disadvantages are that they are computa-

tionally intensive, result in classifier dependent selection, and are

at a particularly high risk of over-fitting [22]. In the present study,

we describe the development of a new method, Predictive Power

Estimation Algorithm (PPEA), to evaluate and rank the relative

predictive power of individual genes. By applying PPEA to the

DrugMatrixTM chemogenomic database, we identified and

validated three small sets of genes highly predictive of, and

functionally related to, liver inflammation (INFL), necrosis and

bile duct hyperplasia (BDH), respectively. Furthermore, we

successfully converted a 3-gene signature to a multiplex qRT-

PCR assaythat can be effectively deployed as a genomic biomarker

to predict BDH.

Materials and Methods

Ethics Statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national and local animal

welfare bodies, and all animal work was approved by the Lilly’s

Institutional Animal Care and Use Committee under IACUC

protocol 2008-0727.

Algorithm
Figure 1 shows the PPEA algorithm. Let MP|N be the

expression data matrix of P genes as rows and N samples as

columns, among which N1 samples are labeled as T1,T2,:::TN1for

toxicity class and N2 samples labeled as NT1,NT2,:::NTN2 for

non-toxicity class. Thus, N~N1zN2. Let a be a predetermined

threshold of acceptable classification error rate of model testing

and b be the arbitrarily defined sample split ratio to construct

training and testing sample sets. Let K be the total number of

iterations and k be the kth iteration (k~1,2,:::,K). Let Ek
P|4be the

performance matrix estimated after the kth iteration consisting of P

rows, each of which is identified by the genes gi(i~1,2,:::,P)in the

data matrix MP|N , and four columns corresponding respectively

to Tk
i as the total number of times gi is sampled after kth iterations,

Sk
i as the total number of times gi selected in the successful

predictive modeling (see Step 3a below for definition) after kth

iterations, Pk
i ~Sk

i =Tk
i as an estimate of the predictive power of gi

after the kth iterations, and Rk
i where i5(1,2,:::,P) as estimated

rank order of gi based on its estimated predictive power Pk
i after

the kthiteration. Genes with larger Pk
i are more predictive than

those with smaller Pk
i and thus ranked higher. At the initiation of

the algorithm, E0
P|4~½0�. For each iteration k~1,2,:::,K ,

executes the following steps.

Step 1: Apply two-way bootstrapping to the MP|N to obtain a

bootstrapping sample matrix Sk
p|n consisting of p genes,

gj(j~1,2,:::,p), randomly drawn from P genes, n1 samples from

N1 samples of toxicity class and n2 samples from N2 samples of

non-toxicity class such that n1=N1~b,n2=N2~b, n~n1zn2 and

pvn. n is the sample size of training sample set while (N{n) is the

sample size of testing sample set.

Step 2: Apply Prediction Analysis of Microarray (PAM) to the

bootstrapping sample matrix Sk
p|nto perform sample classification

using the nearest shrunken centroid method [32]. To build a

predictive PAM model, ten-fold cross validation was performed to

determine the optimal classifier performance which minimizes

classification errors for the training set Sk
p|n Based on the ten-fold

cross validation, a threshold Dk was varied in search of the optimal

classifier performance. The Dk is chosen when the lowest

classification errors achieved with the fewest genes g1,g2,:::,gl

where lƒp. The resultant PAM model in the current kth iteration

mk~f (g1,g2,:::,g1) lƒp ð1Þ

is subsequently tested using the (N{n) testing samples. Let e be

the error rate of the kth modeling when tested with the testing

samples and estimated by (2).

ek~
false positiveszfalse negatives

N{n
ð2Þ

In cases where cross validation errors are greater than a for all

possible Dk value, i.e., no acceptable PAM model can be

constructed from genes g1,g2,:::,gl where lƒp for the training

samples, the independent model test using (N{n) testing samples

described above is omitted and the execution proceeds to Step 3b

described below.

Step 3a: If ek
ƒa, i.e., the estimated error rate of the model

tested with (N{n) testing samples is less than the predetermined

threshold, the model is deemed to be predictive and thus a

successful modeling. The performance matrix EP|4 is updated as

follows. Each gene, gj(j~1,2,:::,p), in the bootstrapping samples

Sk
p|nis mapped to gi(i~1,2,:::,P) in EP|4, Tk

i , Sk
i , and Pk

i are

updated sequentially as follows:

Tk
i ~

Tk{1
i

z1 if gi[(g1,g2,:::,gp)

Tk{1
i

if gi�[[(g1,g2,:::,gp)

(

A New Algorithm for Genomic Biomarker Discovery
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Sk
i ~

Sk{1
i

z1 if gi[(g1,g2,:::,gl)

Sk{1
i

if gi�[[(g1,g2,:::,gl)

(

Pk
i ~Sk

i =Tk
i

Step 3b: On the contrary, if ek
wa, i.e., the estimated error rate

of the model tested with (N{n) samples is larger than the

predefined threshold, the model is deemed to be not predictive for

independent testing samples. The model constructed is over-fitting

and thus is discarded. Tk
i , Sk

i , and Pk
i in the performance matrix

EP|4 are updated sequentially as follows:

Tk
i ~

Tk{1
i

z1 if gi[(g1,g2,:::,gp)

Tk{1
i

if gi�[[(g1,g2,:::,gp)

(

Sk
i ~Sk{1

i

Pk
i ~Sk

i =Tk
i

Sort Pk
i decreasingly, i.e., Pk

gi 1

§Pk
gi 2

§:::§Pk
gi p

, a rank order of

genes in term of their predictive power is given as

Rk~1,2,:::,P

Stop criterion. The rank order Rk is evaluated periodically,

say every 10000 iterations, by computing Spearman correlation

coefficient between the current rank Rk and the previous rank Rk’,

which is the previous rank order after the k’th iterations, i.e.,

r~1{6
XP

i~1

(Rk
i {Rk’

i )2

P(P2{1)

The algorithm stops if rw0:99, i.e., the iteration stops when the

rank is stabilized.

Case studies
DrugMatrixTM is a chemogenomics database originally devel-

oped by Iconix Pharmaceuticals, now owned by Entelos, Inc. [33].

In a typical DrugMatrixTM toxicology study, three rats in each

combination of dose and time point (defined as a treatment) were

Figure 1. Schematic representation of PPEA algorithm. Assumptions used in the schema are (1) the original data matrix consists of (20 toxic
and 20 non-toxic samples) x1000 genes, and (2) a 2-way bootstrapping sample consists of 10 toxic and non-toxic samples (i.e. K splitting ratio) and
10 genes.
doi:10.1371/journal.pone.0024233.g001

A New Algorithm for Genomic Biomarker Discovery
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used to generate three independent biological replicate RNA

profiles using the RU1 microarray (Agilent). All data were

MIAME compliant and raw data have been previously deposited

to a MIAME compliant database, GEO, accession GSE8858 [34].

An average profile representing each treatment, defined as a

sample, was computed from the three biological replicates. The

PPEA algorithm was tested using data from DrugMatrixTM studies

that resulted in three different liver toxicities, namely bile duct

hyperplasia (BDH), necrosis, and inflammation (INFL). For each

toxicity phenotype, two classes of compounds were identified by

querying the DrugMatrixTM database based on severity and

incidence of the phenotype they induced. A compound was

classified into the positive class if its p-value of observed idit score

[35–36] for a given phenotype is less than or equal to 0.01 and the

percentage of incidence is 100. The ridit analysis is a statistical

technique that works with ordered categorical data by evaluating

categories in terms of their frequency of occurrence in a control or

reference group [35–36]. Conversely, a compound was classified

into the negative class if its p-value of observed ridit score for a

given phenotype is larger than 0.5 and percentage of incidence is

0. Compounds with intermediate p-values and percentage of

incidences were excluded from the analysis. These high stringency

criteria provided us with a reliable identification of robust positive

and negative classes of samples for modeling. Note that a single

compound may contribute multiple samples for analysis owing to

different time and dose combinations which pass the query

criteria. The number of compounds and treatments in the positive

class for each phenotype are listed in Supporting Information

Table S1.

The Uniset Rat I Expression (RU1) microarrays used for the

experiments described here were purchased from Amersham

Biosciences (Piscataway, NJ, now part of GE Healthcare, USA).

The RU1 BioArray contains 9911 nucleotides probes (30-mer)

with 8565 probes used for data analysis. Previous studies [34,37]

have shown that low-abundant transcripts tend to be much more

variable than abundant ones. Thus, three filters were applied to

obtain informative transcripts for the modeling process. An

informative transcript is defined as one with: (1) average expression

larger than 2 on a 1 to 5 scale defined in DrugMatrixTM, (2)

absolute fold changes larger than or equal to 1.5, and (3) a p-value

less than 0.05 when the treatment group is compared with the

vehicle using Student t-test. Using these criteria, 4231 informative

transcripts were identified.

Pathway analysis
The most predictive, i.e., top-ranked 20 genes, from each case

study were analyzed using Ingenuity Pathway Analysis tool

(purchased from Ingenuity Systems, Redwood, CA) to assess their

potential functional relevance with the liver toxicity phenotype

which the gene set was intended to predict.

Generation of predictive model from the top-ranked
genes by PPEA

PPEA was implemented in the R release 2.9 (http://www.r-

project.org/, the R code is provided as Supporting Information

Text S1). For each case study, the top-ranked 10 genes with all

samples were used as an initial input to train PAM models. The

smallest model was obtained with an arbitrarily pre-determined

acceptable error rate, i.e. #20%, based on the ten-fold cross-

validation. In cases that such a model did not exist due to

unacceptably high error rates, i.e. .20%, expanded top-ranked

genes such as 15, 20 or more may be attempted. For all cases in

the present study, we found the top 20 genes were sufficient to

obtain a predictive model for each toxicity phenotype with

acceptable error rates based on the 10-fold cross validation. The

resultant model obtained in this way is called the PPEA-PAM

model to distinguish it from the PAM model without feature

selection by PPEA.

For each case study, we compared our model with the best

PAM model without applying PPEA as well as with the respective

gene signatures of DrugMatrixTM, which were developed by

sparse-SVM [33–34]. Sensitivity, specificity, positive and negative

predictive values (PPV and NPV respectively) of the PPEA-PAM

model were compared with those of PAM and DrugMatrixTM

gene signatures.

Quantitative reverse transcription-polymerase chain
reaction (qRT-PCR)

Total RNA was isolated from banked frozen rat livers from the

same studies used to generate DrugMatrixTM RNA profiles by

placing ,0.3 mg of liver in 800 ml of RLT lysis buffer (RNeasy

minikit Qiagen) in Lysing D matrix tubes and homogenized using

a Fastprep FP-120 tissue homogenizer (Bio101 Systems). Based on

their expression difference between positive and negative classes in

the microarray study, three genes (RhoC, Jub, and Pspla1) were

selected from our PPEA-PAM model for BDH for validation by

quantitative real-time RT-PCR (qPCR). A housekeeping gene

peptidylpropyl isomerase b (Ppib), also known as cyclophilin, is

used as a control gene because this gene is reported as an

endogenous reference for gene expression analysis [38-39].

Primers were designed with Primer Express software and

purchased from Applied Biosystems (Palo Alto, CA, USA). For

qPCR, 1 mg total RNA was reverse transcribed in a final volume

of 50 ml using high capacity cDNA reverse transcription reagents

(Applied Biosystems) with random hexamer primers according to

manufacturer instructions. Reactions excluding MultiScribe Re-

verse Transcriptase (Applied Biosystems) were performed as

negative controls. cDNA targets at a 50-fold final dilution were

amplified in three replicate wells in an ABI 7900 Sequence

Detector System (Applied Biosystems) with the following thermal

profile: 50uC for 2 min, 95uC for 10 min, followed by 40 cycles of

15 sec at 95uC and 1 min at 60uC. Standard curves for each gene

were obtained by amplifying (in triplicates) 5-fold serial dilutions of

a reference mixture containing cDNA derived from treated and

control tissues.

Confirmation of predictive value of the top-ranked genes
by PPEA

To independently validate the predictive value of the top-

ranked genes by PPEA, for each case study, we selected

compounds originating from our internal drug development

programs which were terminated due to observed rat liver toxicity

(i.e. BDH, INFL or Necrosis). Compounds which did not display

the indicated toxicity phenotype were also identified and served as

negative controls. Total RNA was prepared from rat livers of

selected animals and approximately 5 mg of total RNA was

reversed transcribed into cDNA using a Superscript II Double-

Strand cDNA Synthesis Kit (Invitrogen Life Technologies). 5mg of

which was used to hybridize Affymetrix rat genome DNA hip

RAE2302 430A 2.0, which contains sequences corresponding to

roughly 22,600 transcripts, according to Affymetrix protocol

(http://www.affymetrix.com/support/technical/manuals.affx). An

Affymetrix fluidics station 400 was used for array washing and

staining, and an Agilent GeneArray scanner 3000 was for scanning.

Each sample was hybridized to a single microarray. Expression of

selected genes for each case study was obtained from the DNA chips

and analyzed using principal component analysis (PCA), and also

A New Algorithm for Genomic Biomarker Discovery
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served as an independent test set for the model assessment with

Support Vector Machine (SVM). The sensitivity, specificity, and

accuracy were calculated.

Results

Estimation of predictive power of individual transcripts
by PPEA

Two-way re-sampling with replacement or bootstrapping was

applied to the data matrix iteratively as described above in the

algorithm section. As shown in Figure 2(A), all transcripts had an

equal chance to be evaluated for its predictive power by the PPEA

algorithm, as expected by design. The total number of evaluations

for each transcript is proportional to the total number of iterations

executed. For example, on average each transcript was evaluated

300 times for a total of 20,000 iterations, which increased to 1500

and 3000 times respectively for a total of 100,000 and 200,000

iterations. Different transcripts have different predictive power, as

shown in Figure 2(B), when measured by the total number of

successful modeling iterations, i.e. their error rates computed from

the testing samples are less than an arbitrarily determined

threshold a~20%. The differences in successful product was

small (compare the left and the right ends of the blue plot of

Figure 2(B)) when the total number of iterations was low, for

example 20,000. Then the differences increased and became

obvious as the total number of iterations increased, as shown by

magenta and pink plots in Figure 2(B). Such dependency on the

total number of iterations disappeared when normalized to the

total number of times each transcript was evaluated (Figure 2(C)).

Thus, PPEA can quantify the predictive power of a large number

of transcripts.

In principle, PPEA has to evaluate all C
p
P~ P{1ð Þ!=

p{1ð Þ! P{pð Þ! possible combinations of p out of P transcripts,

which is an O P!ð Þ algorithm, in order to estimate the true

predictive power of a transcript. Thus, it is of great interest to

determine if a relative rank order of predictive power of

transcripts can be reliably obtained by the bootstrapping

procedure. Using BDH as an example, we first executed

320,000 iterations of PPEA to obtain a distribution of predictive

power of all transcripts and then obtained a rank order based on

their estimated predictive power sorted in decreasing order. We

compared the rank orders similarly obtained from a smaller

number of iterations. As shown in Figure 3A, the rank order of

predictive power for BDH among the top ten transcripts were

Figure 2. Analysis of sampling distribution in the predictive power enrichment matrix. (A) A random number generator with a uniform
distribution was used so that each of 4000 features (genes) had equal chances to be sampled. Y axis is the total # of times a gene was sampled,
represented as T. (B) A prediction was called a success if overall error rates , a, which is 20%. Y axis is the total # of times a gene was included in a
successful modeling, denoted as S. (C) Y axis is the Relative Success Rate that a gene was used in successful modeling, computed as R = S/T, which is a
metric to measure the predictive power of the gene.
doi:10.1371/journal.pone.0024233.g002

A New Algorithm for Genomic Biomarker Discovery
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very different for the 20K and 40K iterations. However, the rank

order of the top 10 genes was largely stabilized after 180K

iterations without significant changes (Figure 3B). Similar results

were obtained for INFL and necrosis. Thus, PPEA can reliably

obtain a relative rank order of the most predictive transcripts

using a relatively small number of iterations.

Assessment of the top ranked transcripts
Most of the reported gene signatures derived purely mathe-

matically consist of many genes with either no functional

annotation (e.g. EST’s) or no obvious functional relevance to

the phenotype they predict [11–12]. We believe this may, at least

partially, originate from overfitting. To assess if PPEA selects

genes that were associated or correlated to the toxicity phenotype,

we performed pathway analysis of the twenty top ranked genes

for BDH, Necrosis, and INFL (see Supporting Information Table

S2 for detail) using Ingenuity Pathway Analysis tools (IngenuityH
Systems, www.ingenuity.com). As shown in Figure 4A for BDH,

eleven out of the twenty top ranked genes participate in the cell

proliferation interaction network. They have either direct or

indirect functional interactions with powerful mitogenic factors

such as ERBB2, a well-known member of the epidermal growth

factor (EGF) receptor family of receptor tyrosine kinases.

Amplification and/or over-expression of this gene has been

reported in numerous cancers, including breast and ovarian

tumors [40–41]. Similarly, as shown in Figure 4B for INFL,

seventeen out of the twenty top ranked genes were mapped to the

inflammation and immune response network where they directly

or indirectly interact with the key inflammatory regulator NFkB

[42]. Interestingly, the highest scoring network represented within

the top twenty ranked genes for necrosis related to immune

response, linking 9 necrosis-associated genes to the well defined

inflammatory NFkB pathway (Figure 4C). A second network links

3 members of these top 20 necrosis genes to cell death and cell

cycle (Figure 4D). This result implies that liver necrosis is strongly

associated with, or resulted in, the hepatic inflammation, which is

a common finding with liver damage, including drug-induced

liver toxicity [43]. Importantly, about one third (14) of the

positive compounds in this study caused both inflammation and

necrosis at a different time period and/or dose level than those

that reported just necrosis. Thus, it is clear that the most

predictive genes identified by PPEA tend to be functionally

related to the phenotype they predict, which is generally not true

for gene signatures derived by other methods.

Figure 3. Example of top 10 genes Rank shifting at each checkpoint of the iteration. (A) shows that the index of the 10 top-ranked genes
(i.e., features) becomes stabilized when the iteration of splitting reached 280k. The rank for 8 out of 10 genes is consistent as early as the iteration
reaches to 180k. (B) A plot for the same data as shown in (A) for an intuitive observation.
doi:10.1371/journal.pone.0024233.g003
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Current gene signatures for toxicity originally developed by

Iconix Inc. using sparse-linear regression or SVM are highly

predictive of phenotype [33,44]. However, they typically consist of

dozens or even hundreds of transcripts. Because of the bulky size

of the gene signatures, it would be difficult for users to develop

alternative assay formats, for example multiplex qRT-PCR, to

facilitate fast compound screening in the early stages of drug

development. Considering the plate size, number of replicates and

throughput, an assay multiplexed with five to ten genes is desirable

in practice. Rank order of predictive power of individual

transcripts obtained by applying PPEA aids in selecting a small

number of transcripts. The question is whether the top ranked

small number of genes can still effectively predict toxicity

phenotype. To answer this question, we first developed the

minimum signature, called PPEA-PAM, for the liver toxicity

phenotypes of BDH, necrosis, and INFL, and progressively

selected from 10, 15 or 20 top-ranked transcripts. Next, we

compared performance of PPEA-PAM with that of PAM and

corresponding DrugMatrixTM gene signatures derived from the

full set of transcripts. As shown in Table 1, PPEA-PAM was

comparable to, or significantly outperformed PAM and DrugMa-

trixTM gene signatures, in terms of overall error rates, sensitivities

and specificities.

Early prediction of BDH is challenging in short duration

toxicology studies when reliant solely on histology and clinical

chemistry as true hyperplasia may require a longer timeframe to

manifest, thus better predictive methods are needed. We validated

the expression of the three genes in the PPEA-PAM gene signature

for BDH using qRT-PCR. As shown in Figure 5, positive BDH

samples could be clearly distinguished from the negative samples

across all samples used in signature derivation simply using the

three gene signature.

Figure 4. Ingenuity Pathway Analysis (IPA) for the enriched biological functions of the top 20 genes for each signature. The involved
genes are highlighted in the red color. The lines between genes represent known interactions, with solid lines representing direct interactions and
dashed lines representing indirect interactions. The high scores associated with these networks indicate they were highly unlikely to be formed by
chance. (A) 11 out of the top 20 genes for BDH signature are involved with p53 and ERBB2 pathways (Network 1, Cancer, Cell Cycle, Cell Death, score
of 28), and (B) 17 out of the top 20 inflammation signature genes are involved with inflammatory pathway NFkB (Network 1, Immune Response, Cell-
To-Cell Signaling and Interaction, Connective Tissue Disorders, score of 47). (C) 9 of the top 20 genes for the necrosis signature are also involved with
Immune Response pathway, majorly NFkB complex, and (D) 3 of the top 20 genes for necrosis are associated with cell death (Network 2, Cancer, Cell
Death, Cell Cycle, score of 6).
doi:10.1371/journal.pone.0024233.g004
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Independent confirmation of selected genes
To independently confirm that the genes selected by PPEA-

PAM using DrugMatrixTM data are predictive for BDH, Necrosis,

and INFL, we identified compounds originating from our drug

development programs that were terminated due to observed

adverse findings in liver (i.e. BDH, Necrosis, or INFL).

Compounds which did not display the indicated toxicity

phenotype were also identified and served as negative controls.

Liver expression profiles of rat treated with these compounds were

generated using Affymetrix DNA chips. Expression of the top 10

genes predictive for BDH, INFL, and necrosis were analyzed using

PCA. As shown in Figure 6A, 6B, and 6C, BDH-, Necrosis-, and

INFL- inducing compounds can be clearly separated from non-

inducing compounds by expression changes of a small number of

highly predictive genes. The detail information for each model

performance is listed in Figure 6D.

Discussion

A recurring question when working with microarray data is how

to manage the ubiquitous ‘‘overfitting’’ in gene expression

profiling. Because of the uniqueness of microarray data, wherein

the sample size is typically far smaller than the feature size, this

situation necessitates dimensionality reduction through gene

selection to avoid overfitting and improve the generalization of

discriminant analysis. In this paper, we propose a novel feature

selection algorithm termed PPEA to tackle this fundamental issue.

PPEA first applies two-way bootstrapping to manage the number

Table 1. A comparison of the performance of 3 different signatures for detecting Necrosis, Bile Duct Hyperplasia, and
Inflammation.

Rate (%) P-value *

Performance Signature Necrosis INFL BDH Necrosis INFL BDH

Sensitivity PPEA-PAM 85.10% 84.40% 95.30% NA NA NA

PAM 84.60% 82.00% 91.30% 1.59E-01 2.58E-14 1.94E-23

ICONIX 81.70% 80.50% 93.40% 2.17E-18 1.32E-32 3.55E-07

Specificity PPEA-PAM 75.90% 75.50% 94.50% NA NA NA

PAM 75.10% 72.20% 90.90% 9.12E-04 9.05E-44 1.11E-20

ICONIX 73.90% 69.60% 88.10% 1.39E-12 1.5E-120 2.09E-57

Error rate PPEA-PAM 20.50% 20.90% 5.50% NA NA NA

PAM 21.20% 23.90% 9.50% 1.03E-02 6.00E-34 3.98E-30

ICONIX 23.00% 26.30% 10.00% 5.44E-17 1.19E-92 1.56E-38

*P value is generated from student t – test when comparing the percentage of sensitivity, specificity, and error rate for PPEA-PAM with that for PAM or ICONIX signature.
doi:10.1371/journal.pone.0024233.t001

Figure 5. qPCR. (A) Boxplots represent normalized mRNA expression of the top three genes for BDH signature determined by RT-qPCR. The box
represents the 25th and 75th percentile range of scores. A vertical line in each box represents the median value of the normalized mRNA of each
group. The whiskers represent the highest and lowest values. The box highlighted with red and blue colors indicates the group of animals treated
with BDH positive (n = 18) or negative compounds (n = 30), respectively. (B) Principal components analysis (PCA) shows that there is a clear separation
between the positive and negative classes based on the expression level of top 3 genes in BDH signature. GOI = Gene of Interest.
doi:10.1371/journal.pone.0024233.g005
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of genes inversely equal to or less than the number of samples in

each splitting subset used for machine learning, and then assesses

the merit of each individual feature by evaluating its strength of

class predictability under this new low dimensional sample-feature

space. This approach is different from the other feature selection

algorithms in that it assesses predictive power of individual genes

within the context of a multivariate model. Accordingly, this

enables PPEA to access the gene information contained in

complex biological interactions, rather than relying on the

summation of univariate relationships within a set. For example,

if two genes in a category were related to the samples’ biological

process or state by an ‘exclusive OR’ association, then PPEA could

capture that relationship, whereas filter-based summations of

univariate associations would likely overlook it.

The task of conventional feature selection in microarray analysis

is considered as a search problem where each state in the search

specifies a distinct subset of the possible relevant features. If the

search space is too large, it is possible that the algorithm cannot

discover the most selective genes within the search space.

Moreover, having too many redundant or irrelevant genes

increases the risk of overfitting, computational complexity and

cost and, ultimately, degrades estimation in classification error.

The PPEA algorithm described here, in concept, approaches the

search space in a ‘‘divide and conquer’’ fashion, breaking down

the search space into a large number of sub-spaces of the same (or

related) type. These sub-spaces with a new dimensionality (the

sample size is now larger than the feature size) are thus able to

minimize over-fitting. The solutions to the sub-space are then

combined to give a solution to the original space. In practice, we

realize that the random data split in each iteration may create

circumstances where different runs of the algorithm may select

different features if the number of iterations is small. An

unfortunate split of the data set may also remove an important

feature, thus negatively affecting the classifier’s performance.

Fortunately, this situation can be avoided if the number of

iterations is large enough. We do not claim that our PPEA

methods will find all interesting genes, because the schema for

feature search in this algorithm is heuristic and suboptimal as it

Figure 6. Validation with an independent dataset. Visual representation of PCA results for the top 10 genes in the BDH (A), INFL (B), and
necrosis (C) signatures validated with independent samples. The result shows a clear separation between positive and negative compounds; (D) a
SVM classifier performance matrix shows that a reasonable sensitivity (from 80% to 88%) and specificity (from 78% to 81%) have been achieved for
each model. TP - True Positive; FN - False Negative; FP - False Positive; TN - True Negative; SENS - Sensitivity; SPEC - Specificity; ERR - Error rate; NECR -
Necrosis.
doi:10.1371/journal.pone.0024233.g006
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does not exhaustively search in the space of all possible

combinations. However, we demonstrated that the rank transition

became a plateau and that the majority of features ranked at the

top positions were very stable after a certain number of iterations

were searched. In our algorithm, the iteration is terminated when

the stability of ordered features according to their predictive power

within each predictive power enrichment matrix is reached

(Figure 3).

A key and pivotal finding from the PPEA analysis is that it

provides insight into the biological mechanisms for a phenotype of

interest. The functional analysis demonstrates that the signature

genes tend to be mechanistically related to the phenotype the

signature is intended to predict, i.e. associated with mechanism of

toxicity. For example, BDH manifests a purely cholangiolar

proliferation considered as a pre-neoplastic lesion usually as a

result of exposure to carcinogenic compounds such as Phomopsin

[45]. Our results show that 11 of the top 20 genes for the BDH

signature are associated with key regulators of cell proliferation, for

example, ERBB2 (Figure 4A). We also observed that 17 out of the

top 20 genes for the ‘‘INFL’’ and 9 of the top 20 genes for the

‘‘Necrosis’’ signatures identified by PPEA were members of the

NFkB interactive network (Figure 4B and 4C). This finding further

confirms that immune responses and associated autoimmunity can

play an important role in both predictive (acute) and idiosyncratic

drug-induced liver injuries [43]. We believe that our approach

provides a novel method to find genes that truly reflect the

biological consequences of a therapeutic intervention or disease.

Furthermore, the fact that the PPEA method provides gene sets of

limited number allows for the use of non-microarray methods such

as qPCR which greatly reduces cost and improves on turn-around

times for data generation and analysis. Herein, we have

demonstrated with our liver injury datasets that quite accurate

diagnoses for several distinct phenotypes could be achieved using

the gene-expression level results of only 5 - 20 genes.

Supporting Information

Text S1 The R code for PPEA algorithm.

(TXT)

Table S1 Summary of the positive class compounds and

experiments which defined Bile Duct Hyperplasia, Inflammation,

and Necrosis.

(XLSX)

Table S2 The list of the top 20 ranked genes for BDH, Necrosis,

and INFL.

(XLSX)

Acknowledgments

We thank Drs. Jake Chen, Yunlong Liu, and Yaoqi Zhou at Indiana

University-Purdue University Indianapolis, and Drs. James Stevens, Hui-

Rong Qian, Rick Higgs, Jeff Sutherland at Eli Lilly and Company for their

helpful suggestions to the content of the manuscript.

Author Contributions

Conceived and designed the experiments: JL TW SL CET VNU KD.

Performed the experiments: JL TW RAJ ATS GHS KMG. Analyzed the

data: JL TW SL CET VNU KD RAJ ATS. Wrote the paper: JL TW CET.

References

1. Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S (2008) The current state of

serum biomarkers of hepatotoxicity. Toxicology 245: 194–205.

2. Ryan TP, Stevens JL, Thomas CE (2008) Strategic applications of toxicoge-

nomics in early drug discovery. Curr Opin Pharmacol 8: 654–660.

3. Sistare FD, DeGeorge JJ (2007) Preclinical predictors of clinical safety:

opportunities for improvement. Clin Pharmacol Ther 82: 210–214.

4. Mendrick DL (2008) Genomic and genetic biomarkers of toxicity. Toxicology

245: 175–181.

5. Fielden MR, Eynon BP, Natsoulis G, Jarnagin K, Banas D, et al. (2005) A gene

expression signature that predicts the future onset of drug-induced renal tubular

toxicity. Toxicol Pathol 33: 675–683.

6. Luo W, Fan W, Xie H, Jing L, Ricicki E, et al. (2005) Phenotypic anchoring of

global gene expression profiles induced by N-hydroxy-4-acetylaminobiphenyl

and benzo[a]pyrene diol epoxide reveals correlations between expression profiles

and mechanism of toxicity. Chem Res Toxicol 18: 619–629.

7. Bushel PR, Heinloth AN, Li J, Huang L, Chou JW, et al. (2007) Blood gene

expression signatures predict exposure levels. Proc Natl Acad Sci U S A 104:

18211–18216.

8. Zidek N, Hellmann J, Kramer PJ, Hewitt PG (2007) Acute hepatotoxicity: a

predictive model based on focused illumina microarrays. Toxicol Sci 99:

289–302.

9. Eun JW, Ryu SY, Noh JH, Lee MJ, Jang JJ, et al. (2008) Discriminating the

molecular basis of hepatotoxicity using the large-scale characteristic molecular

signatures of toxicants by expression profiling analysis. Toxicology 249:

176–183.

10. Fan X, Lobenhofer EK, Chen M, Shi W, Huang J, et al. (2010) Consistency of

predictive signature genes and classifiers generated using different microarray

platforms. Pharmacogenomics J 10: 247–257.

11. Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS, et al. (2006) Concordance

among gene-expression-based predictors for breast cancer. N Engl J Med 355:

560–569.

12. Liu J, Campen A, Huang S, Peng SB, Ye X, et al. (2008) Identification of a gene

signature in cell cycle pathway for breast cancer prognosis using gene expression

profiling data. BMC Med Genomics 1: 39.

13. Ransohoff DF (2004) Rules of evidence for cancer molecular-marker discovery

and validation. Nat Rev Cancer 4: 309–314.

14. Ransohoff DF (2005) Bias as a threat to the validity of cancer molecular-marker

research. Nat Rev Cancer 5: 142–149.

15. Dessı̀ N, Pes B (2009) An Evolutionary Method for Combining Different Feature

Selection Criteria in Microarray Data Classification. Journal of Artificial

Evolution and Applications. pp 1–10.

16. Sima C, Dougherty ER (2008) The Peaking Phenomenon in the Presence of

Feature Selection Pattern Recognition Letters 29: 1667–1674.

17. Dougherty ER, Hua J, Sima C (2009) Performance of feature selection methods.

Curr Genomics 10: 365–374.

18. Vittinghoff E, McCulloch CE (2007) Relaxing the rule of ten events per variable

in logistic and Cox regression. Am J Epidemiol 165: 710–718.

19. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996) A simulation

study of the number of events per variable in logistic regression analysis. J Clin

Epidemiol 49: 1373–1379.

20. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer

classification using support vector machines. Machine Learning 46: 389–422.

21. Zhang X, Lu X, Shi Q, Xu XQ, Leung HC, et al. (2006) Recursive SVM

feature selection and sample classification for mass-spectrometry and microarray

data. BMC Bioinformatics 7: 197.

22. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in

bioinformatics. Bioinformatics 23: 2507–2517.

23. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection.

The Journal of Machine Learning Research 3: 1157–1182.

24. Das S (2001) Filters, wrappers and a boosting-based hybrid for feature selection.

Proceedings of the Eighteenth International Conference on Machine Learning.

pp 74–81.

25. John GH, Kohavi R, Pfleger K (1994) Irrelevant Features and the Subset

Selection Problem. In Proceedings of ICML. pp 121–129.

26. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artificial

Intelligence 97: 273–324.

27. Bo T, Jonassen I (2002) New feature subset selection procedures for classification

of expression profiles. Genome Biol 3: research0017.1–0017.11.

28. Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, et al. (2000)

Tissue classification with gene expression profiles. J Comput Biol 7: 559–583.

29. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. (1999)

Molecular classification of cancer: class discovery and class prediction by gene

expression monitoring. Science 286: 531–537.

30. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s

functional organization. Nat Rev Genet 5: 101–113.

31. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, et al. (2006) Proteome

survey reveals modularity of the yeast cell machinery. Nature 440: 631–636.

32. Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple

cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A

99: 6567–6572.

33. Ganter B, Tugendreich S, Pearson CI, Ayanoglu E, Baumhueter S, et al. (2005)

Development of a large-scale chemogenomics database to improve drug

A New Algorithm for Genomic Biomarker Discovery

PLoS ONE | www.plosone.org 10 September 2011 | Volume 6 | Issue 9 | e24233



candidate selection and to understand mechanisms of chemical toxicity and

action. J Biotechnol 119: 219–244.
34. Natsoulis G, Pearson CI, Gollub J, B PE, Ferng J, et al. (2008) The liver

pharmacological and xenobiotic gene response repertoire. Mol Syst Biol 4: 175.

35. Bross IDJ (1958) How to use ridit analysis. Biometrics 14: 18–38.
36. Donaldson GW (1998) Ridit scores for analysis and interpretation of ordinal

pain data. Eur J Pain 2: 221–227.
37. Lu C, King RD (2009) An investigation into the population abundance

distribution of mRNAs, proteins, and metabolites in biological systems.

Bioinformatics 25: 2020–2027.
38. Pachot A, Blond JL, Mougin B, Miossec P (2004) Peptidylpropyl isomerase B

(PPIB): a suitable reference gene for mRNA quantification in peripheral whole
blood. J Biotechnol 114: 121–124.

39. Cai JH, Deng S, Kumpf SW, Lee PA, Zagouras P, et al. (2007) Validation of rat
reference genes for improved quantitative gene expression analysis using low

density arrays. Biotechniques 42: 503–512.

40. Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, et al. (1985) Tyrosine

kinase receptor with extensive homology to EGF receptor shares chromosomal
location with neu oncogene. Science 230: 1132–1139.

41. Olayioye MA (2001) Update on HER-2 as a target for cancer therapy:

intracellular signaling pathways of ErbB2/HER-2 and family members. Breast
Cancer Res 3: 385–389.

42. Moreau A, Vilarem MJ, Maurel P, Pascussi JM (2008) Xenoreceptors CAR and
PXR activation and consequences on lipid metabolism, glucose homeostasis, and

inflammatory response. Mol Pharm 5: 35–41.

43. Adams DH, Ju C, Ramaiah SK, Uetrecht J, Jaeschke H (2010) Mechanisms of
immune-mediated liver injury. Toxicol Sci 115: 307–321.

44. Natsoulis G, El Ghaoui L, Lanckriet GR, Tolley AM, Leroy F, et al. (2005)
Classification of a large microarray data set: algorithm comparison and analysis

of drug signatures. Genome Res 15: 724–736.
45. Peterson JE (1990) Biliary hyperplasia and carcinogenesis in chronic liver

damage induced in rats by phomopsin. Pathology 22: 213–222.

A New Algorithm for Genomic Biomarker Discovery

PLoS ONE | www.plosone.org 11 September 2011 | Volume 6 | Issue 9 | e24233


	Predictive Power Estimation Algorithm (PPEA) - A New Algorithm to Reduce Overfitting for Genomic Biomarker Discovery
	Scholar Commons Citation
	Authors

	pone.0024233 1..11

