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A B S T R A C T   

Temporal data is ubiquitous in ecology and ecologists often face the challenge of accurately differentiating these 
data into predefined classes, such as biological entities or ecological states. The usual approach consists of 
transforming the time series into user-defined features and then using these features as predictors in conventional 
statistical or machine learning models. Here we suggest the use of deep learning models as an alternative to this 
approach. Recent deep learning techniques can perform the classification directly from the time series, elimi-
nating subjective and resource-consuming data transformation steps, and potentially improving classification 
results. We describe some of the deep learning architectures relevant for time series classification and show how 
these architectures and their hyper-parameters can be tested and used for the classification problems at hand. We 
illustrate the approach using three case studies from distinct ecological subdisciplines: i) insect species identi-
fication from wingbeat spectrograms; ii) species distribution modelling from climate time series and iii) the 
classification of phenological phases from continuous meteorological data. The deep learning approach delivered 
ecologically sensible and accurate classifications demonstrating its potential for wide applicability across sub-
fields of ecology.   

1. Introduction 

The recent increase in affordability, capacity, and autonomy of 
sensor-based technologies (Bush et al., 2017; Peters et al., 2014), as well 
as an increasing number of contributions from citizen scientists and the 
establishment of international research networks (Bush et al., 2017; 
Hurlbert and Liang, 2012), is allowing an unprecedented access to time 
series of interest for ecological research. A common aim of ecologists 
using these data concerns assigning them into predefined classes, such as 
ecological states or biological entities. Typical examples include the 
recognition of bird species from sound recordings (e.g. Priyadarshani 
et al., 2020), the distinction between phases in the annual life cycle of 
plants (i.e., ‘phenophases’) from spectral time series (Melaas et al., 
2013), or the recognition of behavioral states from animal movement 
data (Shamoun-Baranes et al., 2016). Many other examples exist, with 
scopes of application that range from the molecular level (Jaakkola 
et al., 2000) to the global scale (Schneider et al., 2010). 

The assignment of time series into one of two or more predefined 

classes (hereafter referred to as ‘time series classification’; Keogh and 
Kasetty, 2003) can be performed using a variety of different approaches, 
ranging from manual, expert-based, classification (Priyadarshani et al., 
2020) to fully automated procedures (see Bagnall et al., 2017 for ex-
amples). In ecology, time series classification is generally approached by 
processing the time series data into a set of summary variables − using 
hand-designed transformations, or techniques such as Fourier or wavelet 
transforms − and then using these variables as predictors in ‘classical’ 
supervised classification algorithms, such as logistic or multinomial re-
gressions or random forests (e.g. Capinha, 2019; Dyderski et al., 2018; 
Priyadarshani et al., 2020; Reside et al., 2010; Shamoun-Baranes et al., 
2016). In machine learning terminology, this approach is known as 
‘feature-based’, where the ‘features’ are the variables that are extracted 
to summarize the time series. 

Despite the wide adoption of feature-based approaches, important 
limitations still undermine their predictive performance and scalability. 
A key constraint concerns the need for domain-specific knowledge about 
the phenomenon that is being classified, to obtain ‘optimal’ sets of 
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features with respect to predicting the reference classes. While this may 
not seem limiting, considering the ever-growing body of knowledge in 
the ecological literature, few, if any, ecological phenomena are fully 
understood (Currie, 2019). This inherently limits and casts doubt about 
the optimality of human-mediated selections of ‘relevant’ predictors. 
This limitation can be illustrated for species distribution modelling, a 
popular field among ecological modelers. These models often rely on 
readily available sets of predictors that summarize long-term climate 
averages and variability (e.g. the ‘BIOCLIM’ variables; Booth et al., 
2014), despite recognition that species distributions can also respond to 
short-term meteorological variation (e.g. Reside et al., 2010). Accord-
ingly, these temporally aggregated predictors cannot guarantee a 
comprehensive representation of the role of climate in determining the 
distribution of species. Additionally, scaling modelling frameworks can 
result in reliance on pre-processed predictors because performing 
species-specific feature extraction could be prohibitively costly, in terms 
of human and time resources, when modelling the distribution of hun-
dreds of species. 

Here we focus on the use of deep learning models as an alternative to 
feature-based approaches for supervised classification of time series 
data. Deep learning models are a set of recent, complex architectures of 
artificial neural networks (Christin et al., 2019; LeCun et al., 2015), 
which have enabled significant advances of performance in highly 
complex tasks, such as computer vision and natural language processing 
(LeCun et al., 2015). In ecology, the number of studies applying these 
models is growing rapidly, but the vast majority of applications are to 
the classification of image and sound data (e.g. Brodrick et al., 2019; 
Campos-Taberner et al., 2020; Christin et al., 2019; Mac Aodha et al., 
2018; Willi et al., 2019). Accordingly, we wish to draw the attention of 
ecologists to the capacity of deep learning models to classify all kinds of 
temporal data and to several of their practical and conceptual advan-
tages in this regard. 

A key difference between deep learning approaches and feature- 
based approaches for time series classification is that the former can 
perform the classification from raw time series data. For ecologists, this 
ability can be seen not merely as a methodological particularity, but as a 
conceptual and operational improvement from traditional modelling 
approaches. On one hand, the direct use of time series data as classifi-
cation predictors positively forces ecologists to consider the temporal 
component of the analyzed phenomena (Ryo et al., 2019; Wolkovich 
et al., 2014), and, on the other hand, it relieves them from subjective 
decisions about the transformation of the temporal data. The identifi-
cation of relevant features in the time series is performed automatically 
by the models and this procedure is guided by their capacity to accu-
rately classifying the classes (Fawaz et al., 2019). Accordingly, a promise 
of these models is that they may capture relevant information (e.g. 
thresholds, lag effects; carryover effects; Ryo et al., 2019) that would be 
missed if relying on subjective sets of user-defined features, ultimately 
improving predictive performances. Additionally, because there is no 
need of human intervention in feature extraction, deep learning models 
allow a full, end-to-end, automation of computational workflows. 

Below we provide a brief explanation of how supervised deep neural 
networks work and describe some of the modelling architectures more 
relevant in the context of time series classification. Next, we demon-
strate the application of deep learning models as a general approach for 
time series classification using three case studies from distinct sub-fields 
of ecology. First, we perform species identification based on recordings 
of insect wing flap movements, second, we predict the potential distri-
bution of a vulnerable mammal species using time series of monthly 
climate data, and third we predict the seasonal patterns of fruiting of a 
mushroom species, based on meteorological time series. We implement 
our models using a standardized modelling approach which should be 
accessible to the generality of ecological modelers, including non- 
experts in deep learning. 

2. Material and methods 

2.1. Deep neural networks for time series classification 

Artificial neural networks (ANN) are mathematical models inspired 
by how biological nervous systems process information. These models 
are often conceptualized in terms of nodes (or ‘neurons’) and weighted 
links. A basic ANN architecture includes a first layer of nodes, repre-
senting the input data, a second (‘hidden’) layer with nodes performing 
data aggregation followed by nonlinear transformation, and a final 
(‘output’) layer where the predicted values are computed (Fig. 1a). The 
nodes in each layer are connected to the nodes in the next layer through 
weighted links. The training of ANNs proceeds by iteratively adjusting 
the weights of links between the layers. An important notion is the 
‘epoch’, which refers to when the entire training dataset is passed for-
ward and backward across the network one time. During each epoch, the 
weights are updated to improve the network’s predictions, given the 
information fed to the input layer. For more details on ANNs with 
emphasis on ecology see, Lek and Guégan (1999), Olden et al. (2008) 
and Christin et al. (2019). 

‘Deep’ neural networks refer broadly to ANN architectures that are 
capable of training large numbers of hidden layers and neurons (LeCun 
et al., 2015; Schmidhuber, 2015). This capacity determines the level of 
abstraction that the models can attain in representing the input data. 
Models with more hidden layers can capture more complex patterns and 
achieve a deeper hierarchy of features. In other words, shallow models 
tend to capture ‘basic’ patterns (e.g. a ‘spike’ in a specific time step), 
while deeper models are able to ‘learn’ more complex abstractions (e.g. 
spikes combined with a reduced long-term variability). 

Many deep learning architectures can be used for time series classi-
fication (Fawaz et al., 2019; Wang et al., 2017). These architectures 
differ in the number of layers, and the mathematical functions the layers 
perform, as well as in the way information flows between them. Below 
we provide a description of four architectures used for time series 
classification. These architectures were chosen because they are widely 
adopted for time series classification and because they are available in 
mcfly (the software we use here for model implementation; van Kup-
pevelt et al., 2020). 

2.2. Convolutional neural networks 

Convolutional neural networks (CNN) are an influential class of deep 
neural networks. These networks have been mainly applied for pattern 
recognition in image data (e.g. Brodrick et al., 2019; Christin et al., 
2019; Krizhevsky et al., 2017; Wäldchen and Mäder, 2018), but effective 
examples of their application for time series classification have been 
recently published (e.g. Zhao et al., 2017). A key component of CNNs are 
the so-called convolutional layers (Fig. 1b). These layers extract local 
features from the raw time series by applying ‘filters’. Each filter de-
termines if a given pattern (e.g. ‘a spike’) occurs in the data and in what 
regions. These layers are often followed by rectified linear unit (ReLU) 
(or a similarly shaped function) and ‘pooling’ layers. The ReLU layers 
transform the summed weighted input from nodes in the convolutional 
layer into outputs that range from 0 to +∞, while pooling layers reduce 
the dimensionality of outputs from the ReLU layer. CNNs often layer 
multiple instances of convolution, ReLU and pooling layers in a 
sequence, to build a hierarchy of increasingly abstract features. This 
sequence of layers is usually followed by a fully connected (or ‘dense’) 
layer, where each node is connected to all nodes in adjacent layers, and 
where classification outputs are calculated (Fig. 1b). 

2.3. Recurrent neural networks 

Recurrent neural networks (RNNs) are specifically designed for 
sequence-type input data, such as time series (Fawaz et al., 2019; Graves 
et al., 2013). These models are defined by inclusion of feedback loops, 
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where the output of a layer is added to the next input and fed back into 
the same layer (Fig. 1c). This allows RNNs to characterize sequential 
patterns in the input data, but their ability to capture long term de-
pendencies is limited due to the RNN’s tendency to prioritize signals in 
the short term while failing to learn long term signals (i.e., the ‘vanishing 
gradient problem’; Bengio et al., 1994). To overcome this problem 
several adaptations to the simple RNN architecture have been proposed, 
the most popular of which being the use of gating units (Fig. 1c, grey 
squares), such as ‘Long Short Term Memory’ (LSTM) and ‘Gated 
Recurrent Units’ (GRU) (Chung et al., 2014). Gating is a technique that 
helps the networks decide to either forget the current input or to 
remember it for future time steps, hence effectively improving the 
modelling of long-term dependencies (Chung et al., 2014). 

2.4. Residual networks 

Residual networks (ResNet) are recently proposed in the context of 
image recognition (He et al., 2016). Basically, these networks introduce 
a new type of component, the ‘Residual Block’, to CNN-type models 
(Fig. 1d). The aim of these blocks is to allow the training of deeper 
models (i.e., having more hidden layers). In theory, deeper models 
should improve classification performances, as they allow higher levels 
of data abstraction. However, in practice the performances may not 
improve, among other things, due to the vanishing gradient problem 
(see above). The use of residual blocks aims to address this by for-
warding the output of layers directly into layers that are several levels 
deeper (e.g. 2–3 layers ahead; Fig. 1d). Recently, this architecture has 
been applied for time series classification (Wang et al., 2017), often 
performing very well (Fawaz et al., 2019). 

2.5. Inception time networks 

Inception time networks are a very recent type of architecture, pro-
posed specifically for time series classification (Fawaz et al., 2019). This 

network is an ensemble of CNN models having ResNet-type components 
and modules called ‘inceptions’. Inception modules ‘rework’ how 
convolution layers act in the networks, so that instead of being stacked 
sequentially, they are ordered to work on the same level in parallel 
(Fig. 1e). This approach allows the application of multiple filters with 
highly varying temporal lengths working on the same input time series. 
In comparison to sequential convolutional layers (as in ‘simple’ CNN) 
this lowers processing costs and reduces the risk of fitting noise in the 
data (i.e., overfitting) (Fawaz et al., 2019). 

2.6. A standardized, accessible, deep learning modelling framework 

Deep learning models can be implemented using several program-
ming languages and specialized libraries (see Christin et al., 2019 for a 
review). Here, we use mcfly, a Python package for time series classifi-
cation using deep learning (van Kuppevelt et al., 2020). 

Mcfly utilizes TensorFlow (www.tensorflow.org) an extensively 
adopted machine learning library, it can make use of (but does not 
require) dedicated hardware (such as Graphical Processing Units: 
‘GPUs’) and includes procedures for inspecting and visualizing the pa-
rameters of trained models. This software also works with both uni-
variate and multivariate time series classification. The former refers to 
models using only one predictor variable (for example, when classifying 
species identities from bird call recordings), while the latter concerns 
models using two or more of these variables (for example, when time 
series of temperature, precipitation and wind are used to classify be-
tween the presence or absence of a phenological event). In its current 
version (v.3.0) mcfly allows implementing CNN, Deep convolutional 
LSTM (‘DeepConvLSTM’; an architecture composed of convolutional 
and LSTM recurrent layers), ResNet and InceptionTime architectures. 
Specific details about the components and structure of each architecture 
are given in van Kuppevelt et al. (2020). 

An important feature of mcfly is that it automatizes the imple-
mentation and identification of suitable deep learning architectures and 

Fig. 1. Schematic diagrams of artificial neural networks architectures and components. (a) A simple artificial neural network; (b) a classification Convolutional 
Neural Network; (c) a Recurrent Neural Network with Long Short-Term Memory units (grey squares); (d) residual blocks in a Convolutional Neural Network; (e) 
parallel stacking of convolution layers, as used in Inception Time Networks. 
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hyperparameters (i.e., ‘AutoML’; He et al., 2021). This represents an 
important advantage for non-experts in deep learning, as it does not 
require the manual assembly of the models and definition of their 
hyperparameters. The AutoML procedure starts by generating a set of 
candidate models with architectures and hyperparameters (e.g. number 
of layers; learning rate) selected at random from a prespecified range of 
values (see Fig. 2). Each candidate model is trained using a small subset 
of the data (data partition At; Fig. 2) during a small number of epochs. 
After training, the performance of the candidate models is compared 
using a left-out validation data set (Av; Fig. 2). The selected candidate 
model (usually the best performing among candidates) is then trained on 
the full training data (Bt; Fig. 2). In this step it is required to identify an 
optimal number of training epochs, to avoid under- or overfitting of the 
model. A model trained too few epochs will not capture all relevant 
patterns in the data, reducing predictive performance. A model trained 
for an excessive number of epochs might overfit, reducing its generality 
and ability to classify new data. There is no definitive way to identify an 
optimal number of training epochs, but one practical approach is 
through monitoring the model’s validation performance (i.e., using 
holdout data partition Bv; Fig. 2). The ‘optimal’ number of training 
epochs is the one that provides the best validation performance. Finally, 
the performance of the model having an ‘optimal’ number of training 
epochs is evaluated using a ‘final’ test data set (T; Fig. 2), providing the 
best estimate of the predictive performance of the model. 

For the three case studies below, we used the same model generation 
and selection strategy. We had mcfly generate 20 candidate models, five 
for each architecture type. These models were trained during 4 epochs 
(using At). The candidate model achieving highest performance in pre-
dicting the classes of the validation data (Av) was then trained on the full 
training data set (Bt). For each epoch we measured training perfor-
mance, as provided by mcfly (which uses the accuracy metric i.e., ‘the 
proportion of cases correctly classified’). The classification performance 
on the validation data (Bv) was measured using the area under the 
receiver operating characteristic curve (AUC), a metric that is not 
affected by differences in the prevalence of classes and is widely used in 
ecology (e.g. Dyderski et al., 2018). 

To identify an ‘optimal’ number of training epochs, we examined the 
progression of validation performance (Bv). Models can be trained for an 
infinite number of epochs, so here we stopped training if no increase in 
validation performance was observed after 25 epochs (other thresholds 
could be considered, according to time resources available). Finally, the 
model trained with the number of epochs showing highest AUC in pre-
dicting Bv was used to classify the test data (data set T), with perfor-
mance measured using AUC. 

We recorded processing time of all models from the onset of training 
of candidate models to the last training epoch evaluated for the selected 
model. This was done on two distinct systems: a ‘desktop PC’ with an 

Intel i7 4-Core (3.40GHz) processor and 8GB RAM and a ‘high-end 
workstation’ with an AMD Ryzen 9 12-Core (3.80 GHz) processor, 64 GB 
RAM and a NVidia RTX 2060 GPU. Because CPU- and GPU-based Ten-
sorFlow generate distinct random hyperparameters, modelling results 
will differ between the two computer systems. We report results and 
processing times for the desktop PC system. For the workstation we 
report processing time only. We emphasize that the timings recorded in 
the two systems are not directly comparable as they correspond to 
distinct modelling routes. 

It is important to bear in mind that the modelling strategy described 
above aims at general applicability and further tailoring for specific 
classification tasks could be beneficial. For instance, with a priori 
knowledge that a specific architecture, say CNN, is best suited for the 
classification task at hand (see discussion section), the selection could be 
adjusted to generate only CNN-type candidate models. Further infor-
mation about fine-tuning of mcfly model generation and selection can be 
found in van Kuppevelt et al. (2020). 

2.7. The case studies 

Three case studies below demonstrate the wide applicability of deep 
learning models for supervised time series classification, across sub- 
fields of ecology. Unlike most previous studies, our cases studies do 
not use sound or image data. Instead, they represent classification tasks 
that are predominantly approached by ecologists through feature-based 
approaches i.e., the conversion of the time series data into a set of 
temporally aggregated predictors of the target classes. 

2.7.1. Case study 1: Species identification 
In this case study we predict the identity of three insect species: the 

olive fruit fly (Bactrocera oleae), the western honey bee (Apis mellifera), 
and the black fig fly (Lonchaea aristella) using wingbeat spectrograms 
(frequency series of amplitude values; Potamitis et al., 2015). B. oleae is 
an olive fruit fly pest, which if left unmanaged can lead to large eco-
nomic costs worldwide (Potamitis et al., 2015). The wingbeat spectrum 
characteristics of these three species allow us to exemplify an ‘easy’ 
classification case and a ‘difficult’ classification case: while in 
A. mellifera harmonics partially overlap with those of B. oleae, these 
species show important differences in frequencies and thus constitute 
the ‘easy’ classification case; in contrast, L. aristella has a wingbeat 
spectrum that completely overlaps with that of B. oleae, representing the 
‘difficult’ classification case. 

We thus have three classes, each corresponding to a species ‘positive’ 
identity. The data does not suffer from a strong imbalance (i.e. a strong 
dissimilarity in the number of samples per class) and consist of 230 
samples for B. oleae, 205 for A. mellifera, and 252 for L. aristella. 

Species were identified (classified) according to their wingbeat 

Fig. 2. Schematic of data partitions and modelling workflow used for time series classification.  
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spectrograms, which consist of frequency series of amplitudes (the 
predictor variable) obtained from Potamitis et al. (2015). A sample was 
composed of a total of 256 steps (frequencies), each step corresponding 
to an amplitude value for a frequency. This case study illustrates the use 
of these models using only one predictor variable (i.e., a single time 
series). 

The records of species identity data and predictor variable (ampli-
tude per frequency) were split into: data for training candidate models 
(~50%; At), data for validating candidate models (~20%; Av), data for 
training the selected model (~70%; Bt; resulting from merging the two 
previous data sets), validation data for determining the number of 
epochs for training the selected model (~15%; Bv) and test data for final 
assessment of classification performance (~15%; T in Fig. 2). 

2.7.2. Case study 2: Species distribution model 
In this case study we predict the potential distribution of Galemys 

pyrenaicus (Iberian desman) using time series of environmental data. 
Galemys pyrenaicus is a vulnerable semi-aquatic species, endemic to the 
Iberian Peninsula and the Pyrenean Mountains. We collected distribu-
tion records from the Portuguese and Spanish atlases of mammals 
(Bencatel et al., 2017; Palomo et al., 2007). The data consists of 6141 
UTM grid cells of 10 × 10 km, of which 659 record the species presence 
(class ‘Presence’) and 5482 its absence (class ‘Absence’). 

The environmental conditions in each cell were characterized using 
four variables: 1) maximum temperature; 2) minimum temperature, 3) 
accumulated precipitation, and 4) altitude. The first three variables 
consist of time series of monthly values collected from CHELSA (Karger 
et al., 2017) spanning 1989 to 2013, totaling 300 time steps. The fourth 
variable was from (Fick and Hijmans, 2017) and corresponds to 
temporally invariant values of altitude, coded as a time series. 

Species distribution data and predictors were split similarly as above 
with different proportions: a) At ~ 35%, b) Av ~ 35%, c) Bt ~ 70%; 
resulting from merging At and Av, d) Bv ~ 15%, and e) test data set T ~ 
15%. The low percentage of data used for training the candidate models 
in comparison to case study 1 aims to reduce computer processing time, 
given larger data volume. 

The training and internal validation of deep learning models are 
sensitive to strong class imbalance (i.e., when one or several classes have 
a much higher number of samples). Strong class imbalance can bias 
models towards the prediction of majority classes (Menardi and Torelli, 
2014) and reduces the reliability of performance metrics such as accu-
racy sensu stricto (i.e., the proportion of correct predictions to the total 
number of samples), which is used for the automated selection of 
candidate models in mcfly (van Kuppevelt et al., 2020). Accordingly, we 
balanced our data by randomly duplicating presence records and de-
leting absence records until a balance of ~50:50 is obtained, which was 
executed using the ROSE package (Lunardon et al., 2014) for R (R Core 
Team, 2020). This was done for the data sets that mcfly uses for internal 
assessment of accuracy s.s. (At, Av and Bt, Fig. 2). Data partitioning was 
performed prior to balancing, to avoid inclusion of replicated cases of 
the same data across multiple partitions. The remaining data sets (i.e., 
Bv and T) were not balanced. 

2.7.3. Case study 3: Phenological prediction 
In this case study we predict the timing of fruiting of Macrolepiota 

procera (Parasol mushroom) across Europe. This species produces 
fruiting bodies valued for human consumption (Capinha, 2019) and 
predicting their emergence could be useful for managing human pres-
sure on the species and its habitats. Data is from Capinha (2019), a study 
employing a feature-based approach to achieve an equivalent aim. The 
data have two classes. One class (‘fruiting’) corresponds to locations and 
dates of observation of fruiting bodies of the species (from 2009 to 
2015). The second class corresponds to ‘temporal pseudo-absences’, 
which are records in the same locations of the observation records, but 
with dates selected at random along the temporal range of the study 
(Capinha, 2019). The aim of the classification is to distinguish the 

meteorological conditions associated with the observation of fruiting 
bodies of the species from the range of meteorological conditions that 
are available to it. 

We characterized each record using four time series: 1) mean daily 
temperature for the preceding 365 days, 2) daily total precipitation for 
the preceding 365 days, 3) latitude and 4) longitude. Time series of 
temperature and precipitation were extracted from the daily AGRI4-
CAST maps (http://agri4cast.jrc.ec.europa.eu/), at a cell resolution of 
25 × 25 km. Geographical coordinates were coded as temporally 
invariant time series. 

Records from 2009 to 2014 were randomly partitioned into: At: 15%, 
Av: 70%, Bv: 15%, and Bt: 85% (merging At and Av). Data for the year 
2015 was used to evaluate the predictive performance of the final model 
(T), allowing comparison with the performance results achieved in 
Capinha (2019). 

To increase the representation of the meteorological conditions 
occurring in the location of each observation record, the data consists of 
15 pseudo-absence records per each observation record (Capinha, 
2019). Similarly to the previous case study, we corrected for class 
imbalance by balancing the number of samples in each class using a 
random deletion and duplication approach (Lunardon et al., 2014). This 
balancing was performed for data sets At, Av and Bt. 

3. Results 

3.1. Species identification 

The candidate model with greatest ability to distinguish between the 
spectrograms of the three insect wingbeats had an InceptionTime ar-
chitecture (accuracy = 0.85; model number 15; Table 1; Fig. 3b). On the 
training data set this model showed a progressively increasing training 
accuracy with number of epochs (Fig. 3c). However, its evaluation 
against left-out data (Bv data set; Fig. 2) showed that best performances 
were found mainly between training epoch ~30 and ~50 (‘validation 
AUC’; Fig. 3c), followed by little change. The highest validation per-
formance was obtained after 47 training epochs. On the test data (T; 
Fig. 2), this model achieved an average AUC of 0.96 (Table 1), resulting 
from an AUC of 1 in classifying between B. oleae and A. mellifera, an AUC 
of 0.88 in classifying between B. oleae and L. aristella and an AUC of 1 in 
classifying between A. mellifera and L. aristella. Computer processing 
time, from the onset of candidate model training to the 72nd training 
epoch of the selected model, took 26 min on a desktop PC. On the high- 
end workstation, a distinct modelling event took 3 min. 

3.2. Species distribution model 

The best performing candidate model for this case study had a CNN- 
type architecture (model number 4; Table 1; Fig. 4b), reaching 0.82 of 
validation accuracy. Using the full training data set, this model showed a 
decreasing trend in validation values after the ~60th epoch (Bv; ‘vali-
dation AUC’; Fig. 4c), with highest performing classification at the 56th 
training epoch. The model trained with this number of epochs achieved 
an AUC of 0.95 (Table 1) on the final test data (T). Most of northern 
Iberian Peninsula was predicted as suitable to Galemys pyrenaicus, 
particularly the high mountainous areas (Fig. 4e). Computer processing 
time took 2 h and 49 min on a desktop PC. A distinct modelling event on 
the high-end workstation took 19 min. 

3.3. Phenological prediction 

For this case study, the selected candidate model had an 
InceptionTime-type of architecture (model number 2; Table 1; Fig. 5a), 
achieving 0.81 validation accuracy. The classification performance of 
this model (measured with external data; Bv) increased only up to the 
5th epoch (Fig. 5b). The model trained for 5 epochs achieved an AUC of 
0.91 on the final test data. The predicted probabilities of fruiting for an 
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example site (Fig. 5c) show the ability of the model to capturing seasonal 
variation, with higher probabilities generally being predicted for the 
Autumn season, but with important inter-annual differences. Computer 
processing time took 10 h and 23 min on a desktop PC. On a high-end 
workstation a distinct modelling event took 18 min. 

4. Discussion 

Deep artificial neural networks are a flexible modelling technique 
with notable success in a range of scientific fields (LeCun et al., 2015). In 
ecology, the adoption of these models is still in its infancy and has been 
mainly directed towards image and sound recognition (Brodrick et al., 
2019; Christin et al., 2019). We here introduce the use of deep learning 
models as a generic approach for the classification of temporal data and 
demonstrate how these models can be implemented and evaluated for 
distinct tasks across subfields of ecology. 

Our case studies demonstrate the versatility and potential of deep 
learning for time series classification. In the first case study, an Incep-
tionTime model performed well in distinguishing insect species based on 
spectrograms of their wingbeats. Potamitis et al. (2015) classified the 

same data using the absolute distance of spectra. They found that this 
distance metric achieved a good accuracy in distinguishing between 
A. mellifera and B. oleae (an ‘easy’ classification case) but was unable to 
distinguish between the latter species and L. aristella (a ‘difficult’ clas-
sification case). Given the use of different data partition strategies and 
performance metrics, the performances measured for our InceptionTime 
model are not fully comparable to those obtained by Potamitis et al. 
(2015). However, the deep learning approach correctly distinguished 
between all test instances of A. mellifera and B. oleae (AUC = 1) and was 
able to provide good classification performance for the more difficult 
classification case (AUC of 0.88), suggesting its superior classification 
ability. 

In our second case study, a CNN model was used to predict the po-
tential distribution of Galemys pyrenaicus in the Iberian Peninsula, based 
on altitude values and time series of temperature and precipitation. This 
model achieved a high predictive performance (AUC = 0.95) and the 
spatial patterns predicted are congruent with the known distribution of 
the species and previous predictions of Barbosa et al. (2009) - who used 
a Generalized Linear Model and a rich set of spatial predictors repre-
senting aspects of weather, climate, productivity, topography and 

Table 1 
Type of architecture and accuracy of candidate models and predictive performance of selected models (bold). The accuracy of candidate models was measured using 
the proportion of correctly classified cases. The accuracy of selected models was measured using the area under the receiver operating characteristic curve (AUC).  

Candidate 
model 

Architecture Accuracy of 
candidate 
models (% 
correct) 

AUC of 
selected 
model 

Architecture Accuracy of 
candidate 
models (% 
correct) 

AUC of 
selected 
model 

Architecture Accuracy of 
candidate 
models (% 
correct) 

AUC of 
selected 
model  

Case study 1 Case study 2 Case study 3 

1 ResNet 0.32  ResNet 0.67  ResNet 0.5  
2 InceptionTime 0.66  InceptionTime 0.63  InceptionTime 0.81 0.91 
3 LSTM 0.31  LSTM 0.52  LSTM 0.8  
4 CNN 0.7  CNN 0.82 0.95 CNN 0.69  
5 ResNet 0.46  ResNet 0.61  ResNet 0.5  
6 LSTM 0.32  LSTM 0.52  LSTM 0.81  
7 InceptionTime 0.57  InceptionTime 0.67  InceptionTime 0.76  
8 CNN 0.68  CNN 0.52  CNN 0.51  
9 CNN 0.39  CNN 0.48  CNN 0.5  
10 ResNet 0.32  ResNet 0.67  ResNet 0.49  
11 InceptionTime 0.32  InceptionTime 0.66  InceptionTime 0.5  
12 LSTM 0.39  LSTM 0.52  LSTM 0.75  
13 ResNet 0.32  ResNet 0.66  ResNet 0.5  
14 CNN 0.49  CNN 0.77  CNN 0.66  
15 InceptionTime 0.85 0.96 InceptionTime 0.67  InceptionTime 0.5  
16 LSTM 0.39  LSTM 0.52  LSTM 0.61  
17 CNN 0.6  CNN 0.52  CNN 0.5  
18 InceptionTime 0.79  InceptionTime 0.75  InceptionTime 0.51  
19 LSTM 0.36  LSTM 0.52  LSTM 0.77  
20 ResNet 0.42  ResNet 0.7  ResNet 0.5   

Fig. 3. Data and results of deep learning models classifying insect species from wingbeat spectrograms. (a) Example wingbeat spectrograms for each species. (b) 
Validation accuracy for candidate deep learning models. (c) Training and validation curves of the selected model along time (highest validation performance is 
marked with a diamond symbol). 
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geography. In addition, although the data and validation strategies used 
in the two studies differ, the predictive performance of the CNN 
matches, or surpasses the top performing Iberian models of Barbosa 
et al. (2009). These results suggest the competence of the deep learning 
approach for species distribution modelling. 

Finally, an InceptionTime model was used to predict the fruiting 
seasonality of Macrolepiota procera across Europe. The patterns of sea-
sonality projected by the model were ecologically plausible and its 
predictive accuracy was high (i.e., an AUC of 0.91). This accuracy 

matches the one achieved by Capinha (2019), who used the same raw 
data. However, unlike the raw time series used by deep learning model, 
the study of Capinha (2019) used a feature-based classifier (boosted 
regression trees) and had to further process the time series data into a 
large set (n = 40) of hand-crafted features reliant on domain-expertise 
(e.g. averaged temperatures and accumulated precipitation in previous 
weeks or months, growing degree days etc.). These results suggest that 
deep-learning models may overcome the need of processing the time 
series data into summary variables and of domain experts to guide this 

Fig. 4. Data and results of deep learning models classifying environmental suitability for the Iberian desman. (a) Presence and absence data of the species. (b) 
Example of time series used as predictors. (c) Validation accuracy for candidate deep learning models. (d) Training and validation curves of the selected model along 
time. The diamond symbol marks the highest validation performance. (e) Environmental suitability predicted by the selected model. 

Fig. 5. Data and results of deep learning models classifying the fruiting phenology of the parasol mushroom based on meteorological variation. (a) Validation 
accuracy for candidate deep learning models. (b) Training and validation curves of the selected model along time (the diamond symbol marks the highest validation 
performance). (c) Patterns of fruiting seasonality predicted by the selected model for an example location. 
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process, without sacrificing predictive accuracy. 
Despite the promising results described above, the advantages of 

deep learning models for time series classification in ecology can only be 
fully appreciated with wider testing. The benchmarking of classification 
performances against traditional modelling approaches and the identi-
fication of factors associated with performance differences (e.g. degree 
of a priori ecological knowledge; complexity of the phenomena; volume 
of training data, etc.) will be of paramount importance. Deep learning 
models often perform in a superior manner in benchmark tests in other 
domains (Fawaz et al., 2019) but is also not uncommon to find other 
approaches providing equivalent predictions (some examples are shown 
in Wang et al., 2017). Given the complexity and computational demand 
of deep learning models (see below), it will be important for ecologists to 
have a better sense of when this approach is justifiable over simpler, less 
demanding, alternatives. Research efforts should also attempt to identify 
the deep learning architectures and hyperparameters that are best suited 
for specific ecological phenomena and data types. Thus far, classification 
performances from distinct deep learning typologies were compared 
using time series data coming from multiple domains (e.g. Fawaz et al., 
2019), and the relevance of these results to ecology remains uncertain. 

Differently from feature-based approaches, deep learning ap-
proaches allow classifying phenomena directly from raw time series 
data, a characteristic that requires ecologists to think more critically 
about the temporal component of the phenomena being classified. This 
increased relevance of the temporal dimension was, perhaps, best 
illustrated by using continuous climate data − instead of the usual long- 
term climate averages − for predicting the potential distribution of a 
species. However, the same sort of ‘fully’ temporally explicit approach 
can be exploited for virtually any ecological or biological entity or state, 
as long as the putative drivers have a temporal dimension. Further, the 
direct intake of time series data by deep learning models matches the 
increasing number of high frequency streams of digital data coming 
from distinct sources (e.g. satellite sensors, meteorological stations; 
Reichstein et al., 2019). The direct integration of these data into the 
models eliminates the need for resource consuming feature extraction 
procedures and is thus well-suited for operational modelling 
frameworks. 

As for any modelling approach, the use of deep learning models for 
time series classification has several limitations. Two are especially 
prominent: the interpretability of models and computational demand. 
The need for interpretability of deep learning models has been well 
emphasized in recent literature (e.g. Reichstein et al., 2019). Unfortu-
nately, most research on this topic has focused on models working with 
image data (e.g. Selvaraju et al., 2017), while much less attention has 
been paid to the interpretation of models for time series classification, 
particularly those applied to multivariate data (Shickel and Rashidi, 
2020). Fortunately, a few techniques for interpreting the latter are 
beginning to emerge (e.g. Siddiqui et al., 2019) and, given the fast pace 
of deep learning research, we expect that soon deep learning models for 
time series classification will be no harder to interpret than those 
applied to image data. The challenges arising from computational de-
mand appear harder to solve. Here we showed that ‘typical’ classifica-
tion tasks can take several hours to run on a standard desktop computer. 
Additionally, the computational expensiveness of deep learning is ex-
pected to grow in the future (Thompson et al., 2020). To face this 
challenge, ecologists will likely have to move in the same direction as 
their fellow computer scientists and embrace faster hardware (e.g. 
GPUs, ‘tensor processing units’ and large-resourced cloud computing 
services) and scalable model implementations (e.g. distributed 
computing). 

In conclusion, we consider that the use of deep learning for classi-
fying temporal data in ecology could bring considerable improvements 
over conventional approaches. Software tools now exist that allow 
overcoming the implementation barrier for non-experts and state-of-the- 
art classification results seem a reasonable expectation for several tasks. 
However, only with extensive testing can the value of this approach be 

fully recognized. Those willing to venture through this modelling route 
could use the data and code we provide as a starting point. 
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Wäldchen, J., Mäder, P., 2018. Machine learning for image based species identification. 
Methods Ecol. Evol. 9, 2216–2225. https://doi.org/10.1111/2041-210X.13075. 

Wang, Z., Yan, W., Oates, T., 2017. Time series classification from scratch with deep 
neural networks: a strong baseline. In: 2017 International Joint Conference on 
Neural Networks (IJCNN). IEEE, pp. 1578–1585. 

Willi, M., Pitman, R.T., Cardoso, A.W., Locke, C., Swanson, A., Boyer, A., Veldthuis, M., 
Fortson, L., 2019. Identifying animal species in camera trap images using deep 
learning and citizen science. Methods Ecol. Evol. 10, 80–91. https://doi.org/ 
10.1111/2041-210X.13099. 

Wolkovich, E.M., Cook, B.I., McLauchlan, K.K., Davies, T.J., 2014. Temporal ecology in 
the Anthropocene. Ecol. Lett. 17, 1365–1379. https://doi.org/10.1111/ele.12353. 

Zhao, B., Lu, H., Chen, S., Liu, J., Wu, D., 2017. Convolutional neural networks for time 
series classification. J. Syst. Eng. Electron. 28, 162–169. 

C. Capinha et al.                                                                                                                                                                                                                                

https://doi.org/10.1371/journal.pone.0031662
https://doi.org/10.1371/journal.pone.0031662
https://doi.org/10.1089/10665270050081405
https://doi.org/10.1089/10665270050081405
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1023/A:1024988512476
https://doi.org/10.1023/A:1024988512476
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0115
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0115
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/S0304-3800(99)00092-7
https://doi.org/10.1016/S0304-3800(99)00092-7
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0130
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0130
https://doi.org/10.1371/journal.pcbi.1005995
https://doi.org/10.1016/j.rse.2013.01.011
https://doi.org/10.1007/s10618-012-0295-5
https://doi.org/10.1007/s10618-012-0295-5
https://doi.org/10.1086/587826
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0155
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0155
https://doi.org/10.1890/ES13-00359.1
https://doi.org/10.1890/ES13-00359.1
https://doi.org/10.1371/journal.pone.0140474
https://doi.org/10.1111/2041-210X.13357
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0175
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0175
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1371/journal.pone.0013569
https://doi.org/10.1371/journal.pone.0013569
https://doi.org/10.1016/j.tree.2019.03.007
https://doi.org/10.1016/j.tree.2019.03.007
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.rse.2010.03.003
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1098/rstb.2015.0395
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0215
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0215
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0215
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0220
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0220
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0220
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0225
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0225
https://doi.org/10.1016/j.softx.2020.100548
https://doi.org/10.1111/2041-210X.13075
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0240
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0240
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0240
https://doi.org/10.1111/2041-210X.13099
https://doi.org/10.1111/2041-210X.13099
https://doi.org/10.1111/ele.12353
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0255
http://refhub.elsevier.com/S1574-9541(21)00043-1/rf0255

	Deep Learning for Supervised Classification of Temporal Data in Ecology
	Scholar Commons Citation

	Deep learning for supervised classification of temporal data in ecology
	1 Introduction
	2 Material and methods
	2.1 Deep neural networks for time series classification
	2.2 Convolutional neural networks
	2.3 Recurrent neural networks
	2.4 Residual networks
	2.5 Inception time networks
	2.6 A standardized, accessible, deep learning modelling framework
	2.7 The case studies
	2.7.1 Case study 1: Species identification
	2.7.2 Case study 2: Species distribution model
	2.7.3 Case study 3: Phenological prediction


	3 Results
	3.1 Species identification
	3.2 Species distribution model
	3.3 Phenological prediction

	4 Discussion
	Data accessibility
	Declaration of Competing Interest
	Acknowledgments
	References


