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Abstract
Invasive alien �shes have caused pernicious ecological impacts on aquatic ecosystems. However, there has not been a global appraisal of associated
economic impacts. Here, we compiled reported economic impacts of invasive alien �shes using the most comprehensive global database of invasion costs
(InvaCost). We analyze how �sh invasion costs are distributed geographically and temporally, as well as which socioeconomic sectors are most impacted.
Fish invasions have caused the economic loss of at least US$32.8 billion globally (2017 value), from only 26 reported species (of 128 known invasive alien
�sh species). North America had the highest costs (> 99%), followed by Europe and Asia, with no costs reported in Africa, Oceania nor South America. Very few
costs from invasive �sh in the marine realm were reported (0.1%). Most costs are related to resource damages and losses (97%), with relatively little spent on
management; mainly impacting the �sheries sector (93%). However, when only considering empirically observed costs (without predictions), most costs were
incurred by authorities and stakeholders through management, indicating that damage costs from invasive �shes are often extrapolated and/or di�cult to
quantify. Fish invasion costs increase markedly over time, from US$0.57 billion/year in the 1980s to US$1 billion/year in the 2000s. Fish invasions have been
relatively well studied; however, economic costs have been lower than expected based on overall numbers of alien species. Accordingly, although costs are
increasing, improved reporting is required to better understand how �sh invasion costs are distributed across time, space and economic sectors.

Introduction
Around the globe, numbers of alien invasive �sh incursions are growing (Avlijaš et al., 2018; Cucherousset & Olden, 2011). Concomitantly, �sh invaders are
increasingly recognized as a direct driver of aquatic biodiversity declines (e.g. topmouth gudgeon Pseudorasbora parva, European cat�sh Silurus glanis and
Sea lamprey Petromyzon marinus; Schuldt & Goold, 1980; Ercan et al., 2019; Vejřík et al., 2017; Ruiz-Navarro et al., 2020). In line with increasing numbers of
�sh invasions, most associated invasion drivers are on the rise (Copp et al., 2010; Turbelin et al., 2017; Zieritz et al., 2017).

In particular, increasing anthropogenic activities, especially in emerging market economies, are expected to facilitate new introductions of alien �sh species
and the following invasions through pathways such as tourism, trade (e.g. aquaculture and aquarium trade) and infrastructure development (e.g.
waterways/channel construction; Hulme, 2015). Some of the key introduction pathways resulting in invasions are intentional, such as aquaculture,
recreational or commercial �sheries, the ornamental �sh trade, or religious releases. Others are unintentional, for example, through ballast water (e.g. Pratt et
al., 1992), canals (e.g. Mills et al., 1993) and through environmental changes (e.g. climate, pollution, land use) that lead to increased susceptibility to invasions
(e.g. Britton et al., 2010a).

Ecological impacts of alien invasive �shes include the displacement and extinction of native species (Mills et al., 2004; Haubrock et al., 2018), modi�cation of
trophic interactions (Martin et al., 2010; Haubrock et al., 2019) and disruption of ecosystem functioning (Capps & Flecker, 2013). Fish invaders can also
transmit novel pathogens (Gozlan et al., 2005; Waicheim et al., 2014; Ercan et al., 2019; Boonthai et al., 2017) as well as cause genetic pollution via the
hybridization with native species (Oliveira et al. 2006, Gunnell et al. 2007). Introductions of alien �sh species into previously �shless insular systems can
additionally exacerbate impacts due to resident species naiveté (Knapp et al., 2001, Lecomte et al., 2013; Cuthbert et al., 2018).

Nevertheless, despite evidence for increasing numbers of �sh invasions globally and their increasing ecological impacts (Leprieur et al., 2008; Seebens et al.,
2020), their economic impacts remain poorly understood, largely due to data scarcity. This scarcity in cost data has spurred debate among scientists
regarding estimates of invasion costs (Cuthbert et al., 2020), which have often been over-reliant on extrapolations and presented untraceable sources. In a
�sheries context, that could involve estimating costs from local scales to entire �sheries. This knowledge gap in costs, in turn, impedes decision-making and
largely limits the ability of policy makers and stakeholders to design successful and cost-effective management strategies (Britton et al., 2010b; Hyytiäinen et
al., 2013). In those cases where invasive �sh populations may hold a positive value, understanding trade-offs and designing socially optimal management is
also impeded by the lack of cost data. Examples of these positive values include invasive �shes with commercial value (Gollasch & Leppäkoski, 1999),
aesthetic and/or cultural values associated to recreational uses (Downing et al., 2013, Schlaepfer et al., 2011, Katsanevakis et al., 2014, Gozlan 2015, 2016), or
other perceived ecosystem bene�ts (Pejchar & Mooney, 2009).

To address this pervasive knowledge gap and provide a baseline for cost quanti�cations, we characterise, for the �rst time, the current status of knowledge on
global costs of alien invasive �shes using the InvaCost database (Diagne et al., 2020). This database contains detailed information on reported costs (e.g.
cost types, impacted sectors, regional attributes, reliability of cost estimations, etc.) over the past 60 years, associated with ~ 800 invasive species from all
ecosystem types globally. In the present study, we use a subset of this database to which we add complementary cost information from other sources. Our
aims were to describe the global costs associated with alien invasive �sh species, explore the structure of these costs, and to identify potential knowledge
gaps and biases in the estimation of past and current economic impacts.

Methods
Cost data sourcing and �ltering

To estimate the cost of alien �sh invasions reported globally, we considered cost data from the InvaCost database (Diagne et al., 2020). This database
compiles 2,419 cost entries in a su�ciently detailed manner for large-scale syntheses of costs associated with invasive species at different spatial and
temporal scales. We complemented the data of the InvaCost database in two ways. First, we added cost data collected from a number of additional sources in
15 non-English languages (5,212 cost entries; Angulo et al. in prep., https://doi.org/10.6084/m9.�gshare.12928136). We further supplemented the original
InvaCost database with new references (ca. 2,314 cost entries: https://doi.org/10.6084/m9.�gshare.12928145.v1). Following the InvaCost protocol (Diagne et
al., 2020), data were retrieved using a series of search strings entered into the ISI Web of Science platform (https://webofknowledge.com/), Google Scholar
database (https://scholar.google.com/) and the Google search engine (https://www.google.com/) to identify relevant references with costs of invasions.
These new references were thoroughly assessed to identify relevance and extract cost information. Ultimately, all costs were converted to 2017 US$ values

https://doi.org/10.6084/m9.figshare.12928136
https://doi.org/10.6084/m9.figshare.12928145.v1
https://webofknowledge.com/
https://scholar.google.com/
https://www.google.com/
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(see Diagne et al. 2020 for detailed information). The enhanced database used for this analysis includes information on monetary costs across taxonomic,
regional and sectoral descriptors, and allows the distinction between observed (i.e. costs of a realized impact) and potential costs (i.e. costs of a
predicted/expected impact), as well as the reliability of methodologies used for cost estimates (high or low reliability).

We �ltered the InvaCost database in order to only keep costs related to �shes belonging to the classes Cephalaspidomorphi and Actinopterygii. Database
entries not attributable to unique species, sectors, or cost types within those classes were categorized as “Diverse/Unspeci�ed”. All analyses were performed
for the period between 1960 to 2020, given that (a) monetary exchange rates prior to 1960 were unavailable, and (b) 2020 was the last year for which cost
data were considered in the database. The �nal dataset used for the analysis is provided in Supplementary Material 1.

Global cost descriptions

For the purposes of describing costs of invasive �sh through time, we used the expandYearlyCosts function of the ‘invacost’ package (v0.3-4; Leroy et al., in
prep) in R version 4.0.2 (R Core Team, 2020). This function facilitates consideration of temporal data dimensions, whereby the estimated costs per year are
expanded over time according to the duration of time over which they occured or were expected to have occurred (i.e. duration time between
Probable_starting_year_low_margin and Probable_ending_year_low_margin columns). The analyses were therefore conducted based on these ‘expanded’
entries to account for the probable duration of the costs as they were reported in each analysed study. For the purposes of obtaining a comparable total
cumulative cost for each estimate over the period that costs incurred for each invasion, we multiplied each annual estimate by the respective duration (in
years). Finally, the cumulative invasion costs were estimated based on their classi�cation under the following cost descriptors (i.e., columns) included in the
database (Supplementary Material 2):

(i) Method_reliability: illustrating the perceived reliability of cost estimates based on the type of publication and method of estimation. Costs are considered as
of low reliability when materials cannot be assessed for full-text investigation or if costs come from grey literature with no fully described method. On the
contrary, costs are considered as of high reliability they come from peer-reviewed articles, o�cial documents, or grey literature with fully described method
(Diagne et al., 2020);

(ii)Implementation: referring to whether the cost estimate was actually realised in the invaded habitat (observed) or whether it was extrapolated (potential). For
example, potential costs can include estimated reductions in �shery income (Scheibel et al., 2016), known local costs that are extrapolated to a larger system
in which they occur (Oreska and Aldridge, 2011), and costs extrapolated over multiple years based on estimates from a shorter period (Leigh, 1998);

(iii) Geographic_region: describing the continental geographic origin of the listed cost;

(iv) Type_2: grouping of costs according to the categories: (i) “Damage costs” referring to damages or losses incurred by invasion (i.e., costs for damage
repair, resource losses, medical care), (ii) “Management costs” comprising control-related expenditure (i.e., monitoring, prevention, management, eradication),
(iii) and “General costs” including mixed damage-loss and control costs (cases where reported costs were not clearly distinguishable);

(v) Impacted_sector_2: the activity, societal or market sector that was impacted by the cost. Seven sectors are described in the database : agriculture,
authorities-stakeholders (o�cial structures allocating efforts for the management of biological invasions), environment, �shery, forestry, health and public and
social welfare (Diagne et al. 2020).

Temporal cost accumulations

To assess temporal trends of invasive �sh species, we considered 10-year means since 1980, because cost data concerning �sh invasions were reported
solely after the 1980s. We examined costs as a function of the year of impact, which re�ects the time at which the invasion cost likely occurred and expanding
it over years during which the costs was realised (using the probable_starting_year and probable_ending_year columns; see Leroy et al., in prep.). This allowed
for an estimation of annual average costs over the entire reported period, as well as over decadal increments.

Comparison with other taxonomic groups

In order to put costs of alien invasive �sh species in a wider taxonomic perspective, we compared the economic costs of �shes with those of invasive birds
and mammals. The comparison was based on the total cost and the number of cost entries in the InvaCost database, coupled with the number of invasive
species per taxon, as well as the numbers of scienti�c publications in invasion science. First, total monetary costs and database entry numbers for birds and
mammals were calculated following the methods detailed above. Second, we estimated the available literature for each group using the same search protocol
as the one used for the InvaCost database (see Diagne et al. 2020), excluding words that refer to costs and adding the biotic group name (i.e ‘�sh”, “mammal”,
or “bird”), in order to get a comparative proxy of research effort in invasion biology for these three taxa. Exact search strings used can be found in
Supplementary Material 3. The information considered in this comparison was gathered using the Web of Science. Third, the numbers of alien species for
each of the three aforementioned taxonomic groups were estimated using the IUCN Red List database (https://www.iucnredlist.org/). We categorized alien
species according to their IUCN status, either “Extant and Introduced”, “Possibly extinct and Introduced”, “Presence Uncertain and Introduced” or “Possibly
extant and Introduced”. Last, we used Pearson’s Chi-squared test to assess whether the data of three taxonomic groups had the same distribution of variable
values (number of alien species, number of cost entries, number of studies reporting invasion costs and total costs).

Results
A total of 228 cost entries for 26 alien invasive species from 17 �sh families were identi�ed in the database, summing up to US$32.80 billion. The majority of
costs, however, was deemed as potential (US$31.27 billion; n = 164, hereafter the number of cost entries), while observed costs summed up to just US$1.53

https://www.iucnredlist.org/
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billion (n = 64). In turn, the majority of costs (US$20.29 billion; n = 182) were deemed as highly reliable, with US$12.51 billion (n = 46) evaluated as of low
reliability (Supplementary Material 4).

Costs across regions and taxa

According to our recorded costs, North America was found to be the region reported with the highest number of economic costs (US$32.78 billion; n = 78),
followed by Europe (US$9.75 million; n = 101) and Asia (US$8.37 million; n = 43) (Figure 1). Costs inferred from Central America and polar regions (e.g. French
Southern and Antarctic Lands) were both below US$ 1 million each. When considering observed costs alone, invasive �sh costs in North America were
estimated at US$1.51 billion (n = 25), which was again more than 10 times higher compared to observed costs recorded in Europe (US$7.67 million; n = 101)
and Asia (US$8.37 million; n = 43). Notably, there were no economic costs reported from Africa, Oceania and South America. Reported costs were attributed to
multiple species in North America (n = 8) and Europe (n = 15), but were less diverse in Asia (n = 2) and Central America (n = 1) (Figure 2) (note that these do
not include taxa at coarser groupings than species level).

The Actinopterygii class included 25 invasive �sh species with costs (US$30.38 billion), as opposed to the Cephalasdomorphi class, which was represented by
just one species, the sea lamprey P. marinus (US$2.41 billion in North America) (Table 1; Figure 2). Considering all costs in North America, the Ruffe
Gymnocephalus cernua was the costliest species (US$28.93 billion), followed by the sea lamprey P. marinus (US$2.41 billion), the white bass Morone
chrysops (US$3.39 million) and brown trout Salmo trutta (US$1.78 million). All other species, such as the northern pike Esox lucius and the northern
snakehead Channa argus, contributed less than US$1 million.

Considering only observed costs, P. marinus was, with US$61.35 million, the costliest species, followed by Micropterus salmoides (US$5.29 million),
Lagocephalus sceleratus (US$3.87 million), Cyprinus carpio (US$1.85 million), and Phoxinus phoxinus (US$1.21 million). All other species contributed up to
US$1 million (Table 1).

Impacted sectors and cost types

Most costs were linked to the damages and losses of resources (n = 48; US$31.82 billion), which represented approximately 97% of the total reported costs.
Costs associated with management (i.e. costs of control, detection and eradication) were therefore two orders of magnitude lower (US$975.43 million), while
general costs (costs either unspeci�ed or classi�ed under multiple cost types) summed to just US$953.73 thousand. In North America, US$31.82 billion was
attributed to damages and losses, with the remaining US$963.04 million classi�ed as management costs.

On a worldwide scale, the �sheries is the sector most impacted (US$30.40 billion), followed by costs to public and social welfare (US$1.42 billion) and lastly
costs to authorities and stakeholders (US$971.96 million). Inferring only costs to impacted sectors in North America, the distribution of costs across sectors
was similar, with �sheries (US$30.39 billion) predominantly impacted, followed by public and social welfare (US$1.42 billion) and authorities and stakeholders
(US$959.49 million) (Supplementary Material 5).

As for the subset of species with observed costs, the majority were conversely incurred through management expenditures, with comparatively little via direct
damages. In turn, management expenditures were predominantly incurred by authorities-stakeholders, whilst damages were incurred by �sheries (Figure 3).
Accordingly, the majority of �shery impacts in terms of damages and losses were extrapolative, whilst empirically incurred costs were mostly management-
orientated. Yet, many of these extrapolations were deemed to be of high reliability and thus could be methodologically robust.

Temporal cost accumulations

In total, these costs averaged to US$0.80 billion per year between 1980 and 2020 (Figure 4). Average costs generally increased over the years, from US$0.57
billion per year in the 1980s to US$ 1 billion in the 2000s and eventually dropped to US$0.79 billion in the 2010s. Note, however, that time lags (i.e. between
cost incurrence and formal reporting) were not accounted for in the last decade, and thus cost estimates are likely more underestimated in recent years.

Comparisons across biotic groups

Records for alien �shes from the IUCN Red List database (n = 128), were approximately half the number of recorded alien birds (n = 207), but were very close
to the number of recorded alien mammals (n = 108). Conversely, �shes comprised the taxonomic group with the largest number of scienti�c publications on
alien species (15,969 papers), which was approximately double the number of publications for birds (7,900) and four times more than mammals (4,334)
(Figure 5). Invasive �sh species, however, had the lowest number of entries before expansion over time (33) compared to mammals (292) and birds (43). In
turn, the total cost of invasive �sh species (US$32.80 billion) was found to be much lower than mammals (US$261.24 billion), but greater than birds (US$6.55
billion). The distribution of values for each biotic group therefore differed signi�cantly (�sh vs birds: χ2 = 1606.3, p < 0.001; �sh vs mammals: χ2 = 145.2, p <
0.001; Figure 5), with �sh costs and entries disproportionately lower than expected based on numbers of studies and alien species.

Discussion
Invasive �shes have caused economic costs of at least US$32.80 billion from just 26 recognised invaders with reported monetary impacts globally. These
costs largely resulted from potential estimations and were mostly incurred through damages rather than management spending. However, when considering
empirically observed costs only, most of them were due to management actions, with damages reportedly being a minority. For instance, a large portion of
invasive �sh species costs were based solely on extrapolations. For the Eurasian ruffe (G. cernua), which accounted for a substantial share of total costs from
invasive �sh in North America, their reported observed costs are very few and were mostly based on potential annual losses to �sheries should invasions not
be controlled, as well as potential costs of large-scale management interventions. Similarly, the Chinese or Amur sleeper (P. glenii) in Europe had no reported
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observed costs, although being a known vector for e.g., parasites (Reshetnikov & Sokolov, 2011; Kvach et al., 2013) which can impact especially aquaculture
(Ondračková et al., 2012). Other damaging invasive �sh, such as species of Asian carp in the Mississippi River basin, lack current cost estimates, despite
expectation of potential future economic and ecological costs large enough to require spending US$831 million to attempt to prevent spread into the Great
Lakes (USACE, 2018). This tendency towards extrapolated or potential costs may arise because of (i) the inconspicuousness of damages to socioeconomic
sectors such as �sheries in submerged environments, (ii) because markets such as �sheries may fail to report such damage costs in publications despite their
proven existence, and (iii) because management actions are more easily reported, as they are often based on planned budgets published in o�cial documents
(compared to damage-costs that need to be estimated from sometimes not monetizable foundations). Nevertheless, over recent decades, �sh invasions have
become more costly, increasing by an order of magnitude in total. However, despite invasive �shes being diverse and relatively well studied, signi�cantly
disproportionately fewer costs are reported for this group compared to other taxa, with cost totals reaching a considerably lower magnitude than, for example,
non-native invasive mammals. Accordingly, further cost reporting is urged to address these gaps and re�ne the spatial resolution and coverage of cost
information on the global scale.

Regional biases

Global documented costs of alien invasive �sh species exhibited marked regional disparities, with the majority of reported costs attributed to North America
and signi�cantly fewer costs reported from other geographic regions. These regional disparities are not only re�ected by massive differences in costs, but also
in their spatial scale of reporting; a much higher proportion of costs in North America were reported at country or regional scales (39 %) compared to other
areas (10 %). These large-scale appraisals in turn likely increase the magnitude of reported costs and highlights a need for larger-scale estimates outside of
North America (e.g., in Europe). Furthermore, this difference in magnitude of costs between invasive �sh species in North America and other continents is
noteworthy given North America accounted for only 27.1 % of all cost entries for invasive �shes (78 out of 228) and 39.1% of entries of solely observed costs
(25 out of 64 entries). Low economic costs based on few entries were associated with alien �sh invasions in Asia. This is despite a number of �sh species
having been intentionally introduced to meet the rapid increase in demand for farmed �sh (Lin et al. 2015; Xiong et al. 2015), and aquaculture enterprises in
Asia producing 80 % of all marine cultured biomass (The State of World Fisheries and Aquaculture 2020) despite being a known vector for aquatic invasions
(Grosholz et al., 2015). In fact, costs for only two invasive �sh species have been reported in Asia, regardless of evidence of multiple introduced �sh species
escaping from aquaculture facilities or being released in the wild (Marchetti et al., 2004). Similarly, the absence of reported costs from �sh invasions in South
America, Africa and Oceania is surprising given multiple notorious examples of �sh invasions in these continents. For example, in certain regions in South
America (e.g., North Bolivia), the introduction of Arapaima gigas has had severe environmental impacts and is aggressively displacing native commercially
valuable �sheries (although A.gigas is �shed commercially as well) (Miranda-Chumacero et al. 2012; Liu et al., 2017; Ju et al., 2019). In East Africa, although
the the introduction of Nile perch resulted in an increase in commercial �shery yields, boosted �sh processing, and provided revenues from recreational
tourism, it also adversely affected local communities by edging-out of local small-scale �shers and increasing in both insecurity and health issues around
Lake Victoria (Aloo et al., 2017; Yongo et al., 2005; Abila, 2000). That invasion also altered the lake’s community composition and trophic network (Witte et al.,
2013), reducing water quality, and causing the extinction of around 200 native species (including many endemic), altogether causing one of the largest
anthropogenic-driven ecosystems shifts on record (Ligtvoet et al., 1991; Kaufman, 1992; Mugidde et al., 2005). Australia also has a history of �sh invasions,
which have affected freshwaters systems and triggered high-risk management strategies, such as carp management through the introduction of viruses
(Marshall et al., 2018). One further noteworthy example in this regard is New Zealand, which had no reported cost entries in InvaCost for invasive �sh species,
despite having been impacted by their deliberate releases, the well-known importance of IAS, and the dedicated management efforts (Collier & Grainger, 2015).
The lack of reported costs from �sh invasions in these regions and the discrepancy in costs reported between North America and elsewhere points both a
likely much greater actual cost than currently recorded, and an urgent need to better quantify monetary impacts of invasive �shes. A possible contributing
factor that deserves consideration is that the fauna of the western Palearctic is depauperate due to glaciations (Oberdorff et al., 1997). While Nearctic �sh
faunas were less impacted by glaciations and remained relatively diverse, most �sh species in European rivers were intentionally introduced or colonized as a
result of anthropogenic activities e.g., the Danube (Levêque et al., 2007). Indeed, historical and cultural drivers are dominant, especially in southern Europe,
where countries have a long history of species intentional introductions (Occhipinti-Ambrogi et al., 2011; Castaldelli et al., 2013; Nunes et al., 2014). Therefore,
invasions in Europe could impact, at best, a limited number of freshwater �shes (or may even have been economically bene�cial historically), whereas
invasions in North America would necessarily impact a greater number of native species (Levêque et al., 2007). Hence, compared to other regions, higher costs
may also arise from the economic importance of the respective freshwater �sheries, which is far more developed in North America compared to Europe (e.g.
especially for recreational activities such as angling and boating; Franklin, 1998; Mordue 2009). This may explain the relatively large investment in
management efforts, i.e., observed costs, in North America compared to other regions, which had the largest share of observed costs globally (e.g., for sea
lampreys; Stewart et al., 2003; Twohey et al., 2003). Nevertheless, the regional discrepancies in invasive �sh costs between North America and Europe cannot
be fully explained by the difference in economic activity or the severity of monetary impacts due to invasions, nor can they explain the low costs and lack of
data in other regions.

Cultural biases

In Europe, the topmouth gudgeon (P. parva) was identi�ed as the costliest �sh invasion based on solely six studies reporting reliable and observed costs, and
despite the availability of further cost information which have not been incorporated into the InvaCost database. That is, its introduction in UK waters in 1985,
has led to the largest and costliest eradication programme ever taken on for a �sh species (Britton et al., 2010). With an average annual cost of about £190
thousand (~ US$244 thousand) over a three-year period, about thirty populations distributed across England and Wales have now been eradicated (Britton et
al., 2011). Another economic impact assessment that considered potential future distributions for P. parva indicated potential resource damages and losses
totalling between £2.9 and £3.1 billion (Defra 2005), and an annual total of US$39.6 million in damages and losses (Britton et al., 2010b). However, it was the
emerging infectious disease risk associated with the presence of P. parva (Gozlan et al., 2005), which has fuelled this unique management action. Today, it is
still the only global example of a national eradication program taken on by an environmental agency (Britton et al., 2010b).
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Moreover, cultural differences in attitudes and/or awareness towards invasive aquatic species in North America could have further led to a greater willingness
for expenditure to combat freshwater �sh invasions. Most of the costs of invasive �sh species in North America impacted the �sheries sector (93%), while in
Asia costs for �sheries were not reported. However, these costs were largely potential damages and losses and therefore may not have yet been incurred or
realised, or full damage extents could have been extrapolated from smaller scales as they are di�cult to quantify in submerged environments. Furthermore,
the difference in costs between North America (particularly the US) and other regions globally can be explained by the fact that the value of �sheries in the US
is signi�cantly higher compared to other places, resulting in more pressure to manage invasive �sh and therefore higher budgets allocated for this purpose as
well as damages and losses. Indeed, much of this funding derives directly from licence sales and taxes on �shing gear and boat fuels. Indicatively, in 2011,
anglers in freshwater ecosystems in the US generated more than US$40 billion in retail sales, with an estimated total economic impact of US$115 billion and
more than 800,000 jobs (Hughes, 2015). Although not re�ected in our results for costs of marine invasive �sh, the expenditure of marine anglers is also
substantial ($31 billion in 2012) and so is the economic impact (US$82 billion and 500,000 jobs in 2012) (Hughes, 2015). The expenditure, economic impact
and jobs supported through recreational �shing has been much smaller in Europe (e.g., see for example Hyder et al., 2017; European Parliament, 2017) and the
same applies to participation rates in recreational �sheries (Steffen and Winkel, 2003; Arlinghaus et al., 2015).

Environmental and taxonomic biases

In contrast to these manifold freshwater �sh invasions, very few costs are associated with invasive �sh species from the marine realm. This is especially
noteworthy given their well-known impacts to marine ecosystems (with impacts to e.g., habitat or other native species via competition for food) and to
spatially overlapping commercial �sheries for native species (with costs incurring from bycatch, damage to gear, injuries, increased fuel consumption to reach
invasive-free areas etc). Prominent examples include for instance the angel�sh Pomacanthus sp. (Semmens et al., 2004), lion�sh, P. miles (Moonsammy et al.,
2011), the round herring Etrumeus golanii (Galil et al., 2019), the rabbit�shes Siganus rivulatus and S. luridus, and the puffer�sh L. sceleratus in the
Mediterrenean (Kalogirou et al., 2013; Giakoumi, 2014).

We showed that costs from invasive �sh are underrepresented compared to other taxonomic groups and relative to the research effort devoted to them. This
could arise from a perception bias where damages to aquatic habitats or communities go unnoticed by the public and authorities owing to the di�culties in
detecting �sh invasions compared to other taxa. At the same time, the introduction of aquatic species has often been considered as bene�cial for some local
communities, especially those engaged in harvesting, processing, or recreational tourism (Selge et al., 2011), which results in a risk of ignoring negative
impacts from the invasion. Invasive �sh have diverse impacts on ecosystems and understanding their indirect effects will bene�t from advancing non-market
valuation methods to deduce the full range of their impact (including e.g. native species decline, displacement, extirpations, diseases etc) (Hanley and Roberts,
2019). Compared to mammals and birds, �sh invasions and their introduction vectors are well studied, with high numbers of publications and reported
numbers of alien species (Semmens et al., 2004; Castellanos-Galindo et al., 2020). The low number of reported costs for �sh invasions inferred from this large
body of research likely re�ects the fact that some �shes, unlike most birds or mammals, are purposefully introduced (Gozlan, 2008).

Conservative nature of reported costs

The cost estimates presented here are therefore likely very conservative, as cost data are de�cient for most invasive �sh species and parts of the world.
Average cost estimates for invasive �sh species have generally increased through time, despite some levelling off in recent years, which likely re�ects time
lags in cost reporting following their occurrence. The limited understanding of costs of invasive �sh likely hinders investments in detection, control, prevention
and management and lowers them in the priority list of decision-makers and/or resource managers who face budgetary constraints. Invasive �sh species are
also known for their economic bene�ts (especially when they hold a commercial value) as well as aesthetic and spiritual values (Gozlan 2010), which calls for
a better understanding of trade-offs and incentives to introduce new species and/or maintain a sustainable, long-term stock of their invasive population.
Considering the bene�ts of invasive �sh and understanding such trade-offs was beyond the scope of this paper, but it is an important dimension to managing
these species for the greater public good, that is worth pursuing in future research. Nevertheless, a global understanding of the costs and bene�ts of alien �sh
is challenging because �sh often freely across international borders in seas and rivers, and trade vectors and pathways differ greatly between neighbouring
countries, while neither costs nor bene�ts are equally shared. In addition, the complexity of estimating the cost of non-market impacts (e.g., ecosystem
impacts) represents an immense challenge that may limit policy makers from taking action. However, efforts have been made in recent years to develop user
friendly risk assessment tools (see e.g., Copp et al., 2005, 2009) that could be used by environmental agencies around the world to evaluate risks associated
with invasive �sh species and thus prioritize relevant management actions. In the light of the potential high cost of invasive �sh species, particularly if these
continue to fail attracting resource managers’ attention as indicated by the low management costs in our study, the natural, social and economic disruptions
can be expected to exacerbate. Liability issues with respect to �sh invasions may be worth being brought forward to the policy arena in ways that would allow
for control and/or other management costs to be borne by industries with a key role in new species introductions (e.g., aquaculture, �sheries, aquarium trade).

Conclusion
Our work sheds light on the known and likely increasing costs of alien invasive �sh species globally and brings to the surface regional gaps as well as biases
in the reporting of costs relative to invasions within other taxa. An improved understanding of their costs is expected to contribute to more responsible
aquaculture practices, increased awareness on the risk of species introductions for recreational purposes and more effective regulatory instruments to prevent
accidental species introductions (e.g., via ballast water). While it is di�cult to predict how global invasive �sh costs will evolve throughout time, it is certain
that the numbers of alien introductions and hence, invaded areas will keep increasing over time (Seebens et al., 2017, 2020). There is thus an urgent need to
develop more effective and proactive management strategies to prevent alien �sh invasions and their impacts.
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Total costs Observed costs  

Common name Species Environment Costs (US$2017 in millions) Database entries Costs (US$2017 in millions) Database entries

Ruffe Gymnocephalus cernua
F,B

28,933.600 48 0.383 1  

Sea lamprey Petromyzon marinus
M, F , B

2,413.636 12 61.359 4  

Black bass Micropterus salmoides
F

5.293 34 5.293 34  

Silver-cheeked toadfish Lagocephalus sceleratus
M

4.186 14 3.873 6  

White bass Morone chrysops
F

3.394 1

   

 

Topmouth gudgeon Pseudorasbora parva
F,B

2.193 11 0.575 6  

Common carp Cyprinus carpio
F,B

1.859 16 1.859 16  

Brown trout Salmo trutta
M,F,B

1.782 10

   

 

Common minnow Phoxinus phoxinus
F,B

1.21 3 1.210 3  

Chinese sleeper Perccottus glenii
F,B

0.173 4

   

 

Northern snakehead Channa argus
F

0.138 1 0.138 1  

Bluegill Lepomis macrochirus
F

0.073 10 0.073  10  

Pumpkinseed Lepomis gibbosus
F,B

0.03 13 0.03 13  

Zander Sander lucioperca
F,B

0.022 4 0.022  4  

Red lionfish Pterois volitans
M

0.021 2 0.021  2  

Northern pike Esox lucius
F,B

0.021 1

   

 

Mummichog Fundulus heteroclitus
M,F,B

0.017 5 0.017  5  

Rainbow trout Oncorhynchus mykiss
M,F,B

0.016 2 0.016  2  

European perch Perca fluviatilis
F,B

0.014 3 0.014  3  

Eastern mosquitofish Gambusia holbrooki
F,B

0.009 10 0.009  10  

Redbelly tilapia Coptodon zillii
F,B

0.006 2 0.006  2  

Janitor fish Pterygoplichthys sp. F 0.002 1 0.002  1  

European catfish Silurus glanis
F,B

0.002 1 0.002  1  

Brown bullhead Ameiurus nebulosus 0.001 3 0.001  3  
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F

Goldfish Carassius auratus
F,B

0.001 3 0.001  3  

Figures

Figure 1

Total (observed and potential) costs from invasive �shes per geographical region. Grey indicates no cost information being available for that region, yellow to
red indicated the magnitude of reported costs. Note: The designations employed and the presentation of the material on this map do not imply the expression
of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning
the delimitation of its frontiers or boundaries. This map has been provided by the authors.
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Figure 2

Total costs of invasive �sh species across regions (North America, Europe, Asia, Antarctic/subantarctic and Central America) indicating the contribution of
species to the respective total. For example, Pterois volitans represents 100% of invasive �sh costs in Central America and contributes $0.02 million to the
total cost of invasive species. Note that the x-axis is on a log10 scale.
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Figure 3

Distribution of highly reliable observed �sh invasion costs across species, types of costs and impacted sectors. Costs are shown in US$ 2017 million.
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Figure 4

Average annual costs (in 2017 US$ billion) resulting from global invasive �sh invasions. Points are annual totals. Note that the y-axis is shown on a log10
scale.
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Figure 5

Comparison across �shes, birds and mammals based on the numbers of alien species, numbers of papers on alien species, entries and costs in the InvaCost
database.
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