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Abstract The temperature-dependence of many important mosquito-borne diseases has never

been quantified. These relationships are critical for understanding current distributions and

predicting future shifts from climate change. We used trait-based models to characterize

temperature-dependent transmission of 10 vector–pathogen pairs of mosquitoes (Culex pipiens,

Cx. quinquefascsiatus, Cx. tarsalis, and others) and viruses (West Nile, Eastern and Western Equine

Encephalitis, St. Louis Encephalitis, Sindbis, and Rift Valley Fever viruses), most with substantial

transmission in temperate regions. Transmission is optimized at intermediate temperatures (23–26˚

C) and often has wider thermal breadths (due to cooler lower thermal limits) compared to

pathogens with predominately tropical distributions (in previous studies). The incidence of human

West Nile virus cases across US counties responded unimodally to average summer temperature

and peaked at 24˚C, matching model-predicted optima (24–25˚C). Climate warming will likely shift

transmission of these diseases, increasing it in cooler locations while decreasing it in warmer

locations.

Introduction
Temperature is a key driver of transmission of mosquito-borne diseases. Both mosquitoes and the

pathogens they transmit are ectotherms whose physiology and life histories depend strongly on

environmental temperature (Johnson et al., 2015; Mordecai et al., 2019; Mordecai et al., 2017;

Mordecai et al., 2013; Paull et al., 2017; Rogers and Randolph, 2006; Shocket et al., 2018;

Tesla et al., 2018). These temperature-dependent traits drive the biological processes required for

transmission. For example, temperature-dependent fecundity, development, and mortality of mos-

quitoes determine whether vectors are present in sufficient numbers for transmission. Temperature

also affects the mosquito biting rate on hosts and probability of becoming infectious.

Mechanistic models based on these traits and guided by principles of thermal biology predict

that the thermal response of transmission is unimodal: transmission peaks at intermediate
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temperatures and declines at extreme cold and hot temperatures (Johnson et al., 2015; Liu-

Helmersson et al., 2014; Martens et al., 1997; Mordecai et al., 2019; Mordecai et al., 2017;

Mordecai et al., 2013; Parham and Michael, 2010; Paull et al., 2017; Shocket et al., 2018;

Tesla et al., 2018; Wesolowski et al., 2015). This unimodal response is predicted consistently

across mosquito-borne diseases (Johnson et al., 2015; Mordecai et al., 2019; Mordecai et al.,

2017; Mordecai et al., 2013; Paull et al., 2017; Shocket et al., 2018; Tesla et al., 2018) and sup-

ported by independent empirical evidence for positive relationships between temperature and

human cases in many settings (Stewart-Ibarra and Lowe, 2013; Paull et al., 2017; Peña-

Garcı́a et al., 2017; Siraj et al., 2015; Werner et al., 2012), but negative relationships at high tem-

peratures in other studies (Gatton et al., 2005; Mordecai et al., 2013; Peña-Garcı́a et al., 2017;

Perkins et al., 2015; Shah et al., 2019). Accordingly, we expect increasing temperatures due to cli-

mate change to shift disease distributions geographically and seasonally, as warming increases trans-

mission in cooler settings but decreases it in settings near or above the optimal temperature for

transmission (Lafferty, 2009; Lafferty and Mordecai, 2016; Rohr et al., 2011; Ryan et al., 2015).

Thus, mechanistic models have provided a powerful and general rule describing how temperature

affects the transmission of mosquito-borne disease. However, thermal responses vary among mos-

quito and pathogen species and drive important differences in how predicted transmission responds

to temperature, including the specific temperatures of the optimum and thermal limits for each vec-

tor–pathogen pair (Johnson et al., 2015; Mordecai et al., 2019; Mordecai et al., 2017;

Mordecai et al., 2013; Paull et al., 2017; Shocket et al., 2018; Tesla et al., 2018). We currently

lack a framework to describe or predict this variation among vectors and pathogens.

Filling this gap requires comparing mechanistic, temperature-dependent transmission models for

many vector–pathogen pairs. However, models that incorporate all relevant traits are not yet avail-

able for many important pairs for several reasons. First, the number of relevant vector–pathogen

pairs is large because many mosquitoes transmit multiple pathogens and many pathogens are trans-

mitted by multiple vectors. Second, empirical data are costly to produce, and existing data are often

insufficient because experiments or data reporting were not designed for this purpose. Here, we

address these challenges by systematically compiling data and building models for understudied

mosquito-borne disease systems, including important pathogens with substantial transmission in

temperate areas like West Nile virus (WNV) and Eastern Equine Encephalitis virus (EEEV). Accurately

characterizing the thermal limits and optima for these systems is critical for understanding where

and when temperature currently promotes or suppresses transmission and where and when climate

change will increase, decrease, or have minimal effects on transmission.

In this study, we model the effects of temperature on an overlapping suite of widespread, impor-

tant mosquito vectors and viruses that currently lack complete temperature-dependent models.

These viruses include: West Nile virus (WNV), St. Louis Encephalitis virus (SLEV), Eastern and Western

Equine Encephalitis viruses (EEEV and WEEV), Sindbis virus (SINV), and Rift Valley fever virus (RVFV)

(Adouchief et al., 2016; Go et al., 2014; Kilpatrick, 2011; Linthicum et al., 2016; Weaver and

Barrett, 2004; summarized in Table 1). All but RVFV sustain substantial transmission in temperate

regions (Adouchief et al., 2016; Go et al., 2014; Kilpatrick, 2011; Linthicum et al., 2016;

Weaver and Barrett, 2004). We selected this group because many of the viruses share common

vector species and several vector species transmit multiple viruses (Table 1, Figure 1). All the viruses

cause febrile illness and severe disease symptoms, including long-term arthralgia and neuroinvasive

syndromes with a substantial risk of mortality in severe cases (Adouchief et al., 2016; Go et al.,

2014; Kilpatrick, 2011; Linthicum et al., 2016; Weaver and Barrett, 2004). Since invading North

America in 1999, WNV is now distributed worldwide (Kilpatrick, 2011; Rohr et al., 2011) and is the

most common mosquito-borne disease in the US, Canada, and Europe. SLEV, EEEV, and WEEV

occur in the Western hemisphere (Table 1), with cases in North, Central, and South America

(Centers for Disease Control and Prevention, 2018a; Centers for Disease Control and Preven-

tion, 2018b; Go et al., 2014). For EEEV, North American strains are genetically distinct and more

virulent than the Central and South American strains (Go et al., 2014). An unusually large outbreak

of EEEV in the United States in 2019 has yielded incidence four times higher than average (31 cases,

resulting in nine fatalities) and brought renewed attention to this disease (Bates, 2019). SINV occurs

across Europe, Africa, Asia, and Australia, with substantial transmission in northern Europe and

southern Africa (Adouchief et al., 2016; Go et al., 2014). RVFV originated in eastern Africa and

now also occurs across Africa and the Middle East (Linthicum et al., 2016). These pathogens
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primarily circulate and amplify in wild bird reservoir hosts (except RVFV, which primarily circulates in

livestock). For all six viruses, humans are dead-end or unimportant reservoir hosts (Go et al., 2014;

Sang et al., 2017), in contrast to pathogens like malaria, dengue virus, yellow fever virus, and Ross

River virus, which sustain infection cycles between humans and mosquitoes (Go et al., 2014;

Gonçalves et al., 2017; Harley et al., 2001). Most transmission of RVFV to humans occurs through

direct contact with infected livestock (that are infected by mosquitoes), and to a lesser extent via the

mosquito-borne transmission from infected vectors (Sang et al., 2017).

We primarily focus on Culex pipiens, Cx. quinquefasciatus, and Cx. tarsalis, well-studied species

that are important vectors for many of the viruses and for which appropriate temperature-dependent

data exist for nearly all traits relevant to transmission. Although the closely-related Cx. pipiens and

Table 1. Properties of six viruses transmitted by an overlapping network of mosquito vectors.

Virus (genus) Primary vector spp. Geographic range Presentation and mortality Epidemiology and Ecology

West Nile virus
(WNV, Flavivirus)

Cx. modestus, Cx.
pipiens, Cx.
quinquefasciatus, Cx.
tarsalis

Globally distributed Febrile illness and encephalitis. 10%
mortality in neuro-invasive cases. Long-
term physical and cognitive disabilities.

The most common mosquito-borne
disease in North America. Since
invading in 1999, 7 million estimated
infections, 22,999 neuroinvasive cases,
and 2163 deaths in US; 5614 reported
cases in Canada. Typically 100–300
cases annually in Europe, but over 1500
in 2018. Poor surveillance in Africa, but
seroprevalence ~ 80% in some areas.
Birds are main reservoir/amplification
hosts.

St. Louis Encephalitis
virus (SLEV,
Flavivirus)

Cx. quinquefasciatus, Cx.
tarsalis

Western
hemisphere;
western, midwestern,
and southern US

Encephalitis. 5–15% mortality in
diagnosed cases.

92 cases and six deaths recorded in US
from 2009 to 2018. Birds are main
reservoir/amplification hosts.

Eastern Equine
Encephalitis virus
(EEEV, Alphavirus)

Ae. triseriatus, Cs.
melanura

Western
hemisphere; eastern
and midwestern US

Febrile illness and encephalitis. 33%
mortality in diagnosed cases. Long-
term cognitive disabilities.

73 cases and 30 deaths recorded in US
from 2009 to 2018. Birds are main
reservoir/amplification hosts.

Western Equine
Encephalitis virus
(WEEV, Alphavirus)

Cx. tarsalis Western
hemisphere; western
and midwestern US

Febrile illness and encephalitis. Low
mortality, except in infants.

640 cases recorded in US from 1964 to
2010. Birds are main reservoir/
amplification hosts. WEEV is derived
from a recombinant event between the
ancestors of EEEV and SINV.

Sindbis virus (SINV,
Alphavirus), also
called Pogosta,
Ockelbo, and
Karelian Fever

Cx. torrentium, Cx.
pipiens, Cx. univittatus

Europe, Africa, Asia
and Australia,
primarily northern
Europe and southern
Africa

Febrile illness, rash, and joint pain. No
mortality, but long-term disability.

Poor surveillance except in Finland,
where annual incidence is 2–26 per
100,000 people and seroprevalence can
reach ~40%. Birds are main reservoir/
amplification hosts. Long-distance
migratory birds may spread the virus
between temperate zones in Northern
and Southern hemispheres.

Rift Valley Fever virus
(RVFV, Phlebovirus)

Ae. mcintoshi, Ae.
ochraceus, Ae. vexans,
Cx. pipiens, Cx.
poicilipes, Cx. theileri
and many more

Africa and the
Middle East

Febrile illness and encephalitis. < 1%
mortality in total cases. 50% mortality in
hemorrhagic cases, permanent
blindness in 50% of ocular cases (<2%
of cases).

Livestock are main reservoir/
amplification hosts, and suffer mortality
and abortion after being infected by
mosquitoes. Most transmission to
humans occurs via direct contact with
infected livestock. Vertical transmission
in vectors (via dormant eggs) can
initiate epidemics. In eastern and
southern Africa, there are large
epidemics every 5–15 years driven by
rainfall and blooms of Ae. spp. from
low-lying flooded areas known as
dambos.

Sources: WNV (Centers for Disease Control and Prevention, 2018c; European Centre for Disease Prevention and Control, 2018; Golding et al.,

2012; Government of Canada, 2018; Kilpatrick, 2011; Petersen et al., 2013; Ronca et al., 2019; Weaver and Barrett, 2004); SLEV (Centers for Dis-

ease Control and Prevention, 2018a; Weaver and Barrett, 2004); EEEV (Centers for Disease Control and Prevention, 2018b; Weaver and Barrett,

2004); WEEV (Ronca et al., 2016; Weaver and Barrett, 2004); SINV (Adouchief et al., 2016); RVFV (Braack et al., 2018; Linthicum et al., 2016;

Sang et al., 2017; World Health Organization, 2018).
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Cx. quinquefasciatus overlap in their home ranges in Africa, they have expanded into distinct regions

globally (Figure 2; Farajollahi et al., 2011). Cx. pipiens occurs in higher latitude temperate areas in

the Northern and Southern hemisphere, while Cx. quinquefasciatus occurs in lower latitude temper-

ate and tropical areas (Figure 2A). By contrast, Cx. tarsalis is limited to North America but spans the

tropical-temperate gradient (Figure 2B). In this system of shared pathogens and vectors with distinct

geographical distributions, we also test the hypothesis that differences in thermal performance

underlie variation in vector and pathogen geographic distributions, since temperate environments

have cooler temperatures and a broader range of temperatures than tropical environments. We also

include thermal responses from other relevant vector or laboratory model species in some models:

Figure 1. Viruses are transmitted by multiple vectors and vectors transmit multiple viruses; infection data are only

available for a subset of important vector species. The six viruses in this study (WNV = West Nile virus, SLEV = St.

Louis Encephalitis virus, EEEV = Eastern Equine Encephalitis virus, WEEV = Western Equine Encephalitis virus,

SINV = Sindbis virus, RVFV = Rift Valley Fever virus) and the Culex (Cx.), Aedes (Ae.), Coquillettidia (Cq.), and

Culiseta (Cs.) vectors that are most important for sustaining transmission to humans according to the following

sources: (Adouchief et al., 2016; Braack et al., 2018; Golding et al., 2012; Linthicum et al., 2016; Sang et al.,

2017; Weaver and Barrett, 2004). The importance of each vector for transmission varies over the geographic

range of the virus, and this list of vectors is not exhaustive for any virus (see sources for more complete lists of

confirmed and potential vectors). Grey shading indicates an important vector-virus pair; hatching indicates

available temperature-dependent data for infection traits (pathogen development rate [PDR] and vector

competence [bc], which is comprised of infection efficiency [c] and transmission efficiency [b]). Infection data were

available for SINV and RVFV in Ae. taeniorhynchus, although this North American mosquito does not occur in the

endemic range of these pathogens.
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Aedes taeniorhynchus (SINV and RVFV), Ae. triseriatus (EEEV), Ae. vexans (RVFV), Cx. theileri (RVFV),

and Culiseta melanura (EEEV). Additionally, we compare our results to previously published models

(Johnson et al., 2015; Mordecai et al., 2017; Mordecai et al., 2013; Shocket et al., 2018;

Tesla et al., 2018) for transmission of more tropical diseases by the following vectors: Ae. aegypti,

Ae. albopictus, Anopheles spp., and Cx. annulirostris.

We use a mechanistic approach to characterize the effects of temperature on vector–virus pairs in

this network using the thermal responses of traits that drive transmission. Specifically, we use experi-

mental data to measure the thermal responses of the following traits: vector survival, biting rate,

fecundity, development rate, competence for acquiring and transmitting each virus, and the extrinsic

incubation rate of the virus within the vector. We ask: (1) Do these vectors have qualitatively similar

trait thermal responses to each other, and to vectors from previous studies? (2) Is transmission of dis-

ease by these vectors predicted to be optimized and limited at similar temperatures, compared to

each other and to other mosquito-borne diseases in previous studies? (3) How do the thermal

responses of transmission vary across vectors that transmit the same virus and across viruses that

share a vector? (4) Which traits limit transmission at low, intermediate, and high temperatures?

Broadly, we hypothesize that variation in thermal responses is predictable based on vectors’ and

viruses’ geographic ranges.

Mechanistic models allow us to incorporate nonlinear effects of temperature on multiple traits,

measured in controlled laboratory experiments across a wide thermal gradient, to understand their

combined effect on disease transmission. This approach is critical when making predictions for future

climate regimes because thermal responses are almost always nonlinear, and therefore current tem-

perature–transmission relationships may not extend into temperatures beyond those currently

observed in the field. We use Bayesian inference to quantify uncertainty and to rigorously incorpo-

rate prior knowledge of mosquito thermal physiology to constrain uncertainty when data are sparse

Figure 2. Culex spp. vectors of West Nile and other viruses have distinct but overlapping geographic distributions. The geographic distribution of the

primary vectors of West Nile virus: (A) Culex pipiens (dark grey) and Cx. quinquefasciatus (red), adapted from Farajollahi et al., 2011; Smith and

Fonseca, 2004; (B) Cx. tarsalis (blue), northern boundary from Darsie and Ward, 2016, southern boundary based on data from the Global Biodiversity

Information Facility. Figure created by Michelle Evans for this paper.

Shocket et al. eLife 2020;9:e58511. DOI: https://doi.org/10.7554/eLife.58511 5 of 67

Research article Ecology Epidemiology and Global Health

https://doi.org/10.7554/eLife.58511


(Johnson et al., 2015). The mechanistic modeling approach also provides an

independently generated, a priori prediction for the relationship between temperature and transmis-

sion to test with observational field data on human cases, allowing us to connect data across scales,

from individual-level laboratory experiments, to population-level patterns of disease transmission, to

climate-driven geographic variation across populations. Using this approach, we build mechanistic

models for 10 vector–virus pairs by estimating thermal responses of the traits that drive transmission.

We validate the models using observations of human cases in the US over space (county-level) and

time (month-of-onset). The validation focuses on WNV because it is the most common of the dis-

eases we investigated and has the most complete temperature-dependent trait data. Preliminary

results of this study—the thermal responses for traits and relative R0 models—were included in a

review and synthesis article that was published last year (Mordecai et al., 2019). The present publi-

cation presents the complete methods and results, describes the vector and pathogen ecology in

more detail, and provides original analyses of human case data.

Model overview
To understand the effect of temperature on transmission and to compare the responses across vec-

tor and virus species, we used R0—the basic reproduction number (Diekmann et al., 2010). We use

R0 as a static, relative metric of temperature suitability for transmission that incorporates the nonlin-

ear effects of constant temperature on multiple traits (Dietz, 1993; Mordecai et al., 2019;

Rogers and Randolph, 2006) and is comparable across systems, rather than focusing on its more

traditional interpretation as a threshold for disease invasion into a susceptible population. Tempera-

ture variation creates additional nonlinear effects on transmission (Huber et al., 2018;

Lambrechts et al., 2011; Murdock et al., 2017; Paaijmans et al., 2010) that are not well-captured

by R0, (Bacaër, 2007; Bacaër and Ait Dads, 2012; Bacaër and Guernaoui, 2006; Diekmann et al.,

2010; Parham and Michael, 2010) but could be incorporated in future work by integrating the ther-

mal performance curves fit here over the observed temperature regime.

The basic R0 model for mosquito-borne diseases, originally developed for malaria (Equation 1;

Dietz, 1993), includes the following traits that depend on temperature (T): adult mosquito mortality

rate (m, the inverse of lifespan [lf]), biting rate (a, the inverse of the gonotrophic [oviposition] cycle

duration), pathogen development rate (PDR, the inverse of the extrinsic incubation period: the time

required for exposed mosquitoes to become infectious), and vector competence (bc, the proportion

of exposed mosquitoes that become infectious), where all rates are measured in inverse days. Vector

competence is the product of infection efficiency (c, the proportion of exposed mosquitoes that

develop a disseminated infection) and transmission efficiency (b, the proportion of infected mosqui-

toes that become infectious, with virus present in saliva). Mosquito density (M) also depends on tem-

perature but is not an organism-level trait that can be measured in a laboratory setting. Two

parameters do not depend on temperature: host density (N) and the rate at which infected hosts

recover and are no longer infectious (r).

Basic R0 : R0 Tð Þ ¼
a Tð Þ2bc Tð Þe�

� Tð Þ
PDR Tð ÞM Tð Þ

N r � Tð Þ

 !1=2

(1)

Because host density (N) and recovery rate (r) are not temperature-dependent, we omit them

from our model (Equation 2), which isolates the effect of temperature on transmission (see explana-

tion of ‘relative R0’ versus absolute R0 below). As in previous work (Johnson et al., 2015;

Mordecai et al., 2019; Mordecai et al., 2017; Mordecai et al., 2013; Parham and Michael, 2010;

Shocket et al., 2018; Tesla et al., 2018), we extend the basic R0 model to account for the effects of

temperature on mosquito density (M) via additional temperature-sensitive life history traits (Equa-

tion 2): fecundity (as eggs per female per day, EFD), egg viability (proportion of eggs hatching into

larvae, EV), proportion of larvae surviving to adulthood (pLA), and mosquito development rate

(MDR, the inverse of the development period).

Full R0 : R0 Tð Þ ¼
a Tð Þ2bc Tð Þe�

� Tð Þ
PDR Tð ÞEFD Tð ÞEV Tð ÞpLA Tð ÞMDR Tð Þ

� Tð Þ3

 !1=2

(2)
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Fecundity data were only available as eggs per female per gonotrophic cycle (EFGC; for Cx.

pipiens) or eggs per raft (ER; for Cx. quinquefasciatus). Thus, we further modified the model to

obtain the appropriate units for fecundity: we added an additional biting rate (a) term to the numer-

ator (to divide by the length of the gonotrophic cycle, Equations A1 and A2) and for Cx. quinque-

fasciatus we also added a term for the proportion of females ovipositing (pO; Equation A2).

We parameterized the full temperature-dependent R0 model (Equation 2) for each relevant vec-

tor–virus pair using previously published data. We conducted a literature survey to identify studies

that measured the focal traits at three or more constant temperatures in a controlled laboratory

experiment. From these data, we fit thermal responses for each trait using Bayesian inference. This

approach allowed us to quantify uncertainty and formally incorporate prior data (Johnson et al.,

2015) to constrain fits when data for the focal species were sparse or only measured on a limited

portion of the temperature range (see Material and Methods for details).

For each combination of trait and species, we selected the most appropriate of three functional

forms for the thermal response. As in previous work (Johnson et al., 2015; Mordecai et al., 2019;

Mordecai et al., 2017; Mordecai et al., 2013; Shocket et al., 2018; Tesla et al., 2018), we fit traits

with a symmetrical unimodal thermal response with a quadratic function (Equation 3) and traits with

an asymmetrical unimodal thermal response with a Briére function (Briere et al., 1999; Equation 4).

For some asymmetrical responses (e.g. pathogen development rate [PDR] for most vector–virus

pairs), we did not directly observe a decrease in trait values at high temperatures due to a limited

temperature range. In these cases, we chose to fit a Briére function based on previous studies with

wider temperature ranges (Mordecai et al., 2017; Mordecai et al., 2013; Paull et al., 2017;

Shocket et al., 2018) and thermal biology theory (Amarasekare and Savage, 2012); the upper ther-

mal limit for these fits did not limit transmission in the R0 models, and therefore did not impact the

results. Unlike in previous work, lifespan data for all vectors here exhibited a monotonically decreas-

ing thermal response over the range of experimental temperatures available. We fit these data using

a piecewise linear function (Equation 5) that plateaued at the coldest observed data point. By

assuming a plateau, rather than extrapolating that lifespan continues to increase at temperatures

below those measured in the laboratory, this approach is conservative, ensuring that lifespan was

not a major driver of the temperature-dependence of R0 at temperatures where it was not measured

and that the R0 models were instead constrained at reasonable temperatures by other traits. It is

also consistent with the observed natural history of two of the vector species. To overwinter, Cx.

pipiens and Cx. tarsalis enter reproductive diapause and hibernate (Nelms et al., 2013; Vinogra-

dova, 2000), and Cx. pipiens can survive temperatures at or near freezing (0˚C) for several months

(Vinogradova, 2000). Cx. quinquefasciatus enters a non-diapause quiescent state (Diniz et al.,

2017; Nelms et al., 2013) and is likely less tolerant of cold stress, but we wanted a consistent

approach across models and other traits constrained the lower thermal limit of the Cx. quinquefas-

ciatus R0 model to realistic temperatures. All vectors are likely to exhibit decreased lifespans at

extremely low temperatures (near or below 0˚C), limiting the accuracy of our inferred lifespan ther-

mal performance curve at these temperatures.

Quadratic function : f Tð Þ ¼ �q T �Tminð Þ T �Tmaxð Þ (3)

Bri�ere function : f Tð Þ ¼ q �T T �Tminð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tmax�Tð Þ
p

(4)

Linear function : f Tð Þ ¼ �mT þ z (5)

In the quadratic and Briére functions of temperature (T), the trait values depend on a lower ther-

mal limit (Tmin), an upper thermal limit (Tmax), and a scaling coefficient (q). In the linear function, the

trait values depend on a slope (m) and intercept (z).

The fitting via Bayesian inference produced posterior distributions for each parameter in the ther-

mal response functions (Equations 3, 4, 5) for each trait–species combination. These posterior distri-

butions represent the estimated uncertainty in the parameters. We used these parameter

distributions to calculate distributions of expected mean thermal performance functions for each

trait over a temperature gradient (from 1˚C to 45˚C by 0.1˚C increments). Then we substituted these

samples from the distributions of the thermal responses for each trait into Equation 2 to calculate
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the posterior distributions of predicted R0 over this same temperature gradient for each vector–virus

pair (see Material and methods and Appendix 1 for details). Thus, the estimated uncertainty in the

thermal response of each trait is propagated through to R0 and combined to produce the estimated

response of R0 to temperature, including the uncertainty in R0(T).

Because the magnitude of realized R0 depends on system-specific factors like breeding habitat

availability, reservoir and human host availability, vector control, species interactions, and additional

climate factors, we focused on the relative relationship between R0 and temperature

(Mordecai et al., 2019). We rescaled the R0 model results to range from 0 to 1 (i.e. ‘relative R0’),

preserving the temperature-dependence (including the absolute thermal limits and thermal optima)

while making each model span the same scale. To compare trait responses and R0 models, we quan-

tify three key temperature values: the optimal temperature for transmission (Topt) and the lower and

upper thermal limits (Tmin and Tmax, respectively) where temperature is predicted to prohibit trans-

mission (R0 = 0).

Results

Trait thermal responses
We fit thermal response functions from empirical data for all of the vector and virus traits that affect

transmission for which data were available (Figure 1 and Appendix 1—table 1). All mosquito traits

were temperature-sensitive (three main Culex species: Figure 3, Figure 4; Ae. taeniorhynchus, Ae.

triseriatus, Ae. vexans, Cx. theileri, and Cs. melanura: Appendix 1—figure 1). For most species, the

extensive data for larval traits (mosquito development rate [MDR] and survival [pLA]) produced clear

unimodal thermal responses with relatively low uncertainty (Figure 3A,B, Appendix 1—figure 1A,

B). For biting rate (a) and fecundity traits (proportion ovipositing [pO], eggs per female per gonotro-

phic cycle [EFGC], or per raft [ER], and egg viability [EV]), trait data were often more limited and fits

were more uncertain, but still consistent with the expected unimodal thermal responses based on

previous studies (Mordecai et al., 2017; Mordecai et al., 2013; Paull et al., 2017; Shocket et al.,

2018) and theory (Amarasekare and Savage, 2012; Figure 3C, Figure 4, Appendix 1—figure 1C-

F). However, adult lifespan (lf) data clearly contrasted with expectations from previous studies of

more tropical mosquitoes. Lifespan (lf) decreased linearly over the entire temperature range of avail-

able data (coldest treatments: 14–16˚C, Figure 3D; 22˚C, Appendix 1—figure 1D) instead of peak-

ing at intermediate temperatures (e.g. previously published optima for more tropical species: 22.2–

23.4˚C) (Johnson et al., 2015; Mordecai et al., 2017; Mordecai et al., 2013; Shocket et al., 2018;

Tesla et al., 2018).

The thermal responses for pathogen development rate (PDR) were similar among most vector–

virus pairs (Figure 5), with a few notable exceptions: WNV in Cx. quinquefasciatus had a warmer

lower thermal limit (Figure 5A); WNV in Cx. univittatus had a cooler optimum and upper thermal

limit (Figure 5A); and SINV in Ae. taeniorhynchus had limited data that indicated very little response

to temperature (Figure 5C). By contrast, the thermal response of vector competence (bc) and its

component traits varied substantially across vectors and viruses (Figure 6). For example, infection

efficiency (c) of Cx. pipiens peaked at warmer temperatures for WNV than for SINV (Figure 6A,G;

95% CIs: SINV = 14.1–30.5˚C, WNV = 31.9–36.1˚C), transmission efficiency (b) of Cx. tarsalis peaked

at warmer temperatures for WNV and SLEV than for WEEV (Figure 6B,E,H; CIs: WEEV = 19.2–23.2˚

C, SLEV = 23.5–29.7˚C, WNV = 23.9–29.3˚C), and the lower thermal limit for vector competence (bc)

for WNV was much warmer in Cx. pipiens than in Cx. univittatus (Figure 6C; CIs: Cx. univittatus = 1.5–

7.1˚C, Cx. pipiens = 15.0–17.9˚C). Infection data (used to calculate pathogen development rate

[PDR] and vector competence [bc]) for RVFV and SINV were only available in Ae. taeniorhynchus, a

New World species that is not a known vector for these viruses in nature.

Temperature-dependent R0 models
Relative R0 responded unimodally to temperature for all the vector–virus pairs, with many peaking at

fairly cool temperatures (medians: 22.7–26.0˚C, see Table 2 for CIs; Figure 7). The lower thermal lim-

its (medians: 8.7–19.0˚C, see Table 2 for CIs; Figure 7) were more variable than the optima or the

upper thermal limits (medians: 31.9–37.8˚C, see Table 2 for CIs; Figure 7), although confidence

intervals overlapped in most cases because lower thermal limits also had higher uncertainty

Shocket et al. eLife 2020;9:e58511. DOI: https://doi.org/10.7554/eLife.58511 8 of 67

Research article Ecology Epidemiology and Global Health

https://doi.org/10.7554/eLife.58511


(Figure 7). The Ae. taeniorhynchus models (both unnatural vector-pathogen pairs) were clear out-

liers, with much warmer distributions for the upper thermal limits, and optima that trended warmer

as well.

Differences in relative R0 stemmed from variation both in vector traits (e.g. in Figure 7A, with

WNV in different vector species) and in virus infection traits (e.g. in Figure 7B, with different viruses

in Cx. tarsalis). The upper thermal limit was warmer for WNV transmitted by Cx. pipiens (34.9˚C [CI:

32.9–37.5˚C]) than by Cx. quinquefasciatus (31.8˚C [CI: 31.1–32.2˚C]), counter to the a priori predic-

tion based on the higher-latitude range of Cx. pipiens in North America, South America, and Europe

(Figure 2). This result implies that warming from climate change may differentially impact transmis-

sion by these two vectors. Additionally, the lower thermal limit for WNV varied widely (but with

slightly overlapping 95% CIs) across different vector species (Figure 7D), from 19.0˚C (14.2–21.0˚C)

in Cx. quinquefasciatus to 16.8˚C (14.9–17.8˚C) in Cx. pipiens to 12.2˚C (9.7–15.3˚C) in Cx. tarsalis to

11.1˚C (8.1–15.4˚C) in Cx. univittatus (an African and Eurasian vector; Table 2). Based on these trends
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Figure 3. Culex spp. mosquito traits respond strongly and consistently to temperature. The thermal responses of mosquito traits for the North

American vectors of West Nile virus: Culex pipiens (dark grey), Cx. quinquefasciatus (red), and Cx. tarsalis (blue). (A) Mosquito development rate (MDR),

(B) larval-to-adult survival (pLA), (C) biting rate (a), and (D) adult lifespan (lf). Points without error bars are reported means from single studies; points

with error bars are averages of means from multiple studies (+ / - standard error, for visual clarity only; thermal responses were fit to reported means,

see Appendix 1—figures 2, 3, 4, 5). Solid lines are posterior means; shaded areas are 95% credible intervals of the trait mean. See Appendix 1—

figure 1 for thermal responses for Aedes taeniorhynchus, Ae. triseriatus, Ae. vexans, and Culiseta melanura. The mean thermal responses for these

traits were printed in Mordecai et al., 2019 (as part of Figure 3 in that paper) without the trait data and 95% CIs, and along with thermal responses for

six other vectors. See Appendix 1—tables 2, 3, 6 for data sources and Appendix 1—tables 7, 8, 9 for priors.
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Figure 4. Culex pipiens and Cx. quinquefasciatus reproductive traits respond strongly to temperature but with

different functional forms. The thermal responses of mosquito traits for the primary vectors of West Nile virus:

Culex pipiens (dark grey) and Cx. quinquefasciatus (red). (A) Proportion ovipositing (pO), (B) fecundity (as eggs per

female per gonotrophic cycle [EFGC] in Cx. pipiens, and eggs per raft, [ER] in Cx. quinequefasciatus), and (C) egg

Figure 4 continued on next page
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in the thermal limits of R0, the seasonality of transmission and the upper latitudinal and elevational

limits could vary for WNV transmitted by these different species.

Different traits determined the lower and upper thermal limits and optimum for transmission

across vector–virus pairs. The lower thermal limit for transmission was most often determined by

pathogen development rate (PDR; WNV and SLEV in Cx. tarsalis, WNV in Cx. quinquefasciatus) or

biting rate (a; WNV in Cx. univitattus, WEEV in Cx. tarsalis, EEEV in Ae. triseriatus, RVFV and SINV in

Ae. taeniorhynchus, SINV in Cx. pipiens; Appendix 1—figures 12–20), which tend to respond asym-

metrically to temperature, with high optima and low performance at low temperatures. However,

vector competence (bc) determined the lower limit for WNV in Cx. pipiens (Appendix 1—figure

11). The upper thermal limit was determined by biting rate (a) for the three Cx. tarsalis models and

by adult lifespan (lf) for all others, although proportion ovipositing (pO) was also important for WNV

in Cx. quinquefasciatus (Appendix 1—figures 11–20). In all models, lifespan (lf) and biting rate (a)

had the strongest impact on the optimal temperature for transmission, with biting rate increasing

transmission at low temperatures and lifespan decreasing transmission at high temperatures (Appen-

dix 1—figures 11–20). This result is consistent with previous mechanistic models of tropical mos-

quito-borne diseases, despite the qualitative difference in the shape of the lifespan thermal

response between those tropical mosquitoes and the more temperate mosquitoes investigated here

(Johnson et al., 2015; Mordecai et al., 2017; Mordecai et al., 2013; Shocket et al., 2018;

Tesla et al., 2018).

Model validation with human case data
We validated the R0 models for WNV with independent data on human cases because the tempera-

ture-dependent trait data for those models were relatively high quality and because human case

data were available from the Centers for Disease Control and Prevention across a wide climatic gra-

dient in the contiguous United States. We averaged county-level incidence and mean summer tem-

peratures across the entire period from 2001 to 2016 to estimate the impact of temperature over

space, while ignoring interannual variation in disease that is largely driven by changes in host immu-

nity and drought (Paull et al., 2017). We used generalized additive models (GAMs, which produce

flexible, smoothed responses) to ask: does average incidence respond unimodally to mean summer

temperature? If so, what is the estimated optimal temperature for transmission? Can we detect

upper or lower thermal limits for transmission? Incidence of human neuroinvasive West Nile disease

responded unimodally to average summer temperature and peaked at 24˚C (23.5–24.2˚C depending

on the spline settings; Figure 8, Appendix 1—figure 24), closely matching the optima from the

mechanistic models for the three North American Culex species (23.9–25.2˚C; Table 2). However,

the human disease data did not show evidence for lower or upper thermal limits: mean incidence

remained positive and with relatively flat slopes below ~19˚C and above ~28˚C, although sample size

was very low above 28˚C and below 15˚C resulting in wide confidence intervals (Figure 8, Appen-

dix 1—figure 24).

We used national month-of-onset data for WNV, EEEV, and SLEV to ask: is the seasonality of inci-

dence consistent with our models for temperature-dependent transmission? The month-of-onset for

cases of WNV was consistent with predicted transmission, R0(T) (Figure 9). As expected (based on

previous studies and the time required for mosquito populations to increase, become infectious,

and bite humans, and for humans to present symptoms and seek medical care [Mordecai et al.,

2017; Shocket et al., 2018]), there was a 2-month lag between initial increases in R0(T) and inci-

dence: cases began rising in June to the peak in August. The dramatic decline in transmission

between September and October corresponds closely to the predicted decline in relative R0, but

Figure 4 continued

viability (EV). Points without error bars are reported means from single studies; points with error bars are averages

of means from multiple studies (+ / - standard error, for visual clarity only; thermal responses were fit to reported

means, see Appendix 1—figure 6). Solid lines are posterior distribution means; shaded areas are 95% credible

intervals of the trait mean. See Appendix 1—figure 1 for thermal responses for Ae. vexans, Cx. theileri, and

Culiseta melanura. The mean thermal responses for these traits were printed in Mordecai et al., 2019 (as part

of Figure 3 in that paper) without the trait data and 95% CIs, and along with thermal responses for six other

vectors. See Appendix 1—table 2 for data sources and Appendix 1—table 7 for priors.
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Figure 5. Pathogen development rates (PDR) have high thermal optima. Thermal responses of pathogen

development rate (PDR). (A) West Nile virus in Culex pipiens (dark grey), Cx. quinquefasciatus (red), Cx. tarsalis

(blue), and Cx. univitattus (orange). (B) Three viruses in Cx. tarsalis: West Nile virus (same as in A, blue), Western

Equine Encephalitis virus (light blue), and St. Louis Encephalitis virus (dark blue). (C) Eastern Equine Encephalitis
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without the expected two-month lag. In general, the seasonal patterns of SLEV and EEEV incidence

were similar to WNV, but differed by three orders of magnitude from ~20,000 cases of WNV to ~40–

50 cases of EEEV and SLEV during the peak month (Figure 9). However, transmission of SLEV and

EEEV are predicted to begin increasing 1 month earlier than WNV (March versus April, Figure 9),

because the mechanistic models predict that the lower thermal limits for SLEV and EEEV are cooler

than those for WNV in two of the three North American vectors (Cx. pipiens and Cx. quinquefascia-

tus, Figure 7). The month-of-onset data partially support this prediction, as cases of SLEV (but not

EEEV) disease begin to increase earlier in the year than WNV, relative to the summer peak.

Discussion
As the climate changes, it is critical to understand how changes in temperature will affect the trans-

mission of mosquito-borne diseases. Toward this goal, we developed temperature-dependent,

mechanistic transmission models for 10 vector–virus pairs. The viruses—West Nile virus (WNV), St.

Louis Encephalitis virus (SLEV), Eastern and Western Equine Encephalitis viruses (EEEV and WEEV),

Sindbis virus (SINV), and Rift Valley fever virus (RVFV)—sustain substantial transmission in temperate

areas (except RVFV), and are transmitted by shared vector species, including Cx. pipiens, Cx. quin-

quefasciatus, and Cx. tarsalis (except EEEV; Figure 1). Although most traits responded unimodally

to temperature, as expected (Johnson et al., 2015; Mordecai et al., 2019; Mordecai et al., 2017;

Mordecai et al., 2013; Shocket et al., 2018; Tesla et al., 2018), lifespan decreased linearly with

temperature over the entire temperature range of available data (>14˚C) for these Culex vectors

(Figure 3). Transmission responded unimodally to temperature, with the thermal limits and optima

for transmission varying among some of the focal mosquito and virus species (Figure 7, Table 2),

largely due to differences in the thermal responses of mosquito biting rate, lifespan, vector compe-

tence, and pathogen development rate. Human case data for WNV disease across the US exhibited

a strong unimodal thermal response (Figure 8), and month-of-onset data for WNV, SLEV, and EEEV

were largely consistent with the predicted seasonality of transmission (Figure 9). Thus, the mechanis-

tic models captured geographical and seasonal patterns of human incidence, despite the complexity

of the enzootic cycles and spillover into humans. Our analysis was somewhat limited by the lack of

data for several trait-species combinations, or by data that were sparse, particularly at high tempera-

tures. However, our key results—maximal transmission at intermediate temperatures—are unlikely to

change, and underscore the importance of considering unimodal thermal responses when predicting

how climate change will impact mosquito-borne disease transmission.

The monotonically decreasing thermal responses of lifespan (lf) within the range of the available

experimental data for these more temperate mosquitoes (Figure 3D) contrast with the clearly unim-

odal responses of more tropical species (Mordecai et al., 2019; Mordecai et al., 2017;

Mordecai et al., 2013; Shocket et al., 2018). This contrast may reflect differing thermal physiology

between species that use diapause or quiescence, two forms of dormancy, to persist over winter

and those that do not (Diniz et al., 2017; Nelms et al., 2013; Vinogradova, 2000). Both Cx. pipiens

and Cx. tarsalis diapause (Nelms et al., 2013; Vinogradova, 2000), and Cx. pipiens can survive tem-

peratures at or near freezing (0˚C) for several months (Vinogradova, 2000). Cx. quinquefasciatus

enters a non-diapause quiescent state (Diniz et al., 2017; Nelms et al., 2013). Ae. albopictus, a spe-

cies that occurs in both tropical and temperate zones, exhibits a latitudinal gradient in the United

States in which more temperate populations diapause while sub-tropical populations do not

Figure 5 continued

virus in Aedes triseriatus (violet), Rift Valley Fever virus in Ae. taeniorhynchus (light green), Sindbis virus in Ae.

taeniorhynchus (dark green). We did not fit a thermal response for Sindbis virus in Ae. taeniorhynchus because the

limited data responded weakly to temperature and did not match our priors. Points without error bars are

reported means from single studies; points with error bars are averages of means from multiple studies (+ / -

standard error, for visual clarity only; thermal responses were fit to reported means, see Appendix 1—figure 7).

Solid lines are posterior distribution means; shaded areas are 95% credible intervals of the trait mean. The mean

thermal responses for this trait were printed in Mordecai et al., 2019 (as part of Figure 4 in that paper) without

the trait data and 95% CIs, combined into a single panel, and along with thermal responses for six other vector-

pathogen pairs. See Appendix 1—table 5 for data sources and Appendix 1—table 8 for priors.
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Figure 6. Vector competence (bc) and its component traits—infection efficiency (c) and transmission efficiency (b) respond strongly to temperature and

vary across vector and virus species. Thermal responses of infection efficiency (c, # infected / # exposed; first column), transmission efficiency (b, #

transmitting / # infected; second column) or vector competence (bc, # infected / # exposed; third column) for vector–virus pairs. First row (A,B,C): West

Nile virus in Culex pipiens (dark grey), Cx. tarsalis (blue), and Cx. univitattus (yellow/orange). Second row: (D,E,F) Western Equine Encephalitis virus in

Cx. tarsalis (light blue). Third row (G,H,I): Sindbis virus in Aedes taeniorhynchus (dark green), Sindbis virus in Cx. pipiens (light gray), St. Louis

Encephalitis virus in Cx. tarsalis (dark blue), Eastern Equine Encephalitis virus in Ae. triseriatus (violet), and Rift Valley Fever virus in Ae. taeniorhynchus

(light green). Points are means of replicates from single or multiple studies (+ / - standard error, for visual clarity only; thermal responses were fit to

replicate-level data, see Appendix 1—figures 8 and 9). Solid lines are posterior distribution means; shaded areas are 95% credible intervals of the trait

mean. The mean thermal responses for these traits were printed in Mordecai et al., 2019 (as part of Figure 4 in that paper) without the trait data and

95% CIs, combined into fewer panels, and along with thermal responses for six other vector-pathogen pairs. See Appendix 1—table 4 for data

sources and Appendix 1—table 8 for priors.
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(Urbanski et al., 2010). Experiments could test this hypothesis by measuring whether the functional

form of the thermal response for lifespan differs between northern (diapausing) and southern (non-

diapausing) US Ae. albopictus populations. Despite the difference in the shape of the thermal

response, lifespan played a similarly important role here as in previous studies of mosquito-borne

pathogens, strongly limiting transmission at high temperatures (Appendix 1—figures 11–

Table 2. Thermal optima and limits for transmission of mosquito-borne pathogens.

Median temperature of the lower thermal limit (Tmin), optimum, and upper thermal limit (Tmax), with 95% credible intervals in parenthe-

ses. A version of this table (without thermal breadth, different order of R0 models) was published in Mordecai et al., 2019 (Table 2 in

that paper).

R0 Model Tmin (˚C) Optimum (˚C) Tmax (˚C) Thermal breadth (˚C)

From this study:

EEEV in Ae. triseriatus 11.7 (8.8–16.3) 22.7 (22.0–23.6) 31.9 (31.1–33.0) 20.0 (15.4–23.0)

WEEV in Cx. tarsalis 8.6 (6.3–13.0) 23.0 (22.0–24.7) 31.9 (30.3–35.2) 23.3 (18.2–27.0)

SINV in Cx. pipiens 9.4 (6.9–13.3) 23.2 (21.7–24.6) 33.8 (28.2–37.0) 23.8 (17.3–28.6)

WNV in Cx. univittatus 11.0 (8.0–15.3) 23.8 (22.7–25.0) 33.6 (31.2–36.9) 22.5 (18.2–26.3)

WNV in Cx. tarsalis 12.1 (9.6–15.2) 23.9 (22.9–25.9) 32.0 (30.6–38.6) 20.1 (16.3–26.7)

SLEV in Cx. tarsalis 12.9 (11.0–14.8) 24.1 (23.1–26.0) 32.0 (30.6–38.5) 19.2 (16.5–25.6)

WNV in Cx. pipiens 16.8 (14.9–17.8) 24.5 (23.6–25.5) 34.9 (32.9–37.6) 18.2 (15.8–21.2)

WNV in Cx. quinquefasciatus 19.0 (14.1–20.9) 25.2 (23.9–27.1) 31.8 (31.1–32.2) 12.7 (10.6–17.6)

RVFV in Ae. taeniorhynchus 10.6 (8.6–14.4) 25.9 (23.8–27.1) 37.8 (34.4–39.1) 27.0 (21.8–29.7)

SINV in Ae. taeniorhynchus 9.7 (8.3–13.6) 26.0 (23.9–27.3) 37.8 (34.4–39.2) 27.7 (22.6–30.0)

From previous studies:

Falciparum malaria (Johnson et al., 2015) 19.1 (16.0–23.2) 25.4 (23.9–27.0) 32.6 (29.4–34.3) 13.2 (8.3–17.1)

DENV in Ae. albopictus (Mordecai et al., 2017) 16.2 (13.0–19.8) 26.4 (25.4–27.6) 31.4 (29.5–34.0) 15.2 (11.2–19.3)

Ross River virus (Shocket et al., 2018) 17.0 (15.8–18.0) 26.4 (26.0–26.6) 31.4 (30.4–33.0) 14.2 (12.8–16.2)

ZIKV in Ae. aegypti (Tesla et al., 2018) 22.8 (20.5–23.8) 28.9 (28.2–29.6) 34.5 (34.1–36.2) 11.7 (10.4–14.5)

DENV in Ae. aegypti (Mordecai et al., 2017) 17.8 (14.6–21.2) 29.1 (28.4–29.8) 34.5 (34.1–35.8) 16.7 (13.2–20.2)

Table 3. Predicted optima for transmission of West Nile virus.

Predicted optima for transmission from this study and previous models. A version of this table (with

R0 models for additional viruses and including thermal limits) was published in Mordecai et al., 2019

(as Table 3 in that paper).

R0 Model Optimum (˚C)

From this study:

WNV in Cx. pipiens 24.5

WNV in Cx. quinquefasciatus 25.2

WNV in Cx. tarsalis 23.9

WNV in Cx. univittatus 23.8

From previous studies:

WNV in Cx. pipiens (Paull et al., 2017) 24.9

WNV in Cx. quinquefasciatus (Paull et al., 2017) 24.3

WNV in Cx. tarsalis (Paull et al., 2017) 24.9

WNV in Cx. pipiens (Vogels et al., 2017) 28

WNV in Cx. pipiens molestus (Vogels et al., 2017) 28

WNV in Cx. and Ae. spp. (Kushmaro et al., 2015) 35
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20). Nonetheless, the thermal responses for lifespan here ultimately promote higher transmission at

relatively cool temperatures because unlike in more tropical species, lifespan did not decline at cool

temperatures within the range measured (>14˚C). Given the lack of rigorous trait data, we cannot be

certain of the shape of the thermal response of lifespan (lf) below 14˚C, although it is almost certainly

unimodal, especially at more extreme temperatures expected to be fatal even for diapausing mos-

quitoes (i.e. below 0˚C). Our decision to assume lifespan (lf) plateaued at temperatures below the

observed data was based on vector natural history (Vinogradova, 2000) and intended to be conser-

vative. This approach ensured that lifespan was not a major driver of the temperature-dependence
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Figure 7. Unimodal thermal responses of transmission (relative R0) for ten vector-virus pairs. Posterior mean relative R0 for (A) West Nile virus (WNV) in

Culex pipiens (dark grey), Cx. tarsalis (blue), Cx. quinquefasciatus (red), and Cx. univitattus (orange); (B) three viruses in Cx. tarsalis: WNV (same as in A,

blue), Western Equine Encephalitis virus (WEEV, light blue), and St. Louis Encephalitis virus (SLEV, dark blue); (C) Sindbis virus (SINV) in Aedes

taeniorhynchus (dark green) and Cx. pipiens (light grey), Rift Valley Fever virus (RVFV) in Ae. taeniorhynchus (light green), and Eastern Equine

Encephalitis virus (EEEV) in Ae. triseriatus (violet). (D) Posterior median and uncertainty estimates for the lower thermal limit, optimum, and upper

thermal limit. Points show medians, thick lines show middle 50% density, thin lines show 95% credible intervals. Models are ordered by increasing

median optimal temperature. The thermal responses for R0 were printed in Mordecai et al., 2019 (as Figure 2 in that paper, reproduced here as

Appendix 1—table 10), combined into two total panels and along with six other vector-pathogen pairs. See Appendix 1—figure 21 for histograms of

lower thermal limit, optimum, and upper thermal limit for each model.
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of R0 at temperatures where it was not measured and that R0 was instead constrained by other traits.

Accordingly, our functions for lifespan (lf) do not represent the real quantitative thermal responses

below the coldest observations, which limits their utility for other applications, such as predicting

survival at cold temperatures and lower thermal limits on survival.

Predicted transmission for many of the diseases in this study peaked at and extended to cooler

temperatures than for previously studied diseases with more tropical distributions (see Figure 7 and

Table 2 for 95% credible intervals)(Mordecai et al., 2019). Here, the optimal temperatures for trans-

mission varied from 22.7–25.2˚C (excluding Ae. taeniorhynchus models, Figure 7). By contrast, mod-

els predict that transmission peaks at 25.4˚C for malaria (Johnson et al., 2015; Mordecai et al.,

2013), 26.4˚C for Ross River virus (Shocket et al., 2018) and dengue in Ae. albopictus

(Mordecai et al., 2017), 28.9˚C for Zika in Ae. aegypti (Tesla et al., 2018), and 29.1˚C for dengue in
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Figure 8. Incidence of human neuroinvasive West Nile disease across US counties responds unimodally to temperature, peaking at 24˚C. Grey line:

predicted mean incidence from a generalized additive model (GAM) fit to county-level data (n = 3109) of mean temperature from May-September and

incidence of neuroinvasive West Nile disease per 1000 people, both averaged from 2001 to 2016. Black points: mean incidence (with standard error

bars) for bins of 42 counties (for visual clarity). See Appendix 1—figure 24 for fits across a range of smoothing parameters. See Appendix 1—figure

25 for LOESS (moving average) fits of the data. A version of the LOESS analysis was published as Figure S3 in Mordecai et al., 2019.
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Ae. aegypti (Mordecai et al., 2017). Models for several vector–virus pairs also had cooler lower ther-

mal limits (medians: 8.7–19.0˚C) than those of diseases with more tropical distributions (medians:

16.0–17.8˚C)(Mordecai et al., 2019). In combination with similar upper thermal limits (see below),

these patterns led to wider thermal breadths (18.2–27.7˚C; Figure 7) for most of the viruses here

compared to the more tropical pathogens (11.7–16.7˚C), excepting WNV in Cx. quinquefasciatus

(12.7˚C), the vector most restricted to lower latitude, sub-tropical geographic areas (Figure 2). These

results match a previous finding that temperate insects had wider thermal breadths than tropical

insects (Deutsch et al., 2008), and may reflect thermal adaptation to greater variation in tempera-

ture in temperate areas compared to tropical areas (Sunday et al., 2011). Additionally, SINV—a

virus with substantial transmission at very high latitudes in Finland (Adouchief et al., 2016)—had the

second coolest lower thermal limit (Figure 7, Table 2). Further, lower latitude Cx. quinquefasciatus

outperformed higher latitude Cx. pipiens at warmer temperatures for proportion ovipositing (pO;

Figure 3A), while the reverse occurred at cooler temperatures for egg viability (EV; Figure 3C). Col-

lectively, these results imply that, to some extent, measurements of physiological traits can predict

geographic patterns of vectors or disease transmission at broad scales. However, geographic range

differences (Figure 2) did not consistently predict variation in thermal responses among the Culex

species in this study (e.g. biting rate [a, Figure 3C] and adult lifespan [lf, Figure 3D]), indicating that
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Figure 9. R0(T) predicts the seasonal pattern of human cases of mosquito-borne viral diseases. Incidence (solid lines) lags behind predicted

temperature-dependent R0 (dashed lines) for human cases of neuroinvasive disease caused by West Nile virus (WNV, black), St. Louis encephalitis virus

(SLEV, dark gray), and Eastern Equine Encephalitis virus (EEEV, light gray) by 2 months. This lag matches patterns in other mosquito-borne diseases and

is caused by the time required for mosquito populations to increase, become infectious, and bite humans, and for humans to present symptoms and

seek medical care. However, the predicted lag is not present at the end of the transmission season in October, when R0(T) and incidence decline in

tandem.
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life history and transmission trait responses at constant temperatures do not always predict the geo-

graphic distributions of species. Instead, the ability to tolerate temperature extremes may limit spe-

cies distributions more than their performance at average or constant temperatures

(Overgaard et al., 2014). Moreover, although diseases like malaria and dengue are generally con-

sidered to be ‘tropical’, historically their distributions extended further into temperate regions

(Brathwaite Dick et al., 2012; Hay et al., 2004). Thus, current distributions of disease may reflect a

realized niche restricted by societal factors more than a fundamental niche based on ecological fac-

tors like temperature.

In contrast to the optima, lower thermal limits, and thermal breadths, the upper thermal limits for

the vector–virus pairs in this study (31.9–34.9˚C, excluding Ae. taeniorhynchus models; Figure 7D,

Table 2) closely matched those of more tropical diseases (31.5–34.7˚C) (Johnson et al., 2015;

Mordecai et al., 2017; Mordecai et al., 2013; Shocket et al., 2018; Tesla et al., 2018). This similar-

ity may arise because maximum summer temperatures in temperate areas can match or even exceed

maximum temperatures in tropical areas (Sunday et al., 2011). Accordingly, there may be a funda-

mental upper thermal constraint on transmission that applies similarly to all mosquito-borne dis-

eases, driven by short mosquito lifespans at high temperatures. The relatively high upper thermal

limits in both Ae. taeniorynchus transmission models were driven by the thermal response of lifespan

(lf), which was fit to few data points; more data are needed to determine whether it reflects the true

thermal response in that species (Appendix 1—figure 1). These results indicate that as temperatures

rise due to climate change, temperate diseases are unlikely to be displaced by warming alone,

although they may also expand toward the poles, even as tropical diseases may expand farther into

temperate zones.

Independent human case data support unimodal thermal responses for transmission and the

importance of temperature in shaping geographic patterns of mosquito-borne disease. Human cases

of WNV (Ahmadnejad et al., 2016; Hahn et al., 2015; Marcantonio et al., 2015; Platonov et al.,

2008; Reisen et al., 2006; Semenza et al., 2016; Shand et al., 2016) and SINV (Brummer-

Korvenkontio et al., 2002; Jalava et al., 2013) are often positively associated with temperature.

Here, we found that incidence of neuroinvasive WNV disease peaked at intermediate mean summer

temperatures (24˚C) across counties in the US (Figure 8) that matched the optima predicted by our

models. This result adds to prior evidence for reduced transmission of WNV (Mallya et al., 2018)

and other mosquito-borne diseases (Gatton et al., 2005; Mordecai et al., 2013; Peña-Garcı́a et al.,

2017; Perkins et al., 2015; Shah et al., 2019) at high temperatures. Although we did not detect

lower or upper thermal limits for West Nile neuroinvasive disease (Figure 8), this result is unsurpris-

ing based on fundamental differences between the types of temperature data used to parameterize

and validate the models. The R0 model prediction is derived from data collected in a controlled lab-

oratory environment at constant temperatures, while average incidence in the field reflects tempera-

tures that vary at a variety of temporal scales (daily, seasonal, and interannual). Thus, we hypothesize

that temperature variation over time may sustain transmission in regions with otherwise unsuitable

mean summer temperatures by providing time windows that are suitable for transmission.

The temperature-dependent models also predict the general seasonality of human cases of WNV,

EEEV, and SLEV (Figure 9). The 2-month lag between climate suitability and the onset of human

cases, which matches previous results from other mosquito-borne diseases (Mordecai et al., 2017;

Shocket et al., 2018), arises from the time following the onset of suitable conditions required for

mosquito populations to increase (Stewart Ibarra et al., 2013), become infectious, and bite

humans, and for humans to present symptoms and seek medical care (Hu et al., 2006;

Jacups et al., 2008). Transmission of the more temperate viruses here may incur additional lags

because human cases result from enzootic transmission, and multiple rounds of amplification within

reservoir hosts may be required before prevalence is sufficiently high to spill over into humans. Addi-

tionally, as wild birds begin to migrate in late summer, both Cx. pipiens and Cx. tarsalis shift their

feeding preferences from birds to humans, which should increase transmission to people later in the

year (Kilpatrick et al., 2006). However, we found that cases decreased more quickly in autumn than

expected from temperature effects alone. Human behavior may partially compensate for the shift in

feeding preference and explain why the decrease of cases in autumn did not show the expected 2-

month lag from temperature-dependent relative R0. For instance, if people wear clothing that

exposes less skin and spend less time outdoors due to school schedules and changing daylight it

may reduce contact with mosquitoes. Drought, precipitation, and reservoir and human immunity
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also strongly drive transmission of WNV (Ahmadnejad et al., 2016; Marcantonio et al., 2015;

Paull et al., 2017; Shand et al., 2016) and may interact with temperature. SLEV, EEEV, and WEEV

are less common in nature, and thus less well-studied, but the lower thermal limits in our study sup-

port previous findings that transmission of WEEV is favored over SLEV in cooler conditions

(Hess et al., 1963). Additionally, the seasonal patterns of incidence data (Figure 9) provide some

support for the model prediction that SLEV transmission is possible at cooler temperatures than

WNV by North American vectors (Table 2). By contrast, mean temperature is not associated with

outbreaks of RVFV, although they are highly predictable based on precipitation driven by El Niño–

Southern Oscillation cycles (Anyamba et al., 2009; Linthicum et al., 1999). Thus, disease dynamics

depend on the interaction between temperature and other environmental factors, and the relative

importance of temperature versus other drivers varies across systems.

Most prior studies with mechanistic models for temperature-dependent transmission of WNV do

not capture the unimodal thermal response that our mechanistic models predict and that we observe

in the human case data (Table 3). Two previous models predicted that transmission of WNV would

increase up to the warmest temperatures they considered, 28˚C (Vogels et al., 2017) and 35˚C

(Kushmaro et al., 2015). In both cases, the vector daily survival rates estimated from lab experi-

ments were far less sensitive to temperature than our measure of adult lifespan (lf), and neither

model was validated with field data. A third study with models for Cx. pipiens, Cx. quiquefasciatus,

and Cx. tarsalis, like our study, predicted unimodal thermal responses for transmission, with very

similar optima but with lower thermal limits that were ~5˚C warmer, resulting in much narrower ther-

mal breadths (Appendix 1—figure 23; Paull et al., 2017). This previous set of models (Paull et al.,

2017) was validated with annual, state-level WNV human case data (in contrast to our county-level

data averaged over multiple years), and detected a positive effect of temperature, with no decline

at high temperatures (Paull et al., 2017). The best spatial and temporal scales for validating temper-

ature-dependent transmission models and detecting the impacts of temperature remain an open

question. For instance, different approaches may be necessary to detect thermal optima and thermal

limits. Critically, differences in modeling and validation approaches can lead to strongly divergent

conclusions and predictions for the impact of climate change.

Given the unimodal relationship between temperature and transmission of these temperate mos-

quito-borne pathogens, we expect climate warming to lead to predictable shifts in disease transmis-

sion (Lafferty, 2009; Lafferty and Mordecai, 2016; Ryan et al., 2015). Warming should extend the

transmission season earlier into the spring and later into the fall and increase transmission potential

in higher latitudes and altitudes, although this prediction may be impacted by changes in bird migra-

tions. However, the thermal optima for these temperate vector–virus pairs are relatively cool, so in

many locations, warming could result in summer temperatures that exceed the thermal optima for

transmission more frequently, reducing overall transmission or creating a bimodal transmission sea-

son (Molnár et al., 2013). Based on the average summer temperature data (2001–2016) in our analy-

sis (Figure 8), currently the majority of people (70%) and counties (68%) are below the optimal

temperature for transmission (23.9˚C, fit by the GAM). The numbers are similar when restricted to

counties with observed West Nile virus cases: 69% and 70%, respectively. Thus, all else being equal,

we might expect a net increase in transmission of West Nile virus in response to the warming cli-

mate, even as hot temperatures suppress transmission in some places. Still, warming is unlikely to

eliminate any of these more temperate pathogens since the upper thermal limits for transmission are

well above temperatures pathogens regularly experience in their current geographic ranges. More

generally, our results raise concerns about the common practice of extrapolating monotonic relation-

ships between temperature and disease incidence fit from observational data into warmer climate

regimes to predict future cases (Marcantonio et al., 2015; Semenza et al., 2016).

While the data-driven models presented here represent the most comprehensive synthesis to

date of trait thermal response data and their impact on transmission for these mosquito–pathogen

systems with substantial transmission in temperate regions, additional temperature-dependent trait

data would increase the accuracy and decrease the uncertainty in these models where data were

sparse or missing. Our data synthesis and uncertainty analysis suggest prioritizing pathogen devel-

opment rate (PDR) and vector competence (bc) data and biting rate (a) data because those thermal

responses varied widely among vector–virus pairs and determined the lower thermal limits and

optima for transmission in many models. Additionally, vector competence (bc) and/or pathogen

development rate (PDR) data were missing in many cases (WNV in Cx. quinquefasciatus and Cx.
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modestus [an important vector in Europe], EEEV in Cs. melanura, RVFV in vectors from endemic

areas, transmission efficiency [b] for SINV) or sparse (EEEV and WNV in Cx. univittatus), as were bit-

ing rate data (Cx. univittatus, RVFV vectors). Lifespan (lf) data—key for determining transmission

optima and upper thermal limits—were the missing for Ae. triseriatus, Cs. melanura, Cx. univittatus,

and RVFV vectors, and at temperatures below 14˚C for all vector species, so it was unclear which

functional form these thermal responses should take (monotonic, saturating, or unimodal). While the

other mosquito demographic traits did not determine thermal limits for transmission in models here,

fecundity (typically as eggs per female per day, EFD), larval-to-adult survival (pLA), and egg viability

(EV) determined thermal limits for malaria (Mordecai et al., 2013) and Ross River virus

(Shocket et al., 2018). Thus, more fecundity data (missing for Cx. tarsalis, Cx. univittatus, and Ae.

triseriatus; sparse for Cx. pipiens and Cx. quinquefasciatus) would also increase our confidence in

the models. New data are particularly important for RVFV: the virus has a primarily tropical distribu-

tion in Africa and the Middle East, but the model depends on traits measured in Cx. pipiens col-

lected from temperate regions and infection traits measured in Ae. taeniorhynchus, a North

American species. This substitution of a mosquito species that is not a naturally occurring vector

could reduce the relevance and utility of this model. RVFV is transmitted by a diverse community of

vectors across the African continent, but experiments should prioritize hypothesized primary vectors

(e.g. Ae. circumluteolus or Ae. mcintoshi) or secondary vectors that already have partial trait data

(e.g. Ae. vexans or Cx. theileri) (Braack et al., 2018; Linthicum et al., 2016). Although temperature

itself does not predict the occurrence of RVFV outbreaks, it may affect the size of epidemics once

they are triggered by precipitation. More generally, thermal responses may vary across vector popu-

lations (Kilpatrick et al., 2010) and/or virus isolates even within the same species. Several studies

have found differences in thermal performance across different populations of the same mosquito

species (Dodson et al., 2012; Mogi, 1992; Reisen, 1995; Ruybal et al., 2016) or pathogen strains

(Kilpatrick et al., 2008), but this variation was not systematically associated with their thermal envi-

ronments of origin. Accordingly, the potential for thermal adaption in mosquitoes and their patho-

gens remains an open question. Regardless, more data may improve the accuracy of all the models,

even those without missing data.

Our trait-based R0 models effectively isolated the physiological effects of temperature on trans-

mission. However, in nature many other environmental and biological factors also impact transmis-

sion of mosquito-borne disease. For example, potential factors include rainfall, habitat and land-use,

reservoir host community composition, host immunity, viral and mosquito genotypes, mosquito

microbiome, vector control efforts, vector behavior, and human behavior (Kilpatrick et al., 2010;

Kilpatrick et al., 2006; Paull et al., 2017; Shocket et al., 2020; Vaidyanathan and Scott, 2007;

Vazquez-Prokopec et al., 2010). Our analyses here suggest that temperature is important for shap-

ing broad-scale spatial and seasonal patterns of disease when cases are averaged over time and

space. Other factors may be more important at finer spatial and temporal scales, and explain addi-

tional variation in human cases. For instance, a study of WNV and two other (non-mosquito-borne)

pathogens found that biotic factors were significant drivers of disease distributions at local scales,

while climate factors were only significant drivers at larger regional scales (Cohen et al., 2016).

Given that our R0 models for WNV predicted very similar thermal optima across three distantly-

related vector species, it is likely that our results are generalizable to other temperate locations with

the same vectors (e.g. parts of Europe with transmission by Cx. pipiens) at similarly broad spatial

and temporal scales, even if the other factors influencing local-scale patterns are quite different than

in the US.

As carbon emissions continue to increase and severe climate change becomes increasingly inevi-

table (Intergovernmental Panel on Climate Change, 2014), it is critical that we understand how

temperature change will affect the transmission of mosquito-borne diseases in a warmer future

world. While data gaps are still limiting, the mechanistic, trait-based approach presented here is

powerful for predicting similarities and differences across vectors and viruses and for making predic-

tions for the impact of climate change (Mordecai et al., 2019). Accounting for the effects of temper-

ature variation (Bernhardt et al., 2018; Lambrechts et al., 2011; Paaijmans et al., 2010) is an

important next step for using these types of models to accurately predict transmission. In nature,

mosquitoes and pathogens experience daily temperature variation that can dramatically alter perfor-

mance compared to constant temperatures of the same mean (Lambrechts et al., 2011;

Paaijmans et al., 2010). Rate summation is the most common method for predicting performance in
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variable temperatures based on experimental data at constant temperatures (Bernhardt et al.,

2018; Lambrechts et al., 2011). This approach is ideal because mean temperature and daily tem-

perature variation vary somewhat independently over space and time, and measuring vector and

pathogen performance at sufficient combinations of both is logistically difficult. However, its accu-

racy for predicting mosquito and pathogen traits or mosquito-borne disease transmission has not

been rigorously evaluated. Additionally, the potential for adaptive evolution to warmer climates is

uncertain because of limited knowledge on the level of genetic variation in thermal responses for

vectors or their pathogens within or between populations. Further, vectors and pathogens may

experience different selective pressures, as mosquito populations may depend on either increased

fecundity or longevity at high temperatures, while pathogens require longer vector lifespans

(Mordecai et al., 2019). Thus, future trajectories of these diseases will depend not just on suitability

of mean temperatures but also on temperature variation, thermal adaptation of vectors and viruses,

land use (which governs mosquito–wildlife–human interactions), vector control activities, human and

wildlife immune dynamics, and potential future emergence and spread of new vectors and viruses.

Materials and methods
All analyses were conducted using R 3.1.3 (R Development Core Team, 2016).

Vector species range maps
The distributions of Cx. pipiens and Cx. quinquefasciatus are georectified maps adapted from

Farajollahi et al., 2011; Smith and Fonseca, 2004. The northern boundary of Cx. tarsalis was taken

from Darsie and Ward, 2016. For the southern boundary, we drew a convex polygon using five

datasets (Huerta Jiménez, 2018; López Cárdenas, 2018; Ortega Morales, 2018; Ponce Garcı́a,

2018; Walter Reed Biosystematics Unit, 2018) in the Global Biodiversity Information Facility

(https://www.gbif.org/).

Temperature-dependent trait data
We found 38 studies with appropriate temperature-dependent trait data from controlled laboratory

experiments (Paull et al., 2017; Reisen et al., 2006; Kilpatrick et al., 2008; Ruybal et al., 2016;

Andreadis et al., 2014; Brust, 1967; Buth et al., 1990; Chamberlain and Sudia, 1955; Ciota et al.,

2014; Cornel et al., 1993; Dodson et al., 2012; Dohm et al., 2002; Kramer et al., 1983; Li et al.,

2017; Loetti et al., 2011; Lundström et al., 1990; Madder et al., 1983; Mahmood and Crans,

1997; Mahmood and Crans, 1998; McHaffey, 1972a; Mogi, 1992; Mpho et al., 2001;

Mpho et al., 2002a; Mpho et al., 2002b; Nayar, 1972; Oda et al., 1980; Oda et al., 1999;

Rayah and Groun, 1983; Reisen et al., 1992; Reisen et al., 1993; Reisen, 1995; Rueda et al.,

1990; Shelton, 1973; Tekle, 1960; Teng and Apperson, 2000; Trpiš and Shemanchuk, 1970;

Turell et al., 1985; Turell and Lundström, 1990; van der Linde TC de et al., 1990). When neces-

sary, we digitized the data using Web Plot Digitizer (Rohatgi, 2018), a free online tool. When life-

span data were reported by sex, only female data were used. Vector competence trait data (b, c, or

bc) were only included if time at sampling surpassed the estimated extrinsic incubation period (the

inverse of PDR) at that temperature, which resulted in the exclusion of some studies (Fros et al.,

2015; Vogels et al., 2016).

Fitting thermal responses
We fit trait thermal responses with a Bayesian approach using the ‘r2jags’ package (Su and Yajima,

2009), an R interface for the popular JAGS program (Plummer, 2003) for the analysis of Bayesian

graphical models using Gibbs sampling. It is a (near) clone of BUGS (Bayesian inference Using Gibbs

Sampling) (Spiegelhalter et al., 2003). In JAGS, samples from a target distribution are obtained via

Markov Chain Monte Carlo (MCMC). More specifically, JAGS uses a Metropolis-within-Gibbs

approach, with an Adaptive Rejection Metropolis sampler used at each Gibbs step (for more infor-

mation on MCMC algorithms see Gilks et al., 1998).

For each thermal response being fit to trait data, we visually identified the most appropriate func-

tional form (quadratic, Briére, or linear; Equations 3–5) for that specific trait–species combination

(Mordecai et al., 2019). For traits with ambiguous functional responses, we fit the quadratic and Bri-

ere and used the deviance information criterion (DIC) (Spiegelhalter et al., 2002) to pick the best
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fit. We assumed normal likelihood distributions with temperature-dependent mean values described

by the appropriate function (Equations 3–5) and a constant standard deviation (s) described by an

additional fitted parameter (t = 1/s2). The 95% credible intervals in Figures 3–6 estimate the uncer-

tainty in the mean thermal response.

We set all thermal response functions to zero when T < Tmin and T > Tmax (for Equation 3 and 4)

or when T > -z/m (Equation 5) to prevent trait values from becoming negative. For traits that were

proportions or probabilities, we also limited the thermal response functions at 1. For the linear ther-

mal responses, we calculated the predicted thermal response in a piecewise manner in order to be

conservative: for temperatures at or above the coldest observed data point, we used the trait values

predicted by the fitted thermal response (i.e. the typical method); for temperatures below the cold-

est observed data point, we substituted the trait estimate at the coldest observed data point (i.e.

forcing the thermal response to plateau, rather than continue increasing beyond the range of

observed data).

For the fitting process, we ran three concurrent MCMC chains for 25,000 iterations each, discard-

ing the first 5000 iterations for burn-in (convergence was checked visually). We thinned the resultant

chains, saving every eighth step. These settings resulted in 7500 samples in the full posterior distri-

bution that we kept for further analysis.

Generating priors
We used data-informed priors to decrease the uncertainty in our estimated thermal responses and

constrain the fitted thermal responses to be biologically plausible, particularly when data were

sparse. These priors used our total dataset, which contained temperature-dependent trait data for

all of the main species in the analysis (but with the focal species removed, see below), as well as

from additional temperate Aedes and Culex species (Buth et al., 1990; Ciota et al., 2014; Kiarie-

Makara et al., 2015; Madder et al., 1983; McHaffey, 1972b; McHaffey and Harwood, 1970;

Mogi, 1992; Muturi et al., 2011; Oda et al., 1999; Oda et al., 1980; Olejnı́cek and Gelbic, 2000;

Parker, 1982).

We fit each thermal response with a sequential two-step process, where both steps employed the

same general fitting method (described above in Fitting Thermal Responses) but used different pri-

ors and data. In step 1, we generated high-information priors by fitting a thermal response to data

from all species except the focal species of interest (i.e. a ‘leave-one-out’ approach). For example,

for the prior for biting rate for Cx. pipiens, we used the biting rate data for all species except Cx.

pipiens. For this step, we set general, low-information priors that represented minimal biological

constrains on these functions (e.g. typically mosquitoes die if temperatures exceed 45˚C, so all bio-

logical processes are expected to cease; Tmin must be less than Tmax). The bounds of these uniformly

distributed priors were: 0 < Tmin < 24, 26 < Tmax < 45 (quadratic) or 28 < Tmax < 45 (Briére),

0 < q < 1,–10 < m < 10, and 0 < b < 250. Then in step 2, we fit a thermal response to data from the

focal species using the high-information priors from step 1.

Because we cannot directly pass posterior samples from JAGS as a prior, we modified the results

from step 1 to use them in step 2. We used the ‘MASS’ package (Venables and Ripley, 2002) to fit

a gamma probability distribution to the posterior distributions for each thermal response parameter

(Tmin, Tmax, and q [Equation 3 and 4]; or m and z [Equation 5]) obtained in step 1. The resulting

gamma distribution parameters can be used directly to specify the priors in the JAGS model.

Because the prior datasets were often very large, in many cases the priors were too strong and over-

determined the fit to the focal data. In a few other cases, we had philosophical reasons to strongly

constrain the fit to the focal data even when they were sparse (e.g. to constrain Tmax to very high

temperatures so that other traits with more information determine the upper thermal limit for R0).

Thus, we deflated or inflated the variance as needed (i.e., we fixed the gamma distribution mean but

altered the variance by adjusting the parameters that describe the distribution accordingly). See

Appendix 1 for more details and specific variance modifications for each thermal response.

Constructing R0 models
When data were missing for a vector–virus pair, we used two criteria to decide which thermal

response to use as a substitute: 1) the ecological similarly (i.e. geographic range overlap) of species

with available thermal responses, and 2) how restrictive the upper and lower bounds of the available
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thermal responses were. All else being equal, we chose the more conservative (i.e. least restrictive)

option so that R0 would be less likely to be determined by trait thermal responses that did not origi-

nate from the focal species. See Appendix 1 for more information about specific models.

When there was more than one option for how to parameterize a model (e.g. vector competence

data for WEEV in Cx. tarsalis were available in two forms: separately as b and c, and combined as

bc), we calculated R0 both ways. The results were very similar, except for the model for RVFV with

lifespan data from Cx. pipiens lifespan in place of Ae. taeniorhynchus (Appendix 1—figure 22). See

Appendix 1 for sensitivity and uncertainty methods and Appendix 1—figures 11–20 for results.

Model validation: spatial analysis
We obtained county-level neuroinvasive WNV disease data from 2001 to 2016 for the contiguous US

(n = 3109) through the CDC’s county-level disease monitoring program (Centers for Disease Con-

trol and Prevention, 2018c). Data were available as total human cases per year, which we adjusted

to average cases per 1000 people (using 2010 US county-level census data) to account for popula-

tion differences. We averaged cases across years beginning with the first year that had reported

cases in a given county to account for the initial spread of WNV and the strong impact of immunity

on interannual variation (Paull et al., 2017). Ninety-eight percent of human cases of WNV in the US

occur between June and October (data described below), and cases of mosquito-borne disease

often lag behind temperature by 1–2 months (Shocket et al., 2018; Stewart Ibarra et al., 2013).

Thus, we extracted monthly mean temperature data between the months of May–September for all

years between 2001 and 2016 and averaged the data to estimate typical summer conditions for

each county. Specifically, we took the centroid geographic coordinate for every county in the contig-

uous US with the ‘rgeos’ package Bivand and Rundel, 2012 and extracted corresponding historic

climate data for monthly mean temperatures (Climate Research Unit 3.1 rasters) (Harris et al., 2014)

from 0.5˚2 cells (approximately 2500–3000 km2) using the ‘raster’ package (Hijmans, 2020). The

monthly mean temperatures in this climate product are calculated by averaging daily mean tempera-

tures at the station level (based on 4–8 observations per day at regular intervals) and interpolating

these over a grid (World Meteorological Organization, 2009).

We fit a generalized additive model (GAM) for average incidence as a function of average sum-

mer temperature using the ‘mgcv’ package (Wood, 2006). We used a gamma distribution with a

log-link function to restrict incidence to positive values and capture heteroskedasticity in the data

(i.e. higher variance with higher predicted means), adding a small, near-zero constant (0.0001) to all

incidence values to allow the log-transformation for counties with zero incidence. GAMs use additive

functions of smooth predictor effects to fit responses that are extremely flexible in the shape of the

response. We restricted the number of knots to minimize overfitting (k = 7; see Appendix 1—figure

24 for results across varying values of k). For comparison, we also used the ‘loess’ function in base R

‘stats’ package (R Development Core Team, 2016) to fit locally estimated scatterplot smoothing

(LOESS) regressions of the same data. LOESS regression is a simpler but similarly flexible method

for estimating the central tendency of data. See Appendix 1—figure 25 for LOESS model

results. See Appendix 1—figure 26 for non-binned county-level data.

Model validation: seasonality analysis
We calculated monthly temperature-dependent relative R0 to compare with month-of-onset data for

neuroinvasive WNV, EEEV, and SLEV disease aggregated nationwide (the only spatial scale available)

from 2001 to 2016 (Centers for Disease Control and Prevention, 2018c; Curren et al., 2018;

Lindsey et al., 2018), using the same county-level monthly mean temperature data as above. For

WNV, we used the subset of counties with reported cases (68% of counties). For SLEV and EEEV we

used all counties from states with reported cases (16 and 20 states, respectively). We calculated a

monthly R0(T) for each county, and then weighted each county R0(T) by its population size to calcu-

late a national monthly estimate of R0(T). For WNV, the county-level estimates of R0(T) used models

for three Culex species (Cx. pipiens, Cx. quinquefasciatus, and Cx. tarsalis) weighted according to

the proportion of WNV-positive mosquitoes reported at the state level, reported in Paull et al.,

2017. SLEV and EEEV both only had one R0 model. The estimated monthly temperature-dependent

relative R0 values and month-of-onset data were compared visually.
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All data and code are available on Github in the following repository: https://github.com/mshocket/

Six-Viruses-Temp (Shocket, 2020; copy archived at https://github.com/elifesciences-publications/

Six-Viruses-Temp). All data and code are also available in the Dryad Data Repository.
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Appendix 1

R0 Model Specifications
The equation for R0 (Equation 2 in main text) as a function of temperature (T) that was used in previ-

ous analyses (Johnson et al., 2015; Mordecai et al., 2017; Mordecai et al., 2013; Parham and

Michael, 2010; Shocket et al., 2018; Tesla et al., 2018) has fecundity measured as eggs per female

per day (EFD):

Full R0 : R0 Tð Þ ¼
a Tð Þ2bc Tð Þe�

� Tð Þ
PDR Tð ÞEFD Tð ÞEV Tð ÞpLA Tð ÞMDR Tð Þ

N r � Tð Þ3

 !1=2

(2)

Fecundity data were not available directly as eggs per female per day, so we had to transform

the available data to obtain the quantities needed for these models. The data for Cx. pipiens were

reported as eggs per female per gonotrophic cycle (EFGC). To obtain EFD, we needed to divide

EFGC by the length of the gonotrophic cycle. In general, the gonotrophic cycle is assumed to be

approximately the inverse of the biting rate. In fact, our ‘biting rate’ (a) data were observations of

gonotrophic cycle duration. Accordingly, EFD = EFGC * a, resulting in the following equation for R0:

R0 Tð Þ ¼
a Tð Þ3bc Tð Þe�

� Tð Þ
PDR Tð ÞEFGC Tð ÞEV Tð ÞpLA Tð ÞMDR Tð Þ

N r � Tð Þ3

 !1=2

(A1)

All but two of the vector–virus parameterizations used this form (Equation A1) of the R0 model

(see Appendix 1—table 1, exceptions described below).

The fecundity data for Cx. quinquefasciatus were reported as eggs per raft (ER). Females lay rafts

once per gonotrophic cycle. Thus, in order to obtain an approximation to EFD (eggs per female per

day), we again divide by the number of days per gonotrophic cycle and, further, we multiply by the

proportion of females ovipositing (pO), since not every female lays an egg raft. These changes result

in the following equation for R0:

R0 Tð Þ ¼
a Tð Þ3bc Tð Þe�

� Tð Þ
PDR Tð ÞER Tð ÞpO Tð ÞEV Tð ÞpLA Tð ÞMDR Tð Þ

N r � Tð Þ3

 !1=2

(A2)

The Cx. quinquefasciatus–WNV model used Equation A2.

The Ae. triseriatus–EEEV model also used Equation A2 (i.e., included pO) but substituted the Cx.

pipiens thermal response for EFGC in place of the Cx. quinquefasciatus thermal response for ER for

the following reasons. There were no fecundity trait data available for Ae. triseriatus. (Ae. triseratus

was chosen as the focal species for the EEEV model because it is the only species with temperature-

dependent vector competence data available, and it is a possible bridge vector for EEEV transmis-

sion to humans). Cs. melanura is the primary vector for maintaining enzootic cycles of EEEV in birds

(Mahmood and Crans, 1998), more often cited in the literature in association with EEEV (e.g.

[Weaver and Barrett, 2004]), and had data for pO (proportion ovipositing) available. Thus, we

chose to include this thermal response in model because it contained information that could affect

the upper and lower bounds of transmission (even though most models did not include pO [propor-

tion ovipositing], because they use the Cx. pipiens EFGC [eggs per female per gonotrophic cycle]

thermal response that includes pO implicitly). Then we needed to choose which egg production met-

ric to include. We chose the Cx. pipiens EFGC thermal response over the Cx. quinquefasciatus ER

thermal response because the former was the better choice according to both criteria: Cx. pipiens

has a more similar species range to Ae. triseriatus and Cs. melanura and its thermal response was

slightly more conservative (less restrictive = cooler lower thermal limit and warmer upper thermal

limit). Although technically the units are not correct (see above), the thermal responses for Cx.

pipiens EFGC and Cx. quinquefasciatus ER are so similar despite having different units (Figure 4B),

we decided that the other two criteria were more important than being strict with regard to the

units, as it is feasible to have an ER thermal response that is quite similar to the EFGC thermal

response. Ultimately, because the thermal responses for EFGC and ER are so similar, this decision
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only has a small impact on the R0 results (see Appendix 1—figure 22 comparing four alternative

model specifications/parameterizations for the Ae. triseriatus-EEEV model).

In Equations 2, A1, and A2, the remaining parameters that depend on temperature (T) are: adult

mosquito mortality (m, the inverse of lifespan [lf]), pathogen development rate (PDR, the inverse of

the extrinsic incubation period: the time required for exposed mosquitoes to become infectious),

egg viability (proportion of eggs hatching into larvae, EV), proportion of larvae surviving to adult-

hood (pLA), and mosquito development rate (MDR, the inverse of the development period), and

vector competence (bc, the proportion of exposed mosquitoes that become infectious). Vector com-

petence is the product of infection efficiency (c, the proportion of exposed mosquitoes that develop

a disseminated infection) and transmission efficiency (b, the proportion of infected mosquitoes that

become infectious, with virus present in saliva). The form of vector competence varied between

models based on the availability of data: bc(T) [reported a single parameter], c(T)*b(T) [both parame-

ters reported separately], c(T) only, or b(T) only (see Appendix 1—table 1). The two remaining

parameters do not depend on temperature: human density (N) and the rate at which infected hosts

recover and become immune (r).

Appendix 1—table 1. Trait thermal responses used in transmission (R0) models.

Viruses: West Nile (WNV), Eastern and Western Equine Encephalitis (EEEV and WEEV), St. Louis

Encephalitis (SLEV), Sindbis (SINV), and Rift Valley Fever (RVFV). Ae. vex. = Ae. vexans, Cs.

mel. = Culiseta melanura; all other vectors (Cx. = Culex) listed under model names. Traits are: fecun-

dity (as eggs/female/gonotrophic cycle [EFGC] or eggs per raft*proportion ovipositing [ER*pO]), egg

viability (EV), larval-to-adult survival (pLA), mosquito development rate (MDR), lifespan (lf), biting rate

(a), vector competence (bc, b [transmission efficiency], c [infection efficiency], or b*c, as available),

and parasite development rate (PDR). The WNV–Cx. quinquefasciatus model uses Equation A2

(ER*pO); the EEEV–Ae. triseriatus model uses EFGC from Cx. pipiens and pO from Cs. melanura; all

other models use Equation A1 (EFGC). When data were missing for a vector–virus pair, we substi-

tuted the most conservative (i.e. least restrictive of transmission) trait thermal response from a vector

that occurs within the geographic range of disease transmission. Several models had multiple poten-

tially valid choices for traits; we explain and show compare these alternative models with the main

text versions in Appendix 1—figure 22. Checkmarks indicate a thermal response from the vector in

the model name. The parasite development rate data for SINV was insensitive to temperature (Fig-

ure 4), so the trait thermal response was omitted from the SINV models (‘NA’).

Model: virus–vector
EFGC or
ER*pO EV pLA MDR lf a bc, c*b c, or b PDR

WNV–Cx. pipiens [ [ [ [ [ [ [ (bc) [

WNV–Cx. quinquefasciatus [ [ [ [ [ [ Cx. uni. (bc) [

WNV–Cx. tarsalis Cx. pip. Cx. pip [ [ [ [ [ (b) [

WNV–Cx. univittatus Cx. pip. Cx. pip. Cx. pip. Cx. pip. Cx. pip. Cx. pip. [ (bc) [

WEEV–Cx. tarsalis Cx. pip. Cx. pip. [ [ [ [ [ (c*b) [

SLEV–Cx. tarsalis Cx. pip. Cx. pip. [ [ [ [ [ (c*b) [

EEEV–Ae. triseriatus Cx. pip., Cs. mel. Cx. pip. [ [ Cx. pip. Cs. mel. [ (bc) [

SINV–Cx. pipiens [ [ [ [ [ [ [ (c) NA

SINV–Ae. taeniorhynchus Cx. pip. Ae. vex. Ae. vex. Ae. vex. [ Cx. pip. [ (c) NA

RVFV–Ae. taeniorhynchus Cx. pip. Cx. the. Ae. vex. Ae. vex. [ Cx. pip. [ (bc) [

Appendix 1—table 2. Trait thermal response functions, data sources, and posterior estimates:

biting rate and fecundity traits.

Asymmetrical responses fit with Brière function (B): B(T)=qT(T – Tmin)(Tmax – T)1/2; symmetrical

responses fit with quadratic function (Q): Q(T) = -q(T – Tmin)(T – Tmax). Median function coefficients

and optima (with 95% credible intervals).
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Trait/Species
data source]

F
(x) q (CIs)

Tmin

(CIs)
Tmax

(CIs)
Topt
(CIs)

Biting rate (a)

Cx. pipiens
(Li et al., 2017; Madder et al., 1983; Ruybal et al., 2016;
Tekle, 1960)

B 1.70�10�4

(1.18–
2.29�10�4)

9.4
(2.8–
13.4)

39.6
(37.9–
40.6)

32.7
(31.3–
33.6)

Cx. quinquefasciatus
(Reisen et al., 1992; Tekle, 1960)

B 7.28�10�5

(5.31–
11.8�10�5)

3.1
(0.1–
10.9)

39.3
(38.0–
40.8)

31.9
(30.6–
33.3)

Cx. tarsalis
(Reisen et al., 1992)

B 1.67�10�4

(0.87–
2.56�10�4)

2.3
(0.1–9.4)

32.0
(30.6–
41.7)

25.9
(24.8–
33.9)

Cs. melanura
(Mahmood and Crans, 1997)

B 1.87�10�4

(1.49–
2.31�10�4)

7.8
(5.5–
11.4)

31.8
(31.0–
33.4)

26.4
(25.7–
27.9)

Fecundity

Cx. pipiens (EFGC)
(Li et al., 2017)

Q 5.98�10�1

(4.31–
7.91�10�1)

5.3
(2.6–8.5)

38.9
(36.2–
41.8)

22.1
(20.1–
24.4)

Cx. quinquefasciatus (ER)
(Mogi, 1992; Oda et al., 1980)

Q 6.36�10�1

(4.50–
9.05�10�1)

5.0
(1.3–9.8)

37.7
(34.8–
40.7)

21.4
(18.9–
24.4)

Proportion ovipositing (pO)

Cx. pipiens
(Ciota et al., 2014; Tekle, 1960)

Q 4.45�10�3

(2.54–
7.77�10�3)

8.2
(4.6–
12.1)

33.2
(30.1–
37.5)

20.8
(18.6–
23.4)

Cx. quinquefasciatus
(Ciota et al., 2014; Oda et al., 1980; Tekle, 1960)

B 6.67�10�4

(5.80–
7.91�10�4)

1.7
(0.2–4.8)

31.8
(31.1–
32.2)

24.9
(21.8–
26.0)

Cs. melanura
(Mahmood and Crans, 1997)

Q 6.31�10�3

(4.52–
7.89�10�3)

8.7
(6.9–
10.4)

33.6
(32.5–
35.4)

20.7
(16.9–
22.3)

Egg viability (EV)

Ae. vexans
(McHaffey, 1972a)

1.24�10�3

(0.73–
1.95�10�3)

0
(0–1.6)

55.5
(45.9–
74.1)

27.6
(20.4–
34.0)

Cx. pipiens
(Li et al., 2017)

Q 2.11�10�3

(1.36–
3.05�10�3)

3.2
(0.5–7.1)

42.6
(39.7–
48.3)

23.0
(20.7–
26.3)

Cx. quinquefasciatus
(Oda et al., 1980; Rayah and Groun, 1983)

B 0.47�10�3

(0.34–
0.62�10�3)

13.6
(9.3–
16.8)

38.0
(37.2–
38.7)

32.1
(31.3–
32.7)

Cx. theileri
(van der Linde TC de et al., 1990)

Q 2.54�10�3

(1.86–
3.41�10�3)

5.5
(2.6–8)

45.4
(42.4–
49.0)

23.6
(18.2–
27.0)

Additional data sources for other species used for fitting priors only (priors were fit using all data

except that of the focal species). Fecundity (ER): Cx. pipiens molestus (Oda et al., 1980), Cx. pipiens

pallens (Mogi, 1992), and Ae. dorsalis (Parker, 1982). Proportion ovipositing (pO): Cx. pipiens

molestus (Oda et al., 1980) and Ae. dorsalis (Parker, 1982). Egg viability (EV): Cx. pipiens molestus

(Oda et al., 1980), Aedes dorsalis (McHaffey and Harwood, 1970), and Ae. nigromaculis (

McHaffey, 1972b). See Appendix 1 section: Priors for trait thermal responses.

Appendix 1—table 3. Trait thermal response functions, data sources, and posterior estimates: larval

traits.

Asymmetrical responses fit with Brière function (B): B(T)=qT(T – Tmin)(Tmax – T)1/2; symmetrical

responses fit with quadratic function (Q): Q(T) = -q(T – Tmin)(T – Tmax). Median function coefficients

and optima (with 95% credible intervals).
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Trait/Species
(data source)

F
(x) q (CIs)

Tmin

(CIs)
Tmax

(CIs)
Topt
(CIs)

Mosquito Dev. Rate (MDR)

Ae. triseriatus
(Shelton, 1973)

B 4.30�10�5

(3.01–
5.83�10�5)

0.8
(0–
7.5)

36.5
(34.6–
39.5)

29.3
(27.8–
31.9)

Ae. vexans
(Brust, 1967; Trpiš and Shemanchuk, 1970)

B 4.33�10�5

(3.34–
5.50�10�5)

1.9
(0.1–
10.5)

38.2
(37.0–
39.5)

30.9
(29.8–
32.2)

Cx. pipiens
(Ciota et al., 2014; Loetti et al., 2011; Madder et al., 1983; Mpho et al.,
2002a; Mpho et al., 2002b Ruybal et al., 2016; Tekle, 1960)

B 3.76�10�5

(3.36–
4.47�10�5)

0.1
(0–
4.0)

38.5
(37.6–
39.8)

30.9
(30.2–
31.9)

Cx. quinquefasciatus
(Ciota et al., 2014; Mpho et al., 2001; Rueda et al., 1990; Shelton, 1973;
Tekle, 1960)

B 4.14�10�5

(3.46–
5.26�10�5)

0.1
(0–
5.5)

38.6
(37.4–
40.6)

31.0
(30.0–
32.6)

Cx. tarsalis
(Buth et al., 1990; Dodson et al., 2012; Reisen, 1995)

B 4.12�10�5

(3.15–
5.47�10�5)

4.3
(0–
8.4)

39.9
(37.9–
42.2)

32.3
(31.0–
34.0)

Cs. melanura
(Mahmood and Crans, 1998)

B 2.74�10�5

(1.64–
4.72�10�5)

8.6
(0–
16.8)

37.6
(35.1–
40.4)

31.1
(28.7–
33.7)

Larval survival (pLA)

Ae. triseriatus
(Shelton, 1973; Teng and Apperson, 2000)

Q 3.26�10�3

(1.95–
5.18�10�3)

8.3
(4.9–
11.4)

35.7
(32.9–
39.7)

22.0
(19.9–
24.6)

Ae. vexans
(Brust, 1967; Trpiš and Shemanchuk, 1970)

Q 3.29�10�3

(2.65–
4.24�10�3)

9.1
(8.1–
10.6)

40.8
(38.4–
43.6)

25.0
(23.9–
26.2)

Cx. pipiens
(Ciota et al., 2014; Loetti et al., 2011; Madder et al., 1983; Mpho et al.,
2002a; Mpho et al., 2002b; Ruybal et al., 2016; Tekle, 1960)

Q 3.60�10�3

(2.96–
4.42�10�3)

7.8
(6.1–
9.3)

38.4
(37.1–
39.9)

23.1
(22.2–
24.0)

Cx. quinquefasciatus
(Ciota et al., 2014; Mogi, 1992; Mpho et al., 2001; Oda et al., 1999;
Rueda et al., 1990; Shelton, 1973; Tekle, 1960)

Q 4.26�10�3

(3.51–
5.17�10�3)

8.9
(7.6–
9.9)

37.7
(36.2–
39.2)

23.3
(22.5–
24.0)

Cx. tarsalis
(Buth et al., 1990; Dodson et al., 2012; Reisen, 1995)

Q 2.12�10�3

(1.52–
3.08�10�3)

5.9
(3.0–
8.8)

43.1
(39.8–
47.5)

24.6
(22.9–
26.4)

Cs. melanura
(Mahmood and Crans, 1998)

Q 3.03�10�3

(1.55–
5.68�10�3)

10.1
(5.7–
15.1)

36.2
(32.8–
40.7)

23.2
(20.4–
26.5)

Additional data sources for other species used for fitting priors only (priors were fit using all data

except that of the focal species). Mosquito Development Rate (MDR): Cx. pipiens molestus (Kiarie-

Makara et al., 2015; Olejnı́cek and Gelbic, 2000), Cx. pipiens pallens (Kiarie-Makara et al., 2015),

Cx. restuans (Buth et al., 1990; Madder et al., 1983; Muturi et al., 2011; Shelton, 1973), Cx.

salinarius (Shelton, 1973), Ae. solicitans (Shelton, 1973), and Ae. nigromaculis (Brust, 1967). Larval

survival (pLA): Cx. pipiens molestus (Oda et al., 1999; Olejnı́cek and Gelbic, 2000), Cx. pipiens pallens

(Mogi, 1992), Cx. restuans (Buth et al., 1990; Ciota et al., 2014; Madder et al., 1983; Muturi et al.,

2011; Shelton, 1973), Cx. salinarius (Shelton, 1973), Ae. sollicitans (Shelton, 1973), Ae. nigromaculis

(Brust, 1967). See Appendix 1 section: Priors for trait thermal responses.

Appendix 1—table 4. Trait thermal response functions, data sources, and posterior estimates:

vector competence traits.

Asymmetrical responses fit with Brière function (B): B(T)=qT(T – Tmin)(Tmax – T)1/2; symmetrical

responses fit with quadratic function (Q): Q(T) = -q(T – Tmin)(T – Tmax). Median function coefficients

and optima (with 95% credible intervals).
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Trait/Species
(data source) F(x) q (CIs) Tmin (CIs) Tmax (CIs) Topt (CIs)

Transmission efficiency (b)

SLEV | Cx. tarsalis
(Reisen et al., 1993)

Q 2.98�10�3

(1.63–5.31�10�3)
10.8
(6.2–14.2)

41.6
(36.8–49.1)

26.2
(23.5–29.7)

WEEV | Cx. tarsalis
(Reisen et al., 1993)

Q 3.17�10�3

(1.65–5.06�10�3)
8.2
(5.1–10.7)

33.5
(31.0–38.9)

20.9
(19.2–23.2)

WNV | Cx. tarsalis
(Reisen et al., 2006)

Q 2.94�10�3

(1.91–4.48�10�3)
11.3
(7.6–14.0)

41.9
(37.7–47.0)

26.6
(23.9–29.3)

Infection efficiency (c)

SINV | Ae. taeniorhynchus
(Turell and Lundström, 1990)

Q 1.24�10�3

(0.75–2.17�10�3)
1.4
(0–9.1)

48.4
(40.8–57.1)

25.4
(21.0–31.1)

SINV | Cx. pipiens
(Lundström et al., 1990)

Q 1.33�10�3

(0.47–2.30�10�3)
0
(0–0)

35.0
(28.1–61.1)

17.5
(14.1–30.5)

WNV | Cx. pipiens
(Dohm et al., 2002; Kilpatrick et al., 2008)

Q 2.56�10�3

(2.05–3.19�10�3)
15.6
(14.3–16.6)

52.2
(48.4–56.6)

33.9
(31.9–36.1)

SLEV | Cx. tarsalis
(Reisen et al., 1993)

Q 2.03�10�3

(1.28–3.07�10�3)
8.8
(6.6–10.6)

43.7
(38.9–51.4)

26.2
(24.2–29.7)

WEEV | Cx. tarsalis
(Kramer et al., 1983; Reisen et al., 1993)

Q 3.04�10�3

(2.52–3.68�10�3)
1.3
(0.4–2.9)

38.8
(36.7–41.5)

15.5
(13.4–19.7)

Vector competence (bc)

RVFV | Ae. taeniorhynchus
(Turell et al., 1985)

Q 1.51�10�3

(1.03–2.05�10�3)
7.1
(2.8–9.8)

42.3
(39.3–46.5)

24.7
(22.0–27.0)

EEEV | Ae. triseriatus
(Chamberlain and Sudia, 1955)

Q 1.51�10�3

(0.96–2.24�10�3)
7.0
(2.9–11.9)

50.3
(42.3–63.1)

28.8
(23.6–35.8)

WNV | Cx. pipiens
(Kilpatrick et al., 2008)

Q 3.05�10�3

(1.68–4.87�10�3)
16.8
(15–17.9)

38.9
(36.1–44.1)

27.8
(26.6–30.1)

WEEV | Cx. tarsalis
(Kramer et al., 1983)

Q 1.17�10�3

(0.55–2.36�10�3)
5.1
(0.6–13.3)

37.0
(33.5–46.0)

21.4
(18.1–27.3)

WNV | Cx. univittatus
(Cornel et al., 1993)

Q 2.32�10�3

(1.58–3.68�10�3)
4.2
(1.5–7.1)

45.2
(39.6–53.0)

23.7
(19.4–27.3)

Appendix 1—table 5. Trait thermal response functions, data sources, and posterior estimates:

parasite development rate.

Asymmetrical responses fit with Brière function (B): B(T)=qT(T – Tmin)(Tmax – T)1/2; symmetrical

responses fit with quadratic function (Q): Q(T) = -q(T – Tmin)(T – Tmax). Median function coefficients

and optima (with 95% credible intervals).

Trait/Species
(data source) F(x) q (CIs) Tmin (CIs) Tmax (CIs) Topt (CIs)

Parasite Dev. Rate (PDR)

RVFV | Ae. taeniorhynchus
(Turell et al., 1985)

B 8.84�10�5

(2.51–15.5�10�5)
9.0
(5.4–13.8)

45.9
(41.9–50.3)

37.8
(34.5–41.3)

EEEV | Ae. triseriatus
(Chamberlain and Sudia, 1955)

B 7.05�10�5

(5.21–9.68�10�5)
11.6
(7.0–16.4)

44.8
(40.6–49.4)

37.2
(33.8–41.1)

WNV | Cx. pipiens
(Dohm et al., 2002; Kilpatrick et al., 2008)

B 7.38�10�5

(5.38–9.94�10�5)
11.4
(7.3–15.0)

45.2
(40.7–50.3)

37.5
(33.8–41.6)

WNV | Cx. quinquefasciatus (Paull et al., 2017) B 7.12�10�5

(4.58–10.2�10�5)
19.0
(12.9–21.0)

44.1
(38.8–50.4)

37.7
(33.6–42.7)

SLEV | Cx. tarsalis
(Reisen et al., 1993)

B 7.11�10�5

(5.60–8.95�10�5)
12.8
(10.3–14.3)

45.2
(40.2–51.5)

37.7
(33.8–42.6)

WEEV | Cx. tarsalis
(Kramer et al., 1983; Reisen et al., 1993)

B 6.43�10�5

(4.44–10.4�10�5)
4.0
(0–12.6)

44. 0
(38.3–50.9)

35.7
(31.0–41.4)

Continued on next page
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Appendix 1—table 5 continued

Trait/Species
(data source) F(x) q (CIs) Tmin (CIs) Tmax (CIs) Topt (CIs)

WNV | Cx. tarsalis
(Reisen et al., 2006)

B 6.57�10�5

(5.11–8.85�10�5)
11.2
(7.9–14.9)

44.7
(40.4–49.4)

37.0
(33.6–40.9)

WNV | Cx. univittatus
(Cornel et al., 1993)

B 7.54�10�5

(4.13–11.1�10�5)
10.2
(7.1–15.3)

34.4
(31.2–51.1)

28.8
(26.1–42.5)

SINV | Ae. taeniorhynchus
(Turell and Lundström, 1990)

NA Not fitted because lack of temperature sensitivity

Appendix 1—table 6. Trait thermal response functions, data sources, and posterior estimates:

lifespan.

Responses fit with a linear function (L): L(T) = -mT + z. Median function coefficients and Tmax (with

95% credible intervals).

Trait/Species
(data source)

F
(x) m z Tmax = z/m

Lifespan (lf)

Ae. taeniorhynchus (Nayar, 1972) L 2.02 (1.59–
3.19)

85.9 (73.8–
117.6)

42.7 (34.5–
48.5)

Cx. pipiens (Andreadis et al., 2014; Ciota et al., 2014;
Ruybal et al., 2016)

L 4.86 (3.83–
5.84)

169.8 (142.1–
195.6)

34.9 (32.9–
37.9)

Cx. quinquefasciatus
(Ciota et al., 2014; Oda et al., 1999)

L 3.80 (1.85–
5.29)

136.3 (86.8–
174.0)

35.9 (32.1–
48.5)

Cx. tarsalis (Reisen, 1995) L 1.69 (1.12–
2.24)

69.6 (55.8–83.5) 41.3 (36.6–
50.8)

Additional data sources for other species used for fitting priors only (priors were fit using all data

except that of the focal species). Lifespan (lf): Cx. pipiens molestus (Kiarie-Makara et al., 2015;

Oda et al., 1999), Cx. pipiens pallens (Kiarie-Makara et al., 2015), and Cx. restuans (Ciota et al.,

2014). See Appendix 1 section: Priors for trait thermal responses.

Appendix 1—table 7. Priors for trait thermal response functions: mosquito traits with unimodal

responses.

Gamma distribution parameters (a [shape] and b [rate]) for priors for fitting thermal response parame-

ters (Tmin, Tmax, and q). Scaled variances are noted in parentheses, either by the system name (applied

to all parameters) or by individual parameters. See Appendix 1 section: Priors for trait thermal

responses.

Trait/System q: a q: b Tmin: a Tmin: b Tmax: a Tmax: b

Biting rate (a)

Cx. pipiens (0.5) 8.84 64200 1.91 0.367 103 3.00

Cx. quinquefasciatus 39.1
(0.1)

234133 (0.1) 8.82
(0.1)

0.997
(0.1)

2992 75.8

Cx. tarsalis 40.1 (0.05) 227752 (0.05) 18.7
(0.05)

1.745
(0.05)

unif. unif.

Cs. melanura 35.4 (0.75) 229694 (0.75) 7.77
(0.75)

0.895
(0.75)

2714 (0.1) 68.5
(0.1)

Fecundity

Cx. pipiens (EFGC) (3) 9.23 15.6 2.38 0.419 139 3.52

Cx. quinquefasciatus (ER) 19.1 30.44 2.87 0.600 486 13.2

Prop. ovipositing (pO)

Continued on next page
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Appendix 1—table 7 continued

Trait/System q: a q: b Tmin: a Tmin: b Tmax: a Tmax: b

Cx. pipiens (0.5) 9.50 1823 14.8 1.495 263 7.14

Cx. quinquefasciatus 32.9 55242 1.41 0.397 3346 106

Cs. melanura 14.4 2635 22.0 2.254 588 16.8

Egg viability (EV)

Ae. vexans (0.01) 26.6 12259 11.6 1.916 486 10.8

Cx. pipiens (0.2) 29.4 14525 8.83 1.579 514 11.1

Cx. quinquefasciatus (0.1) 101 262268 1.08 1.032 1361 34.9

Cx. theileri 5.86 2266 4.46 0.591 266 6.06

Mos. dev. rate (MDR)

Ae. triseriatus (0.2) 118 2697528 1.93 0.703 5542 145

Ae. vexans (0.5) 119 2739401 1.89 0.689 6661 174

Cx. pipiens (0.1) 71.9 1545915 2.03 0.596 2912 76.5

Cx. quinquefasciatus (0.1) 113 2569782 1.81 0.651 5900 155

Cx. tarsalis (0.1) 129 2940582 1.49 0.660 6431 169

Cs. melanura (0.1) 129 2941063 1.78 0.685 6915 181

Larval survival (pLA)

Ae. triseriatus (0.05) 163 46723 231 27.3 4667 122

Ae. vexans (0.05) 135 37701 210 24.6 4040 107

Cx. pipiens (0.1) 102 27382 217 24.2 2872 76.7

Cx. quinquefasciatus (0.1) 88.8 26461 123 14.8 2608 68.4

Cx. tarsalis (0.025) 94.6 23240 237 26.2 2564 69.5

Cs. melanura (0.05) 148.9 41533 239 27.8 4391 116

Appendix 1—table 8. Priors for trait thermal response functions: infection traits.

Gamma distribution parameters (a [shape] and b [rate]) for priors for fitting thermal response parame-

ters (Tmin, Tmax, and q). Scaled variances are noted in parentheses, either by the system name (applied

to all parameters) or by individual parameters. See Appendix 1 section: Priors for trait thermal

responses.

Trait/System q: a q: b Tmin: a Tmin: b Tmax: a Tmax: b

Transmission efficiency (b) 7.72 3202 9.97 1.268 114 2.9

SLEV | Cx. tarsalis (0.5) 9.49 2373 79.6 6.181 153 3.74

WEEV | Cx. tarsalis (0.1) 8.46 3056 12.1 1.455 134 3.5

WNV | Cx. tarsalis 7.72 3202 9.97 1.268 114 2.9

Infection efficiency (c)

SINV | Ae. taeniorhynchus (0.1) 61.7 45102 2.49 0.815 1214 25.1

SINV | Cx. pipiens (0.01) 57.3 40236 2.64 0.799 1124 23.28

WNV | Cx. pipiens 28.5 15944 1.44 0.852 237 5.393

SLEV | Cx. tarsalis 65.2 (0.01) 46656 (0.01) 1.67 (0.01) 0.692 (0.01) 1071 (0.1) 22.2 (0.1)

WEEV | Cx. tarsalis (0.01) 82.2 35791 392 30.502 1264 26.1

Vector competence (bc)

RVFV | Ae. taeniorhynchus (2) 8.4 4775 2.316 0.421 147 3.39

EEEV | Ae. triseriatus 6.68
(3)

3612
(3)

2.027
(3)

0.383
(3)

119
(0.01)

2.86
(0.01)

Continued on next page
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Appendix 1—table 8 continued

Trait/System q: a q: b Tmin: a Tmin: b Tmax: a Tmax: b

WNV | Cx. pipiens (0.5) 17.6 7857 1.403 0.534 219 5.42

WEEV | Cx. tarsalis (0.5) 9.56 5344 3.021 0.498 180 4.05

WNV | Cx. univittatus 13.7 (0.01) 2327 (0.01) 380 (0.01) 22.434 (0.01) 527 (0.1) 14.4 (0.1)

Parasite dev. rate (PDR)

RVFV | Ae. taeniorhynchus 20.2 (0.2) 331065 (0.2) 8.69
(2)

0.893 (2) 227 (2) 4.96
(2)

EEEV | Ae. triseriatus (2) 13.2 167635 6.76 0.609 183 4.05

WNV | Cx. pipiens 8.71
(2)

113904 (2) 3.51
(5)

0.356 (5) 140
(2)

3.17
(2)

WNV | Cx. quinquefasciatus 15.8 201154 8.09 0.772 202 4.44

SLEV | Cx. tarsalis 11.8 151149 6.31 0.584 179 3.97

WEEV | Cx. tarsalis 10.3 117795 9.97
(0.05)

0.768
(0.05)

162 3.62

WNV | Cx. tarsalis (2) 11.7 148079 5.92 0.541 169 3.77

WNV | Cx. univittatus 12.3 146439 9.02
(3)

0.773 (3) 174 (0.2) 3.87
(0.2)

Appendix 1—table 9. Priors for trait thermal response functions: lifespan.

Gamma distribution parameters (a [shape] and b [rate]) for priors for fitting thermal response parame-

ters (m and z). Scaled variances are noted in parentheses, either by the system name (applied to all

parameters) or by individual parameters. See Appendix 1 section: Priors for trait thermal responses.

Trait/System (var.) m: a m: b z: a z: b

Lifespan (lf)

Ae. taeniorhynchus (0.01) 119 52.9 268 3.19

Cx. pipiens (0.01) 117 42.4 238 2.39

Cx. quinquefasciatus (0.01) 110 32.9 207 1.78

Cx. tarsalis (0.1) 124 43.0 249 2.42

Appendix 1—table 10. Model results for GAMs of mean incidence (per 1000 people) of West Nile

neuroinvasive disease as a function of average summer temperature.

Statistics for models fit with differing numbers of knots: edf (estimated degrees of freedom), Ref-df, F,

and p-value refer to the smoothed temperature term (see Fig A24 for plots). Dev. exp. = percent

deviance explained. Topt = temperature of peak incidence.

Panel in Fig A24 # knots edf Ref-df F p-value Adj. R2 Dev. exp. (%) Topt

A k = 4 2.96 2.99 15.87 4.03�10�10 0.018 2.33 23.8˚C

B k = 5 3.77 3.97 11.11 4.64�10�9 0.019 2.44 24.2˚C

C k = 6 4.71 4.96 11.97 4.77�10�11 0.022 2.85 23.5˚C

D k = 7 5.53 5.92 11.01 1.31�10�11 0.024 3.11 23.6˚C

E k = 8 6.55 6.93 11.12 2.73�10�13 0.026 3.62 24.1˚C

F k = 9 7.19 7.80 10.06 3.17�10�13 0.026 3.67 24.2˚C

Priors for trait thermal responses
We used gamma distribution parameters (a [shape] and b [rate]) for informative priors for each ther-

mal response parameter (Brière and quadratic functions: Tmin, Tmax, and q; linear functions: m and z).
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First, we fit a thermal response function (with uniform priors) to all the Aedes and Culex data for a

given trait except that of the focal vector species or vector–virus pair (i.e. the parameters for the pri-

ors for a for Culex pipiens were fit to the a data for all species except Cx. pipiens). Then we used

the ‘MASS’ package in R to fit a gamma distribution hyperparameters to the distribution from each

thermal response parameters.

The mean of the gamma distribution is equal to a/b, while the variance is determined by the mag-

nitude of the parameters (smaller values = higher variance). When fitting thermal responses, the

appropriate strength for the priors depends on the amount of data used to fit the priors and the

amount of the data for the focal trait. Prior strengths can be modified by scaling the variance (i.e.

multiplying the gamma parameters by <1 to increase the variance or >1 to decrease the variance)

without impacting the mean. In many cases we had to increase the variance because of the large

number of data points used to fit priors. In a few cases, we had to decrease the variance (e.g. to con-

strain Tmax for Briere functions for PDR where we had no observations at high temperatures, in order

to make it so PDR would not constrain R0 where there was no data). For biting rate (a) for Culex tar-

salis, we used a likelihood function where Tmin and q had data informed priors and Tmax had uniform

priors (as used to fit the priors) in order to best capture the thermal response of the data.

Sensitivity and uncertainty analyses
We performed two sensitivity analyses and one uncertainty analysis to understand what traits were

most important for determining and contributing to uncertainty in the thermal limits and optima. For

the first sensitivity analysis, we calculated the partial derivatives of R0 with respect to each trait

across temperature (T) and multiplied it by the derivative of the trait with temperature (i.e. the slope

of the thermal response). Equations A3-A6 (below) apply to both versions of the R0 model

(Equations A1 and A2). Equation A3 is for to all traits (x) that appear once in the numerator.

Equation A4, for biting rate (a), differs from previous analyses (Johnson et al., 2015;

Mordecai et al., 2017; Mordecai et al., 2013; Shocket et al., 2018; Tesla et al., 2018) because bit-

ing rate was cubed to account for fecundity measured per gonotrophic cycle rather than per day.

Equation A5 is for parasite development rate (PDR), and equation A6 is for lifespan (lf).

qR0

qx
�
qx

qT
¼

R0

2x
�
qx

qT
(A3)

qR0

qa
�
qa

qT
¼

3R0

2a
�
qa

qT
(A4)

qR0

qPDR
�
qPDR

qT
¼

R0

2 lf PDR2
�
qPDR

qT
(A5)

qR0

qlf
�
qlf

qT
¼

R0 1þ 3PDRð Þ

2 PDR lf 2
�
qlf

qT
(A6)

For the second sensitivity analysis, we held single traits constant while allowing all other traits to

vary with temperature. For the uncertainty analysis, we calculated the ‘total uncertainty’ across tem-

perature as the width of the 95% highest posterior density (HPD) interval across temperature for the

full model. Then, we calculated the HPD for ‘uncertainty for each trait’ by fixing all traits except the

focal trait at their posterior median value across temperature, while keeping the full posterior sample

of the focal trait. Then, we divided the uncertainty for each trait by the total uncertainty, calculated

across temperature, to estimate the proportion of uncertainty in R0 that was due to the uncertainty

in the focal trait.
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Appendix 1—figure 1. Thermal responses for mosquito traits in additional vector species.

Ae. taeniorhynchus (green), Ae. triseriatus (violet), Aedes vexans (teal), Cx. theileri (pink), and

Culiseta melanura (brown). (A) Mosquito development rate (MDR), (B) larval-to-adult survival (pLA),

and (C) biting rate (a), (D) lifespan (lf), (E) proportion ovipositing (pO) and (F) egg viability (EV).

Points without error bars are reported means from single studies; points with error bars are

averages of means from multiple studies (+ / - standard error, for visual clarity only; thermal

responses were fit to reported means). Solid lines are posterior distribution means; shaded areas are

95% credible intervals. The median thermal responses for these traits were printed in

Mordecai et al., 2019 (as part of Figure 3) without the trait data and 95% CIs and along with

thermal responses for six other vectors.
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Appendix 1—figure 2. Thermal responses for biting rate (a) showing individual data points. (A)

Culex pipiens, (B), Cx. quinquefasciatus, (C) Cx. tarsalis, and (D) Culiseta melanura. Solid lines are

posterior distribution means for the mean thermal response; black dashed lines are 95% credible

intervals for the mean thermal response; red dashed lines are 95% prediction intervals for observed

data (incorporating the fitted variance).
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Appendix 1—figure 3. Thermal responses for larval-to-adult survival (pLA) showing individual data

points. (A) Culex pipiens, (B), Cx. quinquefasciatus, (C) Cx. tarsalis, (D) Aedes vexans, (E) Ae.

triseriatus, and (F) Culiseta melanura. Solid lines are posterior distribution means for the mean

thermal response; black dashed lines are 95% credible intervals for the mean thermal response; red

dashed lines are 95% prediction intervals for observed data (incorporating the fitted variance).
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Appendix 1—figure 4. Thermal responses for mosquito development rate (MDR) showing individual

data points. (A) Culex pipiens, (B), Cx. quinquefasciatus, (C) Cx. tarsalis, (D) Aedes vexans, (E) Ae.

triseriatus, and (F) Culiseta melanura. Solid lines are posterior distribution means for the mean

thermal response; black dashed lines are 95% credible intervals for the mean thermal response; red

dashed lines are 95% prediction intervals for observed data (incorporating the fitted variance).
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Appendix 1—figure 5. Thermal responses for adult mosquito lifespan (lf) showing individual data

points. (A) Culex pipiens, (B), Cx. quinquefasciatus, (C) Cx. tarsalis, and (D) Aedes taeniorhynchus.

When data were reported by sex, only female data were used. Solid lines are posterior distribution

means for the mean thermal response; black dashed lines are 95% credible intervals for the mean

thermal response; red dashed lines are 95% prediction intervals for observed data (incorporating the

fitted variance).
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Appendix 1—figure 6. Thermal responses for fecundity traits showing individual data points. Traits:

(A) Reproduction measured as eggs per female per gonotrophic cycle (EFGC), (B) reproduction

measured as eggs per raft (ER) (C–E) proportion ovipositing (pO), and (F–I) egg viability (EV). Vector

species: (A,C,F) Culex pipiens, (B,D,G), Cx. quinquefasciatus, (E) Culiseta melanura, (H) Cx. theileri,

and (I) Aedes vexans. Solid lines are posterior distribution means for the mean thermal response;

black dashed lines are 95% credible intervals for the mean thermal response; red dashed lines are

95% prediction intervals for observed data (incorporating the fitted variance).
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Appendix 1—figure 7. Thermal responses for pathogen development rate (PDR) showing individual

data points. (A) West Nile virus (WNV) in Culex pipiens, (B), WNV in Cx. quinquefasciatus, (C) WNV

in Cx. tarsalis, (D) WNV in Cx. univittatus, (E) St. Louis Encephalitis virus (SLEV) in Cx. tarsalis, (F)

Western Equine Encephalitis virus (WEEV) in Cx. tarsalis, and (G) Eastern Equine Encephalitis virus

(EEEV) in Aedes triseriatus. Solid lines are posterior distribution means for the mean thermal

response; black dashed lines are 95% credible intervals for the mean thermal response; red dashed

lines are 95% prediction intervals for observed data (incorporating the fitted variance).
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Appendix 1—figure 8. Thermal responses for vector competence traits in Culex tarsalis, showing

individual data points. Traits: (A,B,F) transmission efficiency (b, # transmitting / # infected), (C,E)

infection efficiency (c, # infected / # exposed), and (D) vector competence (bc, # infected / #

exposed). Viruses: (A) West Nile virus (WNV), (B–D) Western Equine Encephalitis virus (WEEV), (E,F)

St. Louis Encephalitis virus (SLEV). Solid lines are posterior distribution means for the mean thermal

response; black dashed lines are 95% credible intervals for the mean thermal response; red dashed

lines are 95% prediction intervals for observed data (incorporating the fitted variance).
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Appendix 1—figure 9. Thermal responses for vector competence traits showing individual data

points. Traits: (A,E,F) infection efficiency (c, # infected / # exposed) and (B,C,D,G) vector

competence (bc, # infected / # exposed). Viruses and vectors: (A,B) West Nile virus (WNV) in Culex

pipiens, (C) WNV in Cx. univittatus, (D) Eastern Equine Encephalitis virus (EEEV) in Ae. triseriatus, (E)

Sindbis virus (SINV) in Culex pipiens, (F) SINV in Aedes taeniorhynchus, and (G) Rift Valley Fever virus

(RVFV) in Ae. taeniorhynchus. Solid lines are posterior distribution means for the mean thermal

response; black dashed lines are 95% credible intervals for the mean thermal response; red dashed

lines are 95% prediction intervals for observed data (incorporating the fitted variance).
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Appendix 1—figure 10. Medians and 95% credible intervals for thermal limits and optima of R0

models across temperate and tropical mosquito-borne disease systems. Models in order from top to

bottom: Eastern Equine Encephalitis virus (EEEV) in Aedes triseriatus (dark purple; this paper),

Western Equine Encephalitis virus (WEEV) in Culex. tarsalis (light purple; this paper), Sindbis virus

(SINV) in Cx. pipiens (dark blue; this paper), West Nile virus (WNV) in Cx. univittatus (medium blue;

this paper), WNV in Cx. tarsalis (light blue, this paper), St. Louis Encephalitis virus (SLEV) in Cx.

tarsalis (dark teal; this paper), WNV in Cx. pipiens (light teal; this paper), WNV in Cx.

quinquefasciatus (dark green; this paper), Plasmodium falciparum malaria in Anopheles spp. (light

green; Johnson et al., 2015), Rift Valley Fever virus (RVFV) in Ae. taeniorhynchus (yellow; this

paper), SINV in Ae. taeniorhynchus (light orange; this paper), Ross River virus (RRV) in Cx.

annulirostris (medium orange; Shocket et al., 2018), dengue virus (DENV) in Ae. albopictus (dark

orange; Mordecai et al., 2017), Murray Valley Encephalitis virus (MVEV) in Cx. annulirostris (light

red; Shocket et al., 2018), Zika virus (ZIKV) in Ae. aegypti (medium red; Tesla et al., 2018), DENV in

Ae. aegypti (dark red; Mordecai et al., 2017). Figure is identical to Figure 2 in Mordecai et al.,

2019.
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Appendix 1—figure 11. Temperature-dependent R0, sensitivity analyses, and uncertainty analysis

for model of West Nile Virus (WNV) in Culex pipiens. (A) Median temperature-dependent R0 (black

line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1: derivative with respect

to temperature for R0 (black) and partial derivatives with respect to temperature for each trait. (C)

Sensitivity analysis #2: relative R0 calculated with single traits held constant. (D) Uncertainty analysis

using highest posterior density (HPD) interval widths: the proportion of total uncertainty due to each

trait. (B–D) Trait colors: biting rate (a, red), vector competence (bc, orange), adult lifespan (lf,

green), parasite development rate (PDR, cyan), fecundity (EFGC, light blue), egg viability (EV, dark

blue), larval survival (pLA, purple), and mosquito development rate (MDR, pink). All traits from Cx.

pipiens.
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Appendix 1—figure 12. Temperature-dependent R0, sensitivity analyses, and uncertainty analysis

for model of West Nile Virus (WNV) in Culex quinquefasciatus. (A) Median temperature-dependent

R0 (black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1: derivative

with respect to temperature for R0 (black) and partial derivatives with respect to temperature for

each trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits held constant. (D)

Uncertainty analysis using highest posterior density (HPD) interval widths: the proportion of total

uncertainty due to each trait. (B–D) Trait colors: biting rate (a, red), vector competence (bc, orange),

adult lifespan (lf, green), parasite development rate (PDR, cyan), fecundity (EFGC, light blue), egg

viability (EV, dark blue), larval survival (pLA, purple), mosquito development rate (MDR, pink), and

proportion ovipositing (pO, grey). Vector competence (bc) from Cx. univitattus; all other traits from

Cx. quinquefasciatus.
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Appendix 1—figure 13. Temperature-dependent R0, sensitivity analyses, and uncertainty analysis

for model of West Nile Virus (WNV) in Culex tarsalis. (A) Median temperature-dependent R0 (black

line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1: derivative with respect

to temperature for R0 (black) and partial derivatives with respect to temperature for each trait. (C)

Sensitivity analysis #2: relative R0 calculated with single traits held constant. (D) Uncertainty analysis

using highest posterior density (HPD) interval widths: the proportion of total uncertainty due to each

trait. (B–D) Trait colors: biting rate (a, red), transmission efficiency (b, orange), adult lifespan (lf,

green), parasite development rate (PDR, cyan), fecundity (EFGC, light blue), egg viability (EV, dark

blue), larval survival (pLA, purple), and mosquito development rate (MDR, pink). Fecundity (EFGC)

and egg viability (EV) from Cx. pipiens; all other traits from Cx. tarsalis.
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Appendix 1—figure 14. Temperature-dependent R0, sensitivity analyses, and uncertainty analysis

for model of West Nile Virus (WNV) in Culex univittatus. (A) Median temperature-dependent R0

(black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1: derivative with

respect to temperature for R0 (black) and partial derivatives with respect to temperature for each

trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits held constant. (D) Uncertainty

analysis using highest posterior density (HPD) interval widths: the proportion of total uncertainty due

to each trait. (B–D) Trait colors: biting rate (a, red), vector competence (bc, orange), adult lifespan

(lf, green), parasite development rate (PDR, cyan), fecundity (EFGC, light blue), egg viability (EV,

dark blue), larval survival (pLA, purple), and mosquito development rate (MDR, pink). Infection traits

(bc and PDR) from Cx. univittatus; all other traits from Cx. pipiens.
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Appendix 1—figure 15. Temperature-dependent R0, sensitivity analyses, and uncertainty analysis

for St. model of St. Louis Encephalitis Virus (SLEV) in Culex tarsalis. (A) Median temperature-

dependent R0 (black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1:

derivative with respect to temperature for R0 (black) and partial derivatives with respect to

temperature for each trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits held

constant. (D) Uncertainty analysis using highest posterior density (HPD) interval widths: the

proportion of total uncertainty due to each trait. (B–D) Trait colors: biting rate (a, red), transmission

efficiency (b, orange), infection efficiency (c, brown), adult lifespan (lf, green), parasite development

rate (PDR, cyan), fecundity (EFGC, light blue), egg viability (EV, dark blue), larval survival (pLA,

purple), and mosquito development rate (MDR, pink). Fecundity (EFGC) and egg viability (EV) from

Cx. pipiens; all other traits from Cx. tarsalis.

Shocket et al. eLife 2020;9:e58511. DOI: https://doi.org/10.7554/eLife.58511 56 of 67

Research article Ecology Epidemiology and Global Health

https://doi.org/10.7554/eLife.58511


10 15 20 25 30 35 40

0

10

20

30

40

50

Temperature°C)

R
0

A

WEEV in Cx. tarsal is

10 15 20 25 30 35

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Temperature (°C)

S
e

n
s
it
iv

it
ie

s
 (

p
a

rt
ia

l 
d

e
ri

va
ti
ve

s
)

a

b
c

lf

PDR

EFGC

EV
pLA

MDR
R0

B

10 15 20 25 30 35 40

Temperature (°C)

R
e

la
ti
ve

 R
0
 (

w
it
h

 1
 t
ra

it
 h

e
ld

 c
o

n
s
ta

n
t) C

10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

Temperature (°C)

W
id

th
 o

f 
H

P
D

 i
n

te
rv

a
l 
o

f 
U

n
c
e

rt
a

in
ty

D

Appendix 1—figure 16. Temperature-dependent R0, sensitivity analyses, and uncertainty analysis

for model of Western Equine Encephalitis Virus (WEEV) in Culex tarsalis. (A) Median temperature-

dependent R0 (black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1:

derivative with respect to temperature for R0 (black) and partial derivatives with respect to

temperature for each trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits held

constant. (D) Uncertainty analysis using highest posterior density (HPD) interval widths: the

proportion of total uncertainty due to each trait. (B–D) Trait colors: biting rate (a, red), transmission

efficiency (b, orange), infection efficiency (c, brown), adult lifespan (lf, green), parasite development

rate (PDR, cyan), fecundity (EFGC, light blue), egg viability (EV, dark blue), larval survival (pLA,

purple), and mosquito development rate (MDR, pink). Fecundity (EFGC) and egg viability (EV) from

Cx. pipiens; all other traits from Cx. tarsalis.
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Appendix 1—figure 17. Temperature-dependent R0, sensitivity analyses, and uncertainty analysis

for model of Eastern Equine Encephalitis Virus in Aedes triseriatus. (A) Median temperature-

dependent R0 (black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1:

derivative with respect to temperature for R0 (black) and partial derivatives with respect to

temperature for each trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits held

constant. (D) Uncertainty analysis using highest posterior density (HPD) interval widths: the

proportion of total uncertainty due to each trait. (B–D) Trait colors: biting rate (a, red), vector

competence (bc, orange), adult lifespan (lf, green), parasite development rate (PDR, cyan), fecundity

(EFGC, light blue), egg viability (EV, dark blue), larval survival (pLA, purple), mosquito development

rate (MDR, pink), and proportion ovipositing (pO, grey). Fecundity (EFGC), egg viability (EV), and

lifespan (lf) from Cx. pipiens; biting rate (a) and proportion ovipositing (pO) from Culiseta melanura;

all other traits from Ae. triseriatus. Note: technically fecundity as eggs per female per gonotrophic

cycle (EFGC) has already accounted for the proportion ovipositing (pO). However, we selected this

trait fit because it was very similar to the ER thermal response from Cx. quinquefasciatus, but slightly

wider (more conservative).
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Appendix 1—figure 18. Temperature-dependent R0, sensitivity analyses, and uncertainty analysis

for model of Sindbis Virus in Culex pipiens. (A) Median temperature-dependent R0 (black line) with

95% credible intervals (dashed red lines). (B) Sensitivity analysis #1: derivative with respect to

temperature for R0 (black) and partial derivatives with respect to temperature for each trait. (C)

Sensitivity analysis #2: relative R0 calculated with single traits held constant. (D) Uncertainty analysis

using highest posterior density (HPD) interval widths: the proportion of total uncertainty due to each

trait. (B–D) Trait colors: biting rate (a, red), infection efficiency (c, brown), adult lifespan (lf, green),

fecundity (EFGC, light blue), egg viability (EV, dark blue), larval survival (pLA, purple), and mosquito

development rate (MDR, pink). All traits from Cx. pipiens. NOTE: The raw R0 calculation used

PDR = 1, which is not biologically reasonable trait value.
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Appendix 1—figure 19. Temperature-dependent R0, sensitivity analyses, and uncertainty analysis

for model of Sindbis Virus in Aedes taeniorhynchus. (A) Median temperature-dependent R0 (black

line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1: derivative with respect

to temperature for R0 (black) and partial derivatives with respect to temperature for each trait. (C)

Sensitivity analysis #2: relative R0 calculated with single traits held constant. (D) Uncertainty analysis

using highest posterior density (HPD) interval widths: the proportion of total uncertainty due to each

trait. (B–D) Trait colors: biting rate (a, red), infection efficiency (c, brown), adult lifespan (lf, green),

fecundity (EFGC, light blue), egg viability (EV, dark blue), larval survival (pLA, purple), and mosquito

development rate (MDR, pink). Fecundity (EFGC) and biting rate (a) from Culex pipiens; egg viability

(EV) and larval traits (pLA and MDR) from Ae. vexans; all other traits from Ae. taeniorhynchus.

NOTE: The raw R0 calculation used PDR = 1, which is not biologically reasonable trait value.
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Appendix 1—figure 20. Temperature-dependent R0, sensitivity analyses, and uncertainty analysis

for model of Rift Valley Fever Virus in Aedes taeniorhynchus. (A) Median temperature-dependent R0

(black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1: derivative with

respect to temperature for R0 (black) and partial derivatives with respect to temperature for each

trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits held constant. (D) Uncertainty

analysis using highest posterior density (HPD) interval widths: the proportion of total uncertainty due

to each trait. (B–D) Trait colors: biting rate (a, red), vector competence (bc, orange), adult lifespan

(lf, green), parasite development rate (PDR, cyan), fecundity (EFGC, light blue), egg viability (EV,

dark blue), larval survival (pLA, purple), and mosquito development rate (MDR, pink). Fecundity

(EFGC) and biting rate (a) from Culex pipiens; egg viability (EV) from Cx. theileri; larval traits (pLA

and MDR) from Ae. vexans; all other traits from Ae. taeniorhynchus.
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Appendix 1—figure 21. Histograms of Tmin, optimum, and Tmax for transmission (R0) models. Tmin

(left column), optimum (center column), and Tmax (right column). Top row (A–C): West Nile virus

(WNV) in four vectors: Culex pipiens (grey), Cx. quinquefasciatus (red), Cx. tarsalis (blue), and Cx.

univitattus (orange). Middle row (D–F): three viruses in Cx. tarsalis: WNV (same as in top row, bright

blue), Western Equine Encephalitis virus (WEEV, light blue), and St. Louis Encephalitis virus (SLEV,

dark blue). Bottom row (H–J): Sindbis virus (SINV) in Aedes taeniorhynchus (grey), SINV in Cx.

pipiens (dark green), Rift Valley Fever virus (RVFV) in Ae. taeniorhynchus (light green), and Eastern

Equine Encephalitis virus (EEEV) in Ae. triseriatus (purple).
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Appendix 1—figure 22. Comparing alternative model parameterizations. Several models had

multiple potentially valid choices for traits; we show these alternative models here (dashed lines;

base models from main text in solid lines) to show that they make very little difference, except in D.

(A) Models for EEEV in Ae. triseriatus with larval traits (larval-to-adult survival [pLA] and mosquito

development rate [MDR]) from Ae. triseriatus (violet, from the main text) and larval traits from Cs.

melanura (black). We also show larval traits from Cs. melanura without proportion ovipositing (pO) in

the model (grey), since the thermal responses for EFCG (eggs per female per gonotrophic cycle, in

Cx. pipiens) and ER (eggs per raft, in Cx. quinquefasciatus) were nearly identical even though the

units were different, probably because the ER data were not very informative and the priors strongly

shaped the thermal response. (B) Models for WNV in Cx. quinquefasciatus, with (light red, from the

main text) and without (dark red) the thermal response for fecundity (as eggs per raft, ER), for the

same reason as in A. (C) Models for WEEV in Cx. tarsalis with vector competence estimated by

infection efficiency (c, Figure 6D) and transmission efficiency (b, Figure 6E) measured separately

(blue, from the main text) or by vector competence measured as a single trait (bc, Figure 6F; light

blue). (D) Models for RVFV in Ae. taeniorhynchus with lifespan from Ae. taeniorhynchus (light green,

from the main text) or from Cx. pipiens (dark green). We chose the Ae. taeniorhynchus version for

the main text because it is the same species the infection traits (PDR, bc) were measured in, and that

choice strongly impacted the results.
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Appendix 1—figure 23. Comparison with previous R0 models for transmission of West Nile virus.

Models taken from this paper (solid lines: Cx. pipiens [grey], Cx. quinquefasciatus [red], Cx. tarsalis

[blue], and Cx. univittatus [orange]), from Paull et al., 2017 (dashed lines: Cx. pipiens [grey], Cx.

quinquefasciatus [red], and Cx. tarsalis [blue]), from Vogels et al., 2017 (Cx. pipiens [grey] and Cx.

pipiens molestus [black]), and from Kushmaro et al., 2015 (not species specific, dot-dashed line

[brown]).
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Appendix 1—figure 24. Temperature splines from GAMs of mean incidence (per 1000 people) of

West Nile neuroinvasive disease as a function of average summer temperature. (A–F) Models are fit

with differing numbers of knots (4–9). In all models, incidence peaks around 24˚C (Topt = 23.5–24.2˚

C).
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Appendix 1—figure 25. LOESS models of mean incidence (per 1000 people) of West Nile neuroin-

vasive disease (2000–2016) as a function of average summer temperature. Points are means for bins

of 42 counties (+ / - SE). Lines are locally estimated scatterplot smoothing (LOESS) regression

models with different smoothing (span) parameters: 0.1 (red), 0.25 (orange), 0.5 (green), 0.6 (cyan),

0.75 (light blue), 1 (dark blue), and 2 (violet). Models were fit to raw county-level data (n = 3109,

binned for visual clarity). The best model (span = 0.6, which appropriately balances overfitting and

underfitting the data) estimates that incidence peaks at 23.9˚C.
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Appendix 1—figure 26. Raw county-level data (n = 3109) for mean incidence (per 1000 people) of

neuroinvasive West Nile disease (2000–2016) as a function of average summer temperature.
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