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PATCH REEFS IN BISCAYNE NATIONAL PARK, FL: 
SEDIMENTS, FORAMINIFERAL DISTRIBUTIONS AND A COMPARISON OF 

THREE BIOTIC INDICATORS OF REEF HEALTH 
   

Alexa Ramirez 
 

ABSTRACT 
 

Coral cover remains highest on patch reefs at the northern end of the Florida reef 

tract.  The reasons for this trend are not well understood, but may be related to the 

protection from extreme variations in water quality parameters provided by the near 

constant presence of islands at the north extent of the Florida Keys. 

Three indices have been developed based on Foraminifera and sediment 

constituents.  Two of the indices, the FORAM Index and the SEDCON Index, were 

developed to indicate the suitability of a reef environment for continued reef accretion.  

The third index, the Photic Index, is an assessment of photic stress on reefs based on 

incidence of bleaching in a species of Foraminifera, Amphistegina gibbosa, which is 

known to experience loss of algal endosymbionts similar to bleaching in corals. 

Patch reefs were sampled in Biscayne National Park, FL to assess sediment 

characteristics and foraminiferal assemblages, as well as to examine trends in the three 

indices.  Sediments associated with a majority (59%) of reefs were coarse sands; muddy 

sediments were restricted to a few inner patch reefs that were isolated from the influence 

of Caesar’s Creek, which flushes water from inside Biscayne Bay onto the open shelf.  

Unidentifiable grains predominated in the sediment constituents, along with calcareous 
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algae and molluskan debris.  Shells from 82 genera of Foraminifera were identified in the 

sediments.  Quinqueloculina was the most consistently common genus.  Percent mud was 

the single most influential measured variable on the distribution of both sediment 

constituents and foraminiferal assemblages.  Analysis of bleaching in the foraminifer 

Amphistegina gibbosa revealed that photo-oxidative stress was chronic at 94% of the 

sites. 

Patterns of FORAM and SEDCON Index values and their similarity to 

temperature, salinity, and percent mud distributions show that Caesar’s Creek is affecting 

the benthic community in its immediate vicinity by providing flow that limits the 

accumulation of mud and potentially other anthropogenic stressors.  Overall this study 

suggests that the reefs in this area are marginal for continued reef growth. A more 

detailed study of water quality through Caesar’s Creek should be conducted to determine 

exactly how it is affecting the reefs in Biscayne National Park. 
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INTRODUCTION 
 

Reef Decline in the Florida Keys 

 
Coral reefs worldwide are in a state of decline.  Reefs are of immense economic 

importance to the human populations around them.  They absorb wave energy, protecting 

islands and coastal areas from erosion and storm surge; they are a key source of jobs in 

tourism and fisheries; and they potentially harbor cures for many diseases (Lidz 1997, 

Reaser et al. 2000).  Corals are not only biologically important in nutrient-poor waters; 

they also provide the substrate upon which much of the community around them is based 

(Hallock et al. 2006).  The Florida reef tract is no exception to the aforementioned 

benefits.   

In 1996, stony coral cover on the Florida Keys’ reefs was estimated at 11.9 

percent.  As of 2004, coral cover had declined to 6.6%, with patch reefs having the 

highest at 16% (Beaver et al. 2005).  The industries that depend on the reefs may be 

contributors to this decline, along with the general urbanization of Miami and the Keys 

(LaPointe and Clark 1992, Porter and Meier 1992, Lidz 1997).   

Many factors have contributed to the loss of coral cover, complicating the task of 

understanding and managing coral-reef ecosystems.  One result of developed coastlines is 

often an increase in sedimentation to the offshore environment.  While the reefs in 

Biscayne National Park are relatively removed from direct influences of coastal 

sedimentation, their proximity to heavily used boat channels (Hawk Channel and 
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Caesar’s Creek) may leave them susceptible to sedimentation as a result of resuspension.  

Within Biscayne Bay, sedimentation rates have been measured to be 50-100mg cm-2 day-1 

(Lirman et al. 2003).  Lirman also measured higher rates of sedimentation in the vicinity 

of Caesar’s Creek, a very active boating channel. 

Frequently associated with sedimentation as a result of coastal runoff are excess 

nutrients from agricultural and suburban fertilizers, as well as from human waste.  This is 

especially important in areas similar to Biscayne National Park that are in close proximity 

to major urban areas (i.e., Miami).  Carnahan et al. (2008) found evidence of elevated 

levels of certain heavy metals in the mud fractions of sediments collected throughout 

Biscayne Bay.  In southern Biscayne Bay she noted an area of “remarkably high toxicity” 

that could not be explained through her study.  Because of the high potential for sediment 

resuspension as a result of currents, hurricanes, and boat traffic in Biscayne National 

Park, sediments cannot be considered a permanent sink for contaminants.  Resuspended 

sediments may also be an indirect source of pollution and stress in impacted marine 

environments (Latimer et al. 1999, Lirman et al. 2003). 

Turbid, nutrient-rich waters are not suitable habitat for mixotrophic organisms 

like corals (i.e., that host algal endosymbionts), which historically thrived in clear, 

oligotrophic environments.  Elevated nutrient exposure can have direct effects on a coral 

such as increased symbiont densities that result in slower growth rates as a result of 

competition for CO2 and/or carbonate between photosynthesis and calcification (Szmant 

2002).  Indirect effects include increased biomass of fleshy algae that may over grow and 

smother corals (Szmant 2002).  In this way, nutrient loading tends to favor growth of 

macroalgae over hermatypic corals (Hallock et al. 1993). The end result is a community 
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phase shift from stony coral-dominated reefs to communites dominated by soft coral, 

sponges, and algae (Hallock et al. 1993; Dustan 1999).  

In addition to local anthropogenic stressors, global stressors such as increased sea 

surface temperatures and ozone depletion have led to higher frequencies and intensities of 

coral bleaching that are detrimental to coral reefs (Hoegh-Guldberg 1999).  Bleaching is a 

natural response to stress in corals that can occur for several reasons including 

sedimentation, temperature extremes, and solar radiation (Talge and Hallock 2003, 

Hallock et al. 2006).  Beaver et al. (2005) recorded an eight-year decline in stony coral 

cover in the Florida reef tract from 1996 to 2004.  Of the eight years the only period of 

significant coral-cover decline occurred between 1997 and 1999.  This coincided with a 

world-wide bleaching event in 1998 as a result of warmer-than-normal sea surface 

temperatures (at least 1°C higher than the summer maximum) due to an El Niño Southern 

Oscillation perturbation (Hoegh-Guldberg 1999).   

Bleaching may also occur as a result of increased solar radiation caused by ozone 

depletion.  Since the 1970’s, measurements of stratospheric ozone have shown a trend of 

decreasing ozone at mid to high latitudes (Randel et al. 1999).  The ozone anomaly from 

the long-term mean at 45° N latitude is currently about -6% per decade (Randel et al. 

1999, Hallock et al. 2006).  Addition of anthropogenic chlorine is thought to be a main 

cause leading to the destruction of the ozone (Molina and Rowland 1974).  Large-scale 

volcanic eruptions (like that of Mt. Pinatubo in 1991) can amplify the effects of increased 

atmospheric chlorine through the injection of SO2 into the stratosphere, which then reacts 

to create more reactive chlorine compounds (Fig. 1) (Roscoe 2001). 
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Figure 1. Ozone anomaly at 45° N.  Two major volcanic events are noted to illustrate the 
effect on ozone depletion (modified from Roscoe 2001). 
 
 

For every 1% decrease in ozone then, the levels of UV-B reaching the sea surface 

increases by 2% (Shick et al. 1996).  This implies that the 10-15% decrease in 

stratospheric ozone that has occurred since the 1960’s has resulted in a 20-30% increase 

in UV-B reaching the oceans at Florida Keys latitudes (Hallock et al. 2006). 

While the aforementioned stressors hardly begin to encompass the spectrum of 

factors resulting in the degradation of reefs, they do play an important role. This is 

especially true near the highly urbanized areas of Miami and Key Largo. 

Patch Reefs in Biscayne National Park 

Patch reefs range from isolated coral heads a few meters wide to topographic 

features hundreds of meters in diameter.  They are found between the mainland and bank 

or barrier reefs and are usually surrounded by halos of bare sand (Shinn et al. 1989, 

Brock et al. 2004).  Because sea level limits the vertical growth of patch reefs, they 

typically occupy a range from 2 to 9m of water depth (Marszalek et al. 1977).  In theory, 



5 
 

patch reefs should be most susceptible to anthropogenic effects due to their proximity (3-

7 km) to shore (Ginsburg et al. 2001, Brock et al. 2004).   

The most concentrated area of patch reefs on the Florida reef tract is within the 

boundaries of Biscayne National Park (BNP) at the northern extent of the Florida reef 

tract (Fig. 2).  The near continuous presence of Elliot Key and Old Rhodes Key act as a 

buffer between the confined waters of Biscayne Bay and the open marine environment, 

thereby protecting the patch and bank reefs from natural variations in temperature and 

salinity, as well as anthropogenic pollutants (Ginsberg and Shinn 1993).  Seaward of 

Elliot Key approximately 4000 patch reefs have been identified using aerial photography 

(Marszalek et al. 1977).  Extreme water-quality variations and the presence of tidally 

influenced mobile sands have limited reef growth north of Elliot Key (Ginsberg and 

Shinn 1993, Lidz 1997).  The physical barrier provided by the Keys are a likely reason 

that patch reef coral cover in Biscayne National Park is relatively high and that patch 

reefs account for some of the healthiest reefs left in South Florida (Beaver et al. 2005). 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

Figure 2. South Florida; 
Biscayne National Park 
boundary shown in gray. 
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Foraminifera 

 The Foraminifera are a class of small shelled protists that exist in nearly all 

coastal and marine environments (SenGupta 1999).  One informal group, known as larger 

benthic foraminifers, has evolved symbiotic relationships with algae analogous to those 

in corals (Lee and Anderson 1991, Hallock 1999).  The success of symbiont-bearing 

foraminifers is highly dependent on nutrient flux, especially nitrogen.  The holobiont 

(host plus symbionts) functions optimally when the algal symbionts are deprived of 

nitrogen.  When light is available, the symbionts produce large amounts of simple sugars 

during photosynthesis, which are translocated for use by the host foraminifer. Therefore, 

food captured by the foraminifer can be used primarily for growth and reproduction.  

However, in the presence of excess fixed nitrogen, the symbionts are able to grow and 

reproduce, potentially causing harm to the foraminiferal host (Hallock 1999).  More 

importantly, smaller foraminifers are able to out-compete the larger symbiont-bearing 

foraminifers for space and microalgae are able to over-grow the slower growing 

foraminifers (Cockey et al. 1996, Fujita and Hallock 1999, Hallock 1999). 

 Increasing human populations have also increased the amount of nitrogen 

reaching coastal areas, resulting in either nutrification or eutrophication.  Human 

activities, including burning of fossil fuels and changes in land use world-wide, have 

caused an increase in atmospheric CO2 (Houghton et al. 2001), which increases ocean 

acidity and promotes dissolution of CaCO3 found in both coral skeletons and 

foraminiferal shells (Kleypas et al. 2006).  Both scenarios have produced changes in the 

benthic communities of tropical to subtropical waters where symbiont-bearing organisms 

have adapted to oligotrophic environments (Cockey et al. 1996, Hallock 1999, Hallock et 
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al. 2003).  Along the Florida reef tract over the past 30 years, foraminiferal assemblages 

have shifted from dominance of symbiont-bearing taxa to smaller heterotrophic taxa 

(Cockey et al. 1996), which has occurred in conjunction with coral-cover decline (Porter 

and Meier 1992, Dustan 1999). 

 In addition to the shift in assemblage composition, other changes have been 

documented in the foraminiferal community.  Beginning in June 1991, the foraminifer 

Amphistegina gibbosa experienced a population-wide bleaching event in the Florida 

Keys.  By 1992, population densities of A. gibbosa at depths to 20m decreased to less 

than 5% of densities from the previous year (Hallock and Talge 1993).  The onset of this 

bleaching event coincided with stratospheric ozone depletion following eruptions of Mt 

Pinatubo in the Philippines in May and June of 1991 (Hallock et al. 1995). Subsequent 

studies have shown foraminiferal bleaching to correspond closely to the summer solstice, 

with populations beginning to recover by late summer when temperatures peak (Hallock 

and Talge 1993; Williams and Hallock 2004, Hallock et al. 2006).  Some coral bleaching 

was also present on the reefs where the bleached foraminifers were observed (Hallock 

and Talge 1993).  By 1992, bleaching in Amphistegina spp. was observed on reefs from 

Australia to Hawaii and Jamaica (Hallock et al. 2006).  These observations reveal the 

potential importance of symbiont-bearing foraminifera to predict when photo-oxidative 

stress may impact the overall health of reef environments (Hallock 2000a, Hallock et al. 

2006).   

Biotic Indicators 

Water samples are often taken to assess the water quality of the reef environment.  

However, the results can often be misleading as excess nutrients are quickly taken up by 
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biological systems (Laws and Redalje 1979).  While water samples may indicate normal 

nutrient concentrations, the effect of increased nutrient flux into an ecosystem typically 

results in a community change (e.g., Hallock 1988) known as a phase shift (Done 1992; 

McManus and Polsenberg 2004).  By the time a water sample indicates a change in 

nutrients, the community has long been impacted (Hallock and Schlager 1986, Hallock et 

al. 1993, Hallock et al. 2006). 

Symbiont-bearing benthic foraminifera require similar water-quality parameters 

as corals and are typically abundant on healthy coral reefs.  Because of their relatively 

short life cycles and sensitivity to environmental conditions, the foraminiferal community 

can respond more quickly than corals to changes in water quality (Hallock 2000b, 

Hallock et al. 2003).  Foraminifers can be quickly and inexpensively collected to provide 

a statistically significant analysis of chronic reef stress (Hallock et al. 2003). 

As a consequence, two indices have been developed to relate the response of the 

calcifying benthic community to the status and suitability of the environment for future 

reef growth.  The FORAM Index (Hallock et al. 2003) and SEDCON Index (Daniels 

2005) were developed separately and each approaches the foraminifer-coral relationship 

from a slightly different perspective.   

Based on observations of coral-reef communities, including foraminiferal 

assemblages and sediment constituents, under a wide range of natural (e.g., Hallock 

1987, 1988) and anthropogenic (e.g., Hallock et al. 1993, Cockey et al. 1996) nutrient 

fluxes, Hallock (1995, 2000b, Hallock et al. 2003) proposed that foraminiferal 

assemblages and reef sediment constituents could provide low cost indicators of the 

potential for the environment to support mixotrophic, calcifying organisms (i.e., corals 
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and foraminifers dependant on algal symbiosis).  Moreover, sediment constituents might 

further provide a relative indicator of bioerosion rates.  Bioerosional processes are major 

determinants of whether a reef is accreting or eroding. 

A common scenario occurring along with and as a result of reef decline is the 

failure of reef communities to recover after a disturbance (e.g., hurricanes, bleaching or 

disease outbreaks, and ship groundings), which results in the decimation of large coral 

colonies decades to hundreds of years old.  Because large coral colonies can persist in 

conditions where coral larvae cannot recruit and therefore cannot replace previous 

colonies, the question arose: “How can scientists and resource managers predict if the 

environment can support continued coral dominance, including recovery following a 

catastrophic mortality event?” 

The FORAM (Foraminifera in Reef Assessment and Monitoring) Index (FI) 

focuses on assemblage changes within foraminiferal populations as reflected in reef 

sediments.  The short lifespan and large numbers of foraminifers within an assemblage 

allows for a differentiation between chronic reef decline and acute mortality events 

(Cockey et al. 1996, Hallock et al. 2003).  The basic underlying observation for this index 

is that sediments on healthy reefs have a larger proportion of shells of symbiont-bearing 

foraminifers compared to other smaller foraminifers and stress-tolerant foraminifers 

(Hallock 1988, Hallock et al. 2003).  The presence of excess nutrients allows smaller 

heterotrophic foraminifers to bloom which causes their shells to dominate over the larger 

taxa (Cockey et al. 1996).  In the calculation of the FORAM Index, a value of 2 would 

result from the presence of 100% other smaller foraminifers, indicating heterotrophic 

processes dominate on the reef.  To increase the FI value from 2, some symbiont-bearing 
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species must be present.  In an environment that supports abundant calcifying 

mixotrophs, at least 25% of the foraminiferal assemblage are likely to be symbiont-

bearing taxa, resulting in an FI value greater than 4.  The presence of stress-tolerant taxa 

in a sample results in a lowering of the FI value (Hallock et al. 2003, Carnahan et al. 

submitted).  As such, a differentiation between coral decline due to local nutrification or 

episodic events, like hurricanes or temperature extremes, is possible using the FORAM 

Index.  If chronic nutrification is present, as indicated by the foraminiferal assemblage, 

coral reefs will likely be unable to recover from and continue to decline after a short term 

stress event (Hallock et al. 2003). 

The SEDCON (Sediment Constituent) Index also uses reef sediment composition 

to assess the integrity of the reef system in the vicinity of the sample site (Daniels 2005).  

As previously noted, nutrification causes a phase shift in benthic community composition 

(LaPointe and Clark 1992; Porter and Meier 1992, Done 1992, McManus and Polsenberg 

2004).  In a reef environment, evidence for this shift should be observable in the 

carbonate-sediment composition (Hallock 1988).  Foraminifers are an important 

contributor to reef sediments, especially larger, symbiont-bearing foraminifers (Cockey et 

al. 1996).  Hallock (1988) noted that shells of large foraminifers, along with physically 

eroded, identifiable coral fragments, are characteristic in oligotrophic waters conducive to 

reef accretion.  Meanwhile, the presence of smaller foraminiferal tests, unidentifiable 

carbonate grains, and calcareous algal fragments are indications of higher nutrient flux to 

the system (Hallock 1988, 2000b; Cockey et al. 1996).  The potential for reef recovery 

following an acute event is dependent on water quality and rates of bioerosion (Hallock et 

al. 2006).  Both of these should be reflected in the composition of sediments.  
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The FORAM and SEDCON indices are based upon constituents in the sediments 

which accumulate over weeks to years and therefore these indices represent conditions on 

time frames of months to years. 

A third index, based on the abundance and condition of populations of 

Amphistegina spp., has been proposed (Hallock 1995, Hallock et al. 2004), but not yet 

fully developed.  Amphistegina spp. are abundant and nearly ubiquitous members of the 

benthic biota on coral reefs and warm water carbonate shelves world-wide.  The two 

most common species, A. gibbosa in the Western Atlantic and A. lessonii in the Indo-

Pacific, are very similar in habitat and habitat requirements (Hallock et al. 1986, 2004; 

Hallock 1999).  In 1991, Amphistegina gibbosa were first observed to be experiencing 

bleaching in the Florida Keys (Hallock et al. 1995).  However, foraminiferal bleaching 

precedes coral bleaching as they respond quickly to photo-oxidative stress that occurs 

during maximum solar radiation, rather than at maximum sea-surface temperatures 

(Hallock et al. 2006).  Since 1991, A. gibbosa populations have been monitored for size, 

symbiont loss (bleaching), and shell condition (Hallock et al. 1995, Williams et al. 1997, 

Hallock 2000a, Fisher 2007).  Williams (2002) reported that during periods of acute 

photic stress there was a correlation with low population densities and large specimen 

diameters, indicating suppressed reproduction.  Conversely, when photic stress was 

absent or chronic, population densities increased and mean diameter decreased (Williams 

et al. 1997, Williams 2002).   

The proposed index, variously referred to as Amphistegina Photic Index or the 

Amphi Index, requires examination of Amphistegina specimens collected live and would 

utilize both log-normalized abundance of Amphistegina (e.g., Hallock 1995) and degree 
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of bleaching (absent, chronic, or acute). Because response to increased radiation occurs 

over periods of days to weeks, this index could provide an assessment of environmental 

conditions over shorter time periods of weeks to months as opposed to the annual or 

inter-annual time scales of the FORAM and SEDCON indices. 

The potential benefit of these three indices is the ease with which they can be 

applied and that they do not require touching or disrupting the actual reef.  A simple 

collection of reef rubble or a small sediment sample is all that is necessary and can easily 

be incorporated into a preexisting monitoring program (Hallock et al. 2003).  In many 

cases, sediments are routinely collected for grain size or chemical analysis.  Sample 

processing for each index is kept as simple as possible in order to make them 

economically viable options for reef-monitoring programs throughout the world.  A 

stereomicroscope and a technician trained in identification are the main necessities 

(Hallock et al. 2003, Daniels 2005).   
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PROJECT OBJECTIVES 

The first goal of this project was to describe and characterize sediments and 

rubble samples at selected patch reefs in Biscayne National Park with respect to: 

• grain size distribution 

• total foraminiferal assemblages 

• sediment constituents 

• abundance of Amphistegina gibbosa and other live symbiont-bearing 
foraminifera  

• and the presence and prevalence of bleaching in A. gibbosa 
 

The second goal of this project was to characterize spatial variability in the above 

parameters and compare them with selected measured environmental parameters. 

The final goal was to test the three indices (FORAM, SEDCON, and Photic) on 

the BNP patch reefs to determine if they are comparable and useful in characterizing the 

patch reefs. 
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METHODS 

Field Area 

Sampling for this project was conducted in Biscayne National Park seaward of Elliot 

Key.  This area is affected by water emerging from Biscayne Bay in two areas: the main 

pass (also known as the Safety Valve), north of Elliot Key, and Caesar’s Creek between 

Elliot Key and Old Rhode’s Key (Wang et al. 2003).  USGS-LIDAR data and Landsat 

imagery were used to determine sampling sites (Fig. 3).  A total of 32 reefs along ten 

roughly east-west transects were sampled, including 30 patch reefs and two bank-barrier 

reefs (Pacific and Lugano).  Individual reefs were chosen to conform as much as possible 

to linear transects and were identified by the characteristic sand halos.  Several sites 

correspond to named reefs where past reef assessments have been conducted (Nirvana, 

Bug Reefs [Ginsburg et al. 2001] and Dome, Star, Elkhorn [Jaap and Wheaton 1977, 

Dupont et al. in press]) and/or buoyed reefs marked by Biscayne National Park. 

Elliot Key 
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Figure 3.  Sampling sites in Biscayne National Park  
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Sampling Methods 

Sampling was conducted in early May 2007.  At each reef, the following samples or 

environmental data were collected by SCUBA divers: 

• three replicates of ~3 pieces of coral rubble in a plastic Ziploc bag (for the Photic 

Index) 

• three replicates of ~15cm3 of sediment in plastic vials (for the FORAM and 

SEDCON Indices) 

• depth, dissolved oxygen, temperature, salinity, and pH 

Sediment samples were stored in a -40°C freezer until processed (Hallock et al. 

2003, Daniels 2005).  During collection, reef rubble samples were kept in a shaded area 

of the boat until they were able to be scrubbed with a soft toothbrush to remove sediment, 

algae, and attached fauna.  The resulting mix of sediment and seawater was stored in 1-

liter, wide-mouth containers for transport to the laboratory. 

In the laboratory, excess water was poured out of the containers and the sediment 

was distributed into large Petri dishes and covered with fresh seawater, and then 

maintained in a culture chamber set on a 12-hour light/dark cycle at 25°C until assessed.  

Further sampling details can be found in Williams et al. (1997) and Hallock et al. (2006).   

Sample Processing 

SEDCON and FORAM Indices   

Each sediment sample was washed with deionized water over a 63µm sieve into 

100 ml beakers to separate the mud from the sand-sized fraction of the sample.  Weights 

for the empty beakers were recorded prior to sieving so the dry weight of each sample 
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could be determined.  All were placed in a 60°C drying oven until dry.  After gently but 

thoroughly mixing the dried sample, a 1-gram sub-sample was taken for the FORAM 

Index analysis. Depending upon the grain size of the sample, a small scoop (~0.1g) was 

weighed, sprinkled over a gridded tray, and observed under a stereomicroscope (Hallock 

et al. 2003). 

A very fine artist’s brush (size 5/0), moistened with water, was used to pick 

foraminiferal specimens from the tray and place them on a micropaleontological faunal 

slide coated in water-soluble glue.  Additional portions of the 1-gram sub-sample were 

picked until a sample size of approximately 150-200 specimens was reached or the entire 

1-gram sample was analyzed.  A sample of this size has been shown to be a statistically 

similar to a sample size of 300 while also conserving processing time (Dix 2001, Hallock 

et al. 2003).  Each foraminifer was identified to the genus level to minimize 

inconsistencies in species identification.  Test deformities among the specimens were also 

noted.  

The remaining portion of the dried sediment was used for grain-size analysis 

(Folk 1974) and the SEDCON Index (Daniels 2005).  Grain-size analysis was conducted 

by sorting sediment samples through a set of sieves on a shaker table at medium strength 

for 10 minutes. Percent weights of each of the following size fractions were determined: 

> 2mm (-1 φ), 1-2 mm (0 φ), 0.5-1 mm (1 φ), 0.25-0.50 mm (2 φ), 0.125-0.250mm (3 φ), 

63 µm-0.125 mm (4 φ), < 63 µm (>4 φ).  For the sediment constituent analysis, the size 

fraction of 0.5-2mm was recombined for examination.  Using this size fraction reduces 

errors of misidentification (Daniels 2005).  A 1-gram sub-sample was sprinkled onto a 
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gridded tray; 300 calcareous grains were selected using a point-count method and 

transferred to a micropaleontological slide (as in the FORAM procedure) and identified. 

Live Symbiont-bearing Foraminifera (LSF) 

All Amphistegina gibbosa specimens were picked using forceps from the Petri 

dishes stored in the culture chambers.  Live individuals were determined by color and 

pseudopodial activity and were then counted, measured (maximum diameter to the 

nearest 50µm), and characterized.  Symbiont color was noted as normal, partly bleached 

(less than 50% loss of symbiont color), or bleached (more than 50% loss of symbiont 

color).  Other physical abnormalities, such as breakage, were noted (Williams et al. 1997, 

Hallock et al. 2006). 

The rubble, from which the sediment slurry was scrubbed, was photographed over 

gridded paper with centimeter squares.  The photographs were analyzed to determine 

surface area using Coral Point Count with Excel Extensions.  The surface areas were used 

to calculate densities of live foraminifers per 100cm2. 

 

Data Analysis 

Statistical Analysis 

After the raw data were collected and recorded, the assemblage data were 

standardized and square-root transformed to create cluster analyses and MDS (multi-

dimensional scaling) plots using the statistical package PRIMER v6 (Plymouth Routines 

In Multivariate Ecological Research, 2006). This determined how the samples clustered 

(Q-mode analysis) as well as how the variables (foraminiferal genera) clustered (R-mode 

analysis).  Square-root transformations were carried out on the assemblage data to down 
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weigh the presence of highly abundant taxa/sediment constituents.  Two-dimensional 

MDS plots were used in this analysis, which showed similarity between sites based on a 

Bray-Curtis similarity matrix.  For an MDS plot, the proximity between sites represented 

similarity and a stress level of ≤ 0.2 was considered to be a useful representation of 

relationships (Clarke and Warwick 2001).  The same process was carried out for R-mode 

analysis to define groupings of taxa. 

To enhance the interpretation of the MDS plots, the SIMPER (similarity 

percentages) routine was also performed in PRIMER.  This analysis identified clustering 

of samples and also the taxa or sediment constituents that contributed to the similarity 

within a group and the dissimilarity between groups.  This analysis is especially useful 

when the stress level of an MDS plot is high because it represents group structure based 

on the actual similarity matrix, not the MDS representation (Clarke and Gorley 2006). 

Another procedure included in PRIMER is known as BIO-ENV. This procedure 

was used to determine relationships between environmental data (temperature, salinity, 

dissolved oxygen, and pH) and the assemblage data, and was used to detect which 

environmental parameters matched variation in assemblage data between sites.   

Pearson’s correlation matrices were also created using Statistica 8.0 (2007) 

statistical software to further aid the interpretation of the data. 

Index Calculations 

Foraminifers identified to genus for the FORAM Index (FI) were separated into 

three functional groups: larger symbiont-bearing foraminifers, stress-tolerant taxa, and 

other smaller foraminifers.  The percent abundance of each of these groups was used to 

calculate the FORAM Index (Hallock et al. 2003) (Table 1).  An FI value greater than 4 
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indicates environments suitable for reef growth.  An FI value between 2 and 4 indicates 

marginal reef environments that may not be able to recover from a stress event.  Below 2, 

the environmental condition is poor and unsuitable for reef growth (Hallock et al. 2003).   

Similarly, the 300 grains of sediment previously identified were grouped into four 

functional groups for the SEDCON Index (SI) (Table 2).  The percent abundances of the 

functional groups were used to calculate an index value (Daniels 2005) (Table 3).  

Several texts were used to aid in the identification of sediment constituents (e.g., Bathurst 

1976; Scoffin 1987). This index is a modified version of the FORAM Index to include 

the range of sediments in addition to foraminiferal tests.  Like the FORAM Index, lower 

values indicate declining potential for reef accretion. 

The third index, the Photic Index, is based on the density of Amphistegina and the 

percent experiencing bleaching in a sample (Table 4).  Density of Amphistegina, like the 

FI and the SI, should reflect the suitability of the habitat for mixotrophic, calcifying 

organisms, though on a scale of weeks to months rather than months to years.  The 

incidence and intensity of bleaching relates only to photic stress on time scales of days to 

weeks and therefore can’t be directly compared to the sediment-based indices.   
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Table 1. Calculation of the FORAM Index 

FI = (10*Ps)+(Po)+(2*Ph) 

Where, Ps= Ns/T 
Po= No/T 
Ph= Nh/T 

 T = total number of specimens counted 

 Ns= number of symbiont-bearing Foraminifera 

 No=number of stress-tolerant Foraminifera* 

And, 

 Nh= number of other small, heterotrophic  
 Foraminifera 

* “Opportunistic” as defined by Hallock et al. 2003 is changed to “stress-tolerant” in this 
paper (Yanko et al. 1999, Carnahan 2005, Carnahan et al. submitted). 
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Table 2. Division of grains for sediment constituent analysis modified from Daniels 
(2005); exemplary photos of major sediment constituents can be found in Appendix V-b 

 

SI 
functional 

group 
Sediment grain 

Community Role/ 
Feeding mode 

Interpretation 

Pc 
Scleractinian Coral Primary reef builder, 

mixotrophic 
Area suitable for calcification 
by algal symbiosis 

Pf 
Larger, symbiont-
bearing foraminifers 

Sediment producer, 
mixotrophic 

Area suitable for calcification 
by algal symbiosis 

Coralline algae Framework builder, 
autotrophic 

Varies with other components 

Calcareous algae Sediment producers, 
autotrophic 

Nutrient signal, high CaCo3 
saturation 

Molluscs Grazers/predators, 
heterotrophic 

Food resources plentiful, 
nutrient signal 

Echinoid Spines Bioeroders/grazers, 
heterotrophic 

Bioerosion, nutrient signal 

Worm Tubes Heterotrophic Abundant food resources 

Pah 

Other (smaller 
foraminifers, 
bryozoans, fecal 
pellets, etc) 

Sediment producers, 
heterotrophic 

Abundant food resources 

Pu Unidentifiable Bioerosion proxy Bioerosion proxy 

 

Table 3. Calculation of the SEDCON Index (Daniels 2005) 

SI = (10*Pc)+(8*Pf)+(2*Pah)+(0.1*Pu) 

Where, Pc= Nc/T 
Pf= Nf/T 
Pah= Nah/T 
Pu=Nu/T 

T = toal number of grains counted (300) 

Nc= number of coral grains 

Nf=number of symbiont-bearing Foraminifera 

Nah=number of coralline algae, calcareous algae, 
and heterotrophic skeletal grains 

And, 

Nu= number of unidentifiable grains 
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Table 4. Matrix describing the proposed Photic Index. 
 

 

 

Pattern Analysis 

 Spatial patterns between the two sediment-based indices were compared based on 

their actual index values and also on the distribution of their SIMPER groupings.  The 

Kriging method of interpolation was used in Surfer v8.05, surface mapping system 

(Golden Software 2004), to create contours of SEDCON Index values and FORAM 

Index values.  In addition, contours were created for several of the measured water-

quality parameters (salinity, temperature, % mud, etc.).  Maps were produced using 

ArcMap v9.2 (ESRI 2006). 

GeoDA 0.9.5-i, geostatistical analysis software (Anselin et al. 2006), was used to 

determine if there was spatial autocorrelation and multivariate spatial correlation within 
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and between each of the parameters and to what extent the correlations were significant.  

To do this, Moran’s I was calculated.  This procedure was similar to calculating a 

Pearson’s correlation except that a point’s value was compared to a weighted average of 

its neighboring points’ values, such that there was spatial autocorrelation if a point was 

surrounded by points with similar values and further from points with a large difference 

in value.  This provided a spatial analysis of relationships between the calculated indices 

and the water-quality parameters to support the BIO-ENV procedure. 

 

Table 5. List of common abbreviations used in summarizing the results. 

Abbreviation Definition 

BNP Biscayne National Park 

FI FORAM Index 

SI SEDCON Index 

PI Photic Index 

DO Dissolved Oxygen 

LSF Live Symbiont-bearing Foraminifera 

Density 
# of foraminiferal shells per gram of 
sediment 

Genera # of genera 
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RESULTS 

Grain-Size Analysis 

 Grain size was calculated as a weight-percent distribution as defined by the 

Wentworth scale (Table 6).  Median grain size was calculated for samples from each reef 

site and a median Phi size class was determined.  At the majority of reef sites (59%), 

sediments had a median Phi size of 1 (coarse sand).  This size class, along with very 

coarse sand (accounting for 19% of sites), represented the range of sediment analyzed for 

the SEDCON Index.  Of the samples from the remaining sites, 16% had a median Phi of 

2 (medium sand) and 6.3% had a median Phi of 3 (fine sand) (Appendix I).   

 
Table 6.  Size classifications of sediments and summary of median grain size. 

Size Description Size range Phi (Φ) size 
class 

# of sites with median 
grain size 

Gravel/Granule >2mm -1 0 

Very coarse sand 1-2mm 0 6 

Coarse sand 0.5-1mm 1 19 

Medium sand 0.25-0.5mm 2 5 

Fine sand 0.125-0.25mm 3 2 

Very fine sand 63um-0.125mm 4 0 

Silt/clay/mud <63um >4 0 

 

 Samples from five sites (16%) contained more than 10% mud, with the highest 

percentage of mud being 33% at Bug Reef.  Contours of percent mud throughout the 

sampling area are illustrated in Figure 4. 
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Figure 4. Percent mud in sediments from patch reefs of Biscayne National Park 
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Environmental Data 

Temperature, salinity, dissolved oxygen (DO), and pH were measured at each site 

during sample collection.  Temperature varied only slightly with less than a 2°C range, 

while salinity varied less than 1‰.  However, both temperature and salinity showed 

evidence of a spatial pattern (Fig. 5) with significant (p<0.01) Moran’s I values (0.31 and 

0.27 respectively).  The two patterns also negatively correlated with each other, which 

can be seen in the Pearson’s correlation matrix constructed for relationships between 

environmental parameters (Table 7).  This is also supported by a significant bivariate 

Moran’s I (-0.33).  Since DO and pH had insignificant spatial autocorrelation, these 

parameters were excluded from further analysis because individually these parameters 

cannot effect spatial distribution of reefs if there is no pattern to their values.   

Salinity contours have an inshore-offshore trend, meaning salinity decreased 

offshore.  Off the mouth of Caesar’s Creek, a ‘bump’ in the salinity contours indicated a 

tongue of lower salinity waters (Fig. 5a).  The temperature contours also showed an 

inshore-offshore trend, warming offshore.  Further, the temperature contours also 

displayed a “bump’ similar to salinity in that warmer waters were in the same area that 

the lower salinity waters were located (Fig. 5b).  Both temperature and salinity 

significantly correlated with percent mud and density of forams, while salinity negatively 

correlated with depth. 
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Figure 5. Contours of a) salinity and b) temperature data collected during sampling 



29 
 

Table 7. Pearson’s correlation coefficients between environmental data (abbreviations as 
in Table 5) (Bold indicates significance at p<0.05) 
 

FI SI % Mud Depth LSF Phi Density Genera Temperature Salinity

FI 1.00

SI -0.53 1.00

% Mud -0.62 0.66 1.00

Depth 0.06 -0.25 -0.29 1.00

LSF 0.16 -0.19 -0.24 -0.18 1.00

Phi -0.40 0.42 0.73 -0.15 -0.07 1.00

Density -0.55 0.60 0.79 -0.17 -0.32 0.69 1.00

Genera -0.64 0.37 0.24 0.11 -0.01 0.09 0.32 1.00

Temperature 0.33 -0.61 -0.42 0.14 -0.09 -0.42 -0.46 -0.12 1.00

Salinity -0.47 0.46 0.53 -0.45 0.28 0.43 0.35 0.26 -0.48 1.00  

 

Foraminiferal Assemblages 

Among the 32 reefs, a total of 82 genera of Foraminifera were identified.  The 

raw data for these analyses, including counts and density, can be found in Appendix II.  

In Table 7, density (# of foraminiferal shells per gram of sediment) and genera (# of 

genera found at each site) were included as environmental data as they gave a very 

general view of the foraminiferal assemblage.  Note that the two variables had a 

significant positive correlation. 

The cluster and SIMPER analyses were run only on those foraminiferal 

assemblages where more than 50 specimens were present in a gram of sample. Replicates 

were analyzed separately so that out of 64 possible samples, 44 remained after removing 

those samples that did not contain sufficient specimens.  The resulting analysis showed 

that sites clustered into five major groups (A, B, C, D, E).  Each group had a within group 

similarity higher than 59% based on the SIMPER results.   

Figure 6 is the MDS plot of the foraminiferal assemblage data symbolized by 

their SIMPER groups.  Because the SIMPER groups generally match the clustering of the 
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MDS plot (stress value = 0.18), this is a viable representation of similarity between sites.  

Table 8 is the SIMPER output showing the average within group similarity, the percent 

that each genus contributes to the group’s similarity, and which FORAM Index 

functional group each genus belongs to.  SIMPER-generated dissimilarity tables between 

groups can be found in Appendix III.  Environmental data were averaged among sites 

within a group and are reported in Table 9. 

Group A consists of six sites with a similarity of 68%.  These sites dominate the 

area most immediately affected by Caesar’s Creek and also the upper and lower most 

edges of the sampling area (Fig. 7).  Other smaller foraminifers make up about 50% of 

the contribution while symbiont-bearing taxa account for approximately 35%.  Only one 

stress-tolerant genus is present in this group’s contributing taxa (Elphidium).  Group A 

sites are characterized as having very little mud, low densities of foraminifers, and the 

lowest diversity, with the second highest average FI value. 

Group B was the biggest cluster with nine sites having both replicates within it.  

This group represented the most intermediate of sites with all environmental parameters 

being right in the middle of their ranges and all replicates having a similarity of 67%.  It 

had a slightly higher contribution by stress-tolerant taxa (Elphidium, Bolivina, and 

Ammonia) as well as a higher contribution of other smaller foraminifers, and fewer 

symbiont-bearing Foraminifera.  Because group B represented the most intermediate 

group, any site that had one replicate in group B and one replicate in another group was 

graphically displayed as the other group to represent the transition away from 

intermediate. These sites included 2.1, 2.2, 3.1, 9.1, 9.2, and 9.3. 
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Figure 6. MDS plot of reefs represented by their SIMPER groups defined by similarity of 
foraminiferal assemblages. 
 
 
 
Table 8. Within-group similarity of the SIMPER-defined groups for the foraminiferal 
assemblage. (*FI group refers to FORAM Index functional group where SB-symbiont-
bearing, ST-stress-tolerant, and HT-heterotrophic) 
 
Group A   -   n=9                                                                        Average similarity: 68% 

Genus FI group* Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Quinqueloculina HT 4.08 9.64 8.49 14.2 14.2 

Archaias SB 4.25 9.57 3.29 14.1 28.2 

Discorbis HT 3.63 8.33 5.87 12.2 40.5 

Laevipeneroplis SB 2.87 6.22 4.22 9.14 49.6 

Triloculina HT 2.63 5.43 3.69 7.98 57.6 

Siphonaperta HT 2.54 5.01 2.97 7.36 64.9 

Rosalina HT 1.87 4.25 6.6 6.24 71.2 

Elphidium ST 1.62 3.57 4.89 5.24 76.4 

Amphistegina SB 1.68 3.33 3.44 4.89 81.3 

Cyclorbiculina SB 1.49 3.12 3.32 4.58 85.9 

Textularia HT 1.27 2.21 1.56 3.24 89.1 

Asterigerina SB 0.85 1.41 1.13 2.07 91.2 

A 

D 
E 

C 

B 
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Table 8. (Continued) 
 
Group B   -    n=24                                                                      Average similarity: 67% 

Genus FI group* Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Quinqueloculina HT 5.36 10.8 9.94 16.1 16.1 

Triloculina HT 3.09 6.02 5.81 8.95 25.0 

Laevipeneroplis SB 2.99 5.72 6.33 8.51 33.5 

Rosalina HT 2.51 4.71 5.63 7.01 40.6 

Archaias SB 2.05 3.58 3.44 5.33 45.9 

Siphonaperta HT 1.81 3.25 3.3 4.83 50.7 

Discorbis HT 1.81 3.09 2.4 4.6 55.3 

Elphidium ST 1.35 1.98 1.6 2.95 58.3 

Amphistegina SB 1.22 1.96 1.94 2.92 61.2 

Cycloforina HT 1.18 1.94 1.92 2.88 64.1 

Triloculinella HT 1.1 1.78 1.65 2.65 66.7 

Textularia HT 1.3 1.73 1.3 2.57 69.3 

Miliolinella HT 1.04 1.51 1.32 2.25 71.5 

Articulina HT 1.01 1.45 1.33 2.15 73.7 

Peneroplis SB 0.95 1.4 1.37 2.09 75.8 

Bolivina ST 1.05 1.3 1 1.93 77.7 

Broekina SB 1.02 1.29 1.01 1.91 79.6 

Haynesina ST 0.97 1.22 0.92 1.82 81.4 

Spiroloculina HT 0.83 1.21 1.22 1.8 83.2 

Ammonia ST 0.74 0.89 0.94 1.33 84.6 

Hauerina HT 0.7 0.85 0.86 1.26 85.8 

Adelosina HT 0.66 0.75 0.77 1.11 86.9 

Cribroelphidium ST 0.69 0.73 0.68 1.09 88.0 

Cyclorbiculina SB 0.66 0.69 0.75 1.03 89.0 

Nonionoides ST 0.56 0.62 0.77 0.91 90.0 

Asterigerina SB 0.65 0.6 0.6 0.89 90.8 
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Table 8. (Continued) 
 
Group C   -    n=4                                                                      Average similarity: 74% 

Genus FI group* Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Quinqueloculina HT 6.59 15.3 16.0 20.8 20.8 

Rosalina HT 3 6.63 20.8 9.02 29.8 

Triloculina HT 2.42 5.16 7.13 7.02 36.8 

Bolivina ST 2.23 4.75 7.49 6.45 43.3 

Miliolinella HT 2 4.4 85.4 5.98 49.3 

Laevipeneroplis SB 1.84 3.8 4.87 5.16 54.4 

Elphidium ST 1.94 3.79 5.56 5.15 59.6 

Cribroelphidium ST 1.38 2.86 5.55 3.89 63.5 

Haynesina ST 1.35 2.68 3.42 3.65 67.1 

Discorbis HT 1.32 2.4 2.88 3.26 70.4 

Articulina HT 1.14 2.14 5 2.91 73.3 

Sigmiolina HT 1.35 1.92 0.91 2.61 75.9 

Bulimina ST 1.03 1.91 12.9 2.59 78.5 

Cibicides HT 0.7 1.57 9.38 2.14 80.6 

Eponides HT 0.75 1.57 9.38 2.14 82.8 

Pseudohauerina HT 0.71 1.5 5.74 2.04 84.8 

Cycloforina HT 0.92 1.44 0.91 1.96 86.8 

Cornuspira HT 0.95 1.38 0.9 1.87 88.6 

Nonionoides ST 0.94 1.29 0.88 1.75 90.4 
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Table 8. (Continued) 
 
Group D    -    n=4                                                                      Average similarity: 64% 

Genus FI group* Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Quinqueloculina HT 5.24 10.0 9 15.5 15.5 

Rosalina HT 2.91 5.44 5.57 8.42 23.9 

Laevipeneroplis SB 2.75 4.93 7.17 7.63 31.6 

Siphonaperta HT 2.24 4.11 17.9 6.36 37.9 

Archaias SB 1.95 3.5 6.98 5.41 43.3 

Discorbis HT 2.09 3.45 3.8 5.34 48.7 

Sigmiolina HT 1.67 3.2 11.8 4.95 53.6 

Triloculina HT 1.83 3.17 4.64 4.9 58.5 

Ammonia ST 1.74 2.77 2.94 4.29 62.8 

Cycloforina HT 1.17 2.02 4.48 3.12 65.9 

Haynesina ST 1.29 1.96 5.7 3.04 69.0 

Eponides HT 1.17 1.91 6.06 2.95 71.9 

Elphidium ST 1.26 1.84 2.69 2.84 74.8 

Peneroplis SB 1.06 1.83 6.11 2.83 77.6 

Cornuspira HT 1.09 1.81 4.63 2.79 80.4 

Textularia HT 1.16 1.24 0.91 1.91 82.3 

Articulina HT 1.11 1.08 0.91 1.67 84.0 

Miliolinella HT 1 0.97 0.84 1.51 85.5 

Bulimina ST 0.85 0.96 0.89 1.49 87.0 

Wiesnerella HT 0.82 0.9 0.87 1.39 88.3 

Cibicides HT 0.62 0.8 0.91 1.24 89.6 

Adelosina HT 0.67 0.8 0.91 1.23 90.8 

 
Group E    -    n=3                                                                      Average similarity: 59% 

Genus FI group* Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Archaias SB 4.52 8.08 7.44 13.7 13.7 

Discorbis HT 3.37 7.51 15.0 12.7 26.4 

Asterigerina SB 2.43 5.23 6.8 8.84 35.2 

Laevipeneroplis SB 2.52 5.18 25.5 8.76 44.0 

Cyclorbiculina SB 2.52 4.8 3.77 8.11 52.1 

Amphistegina SB 2.32 4.41 5.77 7.45 59.5 

Quinqueloculina HT 2.77 4.39 1.75 7.42 66.9 

Neocornorbina HT 1.35 2.73 8.86 4.61 71.5 

Siphonaperta HT 1.32 2.5 6.53 4.23 75.8 

Heterostegina SB 1.27 2.47 7.34 4.18 80.0 

Rosalina HT 2.27 2.26 0.58 3.83 83.8 

Borelis SB 1.32 2.22 3.19 3.76 87.5 

Triloculina HT 0.99 2.06 4.76 3.49 91.0 
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Table 9. Means for diversity, density, and environmental data for foraminiferal 
assemblage SIMPER groups. 
 

Group FI 
density 

(forams/g) 
# of 

genera pH Temperature DO Salinity % Mud Phi 

A 4.85 126 21.7 8.31 26.09 6.32 35.57 0.55 1.11 

B 3.60 957 31.7 8.32 26.08 6.25 35.66 5.76 1.33 

C 2.22 5518 29.8 8.22 25.83 6.42 35.82 26.4 2.75 

D 3.13 1015 33.0 8.26 26.11 6.46 35.60 1.95 0.75 

E 6.36 123 25.3 8.29 26.81 6.79 35.44 0.30 0.67 

 

 
 
Figure 7. Sample sites with more than 50 foraminifers represented by their foraminiferal 
assemblage SIMPER groups. 
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Group C included the sites with the lowest FORAM Index values and highest 

percent mud by far.  The contribution of symbiont-bearing foraminifers in this group was 

only 5%, while almost 22% of the defining taxa were stress-tolerant, representing 5 

different genera.  Spatially, these sites were located close to shore, and near the most 

interior portions of both Old Rhode’s Key and Elliot Key and furthest from direct sources 

of water flow. 

The fourth group, Group D, appeared to be a transitional group between Groups B 

and C.  Each of the four sites that fell in this cluster had a replicate also in B.  The 

average FI was only slightly lower, and the average density and diversity of Foraminifera 

was only slightly higher (Table 9). 

Finally, Group E represents offshore sites in near optimal conditions with the 

highest average FI, lowest foraminiferal density, and lowest percent mud.  More than half 

of the major contributing genera were symbiont-bearing. 

Pearson’s correlation matrices were made to compare how the taxa represented in 

the SIMPER analyses correlated with each other (Table 10). All significant correlations 

between symbiont-bearing Foraminifera were positive as expected.  The strongest taxa 

correlation was between Quinqueloculina and Bolivina at 0.78 (p<0.027), followed by 

Quinqueloculina and Rosalina at 0.74.  The strongest negative correlation occurred 

between Quinqueloculina and Archaias (-0.47).  While most significant correlations 

between smaller heterotrophic foraminifera and symbiont-bearing Foraminifera were 

negative, several genera had positive correlations, most notably Neocornorbina, which 

had significant positive correlations with Amphistegina, Asterigerina, and 
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Cyclorbiculina.  R-mode analysis of the foraminiferal assemblage data did not reveal any 

significant clustering of taxa. 

Table 11 is a Pearson’s correlation matrix between foraminiferal genera and the 

environmental data.  Density (shells/gram), number of genera, and percent mud almost 

always negatively correlated with symbiont-bearing foraminifera and positively 

correlated with the stress-tolerant and heterotrophic foraminifera.  Discorbis, however, 

tended to have negative correlations with those environmental parameters, which also 

agrees with the positive correlations it has with two symbiont-bearing genera 

(Amphistegina and Archaias).  While it seems circular to include FI as an environmental 

variable in this context since it is based on the genera, what is shown from this is 

specifically which of the foraminifers correlated strongest with the FI.  For the symbiont-

bearing taxa, Archaias had the strongest relationship with the FI, while Quinqueloculina 

had the most influence of the smaller foraminifers. 

From Table 7, it is possible to see the negative correlation between salinity and 

temperature.  As a result, those taxa that correlated positively with salinity (stress-tolerant 

and other smaller taxa) also correlated negatively with temperature and vice versa.  Depth 

and density of live symbiont-bearing forams (LSF) did not show strong correlations with 

other measured parameters. 

The BIO-ENV procedure in PRIMER was performed for all replicates with more 

than 50 foraminifers to determine which environmental parameters could best explain the 

foraminiferal assemblage.  Because number of genera and density were parameters based 

on the assemblage themselves, they were removed from this analysis as were depth and 

LSF because their correlations with the assemblage were weak. 
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Of the five contributing variables, percent mud was the single most influential 

variable on the distribution of the foraminiferal assemblage (0.49) (Table 12).  However, 

the best combination of variables to explain the assemblage was temperature, salinity, 

and percent mud, which improved the correlation to 0.55. 
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Table 10. Correlation matrix of foraminiferal taxa; bold type represents correlations 
significant at p<0.027.   
 

Amphi Arch Aster Bor Broek Cyclor Hetero Laevi Pene

Amphistegina 1.00

Archaias 0.40 1.00

Asterigerina 0.18 0.22 1.00

Borelis 0.12 0.14 0.38 1.00

Broekina -0.05 -0.11 0.12 -0.08 1.00

Cyclorbiculina 0.29 0.65 0.39 0.24 -0.13 1.00

Heterostegina 0.28 0.07 0.60 0.25 -0.05 0.42 1.00

Laevipeneroplis 0.19 0.27 0.33 0.14 0.24 0.01 -0.13 1.00

Peneroplis 0.18 -0.09 0.15 -0.03 0.24 -0.06 0.09 0.28 1.00

Ammonia -0.15 -0.24 -0.12 -0.09 0.03 -0.27 -0.10 0.01 0.07

Bolivina -0.40 -0.44 -0.21 -0.24 -0.14 -0.23 0.12 -0.13 -0.06

Bulimina -0.31 -0.30 -0.18 -0.17 -0.28 -0.19 0.07 -0.30 -0.16

Cribroelphidium -0.25 -0.44 -0.13 -0.17 -0.20 -0.36 -0.09 -0.15 -0.17

Elphidium -0.31 -0.13 -0.21 -0.21 0.12 -0.16 -0.24 -0.08 -0.03

Haynesina -0.31 -0.47 -0.26 -0.16 -0.10 -0.27 -0.13 -0.02 -0.07

Adelosina -0.36 -0.31 -0.25 -0.15 0.04 -0.18 -0.10 -0.17 -0.01

Articulina -0.17 -0.30 -0.18 -0.22 0.14 -0.33 -0.15 -0.01 0.05

Cibicides -0.09 -0.38 -0.26 -0.28 0.25 -0.39 -0.25 0.02 0.16

Cornuspira -0.20 -0.37 -0.09 -0.10 -0.08 -0.19 0.11 -0.16 0.10

Cycloforina -0.12 -0.32 -0.19 -0.41 0.35 -0.30 -0.17 0.04 0.41

Discorbis 0.47 0.71 0.18 0.25 -0.18 0.32 0.21 0.00 -0.09

Eponides -0.14 -0.17 -0.01 -0.28 -0.11 -0.13 -0.09 0.12 0.24

Hauerina 0.09 -0.16 0.00 0.20 0.07 0.01 -0.03 0.30 0.50

Miliolinella -0.32 -0.38 -0.44 -0.19 -0.25 -0.33 -0.12 -0.24 -0.24

Neocornorbina 0.44 0.29 0.40 0.33 -0.13 0.38 0.31 0.30 -0.09

Nonionoides -0.22 -0.13 -0.28 -0.14 -0.06 -0.13 -0.03 -0.16 0.11

Pseudohauerina -0.08 -0.23 0.06 0.27 0.14 -0.31 -0.09 0.11 0.28

Quinqueloculina -0.36 -0.47 -0.34 -0.32 -0.06 -0.40 -0.18 0.02 0.11

Rosalina -0.21 -0.39 0.01 -0.08 -0.14 -0.11 0.17 0.07 0.09

Sigmoilina -0.33 -0.30 -0.16 -0.19 -0.30 -0.28 -0.06 0.00 0.05

Siphonaperta 0.14 0.59 -0.03 -0.10 0.01 0.42 -0.14 0.18 0.01

Spiroloculina 0.02 -0.26 -0.21 -0.16 0.19 -0.25 -0.03 -0.02 0.15

Textularia 0.14 -0.02 0.09 0.30 0.24 -0.03 -0.15 0.21 0.38

Triloculina 0.15 -0.36 -0.41 -0.29 0.28 -0.41 -0.37 0.08 0.24

Triloculinella 0.06 -0.23 0.10 -0.10 0.15 -0.31 0.04 0.01 0.22

Wiesnerella -0.22 -0.28 -0.04 0.17 -0.21 -0.23 -0.09 0.13 -0.11  
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Table 10. (Continued) 
 

Amm Boli Buli Cribro Elph Hayn Adel Arti Cibi

Amphistegina

Archaias

Asterigerina

Borelis

Broekina

Cyclorbiculina

Heterostegina

Laevipeneroplis

Peneroplis

Ammonia 1.00

Bolivina 0.18 1.00

Bulimina 0.39 0.62 1.00

Cribroelphidium 0.02 0.49 0.40 1.00

Elphidium -0.07 0.25 0.06 0.30 1.00

Haynesina 0.27 0.59 0.47 0.21 0.15 1.00

Adelosina 0.18 0.42 0.29 0.27 0.09 0.16 1.00

Articulina 0.31 0.34 0.19 0.38 0.23 0.08 0.30 1.00

Cibicides 0.31 0.34 0.36 0.10 0.22 0.33 0.19 0.37 1.00

Cornuspira 0.11 0.53 0.19 0.22 0.27 0.34 0.49 0.44 0.34

Cycloforina 0.12 0.18 0.09 0.20 0.35 0.26 0.14 0.42 0.29

Discorbis -0.09 -0.38 -0.10 -0.41 -0.10 -0.39 -0.29 -0.21 -0.18

Eponides 0.27 0.17 0.28 0.22 0.03 0.06 -0.03 0.33 0.37

Hauerina 0.01 0.08 -0.16 0.07 -0.09 0.08 0.11 0.18 0.17

Miliolinella 0.17 0.64 0.64 0.47 0.34 0.44 0.34 0.42 0.39

Neocornorbina 0.01 -0.25 -0.21 -0.21 -0.18 -0.27 -0.17 -0.03 -0.31

Nonionoides -0.27 0.35 0.03 0.35 0.49 0.01 0.35 0.16 0.04

Pseudohauerina -0.07 0.09 -0.02 0.27 0.12 -0.09 0.08 0.19 0.17

Quinqueloculina 0.09 0.78 0.44 0.59 0.45 0.50 0.51 0.57 0.46

Rosalina 0.16 0.71 0.47 0.33 0.16 0.56 0.22 0.41 0.32

Sigmoilina 0.26 0.62 0.59 0.43 0.14 0.39 0.26 0.38 0.24

Siphonaperta 0.00 -0.40 -0.14 -0.37 -0.12 -0.25 -0.21 -0.20 -0.20

Spiroloculina 0.30 0.21 0.20 0.21 0.10 0.09 0.03 0.36 0.13

Textularia -0.16 -0.31 -0.22 -0.21 -0.10 -0.14 -0.30 -0.13 0.05

Triloculina -0.16 0.14 -0.06 0.28 0.15 0.11 0.30 0.30 0.44

Triloculinella 0.22 0.13 0.25 0.30 -0.08 -0.14 0.03 0.20 0.33

Wiesnerella 0.16 0.28 0.35 0.16 0.03 0.45 0.03 0.22 0.17  
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Table 10. (Continued) 
 

Cornu Cyclof Disc Epon Hauer Milio Neocor Non Pseud

Amphistegina

Archaias

Asterigerina

Borelis

Broekina

Cyclorbiculina

Heterostegina

Laevipeneroplis

Peneroplis

Ammonia

Bolivina

Bulimina

Cribroelphidium

Elphidium

Haynesina

Adelosina

Articulina

Cibicides

Cornuspira 1.00

Cycloforina 0.14 1.00

Discorbis -0.21 -0.19 1.00

Eponides 0.14 0.19 -0.11 1.00

Hauerina 0.00 0.32 -0.13 0.12 1.00

Miliolinella 0.44 0.21 -0.16 0.17 -0.02 1.00

Neocornorbina -0.20 -0.13 0.25 -0.26 0.18 -0.17 1.00

Nonionoides 0.39 0.31 -0.10 0.10 -0.03 0.38 -0.17 1.00

Pseudohauerina 0.22 0.15 0.01 0.17 0.32 0.21 -0.18 0.31 1.00

Quinqueloculina 0.64 0.46 -0.40 0.31 0.21 0.73 -0.32 0.55 0.28

Rosalina 0.52 0.31 -0.30 0.38 0.20 0.64 -0.04 0.25 0.08

Sigmoilina 0.47 0.14 -0.24 0.50 -0.04 0.65 -0.29 0.27 0.29

Siphonaperta -0.36 -0.07 0.42 0.08 0.00 -0.23 0.08 -0.14 -0.12

Spiroloculina -0.15 0.40 -0.16 0.06 0.09 0.29 0.03 0.17 0.00

Textularia -0.09 -0.11 -0.04 0.16 0.17 -0.28 -0.17 -0.14 0.30

Triloculina 0.21 0.47 -0.33 0.04 0.32 0.12 -0.26 0.29 0.21

Triloculinella -0.21 0.15 -0.10 0.14 0.26 -0.03 -0.09 -0.10 0.06

Wiesnerella 0.18 0.17 -0.18 0.27 -0.03 0.33 -0.06 0.08 -0.01  
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Table 10. (Continued) 
 

Quinq Rosa Sigmo Siphon Spirol Text Triloc Triloc Wies

Amphistegina

Archaias

Asterigerina

Borelis

Broekina

Cyclorbiculina

Heterostegina

Laevipeneroplis

Peneroplis

Ammonia

Bolivina

Bulimina

Cribroelphidium

Elphidium

Haynesina

Adelosina

Articulina

Cibicides

Cornuspira

Cycloforina

Discorbis

Eponides

Hauerina

Miliolinella

Neocornorbina

Nonionoides

Pseudohauerina

Quinqueloculina 1.00

Rosalina 0.74 1.00

Sigmoilina 0.68 0.70 1.00

Siphonaperta -0.37 -0.31 -0.19 1.00

Spiroloculina 0.29 0.22 0.12 -0.03 1.00

Textularia -0.15 -0.13 -0.15 0.14 0.00 1.00

Triloculina 0.42 0.04 -0.07 -0.24 0.21 0.17 1.00

Triloculinella 0.06 -0.05 -0.06 -0.19 0.30 0.06 0.34 1.00

Wiesnerella 0.42 0.63 0.47 -0.19 0.18 -0.01 -0.07 -0.17 1.00  
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Table 11. Correlation matrix of foraminiferal taxa and environmental data; bold type 
represents correlations significant at p<0.027 
 

FI SI Depth % Mud Phi

Amphistegina 0.53 -0.28 -0.26 -0.34 -0.30

Archaias 0.81 -0.38 -0.02 -0.50 -0.27

Asterigerina 0.55 -0.38 0.20 -0.43 -0.33

Borelis 0.38 -0.43 -0.11 -0.30 -0.08

Broekina 0.00 0.12 0.30 -0.10 0.02

Cyclorbiculina 0.74 -0.33 0.08 -0.38 -0.35

Heterostegina 0.58 -0.33 -0.16 -0.18 -0.24

Laevipeneroplis 0.15 0.03 0.19 -0.24 -0.06

Peneroplis -0.10 0.05 0.07 -0.05 -0.07

Ammonia -0.34 0.22 0.01 0.11 0.10

Bolivina -0.57 0.57 -0.24 0.80 0.62

Bulimina -0.48 0.37 -0.32 0.56 0.33

Cribroelphidium -0.52 0.27 -0.12 0.62 0.31

Elphidium -0.38 0.12 0.17 0.37 0.45

Haynesina -0.55 0.28 -0.06 0.47 0.40

Adelosina -0.41 0.71 -0.17 0.47 0.19

Articulina -0.40 0.28 0.16 0.26 0.32

Cibicides -0.47 0.59 -0.25 0.47 0.56

Cornuspira -0.45 0.46 -0.10 0.44 0.32

Cycloforina -0.46 0.19 0.14 0.20 0.09

Discorbis 0.42 -0.33 -0.35 -0.42 -0.13

Eponides -0.31 0.29 0.02 0.12 0.08

Hauerina -0.16 0.16 0.03 0.09 0.13

Miliolinella -0.59 0.46 -0.21 0.67 0.61

Neocornorbina 0.41 -0.25 0.04 -0.26 -0.21

Nonionoides -0.32 0.30 -0.15 0.48 0.33

Pseudohauerina -0.21 0.06 0.07 0.25 0.33

Quinqueloculina -0.69 0.63 -0.11 0.71 0.56

Rosalina -0.51 0.40 -0.09 0.48 0.41

Sigmoilina -0.41 0.31 -0.10 0.43 0.33

Siphonaperta 0.19 -0.12 0.14 -0.40 -0.22

Spiroloculina -0.37 0.17 0.05 0.21 0.21

Textularia 0.03 -0.26 0.45 -0.32 -0.15

Triloculina -0.50 0.51 -0.10 0.41 0.20

Triloculinella -0.29 0.19 -0.17 0.26 0.14

Wiesnerella -0.29 0.07 -0.07 0.04 0.06  
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Table 11. (Continued) 
 

Temperature Salinity Density Genera LSF Density

Amphistegina 0.18 -0.10 -0.41 -0.28 0.27

Archaias 0.07 -0.27 -0.43 -0.61 0.23

Asterigerina 0.38 -0.34 -0.29 0.02 -0.03

Borelis 0.27 -0.12 -0.23 -0.18 0.15

Broekina -0.06 0.08 -0.11 0.27 0.09

Cyclorbiculina 0.35 -0.41 -0.33 -0.43 0.04

Heterostegina 0.66 -0.32 -0.16 -0.20 -0.10

Laevipeneroplis -0.43 0.13 -0.07 0.18 0.14

Peneroplis -0.06 0.03 -0.03 0.44 0.02

Ammonia -0.13 0.10 0.22 0.46 -0.15

Bolivina -0.36 0.41 0.85 0.34 -0.33

Bulimina -0.11 0.33 0.69 0.27 -0.29

Cribroelphidium -0.27 0.35 0.53 0.35 -0.15

Elphidium -0.20 0.11 0.34 0.08 -0.36

Haynesina -0.29 0.37 0.49 0.32 0.01

Adelosina -0.36 0.21 0.50 0.29 -0.18

Articulina -0.21 -0.03 0.45 0.49 -0.08

Cibicides -0.34 0.34 0.49 0.39 -0.16

Cornuspira -0.24 0.12 0.47 0.27 -0.26

Cycloforina -0.14 0.06 0.18 0.53 0.06

Discorbis 0.16 -0.03 -0.33 -0.35 0.32

Eponides -0.22 0.20 0.26 0.53 -0.10

Hauerina -0.13 0.07 0.10 0.46 0.20

Miliolinella -0.31 0.36 0.79 0.19 -0.10

Neocornorbina 0.21 -0.22 -0.28 -0.12 0.13

Nonionoides -0.18 0.27 0.32 0.12 -0.05

Pseudohauerina -0.13 0.20 0.33 0.24 -0.02

Quinqueloculina -0.52 0.38 0.81 0.46 -0.22

Rosalina -0.28 0.27 0.66 0.48 -0.08

Sigmoilina -0.36 0.19 0.74 0.26 -0.20

Siphonaperta -0.06 -0.08 -0.35 -0.11 0.29

Spiroloculina -0.07 0.15 0.27 0.40 0.04

Textularia 0.09 -0.12 -0.24 0.22 -0.01

Triloculina -0.38 0.33 0.22 0.40 0.03

Triloculinella -0.04 0.16 0.21 0.52 -0.04

Wiesnerella -0.05 0.11 0.28 0.23 -0.09  
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Table 12. Results of BIO-ENV test of correlation between environmental variables and 
the foraminiferal assemblage; bold type indicates the best variable or combination of 
variables to explain the assemblage 
 

# of Variables Correlation Determining Environmental Variables 

1 0.49 % Mud 

2 0.52 Temperature, % Mud 

2 0.5 Salinity, % Mud 

3 0.55 Temperature, Salinity, % Mud 

3 0.48 Temperature, % Mud, phi 

3 0.48 Salinity, % Mud, Dissolved Oxygen 

3 0.48 Temperature, % Mud, Dissolved Oxygen 

4 0.52 Temperature, Salinity, % Mud, phi 

4 0.51 Temperature, Salinity, % Mud, Dissolved Oxygen 

5 0.49 Temperature, Salinity, % Mud, Dissolved Oxygen, phi 

 
 

FORAM Index 

 FORAM Index values were calculated for all replicates containing more than 50 

total Foraminifera.  The following eight sites were removed from this analysis because 

they did not meet this criterion in either replicate: 1.1, Shark, 3.2, 5.4, 8.1, Nirvana, 

Lugano, and 10.2. Values were calculated in accordance to the formula presented in 

Table 1, modified from Hallock et al. (2003).  The reefs in the vicinity of the flow from 

Caesar’s Creek have the highest FI values (Fig. 8).  High FI values correspond to 

SIMPER groups A and E, with Pacific Reef having the highest average FI value (7.0, 

SD=1.9).  Lowest FI values correspond to SIMPER group C.  The lowest FI value was at 

Bug Reef with an FI of 2.1 (SD=0.12).   

 The Moran’s I value for spatial autocorrelation of FI values was not significant 

(0.254, p=0.054).  This indicated that no significant spatial pattern existed in the FI 

values.  However, there was significant bivariate spatial correlation between FI and 
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temperature, salinity, and percent mud (0.314, 0.311, 0.355 respectively, p<0.05).  Again 

the significant Moran’s I value is supported by a Pearson’s correlation that was 

significant when FI was compared to salinity, temperature, and percent mud (Table 13).  

Also, Table 13 includes correlations between the functional groups that make up the FI 

value and all of the environmental parameters.  Almost all of the correlations were 

significant (again except LSF and depth) for each of the components as well as the FI 

value itself. 
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Figure 8. Contours of FORAM Index values. Sites with more than 50 forams/gram of 
sediment are represented by their SIMPER group. 
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Table 13. Correlation matrix for FORAM Index functional groups with environmental 
variables; Ps – percent symbiont-bearing foraminifers, Po – percent stress-tolerant 
foraminifers, Ph – percent other small foraminifers (Bold indicates significance at 
p<0.05) 
 

FI FIPs FIPo FIPh

FI 1.00

FIPs 1.00 1.00

FIPo -0.73 -0.71 1.00

FIPh -0.95 -0.96 0.49 1.00

% Mud -0.62 -0.61 0.62 0.51

Depth 0.06 0.07 -0.05 -0.06

LSF 0.16 0.15 -0.38 -0.04

Phi -0.40 -0.39 0.45 0.31

Density -0.55 -0.54 0.57 0.45

Genera -0.64 -0.64 0.41 0.63

Temperature 0.33 0.33 -0.22 -0.33

Salinity -0.47 -0.47 0.40 0.42
 

 

Sediment-Constituent Analysis 

The average amount of unidentifiable grains across samples was 52% (SD=18%) 

ranging from 14% at Dome Reef to 79% at reef 5.1.  Where the percent of unidentifiable 

grains was low, the dominant constituents were calcareous algae and mollusk fragments 

(Fig. 9).  Identifiable coral fragments never contributed more than 3.7% to any one 

sample.  Assemblage composition for each replicate at each site can be found in 

Appendix V. 

The results of the SIMPER analysis on the sediment-constituent assemblage is 

shown in the MDS plot in Figure 10.  Two main groups were identified.  The constituents 

defining group A were dominated by calcareous algae, mollusks, and unidentifiable 

grains (Table 14).  This group represented sites with higher SEDCON Index (SI) values,  
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Figure 9. Percentages of sediment constituents for sites with highest and lowest 
percentages of unidentifiable grains 
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lower temperatures, and an average percent mud of 17% (Table 15).  Group B was 

dominated by the same three sediment constituents; however, unidentifiable grains 

played a more important role, contributing 23% to the group’s similarity.  This group was 

characterized by lower SI values, higher temperatures, and lower percent mud (1.1%).  

Nirvana Reef is an outlier; this site had the lowest percent mud and SI value.  While the 

within-group similarity was high for both of the larger groups, 91% for group A and 88% 

for group B, the dissimilarity between the two groups was only 16% (Table 16).   

 
Figure 10. MDS plot of reefs represented by their SIMPER groups defined by similarity 
of sediment constituents 
 

 

A B 
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Table 14. Within-group similarity of the two main SIMPER-defined groups for the 
sediment constituents 
 

Group A      n-6                                                                             Average similarity: 90.6% 

Species SI group Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Calcareous Algae Pah 2.46 15.8 48.8 17.4 17.4 

Molluscs Pah 2.19 13.8 13.0 15.2 32.6 

Unidentifiable Pu 2.17 13.6 15.5 15.0 47.7 

Other Pah 1.42 8.83 19.2 9.74 57.4 

Symbiotic Forams Pf 1.36 7.88 11.9 8.7 66.1 

Worm Tubes Pah 1.2 7.34 10.6 8.1 74.2 

Gorgonian Sclerites Pah 1.08 6.15 5.13 6.78 81.0 

 
 

Group B      n-25                                                                           Average similarity: 88.3% 

Species SI group Av.Abund Av.Sim Sim/SD Contrib% Cum.% 

Unidentifiable Pu 2.76 20.2 13.1 22.9 22.9 

Molluscs Pah 2.13 15.2 15.2 17.2 40.1 

Calcareous Algae Pah 1.76 11.9 6.83 13.4 53.5 

Worm Tubes Pah 1.08 7.46 9.88 8.45 62.0 

Coral Pc 1.08 7.4 7.47 8.38 70.4 

Symbiotic Forams Pf 1.11 6.99 2.83 7.93 78.3 

Other Pah 0.99 6.03 4.41 6.83 85.1 

 
 
Table 15. Means for environmental data for sediment constituent SIMPER groups 
 

Group SI pH Temperature DO Salinity % Mud Phi 

A 1.89 8.26 25.95 6.29 35.75 17.3 2.00 

B 1.13 8.29 26.20 6.38 35.58 1.10 0.88 

Nirvana 0.85 8.25 26.09 6.43 35.60 0.06 1.00 
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Table 16. Dissimilarity between the two main groups defined by the SIMPER analysis of 
sediment constituents 
 

Groups B  &  A                                                                                 Average dissimilarity = 16.2 

    Group B  Group A                                

Constituent 

SI 

group Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.% 

Fecal Pellets Pah 0.24 0.97 2.83 1.71 17.5 17.5 

Calcareous Algae Pah 1.76 2.46 2.48 2.18 15.4 32.9 

Unidentifiable Pu 2.76 2.17 2.11 2.93 13.0 45.9 

Other Pah 0.99 1.42 1.62 1.63 10.1 56.0 

Echinoid Spines Pah 0.72 0.85 1.4 1.2 8.68 64.6 

Coralline Algae Pah 0.7 0.59 1.29 1.18 7.96 72.6 

Symbiotic Forams Pf 1.11 1.36 1.24 0.96 7.66 80.3 
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Correlation matrices were created to determine if any of the constituents varied 

with respect to each other (Table 17).  The strongest relationship was between calcareous 

algae and unidentifiable grains at -0.84.  The strongest positive correlation was between 

calcareous algae and the other category which included smaller foraminifers and 

bryozoans. Interestingly, there was a significant negative correlation between identifiable 

coral fragments and symbiont-bearing foraminifers (-0.28), though percentages of both 

tended to be small. 

Constituents were also correlated to environmental data in Table 18.  Again, those 

constituents that correlated positively with salinity, tended to correlate negatively, as 

expected, to temperature.  Unidentifiable grains had a strong negative correlation (-0.72) 

with percent mud.  The other category and the calcareous algae, which positively 

correlated to each other, also both positively correlated to the SI values. 

When the BIO-ENV routine was used to compare water-quality parameters to the 

sediment constituent assemblage, percent mud again came out as the single most 

influential environmental parameter with a 0.48 correlation to the assemblage (Table 19).  

No other variable or combination of variables was able to produce a stronger correlation 

than percent mud. 
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Table 17. Correlation matrix for sediment constituents ; bold type indicates significance at p<0.05 

Coral SF Cor. Algae Molluscs Cal. Algae ES WT GS FP Other Unid

Coral 1.00

Symbiotic Forams -0.28 1.00

Coralline Algae 0.26 -0.19 1.00

Molluscs 0.07 0.31 -0.32 1.00

Calcareous Algae -0.33 0.14 -0.20 0.00 1.00

Echinoid Spines -0.06 0.11 -0.18 0.37 0.08 1.00

Worm Tubes 0.02 -0.07 -0.06 0.00 0.28 0.16 1.00

Gorgonian Sclerites -0.08 0.05 -0.15 0.10 0.31 0.22 0.33 1.00

Fecal Pellets -0.24 -0.02 -0.19 0.10 0.54 0.15 0.16 0.38 1.00

Other -0.26 0.23 -0.03 0.22 0.62 0.21 0.27 0.27 0.41 1.00

Unidentifiable 0.23 -0.39 0.28 -0.49 -0.84 -0.30 -0.31 -0.39 -0.53 -0.73 1.00  

Table 18. Correlation matrix for sediment constituents and environmental variables; bold type indicates significance at p<0.05 

FI SI % Mud Phi Depth LSF Salinity Temperature

Coral -0.09 -0.09 -0.28 -0.44 -0.03 -0.05 -0.01 0.09

Symbiotic Forams -0.20 0.68 0.39 0.26 0.11 -0.29 0.03 -0.29

Coralline Algae 0.13 -0.32 -0.23 -0.33 -0.02 -0.17 -0.31 0.54

Molluscs -0.40 0.57 0.31 0.27 0.28 -0.04 0.22 -0.45

Calcareous Algae -0.47 0.67 0.63 0.46 -0.25 0.07 0.68 -0.39

Echinoid Spines -0.26 0.28 0.34 0.34 0.29 -0.07 0.19 -0.31

Worm Tubes -0.39 0.23 0.17 0.23 0.25 -0.08 0.10 0.02

Gorgonian Sclerites -0.36 0.33 0.21 0.33 0.08 -0.01 0.28 -0.25

Fecal Pellets -0.36 0.38 0.57 0.57 -0.18 -0.09 0.30 -0.19

Other -0.50 0.69 0.49 0.49 0.25 -0.13 0.30 -0.30

Unidentifiable 0.64 -0.92 -0.72 -0.56 0.00 0.05 -0.63 0.53  
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Table 19. Results of BIO-ENV test of correlation between environmental variables and 
the sediment constituents.  Bold indicates the best variable of combination of variables to 
explain the assemblage. 
 

# of Variables Correlation Determining Environmental Variables 

1 0.482 % Mud 

2 0.435 Salinity, % Mud 

2 0.402 % Mud, phi 

2 0.402 Temperature, %Mud 

3 0.428 Salinity, % Mud, phi 

3 0.393 Temperature, Salinity, %Mud 

3 0.366 Temperature, %Mud, phi 

4 0.386 Temperature, Salinity, %Mud, phi 

 

 

SEDCON Index 

Because a standard number of sediment grains were picked for each sample (300), 

all replicates at all sites could be used to calculate SEDCON Index values (SI values).  

Values were calculated based on the equation derived in Daniels (2005) and shown in 

Table 3.  The range of mean values among the reefs was from 0.64 (SD=0.03) at Shark 

Reef to 2.48 (SD=0.42) at Reef 9.3.  The mean SI value was 1.26. 

Figure 11 shows the contour lines of SI values for the study area with each site 

represented by its SIMPER group.  The lowest SI values are found in the vicinity of 

Caesar’s Creek, while the reefs furthest from direct sources of water flow have the 

highest SI values.  The sites with high values are associated with SIMPER group A, 

while Group B is a catch all for almost everything else. 

Moran’s I value for spatial autocorrelation was significant for the SI values at 

0.21 (p<0.05).  This indicates there is significant clustering and a pattern exists.  The SI 

significantly co-varied with temperature, salinity, and depth (Moran’s I= 0.27, 0.22, 0.19 

respectively; p<0.05) (Appendix IV).  The significant Moran’s I value is supported by a 
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Pearson’s correlation that is significant when SI is compared to salinity, temperature 

(Table 18). 

 
Table 20. Correlation matrix for SEDCON Index functional groups with environmental 
variables; Pc – percent coral grains, Pf – percent symbiont-bearing foraminifers, Pah – 
percent autotrophic/heterotrophic grains, Pu – percent unidentifiable grains (Bold 
indicates significance at p<0.05) 
 

SI SIPc SIPf SIPah SIPu

SI 1.00

SIPc -0.11 1.00

SIPf 0.67 -0.29 1.00

SIPah 0.79 -0.21 0.13 1.00

SIPu -0.89 0.21 -0.31 -0.98 1.00

% Mud 0.66 -0.30 0.32 0.69 -0.72

Depth -0.25 0.16 -0.03 -0.36 0.35

LSF -0.19 -0.09 -0.35 0.08 0.00

Phi 0.42 -0.38 0.16 0.54 -0.53

Density 0.60 -0.27 0.38 0.56 -0.61

Genera 0.37 0.25 0.06 0.36 -0.37

Temperature -0.61 0.13 -0.30 -0.59 0.63

Salinity 0.46 -0.10 -0.02 0.66 -0.63
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Figure 11. Contours of SEDCON Index values; sites represented by their sediment-
constituent assemblage SIMPER group 
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Live Symbiont-bearing Foraminifera (LSF) 

Data for Amphistegina gibbosa populations and density of other LSF collected 

from the reef rubble can be found in Appendix VI.  These data did not correlate with 

most other counts and measures noted previously, with the exception of the assemblage 

data for symbiont-bearing Foraminifera in the sediment constituent analysis (-0.29, Table 

16) and therefore also with the percent of Foraminifera at each site (-0.35, Table 18).   

Cluster and MDS analyses of the LSF assemblage data are shown in Figure 12.  

SIMPER analysis of these clusters revealed three distinct groups, each with ~80% 

similarity.  There were three outlier reefs, 1.1, 5.4, 9.3, which strongly differ from each 

other as well as from the SIMPER clusters. 

 

 

Figure 12. MDS plot of reefs represented by their SIMPER groups defined by similarity 
of live symbiont-bearing foraminiferal assemblage 

A 

C 

B 

A 
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Groups A and C are defined by a large contribution to the within group similarity 

by Amphistegina gibbosa.  They differ with the second contributing species which is 

Archaias angulatus for group A and Laevipeneroplis proteus for group C (Table 21).  

Group B had the highest contribution by L. proteus, followed A. gibbosa.  Dissimilarities 

between the groups and the outlier reefs can be found in Appendix VI. 

 
Table 21. Within group similarity of SIMPER defined groups for the live, symbiont-
bearing foraminiferal assemblage 
 

Group A   -   n=7 Average similarity: 83%

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%

A. gibbosa 5.27 17.33 7.36 20.9 20.9

A. angulatus 4.34 13.49 5.73 16.3 37.1

L. proteus 3.77 12.04 7.2 14.5 51.7

C. compressus 3.75 11.42 7.8 13.8 65.4

A. carinata 2.73 7.88 3.45 9.5 74.9

Androsina 2.42 6.57 3.02 7.92 82.8

S. marginalis 1.4 3.96 2.52 4.77 87.6

P. pertusus 1.22 3.34 3.48 4.03 91.6

Group B   -   n=13 Average similarity: 78.6%

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%

L. proteus 7.33 29.7 10.39 37.8 37.8

A. gibbosa 3.72 13.51 4.39 17.2 55.0

A. angulatus 3.43 12.03 4.46 15.3 70.3

L. bradyi 2.3 7.68 2.57 9.78 80.1

P. pertusus 1.46 5.05 3.51 6.43 86.5

C. compressus 1.54 3.58 1.15 4.55 91.1

Group C   -   n=9 Average similarity: 82.1%

Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%

A. gibbosa 6.73 25.92 6.82 31.6 31.6

L. proteus 5.37 20.63 6.46 25.1 56.7

C. compressus 2.75 8.05 1.83 9.81 66.5

L. bradyi 2.12 7.43 4.74 9.05 75.6

A. angulatus 2 7.36 5.46 8.97 84.6

P. pertusus 1.45 4.67 4.18 5.69 90.2  
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 Environmentally, Group A had the highest mean FI value as well as the highest 

diversity of symbiont-bearing foraminifera and lowest percent mud (Table 22).  Group C 

had the lowest FI of the major groups as well the lowest diversity and highest percent 

mud. 

 
Table 22. Means for density, diversity, and environmental data for LSF assemblage 
SIMPER groups 
 

Density

Group FI SI (LSF/100cm
2
) # Genera pH Temperature DO Salinity % Mud Phi

A 6.07 1.76 113 10.7 8.24 26.41 6.54 35.47 0.2% 0.71

B 4.09 1.26 90.9 9.3 8.32 26.08 6.30 35.65 3.0% 1.23

C 3.18 1.36 104 8.8 8.29 26.06 6.27 35.66 7.4% 1.11

1.1 N/A 1.64 146 6.0 8.20 26.21 6.66 35.43 0.4% 1.00

5.4 N/A 1.20 51.2 6.0 8.36 26.32 6.28 35.76 0.7% 1.00

9.3 2.51 1.62 5.7 3 8.10 25.77 6.70 35.69 23.4% 2.00  

 

Photic Index 

Calculations of the Photic Index, based on abundance and bleaching of live 

Amphistegina gibbosa, were carried out by multiplying the number of the density rank by 

the number of the bleaching rank shown in Table 4 such that each box corresponded to a 

unique number.  Again, these numbers were not definitively quantitative and a higher 

number did not necessarily indicate a better environment.   

Most sites (75%) had a Photic Index value of 8 indicating that environmental 

conditions supported Amphistegina but only at intermediate abundances, and that 

bleaching stress was chronic.  Another six sites had a value of 4, indicating poor 

environmental conditions and chronic photic stress.  The remaining two sites (1.1 and 

9.3) had a value of 5, representing unfavorable environmental conditions overall. Figure 

13 shows a spatial representation of these values.   
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Figure 13. Sites represented by their Photic Index relative value 
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FORAM Index v SEDCON Index 

Table 23 is a Pearson’s correlation matrix of foraminiferal taxa to sediment 

constituents.  The most notable trends here were the positive correlations between the 

symbiont-bearing Foraminifera and the coralline algae and unidentifiable grains.  Also 

noteworthy were the negative correlations between the symbiont-bearing Foraminifera 

and calcareous algae, fecal pellets, and the “other” category.   

The results of these correlations were an overall negative correlation between the 

FORAM Index and the SEDCON Index (-0.53) as seen in Table 7.  Spatially, the patterns 

between the two indices co-varied significantly with a Moran’s I value of -0.399 

(p=0.01).  Again the Moran’s I showed a negative relationship in the variation of the 

patterns.  The contour maps for each index (Figures 8 and 11) also showed reversed 

patterns. 
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Table 23. Correlation matrix for foraminiferal taxa and sediment constituents; bold type 
represents a significant correlation at p<0.027 
 

Coral Symbiotic Forams Coralline Algae Molluscs

Amphistegina 0.08 -0.28 0.19 -0.27

Archaias -0.12 -0.01 -0.01 -0.12

Asterigerina 0.11 -0.02 0.50 -0.04

Borelis -0.11 -0.15 0.45 -0.43

Broekina -0.15 0.13 -0.02 0.01

Cyclorbiculina -0.05 0.08 0.35 -0.22

Heterostegina -0.08 -0.03 0.49 -0.39

Laevipeneroplis 0.08 -0.01 -0.20 0.16

Peneroplis 0.05 0.03 0.15 0.07

Ammonia 0.11 0.04 -0.13 0.15

Bolivina -0.22 0.33 -0.25 0.24

Bulimina -0.05 0.24 -0.11 0.14

Cribroelphidium -0.10 -0.02 -0.15 0.28

Elphidium -0.04 0.08 -0.23 0.29

Haynesina -0.13 0.08 -0.26 0.14

Adelosina -0.29 0.65 -0.23 0.27

Articulina -0.06 0.09 -0.10 0.21

Cibicides 0.03 0.24 -0.15 0.19

Cornuspira -0.11 0.19 0.14 0.23

Cycloforina 0.06 0.02 -0.24 0.26

Discorbis 0.03 -0.19 0.03 -0.06

Eponides 0.47 -0.02 0.04 0.31

Hauerina -0.05 0.13 0.07 -0.02

Miliolinella -0.08 0.10 -0.19 0.30

Neocornorbina 0.04 -0.07 0.32 -0.18

Nonionoides -0.17 0.12 -0.05 0.08

Pseudohauerina -0.06 -0.10 0.18 0.04

Quinqueloculina -0.13 0.27 -0.27 0.43

Rosalina 0.03 0.10 0.01 0.37

Sigmoilina -0.02 0.05 -0.06 0.33

Siphonaperta 0.15 -0.06 -0.06 0.13

Spiroloculina 0.06 -0.03 -0.10 0.11

Textularia 0.22 -0.22 0.38 -0.12

Triloculina -0.05 0.13 -0.30 0.00

Triloculinella 0.10 0.12 -0.08 0.00

Wiesnerella 0.15 -0.02 -0.04 0.07  
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Table 23. (Continued) 

Calcareous Algae Echinoid Spines Worm Tubes Gorgonian Sclerites

Amphistegina -0.02 -0.18 -0.04 -0.06

Archaias -0.35 -0.07 -0.14 -0.32

Asterigerina -0.52 -0.01 -0.20 -0.10

Borelis -0.15 -0.19 -0.10 -0.02

Broekina 0.06 0.20 -0.13 -0.04

Cyclorbiculina -0.38 0.03 -0.11 -0.32

Heterostegina -0.25 -0.11 0.11 -0.17

Laevipeneroplis -0.06 -0.06 -0.19 0.26

Peneroplis -0.03 0.11 0.12 0.26

Ammonia 0.12 0.06 0.17 0.20

Bolivina 0.40 0.25 -0.07 0.07

Bulimina 0.25 0.01 -0.07 -0.11

Cribroelphidium 0.30 0.19 -0.08 -0.12

Elphidium -0.05 0.44 -0.18 0.03

Haynesina 0.24 0.06 -0.07 0.28

Adelosina 0.38 0.18 -0.09 -0.02

Articulina 0.18 0.26 -0.07 0.00

Cibicides 0.46 0.04 -0.07 0.22

Cornuspira 0.33 0.28 -0.10 0.06

Cycloforina 0.06 0.32 0.11 0.04

Discorbis -0.19 -0.15 -0.10 -0.24

Eponides 0.09 0.04 0.14 0.16

Hauerina 0.13 -0.02 0.03 0.16

Miliolinella 0.40 0.17 -0.09 -0.02

Neocornorbina -0.19 -0.14 -0.11 -0.04

Nonionoides 0.34 0.25 0.02 0.01

Pseudohauerina 0.17 0.18 0.17 -0.04

Quinqueloculina 0.44 0.34 -0.10 0.11

Rosalina 0.23 0.25 -0.23 0.21

Sigmoilina 0.19 0.10 0.01 0.08

Siphonaperta -0.18 -0.08 -0.07 -0.04

Spiroloculina 0.12 0.14 0.11 0.15

Textularia -0.04 -0.06 0.00 0.03

Triloculina 0.58 0.16 0.02 0.15

Triloculinella 0.13 0.03 -0.03 0.07

Wiesnerella 0.02 -0.08 -0.09 0.22  
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Table 23. (Continued) 

Fecal Pellets Other Unidentifiable

Amphistegina -0.08 -0.03 0.19

Archaias -0.34 -0.37 0.44

Asterigerina -0.36 -0.28 0.50

Borelis -0.22 -0.22 0.37

Broekina -0.26 0.52 -0.12

Cyclorbiculina -0.36 -0.34 0.46

Heterostegina -0.14 -0.22 0.39

Laevipeneroplis -0.11 0.09 -0.02

Peneroplis -0.09 0.27 -0.07

Ammonia 0.18 0.15 -0.22

Bolivina 0.51 0.24 -0.54

Bulimina 0.43 0.07 -0.33

Cribroelphidium 0.35 0.03 -0.36

Elphidium 0.17 0.04 -0.11

Haynesina 0.43 0.12 -0.31

Adelosina 0.03 0.18 -0.54

Articulina 0.33 0.26 -0.31

Cibicides 0.49 0.54 -0.60

Cornuspira 0.38 0.29 -0.47

Cycloforina 0.10 0.18 -0.21

Discorbis -0.20 -0.30 0.29

Eponides 0.09 0.09 -0.26

Hauerina 0.01 0.16 -0.16

Miliolinella 0.59 0.21 -0.53

Neocornorbina -0.10 -0.27 0.28

Nonionoides 0.12 0.07 -0.35

Pseudohauerina -0.02 0.26 -0.19

Quinqueloculina 0.52 0.33 -0.66

Rosalina 0.50 0.15 -0.42

Sigmoilina 0.38 0.10 -0.35

Siphonaperta -0.31 -0.11 0.15

Spiroloculina 0.23 0.33 -0.22

Textularia -0.22 0.40 0.06

Triloculina 0.25 0.55 -0.59

Triloculinella 0.06 0.18 -0.16

Wiesnerella 0.34 -0.14 -0.06  
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DISCUSSION 

Limitations of Study 

Three rubble and sediment replicates were collected for this study.  However, due 

to the time required to process each index, only two sediment replicates were analyzed.  

A one way ANOVA calculated for the SEDCON and FORAM index values showed no 

significant difference between the two replicates so two sediment replicates was deemed 

sufficient (Table 24). 

 
Table 24. One Way ANOVAs for a) SEDCON Index replicates and b) FORAM Index 
replicates 
 

a) 

One Way ANOVA

Source of Variation SS df MS F P-value F crit

Between Sites 10.52316 31 0.339457 9.47591 3.88E-09 1.810379

Within Sites 0.187164 1 0.187164 1.010613 0.318664 3.995887  
 

b) 

One Way ANOVA

Source of Variation SS df MS F P-value F crit

Between Sites 50.57827 19 2.662014 7.260835 2.41E-05 2.137009

Within Sites 0.128987 1 0.128987 0.084828 0.772443 4.098172  
 
 
The samples were collected in early May of 2007 prior to heavy rains associated 

with South Florida summers.  Since the environmental data collected with the YSI only 

represented a snapshot in time, the true effects of environment on the reefs can only be 

hypothesized.  Long-term monitoring of environmental data is needed to make more 

definitive conclusions.  The Southeast Research Center (SERC), which conducts long 

term monitoring of water quality along the Florida reef tract, has only two monitoring 



67 
 

stations within the study area, although four others are in the general vicinity.  While this 

added insight into the environmental conditions of the area, the resolution of their 

sampling did not provide enough detail for comparison.   

As mentioned in Daniels (2005), an issue that is involved with most indices that 

require identification training is an improved familiarity as samples are processed.  To 

minimize the effect of having more unidentifiables (for the SEDCON Index) or 

improperly identified foraminifera (for the FORAM Index) in early samples, care was 

taken to have an experienced technician provide a thorough training.  At the conclusion 

of identifications, early samples were revisited for a final count.  Books and picture 

taxonomic aides were also used to assure proper identifications and minimize error. 

The Offshore Environment 

Figures 4 and 5, which illustrate percent mud, salinity, and temperature 

distributions, provide an overview of the environment offshore of the Keys in Biscayne 

National Park, which provide shelter from direct influence (good or bad) of Biscayne 

Bay.  All three variables showed a similar pattern, an anomalous bump near the outflow 

of Caesar’s Creek.  Because temperature and salinity are frequently used as tracers of 

water masses, I deduced that the contours reflect a plume of water emerging from 

Biscayne Bay.  The force of the tidal flow in this area appears to also influence grain-size 

distribution. 

Foraminiferal Assemblages 

The foraminiferal assemblage data allowed for the creation of a Q-mode cluster 

analysis and then SIMPER grouping of sites.  Five groups were distinguished through 

this procedure (Fig. 7).  Groups A and E represented sites with FI values greater than 
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four, where the environmental conditions were, in theory, favorable for mixotrophic, 

calcifying organisms.  These sites were characterized by very low percent mud, low 

foraminiferal densities, and low foraminiferal diversity.  The map in Figure 7 shows that 

these SIMPER groups were most likely being influenced by the net outflow of water 

from Caesar’s Creek (Wang et al. 2003).  The same scenario is likely to be occurring at 

the south end of the study area, with water exchange through the inlet south of Old 

Rhode’s Key.  Only one genus of stress-tolerant foraminifer was present in Group A 

(Elphidium) and none in Group E.  Carnahan et al. (submitted) also found in their study 

of foraminiferal assemblages from within Biscayne Bay, that while Elphidium is a stress-

tolerant genus, it tended to group with the “other smaller” foraminifers in statistical 

analyses. 

Conversely, Group C reefs occur closest to shore and towards the interior of the 

islands where they are sheltered from constant intense water exchange.  This resulted in 

reefs characterized by high percent mud and low percentages of symbiont-bearing 

Foraminifera contributing to the assemblage.  This group also had the highest 

contribution of stress-tolerant taxa (Table 25).   

Carnahan et al. (submitted) conducted a study of foraminiferal assemblages within 

Biscayne Bay.  They recognized three distinct foraminiferal assemblages within the Bay, 

freshwater influenced, urban pollution influenced, and oceanic influenced.  When 

compared to the data from this thesis, the oceanic-influenced assemblage (B-2) most 

closely resembled Group C.  Percent mud for Group B-2 (from Carnahan 2005) and 

Group C (from this data) were 30% and 26.4% respectively and the mean FORAM Index 

values were 2.74 and 2.22.  In combination the two datasets may represent the full 
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spectrum of foraminiferal assemblages from highly impacted, near-shore environments, 

to open bay environments, to coral reef/open shelf assemblages. 

The SIMPER data combined with the contour lines created for the FI value 

showed a similar pattern to what has been observed in previous variables, the influence of 

Caesar’s Creek outflow (Fig. 8).  The Moran’s I value for the FI was insignificant (0.25, 

p=0.054), indicating no significant clustering of FI values.  However, the significant 

relationship between FI and salinity, temperature, and mud did imply that a pattern exists.  

The lack of significance in the FI pattern could be attributed to the fact that eight sites 

had to be removed from analysis due to low numbers of specimens. 

 
Table 25. Summary table for percent contribution of foraminiferal taxa to each SIMPER 
group.  
 

 

Hallock et al. (2003) determined that the FI was relatively unaffected by grain 

size in the samples they analyzed, especially in the most common median grain sizes for 

reef samples (Phi of 1 and 2).  The majority of Biscayne reefs also fell within this range.  

The range of FI values for 1 and 2 phi between the two studies were very similar (~2.5 to 

Group 
Stress-
tolerant 

Smaller  
Miliolids 

Smaller  
Rotalids Agglutinated 

Symbiont-
bearing 
Miliolids 

Symbiont-
bearing Rotalids 

(parentheses indicate # of genera/group) 

5.24 22.1 18.5 10.6 27.8 6.96 
A 

(1) (2) (2) (2) (3) (2) 

9.12 39.1 12.5 7.4 18.9 3.81 
B 

(5) (9) (3) (2) (5) (2) 

21.7 45.2 18.3 0 5.16 0 
C 

(5) (8) (5) (0) (1) (0) 

11.7 37.1 18.0 8.27 15.9 0 
D 

(4) (9) (4) (2) (3) (0) 

0 10.9 21.1 4.23 34.3 20.5 
E 

(0) (2) (3) (1) (4) (3) 
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6).  This study even had a site approaching an FI value of 7.  However, when the whole 

range of phi values was considered, there seemed to be some dependence on grain size 

that is not observed in the 2003 study (Fig. 14).  This could be a result of the detail in 

which this study area was sampled allowing for more minute changes to be observed over 

a distance of one to two kilometers as opposed to tens of kilometers.  It could also be due 

to the variation in flow patterns affecting the reefs in Biscayne National Park.   

One aspect of the FORAM Index that has been adjusted since its inception is the 

definition of “opportunistic” taxa.  In Hallock et al. (2003), only two genera (Ammonia 

and Elphidium) were specifically listed as opportunistic.  However, four families under 

which several genera may be opportunistic were also listed, including Bolivinidae and 

Buliminidae.  For index calculations in this project Ammonia, Ammobaculites, Bolivina, 

Bulimina, Cribroelphidium, and Elphidium were all considered opportunistic or stress-

tolerant.  Moreover, in Carnahan (2005), genera included in the stress-tolerant category 

did not include Bolivina or Bulimina, but did include Nonion, Nonionoides, and 

Nonoinella.  To compare the difference, a second index value was conducted excluding 

Bolivina and Bulimina and including Nonion, Nonionoides, and Nonoinella.  Both values 

are reported in Table 26.  Another affect on the FI value was the presence of a particular 

genus of symbiont-bearing foraminifera that is not common in the western Atlantic, 

Monalysidium.  This genus was originally left out of the FORAM Index calculation for 

that reason, but a third calculation of FI values was done including all of the genera of 

previously mentioned stress-tolerant taxa (as suggested by Carnahan et al. (submitted) as 

well as including Monalysidium as a symbiont-bearing foraminifer.  This value is also 

listed in Table 26.   
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The differences among all three calculations are minimal.  The only site with a 

difference above 0.09 was replicate one of Reef 5.4 at 0.33 for the first calculation and 

0.38 for the second calculation.  The relatively large deviation is a result of the extremely 

low numbers of Foraminifera in this sample (27 foraminifers total).  As a result, this 

sample is one of the eight that was removed from other analyses.  Thus, whether the less 

common genera are considered as “other smaller” taxa or not has minimal influence on 

the FI where a sufficient sample size is present. 
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a) 

 
 
b) 

 
 
Figure 14. FORAM Index values plotted against median grain size represented by Phi 
values. a) is Figure 3 from (Hallock et al. 2003) with range of Phi sizes from this study 
noted, b) is grain-size data from this study. 
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Table 26. Comparison of three different methods of calculating the FORAM Index. 
 

Site Rep FI Value

FI value 

(Carnahan 2005) Difference

FI Value                                          

(all stress tolerant genera 

and Monalysidium  as 

symbiont-bearing) Difference

1.1 R1 5.33 5.33 0.00 5.33 0.00

1.1 R2 5.25 5.25 0.00 5.25 0.00

1.2 R1 8.67 8.67 0.00 8.67 0.00

1.2 R2 4.11 4.12 -0.01 4.11 0.00

Shark R1 7.71 7.71 0.00 7.71 0.00

Shark R2 9.11 9.11 0.00 9.11 0.00

2.1 R1 3.23 3.25 -0.02 3.23 0.00

2.1 R2 3.17 3.25 -0.08 3.24 -0.07

2.2 R1 3.25 3.26 -0.01 3.24 0.01

2.2 R2 2.65 2.73 -0.08 2.69 -0.04

3.1 R1 3.65 3.65 0.00 3.65 0.00

3.1 R2 3.18 3.17 0.01 3.16 0.01

3.2 R1 7.33 7.33 0.00 7.33 0.00

3.2 R2 6.00 6.00 0.00 6.00 0.00

Bug R1 2.02 2.07 -0.05 2.01 0.02

Bug R2 2.19 2.27 -0.09 2.18 0.01

Elkhorn R1 6.44 6.44 0.00 6.44 0.00

Elkhorn R2 5.08 5.13 -0.05 5.08 0.01

4.1 R1 3.34 3.36 -0.02 3.34 0.01

4.1 R2 3.58 3.59 -0.01 3.58 -0.01

4.2 R1 3.44 3.43 0.02 3.43 0.02

4.2 R2 2.50 2.57 -0.07 2.50 0.00

Pacific R1 8.36 8.36 0.00 8.36 0.00

Pacific R2 5.63 5.62 0.01 5.62 0.01

5.1 R1 5.22 5.17 0.05 5.17 0.05

5.1 R2 5.60 5.62 -0.02 5.60 0.00

5.2 R1 4.55 4.55 0.00 4.53 0.02

5.2 R2 5.09 5.09 0.00 5.08 0.02

5.3 R1 3.80 3.79 0.02 3.79 0.02

5.3 R2 6.52 6.52 0.00 6.52 0.00

5.4 R1 4.86 4.53 0.33 4.48 0.38

5.4 R2 4.33 4.33 0.00 4.33 0.00

6.1 R1 3.38 3.39 -0.01 3.38 0.00

6.1 R2 4.15 4.14 0.01 4.14 0.01

6.2 R1 3.95 4.03 -0.08 4.01 -0.07

6.2 R2 3.90 3.89 0.01 3.89 0.01

6.3 R1 3.97 3.97 -0.01 3.97 0.00

6.3 R2 5.06 5.04 0.01 5.04 0.01

7.1 R1 3.46 3.47 -0.01 3.45 0.01

7.1 R2 3.94 3.92 0.02 3.91 0.02

Star R1 3.58 3.62 -0.04 3.57 0.01

Star R2 4.00 3.99 0.01 3.99 0.01

7.2 R1 4.35 4.36 -0.01 4.35 0.01

7.2 R2 4.81 4.82 -0.01 4.81 0.00

8.1 R1 6.70 6.70 0.00 6.70 0.00

8.1 R2 4.24 4.24 0.00 4.24 0.00

Nirvana R1 4.67 4.67 0.00 4.67 0.00

Nirvana R2 10.00 10.00 0.00 10.00 0.00

8.2 R1 3.50 3.48 0.02 3.47 0.03

8.2 R2 3.21 3.26 -0.06 3.25 -0.04

9.1 R1 3.51 3.61 -0.09 3.57 -0.05

9.1 R2 4.91 4.93 -0.01 4.91 0.00

9.2 R1 2.36 2.40 -0.05 2.35 0.01

9.2 R2 3.03 3.06 -0.03 3.01 0.02

9.3 R1 2.32 2.34 -0.02 2.30 0.02

9.3 R2 2.70 2.77 -0.07 2.71 -0.01

Lugano R1 9.47 9.47 0.00 9.47 0.00

Lugano R2 7.33 7.33 0.00 7.33 0.00

10.1 R1 2.00 2.00 0.00 2.00 0.00

10.1 R2 8.00 8.00 0.00 8.00 0.00

10.2 R1 5.80 5.80 0.00 5.80 0.00

10.2 R2 6.05 6.05 0.00 6.05 0.00

Dome R1 3.05 3.07 -0.01 3.04 0.01

Dome R2 3.61 3.55 0.05 3.55 0.05  
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Sediment-Constituent Assemblages 

The underlying premise of the SEDCON Index was based on models first 

published by Hallock (1988).  On  subtropical Pacific atolls, which tend to be in very 

low-nutrient oceanic waters, symbiont-bearing foraminifers (i.e., mixotrophs) tend to be 

the dominant sediment constituent, followed by identifiable bits of coral (mixotrophs) 

and coralline algal (autotrophs) fragments, and with much smaller proportions of debris 

from calcareous algae (autotrophs), gastropods, echinoids and smaller foraminifers 

(heterotrophs) (e.g., Hallock 1988).  In areas with continental or upwelling influence that 

provides additional nutrient flux, the benthic community becomes less dominated by 

mixotrophs, as calcareous, filamentous and fleshy algae become more prevalent, along 

with the gastropods and echinoids that feed upon the algae. The skeletal debris of the 

autotrophic and heterotrophic carbonate producers should become more prevalent in the 

sediments. There will be more carbonate mud production, both through the breakdown of 

calcareous algal skeletons to aragonite needles, and also because the gastropods and 

echinoids are bioeroding the carbonate substrate.  As nutrient flux further increases, 

plankton densities increase, providing more food for filter-feeding sponges and bivalves, 

some of whom are very active bioeroders.  In low energy environments, bioerosional 

debris includes large volumes of carbonate muds.  Hallock (1988) and Lidz and Hallock 

(2000) postulated that the proportion of unidentifiable fragments should increase in 

higher energy environments, where muds are swept away. 

Thus, the formula Daniels (2005) proposed for the SEDCON index is based on 

the premise that if 100% of the sediments were identifiable coral fragments (not realistic), 

the SEDCON value would be 10.  More realistic is the possibility that 95% of the 
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sediments could be shells of symbiont-bearing foraminifers, which would give a 

minimum SI value of 7.6, and up to 8.1 if the other 5% was coral fragments.  If the 

sediments were 100% identifiable coralline and calcareous algae and molluscan and 

echinoid fragments, the SI value would be 2.  Sediment composed 100% of unidentifiable 

carbonate grains would have a SI value of 0.1.  Thus, there must be mixotrophic 

contributors for the SI to be greater than 2, and there must be unidentifiable debris for the 

SI to be less than 2. 

In the sediments collected from all of my sites, unidentifiable grains typically 

were the most common constituent, so most of the SI values I calculated were <2.  Where 

unidentifiable grains played a smaller role, calcareous algae and mollusks played larger 

roles.  Two sample groups were identified using the SIMPER procedure on the sediment 

constituent assemblage.  Group A samples tended to have high mud fractions (17%) 

compared to Group B (1.1%).  However, it is Group A that had the higher average SI 

value (Table 15), probably because the low energy environment and abundant mud 

protected identifiable grains from further breakdown.   The overall range of SI values was 

very small, from 0.64 to 2.48.  Thus, if the assumptions upon which the SI is based are 

valid, these SEDCON Index values indicate a benthic environment that is dominated by 

autotrophic and heterotrophic carbonate producers rather than mixotrophs. 

There appears to be a problem in the underlying assumptions of the SEDCON 

Index as it applies to the reefs in Biscayne National Park, and possibly to other areas with 

extremes in hydrodynamic setting.  The unidentifiable category had significant negative 

correlations with all of the other constituents that represented nutrient signals and 

abundant food resources (Table 17).  In an environment where bioerosion is a dominant 
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process there should also be other indicators of increased food sources that would 

stimulate the bioeroders and so one would expect this relationship to be positive.  Also, 

the positive correlation mentioned earlier between the calcareous algae, the “other” 

category, and the SI indicate another problem.  This correlation implies that where 

autotrophy and heterotrophy were high, the SI was higher than elsewhere.  This should 

not be the case since these constituents represent nutrification, which is detrimental to 

reef accretion. 

However, none of the reefs in BNP can be deemed “healthy” due to the narrow 

range of SI values, which may also pose a problem in determining solutions to adjust the 

SEDCON Index.  However, Daniels (2005), which is the document defining the 

SEDCON Index, had a similar range of SI values from 0.92 to 2.58 across patch reefs and 

offshore reef sites in the Florida Keys.  To more adequately test this index, a gradient 

from healthy reef to degraded reef must be examined. 

An Index Comparison 

Looking at Figures 8 and 12, the similarity between the two indices is obvious in 

their pattern, but inverse in their values.  The two indices had a -0.53 Pearson’s 

correlation coefficient and a -0.40 Moran’s I.  One index appears to be missing or 

misreading an important component that is causing this inverse relationship.   

The problem appears to be in the SEDCON Index, within grain size and the role 

of unidentifiable grains.  Group A from the SEDCON SIMPER groups had three of the 

same reefs from Group C in the FORAM SIMPER grouping.  Both of these groups had 

the highest percent mud, but while the FORAM group has the lowest FI values, the 

SEDCON group had the highest SI values.  Table 23, the correlation matrix between 
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foraminiferal taxa and sediment constituents, showed that unidentifiable grains positively 

correlate with those foraminifers that support algal symbionts while negatively correlated 

with heterotrophic Foraminifera.  This implies that areas with high percentages of 

unidentifiable grains are also suitable for algal symbiosis in foraminifera thereby 

indicating that conditions would also be favorable for algal symbiosis in corals.  This 

may also be supported by the presence of a positive relationship between unidentifiables, 

symbiont-bearing and coralline algae, which is thought to provide a favorable substrate 

for juvenile corals to settle (Morse and Morse 1984, Raimondi and Morse 2000).   

The SEDCON Index provides a fast and easy assessment of the reef environment 

making it a simple and useful tool to add to a monitoring plan.  But the point must be 

emphasized that it is a highly simplified, new analysis and some adjustments may need to 

be made in order for it to provide useful results.  The SEDCON Index identifies the 

autotrophic/heterotrophic functional group as a combined indicator of nutrient levels and 

food resources. At the same time, it separately identifies percentages of unidentifiable 

grains as indicative of bioerosion, another proxy of food resources. 

The problem identified by this research lies in this definition.  The muddiest reefs 

were considered by the SEDCON Index to be the healthiest because they had the least 

amount of unidentifiable grains.  However, muddy sediments are likely an indication of 

calmer waters, and in calmer waters sediments are less likely to be affected by physical 

erosion thereby allowing more grains to be identifiable.  Conversely, lack of mud in a 

sediment sample may be an indication of a higher energy environment.  In this case, 

grains in the analyzed size fraction would be more likely to mobilize and experience 

physical erosion, thereby making them unidentifiable. 
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Because there is an outflow of water from Biscayne Bay through Caesar’s Creek 

and because this creek is tidally dominated, the reefs in transect 5 must experience near 

constant water exchange.  Since these reefs correspond to SIMPER groups A and E in the 

FORAM analysis, I deduced that these groups represent reefs in higher energy 

environments.  Likewise, those reefs most dissimilar to groups A and E likely represent 

reefs in the lowest energy environment, i.e., group C.   

Following this logic, since Group C from the FORAM analysis overlaps with 

Group B from the SEDCON analysis, the reefs in Group B must also represent low 

energy environments.  This is supported by the presence of mud accumulated in the 

sediment sample. 

In a simple attempt to validate this hypothesis, the coefficients for the Pah and the 

Pu functional groups in the SEDCON Index equation were reversed.  This increased the 

weighting of unidentifiables to now represent relative wave or current energy and down 

weighs the influence of indicators of increased nutrients.  The results of this simple 

change as compared to the FORAM Index values can be seen in Figure 15.  Thus, the two 

indices had a correlation coefficient of 0.59.  

When the SEDCON Index was originally created by Daniels (2005), the results 

showed that the equation she developed correlated with percent coral cover for her 

sampled reefs in the Florida Keys.  Also, the SI values she calculated had no correlation 

with percent mud.  This is a likely cause for the deficiencies in the index.  The reefs off 

the Florida Keys, especially off of the middle and lower Keys, are subject to strong 

currents emerging from Florida Bay (Lidz 2005).  Without a large continuous landmass 

to divert the flow, muddy sediments cannot build up.  Thus, the SEDCON Index may 
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provide an accurate depiction of a reef system on an open shelf, but where landmasses 

prevent adequate circulation though a shallow reef environment, the influence of muddy 

sediments alters the interpretation of the index values. 

 
Figure 15. FORAM Index values plotted against modified SEDCON Index values 
 

 
 

 

Unfortunately, monitoring of coral cover in Biscayne National Park is sparse and 

sporadic such that no data were available to compare to the indices.  While this would 

have been an interesting analysis, these indices are meant to describe the ability of a 

marine environment to support reef growth, not to describe the physical status of present 

reefs, so this lack of data is not an important issue. 

It is not the goal of this thesis to definitively correct the SEDCON Index.  Merely, 

these findings suggest that the correlation between the two indices is strong enough to 

indicate that the SEDCON index could be viable with some alterations and should not be 
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completely disregarded, but rather adjusted.  In the event that the SEDCON Index can be 

adjusted, the point should be made that the SEDCON Index had the smaller learning 

curve and also took less time to analyze in comparison to the FORAM Index.  Actual 

microscope time required to process one sample from start to finish was consistently 

about one hour for the SEDCON Index. The processing time for the FORAM Index, 

depending on the grain size distribution of the sample, ranged in processing time from 45 

minutes to three hours.  For both indices, processing time decreased as experience was 

gained. 

Live Symbiont-bearing Foraminifera (LSF) 

The larger species diversity, along with the presence of Asterigerina carinata, a 

species thought to be very tolerant of high energy environments (e.g., Crevison et al. 

2006), as one of the contributing species to Group A’s similarity, indicates that this group 

is subject to sufficient amounts of water circulation.  This may minimize the effect that 

anthropogenic pollutants entering the reef system may have on these reefs, resulting in a 

relatively high mean FI value.  Five of the seven reefs in this group fall on the eastern 

most side of the sampling area and so are more exposed to open ocean circulation 

patterns.  Reef 1.1 was the only reef that exceeded Group A’s abundance of A. carinata.  

This reef is also located in the vicinity of a tidally influenced creek and would therefore 

also be exposed to higher energy flow. 

Amphistegina gibbosa, the foraminifer on which the Photic Index is based, were 

the most important contributor to Groups A and C, despite the fact that Group C includes 

some of the muddiest reefs.  This species accounts for the major difference between 

Groups B and C.  A. gibbosa abundance never exceeded 61 individuals/100cm2, a density 
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which Hallock (1995) considered as indicating suboptimal conditions for Amphistegina. 

Still, the relatively high abundance of live A. gibbosa specimens in the muddy Group C, 

as well as its relatively high overall density of LSF, can probably best be explained as a 

result of the “Goldilocks” nature of both symbiont-bearing foraminifers and corals.  

While both corals and foraminifers historically thrive on offshore reefs exposed to higher 

energy environments, and removal from local stressors near shore, the global increase of 

UV radiation also makes the clearest offshore reefs most vulnerable to photo-oxidative 

stress.  I propose that this leaves the intermediate reefs as the most suitable habitat 

remaining for continued reef growth (Fig. 16). 

 

Figure 16. Schematic of “Goldilocks” scenario reefs now face. 
 

 
 

Because the Photic Index is intended to detect global stressors and most of the 

reefs had the same impact level, this index was less useful in defining a spatial pattern.  

However, the uniformity of the values did indicate that the study area may be suffering 

from chronic photic stress as well as some level of other stressors.  While the other 

indices were useful in suggesting local incidences of stress, this index shows that the 

reefs are also subject to the global stress of increased UV radiation.  Two reefs (1.1 and 

9.3) had a value of five, meaning very few A. gibbosa and little or no bleaching.  The low 

densities may indicate environmental conditions that are generally unfavorable for 
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symbiotic organisms.  However, Reef 1.1 had a number of LSF that exceeded the overall 

mean, yet it did not have enough symbiont-bearing forams in the sediment assemblage to 

include in other analyses.  Reef 9.3, however, might have been expected to have a PI 

value of 5 given its place among SIMPER group C in the foraminiferal assemblage data. 

This index seemed to provide some additional qualitative results for assessing the 

health of Biscayne patch reefs.  However, while Amphistegina gibbosa can be found in 

depths less than five meters to depths of 100 meters, they tend to be more abundant from 

15 to 40 meters depth (Hallock 1999).  The range of depths sampled in Biscayne National 

Park was less than two meters at Elkhorn reef to ten meters at reef 7.1.  Because no reef 

fell within this zone of preference, the reefs are all comparable to each other.  Figure 17 

shows no relationship between the density of A. gibbosa and depth.  Highly variable 

photic conditions are probably why A. gibbosa are generally less abundant at shallower 

depths.  Where water transparency is more consistent, Amphistegina abundances tend to 

be higher, even at depths of 1-2 meters.  In regards to the Photic Index, however, there 

may have been some complications in terms of the density ranking since one would not 

expect to see large densities of A. gibbosa in such shallow waters to begin with.  Despite 

this, the PI does indicate that photic stress was chronic throughout the sampled area in 

May 2005. 

 

 

 

 

 



83 
 

Figure 17. Densities of Amphistegina gibbosa (per 100cm2) plotted against depth 
showing no depth dependence for the sampled reefs 
 

 

Patch Reef Health 

An overall assessment of patch reef health in this area of Biscayne National Park 

would need to include coral cover data.  However, based on the indices applied for this 

project (Table 27), I can conclude that for most of the reefs in the sampled area, reef 

accretion is negligible and the probability of recovery after an acute event, such as a 

hurricane, boat grounding, or bleaching, is low.  These conclusions are in agreement with 

Fisher et al. (2007) and Dupont et al. (in press), which both include analyses of reef 

conditions in BNP.   

Dupont at al. (in press) conducted a comparative analysis of a coral cover data set 

from 1977 in Biscayne National Park with data sets collected in the 1990’s.  Their results 

showed that there has been significant loss of coral cover in that time period and that 

continued loss is probable.  However, they also showed that over that time period species 

richness was relatively stable and concluded that recovery of the reef system may be 

possible if environmental conditions are restored. 
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An interesting analogy to the Dupont et al. (in press) observations may be the 

discrepancy I observed between abundances of live symbiont-bearing foraminifers (LSF), 

which were quite variable (8-569/100cm2 of reef rubble), and the relatively few (≤ 10%) 

shells of symbiont-bearing foraminifers encountered during the SEDCON Index analysis. 

Results from the SEDCON Index revealed that the majority of the constituents were 

unidentifiable. The original assumption for the SEDCON Index was that the 

unidentifiable fraction results primarily from bioeroded material, although certainly a 

significant component also can be physically abraded fragments. The decadal-scale, 

precipitous decline in coral cover reported by Dupont et al. (in press) and present low 

coral cover (Miller et al. 2000, Moulding and Patterson 2002) is consistent with the 

presence of relatively few recognizable coral fragments and shells of symbiont-bearing 

foraminifers.  On the other hand, the presence and variable abundances of LSF are 

consistent with the Dupont et al. (in press) observation that coral species richness has not 

declined.  That is, environmental conditions, including water quality, for the studied 

patch and bank reefs of Biscayne National Park generally support the survival of 

calcifying symbioses, including a diversity of coral and LSF species, but not their 

dominance and production of significant proportions of the carbonate sediments.   

So the question then emerges, are the causes of the decadal-scale decline in coral 

cover on BNP patch reefs local, regional, or global?  Certainly the decline in Acropora 

spp. that once dominated, e.g., Elkhorn Reef, is likely associated with the regional white-

band epidemic (Gladfelter 1982, Santavy et al. 2005).  Similarly, the evidence for chronic 

photo-oxidative stress, as indicated by chronic levels of bleaching in live Amphistegina 
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gibbosa, likely provides further evidence for at least part of the decline being associated 

with global-change factors.   

However, local decline in water quality must also be considered.  Fisher et al. 

(2007) documented that coral-lesion recovery at Alina’s Reef in BNP was poor, but that 

the presence of large coral heads with substantial live tissue indicated that the stress was 

relatively recent.  Alina’s Reef lies in the plume from Caesar’s Creek.  Moreover, Downs 

et al. (2006) documented evidence for xenobiotic stress in reef fish at Alina’s Reef.  

Additionally, the dredging associated with the maintenance of Hawk Channel could be a 

major source of mud and re-suspended nutrients and/or toxins.   

Finally, assessing the indices themselves, they demonstrated both applications and 

limitations.  First of all, each of the indices indicates something different.  The SEDCON 

Index reflects a) the community structure relative to calcifying symbioses (stony coral 

and symbiont-bearing foraminifers) versus sediment production by calcifying autotrophs 

and heterotrophs, and b) the accretion potential as reflected by proportions of coral and 

calcareous algal production versus bioeroded material.  The FORAM Index also indicates 

the relative suitability of the environment for calcifying symbioses. Unfortunately both 

indices are influenced by sediment texture, especially sediments with significant 

proportions of mud.  Therefore, comparing sediments of relatively similar textures is 

advisable.  The inverse correlation between the SEDCON and FORAM indices in my 

samples indicates that, at low SEDCON values, production by calcareous algae can 

overwhelm production by symbiont-bearing foraminifers, even when live symbiont-

bearing foraminifers can be found in some abundance in the environment.  Thus, the 
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indices should be evaluated independently and over a general area, and are not 

sufficiently sensitive enough to reflect subtle differences among similar patch reefs. 

Similarly, the three potential indices provided by assessing LSF indicate again 

somewhat different aspects of the environment.  Especially in very shallow 

environments, Amphistegina gibbosa densities can be quite variable, so their widespread 

presence at intermediate densities on BNP patch and bank reefs indicated that 

environmental conditions were generally favorable, at least during the time of sampling.  

Similarly, those densities combined with evidence for chronic bleaching indicated that 

water quality, including water transparency, was sufficient for photo-oxidative stress to 

be occurring, but that the stress was not acute.  Fisher (2007), reporting on a variety of 

diagnostic parameters on upper Florida Keys patch reefs, found that chronic bleaching in 

A. gibbosa tended to be most prevalent at the reefs that consistently had the highest 

densities of A. gibbosa and the best rates of recovery of coral lesions.  Finally, the overall 

densities of LSF revealed generally intermediate abundances with substantial variability 

among reefs.  These trends again show that conditions are suitable for their persistence 

but not dominance as sediment producers.  And all of these trends support the 

assumption, presented in Figure 16, that Florida’s coral reefs and reef-associated biota 

today are being squeezed between the impacts of increasing terrestrial influence as 

humans alter coastal habitats, and increasing photo-oxidative stresses associated with 

stratospheric ozone depletion and global climate change. 

Islands v Inlet: Sources of Stress or Security? 

The two islands that separate Biscayne Bay from the open shelf (Elliot Key and 

Old Rhode’s Key) may be influencing the patch reefs in the sampled area in both positive 
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and negative ways.  First, the Keys prevent Biscayne Bay waters from directly 

influencing the reef environment.  However, in doing so, they are also limiting the area of 

water flow and forcing higher velocity exchange through Caesar’s Creek.  As velocity 

decreases with distance from the creek there is likely to be flocculation of muds, and 

potentially pollutants, out of the water column and on to the reefs more distant from 

Caesar’s Creek.  On the other hand, reefs in proximity to the undeveloped islands may be 

more sheltered from the effects of harmful UV radiation by higher concentrations of 

colored dissolved organic matter (CDOM) produced by the mangroves on the islands. 

Conversely, Caesar’s Creek may be the main source of pollution from within 

Biscayne Bay onto the reefs, which may result in a larger nutrient flux on those reefs in 

its immediate proximity, however, the constant water motion may prevent any more 

serious pollutants and heavy metals from settling on the reef.  Additionally, turbidity 

caused by the water motion may also add some protection from the increased levels of 

UV radiation. 

Because my analysis did not include water transparency analyses or sediment 

toxicology studies, it would be hard to say for sure which, the islands or the inlet, is a 

greater cause/source of stress and to what degree.  However, these would be interesting 

aspects to research in the future.  Also, because the reefs in this area seem to be affected 

by chronic photic stress, the beneficial effects of the islands and the inlet, relative to 

water transparency, may be very important to the persistence of the reefs in Biscayne 

National Park. 
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Table 27. Summary of data presented in this report as rankings.  * indicates insufficient 
specimens (< 50 per sample) to calculate the index or index ranking. 
 

Amphistegina Amphistegina

Rank Definition FI SI bleaching density LSF density

1 - poor <2 <2 >40% <10 <10

2 - marginal 2-4 2-4 5-40% 10-100 10-100

3 - good >4 >4 <5% >100 >100

Site FI Rank SI Rank Bleach Rank Amphi Rank LSF Rank

1.1 3.00* 1.00 3.00* 1.00 3.00

1.2 3.00 1.00 2.00* 2.00 3.00

Shark 3.00* 1.00 2.00* 2.00 2.00

2.1 2.00 1.00 2.00* 2.00 2.00

2.2 2.00 1.00 2.00* 1.00 2.00

3.1 2.00 1.00 2.00* 2.00 2.00

3.2 3.00* 1.00 2.00* 2.00 3.00

Bug 2.00 1.00 2.00* 2.00 2.00

Elkhorn 3.00 1.00 2.00* 2.00 2.00

4.1 2.00 1.00 2.00 2.00 3.00

4.2 2.00 1.00 2.00* 2.00 2.00

Pacific 3.00 1.00 2.00* 2.00 2.00

5.1 3.00 1.00 2.00* 2.00 2.00

5.2 3.00 1.00 2.00* 1.00 2.00

5.3 3.00 1.00 2.00* 2.00 2.00

5.4 3.00* 1.00 2.00* 2.00 2.00

6.1 2.00 1.00 2.00* 1.00 2.00

6.2 2.00 1.00 2.00* 2.00 3.00

6.3 3.00 1.00 2.00* 2.00 3.00

7.1 2.00 1.00 2.00* 1.00 3.00

Star 2.00 1.00 2.00* 2.00 2.00

7.2 3.00 1.00 2.00* 2.00 3.00

8.1 3.00* 1.00 2.00* 2.00 2.00

Nirvana 3.00* 1.00 2.00 2.00 3.00

8.2 2.00 1.00 2.00 2.00 3.00

9.1 3.00 1.00 2.00* 1.00 2.00

9.2 2.00 2.00 2.00* 2.00 2.00

9.3 2.00 2.00 3.00* 1.00 1.00

Lugano 3.00* 1.00 2.00* 2.00 3.00

10.1 3.00* 1.00 2.00 2.00 2.00

10.2 3.00 1.00 2.00* 2.00 3.00

Dome 2.00 1.00 2.00* 2.00 3.00  
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CONCLUSIONS 

1. The pattern of salinity, temperature, and percent mud indicate waters emerging 

from Biscayne Bay through Caesar’s Creek into the study area.   

2. The influence of the water emerging from the bay is reflected in the FORAM and 

SEDCON Indices. 

3. Analyses of both the FORAM Index and the SEDCON Index produced SIMPER 

groups that seemed to reflect physical processes that are affecting the reefs (i.e., 

high and low energy environments).  The FORAM Index created more distinct 

groupings that reflected transitional conditions. 

4. The SEDCON Index was faster and easier to apply, while the FORAM Index 

produced more inter-reef detail.  Moreover, the BNP samples revealed previously 

undocumented dependence of both indices on sediment texture. 

5. Each of the potential biotic indicators, i.e., the SEDCON Index, the FORAM 

Index, and each of three parameters associated with living symbiont-bearing 

foraminifers, reveals slightly different aspects of environmental conditions, 

providing a potential diagnostic suite that appears more robust for the area than 

any single parameter. 

6. Based on the suite of biotic indicators, environmental conditions throughout most 

of the high density patch reefs in Biscayne National Park appear to be marginal 
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for reef growth.  The average FI value across all reefs was 4.12; the average SI 

value was 1.26.  Amphistegina gibbosa densities averaged 24 specimens per 100 

cm2, while total LSF densities averaged 102 specimens per 100 cm2. 

7. Global and regional stressors, such as white-band disease, increased short-

wavelength solar radiation associated with stratospheric ozone depletion, and 

increasing sea-surface temperatures, are likely compounding the effects of 

declining local water quality.  Reef recovery from an acute event in this area is 

likely to be poor. 

8. Long-term monitoring of environmental variables and coral cover should be 

conducted to determine if the net effect of the water emerging from Biscayne Bay 

is positive or negative.  This includes but is not limited to monitoring for heavy 

metals and pesticides that are known to accumulate within the Bay. 
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Appendix I. Results of grain-size analysis, percent weight of size fraction. Bold indicates 
median size fraction. Shading represents size fraction analyzed for the SEDCON Index. 

 
   PHI SIZES

-1 0 1 2 3 4 >4

Site Replicate > 2mm >1mm >0.5mm >0.25mm >0.125mm>0.063mm<0.063mm

1.1 R1 21.41% 44.54% 31.13% 2.12% 0.26% 0.18% 0.37%

1.1 R2 10.50% 23.50% 50.72% 13.28% 1.20% 0.32% 0.48%

1.2 R1 3.69% 59.40% 33.05% 3.10% 0.46% 0.16% 0.14%

1.2 R2 10.72% 35.79% 31.74% 18.49% 2.49% 0.32% 0.45%

Shark R1 0.03% 5.64% 85.36% 8.77% 0.17% 0.01% 0.01%

Shark R2 0.67% 13.73% 74.10% 11.11% 0.36% 0.02% 0.03%

2.1 R1 46.20% 37.74% 11.47% 2.64% 0.95% 0.42% 0.58%

2.1 R2 36.88% 39.35% 19.34% 2.88% 0.68% 0.32% 0.55%

2.2 R1 16.53% 27.57% 33.08% 14.11% 4.48% 2.50% 1.73%

2.2 R2 10.98% 20.55% 29.12% 17.88% 10.05% 5.92% 5.49%

3.1 R1 9.23% 26.95% 28.28% 15.96% 13.12% 5.52% 0.95%

3.1 R2 7.66% 20.05% 34.34% 21.61% 10.85% 4.10% 1.39%

3.2 R1 41.20% 51.13% 7.37% 0.23% 0.04% 0.02% 0.02%

3.2 R2 7.39% 42.19% 45.61% 4.67% 0.12% 0.00% 0.02%

Bug R1 9.42% 9.56% 13.98% 11.94% 13.47% 16.81% 24.81%

Bug R2 7.52% 4.82% 8.94% 11.42% 12.74% 14.33% 40.23%

Elkhorn R1 27.86% 48.55% 20.64% 2.11% 0.54% 0.15% 0.14%

Elkhorn R2 9.70% 22.49% 42.67% 18.51% 4.56% 0.96% 1.12%

4.1 R1 10.36% 16.74% 27.66% 22.27% 15.71% 3.63% 3.62%

4.1 R2 9.04% 14.66% 25.06% 23.22% 17.28% 4.87% 5.88%

4.2 R1 10.10% 8.09% 17.34% 27.71% 22.71% 6.48% 7.58%

4.2 R2 6.84% 12.22% 21.57% 19.77% 17.25% 6.54% 15.80%

Pacific R1 1.21% 10.06% 70.43% 17.05% 1.08% 0.06% 0.12%

Pacific R2 6.53% 36.98% 47.37% 7.39% 1.38% 0.20% 0.15%

5.1 R1 4.66% 19.83% 58.52% 14.89% 1.73% 0.18% 0.18%

5.1 R2 18.05% 51.45% 22.01% 5.54% 2.23% 0.39% 0.33%

5.2 R1 8.30% 19.85% 49.15% 19.64% 2.16% 0.29% 0.62%

5.2 R2 3.42% 12.08% 50.02% 29.07% 3.32% 0.48% 1.62%

5.3 R1 4.55% 25.04% 54.91% 12.67% 2.18% 0.30% 0.34%

5.3 R2 14.13% 28.11% 45.05% 9.61% 1.69% 0.34% 1.06%

5.4 R1 15.00% 36.28% 40.97% 5.35% 1.35% 0.34% 0.71%

5.4 R2 10.44% 36.74% 40.40% 8.53% 2.73% 0.51% 0.66%  
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Appendix I. (Continued) Results of grain-size analysis, percent weight of size fraction. 
Bold indicates median size fraction. 

 
   PHI SIZES

-1 0 1 2 3 4 >4

Site Replicate > 2mm >1mm >0.5mm >0.25mm >0.125mm>0.063mm<0.063mm

6.1 R1 7.61% 10.51% 21.34% 27.49% 27.26% 4.45% 1.35%

6.1 R2 5.99% 14.36% 29.65% 24.71% 19.52% 3.74% 2.02%

6.2 R1 17.35% 24.02% 47.91% 9.41% 0.89% 0.13% 0.28%

6.2 R2 2.18% 11.32% 52.32% 30.15% 3.50% 0.48% 0.06%

6.3 R1 0.58% 2.83% 35.65% 43.66% 15.83% 1.16% 0.29%

6.3 R2 1.58% 2.98% 30.50% 40.90% 21.10% 1.93% 1.02%

7.1 R1 9.44% 17.65% 33.51% 20.31% 9.40% 5.35% 4.34%

7.1 R2 7.16% 20.50% 37.39% 20.94% 7.92% 3.55% 2.52%

Star R1 12.24% 16.04% 29.54% 24.42% 13.86% 1.73% 2.16%

Star R2 5.87% 6.61% 14.92% 35.07% 31.99% 2.77% 2.77%

7.2 R1 7.78% 12.97% 37.10% 31.62% 7.96% 1.09% 1.47%

7.2 R2 12.83% 12.77% 40.36% 25.21% 5.83% 1.04% 1.96%

8.1 R1 5.80% 39.69% 48.21% 5.49% 0.49% 0.09% 0.24%

8.1 R2 13.42% 60.55% 25.37% 0.51% 0.01% 0.00% 0.15%

Nirvana R1 8.95% 45.75% 40.29% 4.65% 0.26% 0.04% 0.06%

Nirvana R2 3.07% 32.97% 60.63% 3.12% 0.14% 0.02% 0.06%

8.2 R1 16.15% 23.90% 29.29% 18.05% 8.91% 2.06% 1.64%

8.2 R2 7.31% 10.27% 17.27% 17.27% 15.77% 8.39% 23.71%

9.1 R1 8.42% 15.23% 37.48% 23.41% 11.17% 2.97% 1.32%

9.1 R2 9.10% 8.77% 26.75% 29.70% 17.20% 4.86% 3.62%

9.2 R1 2.50% 4.44% 10.12% 17.84% 24.71% 23.04% 17.34%

9.2 R2 4.70% 6.84% 16.24% 17.18% 19.25% 18.47% 17.33%

9.3 R1 6.61% 11.48% 21.75% 15.59% 13.72% 12.07% 18.78%

9.3 R2 4.83% 8.51% 19.84% 14.77% 12.81% 11.31% 27.92%

Lugano R1 0.44% 36.20% 58.31% 4.72% 0.10% 0.02% 0.21%

Lugano R2 15.20% 38.22% 41.28% 4.84% 0.30% 0.06% 0.10%

10.1 R1 7.09% 74.84% 17.54% 0.31% 0.02% 0.01% 0.19%

10.1 R2 3.26% 39.95% 53.10% 3.25% 0.31% 0.04% 0.09%

10.2 R1 4.65% 18.02% 51.43% 22.00% 3.70% 0.14% 0.05%

10.2 R2 1.00% 13.29% 58.12% 23.05% 4.17% 0.23% 0.14%

Dome R1 6.58% 17.43% 31.21% 25.58% 14.24% 1.75% 3.21%

Dome R2 11.93% 15.32% 23.92% 19.95% 15.44% 4.05% 9.39%  
 

 



100 
 

Appendix I. (Continued) Average grain-size for each site.  Values for percent mud used 
in correlations and plotting were taken from this table. 
 

   PHI SIZES

-1 0 1 2 3 4 >4

Reef Site > 2mm >1mm >0.5mm >0.25mm >0.125mm >0.063mm <0.063mm

1.1 15.95% 34.02% 40.92% 7.70% 0.73% 0.25% 0.43%

1.2 7.21% 47.60% 32.40% 10.80% 1.47% 0.24% 0.29%

Shark 0.35% 9.68% 79.73% 9.94% 0.26% 0.02% 0.02%

2.1 41.54% 38.55% 15.40% 2.76% 0.81% 0.37% 0.56%

2.2 13.75% 24.06% 31.10% 16.00% 7.27% 4.21% 3.61%

3.1 8.44% 23.50% 31.31% 18.79% 11.98% 4.81% 1.17%

3.2 24.30% 46.66% 26.49% 2.45% 0.08% 0.01% 0.02%

Bugs 8.47% 7.19% 11.46% 11.68% 13.11% 15.57% 32.52%

Elkhorn 18.78% 35.52% 31.65% 10.31% 2.55% 0.56% 0.63%

4.1 9.70% 15.70% 26.36% 22.74% 16.50% 4.25% 4.75%

4.2 8.47% 10.16% 19.45% 23.74% 19.98% 6.51% 11.69%

Pacific 3.87% 23.52% 58.90% 12.22% 1.23% 0.13% 0.13%

5.1 11.36% 35.64% 40.26% 10.21% 1.98% 0.29% 0.26%

5.2 5.86% 15.97% 49.58% 24.35% 2.74% 0.38% 1.12%

5.3 9.34% 26.58% 49.98% 11.14% 1.94% 0.32% 0.70%

5.4 12.72% 36.51% 40.69% 6.94% 2.04% 0.42% 0.68%

6.1 6.80% 12.43% 25.50% 26.10% 23.39% 4.09% 1.69%

6.2 9.77% 17.67% 50.11% 19.78% 2.19% 0.31% 0.17%

6.3 1.08% 2.90% 33.07% 42.28% 18.46% 1.55% 0.65%

7.1 8.30% 19.08% 35.45% 20.62% 8.66% 4.45% 3.43%

Star 9.06% 11.32% 22.23% 29.74% 22.93% 2.25% 2.46%

7.2 10.31% 12.87% 38.73% 28.41% 6.89% 1.07% 1.72%

8.1 9.61% 50.12% 36.79% 3.00% 0.25% 0.05% 0.19%

Nirvana 6.01% 39.36% 50.46% 3.88% 0.20% 0.03% 0.06%

8.2 11.73% 17.08% 23.28% 17.66% 12.34% 5.23% 12.68%

9.1 8.76% 12.00% 32.11% 26.56% 14.18% 3.91% 2.47%

9.2 3.60% 5.64% 13.18% 17.51% 21.98% 20.75% 17.33%

9.3 5.72% 9.99% 20.80% 15.18% 13.27% 11.69% 23.35%

Lugano 7.82% 37.21% 49.80% 4.78% 0.20% 0.04% 0.15%

10.1 5.18% 57.40% 35.32% 1.78% 0.17% 0.03% 0.14%

10.2 2.82% 15.66% 54.78% 22.53% 3.94% 0.19% 0.10%

Dome 9.25% 16.37% 27.56% 22.77% 14.84% 2.90% 6.30%  
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Appendix II-a. List of foraminiferal genera found within the patch reefs of Biscayne 
National Park by this study. 
 
  

 
 
 
 

Symbiont-bearing Cycloforina Siphonaperta 

Amphistegina Cymbaloporetta Siphonina 

Androsina Disconorbis Siphoninoides 

Archaias Discorbinella Spiroloculina 

Asterigerina Discorbis Textularia 

Borelis Fischerinella Treromphalus 

Broekina Eponides Triloculina 

Cyclorbiculina Floresina Triloculinella 

Gypsina Fursenkoina Wiesnerella 

Heterostegina Glabratella  

Laevipeneroplis Glabratellina  

Monalysidium Globigerinoides  

Peneroplis Globocassidulina  

Sorites Globorotalia  

Stress-tolerant Globulina  

Ammonia Guttulina  

Ammobaculites Haplophragmoides  

Bolivina Hauerina  

Bulimina Lachlanella  

Cribroelphidium Lobatula  

Elphidium Miliolinella  

Haynesina Montfortella  

Nonion Neocornorbina  

Nonionella Neoeponides  

Nonionoides Patellina  

Heterotrophic Planorbulina  

Adelosina Polymorphina  

Affinetrina Poroepodines  

Anomalinoides Pseudohauerina  

Articulina Pyrgo  

Astrononion Quinqueloculina  

Bigenerina Rectobolivina  

Brizalina Reophax  

Cancris Reussella  

Carpenteria Rosalina  

Cibicides Sigmavirgulina  

Clavulina Sigmoilina  

Cornuspira Sigmoilinita  
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Appendix II-b. Raw counts of foraminiferal genera from the two sediment replicates of 
32 reefs in Biscayne National Park. 
 

1.1R1 1.1R2 1.2R1 1.2R2 SharkR1 SharkR2 2.1R1 2.1R2

Amphistegina 5 1 1 2

Androsina 1

Archaias 7 20 22 3 5 2 4

Asterigerina 3 3 1 1 1 4

Borelis

Broekina

Cyclorbiculina 1 4 4 1

Gypsina

Heterostegina

Laevipeneroplis 2 6 1 4 1 18 11

Monalysidium 1

Peneroplis 1 1 1

Sorites

Ammonia 1 1 3

Ammobaculites

Bolivina 2

Bulimina 1 1 2

Cribroelphidium 2 4

Elphidium 3 1 1

Haynesina 3 1

Nonion

Nonionella

Nonionoides

Adelosina 1 1

Affinetrina 1

Anomalinoides

Articulina 1 2

Astrononion

Bigenerina 1 1

Brizalina 1

Cancris

Carpenteria

Cibicides 1 1

Clavulina 1 1

Cornuspira 1 1

Cycloforina 2 2 2 1

Cymbaloporetta

Disconorbis

Discorbinella 1

Discorbis 2 3 2 19 3 3

Fischerinella

Eponides 1 4

Floresina  
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Appendix II-b. (Continued) 

 
1.1R1 1.1R2 1.2R1 1.2R2 SharkR1 SharkR2 2.1R1 2.1R2

Fursenkoina

Glabratella 1

Glabratellina 2

Globigerinoides 1

Globocassidulina 1

Globorotalia 1

Globulina

Guttulina

Haplophragmoides

Hauerina

Lachlanella 1 1 1

Lobatula 1

Miliolinella 3 4

Montfortella

Neocornorbina 1 1

Neoeponides

Patellina

Planorbulina 3 4

Polymorphina

Poroepodines 1

Pseudohauerina

Pyrgo 1 1

Quinqueloculina 7 3 21 1 54 35

Rectobolivina 1

Reophax 1

Reussella

Rosalina 1 5 1 7 15

Sigmavirgulina

Sigmiolina 5

Sigmiolinita 3

Siphonaperta 2 10 4 6

Siphonina 1

Siphoninoides 1

Spiroloculina 1 2

Textularia 1 4 3 1 3 7

Treromphalus 1

Triloculina 2 3 16 13 7

Triloculinella 2 2 5

Wiesnerella 1 2

Total Forams 12 44 30 134 7 9 136 146

Density (forams/g) 12 44 30 134 7 9 444 209

Number of genera 7 16 5 27 5 5 28 39

Foram Index 5.33 5.25 8.67 4.11 7.71 9.11 3.23 3.24

SIMPER Group A D B  
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Appendix II-b. (Continued) 

 
2.2R1 2.2R2 3.1R1 3.1R2 3.2R1 3.2R2 BugR1 BugR2

Amphistegina 1 2 8

Androsina

Archaias 9 4 10 8 2 1

Asterigerina 3

Borelis 1 1 1

Broekina 2 1 2 3 1

Cyclorbiculina 1

Gypsina 1

Heterostegina

Laevipeneroplis 10 7 17 10 1 3 8

Monalysidium

Peneroplis 1 2 1 1

Sorites 1 1 1 1

Ammonia 8 1 7 3

Ammobaculites

Bolivina 3 4 11 13

Bulimina 3 1 1 5

Cribroelphidium 2 4 5 5

Elphidium 11 4 13 5 13 5

Haynesina 1 7 1 2 5 5

Nonion 2 1

Nonionella

Nonionoides 3 1 4

Adelosina 1 2 1 1

Affinetrina 1

Anomalinoides

Articulina 5 7 1 2

Astrononion

Bigenerina 1

Brizalina 1 1 1

Cancris

Carpenteria

Cibicides 1 1 2 1 1

Clavulina 1

Cornuspira 1 1 3 2 3

Cycloforina 2 3 4 3 3

Cymbaloporetta 1

Disconorbis 3 2 1 5

Discorbinella 1 2

Discorbis 4 12 8 9 4 1

Fischerinella

Eponides 1 2 1 1

Floresina 1 1  
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Appendix II-b. (Continued) 

 
2.2R1 2.2R2 3.1R1 3.1R2 3.2R1 3.2R2 BugR1 BugR2

Fursenkoina 1

Glabratella 1

Glabratellina 2

Globigerinoides 1

Globocassidulina 1 1

Globorotalia 1

Globulina 1

Guttulina

Haplophragmoides

Hauerina 1

Lachlanella

Lobatula 2

Miliolinella 2 3 2 5 6 11

Montfortella

Neocornorbina 1 1 2

Neoeponides

Patellina 1

Planorbulina 1 1

Polymorphina

Poroepodines

Pseudohauerina 1 1 1

Pyrgo 1 3 1

Quinqueloculina 48 50 51 29 1 3 83 74

Rectobolivina 1 5

Reophax

Reussella

Rosalina 7 14 6 7 15 18

Sigmavirgulina

Sigmiolina 4 3 8

Sigmiolinita 2 1

Siphonaperta 5 6 4 11 1 1

Siphonina 1

Siphoninoides

Spiroloculina 1 3 2 1 2

Textularia 3 2 1

Treromphalus 1

Triloculina 11 3 18 3 15 9

Triloculinella 2 4 1 5

Wiesnerella 2 3

Total Forams 139 160 172 137 3 20 185 194

Density (forams/g) 460 1600 571 685 3 20 1814 7760

Number of genera 31 31 32 33 2 8 26 30

Foram Index 3.24 2.69 3.65 3.16 7.33 6.00 2.01 2.18

SIMPER Group B D B D C C  
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Appendix II-b. (Continued) 

 
ElkhornR1 ElkhornR2 4.1R1 4.1R2 4.2R1 4.2R2 PacificR1 PacificR2

Amphistegina 7 3 10 7 1 7 3

Androsina 7

Archaias 1 17 4 11 5 2 32 13

Asterigerina 2 7 4 8

Borelis 1 1 1 4

Broekina 1 6 1 1

Cyclorbiculina 1 5 1 8 6

Gypsina

Heterostegina 2 2 1

Laevipeneroplis 1 10 15 14 15 7 3 9

Monalysidium

Peneroplis 4 2 3 2 1

Sorites 2

Ammonia 1 4 5

Ammobaculites

Bolivina 6 5 1 7

Bulimina 2 3

Cribroelphidium 3 2 1

Elphidium 1 6 1 6 1

Haynesina 5 4 3

Nonion 1 1 1

Nonionella

Nonionoides 1 1

Adelosina 2

Affinetrina 1 1 2 1 1

Anomalinoides

Articulina 3 6 1 3 1 1

Astrononion

Bigenerina

Brizalina 1

Cancris

Carpenteria

Cibicides 1 1 2 1

Clavulina

Cornuspira 1 1 3 2 2

Cycloforina 2 7 5 1 3

Cymbaloporetta 1 1 1 1

Disconorbis 3

Discorbinella 1

Discorbis 2 21 7 11 6 9 7 11

Fischerinella

Eponides 1 1

Floresina 1  
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Appendix II-b. (Continued) 

 
ElkhornR1 ElkhornR2 4.1R1 4.1R2 4.2R1 4.2R2 PacificR1 PacificR2

Fursenkoina

Glabratella 2

Glabratellina 1

Globigerinoides 1

Globocassidulina 1

Globorotalia

Globulina

Guttulina

Haplophragmoides 1

Hauerina 1 2 2 1 1 1

Lachlanella 1 1 1

Lobatula 1

Miliolinella 3 4 5 1

Montfortella

Neocornorbina 2 1 1 1 1 1 3

Neoeponides

Patellina

Planorbulina 1

Polymorphina

Poroepodines

Pseudohauerina 1 1

Pyrgo 2 2 1

Quinqueloculina 21 52 54 49 41 1 12

Rectobolivina 1

Reophax 1

Reussella 1

Rosalina 2 16 13 8 15 8 13

Sigmavirgulina

Sigmiolina

Sigmiolinita

Siphonaperta 5 3 5 3 7 1 1

Siphonina 1 1 1 3

Siphoninoides

Spiroloculina 1 1 4 2

Textularia 3 3 1 1

Treromphalus 1 1

Triloculina 1 20 23 22 17 1 1

Triloculinella 4 2 6 1 4 1

Wiesnerella 1 1 1 1

Total Forams 9 155 173 191 155 150 73 101

Density (forams/g) 9 194 577 478 767 1500 73 101

Number of genera 6 33 32 34 24 33 17 27

Foram Index 6.44 5.08 3.34 3.58 3.43 2.50 8.36 5.62

SIMPER Group E B B B B E E  
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Appendix II-b. (Continued) 

 
5.1R1 5.1R2 5.2R1 5.2R2 5.3R1 5.3R2 5.4R1 5.4R2

Amphistegina 3 2 1 1 2 5 5 2

Androsina

Archaias 13 4 22 28 2 8 1 4

Asterigerina 1 1 1 3

Borelis 2 2 2 2

Broekina 1 1 1

Cyclorbiculina 1 4 3 6 1 1 2 2

Gypsina 1

Heterostegina 1

Laevipeneroplis 4 3 6 14 4 4 4

Monalysidium

Peneroplis 1 1 1

Sorites 1 1

Ammonia 1

Ammobaculites

Bolivina 1 2 2 2

Bulimina

Cribroelphidium 1

Elphidium 2 3 6 2 1

Haynesina 1 2

Nonion 1

Nonionella 1 1

Nonionoides 1 2

Adelosina 1 1

Affinetrina

Anomalinoides

Articulina 1 1 2 1

Astrononion

Bigenerina 1

Brizalina

Cancris

Carpenteria

Cibicides

Clavulina 1

Cornuspira

Cycloforina 1 1 1

Cymbaloporetta

Disconorbis 1

Discorbinella

Discorbis 9 5 8 8 9 1

Fischerinella

Eponides

Floresina  
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Appendix II-b. (Continued) 

 
5.1R1 5.1R2 5.2R1 5.2R2 5.3R1 5.3R2 5.4R1 5.4R2

Fursenkoina 1 1

Glabratella 1

Glabratellina 1

Globigerinoides

Globocassidulina

Globorotalia 1

Globulina

Guttulina

Haplophragmoides

Hauerina

Lachlanella 1 1

Lobatula 1

Miliolinella 1 2 1

Montfortella

Neocornorbina 1 1 1

Neoeponides 1

Patellina

Planorbulina 3

Polymorphina

Poroepodines

Pseudohauerina 1

Pyrgo 1 1

Quinqueloculina 8 4 21 26 11 8

Rectobolivina

Reophax 1

Reussella

Rosalina 2 5 3 2 3 1 7

Sigmavirgulina 1

Sigmiolina 1

Sigmiolinita

Siphonaperta 1 1 4 20 1 3 1 3

Siphonina 1

Siphoninoides

Spiroloculina 1 1

Textularia 1 3 5 2 2 1

Treromphalus 1 1

Triloculina 7 9 6 7 5 3

Triloculinella 2 1 1 2 1

Wiesnerella 1 1 3

Total Forams 60 42 98 132 56 44 40 27

Density (forams/g) 60 42 98 132 56 44 40 27

Number of genera 18 19 21 22 22 20 20 11

Foram Index 5.17 5.60 4.53 5.08 3.79 6.52 4.48 4.33

SIMPER Group A A A A  
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Appendix II-b. (Continued) 

 
6.1R1 6.1R2 6.2R1 6.2R2 6.3R1 6.3R2 7.1R1 7.1R2

Amphistegina 3 2 2 2 3 3 2 2

Androsina 1

Archaias 6 8 7 12 16 35 5 15

Asterigerina 2 4 3 1 2 3 3

Borelis 1 3 2 2

Broekina 3 5 1 2 1 1 6

Cyclorbiculina 1 1 4 1 1 3 4

Gypsina 1

Heterostegina

Laevipeneroplis 13 21 22 12 6 16 11 10

Monalysidium 1

Peneroplis 1 5 1 1 3 3

Sorites 1 1 2 1

Ammonia 1 1 2 1 2

Ammobaculites

Bolivina 1 2 3 1

Bulimina 1 1

Cribroelphidium 2 1 1

Elphidium 8 6 1 3 4 2 4 7

Haynesina 6 3 7

Nonion

Nonionella 3

Nonionoides 1 1 2 1 1

Adelosina 1 1 1 2

Affinetrina 1

Anomalinoides

Articulina 4 1 3 2 5

Astrononion 1

Bigenerina 1 1 1 1 2

Brizalina

Cancris

Carpenteria

Cibicides 1 2 1

Clavulina 1 2 2 1

Cornuspira 2 1

Cycloforina 2 4 1 1 2 1 4 5

Cymbaloporetta 1 1 1 3

Disconorbis 1

Discorbinella 2

Discorbis 14 7 6 9 21 28 3 3

Fischerinella

Eponides 3 2 1 1

Floresina 1  
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Appendix II-b. (Continued) 

 
6.1R1 6.1R2 6.2R1 6.2R2 6.3R1 6.3R2 7.1R1 7.1R2

Fursenkoina 2 1

Glabratella 1 1

Glabratellina

Globigerinoides 1

Globocassidulina 1 1

Globorotalia 1 1

Globulina

Guttulina

Haplophragmoides

Hauerina 2 1 3 1 2

Lachlanella 2 1

Lobatula 1 2

Miliolinella 1 1 2 6 5 2 2 1

Montfortella

Neocornorbina 1 3 1 1

Neoeponides

Patellina

Planorbulina 2 4 1 1 2

Polymorphina

Poroepodines

Pseudohauerina 2 1 1 1

Pyrgo 2 2 1 2

Quinqueloculina 41 38 28 33 19 28 53 45

Rectobolivina

Reophax

Reussella

Rosalina 6 8 19 15 6 6 13 16

Sigmavirgulina

Sigmiolina 1

Sigmiolinita

Siphonaperta 10 6 7 9 17 8 5 9

Siphonina 1 3

Siphoninoides 1

Spiroloculina 2 1 1 2 1 1 3

Textularia 10 10 12 3 1 4 2

Treromphalus 1

Triloculina 16 13 10 4 4 8 12 13

Triloculinella 3 3 1 2 3 2

Wiesnerella 4 1

Total Forams 171 168 153 137 118 159 160 176

Density (forams/g) 1676 560 180 137 118 177 1584 587

Number of genera 37 33 32 29 22 26 35 33

Foram Index 3.38 4.14 4.01 3.89 3.97 5.04 3.45 3.91

SIMPER Group B B B B A A B B  
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Appendix II-b. (Continued) 

 
StarR1 StarR2 7.2R1 7.2R2 8.1R1 8.1R2 NirvanaR1 NirvanaR2

Amphistegina 5 6 5 2

Androsina 1 2

Archaias 5 9 23 10 3 2 1 1

Asterigerina 2 1 4 1

Borelis 1 3 1 3 1 2

Broekina 3 5 4

Cyclorbiculina 3 1 6 1 1

Gypsina 1

Heterostegina 1 1

Laevipeneroplis 11 14 18 28 1 2

Monalysidium

Peneroplis 5 4 2

Sorites 1 1

Ammonia 1 1 2 1

Ammobaculites

Bolivina 8 2 2

Bulimina 1

Cribroelphidium 2 3

Elphidium 1 2 5 1

Haynesina 4 4 3

Nonion

Nonionella

Nonionoides 1 1 1

Adelosina 2 1

Affinetrina 1

Anomalinoides

Articulina 2 1 1 1 1

Astrononion

Bigenerina

Brizalina

Cancris

Carpenteria

Cibicides 1 1 1

Clavulina 1

Cornuspira 3 2 1

Cycloforina 1 3 2 1

Cymbaloporetta 1 1

Disconorbis

Discorbinella

Discorbis 2 9 11 5 5 1

Fischerinella

Eponides 3 1

Floresina 1 2  



113 
 

Appendix II-b. (Continued) 

 
StarR1 StarR2 7.2R1 7.2R2 8.1R1 8.1R2 NirvanaR1 NirvanaR2

Fursenkoina 1

Glabratella

Glabratellina

Globigerinoides

Globocassidulina

Globorotalia 1

Globulina 1

Guttulina

Haplophragmoides

Hauerina 2 2 3 1

Lachlanella 1 3

Lobatula

Miliolinella 4 1 2 2

Montfortella

Neocornorbina 1 1

Neoeponides

Patellina

Planorbulina 2

Polymorphina

Poroepodines

Pseudohauerina 2 2

Pyrgo 1 1 1

Quinqueloculina 49 43 44 33 1 1

Rectobolivina

Reophax

Reussella 1

Rosalina 17 6 13 7 1

Sigmavirgulina

Sigmiolina 3 2 1

Sigmiolinita

Siphonaperta 4 7 11 7

Siphonina 3

Siphoninoides

Spiroloculina 2 2

Textularia 1 25 5 1

Treromphalus 1

Triloculina 10 21 17 14 4

Triloculinella 3 1 3 1 1

Wiesnerella 1

Total Forams 157 183 195 150 10 25 3 2

Density (forams/g) 781 458 195 250 10 25 3 2

Number of genera 35 33 30 31 7 15 3 2

Foram Index 3.57 3.99 4.35 4.81 6.70 4.24 4.67 10.00

SIMPER Group B B B B  
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Appendix II-b. (Continued) 

 
8.2R1 8.2R2 9.1R1 9.1R2 9.2R1 9.2R2 9.3R1 9.3R2

Amphistegina 3 3 1 1

Androsina 1 1

Archaias 4 4 9 12 3 1 2 5

Asterigerina 3 4 1

Borelis 1 1

Broekina 1 6 2 3

Cyclorbiculina 1 1 1 2

Gypsina 1

Heterostegina

Laevipeneroplis 13 12 23 24 16 17 10 8

Monalysidium 1 1 1

Peneroplis 4 2 4 2 1 2 2 1

Sorites 1 1 1

Ammonia 2 2 2 1 6 1 1

Ammobaculites

Bolivina 1 3 8 2 15 9 9 9

Bulimina 3 2 3

Cribroelphidium 2 4 4 4 2

Elphidium 1 1 5 7 6 12 2

Haynesina 1 2 2 1 6 4 2 4

Nonion 1 1 4

Nonionella

Nonionoides 4 3 1 5 1

Adelosina 1 3 1 2 1 2 7 5

Affinetrina 1

Anomalinoides

Articulina 1 1 2 2 9 3 4 4

Astrononion

Bigenerina

Brizalina 1 1

Cancris

Carpenteria

Cibicides 1 2 2 1 2

Clavulina 1 1

Cornuspira 3 1 4 2 6 1

Cycloforina 4 3 2 2 5 1 4 3

Cymbaloporetta 1 1 1

Disconorbis

Discorbinella 1

Discorbis 3 1 5 2 5 4 10

Fischerinella

Eponides 2 1 2 1 3 1 1 1

Floresina 8  
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Appendix II-b. (Continued) 

 
8.2R1 8.2R2 9.1R1 9.1R2 9.2R1 9.2R2 9.3R1 9.3R2

Fursenkoina 1 1 3 2

Glabratella 1

Glabratellina 1 1

Globigerinoides 2

Globocassidulina

Globorotalia 1

Globulina

Guttulina

Haplophragmoides

Hauerina 1 3 2 1 2 1 2

Lachlanella 1 1

Lobatula 1 1

Miliolinella 1 2 1 13 3 10 4

Montfortella

Neocornorbina 1 1 1 1

Neoeponides

Patellina

Planorbulina 1 1 1 2 1

Polymorphina

Poroepodines

Pseudohauerina 1 1 1 2

Pyrgo

Quinqueloculina 41 54 67 37 154 67 129 75

Rectobolivina

Reophax

Reussella

Rosalina 6 13 20 5 41 17 20 14

Sigmavirgulina 1

Sigmiolina 3 6 11 1 7

Sigmiolinita

Siphonaperta 9 6 9 1 2 1 1 6

Siphonina 1 1

Siphoninoides

Spiroloculina 3 1 2 3 2 1

Textularia 4 2 3 1 2

Treromphalus 1

Triloculina 19 16 10 12 14 11 20 24

Triloculinella 2 2 2 2 5 1 5

Wiesnerella 1 5 1 1

Total Forams 141 151 196 134 346 187 279 200

Density (forams/g) 564 1007 1568 1340 6920 3740 5580 4000

Number of genera 32 33 31 28 33 38 30 34

Foram Index 3.47 3.25 3.57 4.91 2.35 3.01 2.30 2.71

SIMPER Group B B D B C B C B  
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Appendix II-b. (Continued) 

 
LuganoR1 LuganoR2 10.1R1 10.1R2 10.2R1 10.2R2 DomeR1 DomeR2

Amphistegina 3 4 3 12 3 3

Androsina

Archaias 10 4 1 41 35 4 5

Asterigerina 2 3 1

Borelis 1 1 1

Broekina 1 2 6

Cyclorbiculina 5 4

Gypsina 1 1 1

Heterostegina

Laevipeneroplis 21 25 8 13

Monalysidium

Peneroplis 1 1

Sorites 1 1 2

Ammonia 1 1 1 1

Ammobaculites 1

Bolivina 4

Bulimina

Cribroelphidium 1 2

Elphidium 2 3 1

Haynesina 2

Nonion 1

Nonionella

Nonionoides 1 2

Adelosina 3 1

Affinetrina 1

Anomalinoides

Articulina 6

Astrononion

Bigenerina 1

Brizalina

Cancris 1

Carpenteria 1

Cibicides 1 1

Clavulina 2 1 1

Cornuspira 4

Cycloforina 1 3

Cymbaloporetta 2

Disconorbis 1

Discorbinella

Discorbis 1 1 20 21 6 9

Fischerinella 1

Eponides 1 1 1 1

Floresina  
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Appendix II-b. (Continued) 

 
LuganoR1 LuganoR2 10.1R1 10.1R2 10.2R1 10.2R2 DomeR1 DomeR2

Fursenkoina 2

Glabratella

Glabratellina 1

Globigerinoides

Globocassidulina 1 1

Globorotalia 1 2 2

Globulina

Guttulina 1 1

Haplophragmoides

Hauerina

Lachlanella

Lobatula 1

Miliolinella 4

Montfortella

Neocornorbina 1 4

Neoeponides

Patellina

Planorbulina 2 1

Polymorphina 1

Poroepodines

Pseudohauerina 1

Pyrgo 2

Quinqueloculina 1 28 15 54 34

Rectobolivina 1

Reophax

Reussella

Rosalina 1 4 6 5 9

Sigmavirgulina

Sigmiolina

Sigmiolinita 1

Siphonaperta 1 14 10 1 6

Siphonina 1 4

Siphoninoides 2

Spiroloculina 1

Textularia 4 1 3 1

Treromphalus

Triloculina 3 10 21 22

Triloculinella 2 2

Wiesnerella

Total Forams 15 12 2 4 157 159 151 146

Density (forams/g) 15 12 2 4 157 199 755 365

Number of genera 4 6 2 4 22 21 36 33

Foram Index 9.47 7.33 2.00 8.00 5.80 6.05 3.04 3.55

SIMPER Group A A B B  
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Appendix III. SIMPER results for dissimilarity between groups based on foraminiferal 
assemblages. 
 

Groups A  &  B

Average dissimilarity = 40.22

 Group A  Group B                            

Genera Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

Archaias 4.25 2.05 2.65 2.3 6.6 6.6

Discorbis 3.63 1.81 2.12 2.19 5.28 11.87

Quinqueloculina 4.08 5.36 1.5 1.84 3.73 15.6

Siphonaperta 2.54 1.81 1.17 1.34 2.92 18.52

Bolivina 0.3 1.05 1.11 1.34 2.76 21.28

Cyclorbiculina 1.49 0.66 1.07 1.51 2.66 23.93

Haynesina 0.29 0.97 1.05 1.34 2.61 26.54

Articulina 0.27 1.01 1.05 1.55 2.6 29.14

Miliolinella 0.66 1.04 1.01 1.44 2.5 31.64  
 

Groups A  &  C

Average dissimilarity = 53.51

 Group A  Group C                            

Genera Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

Archaias 4.25 0.62 4.47 3.36 8.35 8.35

Quinqueloculina 4.08 6.59 3.08 4.54 5.75 14.1

Discorbis 3.63 1.32 2.82 3.35 5.27 19.37

Siphonaperta 2.54 0.52 2.49 2.08 4.65 24.02

Bolivina 0.3 2.23 2.36 2.99 4.42 28.43

Amphistegina 1.68 0 2.05 2.87 3.84 32.27

Cyclorbiculina 1.49 0 1.82 3.44 3.41 35.68

Miliolinella 0.66 2 1.69 1.77 3.15 38.83

Sigmiolina 0.14 1.35 1.55 1.61 2.89 41.72

Cribroelphidium 0.24 1.38 1.43 2.41 2.67 44.39

Rosalina 1.87 3 1.39 2.61 2.59 46.99

Haynesina 0.29 1.35 1.39 2.13 2.59 49.58

Textularia 1.27 0.18 1.38 1.73 2.59 52.16

Laevipeneroplis 2.87 1.84 1.35 1.52 2.53 54.69

Articulina 0.27 1.14 1.17 2.08 2.19 56.88

Cornuspira 0.1 0.95 1.12 1.58 2.1 58.97

Bulimina 0.2 1.03 1.05 1.84 1.96 60.93

Asterigerina 0.85 0 1.04 1.71 1.94 62.87  
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Appendix III. (Continued) 

 

Groups A  &  D

Average dissimilarity = 45.72

 Group A  Group D                            

Genera Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

Archaias 4.25 1.95 2.66 2.56 5.83 5.83

Discorbis 3.63 2.09 1.77 2.04 3.87 9.7

Sigmiolina 0.14 1.67 1.72 3.45 3.77 13.47

Ammonia 0.27 1.74 1.65 2.2 3.61 17.08

Cyclorbiculina 1.49 0.21 1.46 2.25 3.2 20.28

Amphistegina 1.68 0.49 1.38 1.62 3.02 23.31

Quinqueloculina 4.08 5.24 1.34 1.65 2.92 26.23

Haynesina 0.29 1.29 1.26 1.87 2.75 28.97

Rosalina 1.87 2.91 1.19 2.05 2.61 31.58

Articulina 0.27 1.11 1.14 1.3 2.49 34.06

Cornuspira 0.1 1.09 1.13 2.54 2.48 36.55

Eponides 0.19 1.17 1.11 2.17 2.43 38.98

Triloculina 2.63 1.83 1.07 1.41 2.34 41.32

Bolivina 0.3 0.9 1.04 1.05 2.28 43.6

Miliolinella 0.66 1 1.01 1.36 2.21 45.82  
 

Groups A  &  E

Average dissimilarity = 43.09

 Group A  Group E                            

Genera Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

Rosalina 1.87 2.27 2.04 3.44 4.74 4.74

Archaias 4.25 4.52 1.99 1.57 4.61 9.34

Triloculina 2.63 0.99 1.98 2.17 4.59 13.94

Asterigerina 0.85 2.43 1.95 2.64 4.52 18.46

Quinqueloculina 4.08 2.77 1.82 1.1 4.22 22.68

Elphidium 1.62 0.27 1.69 2.37 3.93 26.61

Siphonaperta 2.54 1.32 1.6 1.43 3.7 30.31

Heterostegina 0 1.27 1.58 3.04 3.68 33.99

Cyclorbiculina 1.49 2.52 1.37 1.34 3.17 37.16

Neocornorbina 0.36 1.35 1.28 2.1 2.97 40.13

Amphistegina 1.68 2.32 1.09 1.25 2.52 42.65

Borelis 0.72 1.32 1.09 1.48 2.52 45.17  
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Appendix III. (Continued) 

 

Groups B  &  C

Average dissimilarity = 40.11

 Group B  Group C                            

Genera Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

Archaias 2.05 0.62 1.62 1.92 4.03 4.03

Siphonaperta 1.81 0.52 1.46 2.16 3.64 7.67

Quinqueloculina 5.36 6.59 1.38 2.14 3.44 11.12

Bolivina 1.05 2.23 1.38 1.61 3.43 14.55

Amphistegina 1.22 0 1.37 2.24 3.41 17.96

Sigmiolina 0.26 1.35 1.36 1.63 3.4 21.36

Textularia 1.3 0.18 1.33 1.38 3.32 24.68

Laevipeneroplis 2.99 1.84 1.32 1.71 3.28 27.96

Miliolinella 1.04 2 1.09 1.6 2.72 30.68

Broekina 1.02 0.18 1.04 1.41 2.59 33.27  
 

Groups B  &  D

Average dissimilarity = 37.40

 Group B  Group D                            

Genera Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

Sigmiolina 0.26 1.67 1.48 2.81 3.96 3.96

Triloculina 3.09 1.83 1.35 2.12 3.61 7.57

Ammonia 0.74 1.74 1.12 1.57 2.99 10.56

Bolivina 1.05 0.9 1.01 1.4 2.71 13.27  
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Appendix III. (Continued) 

 

Groups B  &  E

Average dissimilarity = 49.41

 Group B  Group E                            

Genera Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

Quinqueloculina 5.36 2.77 3.03 1.77 6.14 6.14

Archaias 2.05 4.52 2.94 1.35 5.94 12.08

Triloculina 3.09 0.99 2.36 3.99 4.78 16.86

Cyclorbiculina 0.66 2.52 2.16 1.89 4.37 21.23

Asterigerina 0.65 2.43 2.01 2.42 4.07 25.3

Discorbis 1.81 3.37 1.74 2.35 3.53 28.83

Rosalina 2.51 2.27 1.7 1.42 3.44 32.27

Heterostegina 0.03 1.27 1.42 2.87 2.87 35.13

Amphistegina 1.22 2.32 1.34 1.41 2.7 37.84

Elphidium 1.35 0.27 1.3 1.42 2.63 40.46

Bolivina 1.05 0.66 1.16 1.41 2.35 42.81

Haynesina 0.97 0 1.1 1.37 2.22 45.04

Borelis 0.45 1.32 1.07 1.55 2.17 47.21

Cycloforina 1.18 0.38 1.05 1.53 2.12 49.34  
 

Groups C  &  D

Average dissimilarity = 38.24

 Group C  Group D                            

Genera Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

Siphonaperta 0.52 2.24 1.9 3.48 4.96 4.96

Archaias 0.62 1.95 1.47 2.45 3.84 8.8

Quinqueloculina 6.59 5.24 1.47 2.44 3.84 12.64

Bolivina 2.23 0.9 1.46 1.45 3.82 16.46

Ammonia 0.59 1.74 1.29 1.74 3.38 19.84

Cribroelphidium 1.38 0.42 1.23 1.96 3.22 23.06

Textularia 0.18 1.16 1.17 1.46 3.06 26.12

Miliolinella 2 1 1.12 1.4 2.92 29.04

Nonionoides 0.94 0 1.04 1.56 2.72 31.76

Laevipeneroplis 1.84 2.75 1.02 1.49 2.67 34.43  
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Appendix III. (Continued) 

 

Groups C  &  E

Average dissimilarity = 62.77

 Group C  Group E                            

Genera Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

Archaias 0.62 4.52 4.8 1.93 7.65 7.65

Quinqueloculina 6.59 2.77 4.66 2.42 7.43 15.08

Cyclorbiculina 0 2.52 3.07 2.84 4.88 19.96

Asterigerina 0 2.43 2.9 6.77 4.61 24.57

Amphistegina 0 2.32 2.82 2.81 4.49 29.06

Discorbis 1.32 3.37 2.41 4.66 3.83 32.9

Elphidium 1.94 0.27 2.03 2.31 3.23 36.12

Miliolinella 2 0.33 2 2.84 3.19 39.31

Bolivina 2.23 0.66 1.96 1.59 3.13 42.44

Triloculina 2.42 0.99 1.7 3.57 2.7 45.14

Rosalina 3 2.27 1.68 0.96 2.67 47.81

Haynesina 1.35 0 1.61 3.73 2.57 50.38

Neocornorbina 0 1.35 1.59 5.09 2.54 52.92

Sigmiolina 1.35 0 1.59 1.61 2.53 55.44

Heterostegina 0 1.27 1.53 3 2.44 57.89

Borelis 0.15 1.32 1.4 2.07 2.22 60.11

Cribroelphidium 1.38 0.33 1.27 1.8 2.02 62.13  
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Appendix III. (Continued) 

 

Groups D  &  E

Average dissimilarity = 53.32

 Group D  Group E                            

Genera Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

Archaias 1.95 4.52 2.97 1.4 5.56 5.56

Quinqueloculina 5.24 2.77 2.84 1.64 5.33 10.9

Cyclorbiculina 0.21 2.52 2.62 2.44 4.91 15.8

Amphistegina 0.49 2.32 2.07 1.94 3.89 19.69

Asterigerina 0.73 2.43 1.88 2.04 3.53 23.23

Sigmiolina 1.67 0 1.84 7.85 3.45 26.68

Ammonia 1.74 0.27 1.64 2.04 3.07 29.75

Rosalina 2.91 2.27 1.53 0.97 2.88 32.62

Haynesina 1.29 0 1.42 2.42 2.67 35.29

Heterostegina 0 1.27 1.42 3.05 2.66 37.96

Discorbis 2.09 3.37 1.39 2.04 2.62 40.57

Neocornorbina 0.21 1.35 1.25 2.38 2.34 42.91

Borelis 0.2 1.32 1.24 1.83 2.32 45.24

Elphidium 1.26 0.27 1.13 1.56 2.11 47.35

Bolivina 0.9 0.66 1.07 1 2.01 49.36

Siphonaperta 2.24 1.32 1.02 1.77 1.91 51.28

Eponides 1.17 0.27 1.01 1.73 1.89 53.17

Peneroplis 1.06 0.54 1 2.18 1.87 55.04
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Appendix IV. Moran’s I values and plots for both the FORAM Index and the SEDCON 
Index.  Scales are in standard deviations from the mean. 
 

 
a) Insignificant spatial 

autocorrelation of 
FORAM Index (FI) 
values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
b) Significant bivariate 

spatial correlation 
of FI and 
Temperature. 
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Appendix IV. (Continued) 

 
c) Significant bivariate 

spatial correlation 
of FI and Salinity.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d) Significant bivariate 

spatial correlation of 
FI and Percent Mud.  
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Appendix IV. (Continued) 

 
e) Significant spatial 

autocorrelation of 
SEDCON Index (SI) 
values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f) Significant bivariate 

spatial correlation 
of SI and 
Temperature  
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Appendix IV. (Continued) 

 
g) Significant bivariate 

spatial correlation of 
SI and Salinity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
h) Significant bivariate 

spatial correlation of 
SI and Depth. 
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Appendix IV. (Continued) Moran’s I value and plot for spatial correlation between the 
SEDCON Index and the FORAM Index. 
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Appendix V-a. Raw counts of sediment constituents from the two sediment replicates of 
32 reefs in Biscayne National Park. 
 

1.1R1 1.1R2 1.2R1 1.2R2 SharkR1 SharkR2 2.1R1

Coral (Pc) 8 5 4 12 2 4 11

Symbiotic Forams (Pf) 8 6 10 11 1 2 0

Coralline Algae (Pah) 0 0 0 1 1 3 0

Molluscs (Pah) 73 95 73 86 52 36 90

Calcareous Algae (Pah) 17 14 30 40 12 15 9

Echinoid Spines (Pah) 0 3 2 1 0 0 1

Worm Tubes (Pah) 1 3 1 4 1 4 10

Gorgonian Sclerites (Pah) 1 2 1 0 0 0 1

Fecal Pellets (Pah) 0 1 0 0 1 1 0

Other (Pah) 1 2 7 8 1 0 3

Unidentifiable (Pu) 191 169 172 137 229 235 175

Pc 2.67% 1.67% 1.33% 4.00% 0.67% 1.33% 3.67%

Pf 2.67% 2.00% 3.33% 3.67% 0.33% 0.67% 0.00%

Pah 31.00% 40.00% 38.00% 46.67% 22.67% 19.67% 38.00%

Pu 63.67% 56.33% 57.33% 45.67% 76.33% 78.33% 58.33%

SEDCON Index 1.16 1.18 1.22 1.67 0.62 0.66 1.19

SIMPER group C C C C C C C  
 

2.1R2 2.2R1 2.2R2 3.1R1 3.1R2 3.2R1 3.2R2

Coral (Pc) 11 5 3 2 6 7 5

Symbiotic Forams (Pf) 1 8 11 5 5 7 5

Coralline Algae (Pah) 5 0 1 0 3 2 0

Molluscs (Pah) 97 50 68 66 77 42 84

Calcareous Algae (Pah) 17 46 64 13 25 22 34

Echinoid Spines (Pah) 1 4 0 1 1 1 1

Worm Tubes (Pah) 3 7 9 1 8 0 5

Gorgonian Sclerites (Pah) 1 6 5 2 2 1 0

Fecal Pellets (Pah) 0 2 3 0 0 1 1

Other (Pah) 2 3 6 4 10 1 4

Unidentifiable (Pu) 162 169 130 206 163 216 161

Pc 3.67% 1.67% 1.00% 0.67% 2.00% 2.33% 1.67%

Pf 0.33% 2.67% 3.67% 1.67% 1.67% 2.33% 1.67%

Pah 42.00% 39.33% 52.00% 29.00% 42.00% 23.33% 43.00%

Pu 54.00% 56.33% 43.33% 68.67% 54.33% 72.00% 53.67%

SEDCON Index 1.29 1.22 1.48 0.85 1.23 0.96 1.21

SIMPER group C C C C C C C  
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Appendix V-a. (Continued) 

 
BugR1 BugR2 ElkhornR1 ElkhornR2 4.1R1 4.1R2 4.2R1

Coral (Pc) 5 0 11 4 2 6 2

Symbiotic Forams (Pf) 6 7 2 12 2 2 3

Coralline Algae (Pah) 1 0 7 5 1 0 2

Molluscs (Pah) 91 68 55 49 48 68 54

Calcareous Algae (Pah) 94 110 8 11 53 57 105

Echinoid Spines (Pah) 6 3 1 0 2 2 1

Worm Tubes (Pah) 6 5 0 3 7 8 4

Gorgonian Sclerites (Pah) 0 2 0 3 1 2 12

Fecal Pellets (Pah) 6 8 0 0 0 3 14

Other (Pah) 5 14 0 1 11 6 15

Unidentifiable (Pu) 80 83 216 212 173 146 88

Pc 1.67% 0.00% 3.67% 1.33% 0.67% 2.00% 0.67%

Pf 2.00% 2.33% 0.67% 4.00% 0.67% 0.67% 1.00%

Pah 69.67% 70.00% 23.67% 24.00% 41.00% 48.67% 69.00%

Pu 26.67% 27.67% 72.00% 70.67% 57.67% 48.67% 29.33%

SEDCON Index 1.75 1.61 0.97 1.00 1.00 1.28 1.56

SIMPER group B B C C C C B  
 

4.2R2 PacificR1 PacificR2 5.1R1 5.1R2 5.2R1 5.2R2

Coral (Pc) 2 2 3 3 1 1 1

Symbiotic Forams (Pf) 7 9 6 10 7 7 19

Coralline Algae (Pah) 0 3 10 2 2 0 2

Molluscs (Pah) 41 19 49 41 23 64 54

Calcareous Algae (Pah) 114 14 17 15 6 31 34

Echinoid Spines (Pah) 4 3 1 1 0 0 0

Worm Tubes (Pah) 12 15 6 6 2 6 5

Gorgonian Sclerites (Pah) 4 1 0 6 0 0 1

Fecal Pellets (Pah) 10 0 0 1 0 0 0

Other (Pah) 17 0 1 0 1 6 8

Unidentifiable (Pu) 89 234 207 215 258 185 176

Pc 0.67% 0.67% 1.00% 1.00% 0.33% 0.33% 0.33%

Pf 2.33% 3.00% 2.00% 3.33% 2.33% 2.33% 6.33%

Pah 67.33% 18.33% 28.00% 24.00% 11.33% 35.67% 34.67%

Pu 29.67% 78.00% 69.00% 71.67% 86.00% 61.67% 58.67%

SEDCON Index 1.63 0.75 0.89 0.92 0.53 1.00 1.29

SIMPER group B C C C C C C  
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Appendix V-a. (Continued) 

 
5.3R1 5.3R2 5.4R1 5.4R2 6.1R1 6.1R2 6.2R1

Coral (Pc) 3 5 2 2 8 8 7

Symbiotic Forams (Pf) 4 4 2 2 3 2 3

Coralline Algae (Pah) 0 1 1 1 2 2 1

Molluscs (Pah) 72 38 68 41 67 87 47

Calcareous Algae (Pah) 25 49 74 70 28 21 33

Echinoid Spines (Pah) 0 0 1 2 6 1 1

Worm Tubes (Pah) 8 4 6 2 11 6 4

Gorgonian Sclerites (Pah) 2 0 6 2 7 4 9

Fecal Pellets (Pah) 0 0 3 0 0 0 0

Other (Pah) 1 0 4 1 13 16 0

Unidentifiable (Pu) 185 199 133 177 155 153 195

Pc 1.00% 1.67% 0.67% 0.67% 2.67% 2.67% 2.33%

Pf 1.33% 1.33% 0.67% 0.67% 1.00% 0.67% 1.00%

Pah 36.00% 30.67% 54.33% 39.67% 44.67% 45.67% 31.67%

Pu 61.67% 66.33% 44.33% 59.00% 51.67% 51.00% 65.00%

SEDCON Index 0.99 0.95 1.25 0.97 1.29 1.28 1.01

SIMPER group C C C C C C C  
 

6.2R2 6.3R1 6.3R2 7.1R1 7.1R2 StarR1 StarR2

Coral (Pc) 7 3 0 2 3 3 2

Symbiotic Forams (Pf) 9 7 6 13 7 3 8

Coralline Algae (Pah) 4 0 0 2 1 3 7

Molluscs (Pah) 63 106 61 83 105 72 49

Calcareous Algae (Pah) 46 27 40 8 3 63 99

Echinoid Spines (Pah) 0 0 1 6 13 0 1

Worm Tubes (Pah) 2 4 5 4 3 1 5

Gorgonian Sclerites (Pah) 2 3 0 5 4 2 0

Fecal Pellets (Pah) 0 0 1 0 0 0 0

Other (Pah) 2 0 3 8 9 16 30

Unidentifiable (Pu) 165 150 183 169 152 137 99

Pc 2.33% 1.00% 0.00% 0.67% 1.00% 1.00% 0.67%

Pf 3.00% 2.33% 2.00% 4.33% 2.33% 1.00% 2.67%

Pah 39.67% 46.67% 37.00% 38.67% 46.00% 52.33% 63.67%

Pu 55.00% 50.00% 61.00% 56.33% 50.67% 45.67% 33.00%

SEDCON Index 1.32 1.27 0.96 1.24 1.26 1.27 1.59

SIMPER group C C C C C C C  
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Appendix V-a. (Continued) 

 
7.2R2 8.1R1 8.1R2 NirvanaR1 NirvanaR2 8.2R1 8.2R2

Coral (Pc) 1 5 10 5 4 4 1

Symbiotic Forams (Pf) 5 0 0 3 7 2 13

Coralline Algae (Pah) 0 3 3 1 0 3 0

Molluscs (Pah) 54 47 43 37 52 49 96

Calcareous Algae (Pah) 69 26 20 23 28 97 107

Echinoid Spines (Pah) 0 0 1 2 2 0 0

Worm Tubes (Pah) 3 0 3 0 0 14 9

Gorgonian Sclerites (Pah) 5 3 0 1 2 11 3

Fecal Pellets (Pah) 0 0 0 1 0 0 4

Other (Pah) 4 1 0 0 0 7 12

Unidentifiable (Pu) 159 215 220 227 205 113 55

Pc 0.33% 1.67% 3.33% 1.67% 1.33% 1.33% 0.33%

Pf 1.67% 0.00% 0.00% 1.00% 2.33% 0.67% 4.33%

Pah 45.00% 26.67% 23.33% 21.67% 28.00% 60.33% 77.00%

Pu 53.00% 71.67% 73.33% 75.67% 68.33% 37.67% 18.33%

SEDCON Index 1.12 0.77 0.87 0.76 0.95 1.43 1.94

SIMPER group C C C A A B B  
 

9.1R2 9.2R1 9.2R2 9.3R1 9.3R2 LuganoR1 LuganoR2

Coral (Pc) 2 2 4 1 1 4 2

Symbiotic Forams (Pf) 40 10 17 27 57 1 5

Coralline Algae (Pah) 0 0 0 1 0 1 1

Molluscs (Pah) 95 100 85 100 74 46 47

Calcareous Algae (Pah) 17 104 91 94 94 19 32

Echinoid Spines (Pah) 1 3 5 6 1 1 0

Worm Tubes (Pah) 4 4 8 5 0 3 4

Gorgonian Sclerites (Pah) 3 5 12 1 2 0 0

Fecal Pellets (Pah) 0 15 4 0 0 0 0

Other (Pah) 15 16 14 5 10 0 1

Unidentifiable (Pu) 123 41 60 60 61 225 208

Pc 0.67% 0.67% 1.33% 0.33% 0.33% 1.33% 0.67%

Pf 13.33% 3.33% 5.67% 9.00% 19.00% 0.33% 1.67%

Pah 45.00% 82.33% 73.00% 70.67% 60.33% 23.33% 28.33%

Pu 41.00% 13.67% 20.00% 20.00% 20.33% 75.00% 69.33%

SEDCON Index 2.07 1.99 2.07 2.19 2.78 0.70 0.84

SIMPER group C B B B B C C  
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Appendix V-a. (Continued) 

 
10.1R1 10.1R2 10.2R1 10.2R2 DomeR1 DomeR2

Coral (Pc) 14 2 0 5 1 3

Symbiotic Forams (Pf) 2 1 8 8 7 4

Coralline Algae (Pah) 4 2 0 0 1 0

Molluscs (Pah) 36 55 87 82 47 47

Calcareous Algae (Pah) 58 42 54 57 160 180

Echinoid Spines (Pah) 1 2 4 2 1 3

Worm Tubes (Pah) 7 0 3 2 5 9

Gorgonian Sclerites (Pah) 2 3 3 2 4 3

Fecal Pellets (Pah) 0 0 0 0 4 1

Other (Pah) 0 3 3 3 14 21

Unidentifiable (Pu) 176 190 138 139 56 29

Pc 4.67% 0.67% 0.00% 1.67% 0.33% 1.00%

Pf 0.67% 0.33% 2.67% 2.67% 2.33% 1.33%

Pah 36.00% 35.67% 51.33% 49.33% 78.67% 88.00%

Pu 58.67% 63.33% 46.00% 46.33% 18.67% 9.67%

SEDCON Index 1.30 0.87 1.29 1.41 1.81 1.98

SIMPER group C C C C B B  
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Appendix V-b. Visual identification aid for major sediment constituents. 
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Appendix VI. SIMPER results for dissimilarity between groups based on LSF 
assemblages. 
 
Groups A &  B Average dissimilarity = 36.3%

 Group B  Group A                            

Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

L. proteus 7.33 3.77 6.88 4.39 18.9 18.9

C. compressus 1.54 3.75 4.5 1.77 12.4 31.3

Androsina 0.09 2.42 4.48 2.56 12.4 43.7

A. carinata 1.27 2.73 3.54 1.73 9.76 53.4

A. gibbosa 3.72 5.27 3.14 1.6 8.63 62.1

A. angulatus 3.43 4.34 2.6 1.6 7.15 69.2

L. bradyi 2.3 1.36 2.23 1.46 6.14 75.4

B. orbitolitoides 1.15 0.11 2.05 1.52 5.63 81.0

S. marginalis 0.43 1.4 2.01 1.8 5.53 86.5

H. antillarium 0.03 0.83 1.55 2.08 4.28 90.8

Groups A  &  C Average dissimilarity = 31.3%

 Group A  Group C                            

Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

A. angulatus 4.34 2 4.45 2.67 14.2 14.2

Androsina 2.42 0.09 4.44 2.6 14.2 28.4

A. carinata 2.73 0.72 3.83 2.11 12.2 40.7

L. proteus 3.77 5.37 3.17 2.17 10.1 50.8

A. gibbosa 5.27 6.73 2.9 1.66 9.26 60.1

C. compressus 3.75 2.75 2.74 1.18 8.76 68.8

B. orbitolitoides 0.11 1.09 1.96 1.78 6.27 75.1

S. marginalis 1.4 0.46 1.95 1.63 6.24 81.3

L. bradyi 1.36 2.12 1.7 1.3 5.45 86.8

B. pulchra 0.83 0.4 1.47 1.32 4.7 91.5

 Reef 1.1  &  Group A Average dissimilarity = 49.4%

Reef 1.1  Group A                            

Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

A. gibbosa 0 5.27 10.78 6.7 21.8 21.8

A. carinata 6.67 2.73 8.07 4.25 16.3 38.2

C. compressus 0 3.75 7.66 3.77 15.5 53.7

Androsina 0 2.42 4.91 2.66 9.96 63.7

L. bradyi 3.52 1.36 4.41 2.98 8.94 72.6

L. proteus 5.58 3.77 3.69 3.02 7.47 80.1

S. marginalis 0 1.4 2.87 2.71 5.81 85.9

A. angulatus 3.15 4.34 2.56 1.71 5.18 91.1

Group A  &  Reef 5.4 Average dissimilarity = 35.9%

 Group A Reef 5.4                            

Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

A. angulatus 4.34 0 8.68 5.36 24.2 24.2

Androsina 2.42 0 4.83 2.66 13.5 37.6

C. compressus 3.75 6.01 4.53 2.42 12.6 50.3

L. proteus 3.77 5.65 3.76 3.13 10.5 60.7

L. bradyi 1.36 0 2.73 1.88 7.59 68.3

A. carinata 2.73 1.46 2.64 1.86 7.35 75.7

P. pertusus 1.22 2.53 2.62 2.74 7.3 83.0

B. pulchra 0.83 0 1.65 1.27 4.6 87.6

H. antillarium 0.83 0 1.65 1.97 4.6 92.2  
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Appendix VII. Results of bleaching surveyed in live specimens of Amphistegina gibbosa 

and density of live symbiont-bearing foraminifera (per 100cm2). 
 

 Amphistegina gibbosa Total Live Symbiont-bearing Forams 

Site %Adults %Bleached Density Density Raw Count 

1.1 0.00 0.00 0.00 146.4 201 

1.2 88.9 33.3 10.8 112.0 114 

Shark 39.7 32.8 27.5 97.2 182 

2.1 48.0 24.7 43.4 75.2 127 

2.2 50.0 40.0 4.71 47.3 99 

3.1 88.9 33.3 29.5 57.2 132 

3.2 43.9 27.6 48.0 165.3 330 

Bug 31.7 6.67 30.2 53.0 100 

Elkhorn 47.5 10.0 17.3 44.5 101 

4.1 42.9 17.5 53.8 129.2 156 

4.2 49.4 18.8 33.1 67.4 173 

Pacific 67.7 16.1 15.6 92.6 178 

5.1 71.4 28.6 20.9 62.1 102 

5.2 15.4 15.4 4.40 27.6 76 

5.3 50.0 5.56 17.0 68.2 72 

5.4 20.0 40.0 10.9 51.2 47 

6.1 72.2 33.3 7.34 37.2 80 

6.2 31.3 18.8 11.7 148.0 391 

6.3 59.5 23.8 17.2 271.4 569 

7.1 50.0 20.0 6.54 139.8 218 

Star 57.7 28.9 27.6 75.0 143 

7.2 39.3 16.7 30.3 177.3 492 

8.1 43.1 19.6 30.2 86.6 150 

Nirvana 47.8 28.4 60.7 217.5 489 

8.2 63.4 26.8 51.2 175.2 228 

9.1 40.0 26.7 8.14 50.4 109 

9.2 31.8 22.7 17.4 90.5 123 

9.3 100.0 0.00 0.71 5.70 8 

Lugano 46.3 29.3 25.5 111.5 177 

10.1 52.9 22.1 54.2 98.9 124 

10.2 44.7 13.2 23.6 104.5 174 

Dome 38.7 9.68 24.4 165.1 213 
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Appendix VIII. Environmental data and comments from divers and boat captain. 
 
Site Depth (m) pH Temperature DO Salinity Comments

1.1 6.10 8.2 26.21 6.66 35.43

1.2 3.35 8.29 26.26 6.78 35.52

Shark 4.88 8.17 26.61 6.36 35.33

2.1 6.10 8.27 26.12 6.64 35.58

2.2 4.27 8.3 26.26 7.06 35.78

3.1 8.84 8.19 26.26 6.23 35.41 red grouper

3.2 2.74 8.27 26.04 6.38 35.61 abundant, high diversity coral

Bug Reefs 5.18 8.26 25.94 6.45 35.96

Elkhorn 1.52 8.34 27 7.86 35.56 lots of diadema, grunts w/ parasites

4.1 6.10 8.34 26.2 6.29 35.6 lots of broken coral heads, known fishing spot

4.2 3.96 8.35 26.17 6 35.65

Pacific 6.40 8.27 26.72 6.25 35.38 good visability, lots of garbage on bottom, known fishing spot

5.1 3.66 8.26 26.16 6.2 35.36 good visability, near boat channel (marker 4), minimal thalasia

5.2 8.84 8.26 26.4 6.1 35.37 near boat channel (marker 3)

5.3 4.57 8.32 26.31 6.45 35.6

5.4 3.35 8.36 26.32 6.28 35.76

6.1 8.23 8.39 26.24 6.21 35.63

6.2 8.23 8.46 26.31 6.36 35.66 black band disease prevalent on corals

6.3 3.66 8.46 26.08 6.58 35.74

7.1 10.06 8.22 26.06 6.22 35.52 lots of relief, juvenile fishes

Star 6.40 8.35 25.99 6.13 35.64

7.2 4.57 8.41 25.95 5.93 35.77

8.1 3.05 8.22 26.1 6.34 35.59 nicest reef (Jim), some small cervicornis

Nirvana 2.44 8.25 26.09 6.43 35.6 lots of new growth coral, including cervicornis, nicest reef (Mel)

8.2 4.27 8.28 26.01 6.35 35.69 red grouper

9.1 8.84 8.28 25.8 5.9 35.61 mostly gorgonians and fire coral

9.2 3.66 8.24 25.68 6.08 35.66

9.3 3.96 8.1 25.77 6.7 35.69

Lugano 5.49 8.11 26.27 6.27 35.45 ship wreck (1913), sediment sample very orange

10.1 3.66 8.32 25.74 6 35.78

10.2 3.96 8.25 25.57 6.04 35.71

Dome 4.57 8.3 26.11 6.18 35.86 high relief, large boulder corals, red grouper  
 
 


	Patch Reefs in Biscayne National Park, FL: Sediments, Foraminiferal Distributions, and a Comparison of Three Biotic Indicators of Reef Health
	Scholar Commons Citation

	Microsoft Word - ThesisPUB.doc

