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Salty fertile lakes: how salinization and eutrophication alter the
structure of freshwater communities
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Abstract. The quality of freshwater ecosystems is decreasing worldwide because of anthropogenic activ-
ities. For example, nutrient over-enrichment associated with agricultural, urban, and industrial develop-
ment has led to an acceleration of primary production, or eutrophication. Additionally, in northern areas,
deicing salts that are an evolutionary novel stressor to freshwater ecosystems have caused chloride levels
of many freshwaters to exceed thresholds established for environmental protection. Even if excess nutrients
and road deicing salts often contaminate freshwaters at the same time, the combined effects of eutrophica-
tion and salinization on freshwater communities are unknown. Thus by using outdoor mesocosms, we
investigated the potentially interactive effects of nutrient additions and road salt (NaCl) on experimental
lake communities containing phytoplankton, periphyton, filamentous algae, zooplankton, two snail spe-
cies (Physa acuta and Viviparus georgianus), and macrophytes (Nitella spp.). We exposed communities to a
factorial combination of environmentally relevant concentrations of road salt (15, 250, and 1000 mg Cl�/L),
nutrient additions (oligotrophic, eutrophic), and sunlight (low, medium, and high) for 80 d. We manipu-
lated light intensity to parse out the direct effects of road salts or nutrients from the indirect effects via algal
blooms that reduce light levels. We observed numerous direct and indirect effects of salt, nutrients, and
light as well as interactive effects. Added nutrients caused increases in most producers and consumers.
Increased salt (1000 mg Cl�/L) initially caused a decline in cladoceran and copepod abundance, leading to
an increase in phytoplankton. Increased salt also reduced the biomass and chl a content of Nitella and
reduced the abundance of filamentous algae. Added salt had no effect on the abundance of pond snails,
but it caused a decline in banded mystery snails, which led to an increase in periphyton. Low light nega-
tively affected all taxa (except Nitella) and light levels exhibited multiple interactions with road salt, but the
combined effects of nutrients and salt were always additive. Collectively, our results indicate that eutrophi-
cation and salinization both have major effects on aquatic ecosystems and their combined effects (through
different mechanisms) are expected to promote large blooms of phytoplankton and periphyton while caus-
ing declines in many species of invertebrates and macrophytes.
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INTRODUCTION

Lake ecosystems offer multiple ecosystem ser-
vices, such as the provisioning of drinking water,
water for industry and agriculture, recreation,
and fisheries (Malmqvist and Rundle 2002, Kee-
ler et al. 2012). Humans have exploited and con-
taminated lake resources causing extensive
degradation and loss of biodiversity (Naiman
et al. 2002). The contaminants can dramatically
alter the structure and function of freshwater
lake ecosystems, triggering a loss of ecosystem
services (Hintz et al. 2017). Eutrophication and
salinization are two major threats to lake ecosys-
tems (Carpenter et al. 1985, Jackson et al. 2016,
Dugan et al. 2017) and, while they co-occur
throughout much of the world, their additive
and synergistic effects are not well understood.
Thus, it is important to understand whether
these co-occurring disturbances interact to affect
lakes ecosystems and food webs, and what the
implications might be for lake ecosystem services
and future mitigation efforts.

Over the last two centuries, human activities
have enriched freshwater ecosystems with nutri-
ents that have altered the trophic state of systems
around the world (Conley et al. 2009). Nutrient
pollution frequently occurs in human-dominated
systems, causing eutrophication, harmful algal
blooms, hypoxia, and changes in aquatic food
webs (Conley et al. 2009, Paerl and Paul 2012).
Moreover, algal blooms can reduce light avail-
ability, negatively affecting primary producers
that are unable to migrate, drift, or extend
toward the water surface (e.g., vascular plants
and benthic algae; Cronin and Lodge 2003,
Havens et al. 2003). Therefore, increased pelagic
primary productivity might limit the persistence
and growth of benthic primary producers (Schef-
fer et al. 1993).

Human activities in higher latitudes have also
contaminated freshwater ecosystems by the usage
of deicing salts, for the purpose of increasing driv-
ing safety during winter (Novotny et al. 2008,
Corsi et al. 2010, Ca~nedo-Arg€uelles et al. 2016).
The most common deicer is rock salt that consists
mainly of sodium chloride (NaCl; Thunqvist
2004, Novotny et al. 2008, Rogora et al. 2015),
and in 2013, the annual rock salt use on roads was
20.4 million metric tonnes in the United States,
5 million tonnes in Canada, and 0.2–0.3 million

tonnes in Sweden (Thunqvist 2004, Howard and
Maier 2007, Bolen 2013). As snow and ice melt,
the dissolved salt runs off into streams, rivers,
and lakes or infiltrates soil and groundwater
(Thunqvist 2004. During runoff events, chloride
levels can reach 4300 mg/L in streams and
5000 mg/L in ponds and wetlands (Environment
Canada 2001). These levels far exceed the current
chronic (230 mg Cl�/L) and acute (860 mg Cl�/L)
thresholds that were established for the protection
of freshwater biota by the U.S. Environmental
Protection Agency (EPA 1988).
Organisms in freshwater ecosystems vary in

their tolerance to NaCl, and both chronic and
acute chloride concentrations (from NaCl) nega-
tively affect macroinvertebrate species richness
in streams (Horrigan et al. 2005, Kefford et al.
2006). Chronic and acute chloride concentrations
also negatively affect the abundance of lake and
pond zooplankton (Sarma et al. 2006, Van Meter
et al. 2011, Hintz et al. 2017, Stoler et al. 2017).
Increased chloride concentrations have also been
linked to algal blooms, which can reduce light
availability and alter food-web structure in fresh-
water ecosystems (Dananay et al. 2015, Ca~nedo-
Arg€uelles et al. 2016). Consequently, increased
salinization can alter the freshwater community
structure (Petranka and Doyle 2010, Ca~nedo-
Arg€uelles et al. 2016). Although studies have
been conducted on the salinity tolerance of fresh-
water macrophytes, these studies often focus on
biogeochemical and molecular mechanisms on a
cellular level, and not on food-web implications
or changes in macrophyte abundance (Haller
et al. 1974, Rout et al. 1997, Rout and Shaw 2001,
Parida and Das 2005).
It is particularly valuable to understand how

macrophytes respond to changes in their envi-
ronment (e.g., light conditions), since macro-
phytes play an essential role in freshwater
ecosystems (Carpenter and Lodge 1986, Scheffer
et al. 1993), and since conditions in waterbodies
have been altered by different types of pollution
and invasion of species (Anderson et al. 2002,
Kovalenko et al. 2010). Most aquatic plants can-
not tolerate salt concentrations greater than 10
g/L, but tolerance varies among species, life
stage, type of salt, and the duration and intensity
of the exposure (Deegan et al. 2005, Lacoul and
Freedman 2006). Furthermore, environmentally
relevant chloride concentrations have been shown
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to favor salt-tolerant species and alter the bio-
mass of primary producers (Petranka and Doyle
2010, Van Meter et al. 2011, Hintz et al. 2017).

Our objective was to examine the combined
effects of salt contamination and nutrient pollu-
tion on freshwater communities. We expected
both contaminants to cause an algal bloom, but
through different mechanisms. Road salts would
indirectly cause an algal bloom by reducing the
abundance of zooplankton (i.e., top-down),
whereas nutrients would directly increase the
growth rate of algae (i.e., bottom-up). Because
algal blooms can have cascading effects on food
webs and ecosystems by reducing light transmis-
sion through the water column, we also manipu-
lated light levels to parse out the direct and
indirect effects of an algal bloom caused by nutri-
ents or salt. We employed outdoor mesocosms,
which are commonly used to test the effects of
anthropogenic impacts on aquatic systems,
because they provide a venue to manipulate and
replicate conditions in a controlled manner (e.g.,
Rowe and Dunson 1994, Downing and Leibold
2002, Hua and Relyea 2014).

We hypothesized that the combination of stres-
sors would cause additive and interactive effects
on primary and secondary biomass and abun-
dance. Specifically, we predicted that (1) higher
chloride concentrations will cause a decrease in
zooplankton and other animals and a subsequent
bloom in phytoplankton, (2) higher nutrient con-
centrations will cause an increase in productivity
of all primary producers, (3) increased phyto-
plankton production due to elevated nutrient or
salt levels will have an indirect negative effect on
the benthic macroalgae (Nitella spp.) and grazers,
due to reduced light availability, (4) low light
levels will mimic the effects of reduced light
transparency caused by algal blooms produced
by increased salt and nutrients, and (5) increased
salt, increased nutrients, and reduced light will
have multiple interactive effects.

MATERIALS AND METHODS

Experimental design
We conducted the experiment at Rensselaer

Polytechnic Institute’s Aquatic Research Labora-
tory in Troy, New York, USA, during the summer
of 2015. We used a completely randomized design
that employed a full factorial combination of three

salt concentrations (15, 250, and 1000 mg Cl�/L),
two nutrient levels (high eutrophic and ambient
oligotrophic), and three light levels (low [10%],
medium [35%], and high [70%] of ambient sun-
light). As noted earlier, the three sunlight manipu-
lations acted as a proxy for the shading effect of
an algal bloom that is independent of the other
impacts that an algae bloom can have on a food
web. Four replicates of each of the 18 treatment
combinations resulted in 72 experimental units.
Our experimental units were 1200-L plastic

mesocosms (i.e., cattle tanks). On 15 June, we filled
the mesocosms with 850 L of water from Lake
George (Warren County, New York, USA) due to
its low chloride concentration (15 mg Cl�/L) and
oligotrophic state. Two days later, we added 140 L
(5 cm deep) of sand substrate to the mesocosms
and allowed the water to sit undisturbed for 10 d,
until the soil particles settled. When the water was
clear, we placed two unglazed clay tiles (10 9

15 cm) vertically on the north side of each meso-
cosm to serve as periphyton samplers during the
experiment.
We established highly similar ecological com-

munities in each mesocosm. We initiated a zoo-
plankton community on 27 June by collecting
zooplankton from Lake George using a zoo-
plankton net (64 lm) and adding 600 mL of the
concentrated zooplankton slurry to each of the
mesocosms. In addition to zooplankton, the col-
lected water also introduced microbial and algal
assemblages to each mesocosm. On the same
day, we collected banded mystery snails (Vivi-
parus georgianus) from a local lake and added six
individuals (two large and four small) to each
mesocosm. On 1 July, we collected a mixture of
the Nitella species (N. flexilis, N. opaca, and
N. tenuissima) from Lake George and placed
200 g (wet weight) on the bottom of each meso-
cosm after rinsing and removing undesirable
species (e.g., macrophytes and snails) that were
visible. Nitella spp. are macroalgae (Characeae)
that live in monoculture meadows in deep water
(7–12 m; Boylen et al. 2014), and since its growth
form resembles an aquatic plant, it is categorized
as a macrophyte (Cushing and Allan 2001). The
collected Nitella also contained attached pond
snails (Physa acuta), so we quantified the number
of attached pond snails and estimated that an
average of four individuals (3–6) were intro-
duced to each mesocosm.
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On 7 July (defined as day 1 of the experiment),
we applied the light treatments by covering the
mesocosms with mesh lids with three different
light transmittance percentages (10, 35, and 70%
sunlight). Prior to this date, all mesocosms had
identical mesh lids that allowed 35% light trans-
mittance. These lids also prevented organisms
from colonizing or leaving the mesocosms
(Howeth and Leibold 2010).

On 10 July, we added road salt to the meso-
cosms in the form of NaCl (Solar Salt; Morton
Salt, Chicago, Illinois, USA; 99.8% pure NaCl;
60.7% chloride, free of additives). Given that the
ambient chloride concentration of the lake water
was 15 mg Cl�/L, we added salt to reach medium
and high concentrations (250 and 1000 mg Cl�/L,
respectively). We chose these three concentrations
because the U.S. EPA maximum acceptable level
for drinking water is 250 mg Cl�/L (EPA, 2016),
and 1000 mg Cl�/L exceeds the standards for
acute events but is representative of North Ameri-
can lakes with the highest road salt concentrations
(Novotny et al. 2008). The highest concentration
observed in North American ponds and wetlands
is approximately 4300 mg Cl�/L (Environmental
Canada 2001). We added the sodium chloride to
each mesocosm by extracting 5 L of water and
mixing the salt with the water until it was dis-
solved. We added the chloride to each mesocosm
assigned to a salt treatment in a slow, circular
movement to ensure that the mixture was evenly
dispersed. On the next day, we measured the
chloride concentrations to ensure that we reached
our goals for each mesocosm.

On the same day as salt additions, we applied
our nutrient treatments. In the low-nutrient treat-
ment, no nutrients were added to represent an
oligotrophic lake (Lake George, TP mean of
4.36 lg/L over 30 yr; Boylen et al. 2014). For the
high-nutrient treatment, we added 0.185 g of
potassium phosphate and 4.2 g of sodium nitrate
(16N:1P) on 10 July. We set the target eutrophic
conditions at 100 lg/L of P and 1600 lg/L of N
(see, e.g., Schuler et al. 2017a). We dosed the
mesocosms assigned to the high-nutrient treat-
ment a second time on 4 August to maintain
higher nutrient levels since there is a 5% day�1

loss of nutrients to the bottom substrate (Howeth
and Leibold 2010). To control for disturbance, we
gently agitated the surface water of all meso-
cosms not receiving nutrients or salt.

Response variables
We quantified phytoplankton abundance on

days 8, 16, 20, 30, 42, and 78, with an average of
13 days between sampling occasions (Table 1).
Phytoplankton were sampled to reflect when we
observed the most dramatic changes. We sampled
phytoplankton by collecting 450 mL of water from
the middle of each mesocosm and vacuum-filtered
all samples through GF/C glass fiber filters (What-
man, Inc., Massachusetts, USA). Each filter was
wrapped in aluminum foil and frozen (�20°C) to
prevent chlorophyll breakdown. We later mea-
sured the concentration of chlorophyll a in each fil-
ter using a fluorometer (Model ED-700; Turner
Designs) following Arar and Collins (1997).
We measured periphyton biomass on days 32

and 77 (Table 1), by removing one tile each time
from each mesocosm and scrubbing the tile with
a brush. We rinsed the tile and brush, and the
resulting slurry was filtered through pre-dried
(60°C for 48 h) and pre-weighed 1.2-lm glass
fiber filters (Whatman GF/C). After drying the fil-
ters at 60°C for 48 h, we re-weighed them to
determine dry periphyton biomass.
We also sampled the living Nitella from each

mesocosm on day 80 (Table 1) to assess final bio-
mass and chlorophyll a content. We rinsed the
samples to remove attached filamentous algae and
snails and then dried the Nitella samples at 60°C
for 48 h. After drying, we weighed each sample.
From each Nitella sample, we also clipped a 4-cm
piece to analyze it for chlorophyll a content. The
Nitella pieces were wrapped in aluminum foil and
frozen (�20°C) to prevent chlorophyll breakdown.
We later measured the concentration of chloro-
phyll a in each sample by shaking the bottle for
1 min until the fragile plant tissue had become
suspended in acetone solution (Gitelson et al.
2003). We then used the fluorometer to quantify

Table 1. Schematic overview of sampling intensity of
each response variable or group of response variables.

Response
variables

Day

7–8 14–16 19–21 30–32 42–43 77–80

Phytoplankton X X X X X X
Periphyton — — — X — X
Macroalgae — — — — — X
Snails — — — — — X
Zooplankton — — X — — X
Abiotic X X X X X X
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interactions (Fig. 6; Appendix S1: Tables S5–S6).
The pH levels were generally increasing with
increasing light and nutrients levels while decreas-
ing with increasing salt concentrations. The pH
ranged between 7.46 and 9.95 with an average of
0.2 pH units lower in 1000 vs. 15 mg Cl�/L.

DISCUSSION

Salinization and eutrophication in freshwater
ecosystems is a serious environmental problem
(Van Meter et al. 2011, Paerl and Paul 2012,
Ca~nedo-Arg€uelles et al. 2016, Hintz et al. 2017).

Fig. 6. pH, DO (dissolved oxygen; mg O2/L), and temperature (°C) for each sampling day and each treatment:
(a) sunlight (low 10%, medium 35%, and high 70%), (b) nutrients (low and high), and (c) salt (15, 250, and
1000 mg Cl�/L).
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We discovered that altered nutrients, sunlight,
and salt concentrations altered the structure of
ecological communities by causing direct effects
as well as top-down and bottom-up indirect
effects that altered the abundance of primary
producers and consumers. Adding nutrients
caused our community to experience increased
productivity, including the increased growth of
phytoplankton and periphyton, one of the two
snail species, and all three zooplankton groups.
Adding salt caused declines in two of the three
zooplankton groups, an increase in phytoplank-
ton and periphyton, sharp declines in the Nitella
macroalgae, and sharp declines in the abundance
of banded mystery snails. In short, we found that
the combination of increased chloride and nutri-
ents creates a highly eutrophied ecosystem with
decreasing macrophyte coverage, higher pelagic
primary production, and altered abundances of
consumers for higher trophic levels. Reduced
sunlight caused a decline in the abundance of
pond snails and banded mystery snails (although
the latter depended on salt concentration), decli-
nes in phytoplankton (although only under high-
nutrient conditions), and declines in cladocerans
and rotifers. However, there was no evidence
that declines in sunlight caused by salt- and
nutrient-induced increases in phytoplankton or
macroalgae caused any indirect effects on the
food web. Below, we elaborate on these findings
and interpretations.

Phytoplankton and periphyton
Phytoplankton and periphyton increased in

our experiment when exposed to high nutrients
or elevated salt concentrations (Figs. 1 and 2).
The increase in phytoplankton under high-salt
conditions was likely caused by a decline in the
copepods and cladocerans that consume phyto-
plankton. This outcome has also been observed
in past lake and wetland ecosystems (Van Meter
et al. 2011, Hintz et al. 2017) and is similar to
that seen for other contaminants that are lethal to
zooplankton, including insecticides (Hua and
Relyea 2014, Bendis and Relyea 2016).

While it was not surprising that phytoplankton
became more abundant when nutrients were
added (Conley et al. 2009, Paerl and Paul 2012),
it was interesting that nutrients and sunlight had
interactive effects; reduced sunlight had no effect
under low-nutrient conditions but caused a large

decline in phytoplankton under high-nutrient
conditions. This suggests that while phytoplank-
ton abundance is commonly nutrient-limited, it
becomes light-limited when nutrients are abun-
dant (e.g., Karlsson et al. 2009).
We hypothesized that the increases in phyto-

plankton caused by added nutrients or salt would
shade the deeper periphyton and thereby reduce
the biomass of periphyton. When we added nutri-
ents, periphyton initially showed no change in
biomass, but after 77 d, it showed an increase.
The increase exhibited no interaction with light
levels, suggesting that while the periphyton was
nutrient-limited, it was not light-limited (unlike
phytoplankton). In the case of added salt, we also
observed an increase in periphyton, which was in
contrast to our shading hypothesis: that the
increase of phytoplankton caused by nutrient and
salt additions would indirectly cause a decline in
periphyton due to a shading effect. The most
likely explanation for our observation of increased
periphyton with salt addition is that the salt was
toxic to one of the major periphyton grazers (e.g.,
banded mystery snails); as a result, the lower
grazing pressure by snails in the high-salt treat-
ments allowed for an increase in periphyton. Con-
sistent with this result are other recent studies
that have found periphyton increases with ele-
vated salt (e.g., Van Meter et al. 2011, Dananay
et al. 2015). However, the novel takeaway mes-
sage is that increases in nutrients and salts appear
to affect phytoplankton and periphyton abun-
dance additively and not synergistically.

Macroalgae
We also found several surprising responses to

our manipulations on the Nitella macroalgae.
First, Nitella showed no increase in biomass
when we added nutrients (Fig. 3). This suggests
not only that this macroalga is not limited by
nutrients, but also that it is not limited by the
reduced sunlight availability that occurred as the
added nutrients initiated a phytoplankton
bloom. This resiliency of Nitella under different
nutrient conditions may reflect its ability to
extract and store considerable amount of nutri-
ents from the water (Kufel and Kufel 2002).
Clear evidence that Nitella is not harmed by

reduced sunlight availability comes from the
results of our light manipulations (Fig. 3). In the
absence of added salt (e.g., 15 mg Cl�/L), large
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reductions in sunlight resulted in substantial
higher Nitella biomass. Previous studies have
shown that charophytes, such as Nitella, can use
low light intensities effectively and can therefore
survive in deep water (Blindow 1992, Kufel and
Kufel 2002). The fact that Nitella did not respond
favorably to the shading effect of the phyto-
plankton bloom that occurred with added nutri-
ents suggests that the reduced light availability
from the phytoplankton bloom was weaker than
the reduced light availability in our light manip-
ulations, or might have caused some type of
resource competition that we did not measure.

We also found, for the first time, that Nitella
is highly sensitive to increased salt. This is sur-
prising given that Nitella has been found in
salinities up to 5000 mg/L (James et al. 2003).
When growing well under low-light conditions,
increases in salt severely reduced Nitella biomass
in our treatments. Moreover, photosynthetic pig-
ment concentration can indicate the physiologi-
cal status of a plant (Pe~nuelas et al. 1995) and
the lower chl a concentration in Nitella in high-
salt treatments also indicates that the macro-
phyte was experiencing physiological stress
caused by elevated salt concentration. While the
impact of salt disappeared under high-light con-
ditions, this was simply because Nitella grew so
poorly under high-light conditions that there
was very little remaining scope for a response to
salt.

This high sensitivity to increased salt concen-
trations is particularly relevant given that many
salt-polluted lakes can achieve salt concentra-
tions of 250 to 1,000 mg Cl�/L (Novotny et al.
2008). An additional concern arises if tributaries
carry high salt concentrations into lakes and then
this water sinks to lake bottoms (due to the
higher density of the salty water). Under this
scenario, concentrated salt water would descend
to the deeper waters where Nitella lives and this
would cause a major decline in Nitella abun-
dance, with potential cascading effects on the
animals that depend on the Nitella meadows
for habitat. In summary, our results suggest
that Nitella meadows are very susceptible to
increased salt, but do not respond to increases in
nutrients.

For filamentous algae, we did not find any
effects of increased nutrients or light. However, we
found filamentous algae to decrease with elevated

salt indicating that filamentous algae have a simi-
lar salinity tolerance as Nitella. Hintz et al. (2017)
also found that the biomass of filamentous algae
decreased substantially with elevated salt levels.
Thus, this may turn out to be a common observa-
tion in salt-impacted freshwater habitats.

Snails
While neither snail species performed well

under low-light conditions, they had unique
responses to increased salt and nutrients. The
negative response to low-light conditions is
likely a response to low periphyton productivity.
While we measured periphyton standing crop,
which did not respond to light, it appears that
the productivity of periphyton growth was quite
limiting to the growth of pond snails. Further
support for this conclusion can be found in the
pond snails, which experienced a higher abun-
dance when nutrients were added, which
increased periphyton standing crop. In contrast,
banded mystery snails did not respond to the
nutrient addition (Fig. 4).
Banded mystery snails are more commonly

found in mesotrophic and eutrophic lakes and
ponds (Browne 1978, Lee et al. 2002), although
they also can be abundant in some oligotrophic
lakes (e.g., Lake George, New York, USA). We
therefore expected an increase in banded mys-
tery snails with nutrient addition. The difference
in sensitivity to nutrients may reflect differences
in their feeding habits. Banded mystery snails
are primarily detritivores, whereas pond snails
are primarily periphyton grazers (Lee et al. 2002,
Evans-White and Lamberti 2009). As a result,
increased nutrients that cause increased periphy-
ton productivity should favor an increased pro-
duction of pond snails but have weaker effects
on banded mystery snails.
A major difference between the two snail spe-

cies was in their response to increased salt. Pond
snails exhibited no harmful effects of increased
salt, whereas banded mystery snails were nearly
exterminated by high salt concentrations.
However, the harmful impact of salt on banded
mystery snails could only be observed under
medium- and high-light conditions, since low-
light conditions caused very few banded mystery
snails to survive. Collectively, this suggests that
the two snail species have dramatically different
tolerances to salt. Moreover, as detritivores,
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banded mystery snails assimilate contaminants
from the sediments (which can have higher salt
concentrations since saltier water has a higher
density), while pond snails are grazers and
would be less likely to directly assimilate con-
taminants from the sediments (Lee et al. 2002,
Evans-White and Lamberti 2009). As a result,
even if banded mystery snails and pond snail
have a similar tolerance to salt, banded mystery
snails may be exposed to higher levels of salt
because of their habit of feeding on the detritus
of sediments. Previous studies have shown pond
snails to have a high tolerance to salinity (Kef-
ford and Nugegoda 2005, Hintz et al. 2017) and
that the tolerance increases with life stage (Kef-
ford et al. 2004, 2007), while no studies on the
salt tolerance of banded mystery snails were
found. We clearly need much more information
on the variation in salt tolerance among gas-
tropods to better understand how salt will alter
species assemblages in freshwater habitats. How-
ever, the data from our study indicate that the
impacts of salt and nutrient inputs on snails are
additive rather than synergistic.

Zooplankton
The zooplankton responded positively to

increased sunlight and nutrients (Fig. 5). The
positive response to increased sunlight and
nutrients is not particularly surprising, since
both of these factors combined produce a larger
standing crop of phytoplankton. Increases in
phytoplankton driving increases in zooplankton
populations are a common observation in fresh-
water ecosystems (Canfield and Jones 1995, Ger
et al. 2014). When more than 50% of total phyto-
plankton biomass are cyanobacteria, negative
effects from eutrophication start to occur (Ger
et al. 2014). However, zooplankton abundance
did not suffer any negative effects under high-
nutrient conditions; on the contrary, zooplank-
ton populations in our mesocosms tracked the
increase in phytoplankton following nutrient
addition.

The more novel finding was the decline in zoo-
plankton with increased salt and that this
dynamic changed over time. We found that
cladocerans and copepods experienced declines
in abundance as we increased salt from 250 to
1000 mg Cl�/L (Fig. 5). These declines are consis-
tent with past studies of zooplankton sensitivity

to salt (e.g., Petranka and Doyle 2010, Van Meter
and Swan 2014, Hintz et al. 2017, Stoler et al.
2017). We also found rotifers to be less sensitive
to increased salt, which is also consistent with
previous studies (Sarma et al. 2006, Hintz et al.
2017). Collectively, these studies suggest that the
decline in copepods that we observed in our
mesocosm study was the result of direct toxicity
to the added salt.
Given the direct toxicity of the high-salt treat-

ment and given the fact that sodium and chlo-
ride do not break down or leave the system, it
is quite interesting that the negative impact of
salt diminished over time. A similar observation
was made recently by Hintz et al. (2017) who
tracked zooplankton abundance over time, and
a follow-up study provided the underlying
explanation. In the case of cladocerans, Cold-
snow et al. (2017) found that large populations
that experience high concentrations of salt are
initially greatly reduced in abundance but not
completely eliminated. The few that persist
possess salt tolerance and, over time, these salt-
tolerant cladocerans reproduce and ultimately
rise to an abundance that is similar to the abun-
dance of cladocerans that were never exposed
to salt. Given this discovery, it may be the case
that the copepods also evolve increased toler-
ance during the experiment. Many copepods
experience different feeding modes during their
development with some copepods changing
from feeding on phytoplankton to becoming
predatory (Brandl 2005). Therefore, the increase
in cladocerans and rotifers in the second sam-
pling occasion might be an indirect effect of
released predation pressure as higher amount of
copepods might still be in earlier developmental
stages. However, even if there is always a
chance of missing some patterns throughout the
sampling period, our samples were taken in
response to when communities were diverging
among the treatments. Temperature could also
influence zooplankton reproduction; however,
we did not see any general drastic drop in the
zooplankton community in the second sampling
occasion that would indicate such a pattern
(Figs. 5 and 6). In terms of our focus on the
combined effects of added nutrients and road
salts, our results suggest that the two anthro-
pogenic factors have additive effects and not
synergistic or antagonistic effects.
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CONCLUSIONS

Eutrophication and salinization are two
ecosystem stressors that are being experienced
in aquatic ecosystems around the world. While
eutrophication has been studied for decades, the
ecological effects of salinization are only recently
receiving attention and the combined effects of
the two stressors have received no attention.
Our study has found that the combined effects
of the two stressors—across the range of values
examined—are entirely additive for all of the
taxa we examined including phytoplankton,
periphyton, macroalgae, snails, and zooplank-
ton. While the impacts of anthropogenic addi-
tions of nutrients and salt are not synergistic,
their combined effects on aquatic ecosystems are
still of tremendous concern since they both con-
tribute to major changes including phytoplank-
ton and periphyton blooms (via bottom-up and
top-down mechanisms, respectively). Equally
important are the impacts of salinization alone,
including causing a major decline in numerous
taxa including zooplankton, snails, and macroal-
gae. One would reasonably predict that such
declines would have further cascading effects on
consumers that rely on the salt-sensitive prey
and on species that rely on the expansive Nitella
meadows (and perhaps other salt-sensitive
macrophyte species) in freshwater lakes for habi-
tats. Overall, the combined effects of salinization
and eutrophication might fast-forward the pro-
cess of lakes becoming hypertrophic, and this
could potentially result in devastating algal
blooms and poor water quality.

As the first study to examine the combined
effects of salt and nutrients, there is clearly much
more work to be done. For example, the striking
negative effects of NaCl road salt on macroalgae
suggest that many other macroalgae species, and
perhaps many aquatic plant species that are
adapted to low salinities, may be highly suscepti-
ble to road salt pollution in freshwater ecosystems.
The rebounding of both cladocerans and copepods
after initial declines following salt exposure sug-
gests evolved tolerance, but our current insights
into this possibility are limited to only one species
of cladoceran (Coldsnow et al. 2017). There has
also been growing interest in using other road
salts (or mixtures of salts) for deicing roads includ-
ing MgCl2 and CaCl2. Little research has examined

the ecological impacts of these alternative salts
and organic salt additives (but see Schuler et al.
2017b, Schuler and Relyea 2018). As we move for-
ward on these frontiers, we will have a much more
holistic idea of how anthropogenic impacts are
altering aquatic ecosystems and develop manage-
ment strategies for their mitigation.
Through these direct and indirect temperature

effects, in combination with reduced wind speed
and reduced cloudiness, summer heatwaves boost
the development of harmful cyanobacterial
blooms. These findings warn that climate change
is likely to yield an increased threat of harmful
cyanobacteria in eutrophic freshwater ecosystems.
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