C CHOLAR
_ O}ﬂ\ﬁlﬁ University of South Florida
SL)UTH FLORIDA SChOlar Commons

USF Patents

October 2011
System and method for transmission control
protocol (TCP) transmission rate control

Miguel A. Labrador

Sivakumar Bakthavachalu

Follow this and additional works at: http://scholarcommons.usf.edu/usf patents

Recommended Citation

Labrador, Miguel A. and Bakthavachalu, Sivakumar, "System and method for transmission control protocol (TCP) transmission rate
control" (2011). USF Patents. Paper 439.
http://scholarcommons.usf.edu/usf patents/439

This Patent is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in USF Patents by an authorized

administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fusf_patents%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fusf_patents%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fusf_patents%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/usf_patents?utm_source=scholarcommons.usf.edu%2Fusf_patents%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/usf_patents?utm_source=scholarcommons.usf.edu%2Fusf_patents%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/usf_patents/439?utm_source=scholarcommons.usf.edu%2Fusf_patents%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

a2 United States Patent

US008036112B2

(10) Patent No.: US 8,036,112 B2

Labrador et al. (45) Date of Patent: Oct. 11, 2011
(54) SYSTEM AND METHOD FOR (52) US.ClL oot 370/230
TRANSMISSION CONTROL PROTOCOL (58) Field of Classification Search 370/229-232,
(TCP) TRANSMISSION RATE CONTROL 370/235
(75) Tnventors: Miguel A. Labrador, Tampa, FL (US); See application file for complete search history.
Sivgkumar Bakthavachalu, Colorado (56) References Cited
Springs, CO (US)
. L . U.S. PATENT DOCUMENTS
(73) Assignee: University of South Florida, Tampa, FL 2002/0085587 AL* 72002 Mascolo ... AT0/477
Us) 2003/0149785 Al* 82003 Gerlaetal. ..o 709/232

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 409 days.

(21) Appl. No.: 11/625,591
(22) Filed: Jan. 22, 2007

(65) Prior Publication Data
US 2007/0165531 Al Jul. 19, 2007

Related U.S. Application Data

(63) Continuation of application No.
PCT/US2005/025913, filed on Jul. 21, 2005.

(60) Provisional application No. 60/590,317, filed on Jul.
22, 2004.

(51) Int.CL
GOIR 31/08 (2006.01)

Detecta
Packet Drop in [~"- 10
the Network

15

First
Drop

* cited by examiner

Primary Examiner — Derrick Ferris

Assistant Examiner — Peter Cheng

(74) Attorney, Agent, or Firm — Molly L. Sauter; Smith &
Hopen, P.A.

(57) ABSTRACT

The present invention provides a smooth friendly TCP based
transport layer protocol method and apparatus for data and
streaming applications. In accordance with the invention, a
low pass filter that uses history information modifies the
multiplicative decrease portion of TCP’s additive increase
multiplicative decrease strategy, thereby creating an additive
increase smooth decrease solution. The present invention
smoothes the variation of the congestion window in case of
drop events and provides smooth transfer rates for streaming
applications.

18 Claims, 9 Drawing Sheets

Set: .
drop_interval=now- \~25

Event? last_drop_time
/ \-20
/30
Set:
cwnd=last_cwnd_sample Yes No
=current_cwnd/2
last_drop_time=now
4.
/40
Na Set: Set:
35 cwnd_sample=1 ocwnd_sample=
current_cwnd/2
50~ Set:
2t
P
ownd, = Lk ownd, -+
1

"

2t
t, -t

last_cwnd_sample=cwnd_sample
last_drop_time=now

t

Tler

L (cwnd_sample , + last_ cwnd_sampletm)

+1
et

U.S. Patent

FiIG. 1

Detecta
Packet Drop in
the Network

Oct. 11, 2011

Sheet 1 of 9

AN 1 O

US 8,036,112 B2

Set:

Set:
cwnd=last_cwnd_sample
=current_cwnd/2

last_drop_time=now

35—~

50~/

-

drop_interval=now-
last_drop_time

25

| ///“_40

Set:
cwnd_sample=1

cwnd_sample=
current_cwnd/2

Set:

Set:
27
it
cwnd, = —————cwnd, +
21 Tk
+1
P
21 (cwnd_sample 1 Flast cwnd_sample, .
T g
2
t,—t,,

last_cwnd_sample=cwnd_sample
last_drop_time=now

U.S. Patent Oct. 11, 2011 Sheet 2 of 9 US 8,036,112 B2

FIG. 2

packet drop - scheduler update timeout event
packet drop event atth R event at tk+1 —at tk+2

event at tk-j\ > ' >

o
&
(0]
iv2
[&]
8
- : k-1 /
. . | |
2 cwnd_samplet |
= last_cwnd_sample ¢ : k1
) : k-1 |
: |
H : | ,
65— tk ~t k1 | 7
TN cwnd = 1
Lo T -
V2 -1 te %1 btz Time (Sec)

US 8,036,112 B2

Sheet 3 of 9

Oct. 11, 2011

U.S. Patent

Oananb 1] doiq
0‘oasw gz sdgn 001

0¢ ¥31N0y

Oenanb g3y
o‘ossw 0z ‘sdqwy 09

gananb j1e] doiqg
0‘oosw z ‘sdgy 001

penanb jie] doug
p°d9sw g sdqw 001

ONOILVNILS3A

gaulf xdosusmog

& OIA

0L ¥31N0Y

penanb ie] douq
po9sw g ‘sdqy 001

01304NOS

US 8,036,112 B2

Sheet 4 of 9

Oct. 11, 2011

U.S. Patent

ADVS dOL -V DIA

anent) a3y ‘sdgw 09 ananp a3y ‘sdqiN G1
(09g) swiL (09g) swiy
00 0SZ 00Z 0SL 00L 0S 0 00 062 00Z 0SL 00 0S 0
I I I I I O I I I I I O
_”. -1 0S Mud . _ 0z
| 00k 3 ke oy
i i _____ .__ | RN i ." ;
il I ose 2 I i |
i A |1 902 © | Uil R
I 1 A WY ogz 2 i 'S 0g
{ f = ﬂ
100e 5 H oot
4 0sg m
....... | 4 s] -] - 0¢lL
1 LAES L L L L 0o — €S
0SY ovlL

uosuedwon MOPUIAA uonsabuo)

MOPUIAA Uonsabuo)

US 8,036,112 B2

Sheet 5 of 9

Oct. 11, 2011

U.S. Patent

00¢

ananp g3y ‘sdaiy 09
(098) awilL
0S¢ 00¢ 0SlL ool

AOVS-AS - 8¥F DIA

0s 0

....... 2AOVS-4S
—— IMOVS:4S

00l
0G1
00¢
0G6¢
00€
0G¢e
- 00%
_ 0Sv

MOPUIAA UonSabuo)

ananp g3y ‘sdaiy 61
(08g) swiy
0g¢ 00c¢ oSl ool 0g

....... eNOVS-4S

—— IMOVSdS | _ _

uosuedwon MopuIpL uonsabuon

0¢
oy
09
08
00l
r4%
oyl

MOPUIAA Uonsabuo)

US 8,036,112 B2

AOVS dOL - VS DIA

ananY g3y ‘sdqi 09 ananp g3y ‘sdgiy GI
(08g) swiL (08g) swi|
0G¢ 00¢ 0G1 00L 0S 0 00¢ 0S¢ 00¢ 0G1 001

Sheet 6 of 9

Oct. 11, 2011

(sdagn) indybnoayy

- i = S S e e
et

——

—

| —e=dooT

(sdgw) indybnouy

U.S. Patent

US 8,036,112 B2

Sheet 7 of 9

Oct. 11, 2011

U.S. Patent

ADVS-AS - S DIA

O 0 <t AN O
(sdgw) Indybnouy

anenp 3y ‘sdqi\ 09 anenp g3y ‘sdqiy G1
(098) awil (098) swnl
00€ 052 00Z 0SL 00l 0S 0 00€ 062 002 0OSL 00
I I I I I O I I I I
- o0 3 T
st
= 1l i
S AT | Alg g b
o .__.:__v_ TRLTOC T LT N il
— m.. | ! ! r ’.ﬁ:, v ! ,..:____:;_ i
= 1 " L
B = i y
O
IS i
m - ZMOVS-4S 10 T | ZMOVS-4S
—— IMOVS:4S _ _ _ 0 - ——IMOVS;dS _

US 8,036,112 B2

Sheet 8 of 9

Oct. 11, 2011

U.S. Patent

‘sdqiy G1

001

0s

DUAL - D¢ DIA
ananD a3y ‘sdqiN 09 ananp a3y
(09g) awiL (09g) swiL
00¢ 014 00¢ 0SG1 001} 0s 0 0 00¢ 0¢¢ 00¢ 0G|
| | | | | | | |
— - 0l [

(sdgw) indybnouay L

(sdaw) indybnoay L

US 8,036,112 B2

Sheet 9 of 9

Oct. 11, 2011

U.S. Patent

¥9 L1129 0L Ge'e/ee LL'82/L0LE 96'6/€6 01 8L°0/8L°0 ¥8L/SL L od4dlL
GZCLIEI YL LLYILL Y 8%'1£/25'8¢2 S0'9L/ZyS) 8LL/8L"L Ge'L/S9'L MOVS-4S
€L°0€/L9'62 78'8/68'8 89'82/86'6¢ 85'82/0€°L2 S0'2/90°C 6L LIVS L MOVS dO1
GZ'12/3¢'82 LL'8/¥1'8 86'62/89'8¢2 Zv'62/S0°0€ 61°2/61C S L/6T L oudy MaN dOL
L8217 0€ ¥0'8//0°8 G€'82/6Z°0¢ L0'62/28'8¢ eLemle €S LY L oudy do1
¥°0€/S0°62 0v'8/6%'8 6G°LZ/€T'6C 0.1'8¢/L5°SE 162118 6V 9IvT L aoye] 4ol
(2dL/1d7L) (2d1L/1d7L) (2d7L/1d7L) (2d1L/1d1L) (2d1L/Ld1L) (2d1L/1d1L)

AOD ‘A0 PIS (sdaw) ueapy AOD ‘A0 PIS (sdaw) uesy UOISIOA dOL

yull }osuapiog sdqiy 09

Mul| oauapoq sdqip G

DAL ANV AIVS-AS "ADVS ‘'ONTY MAN ‘ONFY “‘dOHV.L dDL A0
LNdHONOYHL HHL 40 NOILVIIVA 40 INHIDIA440D ANV NOILVIAZA AIVANV.LS ‘NVAN

[HT1dV.L

9 ‘DIA

US 8,036,112 B2

1
SYSTEM AND METHOD FOR
TRANSMISSION CONTROL PROTOCOL
(TCP) TRANSMISSION RATE CONTROL

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of International Patent
Application No. PCT/US2005/025913 filed Jul. 21, 2005
which claims priority to U.S. Provisional Patent Application
No. 60/590,317, “SF-SACK: A Smooth Friendly TCP Proto-
col for Streaming Multimedia Applications”, filed Jul. 22,
2004.

BACKGROUND OF INVENTION

The Universal Datagram Protocol (UDP) and the Trans-
mission Control Protocol (TCP) are transport protocols
known in the art for communication over the Internet. UDP
sends data at a fixed rate with the only constraints being the
rate of data generation by the application and bandwidth
availability on the network. The characteristics of UDP make
it an ideal candidate for use in voice over IP, video applica-
tions and other real-time applications. A problem with UDP
arises when the number of streaming media applications on
the network increases. With UDP, each application tries to
capture the amount of bandwidth that satisfies its fixed send-
ing rate requirement. This often leads to problems of unfair-
ness and the danger of congestion collapse of the network.
The unfairness problem in UDP arises due to the lack of an
end-to-end congestion control.

The TCP protocol is areliable transport protocol that prom-
ises guaranteed delivery. It is connection-oriented, establish-
ing a full duplex virtual connection between two end points.
The TCP protocol at the transport layer breaks the application
data into chunks of best decided size called segments, along
with overhead information such as the source and destination
port number, sequence number, etc. Once the segment is sent,
atimer is set and waits for the receiver to acknowledge (ACK)
the segment. If an ACK is not received before the timer
expires, TCP retransmits the segment. TCP also maintains a
checksum on its header and data to ensure the packet’s integ-
rity while in the network. Packet reordering is also performed
if necessary to ensure data reception in correct order by the
end application. The chief feature of TCP is its flow and
congestion control. Flow control checks for buffer space at
the end systems and slows down the data transfer rate if the
buffer capacity is reached. Hence, TCP limits the sender to
send only as much data as the receiver can handle. Flow
control only prevents the sender from overtlowing the receiv-
er’s buffer, but it does not take into account the buffers of
intermediate nodes, i.e., network congestion. To solve the
problem of overloading the network nodes between end sys-
tems, TCP implements a congestion control mechanism.
While flow control is an end system issue, congestion control
is a network issue. Congestion control implementations for
TCP are known in the art. These congestion control imple-
mentations fall into two main categories, window-based and
rate-based.

Window-based protocols are known in the art for use with
TCP. For each connection, TCP maintains a congestion win-
dow (cwnd) state variable, which is the maximum number of
packets outstanding in the network. In other words, cwnd
refers to the maximum number of packets the sender can send
at any time without waiting for an ACK. The congestion
control mechanisms embedded in TCP methods and systems
known in the art follow the additive increase/multiplicative

10

15

20

25

30

35

40

45

50

55

60

65

2

decrease (AIMD) strategy whereby TCP probes for available
bandwidth by increasing its cwnd size linearly, and responds
to congestion on the network by decreasing its cwnd size
multiplicatively. TCP interprets a timeout or packet loss as a
sign of congestion and decreases the cwnd, while successful
receipt of ACKs for all packets sent during the last round trip
time (RTT) as a sign to increase the cwnd. Apart from con-
gestion control mechanisms, congestion avoidance plays a
great role in the real stability of the Internet. Both the mecha-
nisms are basically resource management problems. The key
to the congestion avoidance scheme is the algorithm used to
increase or decrease the rate, allowing the network to operate
in the optimal region of low delay and high throughput. The
increase and decrease parameters are designated as o and f§
respectively, such that O<a and 0<p<1 is satisfied. In TCP
implementations currently known in the art, the values of
these parameters are =1 and f="2, meaning that the cwnd is
increased by one every RTT and decreased by % its current
value after a packet drop is detected.

Mechanisms have been proposed in the art to improve the
network throughput, these mechanisms include, slow start,
congestion avoidance, fast retransmit and fast recovery.
These mechanisms are well known in the art and form the
base of TCP Tahoe, Reno, New Reno and SACK. In particu-
lar, TCP SACK (Selective Acknowledgement) is a conserva-
tive extension of Reno’s congestion control, in which it uses
the AIMD strategy and minimal changes to other congestion
control algorithms. TCP SACK is widely used in the industry,
however, the problem with using TCP SACK for streaming
applications resides in the multiplicative part of the AIMD
strategy. As described, the TCP protocol changes its sending
rate using a congestion control mechanism by backing oft the
sending rate on packet drops responding to congestion on the
network. While TCP as served data-oriented applications
quite well because these applications can tolerate variable
delays and transmission rates, but require a very reliable
service. On the other hand, real-time applications like voice
and video have employed the UDP protocol because these
applications can tolerate some loss but require minimal delay
variations and smooth transmission rates, otherwise the user
will perceive a degradation in the quality of the transmission
in the form of interrupted voice and/or frozen images.
Because real-time applications are delay sensitive and cannot
tolerate a varying sending rate, TCP is not ideal for streaming
applications and the use of TCP on the Internet has been
limited to data transmission. Additionally, the reliability of
TCP’s retransmissions is useless for interactive real-time
applications such as Internet Telephony and Voice Confer-
ence since retransmitted packets reach their destination too
late for use by the system.

Voice over [P and video applications continue to increase
the amount of real-time traffic over the Internet. These
streaming applications utilize the UDP protocol because TCP
has not proved to be suitable for streaming applications due to
theuse of'a congestion control mechanism that can drastically
change the connection’s transmission rate, affecting the user-
perceived quality of the transmission.

The TCP-friendliness problem has also been widely inves-
tigated. Solutions can be broadly classified as either end-to-
end or router-based depending on where the solution is imple-
mented. The transport layer protocols previously described
belong to the end-to-end category. Although each protocol is
adequate for the types of applications it serves, they have not
been shown to work together. It is well known that during
congestions events, when TCP and UDP share the same
bottleneck link, UDP is not fair to TCP, obtaining a dispro-
portionate share of the bandwidth. Since the number of

US 8,036,112 B2

3

streaming applications and multimedia traffic over the inter-
net is growing, this TCP-friendliness problem continues to
become more relevant. The need for an end-to-end congestion
control for streaming applications has been identified as a
solution to the fairness problem and the congestion collapse
problem on the internet.

Accordingly, in spite of the deficiencies that are inherent in
the use of TCP with streaming applications, the use of these
end-to-end flow and congestion control mechanisms for
streaming applications has been acknowledged as an impor-
tant measure to ease or eliminate the unfairness problem that
exists when TCP and UDP share the same congested bottle-
neck link and a means to overcome the congestion collapse
problem in the Internet.

Accordingly, what is needed in the art is a system and
method that provides better performance than TCP systems
currently known in the art for data applications and smooth
enough transfer rates for streaming media applications.

However, in view of the prior art considered as a whole at
the time the present invention was made, it was not obvious to
those of ordinary skill in the pertinent art how the identified
need could be fulfilled.

SUMMARY OF INVENTION

The present invention provides a smooth and friendly end-
to-end solution based on TCP that provides better perfor-
mance than TCP for data applications and smooth enough
transfer rates for streaming applications.

In accordance with a particular embodiment of the present
invention, a method for window-based TCP transmission rate
control is provided. The method includes the steps of detect-
ing a packet drop in a network, detecting a current congestion
window variable value at the time of the packet drop, estimat-
ing a new congestion window variable value using a discrete
time low pass filter to filter the current value of the congestion
window variable and decreasing the TCP transmission rate by
decreasing the congestion window variable value to equal the
new congestion window variable value in response to the
packet drop in the network.

In an additional embodiment, the method includes the step
of' determining if the packet drop in the network is a first drop
event. If the packet drop is a first drop event, the new conges-
tion window variable value to set to be equal to one half the
current congestion window variable value at the time of the
packet drop.

In calculating the new congestion window variable valueto
be used to decrease the transmission rate, the congestion type
corresponding to the packet drop in the network must first be
determined. The congestion type may be either mild conges-
tion or heavy congestion. A mild congestion event is charac-
terized by the reception of 3 duplicate ACKS (DUPACK). A
heavy congestion event is characterized as a TIMEOUT in the
network. During a mild congestion, the method further
includes the step of setting cwnd_sample, equal to the current
cwnd/2. During a heavy congestion, the method further
includes the step of setting cwnd_sample, equal to 1.

In calculating the new congestion window variable value
using a discrete time low pass filter to filter the current value
of the congestion window variable in accordance with an
embodiment of the present invention, the following relation is
followed:

2t

L — L
ewnd,, = f—————
% 2t

I =L

10

15

25

30

35

40

45

50

55

60

65

4

-continued

(cwndfsa.mple,k + lastfcwndfsample,ki1)
+1

27

I =L

where:

cwnd, is the new congestion window variable value at time
=t

cwnd, is the congestion window variable value at time
= y;

1/t is the cut-off frequency of the low pass filter;

t,—t,_, is the time interval between two consecutive packet
drops;

cwnd_sample, is set based on the congestion event type
identified; and

last_cwnd_sample, is the previous cwnd_sample, .

Itis known that the low pass filter cut-off frequency is equal
to 1/t and that according to the widely known Nyquist sam-
pling theorem, a signal must be sampled at a frequency of at
least twice its maximum frequency component. Accordingly,
in a particular embodiment, the method in accordance with
the present invention includes the step of updating the current
congestion window variable at least every /2 seconds. In a
particular embodiment, the value of T is set so that ©/2 spans
at least one round trip time (RTT) of the network connection.

In a specific embodiment of the present invention, the TCP
SACK version of TCP is utilized as the underlying TCP
version, however this is not meant to be limiting and the
method in accordance with the present invention can be prac-
tices in any TCP version, including, but not limited to Tahoe,
Reno, Vegas and SACK.

In accordance with another aspect of the invention, there is
provided a computer readable medium for providing instruc-
tions for directing a processor to carry out a method for
window-based TCP transmission rate control, the instruc-
tions being operable to detect a packet drop in a network,
detect a current congestion window variable value at the time
of the packet drop, estimate a new congestion window vari-
able value using a discrete time low pass filter to filter the
current value ofthe congestion window variable and decrease
the TCP transmission rate by decreasing the congestion win-
dow variable value to equal the new congestion window vari-
able value in response to the packet drop in the network.

In accordance with another aspect of the invention, there is
provided an apparatus for controlling the rate at which pack-
ets are transmitted from a sender in a window-based TCP
network. The apparatus comprises means for detecting a
packet drop in a network, means for detecting a current con-
gestion window variable value at the time of the packet drop,
means for estimating a new congestion window variable
value using a discrete time low pass filter to filter the current
value of the congestion window variable and means for
decreasing the TCP transmission rate by decreasing the con-
gestion window variable value to equal the new congestion
window variable value in response to the packet drop in the
network.

In accordance with another aspect of the invention, there is
provided an apparatus for controlling the rate at which pack-
ets are transmitted from a sender in a window-based TCP
network. The apparatus includes a detector for detecting a
packet drop in a network and for detecting a current conges-
tion window variable value at the time of the packet drop, a
congestion window estimator for estimating a new conges-
tion window variable value using a discrete time low pass
filter to filter the current value of the congestion window
variable, a transmission rate controller for decreasing the

US 8,036,112 B2

5

TCP transmission rate by decreasing the congestion window
variable value to equal the new congestion window variable
value in response to the packet drop in the network. The
apparatus may further include a scheduler operable to update
the current congestion window variable at least every /2
seconds, wherein 1/t is the low pass filter cutoff frequency.

In accordance with the present invention is provided a
method and apparatus to improve the end-to-end window-
based congestion control algorithm of TCP that smoothes the
decrease rate of the congestion window variable value by
considering the history in the evolution of the congestion
window.

Other aspects and features of the present invention will
become apparent to those ordinarily skilled in the art upon
review of the following description of specific embodiments
of the invention in conjunction with the accompanying fig-
ures.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the invention, reference
should be made to the following detailed description, taken in
connection with the accompanying drawings, in which:

FIG. 1 is a flow diagram of the method in accordance with
the present invention.

FIG. 2 is a diagrammatic view illustrating the evolution of
the congestion window in accordance with the present inven-
tion as compared with the evolution of the congestion window
of TCP versions known in the art.

FIG. 3 is a diagrammatic view of the network topology for
the simulation setup in accordance with the present invention.

FIG. 4 is a graphical illustration of the congestion window
variation of two flows of the same class competing for 15
Mbps (lett) and 60 Mbps (right) bottleneck link. (a) illustrates
the results of the systems currently known in the art and (b)
illustrates the results in accordance with the present inven-
tion.

FIG. 5 is a graphical illustration of the throughput variation
of'two flows of the same class competing for a 15 Mbps (left)
and 60 Mbps (right) bottleneck link. (b) illustrates the results
in accordance with the present invention, while (a) and (c)
illustrates the results for prior art systems.

FIG. 6 is a table illustrating the mean, standard deviation
and coefficient of variation of the throughput of the system
and method in accordance with the present invention (SF-
SACK) in comparison to other systems currently known in
the art.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

The method and system in accordance with the present
invention provides for a smooth and friendly end-to-end solu-
tion based on TCP that provides better performance than TCP
solutions currently known in the art for data applications and
smooth enough transfer rates for streaming applications. The
current TCP AIMD strategy known in the art probes for
available bandwidth and increases the transmission rate
slowly over time, but decreases the transmission rate drasti-
cally in response to congestion on the network. In doing so,
TCP AIMD implementations commonly employed in the art
exhibit rapidly varying transmission rates, which are highly
undesirable for constant bit rate applications such as voice
and video. By contrast, the system and method in accordance
with the present invention considers the history in the
decreasing transmission rate strategy, using a smooth averag-

10

15

20

25

30

35

40

45

50

55

60

65

6

ing algorithm. The implementation of this solution only
requires sender side modifications to TCP, making it easy to
implement.

Many TCP versions are known in the art and are considered
within the scope of the present invention. In a particular
embodiment, TCP SACK has been selected as the underlying
TCP version for the present invention. The selection of TCP
SACK is not meant to be limiting, but rather TCP SACK has
been chosen due to its widespread use and it has been shown
to provide better throughput and performance over wired and
wireless networks than other TCP versions.

A window-based algorithm of TCP varies the transmission
rate by changing the congestion window (cwnd) variable. In
accordance with the present invention, the value of cwnd is
increased during regular ACK reception, which corresponds
to a successful delivery of a packet at the receiver, and
decreased during either a dup-ACK or a timeout, correspond-
ing to a packet drop in the network. The present invention
substitutes the multiplicative decrease part of TCP systems
and methods commonly known in the art with a smooth
decrease strategy that considers the history of the cwnd value.
To achieve this smooth decrease strategy, a discrete time filter
obtained by discretizing a continuous low pass filter using the
Tustin Approximation. Therefore, the cwnd at time t=t, is
calculated using the following relationship:

2t _1 [¢8]

I — Ly
2T

I =Ly

cwnd,k = cwnd,ki1 +

+1

(cwnd sa.mple, + last_cwnd_sample, &, 1)
+1

2t

I — Ii-1

Where cwnd,, is the filtered value of the congestion window at
time t=t,, 1/t is the cut-off frequency of the filter, and t,~t,_,
is the interval of consecutive packet drop events. The value of
the cwnd_sample, during the calculation is set based on the
type of congestion event. The cwnd_sample, is set to cwnd/2
during mild congestion (reception of 3 duplicate ACKS), and
set to 1 during heavy congestion (TIMEOUT).

The relationship presented above shows that the cwnd,,
depends on the history of the cwnd given by the cwnd, | value,
the values of cwnd_sample,, and last_cwnd samplet given
by the value of cwnd at times t=t, and t=t,_, and the type of
congestion event, and the time interval between packet drops.
This relationship is referred to in the present invention as
smooth, friendly SACK, or SF-SACK.

The method in accordance with an embodiment of the
present invention is illustrated with reference to FIG. 1. As
shown in FIG. 1, when a drop is detected 10 the method
determines if this is a first drop event 15. If it is a first drop
event, then cwnd is set to be equal to the last_cwnd_
sample, =whichis set to be equal to the current_cwnd/2, and
the last_drop_time is set to the current time interval (now) 20.
If this is not the first drop event, then the drop_interval is set
to be equal to now minus the last_drop_time 25. Next, a
determination is made as to the type of congestion event 30. If
the congestion is determined to be a TIMEOUT event, cwnd_
sample is set to be equal to one 35. If the congestion event is
not a TIMEOUT, cwnd_sample is set to equal to cur-
rent_cwnd/2 40. Then, using the low pass filter, the conges-
tion window variable value at t=t, is calculated based on the
identified parameters, and last_cwnd_sample=cwnd_sample
and last_drop_time is set to the time now 50.

US 8,036,112 B2

7

It can be shown that the behavior of the low pass filter fits
very well with the requirements of a smooth varying conges-
tion control algorithm. This behavior is illustrated by
settingd,=t,~t,_,, and rewriting the above Eqn. 1 as:

21— 6 2
cwnd,k =573 cwnd,ki1 +
(~ 27— 5,() cwndfsample,k + lastfcwndfsample,ki1
2T+ & 2
Further, if
B 2T =&
Tor+6]

then Eqn. 2 can be expressed in the following form:

cwnd,k = (3)
cwndfsample,k + last_cwnd_sample,

k-1
2

0z><cwnd,k71 +(1 —w)x(

From Eqn. 2 and Eqn. 3, it can be seen that if the interarrival
time between packet drops increases, J, increases and o
decreases, meaning that the filter will weight the current
samples heavier than the history (cwnd,). In other words,
the method in accordance with the present invention consid-
ers the last value of cwnd, | (history) as less significant since
it represents a rather old value. In contrast, when the interar-
rival time between packet drop events decreases, the o coef-
ficient increases, giving more value to history than recent
samples, smoothing the decrease rate of the congestion win-
dow.

An important aspect to consider in the implementation of
the filter in accordance with the present invention is the sam-
pling frequency. It is known that the filter cut-off frequency is
equal to 1/t and that according to the widely known Nyquist
sampling theorem, a signal must be sampled at a frequency of
at least twice its maximum frequency component. Therefore,
in order to sample the signal with frequency 1/t, a sampling
interval less than or equal to /2 is necessary. In other words,
the cwnd, needs to be updated at least every /2 seconds.
However, packet drop events depend upon networks condi-
tions, and do not follow any regular interval. As a result, the
sampling frequency cannot be guaranteed and the low pass
filter in accordance with the present invention might not pro-
vide the expected results. To solve this problem, a scheduler
is implemented and set to run the algorithm and update the
cwnd, every t/2 seconds, regardless of packet drop events. In
that case, the algorithm uses the current value of cwnd as
cwnd_sample, and the estimation procedure for the conges-
tion window to calculate cwnd, . However, since no packets
have been dropped, the algorithm continues the additive
increase part as if nothing had happened.

FIG. 2 illustrates the evolution of the congestion window of
a single smooth friendly SACK (SF-SACK) flow in accor-
dance with the present invention, compared with the evolu-
tion of the congestion window of TCP methodologies cur-
rently known in the art. With reference to FIG. 2, the bold line
55 shows the cwnd of the present invention while the dashed
line 60 shows the cwnd that TCP would have experienced.
The dotted vertical lines 65 correspond to the times when the

10

15

20

25

30

35

40

45

50

55

60

65

8

scheduler is run. Hence, the time interval between two dotted
lines is ©/2 seconds. In the figure, the black squares 70 are the
cwnd values in accordance with the present invention, the
white squares 75 are the cwnd_sample, and last_cwnd_sam-
ple, . and the shaded circles 80 represent the value of the
cwnd when the scheduler runs, which is used as cwnd_sam-
ple,,.

As can be seen, three cases are possible: 1) packet drop
events, either packet drops or timeouts, occur within the
scheduler run intervals; 2) loss events occur in different
scheduler intervals; or 3) no loss events occur within sched-
uler’s intervals.

The first case occurs when packet drop events occur within
a scheduler’s interval. In FIG. 2, this case is shown at times
t,_; and t,, (middle interval in the figure) and considers the
case of mild congestion (3 DUPACKS). In this case, the
present invention will use the history information calculated
by the filter at time t;_;, which is cwnd, , the value of
last_cwnd_sampletkil, which is the value of the cwnd at time
t;_; divided by 2, the value of cwnd_sample, at time t;, which
is equal to cwnd/2, and the time interval t,—t, . The method
in accordance with the present invention will result in the new
value of the cwnd at time t;, which is given by cwnd, and
marked in the graph of FIG. 2 with a black square at time t,.
Notice that the prior art TCP method would have resulted in a
new value of cwnd at time t, that would have been the value of
cwnd_sample, or cwnd/2 (white square at time t;), that does
not consider history and reduces the cwnd more drastically
than the method in accordance with the present invention.

The second case occurs when packet drop events span
different but continuous intervals of the scheduler. This case
is shown in the figure at time t, , in the third interval, where
a timeout occurs. In this second case, the present invention
takes the values calculated when the scheduler was run for the
last time, which happened at time t,,,. So, at time t,, the
present invention uses the value of cwnd,,, as the history
value, the value of last_cwnd_sample, , whichis equal to the
value of cwnd at time t=t,, ;, and the value of 1 is assigned to
cwnd_sample, ,, because of the timeout event. All these val-
ues are used in the method of the present invention to obtain
the value of the cwnd at time t,,,. The even more drastic
reduction of the cwnd experienced by TCP compared with the
present invention is evident with reference to FIG. 2.

The third case occurs when there are no packet loss events
between scheduler run intervals. In this case, not shown in the
figure, the present invention calculates the new congestion
window value using the values calculated during the last
scheduler run. Since there are no drop events, the time interval
t,—t,_, equals ©/2, and therefore the congestion window value
can be calculated from:

3 1
cwnd;, = gCW”drk,l + g(cwndfsample,k + lastfcwndfsample,kil)

Where the values of last_cwnd_sample and cwnd_sample are
given by the value of the cwnd at the scheduler times.

In a packet drop does not occur for a long time, the cwnd
continues increasing in an additive manner. However, the
values of cwnd,, cwnd, , cwnd_sample, and last_cwnd_
sample, are updated every v/2 and used later when a packet
drop event occurs. Every 1/2 these new values are updated
using the above equation, which assigns a constant weight of
20% to the current and last sample of the cwnd, and 80% to
the history. In this manner, when a packet event occurs, the
cwnd does not drop drastically.

US 8,036,112 B2

9

In order to evaluate the performance of the method of the
present invention, the fairness and smoothness of the smooth
friendly-SACK in accordance with the present invention is
compared with TCP SACK and TFRC in terms of throughput
and the variation of the congestion window.

In an exemplary embodiment to compare the present inven-
tion against other methods currently known in the art, a net-
work topology consisting of two transport layer protocol
(TLP) sources, two transport layer protocol sink nodes, and
two routers connected by a bottleneck link were used as
shown with reference to FIG. 3. In the simulations, the maxi-
mum values of the congestion window for the TLPs were set
such that the connections would achieve full link utilization.
The bottleneck link two way propagation delay was fixed and
set to 20 ms while the bandwidth of the bottleneck link was set
to 15 and 60 Mbps. The output buffer size (BS) was set equal
to two times the bandwidth delay product (BDP) of the net-
work. The RED mechanism was utilized as the buffer man-
agement policy at the bottleneck link. RED’s low and high
thresholds were set to 0.25* BDP and 1.25* BDP respec-
tively, and its w, variable was set equal to 0.05. These are
commonly used settings for these parameters. The value of t
was set so that ©/2 spans at least one or more RTTs. In a
particular embodiment, T was set to 0.1 seconds or 5 times the
RTT.

In order to evaluate the smoothness and fairness of the
method in accordance with the present invention, plots are
included with the variation of the congestion windows and the
throughput of the connections over time, the normalized
throughput as the number of connections is increased, and the
amount of bandwidth obtained by two different connections
(one sending CBR traffic and one sending ftp traffic) when
sharing the same bottleneck link of 15 and 60 Mbps.

With reference to FIG. 4, the instantaneous values of the
congestion window of the TCP SACK method known in the
art and the SF-SACK method in accordance with the present
invention are compared when the bandwidth of the bottleneck
link is set to 15 and 60 Mbps. From the figure, it can be seen
that the present invention substantially reduces the variation
of the congestion window, which is at the same time respon-
sible for the smoother throughput that SF-SACK provides
compared with TCP SACK. This is shown by comparing FIG.
4 and FIG. 5, where the correlation between the cwnd and the
throughput of the connections can be clearly seen. In FIG. 5,
the average throughput of the three protocols is also plotted to
better illustrate the difference in smoothness. From FIG. 5, it
can be observed that although TFRC is still smoother than
SF-SACK, SF-SACK is considerably better than TCP SACK.

The table of FIG. 6 shows the mean, standard deviation and
coefficient of variation of the throughput achieved by each of
the two connections as presented for the different methodolo-
gies, including TCP SACK, TFRC, and the present invention
methodology denoted as SF-SACK. From the table, the
appreciable improvement of the present invention over com-
mon TCP versions in terms of smoothness and the little
advantage of TFRC over the present invention can be seen.

In addition to the smoothness as evidenced by the table of
FIG. 6, another important characteristic of the present inven-
tion is the friendliness of the protocol to itself. As can be seen,
the SF-SACK in accordance with the present invention
behaves as any regular TCP-based protocol where all connec-
tions sharing the same bottleneck link obtain a fair share ofit.
All these results shown that the present invention achieves the
objective of providing smooth transfer rates to streaming
applications while being friendly to itself.

Additional analysis shows that while SF-SACK in accor-
dance with the present invention is not completely fair to TCP

10

15

20

25

30

35

40

45

50

55

60

65

10

SACK and TFRC, but is considerably fairer than UDP since
it implements and end-to-end congestion control mechanism.
Accordingly, when the present invention is utilized for both
streaming and data-oriented applications, instead of UDP and
TCP, the present invention will not only provide reliability but
also better performance for data applications. The present
invention provides a protocol that is smooth enough for
streaming applications. The inclusion of an end-to-end con-
gestion control mechanism as provided by the present inven-
tion eliminates or minimizes the congestion collapse prob-
lem. The TCP-friendliness problem will no longer exist if the
present invention is used for both data and streaming appli-
cations since it is fair to itself and the present invention can
coexist with TCP and TFRC better than UDP.

Itwill be seen that the advantages set forth above, and those
made apparent from the foregoing description, are efficiently
attained and since certain changes may be made in the above
construction without departing from the scope of the inven-
tion, it is intended that all matters contained in the foregoing
description or shown in the accompanying drawings shall be
interpreted as illustrative and not in a limiting sense.

It is also to be understood that the following claims are
intended to cover all of the generic and specific features of the
invention herein described, and all statements of the scope of
the invention which, as a matter of language, might be said to
fall therebetween. Now that the invention has been described,

What is claimed is:

1. A method of adjusting the transmission rate for a win-
dow-based transport control protocol (TCP) used by a sender
to transmit data to a receiver across a network connection of
a computer network, the method comprising the steps of:

detecting a packet drop in the network;

detecting a current congestion window variable value at the

time of the packet drop, wherein the current congestion
window variable value represents the size of the current
congestion window, the size of the current congestion
window identifying the maximum number of packets
the sender can send to the receiver before waiting for an
acknowledgement from the receiver;

filtering the current congestion window variable value

using a discrete time low pass filter to estimate a new
congestion window variable value;

decreasing the TCP transmission rate by decreasing the

current congestion window variable value to equal the
new congestion window variable value in response to the
packet drop in the network; and

transmitting the data to the receiver at the decreased TCP

transmission rate;

wherein the step of filtering the current congestion window

variable value using a discrete time low pass filter to
estimate a new congestion window variable value fur-
ther comprises the steps of:

identifying a congestion type corresponding to the packet

drop in the network;

determining a time interval of the packet drop; and

filtering the current congestion window variable value

using a discrete time low pass filter to estimate a new
congestion window variable value according to the fol-
lowing relation:

2t
L — L
ewnd,, = S—————
d”‘ 2t

I =L

US 8,036,112 B2

11

-continued

1
27

I —f

(cwndfsa.mple,k + lastfcwndfsample,ki1)
+1

where:

cwnd, is the new congestion window variable value at time

=t

cwnd, is the congestion window variable value at time

= y;

1/t is the cut-off frequency of the low pass filter;

t,~t,_, is the time interval between two consecutive packet

drops;

cwnd_sample, is set based on the congestion event type

identified; and

last_cwnd_sample, is the previous cwnd_sample, .

2. The method of claim 1, wherein the step of detecting a
packet drop in a network further comprises:

determining if the packet drop in the network is a first drop

event; and

setting the new congestion window variable value equal to

one halfthe current congestion window variable value at
the time of the packet drop if the packet drop is deter-
mined to be a first drop event.

3. The method of claim 1, wherein the congestion event
type in the network is identified as a mild congestion event,
the method further comprising the step of setting cwnd_sam-
ple,, equal to the current cwnd/2.

4. The method of claim 3, wherein a mild congestion event
is identified by three duplicate ACKS.

5. The method of claim 1, wherein the congestion event
type in the network is identified as a severe congestion event,
the method further comprising the step of setting cwnd_sam-
ple, equalto 1.

6. The method of claim 5, wherein a severe congestion
event is identified by a TIMEOUT.

7. The method of claim 1, further comprising the step of
updating the current congestion window variable at least
every t/2 seconds, wherein 1/t is the low pass filter cutoff
frequency.

8. The method of claim 7, wherein the value of T is set so
that ©/2 spans at least one round trip time of the network
connection.

9. The method of claim 1, wherein the TCP version is
selected from the group consisting of Tahoe, Reno, Vegas,
SACK.

10. A non-transitory computer readable medium embody-
ing program instructions for directing a processor to carry out
a method for window-based TCP transmission rate control,
the program instructions comprising, detecting a packet drop
in a network, detecting a current congestion window variable
value at the time of the packet drop wherein the current
congestion window variable value represents the size of the
current congestion window, the size of the current congestion
window identifying the maximum number of packets the
sender can send before waiting for an acknowledgement from
the receiver, filtering the current congestion window variable
value using a discrete time low pass filter to estimate a new
congestion window variable value and decreasing the TCP
transmission rate by decreasing the current congestion win-
dow variable value to equal the new congestion window vari-
able value in response to the packet drop in the network;

wherein the step of filtering the current congestion window

variable value using a discrete time low pass filter to
estimate a new congestion window variable value fur-
ther comprises the steps of:

10

15

20

25

30

35

40

45

50

55

65

12

identifying a congestion type corresponding to the packet
drop in the network;

determining a time interval of the packet drop; and

filtering the current congestion window variable value
using a discrete time low pass filter to estimate a new
congestion window variable value according to the fol-
lowing relation:

2t
I —h-1
ewnd,, = ————
% 2t

I =L

(cwndfsa.mple,k + lastfcwndfsample,ki1)
+1

27

I =L

cwnd, is the new congestion window variable value at time

=t

cwnd, is the congestion window variable value at time

= ys

1/t is the cut-off frequency of the low pass filter;

t,—t,_, is the time interval between two consecutive packet

drops;

cwnd_sample, is set based on the congestion event type

identified; and

last_cwnd_sample, is the previous cwnd_sample, .

k-1 %

11. An apparatus for controlling the rate at which packets
are transmitted from a sender in a window-based TCP net-
work, the apparatus comprising:

means for detecting a packet drop in a network;

means for detecting a current congestion window variable

value at the time of the packet drop, wherein the current
congestion window variable value represents the size of
the current congestion window, the size of the current
congestion window identifying the maximum number of
packets the sender can send before waiting for an
acknowledgement from the receiver;

means for filtering the current congestion window variable

value using a discrete time low pass filter to estimate a
new congestion window variable value; and

means for decreasing the TCP transmission rate by

decreasing the congestion window variable value to
equal the new congestion window variable value in
response to the packet drop in the network;

wherein filtering the current congestion window variable

value using a discrete time low pass filter to estimate a
new congestion window variable value further com-
prises the steps of:

identifying a congestion type corresponding to the packet

drop in the network;

determining a time interval of the packet drop; and

filtering the current congestion window variable value
using a discrete time low pass filter to estimate a new
congestion window variable value according to the fol-
lowing relation:

2t
L — L
ewnd,, = S—————
d”‘ 2t

I =L

US 8,036,112 B2

13

-continued

1
27

I —f

(cwndfsa.mple,k + lastfcwndfsample,ki1)
+1

where:

cwnd, is the new congestion window variable value at time
=t

cwnd, is the congestion window variable value at time
s

1/t is the cut-off frequency of the low pass filter;

t,~t,_, is the time interval between two consecutive packet
drops;

cwnd_sample, is set based on the congestion event type
identified; and

last_cwnd_sample, is the previous cwnd_sample,.

12. An apparatus for controlling the rate at which packets

are transmitted from a sender in a window-based TCP net-
work, the apparatus comprising:

a detector for detecting a packet drop in a network and for
detecting a current congestion window variable value at
the time of the packet drop, wherein the current conges-
tion window variable value represents the size of the
current congestion window, the size of the current con-
gestion window identifying the maximum number of
packets the sender can send before waiting for an
acknowledgement from the receiver;

a congestion window estimator for filtering the current
congestion windows variable value using a discrete time
low pass filter to estimate a new congestion window
variable value; and

atransmission rate controller for decreasing the TCP trans-
mission rate by decreasing the current congestion win-
dow variable value to equal the new congestion window
variable value in response to the packet drop in the
network;

wherein the estimator is operable to identify a congestion
type corresponding to the packet drop in the network,
determine a time interval of the packet drop and estimate
the new congestion window variable value using a dis-
crete time low pass filter to filter the current value of the
congestion window variable according to the following
relation:

10

15

20

25

30

35

40

2t
-1
cwnd,k = %cwnd,k Lt
+1
I —h1
7) (cwndfsa.mple,k + lastfcwndfsample,kil)
+
I =)
where:
cwnd, is the new congestion window variable value at time
=t
cwnd, is the congestion window variable value at time
=lys

1/t is the cut-off frequency of the low pass filter;

t,—t,_, is the time interval between two consecutive packet

drops;

cwnd_sample, is set based on the congestion event type

identified; and

last_cwnd_sample, is the previous cwnd_sample, .

13. The apparatus of claim 12, wherein the detector is
operable to determine if the packet drop in the network is a
first drop event and to set the new congestion window variable
value equal to one half the current congestion window vari-
able value at the time of the packet drop if the packet drop is
determined to be a first drop event.

14. The apparatus of claim 13, wherein the congestion
event type in the network is identified as a mild congestion
event, the apparatus being operable to set cwnd_sample,
equal to the current cwnd/2.

15. The apparatus of claim 14, wherein a mild congestion
event is identified by three duplicate ACKS.

16. The apparatus of claim 13, wherein the congestion
event type in the network is identified as a severe congestion
event, the apparatus being operable to set cwnd_sample,,
equal to 1.

17. The apparatus of claim 16, wherein a severe congestion
event is identified by a TIMEOUT.

18. The apparatus of claim 12, further comprising a sched-
uler operable to update the current congestion window vari-
able at least every t/2 seconds, wherein 1/t is the low pass
filter cutoff frequency.

#* #* #* #* #*

	University of South Florida
	Scholar Commons
	October 2011

	System and method for transmission control protocol (TCP) transmission rate control
	Miguel A. Labrador
	Sivakumar Bakthavachalu
	Recommended Citation

	US000008036112B220111011

