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Computers for Numeracy

Numeracy, computing and computers, go hand-in-hand. This column
explores topics in science, technology, engineering and mathematics
(STEM!) that are of social importance by taking an algorithmic approach
to problem solving. Each column defines a problem, develops a recipe
for solving the problem, and implements a solution, with an example in
computer code, often provided as an accompanying website.

Introduction

One useful strategy that has emerged this year to fight the spread of the novel
coronavirus (COVID-19) is the formation of a social bubble. The idea behind a
social bubble is to create a group of family members or friends who associate freely
among one another while socially distancing from the rest of the world (Block et al.
2020; Leng et al. 2020). Such bubbles are intended to provide a safety net so that
people within them can share tasks, socialize, and hopefully avoid depression and
related anxieties that might become more prevalent when isolating alone or in a
much smaller group. Bubbles rely on trusttrust that all members of the bubble
will effectively socially distance from others in the general community by avoiding
gatherings outside of the bubble and by exercising precautions while in public, such
as wearing masks and avoiding crowds. Social bubbles are also formed around
professional relationships, among those working together in an office or among
students and teachers in a classroom. This latter type of bubble is necessarily
more permeable, since an office worker, student, or teacher will go home, likely
interacting frequently with an entirely different group of people.

Just how safe is your COVID-19 social bubble? That is a question best framed in
numeracy. The first step is to recognize this is a probability problem. No one knows
for sure if they will contract COVID-19 or not because their exposure depends
on a host of variables, such as the prevalence of infection in the community, who
are themselves uncertain (Dowd et al. 2020). The question also depends on the
definition of safety. One might ask what the probability of infection of a member of
the bubble is, given rates of infection in the general community outside the bubble,
or one might want to know the probability of transmission to themselves or to
another individual within the bubble or the probability that someone in the bubble
will be hospitalized due to the disease. These are hierarchical questions, with the
probability of one outcome depending on the probability of previous outcomes.
Safety can be viewed in a hierarchical way (Figure 1).
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Figure 1. Visualize a binary event tree for the safety of members of a social bubble isolated
against COVID-19. Events are sequential: (a) an individual within the bubble may become infected
through interaction with the outside community, (b) the virus spreads to a specific individual within
the bubble, and (c) that individual becomes seriously ill and is hospitalized. Each node (circle)
represents a state represented by yes (Y) and no (N). The terminal nodes (ends of the tree branches)
represent all contingencies, so the tree is a probability tree and the probabilities of terminal nodes
sum to one.

Each step in this hierarchy of safety questions has a binary outcome. Will
someone in the bubble become infected or not during some time window, such
as the duration of the pandemic? The answer to this question is either yes or
no. Similarly, most people within the bubble are likely primarily concerned with
their personal safety, or with the safety of another specific individual. Given that
someone in the bubble is infected, will another specific individual within the bubble
become infected? This is also a binary, yes or no, proposition. Finally, safety
outcomes might be framed in terms of the seriousness of the infection, measured
in terms of hospitalization. Given that a specific individual is infected, will they
become hospitalized?

This hierarchy gives rise to four contingencies1: (1) no one within the bubble
becomes infectedthe best contingency; (2) someone within the bubble becomes
infected, but they do not spread the virus within the group, possibly because they
take action; (3) they may spread infection to other individuals within the group,
but these infections do not result in hospitalization; (4) an infected individual in the
group may become seriously ill and is hospitalized. This hierarchy is best viewed as
a probability tree. This probability tree is an event tree because the terminal nodes
of the tree are specific contingencies and the probability of reaching a node depends
on the probability of specific outcomes, called transition probabilities.

Binary questions about contingencies like these are addressed probabilistically
using the binomial distribution (Shafer 1996). Consider a common binary question.
When a fair coin is tossed multiple times, the expected outcome is that the coin will

1Italicized words are defined in the glossary at the end of this article.
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land heads about 50 percent of the time. Even if the number of tails outcomes is
not counted, we know that the rate of tails is one minus the rate of heads because
no other outcome is possible. If the coin is unfair, say heads appears 60 percent of
the time, the process is still modeled with a binomial distribution. The outcomes
possible are heads and tails, but the expected outcome is different with an unfair
coin. If 100 trials are made with the unfair coin, and 59 percent of the tosses result
in heads, we call that 59 percent the sample proportion, which will generally be
close to the expected outcome (60 percent in this case, provided enough trials are
conducted). The binomial distribution is applied to probability of infection in the
same way. For example, if the prevalence of infection in the general community
is 20 percent, then the expected outcome for a representative individual in that
community is that there is a 20 percent chance they will be infected, or stated
another way, the expected value of infected individuals in the community is 20
percent.

The binomial distribution, however, is insufficient to model the probability of
someone within a social bubble being infected with COVID-19 because bubble
participants have taken action to change the expected outcome: they have isolated
from the community. This action means that the event tree needed to forecast a
series of events, from infection of someone in the bubble to hospitalization of an
individual, is Bayesian. A Bayesian event tree (BET) can account for the prevalence
of infection in the community, as well as the nuances of social bubble behavior, and
even the anticipated resilience of individuals within the bubble due to better-than-
average health, comorbidity, or similar considerations.

In the following, I describe the numerical approach to create a BET for a COVID-
19 social bubble. A javascript code given in the supplementary material runs in a
web browser and allows readers to input their own model parameters, calculate
their bubble safety, and see how bubble safety changes with changes in specific
parameters.

Constructing a BET

Using the visualization of the event tree (Figure 1), we can see the problem
is to estimate the probability of each node, especially the four nodes which end
the branches of the tree. These nodes are the contingencies. They are meant to
account for all the possible outcomes in the scenario represented by the tree. Other
contingencies can be imagined (e.g., death), but our tree ends with hospitalization,
which is serious enough. In a binary event tree, all contingencies are accounted for,
so the probabilities of the terminal nodes must sum to one. Solving the problem of
the safety of the bubble reduces to estimating these probabilities.
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Before these probabilities are estimated, a nomenclature is needed to describe
the problem. Let’s designate the nodes of the tree using the symbol N . We keep
track of the nodes by assigning each node an index. The first node is the initial state
of the COVID-19 bubble, a proclamation that it exists, and is N1. The first branch
of the tree ends in nodes N2,1 and N2,2, the yes and no outcomes, respectively.
Subsequent branches are labeled using the same index scheme (Figure 2).

Figure 2. Nomenclature for solving the BET.

There is a transition probability calculated for each branch. That is, given that
a node is reached in the tree, what is the probability that the one of the subsequent
nodes on the tree will be reached. These transition probabilities always link two
nodes, so they can be indexed using the node index. For example, p2,1 is the
transition probability between node N1 and node N2,1 (Figure 2).

The terminal nodes are the nodes of most interest because these are the con-
tingencies. We add to the nomenclature by color-coding the terminal nodes in
a stoplight arrangement, from best outcome ( ) to worst outcome ( ). The four
probabilities that are ultimately calculated with the BET are as follows.

• P[ ] is the probability that the COVID-19 bubble remains intact and no one within the bubble
is infected.

• P[ ] is the probability that the infection is not spread to an individual within the bubble, even
though someone else in the bubble is infected by contact with the outside world (e.g., someone
breaks the isolation bubble).

• P[ ] is the probability that an individual is infected with COVID-19 within the bubble because
of spread of the infection inside the bubble, but that individual is not sufficiently ill to become
hospitalized.
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• P[ ] is the probability that the individual is hospitalized because of spread of COVID-19
within their bubble.

Given this nomenclature for the BET, it is practical to consider how to calculate
the probabilities on each branch of the tree and the contingency probabilities.

Calculating a BET for People in an Assisted Living
Facility

This BET is binomial (Figure 2), so we can start by specifying the sample
proportions that are part of our calculations. The sample proportion is calculated
for each branch of the tree, and these calculations are related. Consider a theoretical
group of older adults, well isolated from the greater community, say in an assisted
living facility. Twenty individuals are isolated inside this COVID-19 social bubble.
The rate of infection in the larger community is taken to be 10 percent. What is the
likelihood that the bubble will be broken, an individual infected and hospitalized?

Let n21 be the total number of individuals within the COVID-19 social bubble.
For the assisted living facility this number of individuals is 20. Then y21 is the
expected number of individuals to be infected, given that no precautions are taken.
That is, the bubble is not isolated effectively from the greater community. The
sample proportion is:

µ̄21 =
y21
n21

(1)

We think we know the infection rate in the broader community is 10 percent, so in
this example µ̄21 = 0.1, which means that y21 = 2 for people in the assisted living
facility. Of course, we hope they isolate better than the community generally!

The subscripts mean that the variables n21 and y21, and the sample proportion
µ̄21, are calculated for the first branch of the tree. The sample proportion has a value
between zero and one, so y21 ≤ n21, and both are greater than zero.

If the probability tree were not Bayesian then the transition probability for this
branch would be p2,1 = µ̄21. But, importantly, we have additional information that
the individuals in the bubble of the assisted living facility are isolating. For a BET,
this additional information is called a prior function, a statistical model to describe
the additional information about the social bubble.

For a BET, the most commonly used and easiest prior function to use is a Beta
distribution, with a capital “B” by convention, which depends on two parameters
(Gelman et al. 2013). For this branch of the tree, the two parameters are designated
α21 and β21. Both α21 > 0 and β21 > 0.
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These two parameters and the Beta distribution are used to weight the sample
proportion in the BET. The prior distribution mean is:

µp(2,1) =
α2,1

α2,1 + β2,1
(2)

and the transition probability for this branch of the tree is

p2,1 =
α2,1 + y2,1

α2,1 + β2,1 + n2,1

(3)

The transition probability p2,1 is also called the expected value of the posterior
probability because it is the probability that results from weighting the sample
proportion by the prior distribution. The weighting always results in a transition
probability that is between the values of the prior mean µp(2,1) and the sample
proportion µ̄21.

A lot can be learned about the BET by considering how equation 3 behaves
with different values of its parameters. First, let’s say the isolation bubble size n2,1

is very large compared to the values of α21 and β21. In this case, the transition
probability will be quite close to the sample proportion. Physically, this means that
isolation in a bubble is not really helping because the isolation group is too large.
Now consider that β2,1 is large compared to the other three parameters. If the social
bubble is small (e.g., n2,1 = 5) then large values of β2,1 and β2,1 > α2,1 will mean
that the prior mean will be small and the value of the transition probability will be
close to the prior mean. This means that the group is well-isolated, with a lower
chance of infection than the community at large.

Rules of the road for estimating α21 and β21 are provided in a following section.
In the example of the assisted living community, the hope is the community is very
well isolated. If this is so, β21 should have a large value. Because the community is
well isolated in their facility, the value of the prior distribution mean is small (e.g.,
by setting β2,1 = 100), and p2,1 ≈ 2.5 percent (Figure 3).

Because the tree is binary:

p2,2 = 1 − p2,1 (4)

and the probability that the COVID-19 bubble remains intact and no one within the
bubble is infected is: P[ ] = p2,2. For the assisted living facility bubble, that works
out to p2,2 ≈ 97.5 percent. Because of isolation, people in the assisted living facility
bubble are safer than the broader community.

That is the good news. Unfortunately, once someone in the assisted living
facility bubble is infected, there might be a greater risk of spread than generally
in the broader community. That penalty is reflected in the next node.
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Figure 3. A BET for a group of 20 older adults, well isolated from the greater community, but quite
susceptible to transmission and more likely to be hospitalized if infected compared to members of
the general population.

The next transition probability is calculated in exactly the same way by specifying
values for n3,1, y3,1, α3,1, and β3,1 with these caveats:

n3,1 = y2,1 (5)

and
y3,1 < n3,1 (6)

because the BET is hierarchical. For the assisted living facility bubble, n3,1 = 2
and y3,1 = 0.2, keeping the expected rate of infection at 10 percent. If the members
of the assisted living facility are not well-isolated from each other, then α3,1 > β3,1.
Using α3,1 = 5 and β3,1 = 1, gives p3,1 = 0.65. Infection spreads much more
quickly in this group than in the broader community. Once p3,1 is calculated:

p3,2 = 1 − p3,1 (7)

and P[ ] = p2,1 × p3,2. P[ ] is a relatively good outcome since no additional people
in the social bubble are infected, but for people in the assisted living community it
is a low probability contingency (Figure 3).

As the group is comprised of older individuals, it is also much more likely that an
individual in the group will be hospitalized once they are infected (e.g., α4,1 > β4,1)
compared to the general population (McMichael et al. 2020). Exactly the same
calculation is done to estimate this third transition probability:

n4,1 = y3,1 (8)

and
y4,1 < n4,1 (9)
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and the remaining probabilities calculated:

p4,2 = 1 − p4,1 (10)

P[ ] = p2,1 × p3,1 × p4,2 (11)

P[ ] = p2,1 × p3,1 × p4,1 (12)

Comparing all of the contingencies (Figure 3), this group is relatively safe only
because of the strength of their isolation. Once there is infection within the bubble,
there is a very high chance of hospitalization. That is, P[ ] is greater than P[ ] or
P[ ]. By comparison, in a non-Bayesian approach, the probability of hospitalization
would be the product of the sample proportions. In this example, the non-Bayesian
probability of hospitalization would be 0.1 × 0.1 × 0.1 = 0.001, or about 1/10th

the value of P[ ] calculated using the BET. This is a large difference in probabilities
and illustrates how the knowledge of the group improves the assessment of their
safety using a BET.

Calculating a BET for a Classroom

Consider a very different group of people, a classroom of 50 young and healthy
students (Connor 2020). The rate of infection in the community at large is the same
as in the previous example, assumed to be 10 percent. Students being students, this
isolation bubble is much more permeable than the group of isolated older adults.
In fact, we have little knowledge of their isolation because we do not keep track of
the students outside of class. To capture this state, ignorance of the effectiveness
of isolation, α2,1 = β2,1 = 1. Because the group is large, the transition probability
is close to the value of the sample proportion. But a penalty is paid for ignorance,
so the transition probability is slightly greater than the sample proportion. The rest
of this BET is quite similar to the previous example for older adults, except for
the prior function for the last transition probability. Because the students are likely
quite resilient, β4,1 � α4,1. The resulting BET for the student social bubble with
example values is shown in Figure 4. The resulting probability of hospitalization
for the students in the classroom is good, P[ ] = 0.0003, or the chances of hospi-
talization are about 3 in 10,000 despite the relative lack of isolation of this group.
The same cannot be said for the teacher, who might be more vulnerable to hos-
pitalization, given infection, than her students. If the teacher has the same rate
of hospitalization as the community generally given infection, 10 percent in this
example, α4,1 = β4,1 = 0. Her probability of hospitalization is P[ ] = 0.0036,
roughly 10 times higher than the probability of her students being hospitalized. She
pays a cost for interacting with a permeable bubble. The non-Bayesian probability
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Figure 4. A BET for a classroom of 50 students.

of her hospitalization based on the products of sample proportions is still 0.001.
The teacher’s probability of infection because she is associated with the students
is roughly four times the probability of her infection compared to the community
generally. To reduce her probability of hospitalization, she would have to isolate
more effectively from students within the bubble, changing the values of α3,1 and
β3,1, say by more effective social distancing within the bubble than practiced by
students.

Calculating Your Own BET

The circumstances for COVID-19 social bubbles are highly variable depending
on how many people are involved, how well they isolate from the outside world and
from each other, and how likely individuals within the bubble are to be hospitalized
compared with the general population. What about the safety of your COVID-
19 social bubble? I have developed a web-based calculator to solve the BET for
COVID-19 bubbles as described here. Access the web-based calculator at:

computers for numeracy: the covid social bubble calculator

Enter your bubble size, the sample proportion appropriate for your community,
prior parameters for your situation, and calculate the contingency probabilities.
While using this calculator, you are getting to know equation 3 and how prior
knowledge influences probable outcomes.

There are some guidelines for making sure your calculation makes sense for your
particular social bubble. First, larger values of n2,1 mean there are more people in
the bubble. As the bubble size gets bigger, the prior mean decreases relatively
(equation 3), and the isolated group behaves more like the general community. If
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the isolation group is small then the prior function (values of α and β) is more
important.

At each node, the sample proportion depends on y and n. The sample proportion
y/n should reflect values in the general community in your area, which might
change with time or might be poorly known. It is important to consider a range
of values and investigate their effect on probabilities. You might try y2,1/n2,1 =
y3,1/n3,1. Similarly, for each node n ≥ y, since the proportion of people infected or
hospitalized must be less than or equal to the total number of people in the group.
Since the BET is hierarchical, once the first column is completed, values of n are
updated automatically in successive columns of the web-based calculator.

The parameters α and β in a Beta distribution are used to calculate the prior
mean (your knowledge of the bubble that makes it different from the population
generally). Examples of possible values:

• α = β = 0. The transition probability (expected value of the posterior probability) will be
the same as the sample proportion. If this is the case for all three columns then the BET is
actually not Bayesian.

• α = β = 1. The prior reflects ”maximum ignorance,” meaning we have no knowledge of how
well the group actually isolates (for node 1 on the BET) or how a individual in the group will
react to infection (node 3).

• α > β. The prior means that the probability of a bad outcome (infection, hospitalization) is
greater than estimated for the community in general. For an older group with comorbidities,
α > β for the third transition probability.

• α < β. The prior means that the probability of a good outcome (no infection, no hospi-
talization) is greater than in the general community. A well-isolated group will have α < β
(node 1). A healthy group will have α < β (node 3).

The important thing is to experiment with alternative values. One technical
feature of the Beta distribution is that its variance decreases with increasing values
of α and β. That means that using larger values of α and β indicates greater
confidence in the state of isolation of the bubble. The web-calculator does not
include the variance in the posterior probabilities, essentially the confidence in the
probability estimate. In general confidence is low because of the complexity of
the social situation (e.g., the classroom case uses lower values of α and β at node
1 compared to the assisted-living facility case). One way to explore these effects
is to develop a set of parameters for your social bubble, then change individual
parameters one at a time to see if the change is significant for the contingency
probabilities.

Concluding Remarks

Our lives are uncertain. We may be unable to reduce this uncertainty, but we can
gain understanding of uncertainty through numeracy (Vacher 2016; Paulos 2018).
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The importance of a numerate approach in our lives is placed in stark relief by
the COVID-19 pandemic. Numerate people react to the pandemic by assessing
their risk of infection and by attempting to reduce their risk by assessing alternative
strategies, like forming a social bubble and evaluating its effectiveness.

The problem of assessing the safety of a COVID-19 social bubble has a great
deal in common with risk assessment in many STEM disciplines (Woo 2011).
BETs are used to forecast volcanic eruptions (Connor et al. 2001; Newhall and
Hoblitt 2002; Baxter et al. 2008; Marzocchi and Bebbington 2012), earthquakes
(Marzocchi et al. 2012), and tsunami (Grezio et al. 2010). Engineered systems,
characterized by potential sequential failures and cascading events, are assessed
with Bayesian methods (Apostolakis 1990; Connor 2011; Zuccaro et al. 2018). The
medical community has a long history of using Bayesian methods in areas like
diagnosis, and is applying these methods to improve our understanding of COVID-
19 at a furious rate (Iwendi et al. 2020; Roda et al. 2020). These analyses can
become quite complex, but these examples also point to the need to understand
Bayesian methods and BETs at local or personal levels (Wang 2015).

Not everyone is in a position to develop their own BET or to deal with all the
complexities of a sophisticated Bayesian analysis, but many people can use a BET
to forecast outcomes that are important to them, like the safety of their COVID-19
social bubble. The trick is to present the core calculations (e.g., equation 3–12)
in a sequential fashion, following the hierarchy of the tree itself. These sequential
calculations might be implemented in a spreadsheet or using a web-based calculator
like the one presented here. The main point is to do the calculation and react to the
new quantitative perspective it provides.
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Glossary
Bayesian statistics: named for Thomas Bayes, a paradigm for statistical inference
in which a prior distribution is specified for all unknown parameters in the model.
The prior distribution is based on knowledge independent of the frequency of past
events. Bayes’ theorem is then applied to calculate probability using both the
frequency of past events and the prior distribution. In this column, the frequency of
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past events is the sample proportion. Bayesian statistics have a checkered reputation
because of the subjective nature of the prior distribution, in this column the Beta
distribution, which depends on two estimated parameters: α and β. Advocates
for Bayesian statistics argue that the difficulty in estimating the prior is offset by
the insights gained from incorporation of that information. In models like the one
presented in this column, it is best to explore the model using alternative values of α
and β. That is, it is best to see how the probabilities of events change with different
assumptions about the prior distribution.

Beta distribution: used to weight probability as a prior distribution in Bayesian
event trees. The Beta distribution has two parameters, α and β. When α is large, the
weighted probability tends to increase. When β is large, the weighted probability
tends to decrease. Large values of both α and β give a low variance to the Beta
distribution, meaning there is great confidence in the mean of the prior distribution.
Small values of both α and β give high variance to the Beta distribution and there
is low confidence in the mean value of the prior distribution.

binomial distribution: arises when there are only two possibilities associated with a
trial or event. The two possibilities might be that an event occurs or does not occur.
The two possibilities do not necessarily have equal probability.

contingencies: represent all the possible outcomes of a series of events. That is,
if one sums the probabilities of all possible contingencies, they sum to one.

event tree: a diagram that illustrates how one event might lead to another event in
a hierarchical fashion, attempting to capture all possible outcomes. A probabilistic
event tree assigns probabilities to all events. A Bayesian event tree calculates
probability using Bayesian statistics.

expected value: for any probability distribution, the theoretical mean value of the
distribution. An average is the mean value of a sample, whereas the expected value
is calculated for a probability distribution.

posterior probability: calculated by mathematically combining a probability based
on the frequency of events, in this column the sample proportion, as well as prior
information, in this column information or assumptions about the isolation of the
social bubble and health of members within that bubble.

prior distribution: accounts for additional information associated with calculation
of a probability. Probability can be calculated using the frequency of past measured
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events. For instance, by finding how many people are infected in a community.
Caution is needed in applying this frequency to a smaller group, members of which
might have special circumstances. In this case the probability is weighted using a
prior distribution. A drawback of this approach is that the prior distribution must
also be estimated!

transition probability: on an event tree, the probability that one event will follow
another. An event tree has a series of transition probabilities. These are multiplied
together to find the probability of a contingency.
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