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EUTROPHICATION TREND OF LAKES IN THE TAMPA BAY WATERSHED 

AND THE ROLE OF SUBMERGED AQUATIC VEGETATION IN BUFFERING 

PHOSPHORUS CONCENTRATION 

Max Jacobo Moreno Madriñan 

ABSTRACT 

Twentieth century human settlement within the Tampa Bay watershed was 

linked to a dramatic mid-century decline in bay water quality and loss of seagrass 

acreage.  Decades of direct and indirect nutrient discharges to the bay from 

phosphorus mining, fertilizer manufacturing, and wastewater treatment, as 

examples, impaired the estuary.  In the past twenty years, regional stakeholders 

have worked to improve the bay water quality by reducing point and non-point 

source nutrient loading to the bay.  

Lakes within the Tampa Bay watershed may play an important role in 

attenuating the flow of nutrients into the bay. This study hypothesized that 

between 1990 and 2007 lake water concentrations of total phosphorus (TP) and 

chlorophyll-α, as well as the ratio of total nitrogen to total phosphorus (TN:TP), 

have changed for selected lakes in the Tampa Bay watershed.   During this 

period, the watershed underwent a rapid shift in land use as groves and farms 

became shopping malls and new homes.  A two-way analysis of variance 



 

 x

(ANOVA) revealed that for 10 lakes clustered in the northern portion of the 

Tampa Bay watershed and classified as oligotrophic or mesotrophic, observed 

increases in water concentrations of TP and chlorophyll-α were statistically 

significant. For 6 lakes classified as hypereutrophic and scattered across the 

watershed, observed decreases in water TP concentrations were statistically 

significant, while chlorophyll-α concentrations did not change. For both groups of 

lakes, the TN:TP ratio declined significantly; however, oligotrophic and 

mesotrophic lakes were phosphorus-limited but hypereutrophic lakes were 

nitrogen-limited, based on this ratio. 

 A second hypothesis of this study was that lake water concentrations of 

TP, total nitrogen (TN) and chlorophyll-α were lower in lakes that had more 

coverage of submerged aquatic vegetation, as vegetation suppresses re-

suspension of sediments and is a reservoir for nitrogen and phosphorus and a 

surface for biofilms. The results of a one-way ANOVA showed that for 34 lakes 

within the Tampa Bay watershed, lakes with a greater than 20 percent volume 

infested  by macrophytes (PVI), water concentrations of TP and chlorophyll-α but 

not TN were statistically lower than for lakes with a less than 20 PVI.  
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CHAPTER 1. 

INTRODUCTION 

1.1 Purpose of the Study 

 Twentieth century human settlement within the Tampa Bay watershed 

was linked to a dramatic mid-century decline in bay water quality and loss of 

seagrass acreage.  Decades of direct and indirect nutrient discharges to the bay 

from phosphorus mining, fertilizer manufacturing, and wastewater treatment, as 

examples, impaired the estuary.  In the past twenty years, regional stakeholders 

have worked to improve the bay water quality by reducing point and non-point 

source nutrient loading to the bay (TBEP, 2006).  Lakes within the Tampa Bay 

watershed may play an important role in attenuating the flow of nutrients into the 

bay, as these lakes ultimately discharge to the bay via canals, springs, creeks, 

streams, and rivers. 

Analyses of temporal trends and a possible role for submerged aquatic 

vegetation in reducing eutrophication benefit those involved in lake water 

management within the Tampa Bay watershed (Figure 1.1). 
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Figure 1.1   Map of the Tampa Bay watershed and major bay segments (TBEP, 2006)  
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1.2 Problem Statement 

Excessive nutrient loading to surface waters threatens environmental and 

human health (FDEP, 2004).  Nutrient enrichment of surface wtaers can cause 

blooms of algae  (Canfield, 1983) with the associated stench and stagnation 

(McCarthy, 2000). Sustained algal blooms can lower the water column dissolved 

oxygen concentration and light transparency, conditions which lead to a loss of 

biodiversity and an attending shift in dominant species (Paerl, 1988).  Some 

species of blue-green algae (cyanobacteria) produce potent toxins. These toxins 

may enter the human body through ingestion, inhalation, or dermal contact with 

water or with fish from water polluted with cyanobacteria (Fleming et al., 2002; 

Karjalainen et al., 2007). Thus, eutrophication may impair a lake to the extent 

that swimming or fishing is not advised (Hansson et al., 1999). 

The Florida Department of Environmental Protection (FDEP, 1996; 2000; 

2006) reports an increasing percentage of Florida lakes with a degrading trend in 

eutrophication status. Urban land use has been suggested as the category with 

the higher contribution of phosphorus to receiving waters in Florida, followed by 

agricultural and forested land use (Reddy et al., 1999).  

For a lake, water concentrations of nitrogen and phosphorus are 

determined by a combination of (net) external loading and internal cycling 

(James and Bierman Jr., 1995; Kittiwanich et al., 2006; Serpa et al., 2007). 

Phosphorus is most commonly the limiting nutrient in freshwater systems 

(ChunLei et al., 2004; Schauser et al., 2004; Schindler, 1977; Scinto and Reddy, 
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2003; Zhou et al., 2001).  Factors that control the cycling of phosphorus within a 

lake are discussed in Chapter 2.   

Land use (Figure 1.2) affects the external loading of nutrients to a lake both 

through runoff (Johnes et al., 1996; Reddy et al., 1999; Soranno et al., 1996) and 

atmospheric deposition (Poor et al., 2005).  The eastern part of the Tampa Bay 

watershed is within a phosphorus mining region known as Bone Valley (Brown, 

2005), and lakes in that area may be influenced by naturally-occurring 

phosphorus minerals or by phosphorus mining and fertilizer manufacturing 

activities.  Much of the eastern portion of the watershed is agricultural, and cattle 

ranches, citrus groves, strawberry farms, and landscape plant nurseries are 

common sights. Applications of fertilizers or pesticides and seepage from piles or 

ponds of animal wastes are sources of nitrogen and phosphorus from agricultural 

land use (Arbukle and Downing, 2001; Bennett et al., 2001; Carpenter, 2005; 

Omernik, 1976). The northeastern sector of the watershed includes forested 

wetlands that drain into the Hillsborough River, which is the main source of 

drinking water for the City of Tampa (Schmidt and Luther, 2002; Xiana and 

Craneb, 2005).  To a lesser extent, these forested wetlands contribute nutrients 

from natural flora and fauna to its surface waters (Reddy et al., 1999). 

Closer to the bay the land use is predominantly urban or suburban, with 

heavy industry at the confluence of major rivers and the bay (Xiana and Craneb, 

2005). The four-county Tampa Bay Metropolitan Area, which is host to the Cities 

of Clearwater, St. Petersburg, and Tampa, has a population of 2.7 million 

residents. Population growth was 30.45% between 1990 and 2006 (Hilssborough 
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County, 2007; US Bureau of the Census 2000, 2007), and was higher than the 

20.34% of the total United States population for the same time period 

(Hilssborough County, 2007; US Bureau of the Census, 2006). The shift from 

rural to suburban or urban land use means more impervious cover and thus 

increased rainfall run-off (Xiana and Craneb, 2005). Run-off may contain nitrate 

or phosphate from inorganic fertilizers, or organic forms of nitrogen and 

phosphorus from leaves, insect debris, and animal excreta, as examples (Johnes 

et al., 1996; Reddy et al., 1999; Soranno et al., 1996).  Atmospheric emissions of 

nitrogen oxide and ammonia from electrical utility, industrial, and transportation 

(including motor vehicle) sectors deposit to lake surfaces or adjacent drainage 

basins (Poor et al., 2005).  Non-point source pollution from run-off or atmospheric 

deposition may increase with population density (Smith et al., 2003).  

Septic tanks for household sewage treatment were typical in twentieth 

century development of Florida lakefront property, and many if not most of the 

homes bordering the lakes considered in this study are still on septic systems 

(Schmidt and Luther, 2002). 

  Much of the Tampa Bay watershed is underlain by karst geology (van 

Beynen et al., 2007), which in some places facilitate groundwater transport and 

for a few lakes provides a direct connection to the cleaner water of the Floridian 

Aquifer (Cheng and Kindinger, 2004).  
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Figure 1.2   Land Use in Tampa Bay watershed (Tampa Bay Estuary Program, 1999).  Lakes 
analyzed in this study are located in areas with residential, commercial and industrial, and 
agricultural use mainly.  
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1.3 Research Hypotheses 

The research hypotheses were: 

• Average lake water concentrations of total phosphorus (TP), the 

ratio of total nitrogen to total phosphorus (TN:TP), and 

phytoplankton as measured by chlorophyll-α in selected lakes of 

the Tampa Bay watershed changed significantly between 1990 and 

2007; 

• Lakes with a greater abundance of submerged aquatic vegetation 

have significantly lower water concentrations of total phosphorus, 

total nitrogen (TN), and chlorophyll-α.  

Eutrophication (primary productivity of natural waters) is traditionally measured 

based on the concentration of total phosphorus (TP) and total nitrogen (TN) as 

well as the concentration of phytoplankton (Canfield et al., 1985; Dillon and 

Rigler, 1974).  For accuracy and functionality, phytoplankton is estimated by the 

measurement of chlorophyll-α in lake water (Canfield et al., 1985; Dillon and 

Rigler, 1974). Consequently, lake water concentration of TP, TN, and chlorophyll-

α were water quality parameters used for this analysis.  Special attention was 

given to lake water TP concentration and the metabolism of phosphorus in 

shallow lakes since this is the most common nutrient limiting phytoplanktonic 

productivity in freshwater ecosystems (ChunLei et al., 2004; Schauser et al., 

2004; Schindler, 1977; Scinto and Reddy, 2003; Zhou et al., 2001).  

This dissertation has been divided in complementary subtopics, each one 

covered in an independent chapter with specific objectives and results as follows: 
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 Chapter 2 

• Review of processes that determine the primary productivity of 

aquatic systems;  

• Definition of external factors that influence the processes 

involved in the phosphorus cycle in aquatic systems; and 

• Review of models of phosphorus fate and transport in aquatic 

systems. 

 Chapter 3 

• Analysis of  temporal trends of water concentration of total 

phosphorus (TP), ratio of water concentration of total nitrogen to 

water concentration of total phosphorus (TN:TP), and water 

concentration of chlorophyll-α in selected lakes of the Tampa 

Bay watershed; 

• Discussion of differences in trends of lake water concentration 

of TP, TN:TP ratio, and chlorophyll-α between lakes; and 

• Discussion of factors influencing the change in the lake water 

concentration of TP, TN:TP ratio, and chlorophyll-α. 

 Chapter 4 

• Analysis of correlation between measures of submerged aquatic 

vegetation (SAV), lake water concentrations of TP, TN, and 

chlorophyll-α, and  lake depth, volume, and area; and 

• Discussion of factors influencing lake water concentration of TP, 

TN, and chlorophyll-α ; 
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 Chapter 5 

• Analysis of association between submerged aquatic vegetation 

and lake water concentrations of TP, TN, and chlorophyll-α. 

 Chapter 6 

• Implications of this research.  
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CHAPTER 2. 

LITERATURE REVIEW 

2.1 Introduction 

Phosphorus is a fundamental component of life. Its presence in the 

adenosine di- and triphosphorus molecule make possible the conversion of 

energy from sunlight into chemical energy in plants, and fuels the indispensable 

reactions of photosynthesis and respiration (Chameides and Perdue, 1997). 

These processes do not just support the entire ecological web by providing 

energy to fuel all the metabolic transformations in living organisms but also 

determine the flow of phosphorus between biosphere and mineral reservoirs. 

Essentially all the phosphorus significantly present in nature is in the form 

of orthophosphates (+5 oxidation state) since it is the only form stable in aqueous 

solution (Chameides and Perdue, 1997). Unlike other essential elements for life 

like nitrogen and carbon, phosphorus does not have a stable gaseous form of 

significance (Chameides and Perdue, 1997; Lahm, 2008; Schlesinger, 1991) and 

its occurrence in the atmosphere is generally limited to just minor amounts 

dissolved in moisture or contained in suspended dust particles (Graham and 

Duce, 1979). Its presence in nature is more prevalent in the form of insoluble 

compounds since its cycling depends mostly on slow geologic processes such as 

weathering of apatite and other calcium phosphorus minerals (Schlesinger, 
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1991). Although plant roots and mycorrhizae may accelerate this process, their 

effect is not enough to consider a significant role of microorganisms in increasing 

phosphorus bioavailability (Schlesinger, 1991). Therefore, it is frequently a 

limiting nutrient for photosynthetic productivity, especially in aquatic ecosystems 

(Chameides and Perdue, 1997) and even more so in freshwater ecosystems 

(ChunLei et al., 2004; Schauser et al., 2004; Schindler, 1977; Scinto and Reddy, 

2003; Zhou et al., 2001).  

Although this limitation slows down natural productivity, the increasing 

discharge of phosphorus into natural waterways as a result of human activities is 

accelerating the availability of this nutrient (Rast and Thorton, 1996). Hence, a 

basic, but clear, understanding of the phosphorus cycle in lakes is of vital 

importance for environmental management plans addressing the problem of 

eutrophication.  

In aquatic ecosystems, phytoplankton growth removes soluble 

phosphorus from the water column while phytoplankton decomposition releases 

it back into the water and sediments (Fisher et al., 1982). This classical view of 

decomposition of organic matter and consequently regeneration of mineral 

nutrients to support primary production at the base of the food chain is correct 

but too simplistic (Sundby et al., 1992).   

Phosphorus in aquatic ecosystems is present mostly as a particle but also 

in dissolved form (Schnoor, 1996; Wang and Mitsh, 2000), and each form 

behaves differently in the phosphorus cycle.   Particle phosphorus can settle by 

gravity while dissolved phosphorus can be assimilated by bacteria and plants.  
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Considering total phosphorus rather than differentiating phosphorus forms has 

been  a more functional expression for modeling purposes because it simplifies 

the process (Wang and Mitsh, 2000).   Since it is impossible to completely 

describe the phosphorus cycle, a basic description of the most important factors 

necessary for a reasonable understanding of the phosphorus cycle in shallow 

lakes follows. Figures 2.1 provide a simple visual description of some of the main 

reservoirs and flows of total phosphorus cycling in shallow freshwater systems.   

Although not included in the figure, external inputs and outputs are 

determinant in the phosphorus budget of the system. The most important 

external contributions of phosphorus to the system are originated from non-point 

sources such as agriculture and urban activity (Carpenter et al., 1998; Howarth et 

al., 1996). Point sources are usually less important, although may be also 

significant (Carpenter, 2005; Cowen and Lee, 1976).  In most cases, 

groundwater flow  and atmospheric deposition are not important sources of 

phosphorus because it is normally not mobile in soils (Reddy et al., 1999) and its 

content in dust and suspended solids in the air is very low (Graham and Duce, 

1979).  This may not be the case for the lakes examined in this study for the 

following reasons: the central and northern part of Hillsborough County has a 

karst formation of sandy soil (van Beynen et al., 2007) that may facilitate the 

phosphorus leaching, and atmospheric deposition is actually a significant 

contributor of phosphorus to Florida lakes (Reddy et al., 1999).   
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Figure 2.1   Total phosphorus cycle in shallow aquatic systems.  The connections in this 
figure represent the flows of phosphorus between the different components. The arrow 
heads point to the component receiving phosphorus. Those arrows with heads in both 
directions represent bi-flows of phosphorus.  External inputs and outputs are not included 
in the diagram for visual clarity, but are important determinants in the phosphorus budget 
of the system.   
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2.2 Inorganic Phosphorus 

Organic and inorganic phosphorus compounds from the watershed are 

carried with runoff and discharged into the lake water.  Eventually they settle into 

the lake sediments. Once in the sediments, persistent compounds of inorganic 

phosphorus stay buried in their original form while labile forms are dissolved into 

the sediment pore water.  From the sediment pore water, phosphorus is released 

as phosphorus back into the water column, re-precipitated, or adsorbed by other 

compounds within the sediments (Sundby et al., 1992). 

Under oxic conditions, binding of inorganic phosphorus to iron in the 

sediments has an important effect on the phosphorus mass balance in aquatic 

systems (Krom and Berner, 1980; 1981). The oxidized surface layer in sediments 

decreases the flux of dissolved inorganic phosphorus from the sediment to the 

water column by providing iron oxide that binds to the phosphorus, therefore 

trapping phosphorus (Mortimer, 1971). Hence, as the oxygen concentration 

decreases with depth in the sediments, the concentration of sequestered 

phosphorus decreases with depth as well (Sundby et al., 1992).  This process of 

phosphorus sequestration has been defined in two steps: rapid adsorption on 

surfaces and then slow diffusion into the particles of iron oxide (Barrow, 1983). It 

has been suggested however, that particles at depths equal or greater than 10 

cm may still maintain some capacity to retain phosphorus, despite the anoxic 

environment (Silverberg et al., 1987).  
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2.3 Organic Phosphorus 

Usually most of the phosphorus present in the water column and sediment 

is organic (Rigler, 1956). Bacteria and fungi decompose plant and animal tissue 

into more simple organic matter (Fenchel, 1970). The resulting organic matter is 

further transformed by heterotrophic bacteria into bacterial protoplasm. Bacteria 

are in turn consumed by protozoan grazers, resulting in regeneration of inorganic 

phosphorus. According to Johannes (1965), bacteria alone release little 

phosphorus, instead they consume it, so bacterial grazers are needed for 

mineralization of this bacterial phosphorus. Barsdate et al. (1974), however, 

suggested based on laboratory experiments that little phosphorus from bacteria 

pass through grazers before is released into solution. This author explained that 

the reason for an increased water phosphorus concentration with a high 

presence of grazers is due to the fact that the physiology of bacterial population 

is changed by grazing pressure by selection of rapidly growing forms of bacteria. 

This change caused by grazing results in more rapid bacterial assimilation of 

organic phosphorus and subsequent faster regeneration of inorganic 

phosphorus, which is the form assimilated by phytoplankton (Barsdate et al., 

1974). 

Once organic phosphorus has been mineralized, it undergoes the same 

pathways as deposited inorganic phosphorus.   A portion of the mineralized 

phosphorus is concentrated as phosphorus into the pore water where it is 

maintained in equilibrium with the portion adsorbed to the surface sites. Part of 

the phosphorus adsorbed to particles is then diffused to the interior of the iron 
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oxides and stays sequestered. As dissolved phosphorus is released from the 

pore water back to the water column, it is also replaced by surface adsorbed 

phosphorus to maintain the equilibrium concentration (Sundby et al., 1992). 

 

2.4 Oxygen  

Changes in the oxygen concentration in the overlying water can cause 

drastic changes in the phosphorus flux from sediments, with anaerobic conditions 

increasing phosphorus flux to the overlying water (Moore et al., 1998; Moore et 

al., 1991),  thereby making it available to phytoplankton and eventually promoting 

algal blooms (ChunLei et al., 2004). As phytoplankton from a bloom sink to the 

sediments, decomposer bacteria consume the decaying material (Fenchel, 1970) 

and the remaining dissolved oxygen, further exacerbating the oxygen depletion.  

In opposite circumstances, high photosynthetic activity of benthic microalgae 

decrease phosphorus release by increasing dissolved oxygen levels (Spears et 

al., 2008). Additionally photosynthesis can lead to elevation in pH, and high pH 

under calcareous conditions favors co-precipitation of phosphorus with calcium 

carbonate (Dierberg et al., 2002; Spears et al., 2008).  It has also been 

suggested that an elevated pH can affect ion exchange processes that decrease 

the capacity of iron and aluminum compounds to bind phosphorus, resulting in 

release of phosphorus from sediments (Bostrom et al., 1988; Zhou et al., 2001). 

The flux of phosphorus from sediments to water column is regulated 

primarily by redox reactions involving iron and aluminum in sediments, and then 

by the gradients in the concentration of phosphorus between pore water and 
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overlying water (Moore et al., 1998).  Levels of nitrate and sulfate have been 

inversely correlated to the flux of phosphorus from sediments to overlying water 

(Fisher and Reddy, 2001). This might be due to the oxygen content in these 

compounds that can raise the overall oxygen level in the media hence influencing 

redox reaction in phosphorus chemistry.  By contrast Caraco et al.  (1989) 

suggest greater release of phosphorus from sediments at higher sulfate 

concentrations.  

In lakes with a thermocline, the release of phosphorus from sediments is 

typically controlled by the oxygen concentration in the hypolimnion, and 

decomposition of phytoplankton sinking into this layer is a significant cause of 

oxygen depletion (Genkai-Kato and Carpenter, 2005). Deeper in the sediment 

column, even below aerobic overlying water, conditions are increasingly anoxic, 

facilitating the release of phosphorus from iron and aluminum bound phosphorus 

undergoing reduction (Moore et al., 1991; Sundby et al., 1992). This newly 

regenerated phosphorus can migrate upward to participate in exchange reactions 

between adsorption sites and pore water, or can be released into the overlying 

water (Sundby et al., 1992). 

Additionally to the reduction of iron and aluminum, part of the increased 

phosphorus release from sediments under anoxic conditions may be also 

explained by metabolic changes in microbial population that cause release of 

phosphorus from the cells (Bostrom et al., 1988; Gatcher et al., 1988). 

Complexed phosphorus and iron (II) is released into water solution when the 

cells, under anoxic conditions and in the absence of nitrates, use iron (III) as an 
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alternative electron acceptor (Jones et al., 1983).  Moreover, microbial growth 

yield is typically low under anoxic conditions, hence the release of phosphorus 

previously bound to carbon in bacteria and cyanobacteria is higher (Bostrom et 

al., 1988). 

 

2.5 Submerged Aquatic Vegetation 

Aquatic macrophytes in general  (both emergent and submerged) can 

absorb nutrients both from the water and from the sediments depending upon the 

species and relative nutrient concentrations in water and sediments (Denny, 

1972; Graneli and Solander, 1988; James et al., 2006; Rattray et al., 1991). 

Emergent macrophytes take phosphorus from the sediments under all conditions 

while submerged aquatic vegetation takes phosphorus from both water and 

sediments although the latter pathway is more prevalent under normal conditions 

as well as under conditions of high water phosphorus concentration (Graneli and 

Solander, 1988). 

Barko and Smart (1980), Barsdate et al. (1974) and Mcroy (1972) 

indicated that aquatic macrophytes can pump nutrients from sediments to the 

water column making it available to phytoplankton.  Wang and Mitsh (2000) 

included this effect in a phosphorus cycling model. Graneli and Solander (1988) 

suggested that both types of aquatic vegetation, submerged and emergent, can 

release minimal or important quantities of phosphorus to the water column 

depending on the vegetative stage.  Growing vegetation would release minimal 
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quantities of phosphorus via plant material, and decaying vegetation would 

release considerable amounts.  According to Gumbricht (1993), the main 

phosphorus removal mechanism in designed wetlands would be nutrient uptake 

by submerged aquatic vegetation followed by harvesting. Other theories suggest 

that aquatic macrophytes should not be removed because they decrease 

recycling of phosphorus from sediments back into the overlying water by 

suppressing resuspension of sediments. This principle was included in prediction 

models developed by Genkai-Kato and Carpenter (2005).  

Inhibition of sediment resuspension is a simple mechanism that explains 

at least part of the effect of submerged aquatic vegetation in the suppression of 

phosphorus recycling (Hamilton and Mitchell, 1996; Scheffer, 2004). Emergent 

and submerged aquatic vegetation neutralize the effect exerted by waves and 

wind in causing vertical mixing of the overlying water in shallow lakes (Bachmann 

et al., 2004; Hamilton and Mitchell, 1996).  Additionally a possible intense 

photosynthesis caused by aquatic macrophytes and associated periphyton can 

increase the pH and lead to coprecipitation of phosphorus with calcium 

carbonate under alkaline conditions (Dierberg et al., 2002).  In contrast, elevated 

pH in the interface water sediments resulting from photosynthesis may cause 

release of phosphorus from iron and aluminum compounds mostly because 

orthophosphate is replaced by hydroxide ions in ligand exchange reactions 

(Bostrom et al., 1988).  It has been explained that aquatic vegetation in general 

affects the water chemistry by regulating oxygen and pH therefore influencing the 

phosphorus cycle in lakes (Graneli and Solander, 1988).  



 

 20

Emergent and submerged aquatic vegetation provide substrate surfaces 

for epiphytes and periphyton to grow (Cattaneo and Kalff, 1980; Dierberg et al., 

2002), which can offer another important regulatory impact on the phosphorus 

flux. Periphytic algae and other epiphytes growing on the surface of submerged 

aquatic vegetation remove phosphorus directly from the water column (Dierberg 

et al., 2002; Scinto and Reddy, 2003). Submerged aquatic vegetation can also 

directly uptake part of its required nutrients from the water column in addition to 

sediments (Graneli and Solander, 1988).  This absorption and translocation of 

phosphorus through out the entire plant material is another important part of the 

lake water phosphorus cycle (Barko and Smart, 1980).   

The above-mentioned mechanisms refer to the availability of phosphorus 

in the water column. Yet there are also other ways by which submerged aquatic 

vegetation influence the growth of phytoplankton.  Macrophytes can indirectly 

suppress phytoplankton growth by providing shelter from fish to the zooplankton 

that graze on phytoplankton (Scheffer, 2004; Scheffer et al., 2001).  Zooplankton 

that graze on bacteria, however, may also accelerate the mineralization process 

that makes phosphorus available in the water column (Barsdate et al., 1974).  

Aquatic vegetation, in general, provides a refuge against cladocera (microscopic 

order of crustacean and part of zooplankton population), which are the most 

efficient grazers of bacteria and a favorite prey for fish (Moss, 1990) . In a 

laboratory experiment, Rigler (1956) found that some species of bacteria that 

utilize inorganic phosphorus grow well in suspension, but others grow well on the 
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walls of storage vessels. Hence, in a natural environment, macrophytes might 

provide surfaces for phosphorus-consuming bacteria to grow.  

Independent of the mechanisms utilized by submerged aquatic vegetation 

for regulation of phosphorus levels, there is extensive literature demonstrating 

the phosphorus removal capacity of submerged aquatic vegetation in constructed 

wetlands and lakes (Dierberg et al., 2002; Gu et al., 2001; Gumbricht, 1993; 

Knight et al., 2003).  Gumbricht (1993) stated that the phosphorus absorption 

rate of submerged aquatic vegetation is proportional to the phosphorus 

concentration within the surrounding water. These results are consistent with 

experiments done by James et al. (2006) showing a direct relationship between 

nutrient concentration in submerged vegetation tissue and water column nutrient 

concentration. This is of special interest regarding the potential use of 

submerged aquatic vegetation as a treatment method to remove nutrients in 

nutrient-rich water.   

Although the nutrient removal capacity of submerged aquatic vegetation 

and mechanisms through which submerged aquatic vegetation may regulate the 

phosphorus cycle in lakes has been documented, the association between 

nutrient concentration and submerged aquatic vegetation biomass in Florida 

lakes has not been well established. It has been theorized based on correlations 

found in some studies in Florida that submerged aquatic vegetation would cause 

lower water nutrient concentrations (Bachmann et al., 2002; Bachmann et al., 

2004), except at high nutrient levels, when the influence would work in the 

opposite way. Other authors indicate that elevated nutrient concentrations in lake 
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water would cause the absence of submerged aquatic vegetation because of 

light attenuation (Duarte, 1995; Graneli and Solander, 1988).  A study conducted 

in Québec, Canada, reported that slope of the littoral zone is a more important 

determinant of the variability in submerged aquatic vegetation biomass (Duarte 

and Kalff, 1986). 

In summary, extensive submerged aquatic vegetation may lead to low 

nitrogen and phosphorus concentrations in the water column, which in turn leads 

to low phytoplankton growth. These two associations may explain why 

submerged aquatic vegetation has been reported as inversely influencing 

phytoplankton (as estimated by chlorophyll-α) under Florida conditions (Canfield 

and Hoyer, 1992). This would be an indirect connection between submerged 

aquatic vegetation and phytoplankton by means of the concentration of total 

phosphorus in the water column (see Figure 2.1). The authors indicated that a 

percentage area cover (PAC) of submerged aquatic vegetation greater or equal 

to approximately 30% of lake area is required for noticeable reductions in 

phytoplankton biomass.  They found that a small amount of aquatic vegetation 

does not play an important role in phytoplankton biomass reduction.  A study 

conducted in New Zealand lakes, however, provided evidence that submerged 

aquatic vegetation  dominates phytoplankton in shallow eutrophic lakes 

(Hamilton and Mitchell, 1996), and the suggested mechanism of control was the 

stabilization of lake sediments and the inhibition of sediment resuspension.  

In literature reported on Florida lakes, the association between submerged 

aquatic vegetation and nutrients is still unclear, however, a strong direct 
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association has been reported between water nutrient concentration and 

phytoplankton concentration, as measured by chlorophyll-α (Bachmann et al., 

2002; Brown et al., 2000; Canfield et al., 1984). 

Drastic increases in lake water concentration of nutrients and turbidity 

have been reported when submerged aquatic vegetation was removed by 

herbicide treatment (O'Dell et al., 1995), or by hurricanes (Bachmann et al., 

1999). Similarly, lakes have been reported to switch from turbid to clear water 

state when planktivorous fish were removed and submerged aquatic vegetation 

increased (Ozimek et al., 1990). 

 

2.6 Light 

Light can affect the phosphorus cycle indirectly through the presence of 

submerged aquatic vegetation, phytoplankton, turbidity, and benthic microalgae.  

Light can influence water phosphorus concentration through phytoplankton 

(Philips et al., 1997), by favoring growth of this microscopic algae and 

cyanobacteria, consequently removing phosphorus from solution and 

incorporating it into easily sedimented biomass (Krivtsov et al., 2000). 

Likewise the intensity of light reaching the sediments determines the 

distribution and abundance of submerged aquatic vegetation (Hoyer et al., 2004). 

There is some discrepancy in the literature regarding the feedback that nutrient 

loading may have on submerged aquatic vegetation through shading by 
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phytoplankton.  Spence (1982) found light availability as an important 

consequence of excess nutrient loading and one of the major factors determining 

the submerged aquatic vegetation distribution. The increase in phytoplankton as 

a result of larger phosphorus inputs would block light from reaching the 

submerged aquatic vegetation, reducing their distribution to just the very shallow 

zone. Subsequently, their capacity to restrain phosphorus recycling back into the 

water column would also be reduced (Genkai-Kato and Carpenter, 2005).   

Light penetration to the sediments also allows photosynthetic activity of 

benthic microalgae. This regulates the flux of phosphorus from sediments to 

water by affecting the oxygen concentration and pH level and thus phosphorus 

sequestration in sediments (Spears et al., 2008).   

 It has been speculated that periphytic algae attached to the surface of 

submerged aquatic vegetation might be the cause of the shading effect 

responsible for loss of submerged macrophytes under conditions of high 

nutrients loads (Philips et al., 1978). Results of Bachmann et al. (2002) 

suggested that this is unlikely under conditions of Florida lakes, because they did 

not find an association between increasing nutrient loading and periphyton 

abundance in their study. They explain this by suggesting that the shading effect 

caused by phytoplankton as a result of increasing nutrient concentration keeps 

periphytic algae from receiving enough light for photosynthesis.  Periphytic  algae 

are attached to macrophyte surface and therefore unable to move toward the 

source of light, while phytoplanktonic algae can move in the water column toward 
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the source of light, blocking it from reaching the periphyton (Bachmann et al., 

2002). In this case, if periphyton competes with submerged aquatic vegetation for 

light and periphyton is reduced with increased nutrient loading because is 

shaded by phytoplankton, then a high nutrient concentration in the water column 

would add shading from the phytoplankton but reduce shading from the 

periphyton to submerged aquatic vegetation. 

Light penetration is dependent in great measure on turbidity. Scheffer’s 

basic model for alternative stable states in shallow lakes (Scheffer, 2004) 

assumes that an increase in nutrient levels causes an increase in turbidity, 

turbidity is reduced by submerged vegetation, but submerged vegetation 

disappears under conditions of extreme turbidity.  Likewise Bachmann et al. 

(2002) indicate that submerged aquatic vegetation tolerate increasing water 

nutrient concentrations (which is one of the factors leading to turbidity) below 

excessive levels. Thus, as long as the nutrient concentration is not extreme, 

submerged aquatic vegetation amount determines nutrient concentrations in lake 

water (Bachmann et al., 2002; Bachmann et al., 2004).  

 Silica can obstruct the effect of light by triggering the growth of diatoms 

(Krivtsov et al., 2000).  Diatoms (phytoplanktonic algae) grow in abundance 

under high concentrations of silica, thereby shading submerged aquatic 

vegetation and periphyton, and taking more phosphorus from the water column, 

making it less available for periphyton. 
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2.7 Mean Depth and Temperature 

Temperature affects lake water phosphorus cycling primarily through its 

effect on biological activity (Bostrom et al., 1988).  Increased temperature favors 

microbial activity, which in turn decreases oxygen concentrations and pH via 

microbial consumption of oxygen. As previously described, low oxygen levels in 

sediments cause the release of phosphorus bound to iron and aluminum 

complexes from sediments into solution (Moore et al., 1991; Richardson, 1985; 

Sundby et al., 1992). High temperature coupled with high pH can also have the 

opposite effect by removing phosphorus from solution via co-precipitation with 

calcium carbonate (Bostrom et al., 1988; Dierberg et al., 2002). In a broad sense, 

temperature influences the phosphorus cycling in aquatic systems by affecting 

the rate at which chemical processes take place (Simpson and Eaton, 1986). 

Empirically-derived models developed by Genkai-Kato and Carpenter 

(2005) indicated that the reversibility of conditions of high concentration of 

phytoplankton back to a clear water state was affected considerably by mean 

depth, temperature, and presence of submerged aquatic vegetation. In shallow 

lakes (<1.9 m) with submerged aquatic vegetation, phosphorus recycling from 

sediments decreased as depth decreased because of more vegetation at shallow 

depths, increasing the likelihood of restoration back to the clear water state for 

shallow lakes.  In the absence of submerged aquatic vegetation, however, 

shallow lakes were more vulnerable to eutrophication and less likely to return to 

clear water state because phosphorus recycling increased with temperature and 

with decreased depth. Submerged aquatic vegetation was not found to have an 
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effect at depths greater than 10 m.  Dilution of phosphorus in the hypolimnion 

and reduction of temperature are the possible factors suppressing recycling of 

phosphorus at depths greater than 28 m.  An intermediate mean depth (1.9-28 

m) is most resistant to reversing from eutrophication to the clear water state 

because these lakes were too deep to be affected by submerged aquatic 

vegetation and too shallow for phosphorus dilution in the hypolimnion.  

 

2.8 Bacteria and Aquatic Animals 

An increase in microbial activity leads to increase in oxygen and nitrate 

consumption. As oxygen concentration decreases, the capacity of complexes of 

iron, aluminum, and manganese to retain phosphorus decreases as well 

(Bostrom et al., 1988). Anaerobic conditions cause changes in the metabolism of 

bacteria and cyanobacteria that increases phosphorus release from the cells 

(Gatcher et al., 1988). In addition, the biomass of microbial population is reduced 

under anaerobic conditions hence less retention of phosphorus in microbial mass 

means more phosphorus is available in solution (Bostrom et al., 1988).  

It is not clear the role of bacteria in the phosphorus cycling but most 

literature seems to agree that in general they do not actively excrete phosphorus, 

and demand more phosphorus from the water column than they release 

(Andersson et al., 1988; Johannes, 1968). The release of phosphorus caused by 

bacteria (Azam et al., 1999) is actually presumed to be an indirect effect through 

zooplankton excretion after bacteria is consumed by zooplankton (Ammerman 
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and Azam, 1985) or when bacteria die or are infected by viruses.  Other authors 

suggested that although bacterial grazers in fact stimulate the release of 

phosphorus from bacterial biomass into the water column, this happen because 

the grazing pressure makes faster and more efficient the phosphorus release 

process in bacteria but not because phosphorus actually pass  through the 

grazers in significant amounts (Barsdate et al., 1974).  

In the absence of a large population of bacterial grazers, heterotrophic 

bacteria utilize a greater amount of inorganic phosphorus in the process of 

organic matter decomposition (Johannes, 1965). Since most organic matter 

comes from carbohydrates, which are poor in essential nutrients, bacteria use 

inorganic phosphorus from free water as an extra source of phosphorus for 

growth (Fenchel, 1970).  This would reduce the amount of available phosphorus 

in the water column under conditions not limited by carbon, since bacteria can 

successfully compete with phytoplankton for uptake of phosphorus due to a 

faster growth rate (Rhee, 1972).  

Macroinvertebrates affect phosphorus cycling in many ways.  They 

promote the rate of phosphorus mineralization (Hansen et al., 1998) and 

increase phosphorus release through their digestive and excretory processes 

(Gardner et al., 1981). Bioturbation generated by macroinvertebrates in the 

sediments cause water movement, which favors the diffusion of phosphorus into 

the overlying water. Burrows made by some animals further increase the surface 

of contact between interstitial and overlying water (Bostrom et al., 1988), which 

enhances the exposure of sediments to oxygen, thereby augmenting retention of 
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phosphorus by iron oxide, but also facilitates the transport of phosphorus 

contained in the pore water out to the overlying water (Hansen et al., 1998).  

Burrowing animals also transport oxidized and reduced compounds back and 

forward between the reduced and oxidized zone, promoting redox reactions 

(Canfield et al., 1993).  

Mussels and other macroinvertebrates also have a strong regulatory 

impact on phosphorus cycling by regulating the population of phytoplankton, 

zooplankton, and bacteria (Barsdate et al., 1974; Berman and Richman, 1974; 

Johannes, 1968; Scheffer, 2004). Fish are especially important since they 

impose a direct and indirect effect on the water column phosphorus in aquatic 

systems. They exert a predatory pressure on bacteria, zooplankton, 

phytoplankton and benthic invertebrates, which indirectly affect the flux of 

phosphorus (Andersson et al., 1988; Kitchell et al., 1979; Scheffer, 2004).  Fish 

also directly affect phosphorus cycling by increasing resuspension of sediments 

in search for benthic food (Scheffer et al., 2001). The processes by which fish 

and invertebrates influence the phosphorus cycle are strongly related to 

vegetative cycles and are more intense during high temperature periods 

(Andersson et al., 1988).  

 

2.9 Land Use / Land Cover 

Conditions in the watershed influences lake water quality through the 

inputs of materials and nutrients via runoff (Reddy et al., 1999; Soranno et al., 
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1996).  A study conducted by Smith et al. (2003) reported that runoff, area of the 

watershed, and population, were the three variables more strongly associated to 

loading of dissolved nitrogen and phosphorus into receiving waters. Trends in 

land use, agriculture, human population (Johnes et al., 1996; Smith et al., 2003) 

as well as mining and forestry practices  in watersheds have increased  the 

transport and discharge of phosphorus to water bodies (U. S. Environmental 

Protection Agency 1990 as quoted by Soranno et al., 1996).  Contributions of 

phosphorus to lakes can come from point sources such as waste water treatment 

plants, as well as from non-point sources such as runoff from agricultural and 

urban lands (Carpenter, 2005; Cowen and Lee, 1976).   

Non-point sources resulting mainly from agricultural and urban activity are 

the most important sources of phosphorus to natural bodies of water in the 

United States  and other developed countries (Carpenter et al., 1998; Howarth et 

al., 1996).  According to Reddy et al. (1999), urban land use is the category with 

the higher contribution of phosphorus to receiving waters, followed by agricultural 

and forested land use. This is explained by the greater fraction of impervious 

layer in urban areas, which reduces infiltration and increases flow of runoff. This 

subsequently results in greater phosphorus export. Groundwater flow is 

commonly not an important passage of phosphorus from the watershed to lakes 

because of the generally low mobility of phosphorus in the soil. The high porosity 

of the karst formation in northeastern and central Hillsborough County (van 

Beynen et al., 2007) might prove the exception. 
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In agricultural land use, phosphorus surplus from excessive fertilization 

and manure production is accumulated in the soil further finding its way with the 

runoff into natural water bodies (Bennett et al., 2001; Carpenter, 2005).  A study 

conducted in agricultural areas of the eastern United States reported that the 

magnitude of runoff nutrient concentration is usually relative to the percentage of 

the watershed covered with cultivated land (Omernik, 1976).  Other study 

conducted in the highly agricultural region of Iowa found that watersheds 

dominated by animal agriculture constitute the main source of phosphorus into 

natural waters, while intensive row crop agriculture-dominated watersheds are 

larger sources of nitrogen (Arbukle and Downing, 2001).  Reddy et al. (1999) 

says that atmospheric phosphorus deposition (especially dry deposition) is a 

significant and local contributor of phosphorus to Florida lakes and that the 

loading is higher for agricultural lands as compared with forested watersheds. 

In Florida, phosphorus mining is an important economical activity but has 

heavily impacted waters that reach Tampa Bay (Baskaran and Swarzenski, 

2007). The area in the eastern part of the Tampa Bay watershed extends into 

Bone Valley, which has been mined for phosphorus since the late 1800s. That 

area is characterized by an abundance of wetlands and its natural ecology that 

has been disrupted by the phosphorus mining. After 20 years of active 

restoration conducted in the region, however, has water quality improvements 

have been seen (Brown, 2005).  Phosphorus removal by wetland restoration and 

treatment of point sources can significantly reduce the frequency of algal blooms 

(Billen and Garnier, 1997). Land use and its corresponding contributions of 
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phosphorus to lakes must be considered in phosphorus budget calculations for 

planning lake management options (Cowen and Lee, 1976). 

 

2.10 Public Health Implications  

Beside the widely known adverse effect in the ecosystem: light 

attenuation, odors, lowering of dissolved oxygen, and fish kills (Paerl, 1988); 

eutrophication represents also a serious threat to aesthetics and most 

importantly to public health (FDEP, 2004). A study at the University of Colorado 

concluded that nutrient enrichment in lakes and ponds, cause conditions 

favourable to abundance of trematode parasites; and also suggested that favour 

conditions for mosquito vectors of malaria, cholera causing bacteria, and 

swimmers itch (Johnson et al., 1999).  

There are species of phytoplanktonic algae, that can be toxic and that are 

triggered by surface water enrichment.  Abundant productivities of any toxic 

algae are better known as harmful algal blooms (HABs) and are a growing 

concern for public health in Florida because their potential effect in surface 

drinking water resources and recreational sites (FDEP, 2004). Cyanobacterial 

species are a phylum of phytoplankton with a nitrogen-fixing capability.  They 

would be favored over other species of phytoplankton by increasing conditions of 

relative limited nitrogen and abundant phosphorus.  As a consequence, low 

ratios of total nitrogen to total phosphorus (TN:TP) could lead to increase of  

cyanobacterial water concentration (Hecky and Kilham, 1988; Levich, 1996; 
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Levich and Bulgakov, 1992). This can be a concern to public health because 

certain species of cyanobacteria produce cyanotoxins that cause oxidative stress 

in affected cells and may promote tumors  in the nervous, hepatic, and 

dermatologic systems   (Fleming et al., 2002; Karjalainen et al., 2007). These 

toxins may enter the human body through consumption of drinking water, 

inhalation of aerosolized toxins, and by contact with water or fish from water 

polluted with cyanobacteria (Fleming et al., 2002; Karjalainen et al., 2007).  

The relative abundance of cyanobacteria over other phytoplanktonic 

species causes interferences in the food-web (Levich, 1996).  They are not 

consumed by many species, and this lack of predatory pressure further helps 

them to dominate over competitor species that are producers in the food chains 

(Levich, 1996). The cyanobacteria produced toxin can be transferred through the 

food chain through consumption of some grazers, affecting the upper levels of 

the trophic web and even humans (USEPA, 1997).  In small amounts 

cyanobacteria may complement the diet of tolerant grazers, but when ingested in 

excess the cyanotoxins may decrease the eggs production of some species of 

zooplankton and reduce feeding and growth rates of fish larvae (Karjalainen et 

al., 2007).  The process of detoxication for the possible consumers of 

cyanobacteria imply a metabolic cost, resulting in a decreased growth and 

condition and subsequently in their susceptibility to be predated for other higher 

consumers (Karjalainen et al., 2007).  

Some literature suggest that harvesting of submerged aquatic vegetation 

may increase the risk of cyanobacterial blooms (Scheffer, 2004) but other found 



 

 34

that, at least under conditions of low nutrient levels, cyanobacteria did not 

increase as a result of harvesting submerged aquatic vegetation (Morris et al., 

2006). 

 

2.11 Summary of Phosphorus Cycle Review 

Among the most important processes regulating phosphorus cycling in 

shallow freshwater lakes are sedimentation, plant nutrient uptake, and regulation 

of ion exchange processes via dissolved oxygen and pH.  Emergent and 

submerged aquatic vegetation enhance sedimentation mainly by suppressing 

water turbulence and thus favouring conditions for particle settling, and by 

facilitating phosphorus co-precipitation with calcium complexes by raising pH or 

binding with iron and aluminium by altering water column oxygen due to 

photosynthesis. Both types of aquatic vegetation provide surface of substrate for 

periphytic algae, an algae that relies mostly on phosphorus dissolved in the water 

column.   

Submerged aquatic vegetation assimilates nutrients from either or both 

media, water and/or sediments, depending upon the relative availability of 

nutrients in each media.  Emergent aquatic vegetation relies on sediments for a 

supply of nutrients.  Under conditions of high lake water phosphorus 

concentration, submerged aquatic vegetation would play an important role 

accumulating in its biomass phosphorus that has been directly removed from the 

water column.  Under conditions of high concentration of phosphorus in the 
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sediments, like those in lakes with a long history of phosphorus loading, 

emergent aquatic vegetation would play a major role in removing phosphorus 

from the sediments.  This phosphorus would eventually return to the water 

column as the vegetative decay.  Nutrient uptake from the water column or from 

the sediments would be a key difference between submerged and emergent 

aquatic vegetation that may determine the importance of these two types of 

aquatic vegetation in regard to lake management plans directed toward 

improvement of water quality.    

Additionally, external inputs of phosphorus are determinant regulators of 

the phosphorus status in lakes. These depend on land use conditions on the 

surrounding watershed. Urban and agricultural land uses are usually the most 

important contributors of phosphorus to lakes, mainly through runoff, although 

highly porous soil profile might facilitate underground transport of phosphorus.  

Atmospheric deposition of phosphorus-laden dust may be an important input of 

phosphorus to Florida lakes. 

Lake water increase in phosphorus concentration can lead to nitrogen 

limiting conditions that favour the increase in abundance of toxic cyanobacteria 

with the consequent adverse effects in public health.     

 

2.12 Modeling Review 

Information on the dynamics and quantity of phosphorus is critical in the 

assessment of water quality (Komatsu et al., 2006) since availability of this 
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element is a limiting factor in the production of phytoplankton in most freshwater 

systems (Schauser et al., 2004; Schindler, 1977; Scinto and Reddy, 2003; Zhou 

et al., 2001). 

Some components within the aquatic ecosystem are naturally placed as 

key factors to buffer drastic fluctuations in phosphorus levels and consequently in 

algal productivity. Submerged aquatic vegetation and associated periphyton have 

been identified as potential controllers of lake water phosphorus concentration 

and water quality (Bachmann et al., 2002; Bachmann et al., 2004; Dierberg et al., 

2002; Scheffer, 2004). Results presented in chapters 4 and 5 show inverse 

correlations between submerged aquatic vegetation and water phosphorus 

concentrations even higher than those reported on the literature, and support the 

theory that submerged aquatic vegetation plays an important role as a regulator 

of water phosphorus levels and water quality in general and as such, needs to be 

included in a lake water quality model. 

Since early in the 1970’s, environmental managers started using models 

as a tool for analysis and formulation of plans (Komatsu et al., 2006). Today, 

models are obligatory tools to solve environmental problems. In eutrophication, 

simple empirical/regression models have been designed to estimate chlorophyll-

α based on a known total phosphorus (TP) concentration (Bachmann et al., 

2002; Canfield and Hoyer, 1992; Canfield et al., 1984; Canfield, 1983).  

Regression models, however, do not accurately account for the non-linearity of 

the flows between the components of ecological systems. In contrast,  dynamical 

eutrophication models better predict the reservoir’s reaction to nutrient inputs 
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(Komatsu et al., 2006), since they incorporate a mechanistic approach that 

includes time-dependent non-linear closed-loop interactions between 

determinant components of the system (Schnoor, 1996).  

Many dynamical models that simulate phosphorus cycling in aquatic 

systems have been published. These models represent all scales from lakes 

(Everett et al., 2007; James and Bierman Jr., 1995; Komatsu et al., 2006; 

Schauser et al., 2004; Schauser et al., 2006; Spears et al., 2008; Zhou et al., 

2001), estuaries (Doering et al., 1995; Kittiwanich et al., 2006; Serpa et al., 

2007), wetlands (Lantzke et al., 1999; Richardson et al., 2005; Wang and Mitsh, 

2000) to global cycles (Chameides and Perdue, 1997); and different levels of 

complexity , from three compartments or reservoirs (Harte, 1988; Lahm, 2008) to 

more than ten (Jorgensen, 2003; Kittiwanich et al., 2006; Tett and Wilson, 1999).  

Complicated models with a large number of reservoirs and factors 

considered might be too specific to be applied to more general circumstances.  

As it is the case with any of the components of aquatic ecosystems, given the 

complexity of interactions between factors affecting phosphorus cycling in a 

shallow lake, it is impossible to know and realistically consider all of them (Carr et 

al., 1997). It is therefore important to define what the most important factors, 

parameters, speciation, and mechanisms involved in water phosphorus dynamics 

are, in order to limit the complexity of the model.  Some important parameters of 

phosphorus dynamics of shallow aquatic lakes assuming conditions of a closed 

system are given in Table 2.1.  
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Table 2.1   Imortant parameters measured and considered in phosphorus (P) cycling 
models of shallow aquatic systems. 

Description Type of 
aquatic 
system 

Value in terms of 
phosphorus (P) 

Source 

P content in 
peryphiton  

Wetlands 0.10 – 0.29 mg g-1 
dry weight 

Scinto and reddy, 2003 

P content in 
submerged 
aquatic 
vegetation 

Lakes 1.41 mg g-1 dry 
weight 

Bachmann et al., 2002 

P content in 
lake pore water 

Lakes ≤6 mg L-1 Moore et al., 1991 

P content in 
lake pore water 

Lakes 0.1 - > 1 mg L-1 Moore et al., 1998 

P content in 
lake sediment 

Lakes 0.54-3.84 mg g-1 dry 
weight 

Perkins and Underwood, 2000 

P content in 
wetland 
sediment 

Wetlands 0.28 – 0.37 mg g-1 Wang et al., 2006 

 

For instance, phosphorus modeling would ideally consider separate forms 

of phosphorus, particulate and dissolved, as only dissolved forms can be 

assimilated by primary productivity. Kinetic rates for both forms of phosphorus 

might not be available (Wang and Mitsh, 2000). Additionally, particulate 

phosphorus represents the most of the phosphorus present in aquatic systems 

(Table 2.2), therefore it is practical for modeling efforts to use total phosphorus 

(TP) as an alternative for differentiating the two forms of phosphorus (Wang and 

Mitsh, 2000). For costly decisions related to water quality management, however, 

a more detailed approach to the  problem may be required (Schnoor, 1996). 



 

 39

Table 2.2   Percent of particulate and dissolved phosphorus content in water column in 
shallow aquatic systems. 

Source Percentage 
Particulate 

Percentage 
Dissolved 

Meybeck (1982) in Wang and Mitsch (2000) 95 5 
Wang and Mitsch (2000) >75 <25 
Schnoor (1996) 70 30 
Perkins and Underwood (2000) 84-85 16-15 
 

Whenever a required level of detail cannot be achieved, assumptions and 

inputs from other similar conditions might be needed and expected to offer 

helpful hints into phosphorus dynamics of aquatic systems.  Efforts then should 

attempt to synthesize scientific information from literature into the missing 

elements in the process of model construction.  Sections from 2.1 to 2.10 of this 

chapter describe important factors influencing the metabolism of phosphorus in 

shallow lakes.  In the present section of this literature review, basic processes of 

phosphorus retention and release in shallow aquatic systems are examined with 

a goal to gain insight regarding phosphorus cycling and the role of submerged 

aquatic vegetation in lakes.  Such processes will be discussed based on their 

role in potential basic components or reservoirs of a model that has not been 

proposed but is theorized in this document. 

 

2.12.1 Interaction between Sediments and Water Column 

It is well known that the concentration of phosphorus in aquatic systems 

with an active inflow and outflow of water depends directly on the phosphorus 

concentration in the inflow (Richardson, 1996; Schnoor, 1996), and inversely on 
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the hydraulic detention time and the sedimentation rate (Schnoor, 1996). In 

addition to better conditions for sedimentation, which is the main factor 

responsible for retention of phosphorus (Schnoor, 1996; Wang and Mitsh, 2000), 

a large hydraulic detention time, also increases the opportunity of primary 

productivity for a higher nutrient uptake (Wang and Mitsh, 2000).   

The overall cycling of phosphorus in aquatic systems is influenced in great 

measure by sediments, acting either as a sink or source of phosphorus (Bostrom 

et al., 1988; Fisher and Reddy, 2001).  Some of the phosphorus that settles 

down to the sediments is recycled back into the lake water column, especially at 

higher temperature (Genkai-Kato and Carpenter, 2005) and anoxic conditions 

(Schnoor, 1996).  Some recycled phosphorus from sediments to water has been 

mentioned in modeling literature not specifying the pathway (Schnoor, 1996) or 

has being modeled through resuspension caused by benthic organisms and 

storms; or through emergent macrophytes that pump phosphorus from sediments 

up to water  through litter pathways (Wang and Mitsh, 2000).  The latter process 

happens because emergent macrophytes rely exclusively on sediments for 

nutrients up-take (Graneli and Solander, 1988).  

In general, sediments play a key role as potential source of phosphorus 

into the overlying water (Zhou et al., 2001) and consequently in the recovery of 

deteriorated aquatic systems (Komatsu et al., 2006).  That explains why 

sediments have been included in many published models of phosphorus cycling 

in aquatic systems (Carpenter, 2005; Kittiwanich et al., 2006; Komatsu et al., 
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2006; Schauser et al., 2004; Schauser et al., 2006; Serpa et al., 2007; Spears et 

al., 2008; Wang and Mitsh, 2000; Zhou et al., 2001). 

Concomitant to the importance of sediments in the lake water phosphorus 

cycle are the concentration of oxygen, iron, and aluminum (Moore et al., 1991; 

Richardson, 1985; Sundby et al., 1992) in the sediments, as these metals 

determine the capability of sediments to sequester phosphorus.  Therefore, 

phosphorus release rates from sediments into the water clearly need to be 

considered in model building.   

 

2.12.2 Interaction between Sediments and Submerged Aquatic Vegetation 

Recycling of phosphorus from sediments to the water column represents a 

critical factor for phosphorus budget calculations (Reddy et al., 1999). Wang and 

Mitsh (2000) included emergent macrophytes as a pathway for returning 

phosphorus from sediments back into the water column. The authors calculated 

that harvesting of macrophytes could remove phosphorus from the system at a 

rate of 0.32 – 1.6 g m-2 year-1 depending on the biomass of the macrophytes.  

Submerged macrophytes have also been modeled as suppressing phosphorus 

release from sediments to the water column (Genkai-Kato and Carpenter, 2005; 

Hamilton and Mitchell, 1996; Scheffer, 2004).  

Literature indicates that for emergent vegetation, absorption and 

translocation of sediment phosphorus to plant material has important effect on 

the phosphorus cycle of lacustrine systems (Barko and Smart, 1980; Barsdate et 
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al., 1974, as quoted in Barsdate et al., 1974; Mcroy et al., 1972). While 

submerged aquatic vegetation influences phosphorus concentration in lake water 

through its effect in decreasing sediments resuspension (Bachmann et al., 2002; 

Bachmann et al., 2004; Scheffer, 2004).  Models that intended to determine the 

concentration of suspended sediments in the lake water column based on the  

stress induced by waves have resulted in error because submerged aquatic 

vegetation was not considered (Hamilton and Mitchell, 1996). 

Both types of aquatic vegetation have different effects in the phosphorus 

cycle based, among other reasons, on their source of nutrients.  These sources 

of nutrients are sediments for emergent macrophytes but both, sediments and 

water, for submerged macrophytes (Graneli and Solander, 1988).   In the model 

formulated by Genkai-Kato and Carpenter (2005), shallow depths favor the 

capacity of submerged macrophytes to suppress phosphorus recycling in lakes. 

A shallow depth was assumed in the model by Wang and Mitsh (2000) since it 

was applied to a wetland. 

 

2.12.3 Interaction between Submerged Aquatic Vegetation and Water 

Column 

 Other pathway for submerged aquatic vegetation effect in water 

phosphorus cycling is by increasing nutrient-up take directly  (Graneli and 

Solander, 1988) and through periphyton and other epiphytes (Dierberg et al., 

2002; Scinto and Reddy, 2003). Except for few dynamical models (Everett et al., 
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2007; Genkai-Kato and Carpenter, 2005) and a regression model (Canfield et al., 

1984) submerged aquatic vegetation has not often been taken into account in 

modeling for water quality. Based on the results seen in chapters 4 and 5, 

including submerged aquatic vegetation may improve prediction of behaviors in 

shallow lakes.  Models that do not include the submerged aquatic vegetation 

component but other types of biomass have calculated the rate of phosphorus 

up-take in proportion to the net growth of biomass (Chameides and Perdue, 

1997; Wang and Mitsh, 2000), and this same principle may be applied to 

potential models that include submerged aquatic vegetation. For simplicity, 

submerged aquatic vegetation might be considered as a single factor, or 

alternately, as affected by light, temperature, nutrients, carbon, water velocity 

and so on (Carr et al., 1997). 

 

2.12.4 Historical Land Use and Trend of Population Growth 

 So far the components considered in this chapter have been about the 

minimum required for estimating water phosphorus concentration under 

conditions of a closed system or assuming known inputs and outputs of 

phosphorus in an open system.  In a more realistic approach, however, inputs of 

phosphorus to the system are not known and also need to be estimated. These 

inputs come with the inflow loads mostly from streams and runoff, are dependent 

on land use (Reddy et al., 1999), and can be predicted with the use of models 

(Omernik, 1976). The inclusion of external components in phosphorus cycling 
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can be complex and require a large amount of data (Soranno et al., 1996), 

increasing uncertainties and the possibility of error for the overall model. 

Research and careful modeling, however, can account for this downside and 

improve the accuracy of the overall estimations. 

 Models for use in conservation and water quality management have 

predicted increase in the inputs of phosphorus based on historical trends of land 

use and human population (Johnes et al., 1996). Predictions made based upon 

current increase of urban land cover on Lake Mendota watershed estimated 

slight increases in annual phosphorus loading but still enough for significant 

effects on eutrophication. If the entire watershed were urbanized (Soranno et al., 

1996), the phosphorus loading would double and the effects in water quality 

would be severe.   

Accurate consideration of the trends of phosphorus input into the system 

will determine the likelihood of the trends of eutrophication or its reversibility.  

Lakes with long history of heavy inputs of phosphorus would be more difficult to 

recover or may not be able to recover (Carpenter et al., 1999).  This is because 

the phosphorus that enters into the system is mostly accumulated in the 

sediments and the biomass from where it can be recycled to the water column at 

a faster rate than what can be lost from the system  (Carpenter, 2005). This 

recycling of phosphorus can continue for a long time after external inputs have 

been decreased (Carpenter, 2005).  Failure in reaching a goal level for lake 

water phosphorus concentration projected with a residence time model has been 

attributed to a recycling of phosphorus from the sediments (Larsen et al., 1979).  
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For this reason internal loadings are more important for predictions than external 

loadings unless sediments are removed from the system (Reddy et al., 1999). 

Yet, probably even more important than recycling from the sediments is a 

slow and constant flux of phosphorus from the watershed soil (Carpenter, 2005). 

This happens as a consequence of accumulation of phosphorus in the soil and is 

more common in agricultural areas as a consequence of over-fertilization 

(Bennett et al., 2001).  According to model estimates,  when phosphorus inputs 

are decreased, recovery of eutrophic lakes can be fast if phosphorus recycling 

from sediments and flux from soils are slow, but this recovery can take hundred 

of years if these two processes are fast, (Carpenter, 2005). 

Florida lakes present especial difficulties for prediction models (Reddy et 

al., 1999). The flat and low landscape of Florida make it difficult for watershed 

boundaries to be delineated, hence calculations of non-point inputs are difficult.  

The sandy limestone foundation of the peninsula cause seepage lakes where no 

surface inflow or outflow can be easily identified, complicating the calculations of 

inputs and outputs of phosphorus. Additionally, atmospheric inputs of dry 

phosphorus need to be included in the calculations since this represents a 

significant external source according to what was reported for Reddy et al. 

(1999).    
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2.12.5 Some Parameters Found in Literature 

Hence, submerged aquatic vegetation should be another important 

reservoir to be considered in modeling of phosphorus cycling in shallow aquatic 

systems. Table 2.3 shows some rates for important fluxes between water and 

sediments, periphyton, and phytoplankton compiled from literature. These 

standard rates can be useful for modeling efforts addressing the metabolism of 

phosphorus in shallow lakes. Notice that no rates are included for submerged 

aquatic vegetation, which reflect the insufficient inclusion of this component in 

modeling studies.  
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Table 2.3   Standard rates in phosphorus cycling of shallow aquatic systems. 

Description Type of 
aquatic 
system 

Value in g P m-2 
year-1 

M:measured 
C:calculated 

Source 

Phytoplankton 
and periphyton 
up-take 

Wetlands 0.12 – 0.22  C Wang and 
Mitsch, 2000 

Sedimentation 
rate 

Wetlands 0.62 - 1.08   C Wang and 
Mitsch, 2000 

Sedimentation 
rate 

Lakes 3.17  M Schauser et 
al., 2004 

Flux by 
leaching and 
decomposition 
of bottom  

Wetlands 0.20 – 0.66 C Wang and 
Mitsch, 2000 

Flux from 
sediments by 
resuspension  

Wetlands 0.27 – 2.47 C Wang and 
Mitsch, 2000 

Flux from 
sediments by 
resuspension 

Lakes 1.46 – 25.55   M Sondergaard 
et al., 2004 

Flux from 
sediments  

Lakes 2.11  C Schauser et 
al., 2004 

Flux from 
sediments  

Wetlands 2.37  M Fisher and 
Reddy, 2001 

Flux from 
sediments  

Lakes 0.99  M Moore et al., 
1991 

Flux from 
sediments 

Lakes 0.36  M Moore et al., 
1998 

Flux from 
sediments  

Wetlands 3.41  M Lai and Lam, 
2008 

Flux from 
sediments 

Lakes 0.38 M Ogburn 
(1984) in 
Reddy et al. 
(1999) 

Atmospheric 
deposition 

lakes 0.044 - 0.058 M Ogburn 
(1984) in 
Reddy et al. 
(1999) 

Sediments 
accumulation 
rates 

Wetlands 6 to 29 mm year-1 C Wang and 
Mitsch, 2000 
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2.13 Discussion 

  Considering the inverse relationship observed in Chapters 4 and 5 

between the prevalence of submerged aquatic vegetation and the concentration 

of TP in lake water, it seems more likely that the process modelled by Genkai-

Kato and Carpenter (2005) in which submerged aquatic vegetation function as a 

suppressor for recycling of phosphorus from sediment back to overlying water is 

more prevalent than the possible pumping effect from sediments to water  

modelled by  Wang and Mitsh (2000).  This also agrees with the water quality 

model of James and Bierman (1995), which calculated that the amount of 

phosphorus removed by sedimentation from water solution in Lake Okeechobee 

exceeded the net flux of phosphorus from sediments into the overlying water.  

Table 2.3, however, shows similar rates reported for phosphorus sedimentation 

and phosphorus flux from sediments to water. 

The inverse association between lake water TP concentration and depth 

also is consistent with the effect of temperature modeled by Genkai-Kato and 

Carpenter (2005). According to this the higher temperature associated to shallow 

depth favour the chemical reactions leading to release of phosphorus from the 

sediments into the overlying water. This would, subsequently increase the 

concentration of phosphorus in solution.  Unfortunately limited information was 

found about models including the processes of phosphorus uptake from 

sediments and water to submerged aquatic vegetation that could be used to 

interpret the associations found.  It is, therefore, difficult to test for a relationship 

between submerged aquatic vegetation and lake water phosphorus 
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concentration due to the lack of observational or calculated data for up-take rates 

from sediments and water to submerged aquatic vegetation as well as release 

rates from submerged aquatic vegetation to water column. In addition, another 

difficulty is the lack of literary sources that include all the rates for the three 

proposed reservoirs in the same system.  

A simplistic model suggested here to estimate the status of TP 

concentration in lake water of urban lakes based on the status of submerged 

aquatic vegetation should be composed by three reservoirs: TP contained in 

sediments, TP contained in water column, and TP contained in submerged 

aquatic vegetation. This model would test assumptions made in literature and 

results obtained in Chapter 4 and 5 about association and possible causation 

between submerged aquatic vegetation and concentration of phosphorus in lake 

water.  Since phosphorus does not have a stable gaseous form of significance 

(Chameides and Perdue, 1997; Lahm, 2008; Schlesinger, 1991), this model 

would not include any reservoir or input for phosphorus in gaseous form nor 

consider any output from the system into the atmosphere.  It is important to make 

the observation, however, that in lakes were other inputs of phosohorus are not 

large enough, then phosphorus atmospheric deposition may be considered 

significant. 

Since lakes are open systems with a strong dependence from external 

inputs and outputs, these need to be included as flows in and out of the system. 

Among the possible external sources of phosphorus in the lakes with lower levels 

of total water phosphorus concentration may be runoff from urban areas.  
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Although phosphorus is known for not been soluble and readily transported with 

water, the fact that the underground soil profile surrounding these lakes is sandy 

karst  (van Beynen et al., 2007) suggests the possibility that leaching of some 

forms of soluble phosphorus through the underground profile may be another 

external source of phosphorus to the lakes. Note that some of the lakes with 

higher concentrations of total phosphorus in the water column are located toward 

the eastern part of the Tampa Bay watershed, which also is the part of the 

watershed that is contained within the area of the Southern Bone Valley (Brown, 

2005). Landscape alterations, runoff, groundwater flow of soluble phosphorus, or 

discharges from mining activities may explain their high phosphorus levels.  

Naturally occurring phosphorus, suburban and agricultural land runoff may be the 

main sources of phosphorus for Lake Thonotosassa, which is the lake with the 

highest level in water column phosphorus concentration among those examined 

here.  

The slightly decreasing trend in total phosphorus concentration in the 

eutrophic and hypereutrophic lakes may be indicative that loading of phosphorus 

to these lakes was not excessive to the point that eutrophication could not be 

reversed.  Otherwise due to excessive phosphorus loading, the labels would 

have produced such accumulation of phosphorus in the system that recycling 

from sediments and flux from soils were faster than phosphorus loss from the 

system (Carpenter, 2005; Larsen et al., 1979). Special consideration must be 

given to the amount of phosphorus loading over time since it would determine in 

great measure the possibility of recovering (Bennett et al., 2001; Carpenter, 
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2005) and also to the land use in the watershed since it would determine the 

loading  (Johnes et al., 1996; Soranno et al., 1996). 

A good alternative tool to construct this model is Stella ® software, an 

iconographic computational platform helpful to visualise and analyze equations 

and processes (Costanza and Voinov, 2001), that has been commonly applied 

for biogeochemical modeling in aquatic systems (Carpenter, 2005; Jorgensen, 

2003; Jorgensen et al., 2002; Krivtsov et al., 2000; Tett and Wilson, 1999).  
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CHAPTER 3. 

TEMPORAL TRENDS IN LAKE WATER CONCENTRATION OF TOTAL 

PHOSPHORUS, RATIO OF TOTAL NITROGEN TO TOTAL PHOSPHORUS, 

AND CHLOROPHYLL-α FOR LAKES OF DIFFERENT EUTROPHICATION 

STATUS IN TAMPA BAY WATERSHED: 1990-2007 

3.1 Introduction 

This chapter provides an analysis of the nutrient and chlorophyll-α 

concentration trend behavior in a group of lakes of the Tampa Bay watershed, 

which may prove to be useful indicators of overall watershed trends. These 

findings will present evidence to further corroborate or contradict the theory of 

cultural eutrophication associated with watershed development (Smith et al., 

2003). On a broader scale, the knowledge of a trend, if one exists, would assist 

surface water managers and community stakeholders in their efforts to create 

sustainable development in the Tampa Bay watershed.  

The 5,7000 ha Tampa Bay, watershed lies within the Counties of 

Hillsborough, Pinellas, and Manatee and extends to parts of Sarasota, Pasco, 

and Polk Counties.  Between 2001 and 2030, the population within the Tampa 

Bay watershed is expected to increase by an estimated two million people and 

940,000 jobs are projected to be created during the same time period (Tampa 
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Bay Regional Planning Council, 2007). Concern over the impact of this region’s 

fast growth on the cultural eutrophication of natural lakes located in the Tampa 

Bay watershed relates to not only the bodies of water within the watershed, but 

more broadly, to the possible effects of ecosystem flux on the receiving bay. 

 

3.2 Objectives and Hypotheses 

Population growth and watershed development have often been 

associated with increased nutrient concentration in naturally occurring bodies of 

water (Rast and Thorton, 1996; Smith et al., 2003). Terrell et al. (2000) however, 

did not find a trend of increasing water concentration of total phosphorus (TP), 

total nitrogen (TN), and chlorophyll-α across 127 Florida lakes during a time 

period of growing population between 1967 and 1997.  Reports 305 (b) from the 

Florida Department of Environmental Protection (FDEP), however, have reported 

over time a decreasing percentage of lakes with a stable water quality.  The 

percentage of lakes with stable levels of eutrophication estate parameters (TP, 

TN, and chlorophyll-α) were 71, 58, and 41% for the years 1996, 2000, and 2006, 

respectively. The percentage of lakes reporting a degrading trend in 

eutrophication parameters (increases in TP, TN, and chlorophyll-α) has 

increased: 9, 22, and 33% for the years 1996, 2000, and 2006, respectively. The 

percentage of lakes showing an improving trend in eutrophication parameters 

(decrease in TP, TN, and chlorophyll-α) has also increased, but to a lesser 

extent: 20, 20, and 26% for the years 1996, 2000, and 2006, respectively. The 
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number of lakes assessed by the FDEP for the above mentioned reports was 

627, 541, and 358, respectively   (FDEP, 1996; 2000; 2006). 

With those different findings as a background, the following objective and 

hypothesis are addressed in this chapter for lakes in the Tampa Bay watershed: 

 Objective: To determine if there is a change in lake water 

concentration of eutrophication-related parameters netween 1990 and 

2007.  

• Null Hypothesis (Ho): Lake water concentration of total 

phosphorus (TP), ratio of total nitrogen to total phosphorus 

(TN:TP), and chlorophyll-α did not change between 1990 to 

2007. 

• Alternate Hypothesis (Ha): Lake water concentration of total 

phosphorus (TP), ratio of total nitrogen to total phosphorus 

(TN:TP), and chlorophyll-α did change between 1990 to 2007. 

3.3 Methods 

3.3.1 Data Gathering and Sampling Methods 

To examine the temporal variability of water chemistry, existing record 

data for lake water concentrations of TN, TP, and chlorophyll-α on 16 lakes 

located in the Tampa Bay watershed were compiled.  Out of 649 lakes located in 

Hillsborough, Pinellas, Manatee, and Polk Counties, for which information is 

provided by the Water Atlas (2008), web site of the Florida Center for Community 

Design and Research at the University of South Florida, only 16 lakes met both 
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inclusion criteria: containment within the Tampa Bay watershed and data 

availability for at least 75% of the 18 year study period (1990 to 2007). The 

locations of the lakes chosen for this analysis are represented graphically in 

Figure 3.1. For more information about the lakes, refer to Appendix A.   

All of the data analyzed in this study were obtained from the Water Atlas 

(2008).  Most of the water samples were collected by citizen volunteers 

sponsored by the water quality monitoring program, LAKEWATCH, and these 

samples were analyzed in the laboratory of the Department of Fisheries and 

Aquatic Sciences at the University of Florida. The methods used to collect the 

data are described in Brown et al. (1998). TP was determined by oxygenating 

phosphorus with potassium persulfate (Menzel and Corwin, 1965) and measuring 

the liberated phosphorus with the colorimetric technique of Murphy and Riley 

(1962) as cited in Menzel and Corwin (1965).  TN was determined by a 

persulfate oxidation technique (D'Elia et al., 1977) followed with nitrate-nitrogen 

determination by ultraviolet derivative spectroscopy of second order (Bachmann 

and Canfield, 1996; Simal et al., 1985; Wollin, 1987).  Determination of 

chlorophyll-α was done by extracting the pigment with ethanol (Sartory and 

Grobbelar, 1984) and then measuring it with spectrophotometry following the 

Standard Method (SM) 10200 H method (APHA, 1989; 1998). 

Water samples from Lake Thonotosassa were collected and analyzed by 

the Environmental Protection Commission of Hillsborough County using a 

combination of EPA and APHA Standard Methods. TP was determined by EPA 

365.4; and TN was the sum of Total Kjeldahl Nitrogen (TKN) and nitrate/nitrite 
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nitrogen, where Total Kjeldahl Nitrogen (TKN) was determined by EPA 351.2 

while SM 4500 NO3 F (APHA, 1989; 1998) was used for nitrate/nitrite nitrogen. 

Chlorophyll-α was determined by SM 10200 H (APHA, 1989; 1998).   

 Samples from Behula, Bonnet, and Hunter Lakes were collected by the 

City of Lakeland Division of Lakes and Stormwater and analyzed by the City of 

Lakeland Wastewater Laboratory. The method used for TP analysis was EPA 

365.4; and for TN analysis the methods were EPA 353.2 for nitrate and PAI 

DK03 (method approved by the Environmental Protection Agency) for Total 

Kjeldahl Nitrogen (TKN).  For chlorophyll- α, a modification of Standard Methods 

10200ha (APHA, 1998) was used.  Data for Ward Lake came from STORET, a 

computerized environmental database of United States Geological Survey, which 

was also was made available by Water Atlas (2008).   

 

3.3.2 Statistical Analysis 

The total data set of values for TP, TN:TP, and chlorophyll-α from each 

lake were used over the 18-year time period.   

Values for TN were analyzed relative to TP. The importance of lake water 

TN concentration as a limiting factor depends on its abundance relative to that of 

lake water TP. Therefore, a TN:TP ratio is more meaningful in regard to the 

potential for eutrophication and likelihood of algal abundance.  According to the 

nutrient limitation criteria based on Brezonick (1984), ratios greater than 30 

correspond to phosphorus-limited lakes while ratios less than 10 correspond to 
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nitrogen-limited lakes. Nutrient limitation in lakes is balanced (both nutrients are 

limiting) if TN:TP ratio is between 10 and 30.  

The 16 lakes studied to assess the overall trend of TP, TN:TP, and 

chlorophyll-α were sorted in two groups depending on the overall mean of lake 

water TP concentration for each lake during the study period. The grouping 

criteria followed the Trophic State Classification System of Forsberg and Ryding 

(1980) (Fig 3.1).  This system suggests uses for surface waters based on the 

water nutrient concentration and not necessarily implying an adverse effect; 

however, as discussed in Chapter 1, elevated nutrient levels have been 

associated with adverse human and environmental health consequences.   

The Florida Department of Environmental Protection Agency (FDEP) 

among other parameters considers surface waters as good when TP 

concentrations are between 0 to 64 mg L-1, fair if TP concentrations range from 

65 to 112 mg L-1, and poor for TP concentrations between 112 and 567 mg L-1.  

  The first group of lakes was comprised of 10 lakes exhibiting both 

oligotrophic and mesotrophic conditions (less than 25 µg TP L-1), while the 

second group comprised 6 hypereutrophic lakes (more than 100 µg TP L-1).  The 

first group were located in the northwestern corner of Hillsborough County, an 

area that drains into Old Tampa Bay according to Lewis and Estevez (1988) 

(Figure 1.1).  Lakes in the second group were found in more distant parts of the 

Tampa Bay watershed, for example, in Hillsborough, Pinellas, Polk, and Manatee 

Counties. Figure 3.2 shows all the lakes included in this analysis. 
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Since the objective of this research was to characterize patterns of 

response and change in a variable (TP, TN:TP, or chlorophyll-α) over time, this 

analysis falls under the definition of longitudinal research (Ware, 1985). As it is 

usual in most longitudinal studies, this one violates some assumptions required 

for standard regression analysis.  Measurements taken over time were not 

independent, residuals were not normally distributed, and data were not collected 

at a constant set of time points and many values are missing: characteristics that 

make standard regression analysis inapplicable (Lin and Ying, 2003; Ware, 1985; 

Zeguer et al., 1988). For each parameter in each trophic group of lakes, 

however, least squares linear regressions were plotted as a preliminary visual 

assessment of the overall 18-year trends.  

Points that were 5 times greater or smaller than the mean and that 

individually influenced the mean value of the eutrophication parameter were 

removed as high influence points. The total numbers of points removed by this 

method were 7 out of 2101 for TP and 2 out of 1707 for chlorophyll-α   

A randomized complete block design (Ott, 1993) was used for this 

analysis. Period was the treatment. To account for lake effect, the data was 

blocked by lake.  The response was lake water concentration of TP, TN:TP ratio, 

and chlorophyll-α, and the experimental unit was lake water in Tampa Bay 

watershed. It was an assumption that samples were collected at random 

(randomly distributed in time). The null hypotheses for each of the sets are given 

below: 

1. The means of the periods are equal.  
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2. The means of the lakes are equal.  

3. There is no interaction between periods and lakes.  

Lakes were first separated into low and high eutrophication groups based 

on TP concentration, as previously discussed. 

 A two-way analysis of variance (ANOVA) was conducted with SYSTAT® 

to test the research hypotheses. The first factor was period. The data set for 

each trophic group was divided in two periods: Period 1 extended from 1990 until 

1998 and Period 2 from 1999 until 2007. The second factor was lake (lake 

drainage basin).  

  ANOVA is a tool typically applied to controlled experiments rather than to 

"natural" experiments; however, ANOVA has been used in natural studies to test 

for changes in TP (Smith and McCormick, 2001) and mercury (Babiarz et al., 

1998) concentration over time or space. 

T-test considering unequal variances was applied to detect differences 

between periods within each lake.  A significant level of α = 0.05 was used to 

perform all the statistical tests.  

Annual averages of TP, TN:TP ratio, and chlorophyll-α concentrations 

across all lakes were plotted against the corresponding year to easily visualize 

cycling in the data. Regression coefficients that represent the population of data 

rather than the original specific data are called “population-averaged” as 

described by Zeguer et al. (1988). A 
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Annual estimates of population data for the Tampa Bay Metropolitan Area 

and Hillsborough County were tabulated by year to appreciate the annual growth 

in population.   

Figure 3.1   Trophic State Classification System (Forsberg and Ryding, 1980). 
Concentrations of constituents for each trophic state, and typical uses of waterbodies. 
http://www.hillsborough.wateratlas.usf.edu  

 

 

 

 

http://www.hillsborough.wateratlas.usf.edu/


 

 61

Figure 3.2   Lakes analyzed for trends in trophic state variables during the time period 
1990 to 2007. Lakes are shown in red. Lakes within the circle are oligotrophic and 
mesotrophic. 
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3.4 Results and Discussion 

Results from the two-way ANOVA showed a significant difference 

between means of lakes in all the groups for all the trophic state variables 

considered (p<0.0001).  Interactions were found between periods and lakes in all 

the groups for all the trophic state variables considered (p<0.003). Over the 18-

year study period, overall average annual TP concentrations for the ten 

oligotrophic and mesotrophic lakes ranged from 10.47 to 19.09 µg L-1. Individual 

lake values ranged from 2.00 to 59.00 µg L-1 (Table 3.1).  Many values in the 

upper annual range exceeded the limit of 25 µg L-1 of TP used as trophic class 

separation.  However, the means for each one of these lakes remained within the 

25 µg L-1 limit according to the criteria.  The overall annual average of TP 

concentration increased from 11.71 µg L-1 in 1990 to 15.00 µg L-1 in 2007 (Table 

3.1). The best-fit line for a plot of original data suggested a weak correlation (r  = 

0.3) and a positive slope (Figure 3.3). A significant difference was found with two-

way ANOVA between the means of the first and second periods (p< 0.0001). The 

t-tests performed on TP concentration for each lake between Periods 1 and 2 

showed a statistically significant difference (p ≤ 0.05) in all the lakes of this group 

except for two.  The fact that each lake did not increase at the same rate 

between period 1 and 2 was evidence of significant interaction (Figure 3.4).  

The average annual TP concentration for the group of hypereutrophic 

lakes ranged from 456.47 µg L-1 in 1997 to 158.29 µg L-1 in 2007 (Table 3.2). The 

individual values ranged from 10 to 2300 µg L-1. The best-fit line for a plot of 

original data showed a low coefficient of determination and a slightly decreasing 
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slope (Figure 3.5). Two-way ANOVA showed significant differences between the 

two periods (p = 0.03).   Such results were the opposite of the increasing trend 

suggested by the group of oligotrophic and mesotrophic lakes for the same 

parameter and time period.  The t-tests performed for each lake of this group for 

TP concentration found no statistical significant difference between the first and 

second period in two lakes (p > 0.05), and a significant increase in one lake (p ≤ 

0.05). Since the effects of period on lake water TP concentration did not remain 

the same for different lakes then there was interaction (Figure 3.6). 

For the group of hypereutrophic lakes, reasons for changes in lake water 

TP concentration may be related to implementation of lake management plans, 

lake restoration, and storm water treatment projects (City of Lakeland, 2001; 

Southwest Florida Water Management District, 2003). The plan of water 

improvement for Lake Thonotosassa, for instance, had a reduction in phosphorus 

loadings from point sources since the Sno-Man seafood processing plant closed 

in 1992 and the Plant City Wastewater Tretament Plant ceased discharges in 

1997. In regards to non-point sources, a 21-ha marsh was constructed to 

intercept water from Baker Creek before entering the lake.  A strategy to control 

exotic submerged and floating plants, such as water hyacinth (Eichhornia 

crassipes) and water lettuce (Pistia stratiotes, has been implemented to allow 

penetration of light for submerged aquatic vegetation species.  Such programs 

for lake improvement may have given priority to those lakes with the worse water 

quality in order to maximize the efficiency of limited funding.  The reduction in 
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lake water TP concentration observed in these highly eutrophied lakes 

demonstrate the efficacy of lake management plans.   

 Differences in the amplitude of TP concentrations between oligotrophic 

and mesotrophic lakes and hypereutrophic lakes were seen.  Standard deviation 

(SD) in TP concentrations for oligotrophic and mesotrophic lakes ranged from 

3.77 to 10.09 µg L-1 (Table 3.1) and coefficient of variation (CV) from 27% to 

60%, while for hypereutrophic lakes SD went from 72.35 to 482.01 (Table 3.2) 

and CV from 45% to 105%.   

Table 3.1   Summary statistics for annual TP concentration in µg L-1 collected by 
LAKEWATCH from 10 oligotrophic and mesotrophic lakes in two counties from 1990 
through 2007 

Year Annual 
Average 
(µg L-1) 

SD 
(µg L-1) 

Minimum 
(µg L-1) 

Maximum 
(µg L-1) 

n 
(Lakes) 

n 
(Samples)

1990 11.71 3.71 5.00 23.00 7 24 
1991 14.14 4.91 7.00 29.00 8 68 
1992 12.66 5.02 5.00 25.00 10 88 
1993 10.51 4.24 4.00 21.00 9 92 
1994 10.47 5.05 2.00 25.00 8 73 
1995 10.64 5.55 3.00 27.00 9 72 
1996 10.63 4.48 3.00 25.00 9 69 
1997 14.16 3.39 6.00 24.00 10 74 
1998 16.17 7.02 7.00 48.00 9 68 
1999 13.96 3.77 5.00 21.00 8 70 
2000 13.97 3.43 9.00 29.00 9 73 
2001 13.52 4.82 6.00 34.00 9 78 
2002 14.12 7.28 4.00 43.00 10 91 
2003 17.40 10.59 5.00 59.00 10 86 
2004 19.09 6.90 7.00 35.00 10 74 
2005 18.93 7.83 8.00 36.00 9 59 
2006 17.30 7.29 7.00 34.00 8 41 
2007 15.00 5.90 6.00 29.00 6 32 
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Figure 3.3   Plot of TP concentration for 10 oligotrophic and mesotrophic lakes. 

y = 0.0012x - 28.603
r  = 0.31
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As mentioned earlier, analysis of TN is expressed here as a ratio to TP 

since phosphorus is the nutrient limiting natural productivity in most of these 

lakes and because cyanobacteria abundance is a concern under conditions of 

high lake water TP concentration relative to lake water TN concentration. The 

overall group of 10 lakes, oligotrophic and mesotrophic, presented annual mean 

TN:TP ratio slightly decreasing from 55.35  in 1990 to 44.14 in 2007 (Table 3.3) 

and ranged from 35.82 to 55.35 (Table 3.3).  Individual values ranged from 12.41 

to 132.00, the annual SD ranged from 10.04 to 18.14 and CV from 26% to 33%.  

A plot of TN:TP ratios for individual values shows a decreasing line with a weak 

correlation (r = 0.26, Figure 3.7) for this group of lakes.  
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Figure 3.4   Change in TP concentration in 10 oligotrophic and mesotrophic lakes between 
Periods 1 and 2. 
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Two-way ANOVA confirmed this trend by finding a significant difference 

between the first and second periods, being lower in the second (p < 0.001).  

Even though all the 10 lakes showed a decrease in TN:TP ratio from the first to 

the second period, when tested individually by t-test, this change was not 

statistically significant (p > 0.05) for four lakes. The effect of period on TN:TP 

ratio was not consistent between lakes in this group (Figure 3.8), indicating 

interaction between period and lake. The overall decreasing trend in TN:TP ratio 

might indicate that TP concentration has increased at a faster pace than TN 
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concentration.  As the plot of ratios shows, all lakes in this group are included 

within the phosphorus limitation criteria of Brezonick (1984), that is, all ratios ≥ 30 

(Figure 3.7). However, if the downward trend continues, it would result in a 

gradual tendency from being phosphorus-limited toward being phosphorus- and 

nitrogen-limited.   

Table 3.2   Summary statistics for annual TP concentration in µg L-1 collected by 
LAKEWATCH from 6 hypereutrophic lakes in three counties from 1990 through 2007 

Year Annual 
Average 
(µg L-1) 

SD 
(µg L-1) 

Minimum 
(µg L-1) 

Maximum 
(µg L-1) 

n 
(Lakes) 

n 
(Samples)

1990 456.47 482.01 10.00 2300.00 6 53 
1991 311.98 251.78 57.00 890.00 6 53 
1992 463.32 449.27 67.00 2290.00 5 28 
1993 247.03 155.21 51.00 680.00 6 37 
1994 254.53 157.27 64.00 1010.00 6 40 
1995 287.53 121.68 50.00 608.00 6 60 
1996 263.10 121.50 50.00 504.00 6 61 
1997 298.72 251.06 20.00 1800.00 6 58 
1998 375.88 328.34 60.00 2000.00 6 57 
1999 306.90 277.60 30.00 1940.00 6 58 
2000 284.15 199.55 90.00 1050.00 6 55 
2001 260.39 109.76 80.00 508.00 6 57 
2002 228.64 90.34 68.00 483.00 6 42 
2003 300.49 227.86 39.00 1620.00 6 53 
2004 304.04 201.79 80.00 1030.00 6 52 
2005 250.98 144.73 54.00 727.00 6 49 
2006 191.78 120.64 47.00 638.00 6 36 
2007 158.29 72.35 51.00 296.00 5 17 
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Figure 3.5   Plot of TP concentration for 6 hypereutrophic lakes. 
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Figure 3.6   Change in TP concentration in 6 hypereutrophic lakes between Periods 1 and 
2. 
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Low TN:TP ratios could lead to increase of  cyanobacterial water 

concentration (Hecky and Kilham, 1988; Levich, 1996; Levich and Bulgakov, 

1992).  This group of organisms produces potent toxins that have been 

associated to harmful algal blooms (USEPA, 1997) and possibly an increased 

risk of primary hepatocellular carcinoma (Fleming et al., 2002). As a 

consequence, control of nitrogen would be increasingly more important in the 

formulation of environmental management plans for these lakes.   

 Only 5 out of the initial 6 hypereutrophic lakes were examined for TN:TP 

ratio  because no TN data were available for one of them. Data for this ratio 

plotted for this group of lakes (r  = 0.15, Figure 3.9), show a slightly decreasing 

slope within the nitrogen limitation zone. This regression line suggests a 

significant (p < 0.01) weak negative tendency over time which was confirmed by 

two-way ANOVA (p < 0.001).  Individual t-tests, however, detected a statistically 

significant change of increase (p ≤ 0.05) in only two of the lakes. There was 

interaction for this group too because each lake did not increase in a consistent 

way between Period 1 and Period 2 (Figure 3.10).  

For hypereutrophic lakes, TN:TP ratios ranged from 0.41 to 53.92 (Table 

3.4) and overall annual average ratios ranged from 4.66 to 15.89 (Table 3.4). 

These ratios are at the interface between balanced (both nitrogen- and 

phosphorus -imited) and nitrogen-limited (TN:TP = 10) primary productivity.  The 

lower TN:TP ratio found in hypereutrophic lakes as compared to oligotrophic and 

mesotrophic lakes suggested different criteria for lake management options 
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between these two groups of lakes. The SD of TN:TP ratios ranged from 2.7 to 

10.74 and CV from 47% to 101%. 

 
Table 3.3   Summary statistics for the annual ratio of TN:TP ratio collected by 
LAKEWATCH from 10 oligotrophic and mesotrophic  lakes  in two counties from 1990 
through 2007 

Year Annual 
Average  

SD Minimum Maximum n 
(Lakes) 

n 
(Samples)

1990 55.35 14.69 30.77 101.43 6 24 
1991 45.82 10.90 20.00 78.57 8 68 
1992 47.22 14.87 21.43 111.25 10 88 
1993 53.53 18.14 21.43 132.00 9 92 
1994 55.13 16.36 28.24 111.67 8 73 
1995 52.90 17.92 20.00 120.00 9 72 
1996 49.60 13.49 23.60 90.00 9 69 
1997 40.43 11.69 19.00 79.00 10 74 
1998 40.10 12.84 15.56 71.43 9 68 
1999 43.13 16.40 21.90 110.00 8 70 
2000 42.78 10.70 23.50 67.78 9 73 
2001 44.52 13.67 16.84 90.00 9 78 
2002 43.18 15.73 19.23 112.50 10 91 
2003 40.29 14.36 15.93 95.00 10 86 
2004 35.82 11.47 12.41 78.00 10 75 
2005 37.96 10.04 21.18 67.00 9 59 
2006 41.99 12.89 15.42 75.56 8 42 
2007 44.14 17.57 26.67 116.67 6 32 

 
 

The temporal distribution of data points plotted for chlorophyll-α 

concentrations from oligotrophic and mesotrophic lakes indicated an increasing 

trend (Figure 3.11, r = 0.23).  These results were consistent with the two-way 

ANOVA (p < 0.001).  The t-tests of chlorophyll-α concentrations for each lake 

revealed that concentrations in 3 of the 8 lakes showed no significant change 

between Period 1 and Period 2 (p > 0.05) and confirmed an interaction between 

periods and lakes (Figure 3.12). 
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The study period in this group of lakes started with an overall annual 

average of 6.52 µg L-1 in 1990 and ended with an average of 5.27 µg L-1 in 2007 

(Table 3.5). Averages values ranged from 4.38 to 13.80 µg L-1 and lake values 

ranged from 1.00 to 48.00 µg L-1 (Table 3.5) with SD ranging from 3.17 in 2007 to 

11.05 in 2003 (Table 3.5) and CV from 60% to 101% for the same years. 

Figure 3.7   Plot of TN:TP ratio for 10 oligotrophic and mesotrophic lakes. 
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For hypereutrophic lakes, no overall trend for lake water chlorophyll-α 

concentrations was apparent from the visual analysis (r = 0.04, Figure 3.13).  

Preliminary results from regression analysis were confirmed by two-way ANOVA, 

which found no significant difference between the first and second periods in the 

concentration of chlorophyll-α in the lake water of these hypereutrophic lakes (p 

= 0.717).  The t-tests conducted on individual lakes showed that 3 lakes had a 

statistically significant increase (p ≤ 0,5) in chlorophyll-α concentrations  one lake 

showed a significant decrease, and one more showed no significant change. The 
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fact that each lake did not behave in the same way between periods 1 and 2 was 

evidence of interaction (Figure 3.14).  Lake chlorophyll-α concentrations had a 

wide range from 1.00 to 643.50 µg L-1, and a much higher overall SD (Table 3.6) 

from 44.05 to 150.53 and CV from 69 to 128% as compared with the less 

eutrophied lakes. The overall annual averages ranged from 47.59 in 1990 to 

116.70 µg L-1 in 2007 (Table 3.6). 

Figure 3.8   Change in the TN:TP ratio in 10 oligotrophic and mesotrophic lakes between 
Periods 1 and 2.  
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Table 3.4   Summary statistics for annual TN:TP ratio collected by LAKEWATCH from 5 
hypereutrophic lakes  in three counties from 1990 through 2007 

Year Annual 
Average  

SD Minimum Maximum n 
(Lakes) 

n 
(Samples)

1990 13.15 9.20 0.84 37.14 5 48 
1991 12.83 9.33 1.96 38.43 5 53 
1992 10.54 10.74 0.42 51.64 4 24 
1993 13.19 9.02 2.18 35.29 5 25 
1994 9.07 5.17 3.09 24.06 5 27 
1995 5.67 4.24 0.41 18.47 5 48 
1996 6.66 5.54 1.88 25.96 5 48 
1997 7.02 5.56 1.06 23.53 5 46 
1998 4.66 2.69 0.35 12.10 5 46 
1999 5.89 2.95 0.38 13.15 5 41 
2000 9.17 8.86 1.13 48.95 5 40 
2001 8.24 5.73 0.72 34.58 5 40 
2002 9.21 4.52 2.08 20.39 5 30 
2003 7.01 8.05 0.55 53.92 5 40 
2004 5.70 2.70 1.66 13.28 5 29 
2005 8.90 4.48 2.95 19.87 5 27 
2006 11.33 4.81 4.29 21.00 5 22 
2007 15.89 7.95 10.48 33.04 4 8 

 
 

Figure 3.9   Plot of TN:TP ratio for 5 hypereutrophic lakes. 
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Figure 3.10   Change in the TN:TP ratio in 5 hypereutrophic lakes between Periods 1 and 2. 
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Table 3.5   Summary statistics for chlorophyll-α  in µg L-1  collected by LAKEWATCH from 
8 oligotrophic and mesotrophic lakes in two counties from 1990 through 2007 

Year Annual 
Average 
(µg L-1) 

SD 
(µg L-1) 

Minimum 
(µg L-1) 

Maximum 
(µg L-1) 

n 
(Lakes) 

n 
(Samples)

1990 6.52 5.38 2.00 22.00 6 25 
1991 8.79 7.36 1.00 34.00 7 71 
1992 5.18 3.93 1.00 17.00 8 77 
1993 3.83 2.67 1.00 11.00 7 71 
1994 5.32 4.50 1.00 20.00 7 59 
1995 5.32 5.51 1.00 23.00 7 57 
1996 4.38 3.60 1.00 18.00 7 55 
1997 6.69 3.84 1.00 18.00 7 64 
1998 8.00 4.83 2.00 24.00 7 55 
1999 6.76 3.96 1.00 20.00 6 62 
2000 6.31 4.54 2.00 25.00 8 64 
2001 5.73 4.63 1.00 24.00 8 73 
2002 6.84 6.70 1.00 30.00 8 81 
2003 10.85 11.05 1.00 48.00 8 73 
2004 9.87 7.03 2.00 36.00 8 69 
2005 13.80 10.98 2.00 41.00 7 55 
2006 11.42 8.78 2.00 39.00 6 38 
2007 5.27 3.17 2.00 11.00 5 26 
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Figure 3.11   Plot of chlorophyll-α concentration for 8 oligotrophic and mesotrophic lakes. 
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Table 3.6   Summary statistics for annual Chlorophill-α  concentration in µg L-1  collected 
by LAKEWATCH from 5 hypereutrophic lakes  in three counties from 1990 through 2007 

Year Annual 
Average 
(µg L-1) 

SD 
(µg L-1) 

Minimum 
(µg L-1) 

Maximum 
(µg L-1) 

n 
(Lakes) 

n 
(Samples)

1990 116.70 150.53 1.00 643.50 4 46 
1991 80.59 73.33 20.30 447.40 5 48 
1992 90.52 76.80 5.13 338.16 5 28 
1993 52.42 48.26 3.02 185.76 5 36 
1994 54.61 59.57 3.23 236.20 5 37 
1995 63.72 44.05 5.10 151.41 5 36 
1996 79.27 76.23 1.70 279.50 5 36 
1997 60.85 62.55 0.50 241.00 5 35 
1998 58.88 66.84 1.00 325.00 5 35 
1999 70.78 55.79 1.70 273.79 5 37 
2000 92.78 78.08 10.40 263.68 5 35 
2001 73.92 60.60 3.30 213.33 5 36 
2002 72.41 56.16 7.80 182.50 5 36 
2003 84.00 54.55 12.00 194.10 5 32 
2004 83.04 71.82 8.40 231.80 5 33 
2005 88.56 73.22 2.40 366.80 5 41 
2006 68.01 85.51 4.40 383.00 5 26 
2007 47.59 47.58 6.70 139.60 4 15 
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Figure 3.12   Change in chlorophyll-α concentration in 8 oligotrophic and mesotrophic 
lakes between Periods 1 and 2. 
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Lake water concentrations of TP, TN:TP ratios, and chlorophyll-α were 

averaged and plotted by year for the interval 1990-2006.  These results were 

consistent with those from analysis done upon the entire cloud of single data 

points in terms of the direction and significance of the association. An additional 

benefit of using the averages instead of the original data is a more clear 

visualization of a possible cycling effect for all the variables in both groups of 

lakes. 
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Figure 3.13   Plot of chlorophyll-α concentration for 5 hypereutrophic lakes. 
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Figure 3.14   Change in chlorophyll-α concentration in 5 hypereutrophic lakes between 
periods 1 and 2. 

Least Squares Means
Alligator

1 2
PERIOD

-6

56

118

180

C
LA

_H
IG

H

Beulah

1 2
PERIOD

-6

56

118

180

C
LA

_H
IG

H

Bonnet

1 2
PERIOD

-6

56

118

180

C
LA

_H
I G

H

Hunter

1 2
PERIOD

-6

56

118

180

C
LA

_H
IG

H

Thonotosassa

1 2
PERIOD

-6

56

118

180

C
LA

_H
IG

H

 



 

 78

  

Plots of annually averaged values against time showed a strong direct 

increase of TP and chlorophyll-α (r = 0.78 and 0.68 respectively, p <0.01 and p = 

0.02, respectively, Figures 3.17 and 3.19).    

Figure 3.15   Population growth estimates in the Tampa Bay Metropolitan Area from 1990 
until 2006 (Hilssborough County, 2007; US Bureau of the Census 2000, 2007). 
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Figure 3.16   Population growth estimates in Hillsborough County from 1990 until 2006 
(Hilssborough County, 2007; US Bureau of the Census 2000, 2007). 
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Rising lake water TP and chlorophyll-α concentrations in northeastern 

Hillsborough County appear to trend along with County population growth and 
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may be evidence of an urban signature in lake water quality. Figures 3.15 and 

3.16 show a continuous increase in population for the Tampa Bay Metropolitan 

Area (TBMA) and Hillsborough County: a 30.5% and 38.8% increase in the 

estimated populations of Tampa Bay Metropolitan Area and Hillsborough County, 

respectively, for the time period between 1990 and 2006 (Hilssborough County, 

2007; US Bureau of the Census 2000, 2007).  Figure 1.2 shows that residential 

and commercial uses are prevalent in the area. This might also have some 

association with the results. 

 The increase in lake water TP and chlorophyll-α concentrations in 

northeastern Hillsborough County may be related  the characteristic karst 

formation of the area (van Beynen et al., 2007), which may help the transport of 

nutrients along with the groundwater flow from urban sources to the lakes or for 

some lakes as a consequence of the drought and over-pumping of the Floridian 

Aquifer, and thus loss of a relatively clean water supply.  This study, however, 

cannot conclude the increase in TP concentrations in oligotrophic and 

mesotrophic lakes is due to new phosphorus been discharged into the lakes or to 

old phosphorus recycled from the sediments.  

The historically-elevated lake water TP concentrations in lakes located in 

the eastern part of the Tampa Bay watershed may be explained in part by the 

mining activity in the Bone Valley. This economical activity has been operating in 

the area since the late 1800s (Brown, 2005) (Figure 1.2)  
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Figure 3.17   Change in annual averages of lake water TP concentration over time in years 
in oligotrophic and mesotrophic lakes of the Tampa Bay watershed. 
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Figure 3.18   Change in annual averages of the TN:TP over time in years in oligotrophic 
and mesotrophic lakes of the Tampa Bay watershed. 

r  = -0.77

0

10

20

30

40

50

60

1990 1992 1994 1996 1998 2000 2002 2004 2006
Year

TN
:T

P
 ra

tio

 



 

 81

Figure 3.19   Change in annual averages of lake water chlorophyll- α  concentration over 
time in years in oligotrophic and mesotrophic lakes of the Tampa Bay watershed. 
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The plot of the TN:TP for oligotrophic and mesotrophic lakes suggests a 

strong decline with time (r = -0.77, p < 0.01, Figure 3.18).  This is again 

consistent with the result from previous analyses, which was explained by a 

greater trend of increasing lake water TP concentration as compared with TN 

concentration along the time period studied (Figure 3.7).   
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Figure 3.20   Change in annual averages of lake waterTP concentration over time in years 
in hypereutrophic lakes of the Tampa Bay watershed. 
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Figure 3.21   Change in annual averages of the TN:TP over time in years in hypereutrophic 
lakes of the Tampa Bay watershed. 

r  = -0.41

0

2

4

6

8

10

12

14

1990 1992 1994 1996 1998 2000 2002 2004 2006

Year

TN
:T

P 
ra

tio

 



 

 83

Figure 3.22   Change in annual averages of lake water chlorophyll-α concentration over 
time in years in hypereutrophic lakes of the Tampa Bay watershed. 
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In the group of hypereutrophic lakes, annually averaged lake water 

concentrations of TP showed similar tendencies as with linear regressions with 

the individual data points and ANOVA..  This curve suggested a significant 

medium inverse associations (r = -0.58, p < 0.01 for total phosphorus, Figure 

3.20).  Unlike results from the analysis on the individual data points, the analysis 

of annual average TN:TP ratios indicated a medium association (r=-0.41) but it 

was not significant (p > 0.05, Figure 3.21). Results for chlorophyll-α oncentrations 

against years were consistent with previous analyses and showed no significant 

correlation (r = -0.06, Figure 3.22). 
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3.5 Summary 

The results from this chapter indicate that 16 lakes in the Tampa Bay 

watershed had a small but significant change in the concentration of trophic state 

variables between 1990 and 2007. There was a different behavior in water 

quality trends depending upon the degree of lake water eutrophicatuion.  

Concentrations of TP and chlorophyll-α increased during the 18-years 

study period for oligotrophic and mesotrophic lakes. The TN:TP ratio showed that 

the study group of oligotrophic and mesotrophic lakes is phosphorus-limited. This 

ratio showed a significant decline and may reflect that lake water TP 

concentrations are increasing at a faster pace than lake water TN concentrations.  

As expected from the increase in TP and the phosphorus limitation of 

these lakes, an analysis of the chlorophyll-α concentration in lake water also 

suggested a slight increase over time.  One likely explanation for the increase in 

TP and chlorophyll-α (and TN, results not included) is that population growth in 

Hillsborough County has increased the phosphorus and nitrogen loading to these 

lakes. For example, increased fertilizer use in lawns and/or higher run-off rates 

would likely result I elevated chlorophyll-α concentration.  An important factor that 

may be facilitating this process is the sandy karst characteristic of the soil profile, 

which facilitates the leaching of nutrients into the lakes.  These possible 

explanations for phosphorus increase over time, however, are just suggestions 

since there is not conclusive evidence showing if the extra phosphorus 

responsible for the TP increase in the lake water column is recycled from the 

sediments or if it is a new external input to the system.  Whatever is the case, the 
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fact is that these results obtained from this group of 10 oligotrophic and 

mesotrophic lakes meet the alternative hypotheses forTP, TN:TP, and 

chlorophyll-α concentrations. 

Hypereutrophic lakes presented a different behavior as compared to 

oligotrophic or mesotrophic lakes. This second group of lakes had a decreasing 

trend in water concentration of TP during the 18-year study period.  The ratio of 

TN:TP showed that these highly eutrophied lakes were nitrogen-limited. 

Chlorophyll-α did not show indications of any trend over time at all in these 

hypereutrophic lakes, and are more in accordance with what was indicated by 

Terrell et al., (2000), in a bigger sample of lakes. 

Decrease in lake water TP concentration in this second group of lakes 

may be explained by the implementation of lake management plans (City of 

Lakeland, 2001; Southwest Florida Water Management District, 2003) that may 

have prioritized highly eutrophied lakes over less eutrophied ones.  The fact that 

both groups of lakes resulted having a decreasing trend in the TN:TP ratio raise 

concerns for a shift in phytoplankton composition to more noxious species. 

 

 



 

 86

 

 

 

CHAPTER 4. 

IDENTIFICATION OF IMPORTANT VARIABLES AFFECTING WATER 

QUALITY IN LAKES OF THE TAMPA BAY WATERSHED  

4.1 Introduction 

Aquatic vegetation can contain important proportion of the total nutrient 

content of the lake, it is therefore a key element to consider when assessing the 

potential concentration of nutrients in the lake water column (Canfield et al., 

1983).  As it is known based on the literature reviewed in Chapter 2 (Bachmann 

et al., 2002; Dierberg et al., 2002; Hamilton and Mitchell, 1996), submerged 

rather than emergent aquatic vegetation has a greater potential to be associated 

to low levels of TP, TN, and chlorophyll-α in lake water, hence it is one of the 

variables examined in this chapter for possible association with eutrophication 

status, along with lake water total phosphorus (TP), total nitrogen (TN) 

concentration, and lake area, depth, and volume. 

 It has been very well documented the strong and clear direct association 

between phytoplankton as measured by chlorophyll-α and nutrients dissolved in 

lake in Florida (Bachmann et al., 2002; Brown et al., 2000; Canfield et al., 1984). 

Although less conclusive, there has been also documentation reporting that large 

amounts of submerged aquatic macrophytes have some association with 
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reduced productivity of lake phytoplankton (Bachmann et al., 2002; Canfield and 

Hoyer, 1992; Canfield et al., 1984; Landers, 1982).   

In this chapter a 34-lake database that includes information on the 

variables submerged aquatic vegetation (two forms); lake water concentration of 

TP, TN, and chlorophyll-α; and area, depth and volume is introduced and 

described.  Correlation between these lake variables are examined and 

compared with results from previous studies. Some of the species of submerged 

aquatic vegetation more abundant in the lakes studied were: Vallisneria 

Americana, Algal ssp., Hydrilla verticilata, Egeria densa, and Potamogeton spp., 

among others. 

  

4.2 Methods 

4.2.1 Data Sampling Program 

 The 34 urban and suburban lakes examined in this chapter are distributed 

over an area with mixed land use: residential, recreational, and agricultural, in the 

northern and eastern portions of Hillsborough County (Figure 4.1). The lakes are 

distributed over four subbasins within the Tampa Bay watershed; Sweetwater 

Creek, Rocky / Brushy Creek, Brooker Creek, and Curiosity Creek. The analysis 

was carried out by using existing data from two different sources. Data on lake 

water TP, TN, and chlorophyll-α concentrations, as well as data on submerged 

aquatic vegetation, was collected by the Florida Center for Community Design 

and Research at the University of South (Koenig and Eilers, 2006-2007). Data 
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availability was the determining factor for inclusion of the 34 lakes in this 

analysis.  Values on general lake variables: lake surface area, mean depth, and 

lake volume, were collected and reported by volunteer citizens from the Florida 

LAKEWATCH water quality monitoring program and were obtained as part of the 

Hillsborough County sampling program (2008). 

 Samples taken to determine TP, TN, and chlorophyll-α were analyzed by 

the Hillsborough County Environmental Protection Commission laboratory 

(Chapter 3).  Submerged aquatic vegetation is expressed as percentage of area 

covered with vegetation (PAC) and percentage of volume of the lake infested 

with vegetation (PVI).   Variables for each lake correspond to only one 

measurement done in 2006 or 2007 (depending on the lake).  These data 

proceed from measurements carried out at one point in time. They are, however, 

useful to examine potential long term associations between the mentioned 

variables because each particular lake water variable depends on a historical 

trend, and no variable changed suddenly and independently from their past 

conditions. 

 According to Griffin (2008) data on PAC were determined by first selecting 

100 randomly ordered bathymetric points, then reaching the points by boat to 

determine the presence of submerged aquatic vegetation by the soft return data 

obtained with a fathometer and expressing the results in terms of percentage.  

PVI was calculated by measuring the depth of the soft returns (top of vegetation) 

and the depth of the hard returns (lake bottom) using the bathymetric trace for 

each point as shown in Equation (1):  
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  Equation (1):       
100

)(100

0∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
DepthLake

VegetationofDepthDepthLake

 = PVI 

For points where no vegetation exists, the numerator is zero and that point 

is counted as zero.   
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Figure 4.1   Location of lakes with recent observations on submerged aquatic vegetation 
(Koenig and Eilers, 2006-2007). 

!

!

!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

! !!

!

! !
!

!

!

!

!

!
!

!

! !

!
!

Pasco County

Pinellas County

Hillsborough 
County

Lake Locations 
(shown in Red)

Map Created by Pete Reehling – University of South Florida

 

 



 

 91

 

4.2.2 Statistical Analysis 

 Analyses of correlation were used to determine significant associations 

between the eutrophic state variables lake water TP, TN, and chlorophyll-α 

concentration and variables of submerged aquatic vegetation, lake area, depth, 

and volume. This analysis was conducted using the formula for the Pearson 

correlation in Excel shown in Equation (2), where X and Y are the lake variables, 

X bar and Y bar are the respective means, and SDx and SDy are the respective 

standard deviations. 

  Equation (2):  
( )( )

( ) yx

n

i ii

SDSDn
YYXX

r
1

1

−

−−
= ∑ −  

The variables TP and TN were taken as indicators of eutrophication 

(dependent variables) but also as factors associated to eutrophication 

(independent variables) when eutrophication was indicated by chlorophyll-α.  A 

correlation > 0.30 was statistically significant at a 95% of confidence level. 

   

4.3 Results and Discussion 

 Values in Table 4.1 present summary statistics for physical and chemical 

variables analyzed in this study.  Variables for each lake correspond to one 

measurement done in 2006 or 2007. The lakes had an average mean depth of 
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2.51 m, ranging from 0.91 to 3.96 m therefore approaching the concept of 

shallow lakes used by Scheffer (2004) according to which lakes depth less than 3 

m were considered shallow. Lake surface area ranged from 1.21 to 174.43 ha 

with a mean of 25.42 ha.  The average volume was 713,300 m3 with a minimum 

of 2,087 and maximum of 5, 714,000 m3. 

According to the Trophic State Classification System of System Forsberg 

and Ryding (1980, Figure 3.1) the lakes ranged from mesotrophic to eutrophic 

with average values of 25.18 µg L-1, 0.80 mg L-1, and 7.90 µg L-1 for TP, TN, and 

chlorophyll-α respectively. Ranges for these variables were: 3.00 to 50.00 µg L-1 

for TP, 0.37 to 1.27 mg L-1 for TN, and 1.20 to 44.61 µg L-1 for chlorophyll-α.  The 

average percent of study lake area covered by submerged aquatic vegetation 

(PAC) was 38.78% with a minimum and maximum of 2.00 and 85.00% 

respectively.  On average the volume of the study lakes occupied by submerged 

aquatic vegetation (PVI) was 16.17% and ranged between 0.52% and 47.00% 

(Table 4.1). 

The analysis of correlation between all the variables examined in this 

study (Table 4.2) presented significant inverse correlation between chlorophyll-α 

and both measures of submerged aquatic vegetation: PAC and PVI, with r = -

0.72 and -0.60, respectively. TP, r = 0.46; and TN, r = 0.41. TP was also 

inversely correlated with both forms of submerged aquatic vegetation, r = -0.52 

and -0.41 for PAC and PVI, respectively, and additionally with mean depth, r = -

0.36. TN was not significantly correlated (p > 0.05) with any variable other than 

chlorophyll-α. The fact that chlorophyll-α presented a higher correlation with TP 
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as compared to TN may reflect the phosphorus limitation of most of the lakes 

studied.  

The greater negative correlation found between chlorophyll-α and both 

measures of submerged aquatic vegetation as compared with the positive 

correlation between chlorophyll-α and TP and TN may suggest that submerged 

aquatic vegetation rather than TP and TN might be the factor most associated to 

phytoplankton.  If this is the case, this result suggests that submerged aquatic 

vegetation may be associated with chlorophyll-α also through some other 

additional way not involving TP and TN.  Batchman et al. (2002), however, 

reported a smaller negative correlation between chlorophyll-α and submerged 

aquatic vegetation (r = -0.29) as compared to those between chlorophyll-α and 

TP (r = 0.82), and chlorophyll-α and TN (r = 0.70). Yet the authors consider that 

under conditions where water nutrient concentration is not excessively elevated, 

submerged aquatic vegetation reduce nutrients and consequently phytoplankton 

concentration as measured by chlorophyll-α, rather than dissolved nutrients 

reducing submerged aquatic vegetation growth. Other authors also suggest 

association between chlorophyll-α with TP and TN (Brown et al., 2000; Canfield 

et al., 1984). 

A suggested inverse relationship between submerged aquatic vegetation 

and chlorophyll-α in the water column might be explained by the effect possibly 

caused by submerged aquatic vegetation in reducing concentration of limiting 

nutrients in the water column, and the subsequent reduced availability of 

phytoplankton (Bachmann et al., 2004; Scheffer, 2004); and by provision of 
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shelters from predatory fish for zooplankton that directly prey on phytoplankton 

(Scheffer, 2004).  

In general, the mechanism by which submerged aquatic vegetation reduce 

nutrient concentration has been described in part by the attenuation of water 

turbulence, which results in less resuspension and recycling of nutrients back 

into the water column (Bachmann et al., 2004; Hamilton and Mitchell, 1996; 

Scheffer, 2004). Other contributing mechanism may be the provision of substrate 

surface for periphyton that up-take nutrients from the water column (Bachmann 

et al., 2004; Cattaneo and Kalff, 1980); Up-take of nutrients from the water 

column by submerged aquatic vegetation directly (Denny, 1972; Graneli and 

Solander, 1988); and by influencing ion exchange reactions via regulation of 

dissolved oxygen and pH (Graneli and Solander, 1988).  All these reasons may 

help explain the inverse relationship found between submerged aquatic 

vegetation and TP, and consequently also with chlorophyll-α.   

The present study found mean depth to be directly correlated with both 

forms of submerged aquatic vegetation, r = 0.34 and 0.31 for PAC and PVI 

respectively. This may seems to be unexpected since the required light 

penetration for photosynthesis is reduced with depth, however, analysis of 

regression between submerged aquatic vegetation abundance and depths 

(results not presented) showed an increase in submerged aquatic vegetation up 

to a depth of approximately 2.5 m and then a decrease. The fact that most of the 

lakes studied were shallower than that depth, explains why the overall results 

showed a direct correlation between both variables. Other additional possible 
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explanation is that shallow depths might favor dominance of emergent aquatic 

vegetation over submerged aquatic vegetation.  As also expected, both mean 

depth and area were correlated with volume r = 0.38 and 0.98, respectively. 

Since PAC and PVI are both expressions of the same variable submerged 

aquatic vegetation, they were consequently highly correlated, r = 0.91. 

Association of these two related sub variables has been reported in the literature 

(Canfield and Hoyer, 1992; Canfield et al., 1984). 

The inverse characteristics of the relationship between TP and mean 

depth may be due to the greater distance between the source of resuspended 

phosphorus in the bottom sediments and the superior layers of the water column. 

Stronger turbulence would be required to resuspend phosphorus through the 

entire water column. Another possible reason is the obvious direct correlation 

between depth and volume.  An increasing depth would be associated with a 

greater volume of water and consequently greater dilution of phosphorus. 

An analysis of correlation of the eight variables of shallow lakes grouped 

by groups would result as follow: (1) submerged aquatic vegetation variables, 

PAC and PVI; (2) eutrophication variables, TP, TN, and chlorophyll-α; and (3) 

lake size variables, area, depth, and volume. Lakes with more submerged 

aquatic vegetation have less eutrophication especially chlorophyll-α 

concentration followed by TP concentration. Bigger lakes have less 

eutrophication and depth is the most important.  Bigger lakes tend to have more 

submerged aquatic vegetation (for shallow lakes). 
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Table 4.1   Summary statistics of Hillsborough lakes examined for association between 
lake variables. 

  n Median Mean SD Minimum Maximum 

PAC  
34 38.00 38.78 26.75 2.00 85.00

PVI  
34 12.46 16.17 12.58 0.52 47.00

Volume (m3) 
34 381700 713300 1050000 2087 5714000

Area (ha) 
34 15.99 25.42 32.85 1.21 174.43

Mean Depth 
(m) 34 2.59 2.51 0.77 0.91 3.96
TN (µg L-1) 

34 0.86 0.80 0.24 0.37 1.27
TP (µg L-1) 

34 24.50 25.18 11.39 3.00 50.00
Chlorophyll-
α (µg L-1) 33 6.60 7.90 5.19 1.20 21.70

 

Table 4.2   Matrix table showing the analysis of correlation between lake variables. Values 
in dark correspond to resulting significant associations between trophic state parameters 
(TN, TP, chlorophyll-α) and theirs factors controlling for water quality at 95% confidence.  

  PAC PVI 
Volume 

(m3) 
Area
(ha) 

Depth 
(m) 

  TN 
(mg/L) 

   TP  
(µg L-2) 

Chla 
(µg L-2) 

PAC 
  1.00        
PVI  
 0.91 1.00       
Volume 
(m3) 0.24 0.24 1.00      
Area  
(ha) 0.22 0.23 0.98 1.00     
Depth 
(m) 0.34 0.31 0.38 0.28 1.00    
TN  
(mg L-2) -0.27 -0.21 0.11 0.10 -0.27 1.00   
TP  
(µg L-2) -0.52 -0.41 -0.13 -0.14 -0.36 0.26 1.00  
Chla  
(µg L-2) -0.72 -0.60 -0.29 -0.27 -0.27 0.41 0.46 1.00 
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4.4 Summary 

In summary, among the eight lake indicators (TP, TN, chlorophyll-α, PAC, 

PVI, mean depth, lake surface area, and lake volume) examined in this chapter, 

the strongest statistically significant association was found to be the inverse 

relationship between chlorophyll-α and submerged aquatic vegetation as 

represented by PAC and PVI. The second strongest statistically significant 

association was the relationship between chlorophyll-α and lake water TP 

concentration. Submerged aquatic vegetation was not significantly associated to 

lake water TN concentration.  In general, more submerged aquatic vegetation is 

associated with less eutrophication.       

The higher correlation of chlorophyll-α with abundance of submerged 

aquatic vegetation as compared to water total phosphorus was a finding not 

expected and may indicate that submerged aquatic vegetation is associated to 

chlorophyll-α also through some other way that does not involve nutrients. This is 

consistent with the idea that phytoplankton is affected by submerged aquatic 

vegetation through both effects on TP concentration and through other effect s, 

for example, as a shelter for phytoplankton-grazing zooplankton.  Batchman et al. 

(2002) and Batchman et al. (2004) although suggested a weak inverse 

relationship between both parameters, indicated that aquatic macrophytes did 

not significantly affect the phosphorus versus chlorophyll relationships in their 

studies.  
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In general, for shallow lakes, bigger lakes had more submerged aquatic 

vegetation, Bigger lakes were less eutrophied and the largest correlation was 

between depth and lake water TP concentration.  

  

 



 

 99

 

 

 

CHAPTER 5. 

EFFECT OF SUBMERGED AQUATIC VEGETATION ON WATER TOTAL 

PHOSPHORUS CONCENTRATION IN LAKES OF THE TAMPA BAY 

WATERSHED  

5.1 Introduction 

Among the different types of aquatic vegetation, submerged aquatic 

vegetation has been found to play an important role in regulation of nutrient 

concentrations and subsequently lake phytoplankton (Bachmann et al., 2004; 

Brenner et al., 1999; Jeppesen et al., 1997; Knight et al., 2003), and also in a 

more direct way, probably shelter for grazers (Scheffer, 2004). The nature and 

extent of these relationships, however, still remain vague (Bachmann et al., 

2002).  It has been speculated that at high levels of nutrient concentrations, 

nutrients may control submerged aquatic vegetation while in waters with more 

moderated and lower nutrient concentrations, nutrients may be controlled and 

further reduced by aquatic macrophytes especially submerged aquatic vegetation 

(Bachmann et al., 2002; Bachmann et al., 2004).  

Studies conducted in other geographic areas seem to be even less 

unifying in terms of clarifying the nature of this relationship. Nutrient levels in 

water have been found to trigger growth of submerged aquatic vegetation 
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(Ozimek, 1978, as quoted by Duarte and Kalff, 1986), not to cause a clear effect 

(Carpenter and Adams, 1979), and to decrease prevalence of submerged 

aquatic vegetation (Duarte, 1995) especially at a large increase in phosphorus 

level (Graneli and Solander, 1988).  It has been reported in literature that lakes 

have changed from being in a clear water state to turbid water state (with a 

higher concentration of nutrients and suspended solids),  when submerged 

aquatic vegetation was removed by herbicide treatment (O'Dell et al., 1995), or 

by hurricanes (Bachmann et al., 1999). Likewise, lakes have been reported to 

switch from a turbid to clear water state when planktivorous fish were removed 

and submerged aquatic vegetation increased (Ozimek et al., 1990).   

It was shown in Chapter 4 that submerged aquatic vegetation, and total 

phosphorus (TP) to a lesser extent, were the most significant variables 

associated with phytoplankton productivity. Consequently it is important to further 

examine the relationship between these two variables. In this chapter the same 

data analyzed in Chapter 4 from a group of 34 lakes in Hillsborough County was 

examined for a possible association between the percentage of volume and area 

of the lake that is occupied by submerged aquatic vegetation (PVI and PAC) 

versus the concentration of total phosphorus (TP), total nitrogen (TN), and 

chlorophyll-α in lake water. The difference is that this analysis only covers 

submerged aquatic vegetation variables and eutrophication variables (not size 

variables) because these were the more strongly correlated in Chapter 4.  Also 

examined was the association between submerged aquatic vegetation density 
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and inter-annual variability of lake water TP concentration in the mentioned 

parameters in a subsample of 24 lakes. 

A strong link between water nutrients concentration and phytoplankton 

biomass has been reported in studies conducted in Florida lakes (Bachmann et 

al., 2002; Canfield, 1983).  The relationship between nutrients and chlorophyll-α 

with submerged aquatic vegetation in lake water has shown to be more complex 

and difficult to clarify.  Some authors, however, have already approached some 

measure of relationship between nutrients and submerged aquatic vegetation in 

Florida lakes (Bachmann et al., 2002) and other geographical areas (Cattaneo 

and Kalff, 1980; Duarte, 1995; Graneli and Solander, 1988; Scheffer, 2004), and 

the speculated mechanisms (sediments stabilization, plant up-take, precipitation, 

redox reactions, and shelters) by which they may be related (Bachmann et al., 

2004; Cattaneo and Kalff, 1980; Duarte, 1995; Graneli and Solander, 1988; 

Scheffer, 2004). Other authors have reported information about the relationship 

between phytoplankton and submerged aquatic vegetation (Canfield and Hoyer, 

1992; Canfield et al., 1984). Still in general, much needs to be done to confirm 

the relationship, if one exists, between eutrophication variables and submerged 

aquatic vegetation. 

  

5.2 Objectives and Hypothesis 

The analysis conducted in this chapter was intended to provide evidence 

regarding the relationship between submerged aquatic vegetation and TP 
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concentrations.  As a complementary analysis, submerged aquatic vegetation 

was examined in relation to chlorophyll-α and TN concentrations, as was any 

influence of submerged aquatic vegetation in the inter-annual variability of water 

TP concentration.  The results could be applied to develop best management 

practices to control cultural eutrophication associated with watershed 

development. The following objectives and hypothesis are addressed in this 

chapter: 

 

 Objective: To provide evidence that the presence of submerged 

aquatic vegetation plays a significant role in lowering total 

phosphorus (TP) concentration in lake water in lakes of 

Hillsborough County.  

• Hypothesis 1: Lakes with little vegetation have higher TP, TN, 

and chlorophyll-α concentrations. 

 

 Objective: To determine if the presence of submerged aquatic 

vegetation in urban and suburban lakes of the Tampa Bay 

watershed is strongly and inversely associated to the inter-annual 

fluctuation in lake water TP concentration.  
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5.3 Methods 

5.3.1 Data Description 

 Methods are described in Chapter 4.  

5.3.2 Statistical Analysis 

 In order to detect any possible effect on lake water TP, TN, and 

chlorophyll concentration presumably due to the presence of submerged aquatic 

vegetation, the lakes were separated in two groups, those with a high presence 

of submerged aquatic vegetation versus those with a low presence.  The 

separation criteria used to delineate a difference between the two groups was 

defined by Bachmann et al. (2002). According to this, high presence of 

submerged aquatic vegetation is considered as macrophyte-dominated and 

included those lakes with PVI>80 while low presence of submerged aquatic 

vegetation corresponded to phytoplankton-dominated, which are those lakes with 

PVI<20.  Since none of the 34 lakes in this study had a PVI greater than 80, a 

PVI of 20 was considered as the cut-point for separation of the two groups. 

Hence for the purpose of this study, lakes with a PVI greater than 20 were 

considered macrophyte-dominated while lakes with a PVI less than 20 were 

considered phytoplankton-dominated.  One-way ANOVA was used to determine 

if the means of both groups of lakes were significantly different for each one of 

the three variables considered (TP, TN, and chlorophyll-α). Bachmann et al. 
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(2002)  conducted similar analysis using one-way ANOVA to determine 

differences between the means of two lake groups for eutrophication variables.   

A t-test assuming unequal variances was additionally used to confirm the results.  

Both tests were performed at the 95% confidence level (α = 0.05).  Graphics with 

frequency distributions were made for visual comparison between the two groups 

of lakes for each one of the three trophic state variables examined. 

 A linear regression was used to represent a possible relationship between 

variability of lake water TP concentration and submerged aquatic vegetation 

dominance in 24 lakes. The variability of TP concentration was indicated by 

expressing the coefficient of variation (CV) of this eutrophication variable for the 

available values from 2005 until present in terms of the mean of this variable for 

the same time period.  The year 2005 as a cut-off point for inclusion of values of 

eutrophication was chosen arbitrarily intending to have a short period but long 

enough to show variability. A long period of time for observations in 

eutrophication variables would have increased the uncertainty for the 

corresponding values in submerged aquatic vegetation, which are unknown.  

Submerged aquatic vegetation dominance was indicated by one-time value of 

both PAC and PVI since this was the only available value for this parameter. 

 

5.4 Results and Discussion 

Out of the overall group of 34 lakes, 9 were classified as  macrophyte-

dominated. The average percent volume infested (PVI) in this group was 34.15 
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with a minimum and maximum of 23.00 and 47.00 respectively; 9.69 was the 

average PVI for the 25 lakes composing the phytoplankton-dominated group, 

with a minimum and maximum of 0.52 and 19.00 respectively (Table 5.1). The 

average percent of area covered with submerged aquatic vegetation (PAC) in the 

macrophyte-dominated group was 74.44 with a minimum and maximum of 63.00 

and 85.00 respectively.  The average for the same variable in the phytoplankton-

dominated group was 25.93 and ranged between 2.00 and 56.00 (Table 5.2). 

Table 5.1   Summary table for PVI values of lakes with macrophyte-dominance and 
phytoplankton-dominance. 

Lake dominance n Median Mean SD Minimum  Maximum
Macrophyte-dominated  9 33 34.1 8.4 23 47 
Phytoplankton-dominated 25 10 9.6 5.3 0.52 19 
 

Table 5.2   Summary table for PAC values of lakes macrophyte-dominance and 
phytoplankton-dominance. 

Lake dominance n Median Mean SD Minimum  Maximum
Macrophyte-dominated  9 76 74.4 7.6 63 85 
Phytoplankton-dominated 25 30 25.9 17.7 2 56 
 

The TP concentration in the group of lakes with macrophyte-dominance 

ranged from 3 to 31 µg L-1 with an average of 18.44 µg L-1, while the group with 

phytoplankton-dominance showed a range from 10 to 50 µg L-1 with an average 

of 27.6 µg L-1 (Table 5.3). According to the Trophic State Classification System of 

Forsberg and Ryding (1980, Figure 3.1) some lakes from both groups overlap 

under the classification of oligotrophic ([TP] <15 µg L-1), mesotrophic (15< [TP] 

<25 µg L-1), and eutrophic ([TP] >25 µg L-1).   No lake in either group fell under 

the classification of hypereutrophic ([TP] >100 µg L-1).  The range in macrophyte-

dominated lakes for chlorophyll-α went from 1.2 to 6.9 µg L-1 with an average of 
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3.60 µg L-1, while 3.6 to 44.61 µg L-1 with average of 10.91 µg L-1 was the range 

for the same variable in phytoplankton-dominated lakes (Table 5.4). These 

ranges show substantial overlap for both variables in both lake groups, which do 

not guarantee accurate prediction of water quality based only on submerged 

aquatic vegetation prevalence. Despite the overlap, however, the results of a t-

test indicated a significant difference between both groups of lakes for TP and 

chlorophyll-α (p = 0.0002 and 6.4 x 10-9 respectively). This difference was 

confirmed in one-way ANOVA for the same parameters (p = 0.036 and 0.017 

respectively).  

TP and chlorophyll-α values were significantly higher for lakes with a PVI 

lower than 20 (phytoplankton-dominated) as compared to those with a PVI higher 

than 20 (macrophyte-dominated). This not just support results of significant 

association of submerged aquatic vegetation with TP and chlorophyll-α described 

in Chapter 4 but also indicates a strong relationship between submerged aquatic 

vegetation and TP and chlorophyll-α. Results are additionally supported by 

literature that indicate the nutrient removal capacity of submerged aquatic 

vegetation from water column (Dierberg et al., 2002; Gu et al., 2001; Knight et 

al., 2003).  Some possible mechanisms by which submerged aquatic vegetation 

reduces nutrient concentrations in the water column are described in Chapter 2 

and more briefly in Chapter 4. 
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Table 5.3   Summary table for TP values (µg p L-1) for lakes with macrophyte-dominance 
and phytoplankton-dominance. 

Lake dominance n Median Mean SD Minimum  Maximum
Macrophyte-dominated  9 19 18.44 8.99 3 31 
Phytoplankton-
dominated  25 26 27.60 11.35 10 50 

 

Table 5.4   Summary table for chlorophyll-α values (µg L-1) for lakes with macrophyte-
dominance and phytoplankton-dominance. 

Lake dominance n Median Mean SD Minimum  Maximum
Macrophyte-dominated  9 3.80 3.60 1.82 1.20 6.90 
Phytoplankton-dominated 25 8.80 10.91 8.64 3.60 44.61 
 

Analysis of frequencies in both group of lakes for TP (Figures 5.2 and 5.3) 

and chlorophyll-α concentrations (Figures 5.4 and 5.5) showed that more lakes in 

the group with macrophyte-dominance were toward the upper limit of values in 

both parameters (skewed to the left). And more lakes in the phytoplankton-

dominated group were toward the lower limit of the range for this group (skewed 

to the right).  

There was no significant difference found between the group of lakes with 

macrophyte-dominance and those with phytoplankton-dominance regarding 

values in the concentration of TN ( t-test, p<0.071;  ANOVA, p<0.326; Figures 

5.6 and 5.7). This result matches the lack of association detected between TN 

and submerged aquatic vegetation in the analysis of regression and correlation 

conducted in the previous chapter, but differs with results of Batchman et al. 

(2002) and Batchman et al. (2004) that suggested such an association. Average 

lake water TN concentration in macrophye-dominated lakes was 0.73 mg L-1 with 
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a minimum and maximum of 0.37 and 1.27 mg L-1 respectively.  The range for 

the same parameter in phytoplankton-dominated lakes went from 0.41 to 1.13 

mg L-1 with an average value of 0.82 mg L-1.  As expected from the t-test and 

ANOVA analysis, the overlap for both groups of lakes regarding this parameter 

was much greater; in fact the range of the phytoplankton-dominated lakes was 

totally included within the range of macrophye-dominated lakes. 

Table 5.5   Summary table for TN (mg L-1) values of lakes with macrophyte-dominance and 
phytoplankton-dominance. 

Lake dominance n Median Mean SD Minimum  Maximum
Macrophyte-dominated  9 0.60 0.73 0.34 0.37 1.26 
Phytoplankton-dominated 25 0.87 0.82 0.19 0.41 1.13 
 

As it can be seen from the analysis of frequencies (Figures 5.6 and 5.7), 

the distribution of frequencies of lake water TN concentration were opposite of 

those showed by TP and chlorophyll-α. Most of the macrophyte-dominated lakes 

were in the lower values of nitrogen concentration of the scale (skewed to the 

right). Most of the lakes in the phytoplankton-dominated group were toward the 

higher concentration of the range (skewed to the left). These results seems to 

support the hypothesis that submerged aquatic vegetation is associated with 

lower concentrations of nitrogen in the water column, however, the t-test and 

ANOVA analysis proved different.  
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Figure 5.1   TP in macrophyte-dominated lakes. 
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Figure 5.2   TP in phytoplankton-dominated lakes. 
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Figure 5.3   Chlorophyll-a in macrophyte-dominated lakes. 
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Figure 5.4   Chlorophyll-a in Phytoplankton-dominated lakes. 
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Figure 5.5   TN in macrophyte-dominated lakes. 
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Figure 5.6   TN in Phytoplankton-dominated lakes. 
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 Contrary to expected, the linear regression analysis for a possible 

relationship between the variability of lake water TP concentration (as expressed 

by CV) and submerged aquatic vegetation did not show any association for any 

of the two measures of submerged aquatic vegetation: PAC and PVI (Figures 5.8 
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and 5.9). This result, however, is not conclusive because of limitations caused by 

unavailability of repeated measures of submerged aquatic vegetation dominance 

for the lakes studied.  

Figure 5.7   Variability of lake water total phosphorus with increment in area covered by 
vegetation. 
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Figure 5.8   Variability of lake water total phosphorus with increment in volume of the lake 
infested by vegetation. 
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5.5 Summary 

The analysis of t-test and one way ANOVA conducted in this chapter 

indicated that lakes dominated by macrophytes show a significantly lower lake 

water concentration of TP and chlorophyll-α as compared to those lakes 

dominated by phytoplankton.  The same type of analysis did not show a 

significant difference between both groups of lakes in regard to TN concentration. 

This result confirms the strong correlation between submerged aquatic 

vegetation and lake water chlorophyll-α and lake water TP concentration 

discussed in Chapter 4. Furthermore, these results strongly suggest that at least 

under TP levels <50 µg L-1, the association of submerged aquatic vegetation with 

concentrations of TP and chlorophyll-α did not extend to lake water TN 

concentrations. 

This analysis did not show a buffering effect of submerged aquatic 

vegetation in the inter-annual variability of lake water TP concentration in urban 

lakes.  
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CHAPTER 6. 

IMPLICATIONS OF RESEARCH 

Eutrophication of lakes located in the Tampa Bay watershed show 

significant trends between 1990 and 2007.  There are three main findings 

regarding these trends.  First, the concentration of phosphorus (as TP) and 

phytoplankton (as measured by chlorophyll-α) increased over time for lakes 

classified as oligotrophic or mesotrophic. Second, in hypereutropic lakes 

phosphorous concentrations decreased with time and no significant trend was 

seen for chlorophyll-α.  Third, the ratio of nitrogen to phosphorus (TN:TP) 

declined for lakes with both low and high levels of eutrophication. Historical and 

recent human settlement patterns and population growth in Hillsborough County, 

coupled with a karst geology, may have contributed to the observed increase in 

lake water phosphorus concentrations for oligotrophic and mesotrophic lakes.  

Lake management plans that have included reducing point and non-point source 

nutrient flows may be responsible for the declining water phosphorus 

concentrations in hypereutrophic lakes.  

For many of the oligotrophic and mesotrophic lakes of the region a trend 

line suggests that in ~20 years primary productivity may be nitrogen-limited, but 

for hypereutrophic lakes, primary productivity is already nitrogen-limited, as 

suggested by TN: TP ratios ≤ 10. Nitrogen-limited primary productivity may have 
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undesirable conseuences related to the increase in cyanobacterial populations 

(Hecky and Kilham, 1988; Levich, 1996; Levich and Bulgakov, 1992), and thus a 

threat  thread to public  health due to effects caused by toxins produced by this 

blue-green algae  (Fleming et al., 2002; Karjalainen et al., 2007).  

As population growth and development seem inevitable and the 

underlined karst formation is a permanent condition (in the case those factors 

play in fact a role in the eutrophication of these lakes), this study explored 

submerged aquatic vegetation as a possible factor (based on the literature read) 

in controlling eutrophication for lakes in the Tampa Bay watershed. Among a 

group of lakes composed mostly of those in the low eutrophication subgroup, 

submerged aquatic vegetation was found to be the most significant factor 

associated to eutrophication.  The strongest variables associated to 

eutrophication as estimated by water concentration of chlorophyll-α, were (in 

order of significance), percentage of lake area covered with submerged aquatic 

vegetation (PAC), percentage of lake volume occupied by submerged aquatic 

vegetation (PVI), and concentration of phosphorus and nitrogen in lake water.  

Submerged aquatic vegetation (both expressions) also had the strongest 

association with lake water phosphorus concentration, followed by mean depth.  

When water nitrogen concentration was examined as dependent variable, there 

were no other variables significantly associated with it.  

Hypothesis-testing revealed that phosphorus and chlorophyll-α 

concentrations were significantly higher for lakes with low coverage of 
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submerged aquatic vegetation than for lakes with high coverage. These results 

support the theory that submerged aquatic vegetation is a strong candidate to be 

considered a controlling factor or at least a strong indicator of water quality.  

Measuring the relationship between submerged aquatic vegetation and 

phosphorus levels, may in fact, be indirectly measuring the relationship between 

submerged aquatic vegetation and phytoplankton productivity. This is because 

phytoplankton productivity is mostly limited by water phosphorus concentration in 

this group of lakes.  Hence the mechanisms discussed here as means by which 

submerged aquatic vegetation may influence water phosphorus concentration 

are indirectly those by which submerged aquatic vegetation may influence 

phytoplankton productivity as well. These mechanisms are: sedimentation of 

suspended total phosphorus, direct phosphorus uptake from the water column, 

provision of surfaces for periphyton and bacteria, and influences on ion exchange 

reactions via regulation of dissolved oxygen concentration and pH levels.  

Phytoplankton productivity (as measured by chlorophyll-α), however, was 

found to be more strongly associated with submerged aquatic vegetation than 

with total phosphorus concentration.  This may indicate that in addition to the 

indirect mechanisms mentioned above, submerged aquatic vegetation may exert 

also a more direct effect in phytoplankton productivity, for example, by sheltering 

zooplankton from fish, which increases zooplankton predation of phytoplankton. 

Eutrophication and change of nutrient ratios in freshwater urban and 

suburban lakes may represent a threat to public health by promoting productivity 
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of toxic algae. Oral, respiratory, and cutaneous exposure to toxins released by 

toxic algae can result in diseases of the nervous, gastrointestinal, and hepatic 

systems.  Furthermore, alterations of environmental aesthetics and ecosystem 

balance are additional ways through which eutrophication can impact the human 

wellbeing, from a more holistic view of public health.   

A growing body of research is still needed in order to determine key 

variables or factors that might be manipulated to control lake water 

eutrophication. Results of such research and monitoring programs will contribute 

to the formulation of effective management plans for sustainable conditions of 

human wellbeing.  
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Appendix A: General Information about Lakes Examined for Eutrophication 

Trends 

Hillsborough County 
Lakes Area  

(ha) 
Mean 
Depth  
(m) 

Volume  
(m3) 

Latitude Longitude Watershed 

Thonotosassa 344 2.4 N/A 28Ο 03’ 
39” 

-82Ο 16’ 
39” 

Pemberton 
Creek 

Keystone 175 3.3 5714175 28Ο 07’ 
59” 

-82Ο 35’ 
24” 

Brooker 
Creek 

Magdalene 83 2.4 2385712 28Ο 04’ 
55” 

-82Ο 28’ 
55” 

Sweet Water 
Creek 

Carroll 82 2.4 2044183 28Ο 03’ 
04” 

-82Ο 29’ 
15” 

Sweet Water 
Creek 

Hiawatha 55 3.3 1873595 28Ο 10’ 
10” 

-82Ο 34’ 
54” 

Anclote river 

Calm 47 2.7 1477849 28Ο 08’ 
32” 

-82Ο 34’ 
54” 

Brooker 
Creek 

Armistead 14 2.7 347739 28Ο 06’ 
04” 

-80Ο 33’ 
35” 

Rocky/Brushy 
Creek 

Deer 14 3.6 501064 28Ο 10’ 
04” 

-82Ο 27’ 
45” 

Rocky/Brushy 
Creek 

Sunset 13 2.4 352140 28Ο 08’ 
06” 

-82Ο 37’ 
32” 

Brooker 
Creek 

Keene 13 2.7 317223 28Ο 08’ 
40” 

-82Ο 26’ 
53” 

Cypres Creek

Crenshaw 12 1.5 42304 28Ο 07’ 
33” 

-82Ο 29’ 
45” 

rocky/Brushy 
Creek 

Juanita 10 2.7 246887 28Ο 07’ 
03” 

-82Ο 35’ 
20” 

Brooker 
Creek 

Dead Lady 1.2 0.9 2087 28Ο 09’ 
18” 

-82Ο 34’ 
14” 

Brooker 
Creek 
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Appendix A:  (Continued) 

Pinellas County 

Lakes Area   
(ha) 

Mean 
Depth   
(m) 

Volume  
(m3) 

Latitude Longitude Watershed

Alligator 32 N/A N/A 27Ο 58’ 
55” 

-82Ο 41’ 
50” 

Old Tampa 
Bay 

Chautauqua 22 N/A N/A 28Ο 00’ 
15” 

-82Ο 43’ 
21” 

Old Tampa 
Bay 

 

Manatee County 

Lakes Area   
(ha) 

Mean 
Depth   
(m) 

Volume  
(m3) 

Latitude Longitude Watershed

Ward 
Lake 

103 N/A N/A 27Ο 25’ 
40” 

-82Ο 29’ 
09” 

Manatee 
River 

 

Polk County 

Lakes Area   
(ha) 

Mean 
Depth   

(m) 

Volume  
(m3) 

Latitude Longitude Watershed 

haunter 87 N/A N/A 28Ο 01’ 
58” 

-81Ο 57’ 
57” 

Hillsborough 
River 

Bonnet 32 N/A N/A 28Ο 02’ 
51” 

-81Ο 58’ 
36” 

Hillsborough 
River 

Beulah 7 N/A N/A 28Ο 02’ 
26” 

-81Ο 58’ 
06” 

Hillsborough 
River 
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Appendix B: One Time Values of Variables of Lakes Examined for 

Submerged Vegetation 

Lake PAC 
% 

PIV 
% 

TP    
(µg 
L-1) 

TN  
(mg
L-1 

Chlorophyll-
α 
 (µg L-1) 

Area 
 (ha) 

Mean 
Depth 
(m) 

Volume 
(M3) 

 Alice 85 41 19 0.37 1.20 37.23 2.74 941847 
 Carroll 85 35 23 0.45 1.40 81.75 2.44 2044183
White Trout 77 44 14 0.60 3.20 30.35 3.35 1011391
Reinheimer 77 25 12 1.20 3.80 8.09 1.83 236600 
Magdalene 76 47 14 1.07 3.80 83.37 2.44 2385713
Eckles 71 27.3 30 1.27 5.40 11.33 2.13 256854 
Mound 69 32 20 0.52 2.50 30.35 3.96 1280673
Raleigh 67 23 3 0.60 6.90 9.71 2.74 254667 
George 63 33 31 0.50 4.20 10.93 3.66 378654 
Cypress 56 16 10 0.54 4.40 6.48 3.66 225021 
Round 56 17.1 21 0.45 3.60 4.05 2.74 99847 
Horse 46 19 21 0.89 3.80 10.93 2.13 146282 
Rogers 44 13 17 0.95 14.40 38.04 2.44 746805 
Pine 44 17.9 40 0.99 8.60 3.24 2.44 555292 
Noreast 40 14.1 27 0.72 9.70 3.24 1.52 87071 
Calm 39 9 22 0.41 4.00 46.54 3.35 1477849
Island Ford 38 12 25 0.87 8.80 36.02 3.05 1131957
Keystone 38 12 25 1.13 3.70 174.43 3.35 5714176
Crescent  35 10 35 0.94  18.21 2.74 553353 
Dead Lady 34 12.9 50 0.94 6.60 1.21 0.91 2087 
Elizabeth 30 10 24 0.86 6.30 7.69 3.66 272512 
Taylor 2 30 13 12 0.64 6.00 19.02 2.74 543649 
Rainbow 26 9 10 0.77 8.40 19.02 2.74 544936 
Juanita 21 10 10 0.99 11.40 9.71 2.74 246887 
Crenshaw 20 8.2 22 0.83 11.40 12.14 1.52 42304 
Church 15 4.6 26 0.52 5.90 25.09 1.22 138039 
Cedar East 8 4.6 33 0.61 6.60 1.21 1.52 33639 
Armistead 7 12 45 1.09 21.30 13.76 2.74 347739 
Rock 6 4 35 0.91 21.70 21.45 2.13 431011 
Brant 5 0.5 35 0.93 9.00 22.26 1.83 384649 
Saddleback 3.5 9 27 1.08 11.40 12.55 1.52 226065 
Cedar 
West 3 2.4 41 0.78 17.30 2.02 1.83 18916 
Pretty 2 1 33 0.95 11.90 32.78 3.35 1068395
Josephine 2 1 44 0.85 12.00 20.24 2.13 422013 
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Appendix B:  (Continued) 

Lake Latitude  Longitude Watershed 

 Alice 28Ο07’56”
-82° 36 ' 
14 " 

Brooker 
Creek 

 Carroll 
28° 03 ' 
04 " 

-82° 29 ' 
15 " 

Sweetwater 
Creek 

White 
Trout 

28° 02 ' 
21 " 

-82° 29 ' 
46 " 

Sweetwater 
Creek 

Reinheimer
28° 07 ' 
48 " 

-82° 29 ' 
12 " 

Rocky/Brushy 
Creek 

Magdalene 
28° 04 ' 
55 " 

-82° 28 ' 
55 " 

Sweetwater 
Creek 

Eckles 
28° 03 ' 
19 " 

-82° 28 ' 
19 " 

City of 
Tampa 

Mound 
28° 08 ' 
51 " 

-82° 34 ' 
19 " 

Brooker 
Creek 

Raleigh 
28° 06 ' 
21 " 

-82° 35 ' 
02 " 

Brooker 
Creek 

George 
28° 04 ' 
07 " 

-82° 29 ' 
14 " 

Sweetwater 
Creek 

Cypress 
28° 07 ' 
32 " 

-82° 33 ' 
52 " 

Rocky/Brushy 
Creek 

Round 
28° 07 ' 
14 " 

-82° 30 ' 
00 " 

Rocky/Brushy 
Creek 

Horse 
28° 06 ' 
38 " 

-82° 34 ' 
44 " 

Brooker 
Creek 

Rogers 
28° 06 ' 
32 " 

-82° 35 ' 
19 " 

Brooker 
Creek 

Pine 
28° 03 ' 
38 " 

-82° 28 ' 
20 " 

Curiosity 
Creek 

Noreast 
28° 03 ' 
45 " 

-82° 28 ' 
07 " 

Curiosity 
Creek 

Calm 
28° 08 ' 
32 " 

-82° 34 ' 
54 " 

Brooker 
Creek 

 Island 
Ford 

28° 09 ' 
08 " 

-82° 35 ' 
56 " 

Brooker 
Creek 

Keystone 
28° 07 ' 
59 " 

-82° 35 ' 
24 " 

Brooker 
Creek 

Crescent  
28° 09 ' 
29 " 

-82° 35 ' 
31 " 

Brooker 
Creek 

Dead Lady 
28° 09 ' 
18 " 

-82° 34 ' 
14 " 

Brooker 
Creek 
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Appendix B:  (Continued) 

Lake Latitude  Longitude Watershed 

Elizabeth 
28° 09 ' 
26 " 

-82° 34 ' 
24 " 

Brooker 
Creek 

Taylor 2 
28° 08 ' 
12 " 

-82° 36 ' 
43 " 

Brooker 
Creek 

Rainbow 
28° 07 ' 
00 " 

-82° 35 ' 
46 " 

Brooker 
Creek 

Juanita 
28° 07 ' 
03 " 

-82° 35 ' 
20 " 

Brooker 
Creek 

Crenshaw 
28° 07 ' 
33 " 

-82° 29 ' 
45 " 

Rocky/Brushy 
Creek 

Church 
28° 06 ' 
11 " 

-82° 35 ' 
58 " 

Brooker 
Creek 

Cedar East 
28° 03 ' 
56 " 

-82° 28 ' 
13 " 

Curiosity 
Creek 

Armistead 
28° 06 ' 
04 " 

-82° 33 ' 
35 " 

Rocky/Brushy 
Creek 

Rock 
28° 06 ' 
48 " 

-82° 33 ' 
24 " 

Rocky/Brushy 
Creek 

Brant 
28° 07 ' 
35 " 

-82° 28 ' 
20 " 

Rocky/Brushy 
Creek 

Saddleback
28° 07 ' 
13 " 

-82° 29 ' 
41 " 

Rocky/Brushy 
Creek 

Cedar 
West 

28° 03 ' 
55 " 

-82° 28 ' 
21 " 

Curiosity 
Creek 

Pretty 
28° 06 ' 
27 " 

-82° 34 ' 
04 " 

Rocky/Brushy 
Creek 

Josephine 
28° 06 ' 
35 " 

-82° 33 ' 
43 " 

Rocky/Brushy 
Creek 
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