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A Novel Biostable 3D Porous Collagen Scaffold for Implantable Biosensor 

Young Min Ju 

ABSTRACT 

 Diabetes is a chronic metabolic disorder whereby the body loses its 

ability to maintain normal glucose levels. Despite of development of implantable 

glucose sensors in long periods, none of the biosensors are capable of 

continuously monitoring glucose levels during long-term implantation reliably. 

Progressive loss of sensor function occurs due in part to biofouling and to the 

consequences of a foreign body response such as inflammation, fibrosis, and 

loss of vasculature. 

 In order to improve the function and lifetime of implantable glucose 

sensors, a new 3D porous and bio-stable collagen scaffold has been developed 

to improve the biocompatibility of implantable glucose sensors. The novel 

collagen scaffold was crosslinked using nordihydroguaiaretic acid (NDGA) to 

enhance biostability. NDGA-treated collagen scaffolds were stable without any 

physical deformation in the subcutaneous tissue of rats for 4 weeks. The scaffold 

application does not impair the function of our sensor. The effect of the scaffolds 

on sensor function and biocompatibility was examined during long-term in vitro 

and in vivo experiments and compared with control bare sensors. The sensitivity 

of the short sensors was greater than the sensitivity of long sensors presumably 



 xi

due to less micro-motions in the sub-cutis of the rats. The NDGA-crosslinked 

scaffolds induced much less inflammation and retained their physical structure in 

contrast to the glutaraldehyde (GA)-crosslinked scaffolds.  

 We also have developed a new dexamethasone (Dex, anti-inflammatory 

drug)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres/porous collagen 

scaffold composite for implantable glucose sensors. The composite system 

showed a much slower and sustained drug release than the standard 

microspheres. The composite system was also shown to not significantly affect 

the function of the sensors. The sensitivity of the sensors with the composite 

system in vivo remained higher than for sensors without the composites (no 

scaffold, scaffold without microspheres). Histology showed that the inflammatory 

response to the Dex-loaded composite was much lower than for the control 

scaffold. The Dex-loaded composite system might be useful to reduce 

inflammation to glucose sensors and therefore extend their function and lifetime. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Diabetes 

Diabetes is a chronic metabolic disorder in which the body loses its ability 

to maintain normal glucose levels. Diabetes is the 6th leading cause of death by 

disease and is rapidly increasing in the United States and around the world. The 

American Diabetes Association (ADA) estimates that at least 20.8 million or 7% 

of Americans have suffered from diabetes, caused by a lack or shortage of 

insulin, the hormone that allows glucose to enter the body’s cells and be stored 

or used for physiological activation energy [1,2]. 

There are two major types of diabetes (Type I and II). Type I, or insulin-

dependent diabetes, is an autoimmune disease. It is marked by blood sugar 

levels rising out of control because the body’s immune system destroys the 

insulin-producing beta cells in the pancreas. The pancreas then produces little or 

no insulin. Approximately, 5-10% of diabetes cases in the US is Type I. Type II 

diabetes is the most common form of diabetes. It is characterized clinically by 

hyperglycemia and insulin resistance, which results when the insulin produced, 

does not adequately control the uptake of glucose by the cells. Type II diabetes 
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is usually the type of diabetes diagnosed in patients that are over 30 years old or 

obese. Ninety percent of diabetes cases is Type II [2-4]. 

Diabetes has acute and chronic effects on the body, and may lead to 

death. Persistent abnormal high levels of blood glucose can slowly damage both 

the small and large blood vessels in the body, resulting in numerous 

complications [2,3], such as:  

- Heart disease and stroke 

- High blood pressure 

- Blindness 

- Kidney disease 

- Nervous system disease 

- Amputations 

- Dental disease 

- Complications of pregnancy 

- Erectile dysfunction 

Thus, physicians and researchers are trying to develop better ways of monitoring 

and curing diabetes to avoid life-threatening events. 
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1.2. Implantable Glucose Sensor 

The ADA’s Consensus Statement on Self-Monitoring of Blood Glucose 

(SMBG)  recommends that diabetic patients should test their blood glucose level 

at least twice for Type II diabetes and four (for Type I diabetes) times a day [5]. 

To maintain normal or near normal blood glucose levels (70-120 mg/dL), diabetic 

patients require injections of insulin, and have to monitor their own blood glucose 

levels throughout the day. However, the general use of over-the-counter glucose 

meters requires finger pricking to obtain blood samples several times each day. 

Because of the high density sensory neurons located in the dermis on the finger 

tip, patients frequent suffer from painful [6]. Thus, the painfulness, inconvenience, 

and discomfort of self-monitoring of blood glucose are frequent obstacle to 

effect ive patient compliance and opt imal management of diabetes.  

To corrective regulate tight blood glucose control, a continuous glucose 

monitoring system (CGMS) is required. The CGMS can provide additional data to 

track unpredictable glucose trend in relation to meals and exercise [Fig. 1.1] and 

allow hypoglycemic and hyperglycemic excursions to be avoided. During the past 

thirty years many kinds of continuous glucose monitoring systems have been 

studied. These include sensors implanted in the subcutaneous tissue [7-13], 

sensors implanted in the vascular bed [14,15], and determining glucose 

concentration in interstitial fluid sampled using a micro dialysis device [16-18]. 

Although several studies of implantable glucose sensors have been reported, 

none of the biosensors tested well capable of reliable in continuous blood  
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Figure 1.1.  Demonstration of Glucose Rise and Fall in Relation to Meals 
 and Exercise. Figure adapted from Joseph and Torjman [19].  
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glucose monitoring during long-term implantation, progressive loss of sensor 

function occurred due in part to biofouling and to the consequences of a foreign 

body response, such as inflammation, fibrosis, and loss of vasculature [20-22]. 

Most of the implantable glucose sensors are based on amperometric 

enzyme sensors from the pioneering work of Clark and Lyons [23], Updike and 

Hicks [24], and Gough et al. [25]. The typical enzyme-based amperometric 

sensor is composed of a two-electrode system with a glucose indicating platinum 

(Pt) working electrode and a silver/silver chloride (Ag/AgCl) reference-counter 

electrode. Figure 1.2 shows the needle-type implantable glucose sensor 

commonly used for subcutaneous insertion [26]. An outer layer of polyurethane 

membrane is permeable to glucose and oxygen but impermeable to most 

interfering substances. A crosslinked glucose oxidase (GOD) enzyme layer is 

sandwiched between inner and outer membrane. In the presence of oxygen, 

glucose is oxidized by GOD and produces hydrogen peroxide (H2O2). Hydrogen 

peroxide is then oxidized electrochemically at the Pt electrode surface using a 

polarization voltage of about +700 mV, producing 2e- that is detected as a current 

[21,27]. The chemical reactions are: 

 

Glocose + O2 ⎯⎯ →⎯GOD  Gluconic Acid + H2O2 

 H2O2 ⎯⎯⎯ →⎯+ mV700  2e- + 2H+ + O2 
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Figure 1.2. Schematic Illustration of the Needle-type Implantable Glucose Sensor. 
 Figure adapted from Pickup et al. [26]. 
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1.3. Biocompatibility of Implanted Devices 

Most implanted medical devices, including biosensors, frequently 

encounter a sequence of common host defense mechanisms, such as acute and 

chronic inflammation, wound healing, and foreign body responses [28] [Fig. 1.3]. 

Acute inflammation begins within a few minutes after device implantation, with 

accumulation of interstitial fluid, plasma proteins, and migration of leukocytes 

(neutrophils, monocytes, macrophages) around sensors. Chronic inflammation 

follows if acute inflammation is not resolved. In general, macrophages rapidly 

differentiate from monocytes and become the predominant cell type in exudates 

surrounding the devices. The macrophages are key mediators in the 

development of immune reactions to implanted synthetic biomaterials. They also 

produce and secrete a number of biologically active products including 

chemotactic factors, reactive oxygen metabolites, growth factors, and cytokines 

[29]. Wound healing is the repair and remodeling process which occurs after. It 

takes place in the space between the implant and the surrounding tissue. It is 

begun by the action of monocytes and macrophages, followed by proliferation of 

fibroblasts and vascular endothelial cells at the wound site. The fibroblasts and 

new small blood vessels proliferate in developing granulation tissue [28]. The 

new small blood vessels are budded or sprouted from preexisting blood vessels. 

This process is called neovascularization or angiogenesis [30-32]. Fibroblasts 

also synthesize type III collagen and proteoglycans at the wound site. Eventually, 

collagen deposition may result in the formation of fibrous capsule around the 

implanted device. 
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Figure 1.3. Temporal Variation in Tissue Reaction to Implanted Biomaterials.  
 Figure adapted from Anderson [28]. 
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  The foreign body reaction has a connection with foreign body giant cells 

and granulation tissue including macrophages, fibroblasts and new capillaries at 

the tissue-implant interface. Fibrosis or fibrous encapsulation is the end-stage of 

the healing process. Fibrotic tissue surrounding the implanted device isolates it 

from the local tissue environment. Figure 1.4 shows the process of wound 

healing in the presence of an implant.  

Pore size and pore density on the surface of implanted device (i.e. 

scaffold) may greatly influence fibrous capsule thickness, blood vessel density, 

and the location of vessels within the three-dimensional scaffold [19]. Large pore 

scaffolds (pores > 8 microns in diameter) allow deep penetration of capillaries 

and supporting extra-cellular matrix (ECM). Sharkawy et al. [33] showed that 

after four weeks of subcutaneous implantation in rat, well-organized collagen 

capsule typical of foreign-body responses around non-porous implants, while  

porous implants produced less fibrosis and more vascularized fibrous capsules. 

For implantable biosensors, adsorption of proteins and cells as well as the 

formation of a fibrous capsule tissue can severely hinder transport of small 

molecules, i.e. glucose. Glucose is not able to freely diffuse from capillary blood 

to the sensor’s transducer surface [21]. Pickup et al. [26] reported an example of 

protein and cellular accumulation on the tips of the non-functioned glucose 

sensors after only five hours of implantation [Fig. 1.5]. Ertefai and Gough [13] 

showed fibrous capsule tissue surrounding a glucose sensor tip after 10 days of 

implantation in subcutis [Fig. 1.6]. 
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Reichert and Sharkawy [21] reviewed the findings of several implantable 

biosensor studies:  

- Inflammatory cells bind to and degrade sensor performance. 

- Protein adsorption hinders sensor function by lowering permeability to  

 glucose and oxygen. 

- Fibrous tissue and exogenous pool of foreign body capsule (FBC)  

 presents a transport barrier to glucose. 

- Vascularization of the FBC is necessary for good long-term stability of  

 response. 

- Sensors inactivated in vivo often regain function when FBC is removed  

 and retested in vitro. 

- Sensor baseline and sensitivity gradually degrade with implantation time. 

- Sensor performance is erratic for the first hour and then becomes steady 

 upon equilibration. 

- Subcutaneous (SQ) glucose levels lag behind plasma levels by 5-20 min. 

- Intravascular (IV) implantation gives immediate glucose readings but  

 suffers from thrombus formation. 

- IV implantation is best if the sensor is placed in fast-moving blood 

 stream. 

- Intraperitoneal (IP) FBC is thinner than SQ. 

- Textured coatings produce vascularized FBC that might ensure long- 

 term SQ sensor accuracy. 
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Figure 1.4. Schematic of Process of Wound Healing in the Presence of an 
 Implant. Figure adapted from Cannas et al. [34]. 
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Figure 1.5. SEM Photographs of Tips of Glucose Sensors. (A) Control 
sensornot implanted; (B) Functioning sensor showing minimal 
biofouling; (C) Non-functioning sensor showing significant protein 
and Cellular accumulation. Figure adapted from Pickup et al. [26]. 
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Figure 1.6. Light Micrograph Image of Glucose Sensor Tip after 10 Days of 

Implantation in Subcutis. Note dense fibrous capsule surrounds 
sensor. Figure adapted from Pickup et al. [13]. 
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1.4. Strategies for Biocompatible Implantable Sensors 

 Many researchers studied sensor modification to reduce sensor 

membrane biofouling in vivo. One approach is to reduce protein adsorption. 

Quinn et al. [35] used poly(ethylene glycol) (PEG) into a poly(hydroxyethyl-

methacrylate) (PHEMA) for surface modification of the biosensor. The PEG 

chains tend to stand perpendicular to the membrane surface to provide a water 

rich phase that resists many protein molecules. Vadgama et al. [36,37] tried to 

reduce protein adsorption by using diamond-like carbon, so-called “inert” 

materials. Shichiri et al. [38] incorporated an alginate/polylysine gel layer on the 

sensor. Shaw et al. [39] reported biocompatibility improvement of biosensor, 

coated with PHEMA/polyurethane (PU). Wilkins et al. [40] and Moussy et al. 

[7,41-43] introduced the NafionTM (perfluorosulphonic acid) membrane, to reduce 

biofouling on surface of the sensor and reduce interference from urate and 

ascorbate. Armour et al. [14] coated their sensor tips with crosslinked albumin 

and Kerner et al. [44] developed cellulose-coated sensors to improve sensor 

blood compatibility. 

 Controlled delivery of tissue response modifiers (TRM) can be used to 

control tissue responses. Dexamethasone (Dex), a synthetic glucocorticoid, is 

well known for its immunosuppressive and anti-inflammatory function [45-47]. 

The biosensor design could incorporate this anti-inflammatory agent, which could 

be slowly released using biodegradable microspheres [48,49]. Typically, 

microspheres are prepared using natural or synthetic biodegradable polymers 

such as poly(lactic-co-glycolic acid) (PLGA) [49]. Moussy et al. [50,51] developed 
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Dex/PLGA microspheres designed to suppress the inflammatory tissue response 

to an implanted biosensor. Norton et al. [52] and Patil et al. [53] modified 

hydrogel coatings [PHEMA and poly(vinyl alcohol) (PVA) hydrogel, respectively] 

to include  Dex-loaded PLGA microspheres to improve implantable biosensor 

biocompatibility.  

The best tissue environment for an implantable biosensor is vascularized 

tissue around sensor. Angiogenesis, which include as complex cascade of 

events involving endothelial cell activation, migration and proliferation, 

organization into immature vessels, association of mural cells with the immature 

vessels, and matrix deposition as the vessels mature [54,55], has been 

extensively studied. The control of neovascularization has recently focused on 

the use of angiogenic growth factors such as vascular endothelial growth factor 

(VEGF) and platelet-derived growth factor (PDGF). VEGF is a specific mitogen 

for initiating angiogenesis, specifically, for promoting vascular permeability, 

prolifieration, and migration of endothelial cells [56]. PDGF promotes the 

maturation of blood vessels by the recruitment of smooth muscle cells to the 

endothelium lining of nascent vasculature [55,57].  

The controlled release of VEGF and PDGF has been studied widely as a 

strategy for increasing the blood vessel density surrounding implants [58-61]. 

Klueh et al. [62,63] developed an in vivo gene transfer system with VEGF and 

found that the VEGF-biosensor systems induced neovascularization surrounding 

the sensor and thereby enhanced biosensor function in vivo. Ward et al. [64] 

reported that VEGF infused continuously for 28 days into rat subcutaneous tissue 
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from a model biosensor led to local vascularization of the surrounding foreign 

body capsule. Norton et al. [52] modified their hydrogel biosensor coatings to 

incorporate PLGA microspheres in order to release vascular endothelial growth 

factor.  
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1.5. Collagen and Its Use in Biomaterials 

In recent years, collagen and its derived matrices have become the most 

widely used natural polymers in the biomedical field including tissue engineering 

due to their low antigenicity, biodegradability and good mechanical, hemostatic 

and cell-binding properties [65-69]. A broad range of potentially manufactured 

products based on collagen is covering many medical disciplines [70] (Table 1). 

 Collagen is a major protein of connective tissues in animals as well as a 

key structural component of the extracelluar matrix. It is distributed in skin, bones, 

teeth, tendons, eyes and most other tissues and organs [71,72]. The collagen 

molecule is a rod-like structure with a molecular weight of about 300,000 which 

forms a unique triple-helix configuration of three polypeptide subunits. Each 

collagen molecule is organized in a regular and hierarchical pattern forming fibrils 

and fibril bundles that result in a tough tissue [73,74]. The collagen family has 

been reported to contain at least 19 distinct types. Among them, type I collagen 

is the most abundant in higher order animals in the skin, tendon, bone, and most 

collagenous tissue, while type II is found in cartilage, and type III is found, 

together with type I, in skin, and blood vessels. Thus, type I collagen is 

predominantly encountered in biomaterials application as bioprosthetic devices 

and scaffolds [71,73].  

 In order to devise strategies for using collagen in the development of 

advanced biomaterials for biomedical engineering, it is necessary to confer 

mechanical strength and enzymatic degradation (e.g. collagenase) resistance by 

introduction of chemical or physical crosslinking into the molecular structure.  
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Table 1.1. Examples of Applications of Collagen-Based Medical Devices [71]. 

Medical Area Application 

Cardiovascular surgery 

Dentistry 

Dermatology 

General surgery 

Neurosurgery 

Ophthalmology 

Orthopedics 

Otology 

Urology 

Wound management 

Vessel replacement, heart valves 

Periodontal attachment, alveolar ridge augmentation 

Tissue augmentation 

Hernia repair, adhesion barriers, tissue adhesives 

Nerve conduits, nerve repair 

Corneal graft, vitreous replacement 

Bone repair, cartilage and ligament reconstruction 

Tympanic membrane replacement 

Ureter replacement, renal repair, urinary incontinence

Dressings 
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There are several methods for crosslinking collagen-based biomaterials. 

Glutaraldehyde (GA) is the most widely used as a crosslinking agent for 

collagen-based biomaterials [65,75].  At neutral pH, GA reacts with amino groups 

and with other functional group in protein, including carboxy and amide group 

[76]. However, GA induces cytotoxicity in vivo, caused by the presence of 

unreacted residual groups or the release of monomers of small polymers during 

enzymatic degradation [77,78]. To avoid cytotoxicity and calcification of GA-

crosslinked collagen, polyepoxy compounds, including glycol and glycerol 

polyglycidyl ethers, have been examined as potential collagen crosslinking 

agents [79,80]. Polyepoxy compounds react with the free amines of lysine side 

chains on neighboring proteins. The hexamethylene diisocyanate (HMDI), 

homobifunctional reagent, has the ability to crosslink collagen via its lysine side 

chains. Chvapil et al. [81,82] reported that HMDI is an effective method for 

crosslinking of collagen and does not leave residues after crosslinking process. 

Crosslinking with carbodiimide, 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide 

(EDC) and N-hydroxysuccinimide (NHS) being the most widely used as 

crosslinking agents, has the main advantage in that it only facilitates the 

formation of amide bonds between amino group on the collagen molecules 

without becoming part of the actual linkage [73]. This method provides good 

biocompatibility and higher cellular differentiation potential [66,83,84]. Koob et al. 

[85-88] has newly developed a process for polymerizing type I collagen fibers 

with nordihydroguaiaretic acid (NDGA), a plant-derived compound. NDGA 

crosslinking is effective at significantly improving the mechanical properties of 



 20

synthetic collagen fibers. Also, NDGA- crosslinked collagen fibers did not elicit a 

foreign body response nor did they stimulate an immune reaction in vivo during a 

six week implantation period. In addition, various physical treatments including 

ultra-violet or gamma-ray irradiation, and dehydrothermal treatment, have been 

effectively used for introducing crosslinks to collagen matrices [89-92]. 
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CHAPTER 2 

IN VITRO / IN VIVO STABILITY OF THE SCAFFOLDS AND IN VITRO 

SENSITIVITY OF IMPLANTABLE GLUCOSE SENSORS WITH SCAFFOLDS 

 

2.1. Introduction 

To maintain near normal blood glucose levels (70-120 mg/dL), diabetic 

patients widely use over-the-counter glucose meters, which require finger 

pricking to obtain blood samples several times a day. The pain [6], inconvenience, 

and discomfort of self-monitoring of blood glucose (SMBG) are frequently 

obstacles to effective patient compliance and optimal management of diabetes. 

During the past 20 years many kinds of continuous glucose monitoring systems 

have been studied including sensors implanted in the subcutaneous tissue [7-13], 

sensors implanted in the vascular bed [14,15], and determining glucose 

concentration in interstitial fluid sampled using a micro dialysis device [16-18]. 

Although several studies of implantable glucose sensors have been reported, 

none of these biosensors are capable of continuously monitoring glucose levels 

during long-term implantation reliably. Progressive loss of sensor function occurs 

due in part to biofouling and to the consequences of a foreign body response 

such as inflammation, fibrosis, and loss of vasculature [20-22]. 
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Many researchers have modified the surface of the sensors to reduce 

membrane biofouling in vivo. In an approach to reduce protein adsorption, Quinn 

et al. [35] used poly(ethylene glycol) (PEG) in a polyhydroxyethylmethacrylate 

(PHEMA)matrix. Since the PEG chains tend to stand up perpendicular to the 

membrane surface, they provide a water-rich phase that resists binding of many 

protein molecules. Vadgama’s et al. [36,37] reduced protein adsorption by using 

diamond-like carbon, so-called “inert” materials. Shichiri et al. [38] incorporated 

an alginate/polylysine gel layer at the sensor. Shaw et al. [39] reported 

improvement in biocompatibility of a biosensor coated with PHEMA/PU 

(polyurethane). Wilkins et al. [40] and Moussy et al. [7,41-43] introduced NafionTM 

(perfluorosulphonic acid) membrane, to reduce “biofouling” on the surface of the 

sensor and reduce interference from urate and ascorbate. Armour et al. [14] 

coated their sensor tips with crosslinked albumin and Kerner et al. [44] developed 

cellulose-coated sensors to improve sensor blood compatibility. However, none 

of these approaches has been successful for long term, stable glucose 

monitoring. 

Collagen and its derived matrices are used extensively as natural 

polymers in the biomedical field including tissue engineering due to its low 

antigenicity, its biodegradability and its good mechanical, haemostatic and cell-

binding properties [65-69]. In order to devise strategies for using collagen in the 

development of advanced biomaterials for biomedical engineering, it is 

necessary to confer mechanical strength and resistance to enzymatic 

(collagenase) degradation resistance with chemical or physical crosslinking 
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strategies. There are several strategies for crosslinking collagen-based 

biomaterials. Glutaraldehyde (GA) is the most widely used as a crosslinking 

agent for collagen-based biomaterials [65,75]. However, GA and its reaction 

products are associated with cytotoxicity in vivo, due to the presence of 

crosslinking byproducts and the release of GA-linked collagen peptides during 

enzymatic degradation [77,78].  

To avoid in vivo cytotoxicity and subsequent calcification of GA- 

crosslinked collagen, several alternative compounds have been examined as 

potential collagen crosslinking agents [79,80] such as polyepoxy, hexamethylene 

diisocyanate (HMDI), 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide (EDC), and 

ultra-violet (UV) or gamma-ray irradiation. Koob et al. [85-88] recently described 

a process for crosslinking of type I collagen fibers with nordihydroguaiaretic acid 

(NDGA), a plant compound with antioxidant properties. They showed that NDGA 

significantly improved the mechanical properties of synthetic collagen fibers. In 

addition, they showed that NDGA-crosslinked collagen fibers did not elicit a 

foreign body response nor did they stimulate an immune reaction during six 

weeks in vivo. 

The extent of crosslinking and choice of crosslinking agent may also affect 

the porosity and pore size of the scaffold and may greatly influence fibrous 

capsule thickness, blood vessel density, and the location of vessels within the 

three-dimensional porous scaffold [19]. Large pore scaffolds (greater than 60 

micron pore size) allow deep penetration of capillaries and supporting 

extracellular matrix (ECM). Sharkawy et al. [33] recently showed that after four 



 24

weeks of subcutaneous implantation in rat, a well-organized collagen matrix 

typical of a foreign-body response encapsulated non-porous implants, while the 

porous polyvinyl alcohol (PVA) implants produced less fibrous and vascularized 

tissue capsules. 

The goal of this study was to develop a new porous collagen scaffold 

around implantable glucose sensors for improving their biocompatibility. We 

fabricated porous collagen scaffolds by using a freeze-drying method followed by 

crosslinking using NDGA or GA. We evaluated the resistance of NDGA- and GA-

crosslinked collagen scaffolds to degradation using both in vitro and in vivo 

experiments. We also applied the scaffolds around a coil-type implantable 

glucose sensor and measured sensor function in vitro. 
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2.2. Materials and Methods 

2.2.1. Materials 

Type I collagen (purified from fetal bovine tendon) was a generous gift 

from Shriners Hospital for Children (Tampa, FL). Nordihydroguaiaretic acid 

(NDGA) was purchased from Cayman Chemical Co. (Ann Arbor, MI). Glucose, 

bovine serum albumin (BSA) and 50% (w/w) glutaraldehyde (GA) were obtained 

from Fisher Scientific (Pittsburgh, PA). Glucose oxidase (GOD) (EC 1.1.3.4., type 

X-S, Aspergillus niger, 157,500 U/g), epoxy adhesive (ATACS 5104), 

polyurethane (PU), tetrahydrofuran (THF) and collagenase (EC 3.4.24.3, type I, 

from Clostridium histolyticum, 302 U/mg) were obtained from Sigma-Aldrich (St. 

Louis, MO). Sprague-Dawley out-bred rats (male, 375-399 g) were purchased 

from Harlan (Dublin, VA). 

 

2.2.2. Preparation and Crosslinking of Collagen Scaffolds  

The collagen scaffolds were prepared by a freeze-drying method. 

Collagen was dissolved in 3% acetic acid to prepare a 1% (w/v) solution. The 

solution was applied to a cylinder-shaped polypropylene mold (Φ 10 mm, height 

8 mm) and then freeze-dried. A cylindrical 3D porous scaffold was obtained. The 

scaffolds were then crosslinked with NDGA or GA to minimize  solubility and 

improve resistance to collagenase degradation. 

For NDGA crosslinking, dried collagen scaffolds were briefly soaked in 

absolute ethanol, followed by soaking in 2 M of NaCl solution for 12 h at room 

temperature. Scaffolds were re-suspended in oxygen sparged phosphate 
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buffered saline (PBS, 0.1 M NaH2PO4, pH 9.0) for 30 min. at room temperature. 

Scaffolds were then treated with 3 mg of NDGA in 1 mL of PBS as follow: NDGA 

was dissolved in 0.4 N NaOH at a concentration of 30 mg/mL. One milliliter of the 

NDGA solution was added directly to PBS in which the scaffolds were suspended 

to a final concentration of 3 mg/mL. The scaffolds were agitated in the NDGA 

solution for 24 h at room temperature. The scaffolds were removed, briefly rinsed 

with water and freeze-dried. 

For a comparative study of the effectiveness of the NDGA treatment, other 

scaffolds were treated with 0.5% GA for 2 h or 12 h in ethanol solution at room 

temperature. To prevent the dissolution or loss of the matrix during the GA 

crosslinking process, we used 100% ethanol instead of water. The crosslinked 

scaffolds were washed with de-ionized water and freeze-dried again. The 

morphology of the scaffolds before/after crosslinking was examined using 

scanning electron microscopy (SEM) after gold sputter coating of the samples in 

a metal evaporator according to standard procedures. 

To evaluate the stability of the scaffold after crosslinking, the degree of 

crosslinking (Dc) was estimated by weighing the dried samples before and after 

crosslinking. Dc was calculated using the following equation: 

 

Dc [%] = (sample mass after crosslinking /  

sample mass before crosslinking) × 100 
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The swelling property of the porous scaffolds was examined by measuring 

water absorption. The scaffolds were weighed after thorough drying (Wdry) and 

immersed in purified water. After 24 h, the scaffolds were removed from the 

water and immediately weighed again (Wwet). Water absorption was calculated by 

using the following equation: 

  

Water absorption (%) =  [(Wwet – Wdry)/Wwet] × 100 

 

2.2.3. In vitro and In vivo Evaluation of Collagen Scaffolds 

To examine the biological stability of the crosslinked scaffolds, we 

performed in vitro and in vivo biodegradation tests. In vitro biodegradation of 

NDGA- and GA-crosslinked scaffolds was tested using bacterial collagenase. 

Fabricated NDGA- and GA-crosslinked collagen scaffolds were incubated in the 

collagenase solution (1 mg/mL in PBS at 37°C) for up to 4 weeks. Scaffolds were 

removed from the solution, rinsed with de-ionized water and freeze-dried at given 

time intervals (weeks 1 to 4) during incubation. The in vitro degradation was 

evaluated as the percentage of weight difference of the dried scaffold before and 

after enzyme digestion.  

To determine the stability of the crosslinked scaffolds in vivo, we directly 

implanted NDGA- and GA-crosslinked collagen scaffolds in rats. The scaffolds 

were disinfected with 70% ethanol solution for 2 h and implanted subcutaneously 

in the back of the rats. Scaffolds were explanted at 7, 14, 21, and 28 days after 

implantation. After explantation, the scaffolds were examined macroscopically. 
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2.2.4. Preparation of Porous Collagen Scaffolds around Implantable 

Glucose Sensors 

 We first fabricated coil-type glucose sensors loaded with crosslinked 

enzyme (GOD: Glucose Oxidase) using a Platinum-Iridium (Pt/Ir) wire (Teflon 

coated, Φ 0.125 mm, Pt:Ir = 9:1, Medwire, Sigmund Cohn Corp.). Then, we 

applied bovine tendon type I collagen scaffolds around the sensors [Fig. 2.1]. 

Briefly, in order to fabricate a glucose sensor, the Teflon coating of the top 10 

mm of a Pt/Ir wire was removed and the wire was wound up along a 30-gauge 

needle to form a coil-like cylinder. The cylinder unit had an outer diameter of 0.55 

mm and an inner diameter of 0.3 mm and a length of 1 mm. A cotton thread was 

inserted inside the coil chamber to retain the enzyme solution during enzyme 

coating of the electrodes. GOD was added and crosslinked to the sensors by dip 

coating in an aqueous solution containing 1% GOD, 4% BSA, and 0.6% (w/w) 

glutaraldehyde. The outer membrane of the sensor was coated with Epoxy-

Polyurethane (Epoxy-PU) by dipping in Epoxy-PU solution (2.5% (w/v) in THF, 

Epoxy:PU = 1:1). The sensor was dried at room temperature for at least 24 h. 

The two ends of the sensing element were sealed by electrically-insulating 

sealant (Brush-On electrical tape, North American Oil Company) [93,94].  

 To apply collagen scaffolds around the sensors, the sensors were dip-

coated with 1% (w/v) collagen solution and freeze-dried. The porous scaffolds 

around the glucose sensors were crosslinked with either NDGA or GA as 

previously described. Obtained sensors were stored dry at room temperature or 
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Figure 2.1. Schematic Diagram of the Scaffold-coated Sensing Element of the 
Glucose Electrode.  

 (1) Teflon-covered Pt-Ir wire;  
 (2) Ag/AgCl reference wire;  
 (3) Collagen scaffold; 
 (4) Electrically-insulating sealant;  
 (5) Epoxy-Pu outer membrane; 
 (6) Enzyme layer;  
 (7) Stripped and coiled Pt-Ir wire; 
 (8) Cotton fiber with GOD gel.  
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in PBS at 4°C. The morphology of the sensors was observed using light 

microscope and SEM. In addition, in order to evaluate sensitivity changes of the 

sensors with varying wall thickness of the scaffold around the sensors, we 

controlled the wall thickness of the scaffold by multiple dipping /freezing cycles in 

collagen solution. The scaffold with the sensor was then freeze-dried and 

crosslinked as previously described. 

 Silver wires (Teflon coated, Φ 0.125 mm, World Precision Instruments, 

Inc.) were used to fabricate the Ag/AgCl reference electrodes. Silver wires were 

coiled and anodized galvanostatically at 1mA overnight in stirred 0.1 M HCl 

[93,94].  

 

2.2.5. In vitro Characterization of Sensors Coated with Scaffolds 

 The glucose sensors were characterized in PBS (pH 7.4) at 700 mV 

versus the incorporated Ag/AgCl reference electrodes. The working electrode 

(Pt/Ir wire) and Ag/AgCl reference electrode of each sensor were connected to 

an Apollo 4000 potentiostat (World Precision Instruments, Inc.). The background 

current was allowed to stabilize for 10 min., and the sensors were then exposed 

to a series of glucose solutions in order to examine their sensitivities and 

linearities. The response sensitivity (S) was repeatedly assessed by 1) 

measuring the response current (I1) of a C1 glucose solution, 2) adding a 

concentrated glucose solution into the measured solution to increase the glucose 

concentration to C2, and 3) measuring the response current (I2) of the resulting 
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solution. The sensitivity was expressed as the current increase caused by a 1 

mM glucose increase, i.e. S = (I2 - I1) / (C2-C1).  
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2.3. Results and Discussion 

2.3.1. Preparation of Porous Crosslinked Collagen Scaffolds 

The chemistry of the NDGA crosslinking reaction differs from the reaction 

using the GA treatment [Fig. 2.2]. GA is the most common crosslinking agent 

used for fixation of collagen scaffolds for tissue bioengineering. Both aldehyde 

functional groups of the GA molecule react with amine groups between two 

neighboring polypeptide chains, particularly lysine side chains. Unfortunately, GA 

crosslinking is encumbered with potential cytotoxicity problems caused by the 

presence of unreacted residual groups or the release of monomers and small 

polymers during enzymatic degradation [77,78]. 

NDGA treatment is an alternative crosslinking agent, which possesses 

reactive catechols. Collagen crosslinking with NDGA mimics the quinine tanning 

mechanism in the skate egg capsule. Catechol-quinone tanning systems are 

prevalent in a wide variety of animals, which the process serves to strengthen 

vulnerable extracellular matrices (e.g. insect cuticle, mussel byssus threads) 

[85,95]. NDGA, isolated from the creosote bush, is a low molecular weight di-

catechol containing two ortho-catechols. The two catechols on NDGA undergo 

auto-oxidation at neutral or alkaline pH producing reactive quinones. Two 

quinones then couple via aryloxy free radical formation and oxidative coupling, 

forming bisquinone crosslinks at each end. The NDGA continues forming a large 

crosslinked bisquinone polymer network in which the collagen fibrils are 

embedded. The NDGA treatment does not form crosslinks with amino acid side 

chains of collagen [85,86,95].  
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In this study, highly porous collagen scaffolds were prepared by a freeze-

drying method. We ascertained that the obtained scaffolds have an open cell and 

interconnected pore structure based on SEM observation [Fig. 2.3(A)]. The pores 

of the scaffolds are regularly distributed and range from 20 to 100 μm in diameter 

(mean ~ 60 μm). Sharkawy et al. [33] reported that the a 60 μm mean-pore-sized 

polyvinyl alcohol (PVA) sponge provided a tissue in-growth environment and 

allows to infiltration of neovasculature but did not allow for fibrous tissue in-

growth. After crosslinking with NDGA and GA, the pore size and pore structure of 

both scaffolds were not significantly altered [Fig. 2.3(B) and (C)].  

Figure 2.4 shows the degree of crosslinking and water absorption of the 

scaffolds using different crosslinking methods. The mass was reduced to about 

70% after NDGA treatment and 60% for GA treatment after the crosslinking 

process due to the loss of uncrosslinked collagen components. Crosslinked 

collagen scaffolds had significantly higher form stability than uncrosslinked 

collagen scaffolds. Also, the swelling behavior of NDGA- and GA-crosslinked 

scaffolds showed no significant differences between the two different crosslinking 

agents. The water absorptions of both crosslinked scaffolds were above 99%. 

The high swelling property of sponge-like matrices seems to be dependent on 

the porous inner structure of the scaffold, which possesses good absorbent 

characteristics [96].  
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Figure 2.2. Schematic Mechanism for (A) GA and (B) NDGA Crosslinking of 

the Collagen Scaffold.  
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Figure 2.3. SEM Morphology of the Collagen Scaffold. Determination of the 
pore size of collagen scaffolds by SEM. (A) No crosslinking; (B) 
GA-crosslinked; (C) NDGA-crosslinked. 
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Figure 2.4. Bulk Properties of GA- and NDGA-crosslinked Scaffold. 
 Results are shown as means ± SD (n=3). 



 37

2.3.2. In vitro and In vivo Evaluation of Collagen Scaffolds 

The biological stability of the crosslinked collagen scaffolds was 

investigated by in vitro and in vivo biodegradation tests. Degradation in both 

uncrosslinked (control) and crosslinked scaffolds was characterized by 

determining weight loss of the scaffold after enzymatic digestion. The 

uncrosslinked scaffolds and scaffolds crosslinked with GA for 2 hours were 

completely degraded in the collagenase solution within several hours while 

NDGA- or GA-crosslinked (for 12 h) scaffolds were not degraded within 24 hours. 

A significant increase in resistance to enzymatic digestion could be shown after 

crosslinking. Figure 2.5 shows long-term collagenase in vitro degradation test 

(weight remaining %) of the NDGA- and GA-crosslinked scaffolds. After 1 week 

exposure to collagenase, both types of scaffolds showed high resistance to 

enzymatic digestion (> 80% weight remaining). After 3 and 4 weeks, all scaffolds 

retained 70% of their initial mass. However, in the case of GA-crosslinked 

scaffold, the pore size was increased after 4 weeks collagenase digestion 

process [Fig. 2.6(B) vs Fig 2.6(D)]. In contrast, the pore size of NDGA-

crosslinked scaffolds did not appear to increase [Fig. 2.6(A,C)]. As a result, we 

suggest that NDGA or GA treatment can provide collagen scaffolds with 

improved enzymatic biodegradation stability. The collagenase cleavage sites 

were more effectively blocked by the crosslinking of the collagen scaffolds [97]. 

To study the stability of the crosslinked scaffolds in vivo, we implanted 

crosslinked collagen scaffolds in the subcutaneous tissue of the Sprague-Dawley  
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Figure 2.5. Collagenase Resistance of GA- and NDGA-crosslinked Scaffold In 
vitro. Results are shown as means ± SD (n=3). * Scaffolds were 
treated with 0.5% GA for 12 h in ethanol solution at room 
temperature.  
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Figure 2.6. SEM Morphology of the Scaffold after In vitro Degradation Study. 
 Results are shown as means ± SD (n=3). (A) NDGA-crosslinked 

scaffold after 2 weeks collagenase treatment; (B) GA-crosslinked 
scaffold after 2 weeks collagenase treatment; (C) NDGA-
crosslinked scaffold after 4 weeks collagenase treatment;  (D) GA-
crosslinked scaffold after 4 weeks collagenase treatment. 
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rats and explanted samples two and four weeks post implantation. After 2 weeks 

implantation, the NDGA-crosslinked scaffolds did not show evidence of 

degradation, but the overall shape of the GA-crosslinked scaffolds was deformed 

and the size slightly reduced because of starting degradation [Fig. 2.7 (A)]. After 

4 weeks, the size and shape of the GA-crosslinked scaffolds were dramatically 

changed (-78% in size of 2 weeks)but there was a small change in the NDGA-

crosslinked scaffolds (-18.9% in size of 2 weeks) [Fig. 2.7(B)]. This indicated that 

the scaffolds treated with the NDGA were more stable than the scaffolds 

crosslinked with the GA treatment used in these studies. 

 

2.3.3. Porous Collagen Scaffolds around Implantable Glucose Sensors 

We first fabricated coil-type glucose sensors loaded with crosslinked 

enzyme (GOD: Glucose Oxidase) by using Platinum-Iridium (Pt/Ir) wires. Then, 

we applied bovine tendon type I collagen scaffolds around the sensors [Fig. 2.1]. 

Yu et al. [94] previously reported that this “coil-type” sensor allows more GOD 

loading, provides a larger electrochemical surface area, and therefore increases 

the response current as compared to a “needle-type” sensor. Our sensor is 

flexible and miniaturized (0.5 mm dia.) for subcutaneous implantation. It is 

composed of a two-electrode system with a glucose indicating platinum electrode 

and a Ag/AgCl reference-counter electrode. Our sensor utilizes a three-layer 

membrane configuration of crosslinked collagen scaffold, epoxy-polyurethane 

(Epoxy-PU) and GOD. The collagen scaffold (the outer layer in this case) can 
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Figure 2.7. In vivo Stability of GA- and NDGA-crosslinked Scaffold in Rat 
Subcutaneous Tissue. (A) 2 weeks after implantation; (B) 4 weeks 
after implantation. 
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uptake 99% of its dry weight of water including glucose and other molecules. The 

Epoxy-PU membrane under the scaffold is permeable to glucose and oxygen but 

impermeable to most interfering substances. GOD immobilized in a BSA/GA 

matrix is sandwiched between the Pt/Ir wire and the Epoxy-PU membrane. In 

order to eliminate air bubbles entrapped in the chamber during coating, to 

stabilize the enzyme gel inside the chamber, and to make the enzyme solution 

easier to remain in the coil, we used a cotton fiber inside the coil chamber. The 

collagen scaffolds were prepared by a freeze-drying method and crosslinked to 

minimize water solubility and enzymatic collagenase degradation. With a light 

microscope, we confirmed that the porous scaffolds thoroughly surrounded the 

sensor tips [Fig. 2.8(A) and (B)]. We also observed the surface and cross-

sectional morphology of the scaffolds around the sensors using SEM. Many 

collagen fibrils and uniform open pore structure were observed on the surface 

[Fig. 2.8(C)]. Inter-connected open pores in the scaffold and a thickness of 150 - 

200 μm were observed in cross-sectional region [Fig. 2.8(D)]. 

The amperometric response curves of the glucose sensors with and 

without scaffold (control) were obtained by varying the glucose concentration 

from 5 mM to 15 mM as shown in Figure 2.9. These glucose concentrations were 

selected because these concentrations were located in the linear response 

region (2 - 30 mM) of the studied sensors. The results showed no significant 

response current change before and after scaffold application around the sensor. 

However, the sensors with scaffolds had a slower response time to reach 

equilibrium current (T95%) than control sensors. The response time, T95%, is 
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Figure 2.8. Light Microscope Pictures of the Implantable Glucose Sensing 

Element and SEM Morphology of the Scaffold Region. (A) 
Uncoated sensor; (B) Coated with scaffold; (C) Surface; (D) Cross-
section. 
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Figure 2.9. Amperometric Response Curves of the Glucose Sensors from 5 to 
15 mM Glucose Concentration. (1) Uncoated sensor; (2) Coated 
with GA-crosslinked scaffold; (3) Coated with NDGA-crosslinked 
scaffold. T95% is defined as the time at 95% of the maximum 
current change (I15 mM - I5 mM). 
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defined as the time at 95% of the maximum current change (I2 - I1). The T95% of 

control sensor was 14.0 min. whereas T95% of the sensors with NDGA- and GA- 

crosslinked scaffold were 17.9 min. and 17.0 min., respectively. The delay of the 

response time (17.9 and 17 min.) was probably caused by the added physical 

barrier of the porous scaffolds.  

The currents produced by sensors with NDGA-, GA-crosslinked scaffolds 

and without scaffolds in response to varying glucose concentration (2 - 30 mM) 

are showed in Figure 2.10. The response currents of the control sensors in the 

high glucose concentration region (20 - 30 mM) were only a little higher than 

those of the sensors with scaffolds. However, there was no statistical difference 

between control and sensors with scaffolds (p > 0.05; student t-test). The 

average sensitivity of the control, NDGA- and GA-crosslinked scaffold around 

sensors was 11.0, 7.1, and 8.1 nA/mM, respectively. Therefore, scaffold 

application around the glucose sensors did not negatively affect the function of 

the sensors.  

We also examined the sensitivity changes of the sensors with varying wall 

thickness of the scaffold controlled by dipping cycles in collagen solution. As can 

be seen in Figure 2.11, the sensitivity of the 4 times dip-coated sensors remained 

at 60% of their initial sensitivity (no scaffold). When the sensors were dip-coated 

more then 5 times, glucose could not diffuse properly through the scaffolds. The 

sensitivity was dramatically reduced to below 20% of the initial sensitivity. 

Although the porous scaffold material has good water absorbent properties, the 

wall thickness can affect the sensor function. 
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Figure 2.10. Amperometric Response of Uncoated and Collagen Scaffold-

coated Glucose Sensors (2-30 mM Glucose). Results are shown as 
means ± SD (n=3). * Indicates no statistically significant differences 
between control and GA-crosslinked scaffolds at each glucose 
concentration (p > 0.05). ** Indicates no statistically significant 
differences between control and NDGA-crosslinked scaffolds at 
each glucose concentration (p > 0.05). 
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Figure 2.11. Effect of the Scaffold Thickness on Glucose Sensor Sensitivity. 
 Results are shown as means ± SD (n=3).  
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2.4. Conclusions 

In this study, porous type I collagen scaffolds were prepared by a freeze-

drying method then crosslinked using NDGA- or GA treatments. The fabricated 

collagen scaffolds have an open cell and interconnected pore structure. To allow 

the infiltration neovasculature but to restrict fibrous tissue formation, the mean 

pore size was controlled to 60 μm by controlling the concentration of the collagen 

solution. Both crosslinking methods did not significantly affect the scaffolds 

geometry and bulk properties. They also had a similar resistance property to the 

collagenase enzyme in vitro. However, NDGA-crosslinked scaffolds were shown 

to be more stable in vivo. In addition, we also applied the highly porous NDGA- 

crosslinked scaffolds to our implantable glucose sensor as a potential approach 

for reducing “biofouling” and improving biocompatibility. The porous scaffold 

application did not significantly affect the function of the glucose sensor. 

Therefore, the application of an NDGA-crosslinked collagen scaffold might be a 

good candidate for improving the biocompatibility of implantable biosensors. We 

plan to use this scaffold to enhance the function and lifetime of implantable 

biosensors by providing a controlled local environment around the sensors with 

the additional help of various drugs and growth factors. 
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CHAPTER 3 

LONG-TERM IN VITRO / IN VIVO PERFORMANCE OF IMPLANTABLE 

GLUCOSE SENSORS WITH CROSSLINKED COLLAGEN SCAFFOLDS 

 

3.1. Introduction 

Although many strategies for continuous glucose monitoring have been 

developed over the past 30 years, achieving reliable and continuous glucose 

monitoring in vivo is still a very difficult task. Very often, implantable glucose 

sensors lose function after a relatively short period of time in vivo or become 

unreliable, despite having excellent in vitro performances including good 

selectivity, a high sensitivity, and a fast response time [33,62,98-100].  This loss 

of function is in part a consequence of protein adsorption, inflammation, fibrosis 

encapsulation, and loss of vasculature resulting from the biofouling and the 

tissue trauma caused by the host response to the sensor and the surgical 

implantation [20,21,48]. Ultimately, biofouling of the biosensor membrane very 

much influences glucose diffusion, leading to in vivo sensor failures [101,102].  

Overall, few successful long term implantations of glucose sensors have 

been reported. Armour et al. [14] implanted 6 sensors intravascularly in dogs for 

up to 108 days. Three sensors still functioned with no adherent clots and with the 

same in vitro calibration curves before and after explantation. Updike et al. [103] 
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telemetrically monitored glucose using 3 implanted sensors. The sensor 

response dropped during the initial period in vivo but then rose and stabilized 

until 42-94 days. The same group (Gilligan et al. [104]) observed a stable foreign 

body capsule (FBC) around the Dacron or ePTFE velour shells of their implanted 

sensors. The sensors eventually failed because of enzymatic degradation or 

biofouling of the sensor membranes. Pickup et al. [26] showed that only 50% of 

sensors implanted in non-diabetic subjects responded in vivo. Explanted sensors 

examined by scanning electron microscopy were coated by cells and proteins at 

the sensor tip. Shichiri et al. [38] and Ertefai et al. [13] reported that the in vivo 

lag time was increased, compared to the in vitro lag time. The increase was 

attributed to protein deposition and FBC tissue at the sensor tip.   

In order to minimize biofouling and to improve sensor function, many 

researchers have designed new sensors with modifications to the surface of the 

sensor outer membrane. Moussy et al. [41,42] introduced a new sensor with a 

needle-type geometry and a Nafion outermost layer. Quinn et al. [35] used a 

photo-crosslinkable copolymer containing 2-hydroxyethyl methacrylate (HEMA) 

and poly(ethylene glycol) (PEG) as a sensor coating material. The results 

showed that the copolymer-treated electrodes induced much less fibrous tissue 

than control electrodes due to good biological performance of the PEG material. 

In order to reproduce lipid characteristics to mimic the cell surface membranes, 

and induce anti-thrombogenicity, Nishida et al. [105] synthesized a 

phosphorylcholine (PC)-containing polymer which was applied as a sensor 

membrane and showed excellent biocompatibility.  
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Because of good swelling and viscoelastic properties and outstanding 

biocompatibility, many researchers use hydrogels such as PEG hydrogel (Quinn 

et al. [106]), phenylboronic acid-based hydrogel (Lei et al. [107]), and 

polyacrylamide hydrogel (Fernandez et al. [108]) as the outermost coating of 

glucose sensors. Recently, numerous strategies to control delivery of tissue 

response modifiers (TRM) have been reported. For example, Gifford et al. [109] 

used nitric oxide (NO) to downregulate mediators of the inflammatory response 

and Norton et al. [110] characterized VEGF and dexamethasone (Dex) delivery 

from sensor coatings. 

We recently reported the development of new porous collagen scaffolds 

which were applied around implantable glucose sensors to improve their 

biocompatibility. We fabricated porous collagen scaffolds by using a freeze-

drying method followed by crosslinking using NDGA or GA  [111].  

In a continuation of this study, we evaluated the sensitivity of sensors with 

ether NDGA- or GA-crosslinked collagen scaffolds during long-term in vitro and 

in vivo experiments. We also fabricated two different lengths of sensors (long and 

short wires) in order to minimize scaffold damage and compared their function in 

vivo to evaluate the effects of micro-motion on the sensors. 
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3.2. Materials and Methods 

3.2.1. Materials 

Type I collagen (purified from fetal bovine tendon) was a generous gift 

from Dr. Thomas Koob, Shriners Hospital for Children (Tampa, FL). 

Nordihydroguaiaretic acid (NDGA) was purchased from Cayman Chemical Co. 

(Ann Arbor, MI). Glucose, bovine serum albumin (BSA) and 50% (w/w) 

glutaraldehyde (GA) were obtained from Fisher Scientific (Pittsburgh, PA). 

Glucose oxidase (GOD) (EC 1.1.3.4., type X-S, Aspergillus niger, 157,500 U/g), 

epoxy adhesive (ATACS 5104), polyurethane (PU), and tetrahydrofuran (THF) 

were obtained from Sigma-Aldrich (St. Louis, MO). Dextrose injection solution 

(50%, w/v) was obtained from Abbott Laboratories (North Chicago, IL). The 

FreeStyleTM portable glucometer was from TheraSense (Alameda, CA). Sprague-

Dawley out-bred rats (male, 375-399 g) were purchased from Harlan (Dublin, VA). 

 

3.2.2. Preparation of Porous Collagen Scaffolds around Implantable 

Glucose Sensors 

 We fabricated miniature coil-type glucose sensors loaded with 

crosslinked enzyme (GOD: glucose oxidase) using a platinum-iridium (Pt/Ir) wire 

(Teflon coated, Φ 0.125 mm, Pt:Ir = 9:1, Medwire, Sigmund Cohn Corp., Mount 

Vernon, NY). We applied bovine tendon type I collagen scaffolds around the 

sensors. Scaffolds were then crosslinked with NDGA or GA treatment as 

previously described [111] to minimize solubility and to improve resistance to 

enzymatic degradation in vivo. Control sensors (without scaffolds) and sensors 
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with NDGA- or GA-crosslinked scaffolds were equilibrated in phosphate-buffered 

saline (PBS, 0.1 M NaH2PO4, pH 9.0) for 2 days at room temperature prior to 

being used in vitro or in vivo.  

 The initial sensitivity of all sensors was measured in 5 and 15 mM 

glucose in PBS. Amperometric measurements were performed at room 

temperature at 0.7 V vs Ag/AgCl. The working electrode (Pt/Ir wire) and the 

Ag/AgCl reference electrode of each sensor were connected to an Apollo 4000 

potentiostat (World Precision Instruments, Inc., Sarasota, FL). 

In order to investigate the effect of wire length on the sensor function, we 

fabricated sensors with two different lengths; 10 and 30 mm [Fig 3.1]. Only the 

wires were of different length, the sensing elements remained identical. 

 

3.2.3. Long-term In vitro Characterization of Sensors Coated with Scaffolds 

 In order to examine the long-term in vitro sensitivity of sensors, uncoated 

(control) sensors, sensors with NDGA-crosslinked collagen scaffolds and 

sensors with GA-crosslinked collagen scaffolds (n=8 / group) were incubated in 

PBS at 37°C for 4 weeks. At 7, 14, 21, and 28 days, each sensor was removed 

and tested in glucose solution.  

 The sensitivity of the glucose sensors was characterized in glucose/PBS 

(pH 7.4) at 700 mV versus the incorporated Ag/AgCl reference electrodes. The 

background current was allowed to stabilize for 10 min., and the sensors were 

then exposed to a series of glucose solutions in order to examine their 

sensitivities and linearities. 
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Figure 3.1. Photograph Showing (A) Long Wire and (B) Short Wire Collagen 
Scaffold-coated Glucose Sensors. 
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The response sensitivity (S) was repeatedly assessed by 1) measuring the 

response current (I1) of a C1 glucose solution, 2) adding a concentrated glucose 

solution into the measured solution to increase the glucose concentration to C2 

and 3) measuring the response current (I2) of the resulting solution. The 

sensitivity was expressed as the current increase caused by a 1 mM glucose 

increase, i.e. S = (I2 - I1) / (C2-C1). 

 

3.2.4. Implantation Procedures 

 All implantable glucose sensors were disinfected using 70% ethanol and 

then placed in sterile PBS prior to implantation. During the surgical procedure, a 

continuous flow gas anesthesia system was used to deliver 1.5 % isoflurane to 

the rats in 2.0 L/min. oxygen flow. All protocols were approved by the University 

of South Florida Institutional Animal Care and Use Committee (IACUC). Forty-

eight sensors (eight control short sensors; CS, eight control long sensors; CL, 

eight NDGA-crosslinked scaffold around short sensors; NS, eight NDGA-

crosslinked scaffold around long sensors; NL, eight GA-crosslinked scaffold 

around short sensors; GS, and eight GA-crosslinked scaffold around long 

sensors; GL) were implanted subcutaneously on the back of the rats. Each rat 

received two of one type of sensors. 

 For long sensors, two 1.5 cm long longitudinal incisions were made 1.5 

cm laterally to the dorsal midline, and 3-4 cm caudally from the neck. A 

subcutaneous pocket was created using blunt surgical scissors. A 14 ga. I.V. 

catheter was inserted subcutaneously toward the incision from the 4-5 cm lower 
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back region. The needle was withdrawn leaving the cannula in the subcutaneous 

tissue. The sensor wires were carefully fed into the cannula through the incision 

[Fig. 3.2(A)]. The sensor was secured to the skin by passing a 3-0 Prolene suture 

through the small gap of the wound clip covering the sensor wires and incisions 

closed using 3-0 Prolene. The cannula was then withdrawn, leaving the sensor in 

the subcutaneous tissue. 

 For short sensors, same-sized incisions were made and a subcutaneous 

pocket was also created using blunt surgical scissors before implantation. 

However, the sensors were directly implanted through the incision without using 

a cannula [Fig. 3.2(B)]. The sensors were secured to the skin and incisions 

closed using the same approach utilized for the long sensors. 

 In addition, in order to evaluate the inflammatory response of the tissue 

around and cellular intrusion into the collagen scaffolds, we directly implanted 

NDGA- and GA-crosslinked scaffolds (without sensors) in the rats. At set time 

intervals, tissue samples containing the scaffolds were excised and embedded in 

paraffin. Sections (5 μm in thickness) were cut and stained with Mayers 

hematoxylin and eosin (H&E) stain. Stained sections were analyzed and 

photographed using an Olympus BX41 microscope (Olympus; Tokyo, Japan). 

 

3.2.5. Long-term In vivo Evaluation of Sensors Coated with Scaffolds 

 The sensitivity of each sensor was measured every seven days for up to 

28 days or until there was no amperometric response from the implanted sensor. 

During each measurement period, four rats were anesthetized using isoflurane  
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Figure 3.2. Surgical Procedures by Two Different Implantation Techniques for 

Long Wire Sensors and Short Wire Sensors. (A) Long wire sensor 
(using a 14 ga. catheter guidance); (B) Short wire sensors (direct 
implantation). 
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and the eight implanted sensors were continuously monitored using two Apollo 

4000 potentiostats. After a stable signal was obtained from the sensors, 0.7 mL 

of sterile 50% dextrose was administered intraperitoneally using a 27 ga. needle. 

Following the injection, small blood samples were collected every 7 minutes from 

the rat tail and the glucose level was determined using the standard FreestyleTM 

glucometer. The amperometric response corresponding to the glycemia of the rat 

was recorded at the corresponding current-time intervals of each sensor. The 

sensor sensitivity was calculated by dividing the change in current (I) by the 

change in glycemia (C) between the initial (before dextrose injection) and the 

peak status (after dextrose injection) as follows: Sensitivity (nA/mM) = (Imax – I0) / 

(Cmax – C0) 
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3.3. Results and Discussion 

3.3.1. Preparation of Implantable Glucose Sensors with Porous Crosslinked 

Collagen Scaffolds 

In order to create a porous scaffold for implantable glucose sensors, we 

first fabricated coil-type glucose sensors loaded with crosslinked enzyme (GOD: 

glucose oxidase) using platinum-iridium (Pt/Ir) wires. Then, we applied bovine 

tendon type I collagen scaffolds around the sensors. The collagen scaffolds were 

prepared by a freeze-drying method and crosslinked using NDGA or GA 

treatment to minimize their aqueous solubility and reduce their degradation in 

vivo. With a light microscope, we confirmed that the porous scaffolds thoroughly 

surrounded the working electrodes [Fig. 3.3]. Both scaffolds were semi-

transparent in aqueous solution. GA-crosslinked scaffolds appeared white, while 

the NDGA-crosslinked scaffolds were brown. We also observed high swelling for 

both scaffolds around the sensors in aqueous solution. We reported previously 

[111] that these sponge-like matrices with porous inner structure could absorb 

water above 99%, thus allowing glucose to diffuse freely.   

Figure 3.4 shows a schematic of a fully assembled coil-type glucose 

sensor with a scaffold ready for implantation. The newly assembled sensor is 

composed of a two-electrode system with a glucose indicating working Pt/Ir 

electrode and an Ag/AgCl reference-counter electrode. We added a loop 

between the two electrode coils to avoid micro-shorting caused by the two 

electrodes touching each other. A surgical wound clip was applied to provide a 
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Figure 3.3. Photographs of Implantable Sensors Coated with (A) GA-

crosslinked Porous Collagen Scaffold and (B) NDGA-crosslinked 
Porous Collagen Scaffold. 



 61

 
 
 
 
 
 
 
 
 
 
 

2

Implanted Part

Skin
Outside

1 4

3

5

4

2

Implanted Part

Skin
Outside

1 4

3

5

4

 
 
 

Figure 3.4. Schematic of Short Wire Implantable Glucose Sensor. 
(1) Pt/Ir working electrode with scaffold; 
(2) Ag/AgCl reference electrode; 
(3) Loop to protect micro-motion and micro-short by two 

electrodes contact; 
 (4) Wires twisted together 
 (5) Wound clip 
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suturing site during the implantation procedure and to prevent the sensor moving 

out of the skin (i.e. for anchoring). 

 

3.3.2. Long-term In vitro Evaluation of Sensors with Porous Collagen 

Scaffolds 

 The long-term in vitro function of the sensors was determined by tracking 

their sensitivity for up to 4 weeks. Control sensors (without scaffold), and sensors 

with NDGA- or GA-crosslinked scaffolds were incubated in PBS at 37°C for up to 

4 weeks. The sensors were removed from the PBS at weekly intervals and their 

sensitivity was determined. The pre-incubation sensitivity (week 0) was 

measured at the beginning of the in vitro study and the percentage of sensitivity 

change was calculated from the ratio of the sensitivity of the sensors at given 

time interval to the pre-incubation sensitivity. The sensitivity of all sensors was 

tested in 5 and 15 mM glucose/PBS. Figure 3.5 shows the sensitivity change of 

all sensors over 4 weeks. We observed a slight decrease of the sensitivity of 

sensors with either NDGA- or GA-crosslinked scaffolds, compared to the control 

(no scaffold) sensors after 1 week incubation. After 2 weeks, the sensitivities of 

all sensors increased to a level higher than their original sensitivity, probably 

because of an increase in epoxy-PU membrane permeability due to progressive 

membrane swelling in aqueous solution. After 2 weeks, the sensitivity of the 

control sensors, as well as sensors with either NDGA- or GA-crosslinked 

scaffolds, steadily decreased, however, all sensors retained above 80% of their 

original sensitivity up to 4 weeks. We believe that the sensitivity decrease after 
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Figure 3.5. Long-term In vitro Sensitivity Changes of Control Sensors and 

Sensors with NDGA- or GA-crosslinked Collagen Scaffolds. Results 
are shown as means ± SD. 

 



 64

2 weeks may be caused by progressive loss of enzyme activity. Both NDGA and 

GA-crosslinked scaffolds were still intact around the sensors at week 4. There 

was no detection of any deformation or detachment of the scaffolds from the 

sensor membrane surface. Although the overall trend of the sensitivity of the 

sensors with scaffolds was lower than with the control sensors, the application of 

scaffolds around sensors did not critically affect the function of the sensors 

during the 4 week in vitro study. 

 

3.3.3. Long-term In vivo Performance of Sensors with Porous Collagen 

Scaffolds 

 In this study, 48 sensors including control sensors (short/long, CS/CL), 

and sensors with NDGA- or GA-crosslinked scaffolds (short/long, NS, NL, GS, 

GL), were implanted subcutaneously in the back of 24 Sprague-Dawley out bred 

rats for a period of 4 weeks. The in vivo sensitivity of every sensor was measured 

at week 1, 2, 3, and 4. The pre-implantation sensitivity of all sensors was tested 

using 5 mM and 15 mM glucose/PBS just before implantation. Figure 3.6 shows 

a photograph of the in vivo continuous glucose monitoring procedure with the 

anesthetized rats. A maximum of 8 sensors were connected to two 4 channels 

potentiostats. The current produced by the sensors versus time (black arrow) 

was displayed on two monitors. After reaching a stable signal for 1 – 2 hr, 

glucose was administered intraperitoneally. Small amounts of blood were 

sampled every 7 minutes from the rat tail and glucose level was determined 

using a standard portable glucometer (white arrow). 
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Figure 3.6. Photograph of In vivo Continuous Glucose Monitoring Procedure. 
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 The percentage of sensitivity change for each sensor during the 4 week 

study is shown in Figure 3.7. From this figure, a few initial observations can be 

made: 1) The sensitivity of all sensors dramatically decreased after implantation 

compared to the pre-implantation values. This was probably due to tissue 

damage which occurred during surgical procedures and the subsequent host 

response including protein adsorption, blood clot, and the infiltration of 

inflammatory cells and other cells (e.g. fibroblasts) around the sensor tips [112]. 

2) As for the in vitro study, the control sensors retained a higher sensitivity than 

the sensors with scaffolds. The sensors with NDGA-crosslinked collagen 

scaffolds also had a higher sensitivity than the sensors with GA-crosslinked 

scaffolds. 3) The sensitivity of the short sensors (CS, NS, GS) appeared to be 

slightly greater than the sensitivity of the long sensors.  

 Table 3.1 shows the number of working sensors (used in Figure 3.7) at 

given time intervals. Initially, 3 sensors did not work at week 1 but regained their 

function at week 2. Both CS and CL sensors had a higher sensor survival rate (4 

out of 8, 6 out of 8, respectively) in vivo 4 weeks post implantation than sensors 

with scaffold coatings. The use of scaffolds worsened the survival rate of the 

sensors. However, the short sensors had a higher survival rate than the long 

sensors at 4 weeks post implantation (CL-4, NL-2, GL-1 vs CS-6, NS-4, GS-4).  

We believe that this might result from the long sensors having greater range of 

motion when the animals move than the short sensors.  
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Figure 3.7. Long-term In vivo Sensitivity Changes of Control Sensors and 

Sensors with NDGA- or GA-crosslinked Scaffold. Results are 
shown as means ± SD. (control short; CS, control long; CL, NDGA-
crosslinked scaffold around short sensors; NS, NDGA-crosslinked 
scaffold around long sensors; NL, GA-crosslinked scaffold around 
short sensors; GS, GA-crosslinked scaffold around long sensors; 
GL) 
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Table 3.1. Number of Working Sensors after Implantation. (# out of 8). 

Weeks after implantation  
 

Scaffolds 

 
 

Wire 1 2 3 4 

Long 8 7 4 4 
Control (no scaffold) 

Short 7 8 7 6 

Long 2 3 2 2 
NDGA-crosslinked 

Short 8 5 5 4 

Long 2 2 1 1 
GA-crosslinked 

Shot 5 6 6 4 
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 The larger macro-/micro-motion may have caused more tissue and 

scaffold damage. We observed scaffold detached from the working electrode of 

the long NL sensors [Fig. 3.8(A)], while the NDGA-crosslinked scaffold around 

the short sensor NS remained in a stable position [Fig. 3.8(B)]. Regarding the 

GA-crosslinked scaffolds, we could not detect any such scaffold around both long 

and short sensors [Fig. 3.8(C) and (D)]. This is consistent with our previous study 

where we observed that the size and shape of the GA-crosslinked scaffolds were 

dramatically changed (degraded) after 4 weeks of implantation, while the NDGA-

crosslinked scaffolds remained mostly intact.  

 In order to evaluate inflammatory response of the tissue around and 

within the collagen scaffolds, we directly implanted NDGA- and GA-crosslinked 

scaffolds (without sensors) in the rats for up to 4 weeks. After 2 weeks 

implantation, H&E staining revealed the presence of many inflammatory cells 

including polymorphonuclear (PMN) cells, monocytes, and macrophages within 

and around the GA-crosslinked scaffolds [Fig. 3.9(A)]. However, for the NDGA-

crosslinked scaffolds, few inflammatory cells were observed around the scaffolds, 

and there was no infiltration of cells in the center region of the scaffolds [Fig. 

3.9(B)]. Week 4 showed infiltration of inflammatory cells and fibroblasts, along 

with granulation tissue deposition inside the pore of the GA-crosslinked scaffolds 

[Fig. 3.9(C)], and again, less inflammation within and around the NDGA-

crosslinked scaffolds [Fig. 3.9(D)]. This result shows that the NDGA-crosslinked 

collagen scaffolds are more biocompatible than the GA-crosslinked collagen 

scaffolds and is consistent with a report by Koob et al. [85] showing that NDGA- 
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Figure 3.8. Representative Photograph of Scaffolds In situ after 4 Weeks Post 

Implantation. (A) Long sensor with NDGA-crosslinked scaffold; (B) 
Short sensor with NDGA-crosslinked scaffold; (C) Long sensor with 
GA-crosslinked scaffold; (D) Short sensor with GA-crosslinked 
scaffold. 
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Figure 3.9. Hematoxylin and Eosin Stained Sections Showing Tissue 

Surrounding Porous Scaffolds. (A) GA- and (B) NDGA-crosslinked 
scaffold and after 2 weeks post implantation; (C) GA-and (D) 
NDGA-crosslinked scaffold after 4 weeks post implantation. (T - 
tissue surrounding scaffold, SC - scaffold, BV - blood vessels) 
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crosslinked collagen fibers appeared intact with little foreign body response after 

implantation in rabbits. The size of the GA-crosslinked scaffolds was reduced

and the pore structure was deformed as the implantation time increased. We also 

found neovasculature in both scaffolds after 4 weeks post-implantation [Fig. 

3.9(C) and (D), arrows]. 
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3.4. Conclusions 

In this study, we applied porous type I collagen scaffolds around 

implantable glucose sensors by a freeze-drying method and then crosslinked the 

scaffolds using NDGA or GA treatments. The fabricated collagen scaffolds had 

an open cell and interconnected pore structure. All sensors including control 

sensors (without scaffold), and sensors with NDGA- or GA-crosslinked scaffolds 

remained functional during the 4 week in vitro study. The application of both 

types of scaffolds around the sensors did not critically affect the function of these 

sensors in vitro. 

In the 4 weeks in vivo study, the sensitivity of all sensors dramatically 

decreased (30 – 60%) after 1 week of implantation and then remained relatively 

stable. The sensitivity and survival rate of the short sensors were higher than the 

sensitivity of the long sensors possibly as a result of reduced motion within the 

animals. The sensors with NDGA-crosslinked scaffolds had a higher survival and 

sensitivity than the sensors with GA-crosslinked scaffolds. By histological 

examination, we confirmed that the NDGA-crosslinked scaffolds are more 

biocompatible than the GA-crosslinked scaffolds.  

  Therefore, this study shows that an NDGA-crosslinked collagen scaffold 

can be incorporated into the design of our implantable glucose sensor. However, 

the control sensors (no scaffolds) performed better than the sensors with 

scaffolds. The scaffolds alone did not improve the function and lifetime of our 

implantable glucose sensor. This indicates that in order to use these scaffolds as 

a way to control the local tissue environment around implanted sensors and thus 
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improve their function and lifetime we still need to improve the scaffolds. This 

could potentially be achieved by using the NDGA-crosslinked collagen scaffold to 

also deliver various drugs and growth factors to modify the tissue response to the 

sensors. 
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CHAPTER 4 

DEXAMETHASONE-LOADED PLGA MICROSPHERES/COLLAGEN 

SCAFFOLD COMPOSITE SYSTEM FOR IMPLANTABLE 

GLUCOSE SENSORS 

 

4.1. Introduction 

Although miniaturized implantable glucose sensors show excellent 

performance in vitro, they tend to become unreliable and lose their function after 

prolonged exposure to the in vivo environment, due to the foreign body response 

(i.e. inflammation, fibrosis, and loss of vasculature) [20,21,48,62,98]. In particular, 

the accumulation of inflammatory cells and dense fibrotic tissue around the 

sensor hampers the diffusion of glucose from the capillaries to the sensors 

[103,113-115]. Despite numerous studies using sensors of several different types, 

there are no long-term implantable glucose sensors commercially available 

[62,116]. 

In order to improve the function of implantable glucose sensors, 

dexamethasone (Dex, an anti-inflammatory agent) has been used to control the 

tissue reactions to implanted devices. Dex, a synthetic glucocorticoid, is widely 

used to suppress inflammatory reactions caused from radiant, mechanical, 

chemical, infectious and immunological stimuli [50,110,117,118]. It inhibits the 
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production of critical factors involved in the inflammatory response such as 

vasoactive/ chemoattractive factors and lipolytic/proteolytic enzymes [50]. Patil et 

al. [53] prepared Dex-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres/ 

poly(vinyl alcohol) (PVA) hydrogel composite coatings for implantable biosensors 

to control detrimental tissue reactions and fibrosis at the sensor/tissue interface. 

Norton et al. [52,110] reported that they fabricated hydrogel (copolymer; 2-

hydroxy-ethyly methacrylate, N-vinyl pyrrolidinon, and polyethylene glycol) 

sensor coatings containing Dex and/or vascular endothelial growth factor (VEGF) 

to minimize the foreign body response and to promote angiogenesis. Klueh et al. 

[62,63] induced significant neovascularization surrounding an implanted sensor 

using a VEGF-cell-fibrin gene transfer system. Kim and Martin [119] investigated 

a composite of Dex-loaded PLGA nanoparticles/alginate hydrogel for neural 

prosthetic application. Lincoff et al. [47] developed a Dex eluting stent using a 

high molecular weight poly-L-lactic acid (PLLA) biodegradable polymer 

containing the drug to prevent restenosis. Gomez-Gaete et al. [120] optimized 

the encapsulation of Dex in PLGA nanoparticles for ocular delivery. 

The use of Dex-loaded microspheres/nanospheres to provide controlled 

local drug delivery are typically prepared using a synthetic biodegradable 

polymers such as PLGA and PLLA [49]. The degradation rate of these polymers 

in vitro/in vivo can be controlled by regulating the composition of monomer units 

(i.e. lactic acid and glycolic acid). Thus, PLGA microspheres, which have 

controllable drug release kinetics, have been utilized not only for Dex delivery but 

also for angiogenic growth factors and other proteins delivery [61,121-123]. Both 
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PLGA and PLLA are also widely used for tissue engineering [124,125] and gene 

therapy [126] research due to their good biocompatibility and suitable 

biodegradability characteristics [124-126]. 

Due to good swelling and viscoelastic properties and outstanding 

biocompatibility, hydrogels have also been used as sustained-release drug 

delivery systems and as the outermost coatings of implantable glucose sensors. 

Pluronics [127-129], also called Poloxamers, are particularly interesting because 

they are in a sol state below a lower critical solution temperature (LCST; i.e., 

reverse sol-gel transition temperature, 4-20°C), but transition to a gel state above 

37°C [130,131]. Oh et al. [132] fabricated a temperature-controllable crosslinked 

Pluronic/alginate mixture for use in delivering a non-steroidal anti-inflammatory 

drug (NSAID) for prevention of post-surgical tissue adhesion. 

In this study, we first fabricated porous collagen scaffolds around 

implantable glucose sensors using a freeze-drying method, followed by 

crosslinking the collagen scaffold using NDGA treatment [111]. In order to 

minimize the inflammatory response to the sensors, we then added Dex-loaded 

microspheres to the scaffold by dipping the sensor/scaffold in a 

microspheres/Pluronic F127 hydrogel suspension. We characterized the sensors 

with the Dex-loaded microspheres/ scaffold composite system in vitro and then 

tested these sensors in rats. 
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4.2. Materials and Methods 

4.2.1. Materials 

Poly(DL-lactide-co-glycolide) (PLGA, Resomer RG503H, 50:50) was a 

generous gifted from Boehringer-Ingelheim (Germany). Type I collagen (purified 

from fetal bovine tendon) was a generous gift from Dr. Thomas Koob, Shriners 

Hospital for Children (Tampa, FL). Nordihydroguaiaretic acid (NDGA) was 

purchased from Cayman Chemical Co. (Ann Arbor, MI). Methylene chloride 

(HPLC-GC/MS grade), acetonitrile (HPLC grade), methanol (HPLC grade), 

glucose, bovine serum albumin (BSA) and 50% (w/w) glutaraldehyde (GA) were 

obtained from Fisher Scientific (Pittsburgh, PA). Polyvinyl alcohol (PVA; avg. mol. 

wt = 30,000 - 70,000), dexamethasone (Dex, C22H29FO5; Fw = 392.5), Pluronic 

F-127, glucose oxidase (GOD) (EC 1.1.3.4., type X-S, Aspergillus niger, 157,500 

U/g), epoxy adhesive (ATACS 5104), polyurethane (PU), acetone, and 

tetrahydrofuran (THF) were obtained from Sigma-Aldrich (St. Louis, MO). 

Dextrose injection solution (50%, w/v) was obtained from Abbott Laboratories 

(North Chicago, IL). The FreeStyleTM glucometer was from TheraSense 

(Alameda, CA). Sprague-Dawley out-bred rats (male, 375-399 g) were 

purchased from Harlan (Dublin, VA). 

 

4.2.2. Preparation of Dex-loaded Microspheres 

Biodegradable PLGA microspheres loaded with Dex were prepared by an 

oil-in-water (O/W) emulsion/solvent evaporation technique. The oil phase 

consisted of 80 mg of PLGA and 50 mg of Dex dissolved in 6 mL of a mixture of 
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either 5:1 methylene chloride to methanol or 5:1 methylene chloride to acetone. 

This oil phase was added to 100 mL of 0.2% PVA in water, which was stirred 

with an overhead stirrer at 800 RPM for 30 min. to achieve an O/W emulsion 

system. The resulting emulsion was stirred on a magnetic stir plate for 16 h to 

allow complete evaporation of the solvent and solidification of the droplets into 

microspheres. During the emulsion and solidification process, aluminum foil was 

completely surrounded the beaker to protect from UV light (UV light will degrade 

Dex). The microspheres were collected by centrifugation at 8,000 RPM (7,500x 

g) for 15 min. in a refrigerated centrifuge set at 15°C. The microspheres were 

washed 5 times with deionized water. The centrifuge tubes were capped and 

placed in freezer (-20°C) overnight. The tubes were covered with aluminum foil 

and  were placed in a Freeze-drying system overnight to obtain dry microspheres.  

 

4.2.3. Microsphere Analysis 

The Dex loading efficiency and encapsulation efficiency into microspheres 

were determined using high performance liquid chromatography (HPLC) (LC-

10AT vp; SPD-10A vp; SCL-10A vp; Shimadzu, Japan). Microspheres (10 mg) 

were dissolved in 1 mL of acetonitrile. Dex concentration in dissolved samples 

was determined by HPLC analysis at 246 nm using a Premier C-18 column 

(Shimadzu, Japan) with a mobile phase of acetonitrile and water mixture (42:58), 

with flowing mobile phase at 1 mL/min.  
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The drug loading efficiency was calculated using the following equation: 

 

Loading efficiency (%) = mg of Dex / 10 mg of microspheres x 100 

 

The drug encapsulation efficiency was determined using the following equation 

[133]: 

 

Encapsulation efficiency (%) = experimental drug loading / 

 theoretical drug loading x 100 

 

The morphology of the microspheres was examined using scanning 

electron microscopy (SEM) after gold sputter coating of the samples in a metal 

evaporator according to standard procedures. 

 

4.2.4. Preparation of Dex-loaded Microspheres/Scaffold Composite System 

Collagen scaffolds were prepared by a freeze-drying method. Collagen 

was dissolved in 3% acetic acid to prepare a 1% (w/v) solution. The solution was 

applied to a cylinder-shaped polypropylene mold (Φ 10 mm, height 8 mm) and 

then freeze-dried. The scaffolds were then crosslinked with NDGA treatment as 

follow. Dried collagen scaffolds were briefly soaked in absolute ethanol, followed 

by soaking in 2 M NaCl in water for 12 h at room temperature. Scaffolds were 

resuspended in oxygen sparged phosphate buffered saline (PBS, 0.1 M 

NaH2PO4, pH 9.0) for 30 min. at room temperature. Scaffolds were then treated 
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with 3 mg NDGA/mL of PBS prepared as follows: NDGA was dissolved in 0.4 N 

NaOH at a concentration of 30 mg/mL. One milliliter of the NDGA solution was 

added directly to 9 mL of PBS containing the scaffold. The scaffolds were 

agitated in the NDGA solution for 24 h at room temperature. The scaffolds were 

removed, briefly rinsed with water and freeze-dried. 

 The microspheres containing Dex were incorporated into the NDGA-

crosslinked collagen scaffold by dipping the scaffolds in a microsphere 

suspensions. Two different microsphere suspension solution (hydrogel and 

water) were used for fabrication of microsphere/scaffold composites. Pluronic F-

127 was adopted as the hydrogel material, using a 25% solution with self-

aggregation properties at low critical solution temperature (LCST; i.e., reverse 

sol-gel transition temperature, 4-20°C) [130-132]. Pluronic solution, freshly 

prepared by dissolving in deionized water, was kept in the refrigerator (4°C ) prior 

to use. Five, 10, 20 and 40 mg/mL of microspheres, loaded with Dex, were 

dispersed in the Pluronic solution. Dried scaffolds were soaked in the hydrogel 

suspension with vortex mixing to incorporate the microspheres evenly. During the 

procedure, the suspensions were kept in an ice bath to prevent the gelation of 

Pluronic F-127. After completion of the loading procedure, the 

microspheres/scaffolds were taken out of the microspheres-hydrogel suspension 

solution and then placed at room temperature to allow gel formation.  Another 

group of scaffolds were prepared using 5, 10, 20 and 40 mg/mL of microspheres-

water suspension at room temperature. In this case, no hydrogel was used. The 

loading efficiency of Dex in the scaffolds was determined using HPLC as 
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previously described above. Drug concentration was standardized by dividing by 

total mass of the scaffold including microspheres. 

 

4.2.5. In vitro Release of Dex from the Microspheres/Scaffold Composite 

System 

 The in vitro release study was performed in phosphate buffered saline 

(PBS) under sink conditions. Samples (1.5 - 2.5 mg) of Dex-loaded 

microspheres/scaffold composites were incubated in 1 mL of PBS on a heated 

rocker (Barnstead Lab-Line, US) at a constant temperature (37°C) over 21 days. 

For comparison, 10 mg of standard Dex-loaded PLGA microspheres were 

incubated under the same conditions. At 3 or 7 day time intervals, 0.5 mL of 

supernatant was taken for analysis and replaced with 0.5 mL of fresh PBS into 

the test tube. Dex concentration of in the samples was determined by HPLC, as 

described above.  

 

4.2.6. Preparation of Implantable Glucose Sensors with Microspheres/ 

Scaffold Composite System 

 We first prepared coil-type glucose sensors loaded with crosslinked 

enzyme (GOD: glucose oxidase) using a platinum-iridium (Pt/Ir) wire (Teflon 

coated, Φ 0.125 mm, Pt:Ir = 9:1, Medwire, Sigmund Cohn Corp.). Bovine tendon 

type I collagen scaffolds were fabricated around the sensors and crosslinked with 

NDGA as previously described [111].  
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 In order to incorporate microspheres loaded with Dex into the scaffolds, 

the sensors with scaffolds were soaked in either the microsphere-hydrogel 

suspension or the microsphere-water suspension with vortex mixing as described 

above. The sensitivities of the sensors (with collagen scaffold only; and with 

collagen scaffold plus microspheres) were determined in 5 mM and 15 mM 

glucose/PBS using an Apollo 4000 potentiostat (World Precision Instruments, 

Inc., Sarasota, FL). Amperometric measurements were performed at room 

temperature at 0.7 V vs Ag/AgCl. The response sensitivity (S) was assessed by 

1) measuring the response current (I1) of a glucose solution (C1), 2) adding a 

concentrated glucose solution into the measured solution to increase the glucose 

concentration (C2), and 3) measuring the response current (I2) of the resulting 

solution. The sensitivity was expressed as the current increase caused by a 1 

mM glucose increase, i.e. S = (I2 - I1) / (C2-C1). 

 

4.2.7. Implantation Procedures 

 All implantation protocols were approved by the University of South 

Florida Institutional Animal Care and Use Committee (IACUC). All implantable 

glucose sensors were prepared aseptically and then placed in sterile Petri dishes 

under humidified conditions to prevent the hydrogel from drying. During the 

surgical procedure, a continuous flow gas anesthesia system was used to deliver 

1.5 % isoflurane to the rats in a 2.0 L/min. oxygen flow.  

 Eight sensors (with microspheres/hydrogel/NDGA-crosslinked collagen 

scaffold) were implanted subcutaneously on the back of the rats as follows. Two 
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sensors were implanted per rat. Two 1.5 cm long longitudinal incisions were 

made 1.5 cm laterally to the dorsal midline and 3-4 cm caudally from the neck. A 

subcutaneous pocket was created using blunt surgical scissors before 

implantation. The sensors were directly implanted through the incision. The 

sensors were secured to the skin and the incision was closed using 3-0 Prolene. 

 In addition, in order to evaluate the inflammatory response to the collagen 

scaffolds without the influence of the sensor, we directly implanted microspheres/ 

scaffold samples (without sensors) in the rats. At set time intervals, tissue 

samples including scaffolds were embedded in paraffin. Sections (ca. 5 μm in 

thickness) were cut and stained with Mayers hematoxylin and eosin (H&E) stain. 

Stained sections were analyzed and photographed using an Olympus BX41 

microscope (Olympus; Tokyo, Japan). 

 

4.2.8. In vivo Evaluation of Sensors Coated with Microspheres/Scaffold 

Composite System 

 The sensitivity of implanted sensors was measured every seven days for 

up to 28 days or until there was no amperometric response from the implanted 

sensors. During each measurement period, four rats were anesthetized using 

isofluorane and the eight implanted sensors were continuously monitored using 

two Apollo 4000 potentiostats. After a stable signal was obtained from the 

sensors, 0.7 mL of sterile 50% dextrose was administered intraperitoneally using 

a 27 ga. needle. Following the injection, small blood samples (~ 5 μL) were 

collected every 7 min. from the rat tail, applied to test strips and the glucose level 
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was determined using the standard FreestyleTM glucometer. The amperometric 

response corresponding to the glycemia of the rat was recorded at the 

corresponding current-time intervals of each sensor. The sensor sensitivity was 

calculated by dividing the change in current (I) by the change in glycemia (C) 

between the initial (before dextrose injection) and the peak status (after dextrose 

injection) as follows: Sensitivity (nA/mM) = (Imax – I0) / (Cmax – C0) 
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4.3. Results and Discussion 

4.3.1. Preparation of Dex-loaded PLGA Microspheres 

In order to control the release kinetics of Dex, microspheres were 

fabricated using an oil-water emulsion process. We used PLGA (lactic and 

glycolic copolymer ratio 50:50) as the biodegradable polymer. The microspheres 

had a regular spherical morphology as shown in Fig. 4.1. The diameter of Dex-

loaded microspheres varied from 1.5 to 50 μm and the average diameter size 

was 16.0 ± 2.3 μm as estimated from SEM images in three different areas. 

Figure 4.1(A) shows that many Dex crystals were present around the 

microspheres because an excess amount of Dex (50 mg in 80 mg of PLGA) was 

used in the microsphere preparation to increase the Dex loading efficiency. Dex 

has poor solubility in water, but is freely soluble in alcohols. Washing the 

microspheres with methanol removed the Dex crystals [Fig. 4.1(B)].  

The effect of the organic solvents on Dex encapsulation was investigated 

using two different organic solvent systems. Methylene chloride (MC) is widely 

used as an organic solvent for PLGA. Acetone and methanol are good solvents 

for Dex. A constant ratio of PLGA (80 mg) to Dex (50 mg) and 5 mL of MC were 

used in this study. Table 4.1 shows Dex loading efficiency and encapsulation 

efficiency with different solvent systems. The amount of Dex loading and 

encapsulation efficiency dramatically increased to 14.9 ± 0.51 and 38.9 ± 1.32 %, 

respectively, when using acetone:MC (1:5), compared to methanol:MC (1:5) (3.3 

± 0.24 and 8.5 ± 0.64 %). Because acetone is also a good solvent for PLGA, the 

Dex-acetone solution is more miscible with the MC-polymer solution and thus,
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Figure 4.1. SEM Morphology of the Dex-loaded PLGA Microspheres. (A) with 

Dex crystals; (B) without Dex crystals after washing with methanol. 
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Table 4.1.  Solvent Effect on the Amount of Dex Loading Efficiency and
 Encapsulation Efficiency. 
 

Solvent (v:v) % of Dex Loading (/MS) Encapsulation Efficiency (%)

Me-OH : MC (1:5) 3.3 ± 0.24 8.5 ± 0.64 

Acetone : MC (1:5) 14.9 ± 0.51 38.9 ± 1.32 
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Figure 4.2. SEM Morphology of the Dex-loaded PLGA Microspheres/Collagen 

Scaffold Composite. (A) x500 magnification; (B) x1,000 
magnifications. 
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the amount of Dex encapsulated in PLGA was higher in the acetone/MC co-

solvent system than with the methanol/MC system due to a better continuous 

phase.  

 

4.3.2. Preparation of Dex-loaded Microspheres/Scaffold Composite System 

To further in an effort suppress inflammatory response to implantable 

glucose sensors, Dex-loaded microspheres were incorporated into the porous 

NDGA-crosslinked collagen scaffolds. Microspheres suspension in either 

Pluronic F127 hydrogel or water was used for the fabrication of 

microspheres/scaffold composites. We chose to add the microspheres to NDGA-

crosslinked scaffolds to avoid Dex loss that would have resulted from the 

crosslinking method in ethanol. Figure 4.2(A) shows that the microspheres were 

uniformly distributed throughout the scaffold due to its open pores (with 

diameters ranging from 20 to 100 μm) and high interconnectivity between the 

pores. In a higher magnification image [Fig. 4.2(B)], the Dex-loaded 

microspheres (1.5 – 50 μm) can be seen attached to the collagen scaffold matrix.  

 The effect of different suspensions on drug loading was evaluated. Figure 

4.3 shows that the amount of Dex loading efficiency was directly proportional to 

the initial microsphere-loading amount (5 to 20 mg/mL). Interestingly, the 

microspheres/scaffold composite fabricated using hydrogel suspension had a 

much higher loading efficiency than the composite fabricated using water 

suspension. The Pluronic solution (20% concentration) being highly viscous 
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Figure 4.3. The Amount of Dex Loading in the Composite as Fabricated Using 

Either Water or Hydrogel Suspension with Different Initial 
Microspheres Loading Amounts. Results are shown as mean ± SD 
(n = 4). 
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allowed the addition of many microspheres to the scaffolds during the loading 

process. In addition, Figure 4.4 shows that the amount of Dex loading decreased 

from 566.5 ± 1.1 to 510.4 ± 9.0 µg/mg of scaffold after rinsing with water for the 

microspheres loaded with water suspension. However, there was no significant 

Dex loss after water rinsing in the composite fabricated using hydrogel 

suspension. The Pluronic/microspheres mixtures were sol state in the ice bath 

(below 4°C), but they were gelled at room temperature after the completion of the 

loading process. We assume that all microspheres still remained in position 

inside the scaffold after the rinsing step due to this sol-gel transition behavior of 

the Pluronic suspension. 

 

4.3.3. In vitro Drug Release Studies 

Four in vitro release studies were performed in phosphate buffered saline 

(PBS) under sink conditions for both microspheres and microspheres/scaffold 

composite systems. Based on the loading efficiency results above, we chose to 

fabricate a composite system using the Pluronic hydrogel suspension. At 3 day 

or 7 day intervals, samples of the incubation medium were collected and Dex 

concentration in the supernatant was determined by HPLC. Figure 4.5(A) and 

4.5(B) show the cumulative Dex release profiles from the PLGA standard 

microspheres and the PLGA microspheres/collagen scaffold composites, 

respectively. An initial burst release (20 – 25 %) was observed within 6 – 7 days 

post incubation for both the microspheres and composite system. The initial burst 

release was probably due to residual Dex crystals on the surface of the 
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Figure 4.4. The Amount of Dex Loading in the Composite as Fabricated Using 

Either Water or Hydrogel Suspension after Rinsing with Water. 
Results are shown as mean ± SD (n = 4). 
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Figure 4.5. Cumulative Dex Released from Standard Microspheres and Dex-
loaded Microspheres/Scaffold Composite During the In vitro 
Release Studies in PBS at 37°C. The total amount of Dex released 
into the PBS as a percentage of the total amount of Dex 
encapsulated into the microspheres (A) and encapsulated into the 
scaffold composites (B) was plotted as a function of the elapsed 
time from the beginning of the release studies. Results are shown 
as means ± SD (n = 4). 
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microspheres [50,53]. For the three day interval sample collection shows that the 

release of Dex from microspheres alone reached 90% release within 24 days, 

while the composite system released 50% of Dex during the same period.  The 

composite system dramatically slowed the drug release compared to the 

standard microspheres. This result may suggest that either collagen scaffold or 

the hydrogel phase in the scaffold delayed Dex diffusion to the releasing media.  

The release profile of both microspheres and composite system when 

collected at 7 day intervals showed the same pattern with an initial burst release 

and continued zero order release pattern between day 7 and day 21, probably 

because of inadequate sink condition (PBS was replaced every 7 days). 

Nonetheless, the release study with 3 day sample collection showed sustained 

release of Dex from the microsphere/hydrogel/scaffold system over 1 month. 

 

4.3.4. Implantable Glucose Sensors Covered with Microspheres/Scaffold 

Composite System 

We prepared coil-type glucose sensors with porous collagen scaffolds as 

previously described [111]. Then, Dex-loaded microspheres were incorporated 

into the scaffolds surrounding the sensors by soaking in microspheres-Pluronic 

suspensions. With a light microscope, we confirmed that the microspheres 

thoroughly surrounded the sensor surface [Fig. 4.6(A)]. In a higher magnification 

image [Fig. 4.6(B)], the Dex-loaded microspheres were observed to be uniformly 

distributed inside the pore structure of the collagen scaffold.  

 



 96

 

 

 

 
 

A

B

A

B

 
 
Figure 4.6. Light Microscope Photographs of the Implantable Glucose Sensing 

Element with Dex-loaded Microspheres/Scaffold Composite. (A) 
Working electrode; (B) x100 magnification of the scaffold region. 
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The effect of the microspheres on the function of sensors was investigated 

by varying the glucose concentration from 5 to 15 mM. The sensitivity change for 

each sensor before and after microspheres application with different suspensions 

is shown in Figure 4.7. We observed a slight decrease of the sensitivity of 

sensors with microspheres fabricated using either water or hydrogel suspension, 

compared to the sensors without microspheres. However, there was no statistical 

difference before and after microspheres application (p > 0.05; Student’s t-test). 

Therefore, adding microspheres around the sensors with scaffold did not 

negatively intact the function of the sensors. 

 

4.3.5. In vivo Performance of Sensors with Dex-loaded Microspheres/ 

Scaffold Composite System 

Implantable glucose sensors with Dex-loaded microspheres/scaffold 

composite were implanted subcutaneously in the back of rats and their sensitivity 

measured for up to 28 days or until there was no amperometric response. 

Because of higher Dex loading, we chose to fabricate the composite system 

using the Pluronic hydrogel suspension containing 40 mg/mL of Dex-loaded 

microspheres. Figure 4.8 shows the percent sensitivity change of the sensors 

during the 2 week study. The sensitivity of the sensors with composite was 

compared to our previous in vivo data results (without microspheres; control, 

NDGA-crosslinked scaffold, GA-crosslinked scaffold). The sensors with the 

composite system retained above 50% of their original sensitivity at 2 weeks, 
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Figure 4.7. Effect of Adding PLGA Microspheres in the Scaffold on Glucose 
Sensor Sensitivity with Different Suspensions. (A) Water 
suspension; (B) Pluronic F127 hydrogel suspension. Results are 
shown as means ± SD. (n = 4). *Indicates no statistically significant 
differences before / after incorporation of microspheres (p > 0.05). 
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Figure 4.8. In vivo Sensitivity Changes (Bar Graph - results are shown as 
means ± SD) and Number of Working Sensors (Line Graph) of 
Control Sensors and Sensors with NDGA- or GA-crosslinked 
Collagen Scaffolds and Sensors with Dex-loaded Microspheres/ 
NDGA-crosslinked Collagen Scaffold after 2 Weeks Post 
Implantation. 

 
 
 



 100

while the sensitivity of the control sensors, sensors with NDGA-crosslinked 

scaffolds and sensors with GA-crosslinked scaffolds decreased to 42%, 30%, 

and 15%, respectively. We believe that this was because the locally delivered 

Dex effectively decreased the inflammatory response to the sensors. However, it 

was observed that only 2 out of 8 sensors with the composite scaffolds 

functioned at 2 weeks. We suggest that the reason for the functional failure may 

be related to the reference electrode [Fig. 4.9(A)]. Figure 4.9(B) shows a dense 

fibrous capsule surrounding the reference electrode. In this study, we applied 

Dex-loaded microspheres/scaffold composite around the working electrode but 

not around the reference electrode. For this study, we did not coil the reference 

electrode to avoid micro-shorting caused by touching reference electrode coil 

(Ag/AgCl wire) to the uncovered Pt/Ir wire. However, this different reference 

electrode geometry may have induced a larger inflamed area of tissue.  

After 4 weeks, we excised non-functional sensors and tested them ex vivo 

(with tissue) in 5 mM and 15 mM glucose/PBS. Subsequently, the sensors were 

removed from the surrounding tissue and tested in vitro. Figure 4.10 shows the 

amperometric response curves of an explanted glucose sensor with and without 

fibrous capsule tissue. It was found that the sensor with its fibrous capsule 

responded poorly (line A, sensitivity = 1.5 nA/mM) to changes in glucose 

concentration, while the sensor regained its initial function (line B, sensitivity = 

15.4 nA/mM) after removing the surrounding tissue. These shows that the dense 

fibrous capsule tissue which forms around the reference electrode can also affect  

 



 101

 

 

 

 

R

B

WR

A

R

B

WR

A

 
 
Figure 4.9. Light Microscope Photographs of Implantable Glucose Sensors. (A) 

Reference and working electrode region; (B) Dense fibrous capsule 
tissue surrounding the reference electrode (R - reference electrode, 
W - working electrode). 
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Figure 4.10. Amperometric Response Curves of the Explanted Non-functioned 

Glucose Sensors after 4 Weeks Post Implantation. (A) Ex vivo 
response of the sensor with surrounding fibrous capsule tissue; (B) 
In vitro response of the sensor after removing surrounding the 
fibrous capsule tissue, after glucose concentration increase from 5 
to 15 mM. 
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the sensor. Thus, the reference electrode could also be surrounded by the 

composite system described in this paper. 

 

4.3.6. Suppression of Inflammation to Dex-loaded Microspheres/Scaffold 

Composite System 

To confirm the anti- inflammatory response of the Dex-loaded 

microspheres/scaffold composite (40 mg/mL of microspheres, Pluronic F127 

hydrogel suspension), we implanted the composites (without sensors) 

subcutaneously in rats. Standard NDGA-crosslinked scaffolds (without 

microspheres) were implanted for comparison. The histological results (H&E 

stain) for sampled at 2 and 4 weeks after implantation for both the scaffold alone 

and the composite scaffold are shown in Figure 4.11. The inflammatory cells 

were stained as purple, while normal cells were stained as pink. A very strong 

inflammatory response was shown around the control scaffold 2 weeks after 

implantation [Fig. 4.11(A)]. Predominant polymorphonuclear leukocytes (PMNs) 

with monocytes and macrophages were observed and a dense connective tissue 

layer (fibrous capsule) surrounded the periphery of the scaffold. In contrast, the 

inflammatory response to the Dex-loaded composites [Fig. 4.11(B)] was 

diminished compared to the control scaffold. The histological results after one 

week implantation are not shown as there was no noticeable difference between 

the control scaffold and the Dex-loaded composites. After 4 weeks post 

implantation, the inflammatory response to the Dex-released composites was low 

[Fig. 4.11(D)] while a severe inflammatory response with a thick fibrous capsule  
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Figure 4.11. Hematoxylin and Eosin Stained Sections of Tissue Surrounding 

Porous Scaffolds in Rats. (A) NDGA-crosslinked scaffold; (B) Dex-
loaded microspheres / NDGA-crosslinked scaffold composite after 
2 weeks post implantation; (C) NDGA-crosslinked scaffold; (D) 
Dex-loaded microspheres / NDGA-crosslinked scaffold composite 
after 4 weeks post implantation (CT - connective tissue, SC- 
scaffold). 
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was present around the scaffold without Dex-loaded microspheres [Fig. 4.11(C)]. 

These results demonstrate that the Dex released from the microspheres/scaffold 

greately reduced the inflammatory response to the scaffold.
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4.4. Conclusions 

In this study, we prepared Dex-loaded PLGA microspheres and 

incorporated then into three dimensional porous type I collagen scaffolds 

(crosslinked with NDGA) around implantable glucose sensors. The fabricated 

composite has effectively loaded Dex and sustained release of Dex for at least 

one month. The composite system did not significantly alter the function of the 

sensors in vitro despite the high amount of microspheres. After 2 weeks in vivo, 

the sensitivity of sensors with the composite system remained higher than for 

other sensors without the composite system. The histological results showed that 

the inflammatory response was lowered using the Dex-loaded composite scaffold 

when compared to the inflammatory response to the scaffolds without Dex-

loaded microspheres at 2 and 4 weeks after implantation. These results showed 

that our Dex-loaded composite system reduces inflammation around the 

implanted glucose sensors tips and could potentially improve their function and 

lifetime. 
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CHAPTER 5 

SUGGESTIONS FOR FUTURE STUDY 

 

 The best tissue environment for implantable biosensor is vascularized 

tissue around sensor. The control of neovascularization has recently focused on 

the use of angiogenic growth factors such as VEGF and PDGF. Norton et al. 

[52,110] reported that they fabricated hydrogel sensor coatings containing Dex 

and/or VEGF to minimize foreign body response and to promote angiogenesis. 

Klueh et al. [62,63] induced significant neovascularization surrounding an 

implanted sensor using a VEGF-cell-fibrin gene transfer system.  

 The goal future studies will be to introduce local delivery with microsphere 

systems to release angiogenic factors (VEGF, PDGF) and anti-inflammatory 

drugs (i.e. dexmethasone), concurrently. Since Dex can lead to an anti-

angiogenesis effect along with an anti-inflammatory response, the optimization of 

the concentrations of either angiogenic factors or Dex will play an important role 

in the dual release system. The future investigations should determine how to 

control neovasculrature density without foreign body response around implanted 

glucose sensors. In addition, we found a dense fibrous capsule surrounding the 

reference electrode in Chapter 4. In future investigations, the reference electrode 

should also be coated with the same approach utilized for the working electrode. 
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Appendix A: Protocol – Preparation Procedure of Coil-type Glucose 

Sensors 

 

A.1. Coiling of Platinum-iridium (Pt-Ir) Wires  

- Cut 0.125 mm Pt-Ir wires into 4-7 cm long. 

- Remove the top Teflon tube (1 cm). 

- Polish the bare wire with a swab in toothpaste. 

- Ultrasonic cleaning the platinum surface in pure water for 5 min. 

- Coil the stripped wire around a 30 G1/2 needle.  

- Ultrasonic cleaning the platinum surface in pure water for 5 min. again. 

- Carefully pass through a cotton thread the coils then cut the two ends of the 

thread, do not let any cotton silks leave out the coils. 

 

A.2. Enzyme Coating 

- Glucose oxidase solution preparation: 

 300 μL pure water 

 12 mg Bovine serum albumin (BSA) 

 2.5 mg glucose oxidase (GOD)  

 4 μL glutaraldehyde (50% v/v) 

- Dip-coatings (3 times). 

- Let it dry 1 hour at room temperature. 
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Appendix A (Continued) 

 

A.3. Epoxy-PU Coating 

- Coating solution preparation: 

 Tetrahydrofunan (THF) 4 mL 

 PU 45 mg 

 Brij30 5mg 

 Epoxy adhesives 50mg 

- Dip-coatings (3 times) & Dry at room temperature for 30-60 min. 

- Coat two-end of coil & Dry at room temperature for 30-60 min. 

- Cure at 80-120°C for 60 min. 

- Place in PBS prior to use (at least 1 day for membrane swelling). 
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Appendix B: Protocol – Measurement of Sensor Function 

 

B.1. Preparation of Measurement 

- Testing solution: 

 PBS 

 5 mM glucose/PBS solution 

 100 mM glucose/PBS solution 

- Potentiostat options: 

 Select chronoamperometry 

 Set applied potential at 0.7V 

 - Cell setup: 

 8 ml of 5 mM glucose/PBS in a 10  mL glass beaker 

 Connect counter and reference clamps to the Ag/AgCl electrode 

 Connect working electrode to the glucose sensor 

 

B.2. Response Time and Slope Measurement 

- Run the program until the current (I5mM) reach a stable level. 

- Add 941 μL of 100 mM Glucose/PBS into the cell and continue to record the 

current change until the second current (I15mM) level stable. 

- Response time may be expressed as T95%(sec.) [Fig. B.1]. 

- Sensitivity (S) can be roughly calculated by: 

 S (nA/mM) = (I15mM - I 5mM) / (C15mM - C5mM) = Δ I / 10  
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Appendix B (Continued) 
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Figure B.1. Amperometric Response Curve. 

 

B.3. Preparation of Calibration Plot 

- Run the program until the background current reach a stable level. 

- Step-add x μL of 100mL Glucose/PBS into the cell every 500 sec. 

- Obtained a group of corresponding currents (I1 - I7). 

- Draw the current-concentration dependence.  

- Response sensitivity can be obtained by calculating the slope of the current ( I ) 

vs glucose concentration (C) linearity relationship. 
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Appendix B (Continued) 

 

Table B.1. Changes of Glucose Concentration in the Cell. 

X (mL) of 100 mM 
glucose/PBS solution Glucose concentration (mM) Current (nA) 

0.163 2 I1 
0.258 5 I2 
0.467 10 I3 
0.523 15 I4 
0.589 20 I5 
0.667 25 I6 
0.762 30 I7 
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Appendix C: Protocol – Implantation of Glucose Sensors in the Rat and 

Measurement of Sensor Function In vivo 

 

C.1. Surgery Materials 

- Male Sprague Dawley Out bred Rats  (375g – 399 grams). 

- Isofluorane anesthesia machine. 

- Surgical clippers and water circulating heating board. 

- Sterile bench pads, drapes, surgery packs with scalpels, and probes. 

- 3-0 Proline sutures. 

- Sterile and non-sterile gloves. 

- Lab note book, pen and sharpie. 

- Sterile and un-sterile gauze. 

- Puralube ointment  for eyes. 

- 50cc of D50 glucose solution. 

- Sterile towels (to keep animal warm). 

- Chlorhexidine / Betadine solutions. 

- Isopropyl alcohol. 

- 50cc of D50 glucose solution. 

 

C.2. Glucose Monitoring and Testing Apparatus 

- Apollo 4000 Free Radical Analyzer. 

- FreeStyle Blood Glucose Monitoring System. 
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Appendix C (Continued) 

 

C.3. Sterilization and Pre-calibration of Glucose Sensors 

- All sensors will be sterilized by 70% ethanol. 

- Each sensor will be incubated in a sterile 5mM glucose solution three days 

before implantation. 

- On the day before implantation, each sensor will be pre-calibrated with 5 mM 

and 15mM glucose solutions which are sterilized by a sterile syringe filter. 

- After obtaining the sensitivity value of each individual sensor, the sensor will be 

stored in sterile distilled water.  

 

C.4. Protocol for Animal Surgery 

- All surgical instruments and other items to be sterilized will be autoclaved at 

260°C for 25 min. doubled wrapped or in the sterilization pouch.  

- Surgery will be conducted on a clean surface wiped with disinfectant before and 

after use. 

- A Continuous Flow Gas Anesthesia System (flow meter, vaporizer, tubing and 

connectors) will be used to deliver Isoflourane to the rats. The animals will first 

be placed in an induction chamber for induction of anesthesia and then the gas 

will be delivered through a rat mask when surgery is performed. Position the 

first rat on the water circulating heating board for rodents using tape to insure 

positioning of the body, head and rat mask. 
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Appendix C (Continued) 

 

- Each of the rats that are under anesthesia will have their eyes lubricated with 

Puralube ointment. 

 

C.5. Implantation of Sensors (Long Wire Sensors) 

- An area on the dorsal aspect of each rat will be shaved at the cervical region to 

the lumbar region. 

- The skin will be surgically prepped using 3 scrubs of 2% Chlorhexidine and 

painted with Betadine and left to dry.  

- A sterile fenestrated drape will be placed on the rat. 

- Each rat will have 2 sensors implanted. 

- Using the scissors a 1.5 cm incision is made at the dorsal midline 3cm below 

the inter-scapular area. Lateral incisions are made 1cm below the inter-

scapular area 1cm lateral to the dorsal midline on either side. 

- The 14-gauge. I.V. catheter was inserted subcutaneously toward the incision 

from the 4 - 5 cm lower back region.  

- Withdraw the 14-gauge needle leaving the catheter in place. 

- The sensor can then be carefully advanced, using thumb and forceps, through 

the catheter without touching the distal end of the sensor. 

- The sensor was secured to the skin by passing a 3-0 Prolene suture through 

the small gap of the wound clip on the sensor wires. 

- The incision was sutured using 3-0 Prolene. 
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Appendix C (Continued) 

 

- The cannula was then retracted, leaving the sensor in the subcutaneous tissue. 

- The sensor was secured to the skin by passing a 3-0 Prolene suture through 

the small gap of the wound clip on the sensor wires. 

- The incision was sutured using 3-0 Prolene. 

- The cannula was then retracted, leaving the sensor in the subcutaneous tissue 

(For short wire sensors - the sensors were directly implanted through the 

incision without using a cannula). 

 

C.6. Sensors Testing 

- Sensor testing will be performed with two anesthetized rats at a time. A total of 

8 sensors will be tested per day.  

- The implanted sensors wires will be attached to the Apollo 4000 potentiostat 

and a 0.7V vs. Ag/AgCl potential will be applied to four sensors. At the same 

time, four response current curves will be continuously recorded on digital 

display. 

- After the one hour “run-in period” is complete a relatively stable signal (I1) from 

the sensors will be recorded. 

- Using the Freestyle™ glucometer, the low blood glucose level (C1) will 

established using 1/3 micro liter of blood from the rat tail. 
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Appendix C (Continued) 

 

- After a stable signal is obtained from the sensors, 2.0 g/kg rat body weight of 

50% glucose/water solution will be administered intraperitoneally using a 27 

gauge IV needle.  

- An increase in the blood glucose of the rat will correspond with a rise in the 

slope of the current-time curve of each sensor. Previous in vivo studies have 

demonstrated that plasma glucose will increase to a plateau (I2). This time 

interval is long enough to establish equilibrium between plasma and 

subcutaneous glucose concentrations. 

- More blood tests will be made every 5-10 minutes after injection of glucose until 

the high glucose level (C2) is stable.   

- A blood-calibrated sensitivity (S) can be calculated: 

         S (nA / mM) = I2 - I1 / C2 - C1 

- The same test will be performed on days 7, 14, 21, and 28 to establish the 

sensitivity of the sensors over time. 

 

C.7. Animal Recovery  

- Remove the animal from the anesthesia device. 

- Gently place the animal back into its cage.  

- Place half the cage onto a circulating heating broad or place an electric heating 

pad in the cage to cover half the area of the cage floor. 
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Appendix C (Continued) 

 

- Once fully recovered from anesthesia, replace the water, food, but no toys or 

tunnels in the cage with the animal. 

- Daily observation of the rats with notes in the lab book should be done. 
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