Matching Intelligence Teaching Methods with Different Learners' Needs

David L. Blenkhorn
Wilfrid Laurier University, dblenkhorn@wlu.ca

Craig S. Fleisher
craig.fleisher@aurorawdc.com

Follow this and additional works at: https://digitalcommons.usf.edu/jss

Recommended Citation

DOI: http://dx.doi.org/10.5038/1944-0472.6.3.6

Available at: https://digitalcommons.usf.edu/jss/vol6/iss3/6

This Article is brought to you for free and open access by the Open Access Journals at Digital Commons @ University of South Florida. It has been accepted for inclusion in Journal of Strategic Security by an authorized editor of Digital Commons @ University of South Florida. For more information, please contact scholarcommons@usf.edu.
Matching Intelligence Teaching Methods with Different Learners' Needs

Abstract
Current trends suggest that academia may be well “behind the curve” in delivering effective competitive and market intelligence programs and course offerings to students. There are many reasons why this state of affairs has occurred, and prominent among them is nature of challenges experienced by instructors in disseminating and teaching students the prominent competencies they need to acquire in order to be successful in the changing workplace. Applying cluster analysis to our teaching experiences and the scholarship, we develop a normative conceptual model that contrasts traditional and evolving pedagogical methods. Furthermore, we make the case that new learning tools and technologies which are revolutionizing the way information is taught need to be matched up with the new ways in which unique segments of contemporary intelligence students approach learning.
Introduction

For practitioners to remain proficient in competitive intelligence, it is critical that they have access to evolving knowledge and instruction in the field. Seasoned practitioners as well as those new to the field world-wide are taking advantage of educational opportunities to improve their skill sets and organizational value. The effectiveness of their learning may well be a function of the methodologies utilized in the education process that they experience, the study of which is referred to as the scholarship of teaching and learning. This paper will examine the role of education, learning, and pedagogy in the development of intelligence practitioners who practice in the fields of business and commerce; those usually referred to in common parlance as business, competitive, or market intelligence. The term Competitive Intelligence (CI) will be utilized in this paper to include the other intelligence terms mentioned above used in a business context.

Cultural norms vary greatly around the globe, and the learning process is greatly affected by the teaching methodologies utilized, which can be country or region-specific. This matters in the case of CI practitioners because the premier professional association of business/market intelligence practitioners is Strategic and Competitive Intelligence Professionals (SCIP). Although its membership spans the globe, the group is U.S.-based, and its educational programs are most frequently given by U.S.-based and trained instructors in a U.S. setting. Many books and other materials on competitive intelligence read by those in the field are written by North American authors. In short, a “new reality” we observed in the development of competitive intelligence practitioners is that unique groups of contemporary students experience instruction and learn quite differently, and there are many new or enhanced teaching techniques, tools, resources, and methodologies which are not being utilized to match the learning processes of diverse student groups.

This paper examines one particularly contentious facet of CI teaching, whether an instructor can use a pedagogical “one size fits all” approach to teaching prospective global CI learners. We provide a descriptive model, based on the development of discerning factors, that will offer an effort in constructing a comparative framework that can promote further research, preferably in an empirical manner, into the scholarship of CI teaching and learning.

CI as a Subset of the Larger Intelligence Discipline

Competitive Intelligence is the process by which individuals working in a business setting, analyze information which it has obtained legally about its competitors, customers, environments, and markets, to enable it to anticipate changes in its industry and assist in making the correct strategic decisions. Previously, CI was often part of a market analysis, strategic planning, or the marketing research function. The Strategic and Competitive Intelligence Professionals (SCIP) defines CI as “a necessary, ethical discipline for decision making based on understanding the competitive environment.” In other words, CI is the ethical and legal process of discovering, analyzing, and delivering intelligence from publicly available, non-proprietary, and proprietary information sources for the purpose of becoming more competitive in the marketplace. Relevant to readers of this journal, CI practitioners are often responsible for the strategic intelligence tasks inherent in their organizations’ market positioning, including the protection of assets, capabilities, and intellectual resources from rivals intent on defeating them on economic “battle grounds”.

Competitive Intelligence uses public sources to find and develop information on competition, competitors, and the market environment. Properly developed, CI can provide information to decision-makers that can tell them how competitive their firm is, how well it is performing in evolving competitive markets, what competitive moves may occur, and related matters.

Competitive intelligence is done through industry and market analysis, which means understanding the players in an industry or related sub-fields; competitive analysis, which means understanding the strengths and weaknesses of competitors; and benchmarking, which is the analysis of individual business processes of competitors. It is a systematic program of gathering and analyzing information about key stakeholders, including customers, competitors, legislators, opinion leaders, and suppliers in order to find new opportunities and stay competitive.

The successful practice of CI relies heavily on application of the latest in communication technology techniques, with the Internet, as well as social media such as Facebook, Twitter, LinkedIn, Smart Phones, and wikis among others being extensively utilized by intelligence practitioners in support of their organization’s decision-makers. It is suggested that this has been the biggest change to practice in the field in recent years as collaboration, information technology (IT)/information systems (IS), networks, and 24x7 data flows must all be primed and managed. Much of this development has occurred in practice, but little of it has yet been observed and published about in the learning, teaching, and instructional sides of the field.

Background on the Scholarship of Teaching and Learning

Ernest L. Boyer, a well-regarded education scholar who was former chancellor of the State University of New York, United States Commissioner of Education, and President of the

Carnegie Foundation of Teaching, suggested that university faculty members, in particular, had a responsibility for giving a richer and more vital meaning to the scholarship in their fields. This was viewed as a call to actually provide an examination of the processes employed in higher education and related classrooms, as a means for improving the quality of learning taking place. Like other academic disciplines, new or better CI knowledge is often developed by the community of scholars performing CI research. In order for the academic discipline to grow and take root, it must support the transfer of the core body of knowledge (BOK) from those who develop, test, and guard it to those who need to know and apply it in a credible fashion in respected settings. The ongoing development of this knowledge-transfer process is also associated with the professionalization of a field of practice.

One of the concerns that some observers have raised about CI is the quality of education, instruction, and learning taking place in the field. Whether the learning takes place in university classrooms, SCIP meetings, privately-sponsored workshops, executive sessions, intra-corporate training and development contexts, or via self-learning, questions have been raised by veteran leaders in the CI academic field as well as among learners about how effective these processes are or have been. These questions suggest that a rigorous examination should be conducted of instruction and teaching in the CI field, which may lead to broader lessons applicable to business and management training as well.

Research into the scholarship of teaching and learning in CI has been relatively sparse to-date. It has consisted of only a few articles in refereed scholarly journals, including the Journal of Competitive Intelligence and Management and its predecessor publication the Competitive Intelligence Review, and a handful of articles and/or editions devoted to the topic in the SCIP practitioner publication Competitive Intelligence Magazine. The last decade has seen the rapid growth of the Internet as a channel whereby information about CI teaching and education can be easily located and shared, but the growth in refereed, juried, or peer-reviewed CI subjects has not kept pace. Unlike some other fields in business where journals in teaching business-related subjects have decades-long histories, like accounting (Journal of Accounting Education is in its 30th volume in 2013), operations research and management science (Informs Transactions on...
Education is in its 13th volume), or marketing (Marketing Education Review is in its 22nd volume as of 2013), CI has never had a journal dedicated to instruction.

Several public conferences involving CI academics and practitioners, including ones sponsored by the International Association For Intelligence Education (IAFIE), have been held over the last several decades; however, none of these were thematically focused on the role of instruction in CI. The last meeting to do so was held in 2001 under the auspices of SCIP. SCIP sometimes facilitates academic discussion about CI at its annual conference and sometimes at its annual European or other regional meetings as well; nevertheless, seldom more than one or two sessions per year are devoted to discussing the scholarship of CI teaching and learning. In summary, it can be argued that very little systematic effort has been given to the study of the scholarship of CI teaching and learning. As such, this article aims to provide an initial ‘brick’ in the building of the ‘house’ of CI scholarship of teaching and learning by developing a conceptual framework that differentiates approaches to CI teaching and learning.

This article presents three clear limitations to the above compilation of currently available eclectic resources in CI scholarship and learning, including:

1. The inability of any international post-secondary group to achieve consensus about what areas should or should not be in the teaching of CI to students. In other words, most established fields have a very clear scope and most individuals in the field of accounting or electrical engineering, for example, know what subject matter and focal areas constitute essential knowledge for practitioners in their fields. CI professionals have debated even the most basic of topics of to call their field, and even the largest association in the field (SCIP) changed its name a few years ago from Society of Competitive Intelligence Professionals to Strategic and Competitive Intelligence Professionals, reflecting the ongoing angst among practitioners to clearly define to others outside of the field just what people inside it do and do not practice;

2. The supply and efficacy of the formalized courses – there are informal lists kept by some scholars or other stakeholders in the field, but these have historically not been kept up to date nor are they vetted by any arms-length accreditation body for quality, inclusiveness, or selectivity; and

3. The dearth of foundational, up-to-date, and vetted content or clearinghouse for assisting instructors in their teaching and instructional tasks. There are few “textbooks” in the CI field, though there is an ample supply of handbooks, professional, and trade publications, as well as edited scholarly volumes, from which instructors might “cobble together” a reading list for their students. There exist almost no online or “live” web-based platforms expressly designed for teaching CI. Additionally, there are very few published case

19 See, for example, http://www.scip.org/resources/content.cfm?itemnumber=7854.
studies in CI, and those that are out there in places like Harvard Business School’s case collection or the European Case Clearing House, are often many years old and sparse in terms of their scope of focus on practice in the field.

This has resulted in CI learners and educators finding the resources they actually need by chance, personal experience and knowledge, and/or serendipity rather than by design and purpose. The lack of conventional scholarship has been mitigated in part by the recent growth of social media and digital communities of CI practitioners and scholars who now have a venue that can potentially host these kinds of discussions. Nevertheless, there is no definitive source of CI resources yet established even among the various social networks and communities where interested stakeholders interact.

This article draws upon both past experience and the relevant scholarship to examine the development of CI professionals by contrasting the current methodologies employed in teaching three groups of students. We make the case that new learning tools and technologies, which are revolutionizing the way intelligence is taught, need to be matched up with the new ways in which contemporary intelligence students approach learning. Our research has allowed us to develop a new theoretical model highlighting the distinctions between traditional ways of teaching intelligence and the contemporary methods. If the model can be successfully tested, the results and conclusions may add to the existing knowledge on how to be more effective and successful in imparting intelligence concepts, techniques, and skills to unique sets of learners.

In an intelligence context, better matching of pedagogy to learners’ experiences and needs could lead to a rise in the educational levels of practitioners worldwide. Such improved education would promote the accelerated development of the learning and attainment of critical intelligence concepts, knowledge and/or skills, otherwise known as competencies. This article claims that “one size does not fit all” when addressing how to more effectively deliver intelligence education to students of varied backgrounds. In light of the relative paucity of intelligence scholarship of teaching and learning, compared with better and longer established fields of study, this article is descriptive of the groups sampled, normative in offering prescriptions for improving instruction, and is not empirical in nature. This article will use teaching methodologies utilized in CI as examples for the broader intelligence discipline to potentially consider and adopt.

Some Discerning Criteria in Teaching CI to Three Distinct Groups

Competitive intelligence is not a field that has either a clear educational pathway or standard career route. In other words, few entering university or other students at traditional post-secondary ages would likely even have awareness that CI careers exist and may be a future option for them. Even for those who somehow manage to gain this knowledge, very few would

21 See, for example, http://www.CI2020.com or the LinkedIn group of the Strategic and Competitive Intelligence Professionals.
have access to guidance from anybody as to how or where to formally pursue their education and learning in order to attain the required competences.

The question of whether “entry level” career opportunities even exist for 18-25 year-olds in CI remains unanswered to this day, and the paucity or absolute absence of job postings shown on the Internet and SCIP website for people with little-to-no experience would suggest enough impressive evidence that they do not. Individuals pursuing advanced educational or learning opportunities in CI are likely to have some exposure to how their organization might need or use CI and CI practitioners in meeting its decision and planning needs.

As such, we see CI practitioners/professionals as falling into three distinct groupings:

Group 1: Those with a recent undergraduate university degree and MBA graduates with no full-time professional experience who are essentially new to practice in the intelligence profession.

Group 2: Those with an MBA and some full-time vertical (i.e., industry) experience, and are recently entered or new to the intelligence profession and practice.

Group 3: Those already practicing intelligence professionally within a full-time employment context, but who seek additional education or upgrading in the subject. To note, this group does not necessarily need to be practicing intelligence all of the time, but has at least a prominent part (e.g., equal to or greater than a quarter of their job description) of their work roles assigned in the area.

Table 1 below indicates the relationship between each of the above three groups of intelligence practitioners (on the horizontal axis), contrasted with a suggested list of learning criteria pertaining to the intelligence discipline (on the vertical axis). To give further contextual contrast to our findings below, each of the five learning criteria on the vertical axis of Table 1 above will be elaborated upon.

Table 1: Three Distinct Groups of Learners Have Differing Needs on the Same Learning Criteria.

<table>
<thead>
<tr>
<th>Learning Group→Learning Criteria ↓</th>
<th>(1) Undergraduate or MBA with no experience</th>
<th>(2) MBA with vertical industry experience</th>
<th>(3) Already in CI but seeking additional intelligence education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject matter level</td>
<td>Likely have not been exposed to CI, and if so, only peripherally.</td>
<td>Likely to have happened upon CI while doing other work tasks.</td>
<td>These students are looking for intermediate and advanced techniques.</td>
</tr>
<tr>
<td></td>
<td>Most of these students lack CI study options at the post-secondary level.</td>
<td>Need to quickly pick up CI concepts and “run with them.”</td>
<td>Few institutions offer advanced certification.</td>
</tr>
<tr>
<td></td>
<td>Few CI degree programs exist.</td>
<td>Less willing than</td>
<td>May be limited by</td>
</tr>
</tbody>
</table>

DOI: http://dx.doi.org/10.5038/1944-0472.6.3.6
- Because of their lack of real-world experience and context, they have the highest level of difficulty in understanding and recognizing the “ethical” components of CI work.

(1) to engage in conceptual, historical, or learning about the field.

“glass ceiling” of CI people in organization (i.e., none or very few make it to the “executive table”).

<table>
<thead>
<tr>
<th>Vertical expertise/market expertise</th>
<th>Lack understanding of organizational, industry and market contexts.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>These students often do not know whether they prefer working in one industry to another.</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>Want learning that applies directly to their industry or markets, even if it means forgoing general knowledge.</td>
</tr>
<tr>
<td></td>
<td>Strong pressure applied to use instructional resources in their fields or they are more likely to “tune out” the lessons.</td>
</tr>
<tr>
<td></td>
<td>Attracted or recruited out of CI into other functions before they hit their maximum competence.</td>
</tr>
<tr>
<td></td>
<td>Deeper understanding of their industries requires commensurate deeper understanding of CI applications.</td>
</tr>
</tbody>
</table>

Pedagogical techniques, e.g., case studies, simulations, face-to-face interaction	These students are more likely to accept traditional instructional methods.
--	Case studies, field projects and interactive teaching simulations are frequently used because they are a reasonable approximation of the real-world experience this group lacks.
--	Because these students can best “bridge” (connect) their knowledge and experience in other fields with their CI learning, they appreciate real-world case studies, practicing guest lecturers, and more varied instructional resources than just a textbook.
--	Because these students want to
--	Want to be able to immediately apply learning to their work roles, so as we teach, we apply the concepts to their current work context.
--	Expect to be a part of their learning, and often commission the education for that purpose (tailored education courses). As such,

apply their knowledge to the real world, they benefit most by doing a term-length research project of large, publicly-traded organizations using open sources. Their work outputs are often given to and evaluated by their superiors.

| Inter-generational factors: e.g., 20-29 year-olds learn quite differently than 45-60 year-olds & have quite different learning needs | • More likely to prefer (but do they benefit from?) multi-media, multi-tasked learning approaches.
• Shorter attention spans require corresponding shorter bursts of intense teaching.
• Have the most time to allocate for learning of the three groups.
• Are more used to heavier proportion of digital delivery (online learning). | • Usually prefer hybrid-learning approaches.
• Can benefit and grow from a combination of traditional learning resources (lectures, case studies) and real-world, applied projects.
• Willingness to invest in CI learning and development heavily dependent on their career path perspective. | • Least likely to prefer fully-digital delivery, although it may be most convenient for them.
• Convenience of delivery is a critical variable. They have less time allocable for new learning.
• Need to be convinced that new learning in CI can benefit their existing work context. |
| Technology: mobile devices (e.g., I-Pad), distance learning via Internet, video-conferencing, etc. | • Much more likely than the other two groups to expect and learn from integrating technology into the learning process.
• These students prefer being part of the learning process, not just one-way recipients of knowledge.
• Struggle more with face-to-face, person-to-person learning as | • More likely than group (3) to expect and accept a higher proportion of digital delivery of learning.
• Expect to see the technologies utilized in their workplaces used in their teaching and learning, which is rare among post-secondary institutions. | • Least likely to prefer the integration of technology into the learning process.
• Least likely to be willing to do pre- or post-work learning assignments.
• Often willing to attend executive-style course formats (e.g., weekend
compared with groups (2) and (3).

Subject matter level: This category covers the relative level of sophistication, comprehensiveness, and detail that is communicated by authors to a targeted readership. The CI literature is eclectic. Different authors and media (e.g., professional association monthly e-newsletters, e-magazines, regular professional magazines, and academic peer-reviewed journals, trade and professional books, etc.) address basically the same or very similar intelligence topics and concepts using quite different levels of coverage ranging from basic to very conceptually challenging. Some, like the SCIP-distributed *Competitive Intelligence Magazine*, are targeted to the interests and knowledge levels of SCIP’s practitioners and would have little readership from among researchers and scholars. Others, like the recently developed *Journal of Intelligence Studies in Business* is clearly populated by and targeted to scholars in the field and would have little interest or readership among practitioners. As a well-informed intelligence educator should be cognizant of the most important and recent developments in the field, the onus is on the educator to match the level of content with the backgrounds of the intelligence students – know your students’ backgrounds.

Vertical expertise/market expertise: This category covers how important it is for the CI practitioner to have a deep understanding of the industry context in which they perform their CI work. As this will likely vary considerably among the three groups of intelligence learners, the onus is on the instructor to discern which specific intelligence practice concepts need to be drilled down to specific industry examples. The instructor should be cognizant of many verticals covering a cross-section of industries to illustrate that “one size does not fit all,” especially relevant for seasoned practitioners who aspire to higher organizational levels during their careers. The challenge for the instructor will be to convince those learners with deep industry experience to be able to see the intelligence “big picture” regardless of their specific focused industry experience.

Pedagogical techniques: This category examines the various ways that instructors might potentially instruct their learners and students in a designated learning context. There is a vast array of pedagogical techniques available to instructors in the 21st century, ranging from traditional lectures, cases, business simulations, to the ever expanding and improving e-education methods such as computer games and Internet-generated content and learning. The intelligence instructor, by knowing the latest teaching and learning literature, and with some experience, should be able to discern which pedagogical methods are most appropriate for each of the three groups of intelligence learners. The key is to know the make-up of the students before any formal learning experience commences. This needs to drive the selection of the optimal pedagogical methods.

Inter-generational factors: This category covers the demography of CI learners and students. The prime criterion for success here is for the instructor to try to mentally remove themselves from their own generation’s thought patterns and attempt to align their thought processes with the mindsets of their target audience. Since specific generations often have quite different ways of learning the same concepts, if the instructor believes that “one size fits all” as far as intergenerational learning styles and techniques go, sub-optimal learning will likely be the
outcome. Once an instructor researches the make-up and backgrounds of the group of intelligence learners, they are in a much better position to adjust their teaching style to best synchronize with the class’s optimal learning style(s).

Technology: This last category examines the nature of methodologies, particularly in the form of instructional tools and teaching applications, which can be utilized by instructors in supporting their students’ learning. As technology in general, and specifically cutting-edge technology, plays a huge role in successful intelligence initiatives, intelligence learners expect it to play a significant role in any course content. A stark reality is that technology utilization by industry is generally far ahead of its use in post-secondary institutions of learning. To close the gap between intelligence learner expectations and educational institutions’ reality of deliverance, the onus is on the intelligence instructor to utilize advanced technology in pedagogical tools to match or exceed the expectations levels of the intelligence learners.

Discussion

Because of the differences described in the previous section, it is important for instructors and course designers to take these factors into account as they develop programs, courses, and pedagogical approaches for different CI learners. What works for one group may actually be counter-productive for a different cohort under a similar classroom scenario.

The normative findings shared below are based on a number of criteria: our collective teaching experience exceeding 40 years encompassing over 24 countries, feedback from thousands of students, our many and varied course design/redesign experiences over the years, plus an ongoing awareness of changes in the teaching and learning literature over many years. As such, we have developed a number of prescriptions that we have experienced success with in teaching each of these three groups of intelligence learners in Table 1.

In our research on teaching and learning, we posit that the instructor and their pedagogical efforts can have a significant influence on the learning outcomes of the course participants. As personal examples, we utilize formal course design and feedback tools to measure the effectiveness of each undergraduate, graduate, and executive-level course that we teach. This results in ongoing course revisions – we listen to our students and revise content and pedagogical methods as are deemed necessary. We do not subscribe to the practice of having a standard template for a course, and modifying it slightly (e.g., adding readings, deleting projects, heavy use of guest speakers, etc.) depending on to which level we are scoping the same content. We also posit that the “market-process” for courses provides self-selection in that learners seek out offerings which they feel best meet their personal and professional needs. Our courses over the years have been well-subscribed and received, persistent evidence that our teaching methodologies have been successful. The tactics we employ are summarized in our prescriptions found in Table 2 below.

Table 2: Prescriptions for Facilitating Learning among the Three Different Groups.

<table>
<thead>
<tr>
<th>Learning Group</th>
<th>Prescriptions to Address Differing Needs in Learning Groups (1), (2), and (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Criteria ↓</td>
<td>Subject matter level</td>
</tr>
<tr>
<td></td>
<td>• Group #1 needs more rudimentary concepts, more</td>
</tr>
</tbody>
</table>

70
practical “from the trenches” examples, cases. They also tend to appreciate hearing it more often from practitioners directly to reinforce the practical elements.

- Group #2 needs persistent practice in applying the CI concepts to their past vertical experience.
- Group #3 needs deeper theoretical and cross-disciplinary background in the concepts; taking their CI thinking to the next level.

<table>
<thead>
<tr>
<th>Vertical expertise/market expertise</th>
<th>Group #1 needs generic examples which demonstrate concept applicability across a variety of industries.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group #2 needs examples and cases which delve deeply into specific industries rather than taking a macro “one size fits all” approach.</td>
</tr>
<tr>
<td></td>
<td>Group #3, because they are likely to migrate to upper management (and out of a direct CI function, often to a C-level), need to be shown how higher-level CI thought processes and understanding must be aligned with the overall strategy of the firm.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pedagogical techniques, e.g., case studies, simulations, face-to-face interaction</th>
<th>Group #1 needs to have opportunities to apply concepts on “real-world” organizations and contexts. Internships and organizationally-sponsored project work helps.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group #2 needs to apply up-to-date case studies in different industry contexts to broaden out their knowledge.</td>
</tr>
<tr>
<td></td>
<td>Group #3 needs to apply their learning to current work challenges and internal client needs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inter-generational factors: e.g., 20 -29 year-olds learn quite differently than 45 – 60 year-olds and have quite different learning needs</th>
<th>Group #1 needs to have materials presented to them in multi-sensory modes; engaging their minds, ears, eyes and hands simultaneously in their learning is the aim.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group #2 needs to engage in multi-directional discussion and conversations in the classroom. Lectures do not work well for them.</td>
</tr>
<tr>
<td></td>
<td>Group #3 needs to be able to take the learning back to the workplace and apply it to outstanding assignments.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technology: mobile devices (e.g., I-Pad), distance learning via Internet, video-conferencing, etc.</th>
<th>Group #1 needs to have multiple platforms available for learning like wikis, tablets, learning applications, and digital discussions groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group #2 needs to see technology used in teaching that they also use at work. Smartphones,</td>
</tr>
</tbody>
</table>
social media, and digital discussion groups are helpful for them.
- Group #3 prefers convenient delivery and mobility, but not necessarily at the cutting edge of technology or collaboration.

For each of the five learning criteria highlighted in Table 1, Table 2 gives our suggested guidelines or prescriptions which we have observed may constructively facilitate learning among the three quite distinct groups of intelligence learners.

We are not positing that these are the only prescriptions, but these suggested ones are based on evaluating the learning results of our past teaching efforts of these three groups, coupled with a dynamic knowledge of the teaching and learning scholarship. The issue of how stable these prescriptions might be over time is one we can only speculate about; as the field itself evolves, new teaching and learning methods emerge, and as additional research into the scholarship of teaching and learning adds further to our understanding. For now, we retain a high degree of confidence based on our varied experiences and testing that these prescriptions can influence the quality of student learning in the field.

All of these propositions could and should be studied more formally by CI instructors who have regular and ready access to each of these three groups. This examination could be done in the form of experiments using control groups among the three clusters of learners and the standardized measurement of learning outcomes via course evaluations as the dependent variable. Although we have developed our normative model based on teaching to CI learners, it may also be generalizable to other fields of intelligence.

Conclusion

Instruction in the fields of business, competitive, and market intelligence has been lagging practice. We suggest that new and more structured attempts to research and extend the scholarship of teaching and learning may help close the gap. If these attempts succeed, it could lead to improved CI practice as well as better outcomes for organizations employing these competencies.

We developed a normative model for CI teaching and learning that posits that there are three clusters of CI students who each have unique learning characteristics. These three groups cannot be taught effectively using a “one size fits all” approach, and attempts to do it in this fashion will probably lead to less effective outcome measures of student learning in the aggregate. Different groups of learners need different pedagogical approaches. If instructors hope to optimize their students’ learning, they would be wise to differentiate their instructional approaches along the lines we have posited.