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inferring the environmental context of human evolution
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Abstract. The role that climate and environmental history may have played in influencing human evolution has

been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts

to understand the environmental history side of this equation have centered around the study of outcrop sediments

and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or

from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are

unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away

from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was

developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where

much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core

from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and

archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in

human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo,

and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and

core description results of the 2012–2014 HSPDP coring campaign.

1 Introduction

The possibility that human evolution has been strongly influ-

enced by changes in the Earth’s environmental history, and

in particular, its climate history, has been at the forefront of

paleoanthropological research for the last 25 years. Few sub-

jects captivate the public interest as much as human evolu-

tion and climate change. Today there are compelling scien-

tific and societal needs to clarify the role of climate history

in the evolution of our own species, Homo sapiens, and the

evolution and extinction of our close relatives (collectively

referred to as hominins). Much of the debate about human

origins, from the time of the split between the hominins and

the ancestors of the African great apes, about 6 Ma, has cen-

tered around the fossil record of Africa. This is where the

vast majority of hominin fossils > 1 Ma in age have been dis-

covered, and where many important evolutionary transitions

in our lineage apparently occurred, such as bipedalism, the

use and increasing complexity of stone tools, and increased

brain size. Within the African continent, the eastern Rift Val-

ley has been a particularly prominent region for understand-

ing human origins, as its deep tectonic basins have provided a

depositional context for the accumulation of fossil hominins

and other organisms, as well as a sedimentary record allow-

ing us to both date the fossils and put them in a paleoenvi-

ronmental context.

Numerous hypotheses linking both global and regional

African climate to hominin evolutionary history have been

proposed. Vrba (1985, 1988, 1995) hypothesized that Neo-

gene mammalian (including hominin) evolution and extinc-

tion occurred in coordinated and relatively rapid turnover

pulses triggered by major, directional, global environmen-

tal changes, such as the intensification of Northern Hemi-

sphere glaciation. However, mammalian records indicate that

the impact of these global mechanisms varied at local and

regional levels (Alemseged, 2003; Bobe and Behrensmeyer,

2004; Bobe et al., 2007; Reed, 2008). Other major ad-

vances in understanding eastern African paleoclimate (e.g.,

deMenocal, 1995, 2004; Trauth et al., 2005; Scholz et al.,

2007, 2011) have spurred the development of explanatory,

dynamic paleoclimate models, as well as alternative mod-

els linking paleoclimate and human evolution. Potts (1996;

Sci. Dril., 21, 1–16, 2016 www.sci-dril.net/21/1/2016/
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Potts and Faith, 2015) proposed that it is the variability in

climate (especially at orbital forcing timescales) as opposed

to simply its directional history (e.g., drying trends) that has

driven large-scale evolutionary changes and technological in-

novations among the hominins. Unfortunately, because lo-

cal outcrop paleorecords are either incomplete or discontin-

uous, no consensus yet exists on the factors that interacted

to control African climate and ecosystem dynamics during

the Plio-Pleistocene or how they affected hominin or other

mammalian evolution.

On long timescales (> 106 years), there is debate on the

timing and importance of eastern African uplift and changes

in oceanic circulation as causes of climate change, and espe-

cially increasing aridity, the development of extensive grass-

land savanna, and their influence on the mammalian fauna

(Cane and Molnar, 2001; Molnar and Cane, 2007; Sepul-

chre et al., 2006; Wichura et al., 2010; Cerling et al., 2011;

Federov et al., 2013; Maslin et al., 2014). On intermedi-

ate timescales (104–106 years), there is controversy regard-

ing the relative importance of high-latitude glacial cycles,

Walker circulation intensification, and annual- to decadal-

scale variability in atmospheric pressure and sea surface tem-

peratures such as El Niño–Southern Oscillation and the In-

dian Ocean Dipole (ENSO/IOD) for regional aridity, lake

expansions, and seasonality (deMenocal, 2004; Trauth et al.,

2009), all of which could have influenced the course of evo-

lution in the lake-rich Rift Valley. On Milankovitch (∼ 100,

40, and 20 kyr) and shorter (101–104 years) timescales, there

is debate about the role of orbital forcing and high-latitude

glacial to millennial-scale events in driving wet–dry cycles

that increased environmental pressures on African ecosys-

tems (e.g., Larasoaña et al., 2003; Kingston et al., 2007;

Scholz et al., 2007; Campisano and Feibel, 2007; Trauth et

al., 2009, 2015; Armitage et al., 2011; Blome et al., 2012),

and how these might have influenced resource acquisition

(Reed and Rector, 2007) and other ecological parameters af-

fecting hominins. Assessing these hypotheses is complicated

by the need to understand the role of biotic drivers of adap-

tation, such as competition and predation. One fundamental

question is whether any of the Earth system drivers can be

characterized with sufficient precision to identify drivers of

diversification and extinction among our close relatives and

ancestors and to enable correlation with hominin evolution.

Past attempts to test hypotheses that implicate climate as a

major driver of human evolution have often foundered on a

fundamental mismatch of spatial and temporal scales, casting

highly temporally resolved, but globally or continentally spa-

tially averaged records of climate change against less tempo-

rally resolved but basin-scale records of faunal change and/or

hominin evolution. This approach cannot yield a realistic un-

derstanding of potential linkages between environmental and

biotic change, because it ignores basin-scale environmental

dynamics relating to changes in regional climate, that is, lo-

cal tectonics and geomorphology, which could also be drivers

of mammalian population dynamics. For example, Behrens-

meyer et al. (1997) tested Vrba’s turnover pulse hypothesis

by investigating whether such a pulse occurred in chang-

ing mammal communities at 2.8 Ma in the Turkana Basin of

northern Kenya, a region with a rich and highly continuous

fossil record. They found that species patterns in the Turkana

Basin did not follow this global model, and that species

turnovers were more prolonged responses to climate change

associated with both drier and more variable climatic condi-

tions. Tectonic forcing (Bailey et al., 2011) and extreme envi-

ronmental perturbations, such as megadroughts (Cohen et al.,

2007; Scholz et al., 2007), have also been suggested as poten-

tial drivers of early modern human population fragmentation,

genetic differentiation, range expansion events, and adapta-

tion (Mellars, 2006). The implications of millennial-scale or

even shorter events for early hominin evolution have scarcely

been explored as they are poorly resolved in offshore ma-

rine records. However, such events were clearly linked to

major demographic and population-level changes during the

Holocene in Africa (e.g., Kuper and Kröpelin, 2006).

Current hypotheses remain difficult to test and there has

been an acute need to develop new perspectives and data

on the links between global- and basin-scale environmen-

tal change, and to relate these specific changes to ecologi-

cal factors that influenced hominin evolution. The Hominin

Sites and Paleolakes Drilling Project (HSPDP) was designed

to improve understanding of the implications of ecosystem

change for hominins in two ways: (1) to provide millennial-

scale environmental data at key time periods that correspond

to morphological and cultural changes or other perceptible

evolutionary events in hominin and other mammalian lin-

eages near locations where hominin fossils have been found,

and (2) to compare these data across basins, encompassing

multiple paleoanthropological localities, to document local

versus regional effects of ecosystem change, and responses

to global-scale changes. For the specific case of hominin and

large mammal evolution in Africa, in order for a paleoenvi-

ronmental record to be useful for improving our understand-

ing of the connection between evolution and climate, it must

meet two conditions.

1. There must be a highly resolved paleorecord to examine

environmental change at any temporal scale that could

realistically serve as an evolutionary or ecological trig-

ger. This would range from annual records of seasonal-

ity preserved in archives such as annual lake deposits,

pollen records of plants responsive to variable seasonal-

ity, lipid markers of temperature, etc. to geochemical or

sedimentological records of phenomena such as major

uplift or paleoceanographic events, which might oper-

ate on much longer (e.g., > 106 years) timescales.

2. A record of faunal change from the same localities that

is sufficiently detailed to investigate responses to envi-

ronmental change within particular clades, ecological

guilds, or mammal communities.

www.sci-dril.net/21/1/2016/ Sci. Dril., 21, 1–16, 2016
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The HSPDP was developed by an international team of

over 100 scientists from 11 countries to address these issues.

Its goal was the collection and analysis of high-resolution

paleoenvironmental records from paleo-lake drill cores near

the depocenters of lacustrine basins of significant paleoan-

thropological importance in eastern Africa, each of which

meets these conditions. As discontinuously exposed outcrops

have shown these lakebeds to be commonly laminated (e.g.,

Wilson et al., 2014) with bedding characteristics often sim-

ilar to demonstrably annual varves documented in modern

African rift lakes (Pilskaln and Johnson, 1991; Cohen et al.,

2006) and deposited at high sedimentation rates, their records

fulfill the first criterion. The second criterion is fulfilled as

each of the drill sites lies in close proximity to rich and di-

verse fossil vertebrate and archaeological sites, with sedi-

ments of the same age, and which collectively span some

of the most critical intervals of hominin evolutionary history

(e.g., earliest Homo, earliest stone tools, origin of Acheulian

and Middle Stone Age technologies, earliest modern H. sapi-

ens), and where new, important fossils and artifacts are still

being recovered. Thus, the integration and direct comparison

of basin-scale records of environmental change from cores

with the record of faunal and cultural change from outcrops

affords us the opportunity to test existing hypotheses of Earth

system drivers of evolution at different temporal and spatial

scales.

2 Drilling target areas

A series of workshops held in the mid–late 2000s better de-

fined the specific goals of the HSPDP and specific selection

criteria for ideal drilling locations (Cohen and Umer, 2009;

Cohen et al., 2009). The drilling areas (Table 1 and Fig. 1)

were decided through a lengthy and interactive process be-

tween the principal ICDP project proponents. Numerous ho-

minin fossil and archaeological sites in proximity to lake de-

posits in eastern Africa were considered as potential drilling

targets, and ultimately the decision on which sites to pursue

was determined by a combination of the scientific criteria

mentioned above, along with practical, logistical considera-

tions, such as site access for a truck-mounted drill rig and

probable costs. The sites discussed below were part of the

original HSPDP operational plan. The Olorgesailie (Koora

Plain) site was ultimately funded separately from the remain-

ing ICDP-supported sites.

2.1 The Northern Awash drilling area, Ethiopia

The Northern Awash basin provides one of the densest ac-

cumulations of early hominin fossils (Johanson et al., 1982;

Kimbel et al., 2004; Alemseged et al., 2006), as well as rich

mammalian faunal and floral records (Bonnefille et al., 2004;

Reed, 2008; Geraads et al., 2012). Its lakebeds provide a po-

tential record of the local environmental response to the onset

of high-amplitude climate oscillations and increased aridity

Figure 1. Map of eastern Africa showing locations of the HSPDP

drilling areas; maximum coring depth for the deepest borehole in

red on the map (the BT(227 m) example indicates the maximum

depth, 227 m, that was reached at the BT site). The timeline be-

low the map shows the number of cored boreholes, drilling dates,

and approximate time intervals covered by the drill cores from

each area. From north to south: NA: Northern Awash; CB: Chew

Bahir; WT: West Turkana; BT: Baringo Tugen Hills; OL: Olorge-

sailie/Koora Plain; and MA: Lake Magadi. Base map generated

from GeoMapApp©.

in eastern Africa at ∼ 3.15 Ma as well as the response to Mi-

lankovitch cycles prior to the onset of high-latitude glacia-

tion (∼ 2.7 Ma) as documented in the marine core record

(Campisano and Feibel, 2007). This site provides a backdrop

against which ∼ 400 kyr of the evolutionary history of Aus-

tralopithecus afarensis (e.g., “Lucy”) and associated fauna

and the earliest use of stone tools (McPherron et al., 2010)

will be interpreted.

2.2 The Baringo Basin/Tugen Hills drilling area, Kenya

This area of the central Kenyan Rift Valley comprises the

most complete late Neogene section known from the African

rift (Chapman and Brook, 1978). The stratigraphic interval

of the Chemeron Formation targeted here (3.3–2.6 Ma) con-

tains ∼ 100 fossil vertebrate localities, including three ho-

minin sites, providing an opportunity to explore the nature

of environmental change associated with shifting insolation

patterns (for example, documenting the lacustrine response

to changing precipitation patterns at precessional, millen-

nial, and perhaps even shorter timescales; e.g., Kingston et

al., 2007; Wilson et al., 2014) and to assess specific terres-

trial community responses to pervasive, short-term climatic

Sci. Dril., 21, 1–16, 2016 www.sci-dril.net/21/1/2016/
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Table 1. Borehole site information for the HSPDP. DA: drilling area; age: approximate age range of borehole sediments; NA: Northern

Awash, Ethiopia; BTB: Baringo/Tugen Hills, Kenya; WTK: West Turkana, Kenya; SK: southern Kenya; KO: Koora Plain/Olorgesailie;

MAG: Lake Magadi; CHB: Chew Bahir, Ethiopia; ID: borehole identification number; SD: spud date; LAT: latitude N (−: S); LONG.:

longitude E; BE: borehole surface elevation in meters above sea level; BI: borehole inclination in degrees off vertical; BT: borehole top depth

in meters to top of cored interval from surface; DL: drilled length in meters; CL: cored length in meters; CR: total core recovered in meters;

CR: percentage core recovery; LOG: downhole logging type; NG: natural gamma (U, Th, K); MS: magnetic susceptibility; R: resistivity; T:

temperature. For MAG14-2A, MS was collected from 4 to 14 m and 82 to 197 m only, R from 4.5 to 12.5 m and 82.5 to 139 m, 143 to 161 m

and 165 to 197 m only, and MS from 82 to 197 m only. For OLO12-1A the hole was reverse-circulation drilled down to 27 m with cuttings

bagged from 0 to 27 m. For OLO12-2A, borehole was reamed to find bedrock depth (encountered at 159 m). No coring attempted.

Drilling area (age) ID SD LAT. LONG. BE BI BT DL CL CR CR% LOG

NA (Late Pliocene)

HSPDP-NAO14-1A 23/2/2014 11.315 40.7369 520 15 1.84 4.84 4.84 2.6 53.7 None

HSPDP-NAO14-1B 23/2/2014 11.315 40.7369 520 13 1.29 187.4 187 205.4 110 None

HSPDP-NAO14-1C 28/2/2014 11.315 40.737 521 13 0 3 3 2.67 88.8 None

HSPDP-NAO14-1D 1/3/2014 11.315 40.737 521 14 0 168.4 167 181.9 109 None

HSPDP-NAO14-1E 4/3/2014 11.315 40.7649 521 13 172.7 0 0 0 0 None

HSPDP-NAW14-1A 11/3/2014 11.325 40.7649 495 12 0 244.5 245 254.6 104 None

BTB (Late Pliocene–Early

Pleistocene)

HSPDP-BTB13-1A 1/6/2013 0.5546 35.9375 1158 0 5.25 227.9 223 210 94.3 NG, MS,

R, T

WTK (Early Pleistocene)

HSPDP-WTK13-1A 22/6/2013 4.1097 35.8718 404 10 0.55 215.8 215 202.6 94.1 NG, T

SK (Middle Pleistocene–Holocene)

OL

ODP-OLO12-1A 5/9/2012 −1.791 36.4011 862 0 27 166.1 139 130.8 94 None

ODP-OLO12-2A 17/9/2012 −1.7887 36.3968 862 0 159 0 0 0 None

ODP-OLO12-3A 21/9/2012 −1.7887 36.4085 852 0 50 116.3 66.3 66.73 101 None

MAG

HSPDP-MAG14-1A 11/6/2014 −1.8805 36.2717 607 0 3.02 128.5 126 74.51 59.2 None

HSPDP-MAG14-1B 23/6/2014 −1.8806 36.2717 607 0 119.64 125.7 6.1 2.87 47 None

HSPDP-MAG14-1C 25/06/2014 −1.8806 36.2717 607 0 3.44 136.6 26.5 16.84 63.6 None

HSPDP-MAG14-2A 29/06/2014 −1.8516 36.2794 607 0 3 197.4 194 107.7 55.4 NG, MS,

R, MS

CB (Middle–Late Pleistocene)

HSPDP-CHB14-1A 18/03/14 4.4225 36.5109 500 0 0 41.5 39.1 39.05 94 None

HSPDP-CHB14-2A 6/11/2014 4.7612 36.7668 500 0 0.49 278.6 284 245.4 86.6 None

HSPDP-CHB14-2B 19/11/2014 4.7613 36.767 500 0 0.28 266.4 266 240.9 90.5 None

Totals 2668 2192 1985 90.6

change through the interval of Northern Hemisphere glacial

intensification. At this time in eastern Africa we also observe

the diversification of Paranthropus (a group of hominins with

robust cranial features and large teeth for a strong bite force)

and our own genus Homo, as well as the earliest evidence for

stone tool-making in nearby West Turkana (Harmand et al.,

2015).

2.3 The West Turkana drilling area, Kenya

This area targets the Early Pleistocene lakebeds of Turkana,

Kenya, that were deposited during a phase of overall increas-

ing continental aridity punctuated by major lake-level fluctu-

ations, which appear to reflect insolation-forced climate cy-

cles (Lepre et al., 2007; Joordens et al., 2011). The exten-

sive outcrops of the Turkana Basin have been well character-

ized geologically (Feibel, 2011) and have provided an unpar-

alleled tephrostratigraphic framework (Brown et al., 2006)

associated with precise chronostratigraphic controls (Mc-

Dougall et al., 2012). This borehole is in direct proximity to

the rich fossil record of the Turkana Basin, including ∼ 500

hominin fossils and more than 100 archaeological sites (Har-

ris et al., 1988; Roche et al., 2004). The hominins include sig-

nificant specimens, such as the earliest/most complete speci-

mens of H. rudolfensis and H. erectus, early members of our

own genus. The time window targeted here (∼ 1.9–1.4 Ma)

also includes the earliest evidence of Acheulean (e.g., large

hand axes) stone tool technology (Lepre et al., 2011) and the

interval when hominins first expanded their range outside of

Africa. The core record will allow us to explore whether (and

which) climate drivers caused the expansion of grassland

habitats in the early Pleistocene in this region, what climatic

www.sci-dril.net/21/1/2016/ Sci. Dril., 21, 1–16, 2016
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conditions/changes were associated with the first appearance

of early Homo (H. habilis/rudolfensis) and the emergence of

H. erectus, and what were the temporal links between cli-

mate change, the episode of major faunal turnover (i.e., the

near-wholesale replacement of one set of species by another),

grassland expansion, and the appearance of H. erectus, all oc-

curring shortly after 2 Ma in the Turkana Basin.

2.4 The southern Kenya (Olorgesailie and Lake Magadi)

drilling areas

These drill sites comprise contemporaneous Early Pleis-

tocene to modern records from two adjacent (but hydrologi-

cally distinct) basins. Drill cores from these localities in the

southern Kenya rift may provide a regional equatorial paleo-

climate history of the major Middle–Late Pleistocene climate

transitions, which is otherwise recorded from this region

in only discontinuous records. Drilling on the Koora Plain

will allow us to examine deposits immediately adjacent to

the Olorgesailie depositional basin, one of the richest, best-

calibrated Early–Late Pleistocene archeological localities in

Africa, with abundant Acheulean and Middle Stone Age

(MSA) sites (and documenting the transition between these

important technological phases of human prehistory), diverse

fauna, a detailed paleoenvironmental record, and abundant

tephras (e.g., Potts et al., 1999; Sikes et al., 1999; Behrens-

meyer et al., 2002; Owen et al., 2008). Prior research here

has fueled hypotheses and debates about climate–evolution

relationships (e.g., Owen et al., 2009a, b; Trauth and Maslin,

2009).

Nearby Lake Magadi (∼ 20 km from the Koora Plain drill

site) is located in the axis of the southern Kenya Rift and is

a regional sump for water and sediments. The present lake, a

saline/alkaline pan, is the successor to a series of paleolakes

that have occupied the basin since the Early Pleistocene. Pre-

vious outcrop and drill core records (none of which survive)

established the volcanic and sediment stratigraphy and their

linkage to basin hydrology (Baker, 1958; Surdam and Eug-

ster, 1976; Crossley, 1979; Eugster, 1980; Jones et al., 1977).

The close proximity of both basins will provide us with an

opportunity to tease out climatic from tectonic/groundwater

controls on their respective environmental histories, con-

tributing to HSPDP Objective 2 – the evaluation of how

global climate changes were experienced locally within key

hominin locales.

2.5 The Chew Bahir drilling area, Ethiopia

This area comprises Middle–Late Pleistocene lakebeds in a

region between the Ethiopian and Omo-Turkana rifts, each of

which has a highly distinctive Quaternary biogeographic his-

tory (Suwa et al., 2003) and border presumed habitat refuge

areas during times of climatic stress (Foerster et al., 2015).

Chew Bahir is an ephemeral playa today, but in the past has

held a large lake (Foerster et al., 2012). Our records from

Chew Bahir, presumed to cover at least the last 700 kyr, will

also provide a regional-scale environmental context for the

earliest anatomically modern H. sapiens fossils recovered at

∼ 200 ka in the nearby (90 km away) Omo River valley (Day,

1969; McDougall et al., 2005; Brown et al., 2006). When

coupled with the other Early Pleistocene–recent HSPDP

records from Olorgesailie and Magadi and previously col-

lected drill core records from Lake Malawi and elsewhere in

the region, the details of regional environmental heterogene-

ity in eastern Africa through the extreme climatic fluctuations

of the Quaternary may be explored (e.g., Blome et al., 2012).

3 Pre-drilling site surveys

Between 2008 and 2012 subsurface and outcrop site sur-

vey data were collected in a series of campaigns from all

of the drill sites to determine optimal locations for the var-

ious boreholes. The objective was to minimize the likeli-

hood of encountering subsurface faults or associated defor-

mation and to maximize stratigraphic resolution. Seismic

data were acquired by our group at the Afar, West Turkana

and Olorgesailie areas. Additionally, legacy industry seismic

data were obtained from an old (1970s) AMOCO survey at

West Turkana and very recently acquired survey data from

Tullow Oil at the Chew Bahir area. Gravity and magnetic

surveys were also conducted by our team at the Magadi and

Olorgesailie areas. Prior boreholes drilled by the US Geo-

logical Survey in the late 1960s at Lake Magadi provided

additional information for that area. Siting at the Baringo

Basin/Tugen Hills was based on known outcrop exposures

immediately adjacent to the drill site.

4 Drilling and logging operations (Figs. 2 and 3)

Drilling of the HSPDP sites took place over an approximately

2-year period between September 2012 and December 2014.

Local drilling contractors, Drilling and Prospecting Inter-

national for Kenya areas, Addis GeoSystems for the Chew

Bahir pilot hole, and Geosearch (now Orezone Drilling) for

all other holes in Ethiopia, provided truck-mounted standard

wireline diamond coring drill rigs and crews. DOSECC Ex-

ploration Services (DES) provided drilling operations over-

sight, local supervision and specialized lake tools, bits, and

other drilling supply procurement for items that were not

locally available. Boreholes were drilled using a combina-

tion of H (96.3 mm diameter hole, 61.1 mm diameter core),

P (122.6 mm hole, 66 mm core), and minor N (75.7 mm hole,

47.6 mm core, at Awash) diameter drill string and a variety of

coring tools depending on the highly variable lithologic con-

ditions encountered during drilling. P was employed when

using the specialized lake coring tools in unconsolidated sed-

iments. These included the hydraulic piston corer, the “ex-

tended nose” non-rotating corer, “alien” rotating corer, all

using standard IODP butyrate core liners. Boreholes were
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(a) (b)

(c) (d)

Figure 2. HSPDP drilling operations: (a) Oso Isi drill site (NAO14)

in the Northern Awash area, northern Ethiopia (photo C. Camp-

isano); (b) West Turkana (WTK13) drill site, with Lake Turkana and

North Island in the background (photo A. Cohen); (c) West Turkana

drill site (photo A. Noren); (d) Koora Plain/Olorgesailie (OLO12-

1A drill site with Mt. Olorgesailie in the background (photo R.

Dommain).

oriented at 10–15◦ off the vertical at the Northern Awash and

West Turkana sites to facilitate the interpretation of paleo-

magnetic data sets. At the Tugen Hills site, the existing∼ 20◦

dip of sediments at the borehole site allowed us to drill verti-

cally. At the three remaining sites (Magadi, Olorgesailie, and

Chew Bahir) the presence of unconsolidated sediments made

drilling at a non-vertical angle impractical, because the risk

of cave-ins and losing hole integrity was deemed to outweigh

the advantages for the paleomagnetic data interpretation. A

Reflex ACT III orientation device was deployed with each

drive at the West Turkana and Northern Awash sites to de-

termine azimuthal data on non-vertical boreholes. Geophys-

ical down-hole logging data were collected by ICDP’s Oper-

ational Support Group for natural gamma, magnetic suscep-

tibility (MS), resistivity, borehole temperature and azimuthal

direction at three of the Kenyan sites (Tugen Hills/Baringo,

West Turkana and Lake Magadi). Logging was limited at the

West Turkana borehole because of lost casing remaining in

the hole at the time of logging. No down-hole logging was

conducted at the remaining sites due to unforeseen circum-

stances. A multisensor core logger (MSCL, Geotek Ltd.) was

deployed to the Tugen Hills/Baringo and West Turkana sites

to collect MS data on unsplit cores during drilling, but the

MSCL was not available for the remaining sites.

After drilling each site, cores were shipped via airfreight to

LacCore, the National Lacustrine Core Facility (University

of Minnesota) for full scanning, processing, description, and

subsampling. Physical properties for cores from all sites were

analyzed in detail via MSCL-S (whole core, for p wave ve-

locity, gamma density, loop MS, non-contact electrical resis-

(a) (b)  

(c) (d)

Figure 3. HSPDP drilling operations: (a) Lake Magadi drill site

(MAG14) in the southern Kenya Rift Valley. Crystalline trona

on the dry Magadi pan visible in the foreground (photo A. Co-

hen); (b) Chew Bahir drill site (CHB14) in the southern Ethiopian

Rift Valley, Hammar Range in the background (photo A. Cohen);

(c) HSPDP presentation to the local community group by National

Museums of Kenya personnel at the Tugen Hills drill site (photo

courtesy of National Museums of Kenya); (d) filmmaker Doug

Prose of Earth Images Foundation filming tephra outcrops in the

Omo River Valley, near the Chew Bahir drill site (photo A. Cohen).

tivity, natural gamma radiation) and MSCL-XYZ (split core,

for high-resolution MS and color reflectance spectrophotom-

etry) at increments ranging from 0.5 to 4 cm, depending on

the parameter. Cores were split in half lengthwise, cleaned,

and scanned with a Geotek© MSCL-CIS digital linescan core

imager. Visual core description, smear slide analysis, and (as

needed) SEM-EDS and XRD analyses were performed, and

subsamples were extracted according to coordinated plans

for stratigraphically equivalent samples for all analytical pa-

rameters.

5 Initial coring and core description results

In total, 18 boreholes were drilled in the HSPDP (Table 1),

although several of these were “deadman” anchoring holes

to secure the drill rig and not intended for core recovery. Ap-

proximately 2 km of core was recovered from about 2200 m

of cored intervals, for an average recovery of ∼ 90.5 %. The

only area where recovery was significantly below this aver-

age was at the Lake Magadi site, where interbedded hard and

soft lithologies (cherts and unconsolidated muds) made for

extremely challenging coring conditions.

Six boreholes were drilled at the Northern Awash area

from two sites (NAO/Osi Isi and NAW/Woranso, Fig. 2a),

which yielded approximately 650 m of core. The longest sin-

gle borehole was ∼ 244 m (NAW-1A), but, because of the

offset between the stratigraphically higher top of NAO (about

25 m above the top of NAW) we estimate the total strati-
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Key to all lithologic symbols 

Figure 4. Key to all lithologic symbols. Note that blank (white)

areas in lithologic columns indicate zones of missing core, i.e., no

core recovery.

graphic interval covered by the two sites to be approximately

270 m. Boreholes consisted of three primary science bore-

holes inclined 13–15◦, plus two cored anchoring holes and

one uncored hole, all of which were drilled in February–

March 2014. Thick basalt sections were encountered at both

sites (some of which appear to be compound flows), which

are separated by about 3 km. Sediments at both drill sites are

gently dipping (∼ 2◦ NE). The two longest cores (NAO-1B,

Fig. 5 and NAW-1A, Fig. 6) consist of primarily massive or

laminated, brown or greenish brown silty clays, with occa-

sional sandy units scattered through the core, particularly as-

sociated with the upper basalt (Fig. 7a, b). Diatomites oc-

cur sporadically, mostly in the upper portions of both cores,

with diatomaceous units more abundant below the second

basalt. Thin (mm–cm) unaltered airfall volcanic ashes oc-

cur throughout the core. Most of the pronounced low-MS

and low gamma density zones consist of either diatomites or

fine, greenish clays. The brown clays contain abundant pale-

osol nodules and occasional beds of gastropods. Drilling at

both the NAO and NAW localities was terminated when ad-

vancing the holes became impractical as rods became stuck
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Figure 5. Summary stratigraphy of core HSPDP-NAO14-1B,

from the Oso Isi locality, Northern Awash drilling area, northern

Ethiopia, based on initial core description results. Columns from

left to right: core color stratigraphy (from XYZ spectrophotometric

imaging data, adjusted in Photoshop© to using Image Adjustment

Levels to maximize color range). Basalt intervals were not imaged

and are shown as solid black and missing core intervals are shown

in white; lithologic log, rendered in PSICAT©. See Fig. 5 for the

key to lithologies used in all cores illustrated. Zones with missing

cores are indicated by blank intervals. Letter/number markers and

arrows to the left of the lithologic log indicate the position of corre-

sponding core photos in Fig. 7 for this and other summary stratig-

raphy figures; composite of magnetic susceptibility (MS) log data

from the LacCore Geotek© XYZ point sensor data on split core seg-

ments, measured at 0.5 cm increments. Data have been smoothed

(25-point running mean smooth, hence MS-25, Gamma-25, and

Grey Scale-25); composite of induced gamma density log data at

0.5 cm increments from the LacCore Geotek© Multisensor Core

Logger (MSCL). Spurious values (< 1.4 gm cm−3) caused by cor-

ing gaps have been removed prior to analysis and plotting. Data

have been smoothed (25-point running mean); composite of spec-

trophotometric grey-scale log data at 0.5 cm increments from the

LacCore Geotek© XYZ spectrophotometric sensor. Data have been

smoothed (25-point running mean).

because of very tight hole conditions, very high torque, and

water pressure.

A single, vertical ∼ 228 m borehole was drilled at the Tu-

gen Hills site in May–June 2013 (Fig. 8). The borehole was

situated in very close proximity to exposures of variably dip-

ping (20–42◦ in the borehole) cyclic diatomites and mud-

stones of the upper Chemeron Formation, which had previ-

ously been shown by Deino et al. (2006) and Kingston et

al. (2007) to reflect extreme precessional climate variability

in the central Kenyan Rift during the Plio-Pleistocene tran-

sition. The lower ∼ 100 m of the core is coarser on average

than the upper part of the core. From the base to∼ 130 m b.s.

the core contains frequent channelized granular sands and

conglomerate beds (often reddish in color), alternating with

carbonate nodular paleosol siltstones (Fig. 7c), with sparse
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Figure 6. Summary stratigraphy of core HSPDP-NAW14-1A,

from the Woranso locality, Northern Awash drilling area, northern

Ethiopia, based on initial core description results. Columns from

left to right: core color stratigraphy; lithologic log; see Fig. 5 for

the key to lithologies used in all cores illustrated; composite of mag-

netic susceptibility (MS) log data (25-point running mean smooth)

from LacCore Geotek© XYZ point sensor data; composite of in-

duced gamma density log data (25-point running mean smooth, spu-

rious values < 1.4 gm cm−3 removed); composite of spectrophoto-

metric grey-scale log data (25-point running mean smooth). All data

collection, instrumentation, and parameters as in Fig. 5.

lacustrine muds and diatomites. Above this, diatomite lacus-

trine/terrestrial cycles similar to those seen in outcrop begin

to appear (evident in both the lithologies and physical prop-

erties of the upper portion of the drill core, Fig. 7d). Low-

density, low-magnetic-susceptibility sediments (light colored

lacustrine diatomites and clays) alternate with more strongly

magnetically susceptible and denser siliciclastic muds (pa-

leosols, often with abundant carbonate nodules) and fluvial

sands (and occasional gravels) in the upper 130 m of the core.

Sediments above ∼ 50 m b.s. are generally lighter in color

(note grey-scale data, Fig. 8), which may reflect near-surface

weathering/alteration above the local water table. Numerous

primary and reworked tephras occur throughout the core,

which will be critical for dating the core. Drilling was ter-

minated at this site close to the original planned target depth

(250 m) for budgetary reasons.

A single, oriented (10◦ from vertical) ∼ 216 m borehole

was drilled at the West Turkana (WTK) site in June–July

2013 (Figs. 2c, d and 9). The drill site was chosen to be

in close proximity to outcrop exposures of the correlative

Nachukui Formation, which is locally dipping at∼ 5◦W. The

lower ∼ 155 m (61–216 m b.s.) of the core consists of lam-

inated to massive green and brown clays, which are often

fossiliferous (fish, ostracodes and molluscs, the latter often

organized as discrete shell lags) (Fig. 7e). Many of these la-

custrine clays contain paleosol structure and carbonate nod-

ules indicative of episodic exposure and pedogenesis. Above

61 m b.s., a pronounced lithologic transition occurs towards

coarser sediments (more frequent sandy intervals), which is

also reflected in changes in the color and magnetic suscepti-

bility of the core. Soil structure and nodular carbonates occur

in these sediments as well. Tuffs occur as discrete horizons at

several depths within the core, which at this locality will be

critical for tephrostratigraphic correlation with nearby out-

crops. Drilling was terminated at this site when borehole in-

stability, high torque, and high-pressure groundwater caused

an inability for the drilling to advance. Bottom hole temper-

atures also began to rise abruptly near the base of the hole,

indicating a potential hydrothermal hazard.

Three vertical boreholes were drilled (and two cored) at

the northern end of the Koora Plain, in the southern Kenya

Rift Valley, ∼ 22 km SSW of the Olorgesailie archaeological

site in September–October 2012 (Figs. 2d, 10, and 11). Be-

cause the DOSECC soft sediment tools were not available at

this time, the upper, unconsolidated sediments of both bore-

holes were auger drilled and cuttings were bagged at Site 1.

Excellent core recovery was achieved at both sites below the

augered intervals (Table 1 and Figs. 10 and 11). Both cores

consist of flat-lying, interbedded muds (laminated in part),

diatomites, and fine to coarse sands, with some pumice-rich

gravel and conglomerate intervals and infrequent carbonate

marls as well. Numerous tuffs are also present. Both cores

bottomed in the trachyte basement that underlies the basin at

depths of ∼ 166 and 116 m for Sites 1 and 3, respectively.

Four vertical boreholes at two sites were drilled into flat-

lying sediments at Lake Magadi in June 2014, and downhole

logs were made in the single borehole at Site 2 (Figs. 3a,

12, 13). Unlike other sites, it was necessary to drill from a

raised pad at Lake Magadi, because the surface trona crust

was inundated and soft from recent rains. A custom-built pad

was constructed by the project for Site 1 adjacent to the main

causeway crossing the lake, whereas Site 2 took advantage

of a wide area along another existing elevated roadbed on

the playa. Also in contrast to the other drilling targets, the

Lake Magadi sediments consist of large proportions of trona

(Fig. 7f) and other Na carbonates and chert (Fig. 7g, as well

as both laminated (Fig. 7h) and massive lacustrine muds.

Muds, mudstones, and cherts in varying proportions domi-

nate the lower stratigraphic intervals at both sites, whereas

the upper portion at both sites is a 30–40 m thick sequence

of trona and trona-bearing muds, the production target for

Tata Chemicals, our local industry partner for this drill site.

The upper trona was drilled using freshwater as the drilling

fluid in the initial holes because bentonite drilling mud would

not mix with the high-pH brines readily available near the

site. However, this strategy proved problematic because dis-

solution cavities formed around the borehole, undermining

site stability. For boreholes 1C and 2A drilling used only

the high-pH lake brine without bentonite, which ultimately

proved satisfactory because the high density of the brine was

sufficient to raise the cuttings. The alternation of soft and
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(a) (f)  

(b) (g)  

(c)  (h) 

(d) (i)  

(e)  (j)  

Figure 7. Representative lithologies found in HSPDP drill cores. Positions of each photo within the cores are indicated on the respective

summary stratigraphy diagrams. NAO14-1B-66Q-1 (154.66–155.07 m below surface – m b.s.) from the Northern Awash Oso Isi site, northern

Ethiopia. Note: many coring gaps in NAO14-1B are infilled by matching to the twinned borehole NAO14-1D (not illustrated), collected im-

mediately adjacent to this core. Laminated green lake clays with soft sediment deformation. NAW14-1A-71Q-2 (138.60–139.06 m b.s.) from

the Northern Awash Woranso site. Massive brown, silty, diatomaceous clay. BTB13-1A-52Q-2 (150.21–150.71 m b.s.) from the Baringo-

Tugen Hills site, central Kenya. Well-developed paleosol with carbonate nodules. BTB13-1A-3Q-1 (9.85–10.35 m b.s.) from the Baringo-

Tugen Hills site. Laminated diatomite with carbonate interbeds. WTK13-1A-63Q-1 (150.16–150.66 m b.s.) from the West Turkana drill

site, northern Kenya. Green silty clays with mollusc coquinas. MAG14-2A-9Y-1 (19.58–20.08 m b.s.) from Lake Magadi, southern Kenya.

Interbedded trona and thin muds. MAG14-1A-49Y-1 (75.02–75.52 m b.s.) Interbedded black silty clay and yellow/black chert. MAG14-2A-

67Y-1 (147.10–147.60 m b.s.) from Lake Magadi. Laminated muds. CHB14-2A-35A-2A (73.22–73.72 m b.s.) partly laminated green and

brown muds from the Chew Bahir Basin. CHB14-2A-70Q-1A (146.58–147.05 m b.s.) brown, mollusk-bearing massive mudstones from the

Chew Bahir Basin.

lithified muds and cherts (often on a sub-meter depth scale)

proved a challenging coring environment. Percent core re-

covery at this site (in the 45–65 % range) was consequently

below the levels achieved at other sites. Drilling at both lo-

cations was terminated when the boreholes reached the tra-

chytic basement rocks (at depths of ∼ 136 and 197 m for

Sites 1 and 2, respectively).

An exploratory shallow coring campaign was conducted

at the Chew Bahir area in 2009 and 2010 along a NW–

SE transect from the basin margin to the center, which re-

covered six short sediment cores of 9–18.8 m length (Foer-

ster et al., 2012, 2015; Trauth et al., 2015). Subsequently, a

pilot drilling operation was conducted in the center of the

Chew Bahir basin in March 2014 (∼ 41 m vertical borehole).

Drilling at this site was terminated when flooding made the

drilling site inaccessible. This was followed by the drilling of

two considerably deeper, twinned vertical boreholes (∼ 279

and 266 m in flat-lying sediments for boreholes 2A and 2B,

respectively, Figs. 14, 3b) in a slightly more proximal and

elevated position relative to the basin margin in November–

December 2014. The CHB14-2A and 2B cores consist pre-

dominantly of reddish, brown or green silty and sandy clays,

with occasional silt and calcareous sand beds. Discrete shell-

rich and plant debris-rich horizons occur throughout the

cores. Carbonate nodule-rich muds are more common in the

lower part of the core (below ∼ 90 m b.s.). Drilling was ter-

minated when advancing became impractical and funds were

depleted.

6 HSPDP outreach and education activities

The HSPDP has made a priority of developing an effective

outreach and educational program that makes the project’s

goals and findings accessible to the broader public. Prior to

and during drilling activities at each study area, an intensive

effort was made to engage with the local public about our

activities. This often involved having Kenyan and Ethiopian

research and museum outreach specialists make presenta-

tions using visual aids such as segments of sediment cores

or casts of hominin skulls to explain the science objectives

and (importantly) to dispel misunderstandings concerning

the nature of our drilling activities (which were commonly

assumed to be for resource exploration prior to these presen-

tations) (Fig. 3c). The HSPDP has also worked closely with

the National Museums of Kenya and Ethiopia, as well as sev-

eral museum institutional partners in the US, in the develop-

ment of post-drilling educational resources that these muse-

ums can use in the future to explain the intersection between

human evolutionary history and climate history. The most
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Figure 8. Summary stratigraphy of core HSPDP-BTB13-1A, from

the Tugen Hills drilling area, central Kenyan Rift Valley, based on

initial core description results. Columns from left to right: core

color stratigraphy; lithologic log; see Fig. 5 for the key to litholo-

gies used in all cores illustrated; composite of magnetic susceptibil-

ity (MS) log data (25-point running mean smooth) from LacCore

Geotek© XYZ point sensor data; composite of induced gamma

density log data (25-point running mean smooth, spurious values

< 1.0 gm cm−3 removed; n.b.: lower threshold used than for NA

cores because of abundant dry and porous diatomites); composite

of spectrophotometric grey-scale log data (25-point running mean

smooth). All other data collection, instrumentation, and parameters

as in Fig. 5.

visible of these efforts has the been the development of a

short (14 min) 3-D film, produced by the nonprofit Earth Im-

ages Foundation (www.earthimage.org), and funded jointly

by the US National Science Foundation and ICDP, which

documents both the important science questions underpin-

ning the HSPDP as well as the excitement associated with

the drilling and core analysis activities (Fig. 3d). This film

will be on long-term display in the human origins halls at

the partner museums, and is also available in 2-D format via

the project website (http://hspdp.asu.edu) and Facebook page

(www.facebook.com/HSPDP). The HSPDP has a strong so-

cial media presence through its Facebook site and project

website, where educational resources, such as numerous pho-

tographs of drilling and initial core description activities are

made available to the general public. Another exciting and

innovative HSPDP outreach activity has been the involve-

ment of an “artist in residence”, funded through our UK

NERC grant. The artist, Julian Ruddock, will be using high-

resolution photographs and video footage including inter-

views he has conducted during drilling activities at the Chew

Bahir site, as well as core images to create an art/science

collaboration for gallery display in the UK starting

in 2016 http://cargocollective.com/artscienceclimatechange/

Earth-Core-The-Hominin-Project. HSPDP members, led by

co-PI Martin Trauth, are currently teaching a series of sum-
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Figure 9. Summary stratigraphy of core HSPDP-WTK13-1A, from

the West Turkana drilling area, northern Kenyan Rift Valley, based

on initial core description results. Columns from left to right: core

color stratigraphy; lithologic log; see Fig. 5 for the key to litholo-

gies used in all cores illustrated; composite of magnetic susceptibil-

ity (MS) log data (25-point running mean smooth) from LacCore

Geotek© XYZ point sensor data; composite of induced gamma

density log data (25-point running mean smooth, spurious val-

ues < 1.4 gm cm−3 removed); and composite of spectrophotomet-

ric grey-scale log data (25-point running mean smooth). All data

collection, instrumentation and parameters as in Fig. 5.

0

20

40

60

80

100

120

140

160

MBS 
Core color Lithology 

0 20 40

Grey Scale-25 
1 1.5 2 2.5

Gamma-25 (g/cm3) 
1 10 100 1000

MS-25 XYZ 

AD 

Missing 
 core 

Figure 10. Summary stratigraphy of core ODP-OLO12-1A, from

the Koora Plain/Olorgesailie drilling area, southern Kenyan Rift

Valley, based on initial core description results. Columns from left

to right: core color stratigraphy; lithologic log; see Fig. 5 for the key

to lithologies used in all cores illustrated; composite of magnetic

susceptibility (MS) log data (25-point running mean smooth) from

LacCore Geotek© XYZ point sensor data; composite of induced

gamma density log data (25-point running mean smooth, spurious

values < 1.0 gm cm−3 removed); and composite of spectrophoto-

metric grey-scale log data (25-point running mean smooth). AD:

auger drilled sediment samples were bagged and collected in 1 m

intervals. All other data collection, instrumentation, and parameters

as in Fig. 5.

www.sci-dril.net/21/1/2016/ Sci. Dril., 21, 1–16, 2016

www.earthimage.org
http://hspdp.asu.edu
www.facebook.com/HSPDP
http://cargocollective.com/artscienceclimatechange/Earth-Core-The-Hominin-Project
http://cargocollective.com/artscienceclimatechange/Earth-Core-The-Hominin-Project


12 A. Cohen et al.: The Hominin Sites and Paleolakes Drilling Project

0

20

40

60

80

100

120

MBS 
Core color Lithology 

1 1.5 2 2.5 3

Gamma-25 (g/cm3) 
0 10 20 30 40

Grey Scale-25 
1 100

MS-25 XYZ 

AD 

Missing 
core 

Figure 11. Summary stratigraphy of core ODP-OLO12-3A, from

the Koora Plain/Olorgesailie drilling area, southern Kenyan Rift

Valley, based on initial core description results. Columns from left

to right: core color stratigraphy; lithologic log; see Fig. 5 for the key

to lithologies used in all cores illustrated; composite of magnetic

susceptibility (MS) log data (25-point running mean smooth) from

LacCore Geotek© XYZ point sensor data; composite of induced

gamma density log data (25-point running mean smooth, spurious

values < 1.0 gm cm−3 removed); composite of spectrophotometric

grey-scale log data (25-point running mean smooth). AD: augered

drilled interval: sediment bagged and collected at Site 1, and not

collected at Site 3. All other data collection, instrumentation, and

parameters as in Fig. 5.
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Figure 12. Summary stratigraphy of composite core HSPDP-

MAG14-1A + 1C (basal portion of 1C core below 125 m only),

from the Lake Magadi drilling area, southern Kenyan Rift Val-

ley, based on initial core description results. Columns from left to

right: core color stratigraphy; lithologic log; see Fig. 5 for the key

to lithologies used in all cores illustrated; composite of magnetic

susceptibility (MS) log data (25-point running mean smooth) from

LacCore Geotek© XYZ point sensor data; composite of induced

gamma density log data (25-point running mean smooth, spurious

values < 1.2 gm cm−3 removed); composite of spectrophotometric

grey-scale log data (25-point running mean smooth). All data col-

lection, instrumentation, and parameters as in Fig. 5.
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Figure 13. Summary stratigraphy of core HSPDP-MAG14-2A,

from the Lake Magadi drilling area, southern Kenyan Rift Val-

ley, based on initial core description results. Columns from left to

right: core color stratigraphy; lithologic log; see Fig. 5 for the key

to lithologies used in all cores illustrated; composite of magnetic

susceptibility (MS) log data (25-point running mean smooth) from

LacCore Geotek© XYZ point sensor data; composite of induced

gamma density log data (25-point running mean smooth, spurious

values < 1.2 gm cm−3 removed); composite of spectrophotometric

grey-scale log data (25-point running mean smooth). All data col-

lection, instrumentation, and parameters as in Fig. 5.
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Figure 14. Summary stratigraphy of core HSPDP-CHB14-2A,

from the Chew Bahir drilling area, southern Ethiopian Rift Val-

ley, based on Initial Core Description results. Note: coring gaps in

CHB14-2A are almost entirely infilled by matching to the twinned

borehole CHB14-2B (not illustrated), collected immediately adja-

cent to this core. Columns from left to right: Core color stratig-

raphy; lithologic log; see Fig. 5 for the key to lithologies used in

all cores illustrated; composite of magnetic susceptibility (MS) log

data (25-point running mean smooth) from LacCore Geotek© XYZ

point sensor data; composite of induced gamma density log data

(25-point running mean smooth, spurious values < 1.4 gm cm−3 re-

moved); composite of spectrophotometric grey-scale log data (25-

point running mean smooth). All data collection, instrumentation,

and parameters as in Fig. 5.
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mer schools in the bio-geosciences that help twenty young

scientists from African and European universities to design

new research projects on these topics, using the latest meth-

ods of data analysis, and to present the results from these

projects in an attractive and professional manner. The overall

topic of the summer school, held in Ethiopia (September–

October 2015) and Kenya (February–March 2016), is tec-

tonics, climate, and human evolution, using the latest results

from the HSPDP as the basis of discussions during the event.

7 Future plans

Now that all HSPDP-related drilling is completed, all cores

are being analyzed for a wide variety of geochronological,

geochemical, sedimentological and paleoecological stud-

ies, to assemble a high-resolution record of environmental

change at each of the study sites. The geochronology of the

cores is being assembled through a combination of high-

precision Ar/Ar, paleomagnetics, U-series, tephrostratigra-

phy, luminescence and (for the most recent parts of the

cores) 14C dating. State-of-the-art organic geochemical and

clumped isotope proxies of paleotemperature and paleopre-

cipitation are being applied to the cores. The wide array of

fossils (diatoms, ostracodes, molluscs, fish, pollen, phytoliths

and charcoal) are also being exploited for the information

they provide about both lake and watershed paleoecologi-

cal conditions. Scanning XRF, XRD, and MSCL log records

are also providing extremely high-resolution records of pa-

leoenvironmental and provenance history at each site. An-

other important component of this analysis is the integration

of core data with nearby outcrop information about paleoen-

vironments of hominins and other fossils and stone tools. Ex-

tensive interaction between the data collection and modeling

teams of the HSPDP is also underway, to ensure that plau-

sible explanations of climate and landscape dynamics are

developed and tested against the core and outcrop data. Ul-

timately, through interaction between the core analysts and

paleoanthropologists involved in the HSPDP, we hope to

use our new high-resolution core data and climate/landscape

models to both re-evaluate existing models linking hominin

evolution with climate and propose new ones consistent with

the vast new data set assembled by the HSPDP.
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