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THE ROBUSTNESS OF RASCH TRUE SCORE PREEQUATING TO VIOLATIONS
OF MODEL ASSUMPTIONS UNDER EQUIVALENT AND NONEQUIVALENT
POPULATIONS

Garron Gianopulos

ABSTRACT

This study examined the feasibility of using Rasch true score preequating under
violated model assumptions and nonequivalent populations. Dichotomous item responses
were simulated using a compensatory two dimensional (2D) three parameter logistic
(3PL) Item Response Theory (IRT) model. The Rasch model was used to calibrate
difficulty parameters using two methods: Fixed Parameter Calibration (FPC) and separate
calibration with the Stocking and Lord linking (SCSL) method. A criterion equating
function was defined by equating true scores calculated with the generated 2D 3PL IRT
item and ability parameters, using random groups equipercentile equating. True score
preequating to FPC and SCSL calibrated item banks was compared to identity and
Levine’s linear true score equating, in terms of equating bias and bootstrap standard
errors of equating (SEE) (Kolen & Brennan, 2004). Results showed preequating was
robust to simulated 2D 3PL data and to nonequivalent item discriminations, however,
true score equating was not robust to guessing and to the interaction of guessing and
nonequivalent item discriminations. Equating bias due to guessing was most marked at
the low end of the score scale. Equating an easier new form to a more difficult base form

produced negative bias. Nonequivalent item discriminations interacted with guessing to
viii



magnify the bias and to extend the range of the bias toward the middle of the score
distribution. Very easy forms relative to the ability of the examinees also produced
substantial error at the low end of the score scale. Accumulating item parameter error in
the item bank increased the SEE across five forms. Rasch true score preequating
produced less equating error than Levine’s true score linear equating in all simulated
conditions. FPC with Bigsteps performed as well as separate calibration with the
Stocking and Lord linking method. These results support earlier findings, suggesting that
Rasch true score preequating can be used in the presence of guessing if accuracy is
required near the mean of the score distribution, but not if accuracy is required with very

low or high scores.



CHAPTER ONE

INTRODUCTION

Equating is an important component of any testing program that produces more
than one form for a test. Equating places scores from different forms onto a single scale.
Once scores are on a single scale, scores from different forms are interchangeable
(Holland & Dorans, 2006; Kolen & Brennan, 2004). This permits standards defined on
one test form to be applied to other forms, permitting classification decisions to be
consistent and accurate across forms. Without equating, scores from different forms
would not be interchangeable, scores would not be comparable, and classification
decisions made across forms would not be consistent or accurate. For this reason,
equating is critically important to testing programs that use test scores for the
measurement of growth and for classifying examinees into categories. When equating is
properly performed, scores and the decisions made from them can be consistent, accurate,
and fair.

This study compares one type of equating, preequating, to conventional equating
designs in terms of random and systematic equating error. Preequating differs from
conventional equating in that preequating uses predicted scores rather than observed
scores for equating purposes. Preequating is especially useful for testing programs that
need to report scores immediately at the conclusion of a test. Preequating has a research

history of mixed results. The purpose of this study is to determine the limitations of
1



preequating under testing conditions that past researchers have found to affect

preequating.

Organization of the Paper

Chapter one is an introduction to the topic of equating and the purpose of the
study. An explanation of the research problem, a rationale for the research focus, and the
research questions are provided. Chapter Two presents a literature review of relevant
research, and, as a whole, provides support for the research questions. Chapter Three
presents the chosen research design, measures, manipulated factors, simulation design,
and data analysis. Chapter four presents the results of the simulation study. Chapter five
presents a discussion of the results and provides recommendations to practitioners.

The research questions that are being addressed by this study are relevant to a
wide range of professionals that span the spectrum of test developers, psychometricians,
and researchers in education, certification, and licensing fields. The audience for this
study includes anyone who wants to know the practical limitations of preequating. This
study is particularly relevant to those who use dichotomously scored tests and who desire
to preequate on the basis of small sample sizes of 100 to 500 examinees per test form.
Psychometricians who need additional guidance in evaluating the appropriateness of
preequating to a calibrated item pool for their particular testing program should find this
study informative. This paper has been written for a professional and academic audience

that has minimal exposure to test equating.



Preview of Chapter One

Given the technical nature of the research questions of this study, | devote the
introductory chapter to presenting the conceptual background of the study. First, I
provide an overview of equating, including the rationale of equating and preequating. |
then discuss scores that are used in equating, including true scores, equated scores, and
scale scores. After providing an explanation of scores used in equating, | present the
rationale, purpose, and questions of the research study. A list of psychometric terms used

throughout this paper is provided at the end of Chapter One.

Rationale for Equating

When test forms are used with high stakes tests, cheating is a continual threat to
the validity of the test scores. Cheating has many undesirable consequences including a
reduction of test reliability, test validity, and an increase in false positive classifications
in criterion referenced tests (Cizek, 2001). In an effort to combat cheating and the
learning of items, testing programs track, limit, and balance the exposure of items.
Testing programs often strive to create large item banks to support the production of
multiple alternate forms, so that new items are continually being introduced to the would-
be cheater. Alternate forms are forms that have equivalent content and are administered
in a standardized manner, but are not necessarily equivalent statistically (AERA, APA, &
NCME, 1999).

Even though efforts are made to make alternate test forms as similar as possible,



small differences in form difficulty appear across forms. When the groups taking two
forms are equivalent in ability, form differences manifest as differences in number
correct (NC) raw scores. Number correct scores are calculated by summing the scored
responses. If the differences in form difficulty are ignored, the NC raw score of
individual examinees to some degree depends on the particular form they received.

Easier forms increase NC raw scores, while more difficult forms lower NC raw scores of
an equivalent group. In tests that produce pass/fail decisions, these small changes in form
difficulty increase classification error. Therefore, the percentage of examinees passing a
test to some degree depends on the particular form taken. Easier forms increase the
percent passing, while more difficult forms lower the percent passing of equivalent
groups. In real testing situations, groups of examinees are usually not equivalent unless
care is taken to control for differences in ability between groups. Without controlling test
form equivalence and population equivalence, group ability differences and test form
difficulty differences become confounded (Kolen & Brennan, 2004). Resulting NC raw
scores depend on the interaction of ability and test form difficulty, rather than solely on
the ability of an examinee.

To prevent the confounding of group ability and test form difficulty,
psychometricians have developed a large number of data collection designs. An
equating data collection design is the process by which test data are collected for
equating, in such a way that ability differences between groups taking forms can be
controlled. Some designs, such as the random groups design, control ability differences
through random assignment of forms to examinees. The random groups design can be

considered an example of an equivalent groups design (Von Davier, Holland, & Thayer,
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2004), because the method produces groups of equivalent ability, thereby disconfounding
ability differences from form differences in NC raw scores. Other data collection designs
control for ability differences across forms through statistical procedures. For instance,
in linear equating under the common item nonequivalent groups design (CINEG),
examined in this study, common items are used across forms to estimate the abilities of
the two groups, allowing ability and form differences to be disconfounded. Additional
equating data collection designs are presented in Chapter Two.

While there are few equating designs, there are many equating methods. An
equating method is a mathematical procedure that places NC raw scores from one
alternate form onto the scale of another form, such that the scores across forms are
interchangeable. Equating methods are based on Classical True Score Theory (CTT) or
Item Response Theory (IRT). With the exception of identity equating, which assumes
scores from two forms are already on the same scale, equating methods work by aligning
the relative position of scores within the distribution across forms using a select statistic.
For instance, in equivalent groups mean equating, it is assumed that the mean NC score
on a new form is equivalent to the mean NC score on the base form. The equating
relationship between the mean NC scores is applied to all scores (Kolen & Brennan,
2004). In equivalent groups linear equating, z scores are used as the basis of aligning
scores (Crocker & Algina, 1986). Z scores are obtained by subtracting each NC raw
score from the mean raw score and dividing by the standard deviation. In linear equating,
a z score of 1 is assumed to be equivalent to a z score of 1 on the base form. Linear
equating assumes that a linear formula can explain the equating relationship, hence, the

magnitude of the score adjustments vary across the score continuum. In equivalent
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groups equipercentile equating, percentiles are used to align scores (Crocker & Algina,
1986). Under this equating method, the new form score associated with the 80"
percentile, for example, is considered to be equivalent to the score associated with the
80™ percentile on the base form. Equipercentile equating produces a curvilinear function.
In IRT true score equating, estimates of the latent ability, theta, are used to align scores.
In IRT true score equating, a NC raw score associated with a theta estimate of 2.2 on the
new form is assumed to be equivalent to a NC raw score associated with a theta estimate
of 2.2 on the base form. Like equipercentile equating, IRT equating produces a

curvilinear function.

Scores Used in Equating

The most commonly used score for equating is the NC raw score (Crocker &
Algina, 1986; Kolen & Brennan, 2004). NC raw scores are often preferred over formula
scores because of their simplicity. Examinees have little trouble understanding the
meaning of raw scores. Even in many IRT applications that produce estimates of the
latent ability distribution theta, NC raw scores are often used rather than thetas. An
equating process places NC raw scores of a new form onto the scale of the base form.
These equated scores are referred to as equivalent raw scores. An equivalent raw score
for a new form is the expected NC raw score of a given examinee on the base form.
Equivalent raw scores are continuous measures, and can be rounded to produce rounded
equivalent raw scores. Rounded equivalent raw scores can be used for reporting

purposes; however, Kolen and Brennan report that examinees tend to confuse rounded
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equivalent raw scores with NC raw scores (2004).

To prevent the confusion of rounded equivalent raw scores with NC raw scores,
testing organizations prefer to use a primary scale. A primary scale is designed expressly
for reporting scores to examinees. Equivalent raw scores from any number of forms can
be placed on the primary scale. The end result is scale scores that are completely
interchangeable, regardless of what form the score originated from. Just like rounded
equivalent scores, scale scores permit examinee scores to be compared regardless of what
form the scores originated from; however, there is less risk that examinees will confuse
the NC raw score with the scale score. Another benefit to using a primary scale score
rather than a rounded equivalent raw score, is that fact that normative information and
content information can be integrated into a primary scale (Kolen & Brennan, 2004).

NC raw scores are not the only type of scores that can be used for equating. In
true score equating, true scores of examinees are equated rather than NC scores. The true
score equating relationship is then applied to NC raw scores. The definition of a true
score depends on the test theory used. According to CTT, a true score is defined as the
hypothetical mean score of an infinite number of parallel tests administered to an
examinee (Crocker & Algina, 1986). In CTT, true scores are equivalent to NC raw
scores when the test is perfectly reliable. One way to estimate CTT true scores is with

Kelley’s formula, which uses the reliability of the test to adjust scores toward the mean:

iz = ﬁxx‘x'—i_(l_ﬁxx')li\l (11)
Where 7 = the true score,

p = the reliability of the form,



4 = the mean of the NC raw score, and
x = observed scores.

In IRT true score equating, true scores are estimated using item parameter
estimates and latent ability estimates rather than observed scores. In the simplest IRT

model, the one parameter logistic (1PL) response model, true scores are given by:

. & exp(@-b,)
=2 1+exp(@-b) ) (1.2)

r=1

Where 6= the latent ability estimate,

b = the item difficulty parameter of item 1y,

exp = the exponent.

According to the 1PL model, or Rasch model, a true score is the sum of the
probabilities of a positive response for each item in a test for a person of ability 6. IRT
true scores can be estimated using item parameter estimates and ability estimates.
However, before true scores can be equated, the item parameter estimates themselves,
must be ‘equated’, or placed on the same scale. For this reason, IRT preequating is
sometimes referred to as item preequating (De Champlain, 1996; Kolen & Brennan,
2004). The process of estimating item parameters and placing the item parameter
estimates onto the same scale is also known as calibrating the items (Kolen & Brennan,
2004). Items that have been preequated to an item bank form a calibrated item pool. IRT

true score equating can either be performed between two forms, or between a form and a
8



calibrated item pool. Because the probability of a positive response can be estimated for
each item, items can be selected for a new form and the expected test score can be
estimated in the form of a true score, even though the entire form has not been
administered.

While IRT does provide many benefits, including greater precision in
measurement and greater flexibility in test assembly, the validity of the model rests on
the satisfaction of model assumptions. Violations of these assumptions may render IRT
equating less effective than CTT equating. For this reason, this study simulated item
responses using a two dimensional (2D) three parameter (3PL), IRT model (Reckase,
Ackerman, & Carlson, 1988). The 2D 3PL IRT model specifies item discrimination
parameters, difficulty parameters, and guessing parameters for two abilities. This means
that the probability of a positive response to an item is a function of the item’s
discrimination, it’s difficulty, and the likelihood of the examinee to guess, given the
examinee’s ability in two knowledge domains. The type of multidimensional data
modeled in this study was a compensatory model. Compensatory models allow high
scores on one ability to compensate for low scores on a second ability. The performance
of the Rasch model, a unidimensional (1D) 1PL IRT model, after it has been fit to data
that was simulated by a 2D 3PL compensatory IRT model, indicates the robustness of the

model to model violations.



Rationale for True Score Preequating to a Calibrated Item Pool

True score preequating to a calibrated item pool differs from traditional equating
in two respects: first, forms are equated prior to the administration of the test using true
scores derived from previously estimated item parameters; second, once items have been
placed onto the scale of the items in the item bank, any combination of items that satisfy
the test specifications can be preequated. These features of preequating with a calibrated
item pool minimize time and labor costs because they provide greater flexibility in test
assembly, do not require complex form to form linking plans, and provide for more
control of item exposure (Table 1). The flexibility in test assembly is made possible
because common items for a new form can be sampled from any prior forms in the pool
and joined together in a new form (Kolen & Brennan, 2004). This flexibility maximizes
control over item exposure. In the event that items are exposed, preequating to a
calibrated item pool provides flexibility in assembling new forms. As previously
mentioned, preequating allows for the reporting of test scores immediately following a
test administration, which is ideal for fixed length computer based tests (CBT). In
contrast to computer adaptive testing, preequating permits forms to be assembled and
screened by subject matter experts to ensure that items do not interact in unexpected
ways. Preequating with a calibrated item pool is an ideal equating solution for fixed

length CBTSs.
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Table 1. Form to Form Equating Versus Preequating to a Calibrated Item Pool

Form to Form Equating Preequating to a Calibrated Item Pool

Requires more time after a test Provides scores at the conclusion of a
administration to equate and produce scores  test

Requires complex linking plans to ensure Permits the use of items from any prior
that common items are imbedded in each forms to be used for linking purposes
form

Common items tend to become overexposed The freedom to select any items from
prior forms helps to minimize item

exposure
If common items are compromised new If items are compromised new forms
linking plans must be constructed can be easily assembled

Using the Rasch model rather than the 2 parameter logistic model (2PL) or the 3
parameter logistic model (3PL) provides three unique benefits. First, the Rasch model
produces ‘sufficient’ statistics, thereby not requiring the entire response string to
calculate an ability estimate as in the 2PL or 3PL models (Bond & Fox, 2001; Kolen &
Brennan, 2004). This makes the model easier to understand for staff, stakeholders, and
examinees. Second, equating under the Rasch model can work effectively with as few as
400 examinees, whereas the 3PL model needs approximately 1500 examinees (Kolen &
Brennan, 2004). Third, the Rasch model produces parallel item characteristic curves.
This means that the relative item difficulty order remains constant across different levels
of ability. One consequence of this is that a single construct map can be produced for all
ability levels. A construct map visually describes items and ability estimates on the same

scale. Producing one construct map for all ability levels is possible only if the order of
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item responses is consistent across ability levels, and the order of respondents remains the
same for all item responses (Wilson, 2006). For these reasons, the Rasch model is an
attractive model to use for criterion referenced tests that have small sample sizes of 500
examinees.

While the Rasch model does provide many benefits, it does come with a high
price tag. The Rasch model assumes equivalent item discriminations and items with little
or no guessing (Hambleton & Swaminathan, 1985). Considerable resources can be
expended during the test development and item writing process to create items that
conform to these assumptions. The cost of implementing Rasch preequating could be
reduced considerably if preequating was shown to be robust to moderate violations of
these assumptions. Cost concerns aside, if the violations of the assumptions are too
severe, Rasch preequating will likely not produce better results than equating using
conventional methods.

Generally, IRT equating methods produce less equating error (Kolen & Brennan,
2004) than conventional CTT equating methods; however, IRT methods require strong
assumptions that cannot always be satisfied (Livingston, 2004). As a result, equating
studies are necessary to test the robustness of IRT equating methods to violations of IRT

assumptions in a given testing context (Kolen & Brennan, 2004).

Statement of the Problem

There are three major threats to the viability of preequating to a calibrated item

pool using the Rasch model: violations of Rasch model assumptions, nonequivalence of
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groups, and item parameter bias in piloted items. The Rasch model assumes
unidimensionality, item response independence, no guessing, and equivalent item
discriminations (Hambleton & Swaminathan, 1985). Prior research has shown that
preequating is vulnerable to multidimensionality (Eignor & Stocking, 1986). The
probable cause for preequating error is the presence of bias in the item parameter
estimates caused by the violation of the assumption of item independence (Kolen &
Brennan, 2004). It is well known that multidimensionality can bias item parameter
estimates (Li & Lissitz, 2004). Eignor and Stocking (1986) discovered positive bias in
difficulty parameter estimates under multidimensional data. This effect was magnified
when population nonequivalence interacted with multidimensionality (Eignor &
Stocking, 1986). It is rare for any test to be completely free of multidimensionality (Lee
& Terry, 2004). Multidimensionality is especially common among professional
certification and licensing exams where all the vital job duties of a profession are often
included in one test blueprint.

The second major threat to the viability of Rasch preequating is population
nonequivalence. The Rasch model has been criticized in years past for not working
effectively when group ability differences are large (Skaggs & Lissitz, 1986; Williams,
Pommerich, & Thissen, 1998). However, Linacre and Wright (1998), DeMars (2002)
and more recently Pomplun, Omar, and Custer (2004) obtained accurate item parameter
estimates when scaling vertically, i.e. placing scores from different educational grade
levels onto the same scale. These researchers used the Joint Maximum Likelihood
Estimation (JMLE) method. The results that favored the Rasch model were based on

data that mostly satisfied the model assumptions. It is unclear how these results would
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have differed if the assumptions were mildly or moderately violated. If Rasch
preequating is to be used with groups that differ moderately or substantially in ability, it
will need to be robust to mild violations of assumptions, and to be cost-effective, robust
to moderate violations.

The third major threat to the viability of Rasch preequating is the threat of
obtaining biased pilot item parameter estimates. Preequating to a calibrated item bank
requires that items are piloted to obtain item parameter estimates. This can be achieved
by administering intact pilot tests to representative groups of examinees, or placing
subsets of pilot items in operational exams. This study is focusing on the latter case,
because placing pilot items in operational forms is very conducive to computer based
testing. Kolen and Brennan (2004) warn of the risk that piloted items may become biased
during estimation because they are not calibrated within the context of an intact test form.
Prior studies have demonstrated preequating’s sensitivity to item parameter instability
(Du, Lipkins, & Jones, 2002) and item context effects (Kolen & Harris, 1990). Item
context effects can be controlled to some degree by keeping common items in fixed
locations across forms (Kolen & Brennan, 2004) and selecting stable items (Smith &
Smith, 2004) that are resistant to context effects. They can also be minimized by piloting
content representative sets of items rather than isolated items, which keeps the factor
structure constant across all the calibrations of piloted items (Kolen & Brennan, 2004).

Another factor that may contribute to item parameter bias is the method used for
calibrating items. This study contrasted fixed parameter calibration (FPC) to the
commonly used method of separate calibration and linking with the Stocking and Lord

method (SCSL). FPC holds previously estimated item parameters constant and uses a
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parameter estimation method, in this case Joint Maximum Likelihood, to estimate item
parameter estimates for the new items. In contrast, SCSL finds linking constants by
minimizing the difference between estimated Test Characteristic Curves (TCCs). In IRT,
TCCs are curves that describe the relationship between thetas and true scores. FPC is one
method that can work under a preequating approach that can potentially simplify the
calibration procedures because it does not require a separate linking step. It can simplify
the calibration process, only if convergence problems reported by some (Kim, 2006) are
not too common. Much of the prior research on FPC has focused on the software
programs PARSCALE (Jodoin, Keller, & Swaminathan, 2003; Prowker, 2006), Bilog
MG, Multilog, and IRT Code Language (ICL) software (Kim, 2005). All of these
software programs implement Marginal Maximum Likelihood Estimation (MMLE)
through the Expectation Maximization algorithm. FPC has been shown to work less
effectively under nonnormal latent distributions (Paek & Young, 2005; Kim, 2005; Li,
Tam, & Tompkins, 2004) when conducted with MMLE. Very little, if any, published
research can be found on FPC in conjunction with Bigsteps/Winsteps which uses a Joint
Maximum Likelihood Estimation method. It is unclear how well FPC will perform under
a JMLE method when groups differ in ability and are not normally distributed. Data
from criterion referenced tests often exhibit ceiling or floor effects, which produce
skewed distributions. FPC would be the most attractive estimation method to work in a
preequating design because of its ease of use; however, it is not known how biased its
estimates will be under mild to moderate levels of population nonequivalence and model
data misfit.

This study was conducted to evaluate the performance of Rasch preequating to a
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calibrated item pool under conditions that pose the greatest threat to its performance:
multidimensionality, population nonequivalence, and item parameter misfit. Using FPC
in conjunction with preequating would lower the costs and complexity of preequating;
however, prior research has not established whether or not FPC will produce unbiased

estimates under violated assumptions when estimated with JMLE.

Purpose of the Study

The purpose of this study was to compare the performance of Rasch true score
preequating methods to conventional linear equating under violated Rasch assumptions
(multidimensionality, guessing, and nonequivalent discrimination parameters) and
realistic levels of population nonequivalence. The outcome measures of interest in this
study included random and systematic error. In order to measure systematic error, a
simulation study was performed. A simulation study was chosen because simulations
provide a means of defining a criterion equating function from which bias can be
estimated. The main goal of this study was to delineate the limits of Rasch true score
preequating under the realistic test conditions of multidimensionality, population
nonequivalence, item discrimination nonequivalence, guessing, and their interactions for
criterion referenced tests. A secondary purpose was to compare FPC to the established

method of separate calibration and linking with SCSL.
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Research Questions

1. Do Rasch true score preequating methods (FPC and SCSL) perform better than
postequating methods (identity and linear equating) when the IRT assumption of
unidimensionality is violated, but all other IRT assumptions are satisfied? As for the
preequating methods, does the FPC method perform at least as well as the SCSL method

under the same conditions?

2. Do Rasch true score preequating methods (FPC and SCSL) perform better than
postequating methods (identity and linear equating) when populations are
nonequivalent, and IRT model assumptions are satisfied? Does the FPC method perform

at least as well as the SCSL method under the same conditions?

3. Do Rasch true score preequating methods (FPC and SCSL) perform better than
postequating methods (identity and Linear equating) when the Rasch model assumption
of equivalent item discriminations is violated, but populations are equivalent and other
IRT model assumptions are satisfied? Does the FPC method perform at least as well as

the SCSL method under the same conditions?

4. Do Rasch true score preequating methods (FPC and SCSL) perform better than
postequating methods (identity and linear equating) when the Rasch model assumption of

no guessing is violated, but populations are equivalent and other IRT model assumptions
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are satisfied? Does the FPC method perform at least as well as the SCSL method under
the same conditions?

5. How does Rasch preequating perform when response data are simulated with a three
parameter, compensatory two dimensional model, the assumption of equivalent item
discriminations is violated at three levels (mild, moderate, severe violations), the
assumption of no guessing is violated at three levels (mild, moderate, severe), population
non-equivalence is manipulated at three levels (mild, moderate, severe) and the
unidimensional assumption is violated at three levels (mild, moderate, severe)?

a. What are the interaction effects of multidimensionality, population non-
equivalence, nonequivalent item discriminations, and guessing on random
and systematic equating error?

b. At what levels of interaction does Rasch preequating work less effectively
than identity equating or linear equating?

c. How does FPC compare to SCSL in terms of equating error under the
interactions?

d. Does equating error accumulate across four equatings under the

interactions?

Importance of the Study

Methods do exist for estimating random error in equating; however,
overreliance on estimates of random error to the neglect of systematic error can give a

false sense of security since bias may pose a substantial threat to equated scores (Angoff,
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1987; Kolen & Brennan, 2004). When IRT assumptions are violated, it is probable that
systematic error will appear in the item parameter estimates (Li & Lissitz, 2000) which
will likely increase equating error (Kolen & Brennan, 2004). Without knowing how
sensitive Rasch preequating methods are to sources of systematic error such as violated
assumptions, practitioners may underestimate the true amount of total error in the
method.

Understanding the interaction of multidimensionality and ability differences is
important to many testing applications including the study of growth, translated and
adapted tests, and certification tests that administer tests to professional or ethnic groups
that differ in ability. For instance, many educational testing programs designed to
measure Annual Yearly Progress (AYP) utilize IRT equating. Estimates of AYP are only
as accurate as the equating on which they are based. Much of the prior research on FPC
has focused on Bilog MG, Multilog, Parscale, and ICL. There is little, if any, published
research testing the accuracy of IRT preequating when performed with
Bigsteps/Winsteps. Since Bigsteps and Winsteps are popular software programs
worldwide for implementing the Rasch model, many groups could benefit from the
preequating design if it is found to be robust to violations.

FPC potentially is less expensive to use than other item calibration strategies (Li,
Tam, & Tomkins, 2004). This is due to the fact that FPC does not require a separate item
linking process. FPC is an increasingly popular method because of its convenience and
ease of implementation (Li, Tam, & Tomkins, 2004). A number of states such as Illinois,
New Jersey, and Massachusetts, use FPC to satisfy No Child Left Behind (NCLB)

requirements to measure AYP (Prowker, 2005). Professional certification companies use
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FPC in conjunction with preequating. Few studies have examined FPC with
multidimensional tests, which are common in this context. Computer adaptive testing
programs use FPC (Ban, Hanson, Wang, Yi, & Harris, 2001). Previous studies have
demonstrated FPC’s vulnerability to nonnormal, nonequivalent latent distributions when
parameters are estimated using MMLE. FPC produces biased item parameter estimates
when the priors are misspecified (Paek & Young, 2006). However, | am not aware of
any research to date that has examined how well FPC performs under a JMLE method

with nonnormal, nonequivalent latent distributions.

Definition of Terms

Alternate forms- Alternate forms measure the same constructs in similar ways, share the
same purpose, share the same test specifications, and are administered in a
standardized manner. The goal of creating alternate forms is to produce scores
that are interchangeable. In order to achieve this goal, alternate forms often have
to be equated. There are three types of alternate forms: parallel forms, equivalent
forms, and comparable forms, the latter two require equating (AERA, APA,

NCME, 1999).

Calibration- In linking test score scales, the process of setting the test score scale,
including mean, standard deviation, and possibly shape of the score distribution,
so that scores on a scale have the same relative meaning as scores on a related
scale (AERA, APA, NCME, 1999). In IRT item parameter estimation, calibration

refers to the process of estimating items from different test forms and placing the
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estimated parameters on the same theta scale. Once item parameters have been
estimated and placed on the same scale as a base form or item bank, the item

parameters are said to be calibrated (Kolen & Brennan, 2004).

Common Item Nonequivalent Groups Design- Two forms have one set of items in
common. Different groups (nonequivalent groups) are given both tests. The
common items are used to link the scores from the two forms. The common items
can be internal, which are used in the arriving at the raw score or external to the

test, which are not used in determining the raw score.

Comparable forms- Forms are highly similar in content, but the degree of statistical

similarity has not been demonstrated (AERA, APA, NCME, 1999).

Equating- The process of placing scores from alternate (equivalent) forms on a common
scale. Equating adjusts for small differences in difficulty between alternate forms
(AERA, APA, NCME, 1999). “Equating adjusts for differences in difficulty, but

not differences in content” (Kolen & Brennan, 2004).

Equating data collection design- An equating data collection design is the process by
which test data are collected for equating, such that ability differences between

groups can be controlled (Kolen & Brennan, 2004).

Equipercentile equating- Equipercentile equating produces equivalent scores with
equivalent groups by assuming the scores associated with percentiles are

equivalent across forms (Kolen & Brennan, 2004).

Equivalent forms (i.e., equated forms)- Small dissimilarities in raw score statistics are
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compensated for in the conversions to derived scores or in form-specific norm
tables. The scores from the equated forms share a common scale (AERA, APA,

NCME, 1999).

External- In the context of common item nonequivalent groups design, common (anchor)
items that are used to equate test scores, but that are not used to calculate raw

scores for the operational test (Holland & Dorans, 2006).

Identity equating- This equating method assumes that scores from two forms are already
on the same scale. ldentity equating is appropriate when alternate test forms are

essentially parallel.

Internal- In the context of common item nonequivalent groups design, common (anchor)

items that are used to equate and to score the tests (Holland & Dorans, 2006).

IRT preequating- See preequating

Item Characteristic Curve (ICC)- In IRT, an ICC relates the theta parameter to the

probability of a positive response to a given item.

Item preequating- See preequating

Item Response Theory (IRT)- A family of mathematical models that describe the
relationship between performance on items of a test and level of ability, trait, or
proficiency being measured usually denoted 6. Most IRT models express the
relationship between an item mean score and 6 in terms of a logistic function

which can be represented visually as an Item Characteristic Curve (AERA, APA,
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NCME, 1999).

Linear equating- Linear equating uses a linear formula to relate scores of two forms. It
accomplishes equating by assuming z scores across forms are equivalent among

equivalent groups.

Linking (i.e., linkage)- Test scores and item parameters can be linked. When test scores
are linked, multiple scores are placed on the same scale. All equating is linking,
but not all linking is equating. When linking is performed on scores derived from
test forms that are very similar in difficulty, then this type of linking is considered
an equating. When linking is done to tests that differ in content or difficulty or if
the populations of the groups differ greatly in ability, then this type of linkage is
not considered an equating (Kolen & Brennan, 2004). When item parameter
estimates are linked, parameters are placed on the same calibrated theta scale.

Kolen and Brennan also refer to this process as item preequating (2004).

Mean equating- Mean equating assumes that the relationship between the mean raw
scores of two forms given to equivalent groups defines the equating relationship

for all scores along the score scale.

Parallel forms (i.e., essentially parallel)- Test versions that have equal raw score means,
equal standard deviations, equal error structures, and equal correlations with other

measures for any given population (AERA, APA, NCME, 1999).

Preequating- The process of using previously calibrated items to define the equating
function between test forms prior to the actual test administration.
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Random equating error- see standard error of equating.

Scaling- Placing scores from two or more tests on the same scale (Linn, 1993). See

linking.

Standard error of equating- The standard error of equating is defined as the standard
deviation of equated scores over hypothetical replications of an equating
procedure in samples from a populations of examinees. It is also an index of the
amount of equating error in an equating procedure. The standard error of
equating takes the form of random error, which reduces as sample size increases.

In contrast, systematic error will not change as sample size increases.

Systematic equating error- Equating error that is not affected by sample size, usually
caused by a violation of a statistical assumption of the chosen equating method or

psychometric model.

Test Characteristic Curve (TCC)- In IRT, a TCC relates theta parameters to true scores.

Test specifications- Formally defined statistical characteristics that govern the assembly

of alternate test forms.

Transformation- See linking

True Score- An examinee’s hypothetical mean score of an infinite number of test
administrations from parallel forms. If the reliability of a form was perfect, then the true
score and raw scores are equivalent. As reliability reduces, true scores and raw scores

diverge. Given the relationship between raw scores, true scores, and test reliability,
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regression can be used to estimate the true score within a Classical True Score theory

point of view. Item Response Theory also provides models that can estimate true scores.
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CHAPTER TWO

LITERATURE REVIEW

Chapter Two is divided into five sections. The first section provides a brief
overview of the relationship between linking and equating. Section one clarifies many
concepts that are closely related to equating but differ in important ways, giving a needed
context to the remainder of the chapter. The second section provides a review of three
data collection designs for equating methods. Reviewing all three designs provide the
historical and theoretical basis for the design used in this study. The third section
presents the equating methods utilized in this study, including formulas and procedures.
The fourth section reviews the factors that affect equating effectiveness, including
findings and gaps in the literature concerning preequating. The final section summarizes

the literature review.

Equating in the Context of Linking

Equating is a complex and multifaceted topic. Equating methods and designs have
been developed and researched intensely for many decades. Efforts have been made in
years past to better delineate equating from other closely related concepts. Currently,

there are at least two classification schemes that attempt to organize equating and related
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topics. The first is the Mislevy/Linn Taxonomy (Mislevy, 1992). The second is a
classification scheme adopted by the National Research Council for their report
Uncommon Measures: Equivalence and linkage among educational tests (Feuer,
Holland, Green, Bertenthal, & Hemphill, 1999). Holland and Dorans present an
introduction to linking and equating in the latest edition of Educational Measurement
which provides a useful summary of the many concepts shared in the two classification
schemes (Holland & Dorans, 2006).

Holland and Dorans divide linking into three types: prediction, scale alignment,
and test equating. They define a link as a transformation of a score from one test to
another (Holland & Dorans, 2006). What follows is a brief overview of their
classification scheme. The reader is encouraged to read the full article for a more

complete description of the scheme.

Prediction

The purpose of prediction is to predict Y scores from X scores. The relationship
between form Y and form X scores is asymmetric. For instance, a regression equation
does not equal its inverse. Typically, observed scores are used to predict expected scores
from one test to a future test. An example of an appropriate use of predicting observed
scores is predicting future SAT scores from PSAT scores (Holland & Dorans, 2006). In
addition to predicting Y observed scores from form X scores, one can also predict Y true
scores from form X scores. Kelley provided a formula to predict form Y true scores from

form Y observed scores. Later this formula was modified to predict form Y true scores
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from form X observed scores (Holland & Dorans, 2006).

Scale Alignment

When form X and Y measure different constructs or are governed by different test
specifications scale aligning can be employed to place the scores onto the same scale.
When the scores from form Y and X come from the same population, aligned scores are
referred to as comparable scores, comparable measures (Kolen & Brennan, 2004), or
comparable scales (Holland & Dorans, 2006). When scores from form Y and X come
from different populations the terms anchor scaling (Holland & Dorans, 2006), statistical
moderation, or ‘distribution matching' (Kolen & Brennan, 2004) are used. An example of
statistical moderation is an attempt to link translated or adapted tests. Even if the
translated test consists of the same items as those in the original language, the constructs
may not be equivalent across cultures. In addition, the abilities of language groups
probably differ (Kolen & Brennan, 2004).

Vertical scaling is a type of scale alignment that is performed when constructs and
reliabilities of form X and Y scores are similar, but the groups being linked come from
different populations or are very different in ability (Kolen & Brennan, 2004). The most
common use of vertical scaling is placing the scores of students across many grades onto
the same scale. It should be noted that it is common for researchers to use the phrase
'vertical equating' to describe vertical scaling. Tests designed for different grades that
share common items, would not qualify as equating, because a requirement of equating is

that the forms should be made as similar as possible (Kolen & Brennan, 2004). Equating
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adjusts for small differences in form difficulty (AERA, APA & NCME, 1999). Tests
designed for vertical scaling are often assembled to be very different in difficulty to
match the ability levels of various groups.

When form X and Y scores measure similar constructs, have similar reliabilities,
similar difficulties, and the same population of examinees, but different test
specifications, then the only appropriate type of scale aligning that can be performed is a
concordance (Holland & Dorans, 2006). Concordances can be made of two similar tests
that were not originally designed to be equated. A common example of this type of scale
alignment is relating SAT scores to ACT scores. It is important to note that none of the
examples of scale aligning presented here produce equivalent scores, a designation

reserved for test equating.

Test Equating

The Standards for Educational and Psychological Testing define equating as,
“The process of placing scores from alternate forms on a common scale. Equating adjusts
for small differences in difficulty between alternate forms (AERA, APA, NCME, 1999)”.
In order for the results of an equating procedure to be meaningful a number of
requirements must be satisfied. The requirements of equated scores include symmetry,
equal reliabilities, interchangeability or equity, similar constructs, and population
invariance (Angoff, 1971; Kolen & Brennan, 2004; Holland & Dorans, 2006).

Symmetry refers to the idea that the equating relationship is the same regardless if

one equates from form X to form Y or vice versa. This property supports
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interchangeability, the idea that an examinee's score should not depend on which form
he/she takes. It should be noted that these forms should be interchangeable across time or
location. If the items in an item bank become more and more discriminating over time,
there is a possibility that test forms constructed from such items may become more and
more reliable. Ironically, improving a test too much may work against equating to some
extent. The implication to testing programs that plan to equate forms across many years
IS to ensure that the initial item pool is robust enough to support a high level of reliability,
because the reliability of the test should not improve or degrade.

Interchangeability is also supported by the concept of equal reliabilities, for if one
equated form had more or less reliability, the performance of the examinee may depend
on which form is taken. For instance, lower performing examinees may benefit from less
reliable tests (Holland & Dorans, 2006).

Population invariance requires that the equating relationship hold across
subgroups in the population, otherwise, subgroups could be positively or negatively
affected. The concern in population invariance of equating functions usually focuses on
ethnic groups who perform below the majority group (De Champlain, 1996).

Finally, similar constructs are required of two equated forms to ensure that the
meaning of scores is preserved. This requirement implies that equating is intolerant of
changing content. If the content of a test changes too much, a new scale and cut score
may have to be defined. Some other type of linking, other than equating, could then be
used to relate the new scale to the prior scale.

There are a number of requirements of equating that are not altogether required of

other forms of linking. Equating requires that forms are similar in difficulty, with similar
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levels of reliability, high reliability, similar constructs, proper quality control, and
identical test specifications (Dorans, 2004; Kolen & Brennan, 2004).

A distinction should be made between vertical and horizontal equating.
Horizontal equating refers to equating that occurs between groups of very similar ability,
while vertical equating refers to equating that occurs between groups that have different
abilities. An example of horizontal equating is the equating of scores from a well defined
population, such as graduates from a specific graduate school program. Such examinees
are expected to be similar in ability. An example of vertical equating is the equating of
forms from a majority group and a minority group, in which the minority group has a

different ability distribution than the majority group.

Summary of Linking and Equating

Equating is distinguished from other forms of linking in that equating is the most
rigorous type of linking, requiring forms similar in difficulty, with similar levels of
reliability, high reliability, similar constructs, and identical test specifications (Dorans,
2004). Equated forms strive to exemplify the ideal psychometric qualities of symmetry,
equal reliabilities, interchangeability, similar constructs, and population invariance.
When these ideals are met, the goal of equating is achieved: test scores from two forms
are interchangeable (Von Davier, Holland, & Thayer, 2004). Kolen and Brennan (2004)
stress that equating cannot adjust for differences in content, only differences in difficulty.
Vertical scaling and vertical equating are similar in that they both relate scores from

groups that differ in ability. However, vertical scaling is distinguished from vertical
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equating in that equating relates forms that are very similar in difficulty and vertical
scaling relates forms that are very different in difficulty. What follows next is an

explanation of the data collection designs that can be used for equating.

Data Collection Designs for Equating

As mentioned previously, there are a number of ways to prevent the confounding
of group ability and test form difficulty. An equating data collection design is the process
by which data are collected to ensure that group ability and test form difficulty are
disconfounded, allowing forms to be equated (Holland & Dorans, 2006). In the literature
one can find at least three designs commonly employed to collect data for equating
(Skaggs & Lissitz, 1986). The common designs include the random groups, the single
group with counter balancing, and the common item nonequivalent group design. A less
commonly cited design is the common item equating to an IRT calibrated item pool
(Kolen & Brennan, 2004). Each design separates ability from form difficulty in different

ways.

Random Groups Design

The random groups design achieves equivalent group abilities through the use of
random assignment of forms to examinees. If the sample of examinees is large enough, it
can be assumed that the difference between scores on the forms is caused by form
differences. This design accommodates more than two forms, but requires large sample
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sizes of at least 1500 examinees (Kolen & Brennan, 2004). The design requires that all
forms to be equated are administered simultaneously. If cheating is a concern, equating
more than two forms simultaneously is undesirable because of item exposure (Kolen &

Brennan, 2004). It is not an appropriate method if forms are to be equated across time.

Single Groups with Counterbalancing Design

Single groups with counterbalancing is a data collection design that requires each
examinee to take the base form and the new form. Examinees are randomly assigned to
one of two groups. Group One receives form X and then form Y. Group two receives
form Y and then form X. This is referred to as counterbalancing and is used to control for
order effects. Mean, linear, or equipercentile equating methods can then be used to
isolate the differences caused by form difficulty (Kolen & Brennan, 2004; Holland &
Dorans, 2006). The major drawback to this design is the fact that each examinee is
required to take two test forms. Not only is this inconvenient and time consuming for

examinees, but item exposure increases.

Common Item Designs

The final two methods employ common items rather than common persons
between forms. The CINEG, also known as, the nonequivalent group with anchor test
(NEAT), is the most commonly used design. A lesser used design is known as the
common item equating to a calibrated item pool. The two designs differ in that the
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former links two or more forms, while the latter equates new forms to a calibrated item
bank. Both methods use the same logic that the single group design employs, except that
rather than requiring all examinees to complete all forms, examinees are required to
complete one form and a mini version of the other form. In such equating designs, the
mini test is used to predict scores on the entire form, and then mean, linear, or
equipercentile methods are used to estimate differences caused by form difficulty
(Holland & Dorans, 2006). IRT methods require the linking of items on a single theta
calibrated scale through the use of common items. Because all the items are calibrated to
the same scale, common items from any prior form can be used to link new forms to the
entire pool of items rather than to just a prior form (Kolen & Brennan, 2004). This last

design, common item to a calibrated item pool, permits preequating.

Equating Methods

This section will focus on CINEG equating methods that are relevant to samples
sizes of less than 500. This includes identity equating, linear equating, and preequating
with the Rasch model. There are many other methods of CINEG equating that are not
reviewed in this study. Mean equating, conventional equipercentile methods, IRT
observed score equating, as well as Kernel equating are also possible methods that could
be employed with a CINEG data collection design. However, all of these methods,
except for mean equating, require sample sizes that exceed the sample sizes being
investigated by this study (Kolen & Brennan, 2004). ldentity equating and linear
equating will be used in this study primarily as criteria to help evaluate the performance
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of preequating with the Rasch model. Since these methods are not the primary focus of
this study the description of these methods will be kept brief. Emphasis will be placed on
IRT preequating methods. The reader can find an excellent presentation of identity and
linear equating methods in Kolen and Brennan's Test Equating, Scaling, and Linking

(2004),

Identity Equating

Identity equating defines a score on a new form X to be equivalent to the same
score on the base form Y. For instance, a score of 70 on form X would equal a score of
70 on form Y. In some instances identity equating will produce less equating error than
other types of equating. For this reason, identity equating is often used as a baseline
method to compare the effectiveness of other methods (Bolt, 2001; Kolen & Brennan,
2004). Other equating methods should not be used unless they produce less equating
error than the identity function (Kolen & Brennan, 2004). If the scale is equal in
difficulty all along the scale, then identity equating equals mean and linear equating.
However, as test forms become less parallel other methods will produce less error than
the identity method. In some contexts, the term preequating is used to refer to tests that
have been assembled to be parallel. Then identity equating is used to relate scores. For

practical purposes, identity equating is the same as not equating.
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Linear Equating

This section describes general linear equating under the single groups with
counter balancing design and then provides a brief description of linear equating used in
CINEG designs. There are a variety of ways to use common items in linear equating
methods, including “chained equating” and “conditioning on the anchor” (Livingston,
2004). Livingston (2004) explains that chained equating operates by linking scores on
the new form to scores from the common item set, and then linking scores from the
common item set to the base form. Conditioning on the anchor uses the scores from the
common item set to predict unknown parameters in a ‘synthetic’ group which are then
used as if they were observed for equating (Livingston, 2004). What follows is a
description of the general linear formula used in this procedure.

The general linear transformation is defined by setting z scores equal for forms X

and Y such that

(x-u(X))/a(X) = (y-r(Y))/o (Y) (2.1)

Where x = a raw score on a new form X,

u(X) = is the mean score of form X,

o(X) =the standard deviation of form X,

y = a raw score on the base form Y,

u(Y) = is the mean score of form Y, and
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o(Y) =the standard deviation of form Y.

Formula 2.2 gives the linear transformation of a form X score to a form Y score:

M LACON e Y
2y, (%) (GS(X)J(X #4,(X))+ 1, (V) o

where s indicates the synthetic population (Kolen & Brennan, 2004). Formulas 2.3

through 2.6 can be used to calculate the four synthetic parameter estimates needed for

formula 2.2.

s (X) =waps (X) + Wapa(X) (2.3)
s (Y) =waps (Y) + Waps (Y) (2.4)
o5” (X) =wio1” (X) + Waoz” (X) + wa Wz [ua(X) - pa(X)J° (2.5)
o* (Y) =Wi01” (Y) + Wo05” (Y) +wa W [ua(Y) - pa(Y)] (2.6)

Where subscripts 1 and 2 represent the two populations and w are weights. If all
examinees were administered all forms, as in the single groups with counter balancing
design, formulas 2.1 through 2.6 could be used to calculate the linear equating
relationship.

In the CINEG data collection design, all examinees do not take all items from
both exams. Rather, each group of examinees is given a representative sample of items
(common items) from the form they did not receive. The common items provide the
basis for predicting examinees' raw scores for the entire exam they did not complete. The

common items can be internal, meaning they are used in obtaining the raw score, or
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external to the test meaning they are not used to calculate the raw score (Holland &
Dorans, 2006; Kolen & Brennan, 2004).

There are a variety of ways to estimate the unknown parameters p,(X), o2 (X), M1
(Y), and o2 (Y) in formulas 2.2 through 2.6. In Tucker linear equating parameters are
estimated by regressing the raw scores of the common items on the raw scores of the
entire form (Livingston, 2004). Since linear regression is used for this prediction, the
assumptions of linearity and homoscedasticity apply to linear equating. The unobserved
parameters are obtained from the predicted raw scores and are then substituted into
formulas 2.2 through 2.6 to define the linear equating function.

True score linear equating can be performed by substituting true scores for
observed scores in formula 2.2, as in the Levine true score method (Kolen & Brennan,
2004; Livingston, 2004). In Levine true score equating, true scores on a new form X are

equated to true scores on a base form Y with the following equation:

o Ty},
ﬂ'Ys(tx) = (O'S(Tx)j[tx H (TX )]"',Us (7y) (2.7)
o, (Ty) _
Where (—U‘Y(TX)J =y,1y

(2.8)

o (X p (X, X)

and y, =
o, (Ve (V.V) (2.9)
and v. = 0, (X )y p, (X, X')

o, (V)W p, V., V") (2.10)
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where p represents estimates for reliability, and V are the scores on common items. As
with any true score equating method, the equating relationship between true scores is

applied to observed raw scores.

Linear equating can falter when its assumptions are violated. For instance, linear
equating can falter if the regression line is curvilinear rather than linear. As with any
CINEG design if common items work inconsistently between groups, the equating error
of this method will increase quickly. Tucker linear equating is known to produce bias
whenever score reliabilities are less than 1. Levine true score equating corrects for this
bias (Livingston, 2004). Both the Tucker and Levine methods require scores from
common items that correlate highly with the test entire (Livingston, 2004). If group
ability differences are greater than .50 of a standard deviation problems can ensue (Kolen
& Brennan, 2004).

The ideal sample size for linear equating is at least 300 examinees (Kolen &
Brennan, 2004). The random error of linear equating is very susceptible to sample size,
so random error increases rapidly moving from the mean. There is evidence that linear
equating can work reasonably well with samples as low as 50, especially if the cut score
is close to the mean, if common item scores correlate highly with the overall test, and if
equating error does not propagate across links (Parshall, Houghton, & Kromrey, 1995).
Linear equating methods require relatively small samples in comparison to IRT and

equipercentile equating.
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Introduction to IRT Equating

Benefits of IRT

IRT consists of a family of probabilistic models that can be used to develop,
analyze, and equate tests. The benefits of using IRT models for equating come from the
property of invariance of item and ability estimates. Invariance means that item
parameter estimates are not dependent on the ability of the group of examinees used for
parameter estimation. Given a calibrated item bank, different subsets of items can be used
to obtain the same ability estimates for examinees. In addition, for any subset of
examinees item parameter estimates will be the same (Skaggs & Lissitz, 1986). The
degree to which the property of invariance is achieved depends on the extent to which the
model assumptions are satisfied. Invariance is a property of IRT, but it is also an

assumption that should be tested (Hambleton & Swaminathan, 1985).
IRT Models for Dichotomous Data

The most general form of the unidimensional, dichotomous IRT model, attributed

to Birnbaum (1968), is the three parameter logistic model:

) exp[Da, (0 -b )]
Py(ﬁ) =c, + (1_07)1+exp[Day(9—by)]

(2.11)

Where P(6) represents the probability of a correct response to item y by an examinee with
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ability 6, a, is the discrimination parameter for item v, b, is the difficulty of item v, c,

describes a pseudo-guessing parameter, and D is a scaling constant equal to 1.7. The 3PL
model requires around 1500 examinees for precise equating. If testing circumstances will
only provide as many as 400 examinees, the 3PL model is not appropriate. In such a
case, the Rasch model can be used (Kolen & Brennan, 2004).

The 1PL model is expressed as follows:

exp(@-b,)
1+exp(@-b,) (2.12)

P,(6) =

Where P, (&) represents the probability of a correct response to item y by an examinee
with ability 6, and b, is the difficulty of item y. The 3PL model (2.11) simplifies to the
1PL modelwhen D =1,c¢ =0, and a=1. Georg Rasch (1960) developed a model that is
equivalent to the 1PL model although proponents of the Rasch model use different
notation.

Philosophical differences abound between proponents of the Rasch model and
proponents of other IRT models. Proponents of IRT as conceived by Allan Birnbaum,
Frederic Lord, Ronald Hambleton, and Hariharan Swaminathan, view the Rasch model as
a special case of the three parameter model. However, advocates of the Rasch model-
Mike Linacre, Ben Wright, Everett Smith, and Richard Smith- view the Rasch model as
the embodiment of objective measurement (Bond & Fox, 2001). They argue that good
measurement requires parallel item characteristic curves, sufficient statistics, and true
interval scales. Regardless of philosophical differences, both groups agree that the Rasch

model is the most appropriate model to use for sample sizes that range from 100 to 500.
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IRT Equating Methods

Figure 1 presents the general steps required by IRT calibration and equating. Step
1 involves assembling a new test form in such a way that equating will be successful.
Step 2 involves estimating item parameters. This step assumes model data fit. The third
step referred to here as item linking, places estimated item parameters from both test
forms on the same scale. If theta estimates were being used for scoring purposes,
generally the next step would be to simply estimate thetas (Kolen & Brennan, 2004). No
other steps would be necessary to achieve score comparability; however, most testing
programs score tests using NC raw scores. Whenever NC scores are used rather than
thetas, step 4 is necessary (De Champlain, 1996). This step defines the equating function
between true or observed raw scores of the new form and the target form. Step 5 is the
process of relating equated raw scores obtained from Step 5 to primary scale scores.
Primary scale scores are the scores used for score reporting. During this step, conversion
tables are created that can be used by measurement staff and scoring programs for

reporting purposes.
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1. Assemble new form

v

Test is administered

v

2. Estimate item parameters for new form.

'

3. Use common items to place item parameter
estimates from new form onto scale of
base form or pool.

v

S

. Equate new form true scores to base form.

A4

5. Create conversion table. Determine scale
score equivalent of an equated raw score.

Figure 1. Steps to IRT Equating

Test Design

It is generally believed that equating requires 'monotonously uniform' test forms
(Kolen & Brennan, 2004). Dorans and Holland claim that test forms intended for CINEG
equating must adhere strictly to a blueprint, have equal reliabilities, have high
reliabilities, and be highly correlated to one another (2006). The most conservative
approach to test assembly for equating purposes is to make test forms essentially parallel.
While essentially parallel tests by definition do not need to be equated (AERA, APA,

NCME, 1999), it may be discovered that test forms assembled to be parallel still need to
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be equated due to item context effects. For instance, identical tests with shuffled items
are sometimes equated if items do not perform consistently (Hendrickson & Kolen, 1999;
Moses, Yang, & Wilson, 2007). Equating can also be performed on test forms that are
not essentially parallel (Kolen & Brennan, 2004). The standard practice of aligning Test
Information Functions (TIF) to the cut score to minimize error and matching Test
Characteristic Curves (TCC) of new forms to a target form largely address the test
assembly needs of preequating (Hambleton & Swaminathan, 1985). However, special
care must be given to the selection of common items.

There are many guidelines for selecting common items. Angoff (1971) claimed
that for linear equating not less than 20% of the items of a test should be anchor items.
IRT methods can achieve good results with fewer than 20% anchor items (Kim & Cohen,
1998). Hills, Subhihay, and Hirsch (1988) obtained good linking results with 10 items.
Raju, Edwards, and Osberg (1983) used 6 to 8 items successfully. Wingersky and Lord
(1984) used as few as 2 items with success. Forms to be equated should have content
representative common items (Kolen & Brennan, 2004), and have common items that
produce scores that correlate highly (r >.80) with the total test (Motika, 2003). It is also
necessary that the common items perform equally well between the groups and forms
intended to be equated. For this reason experts recommend that common items remain in
the same or similar position across forms to prevent item order and context effects (Cook

& Petersen, 1987).
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Calibration and Linking Procedures

A variety of procedures can be performed to accomplish item calibration and item
linking including separate calibration with linking, concurrent calibration, or fixed
parameter calibration (FPC). Among users of IRT who use Marginal Maximum
Likelihood Estimation (MMLE) methods, the most common method used to complete
calibration and item linking (Figure 1, Steps 1, 2, and 3) is to estimate the item
parameters separately and then use an item linking method to place the item parameters
on the same scale. A variety of methods are available to perform this item linking
including Mean/Mean, Mean/Standard deviation, Stocking and Lord TCC method, and
the Haebara Method (Hambleton & Swaminathan, 1985; Kolen & Brennan, 2004). Any

of these methods will produce transformation constants A and «, which when entered into

equations

0% =10 + Kk (2.13)
b,*=Ab, + k (2.14)
a,*=a,/A (2.15)

will place the parameters onto the base scale. Many researchers report that the
characteristic curve based methods (Haebra and Stocking & Lord methods) usually
outperform the other methods (Tsai, Hanson, Kolen, & Forsyth, 2001; Hanson & Beguin,

2002; Kolen & Brennan, 2004). The Stocking and Lord method achieves the linking
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constants by minimizing the differences between TCCs. SCSL has received consistently
better performance reviews than other linking methods (Kolen & Brennan, 2004; Hanson
& Beguin, 2002).

Another commonly used method, concurrent calibration, performs Steps 1, 2, and
3 during one run of IRT software. Concurrent calibration can be performed using a
common person or common items design (Smith & Smith, 2005). Because all the items
are estimated simultaneously, the items are already on the same scale and do not require
linking. If multiple forms are administered across time, more and more forms can be
added to the score matrix and concurrent calibration can be performed again. Linking
may still be used with concurrent calibration, if equating is necessary to relate groups of
concurrently calibrated forms across time. Prior research has shown that the parameter
estimates acquired over time increase in precision because the sample size for the
common items increase (Hanson & Beguin, 2002; Kim & Kolen, 2006). Potential
drawbacks to concurrent calibration include long convergence cycles and the risk of
nonconvergence.

FPC is a variation of concurrent calibration. FPC, also referred to as anchoring, is
a commonly used method among those who use Joint Maximum Likelihood Estimation
(JMLE). FPC is an attractive alternative to separate calibration with linking because it
can simplify the process of calibrating new items (Li, Tam, & Tomkins, 2004). In the
literature, FPC has many names including Pretest-item Calibration/scaling methods (Ban,
Hanson, Wang, Yi, & Harris, 2001), Fixed Common Item Parameter Equating (Jodoin,
Keller, & Swaminathan, 2003; Prowker, 2004), Fixed Common-Precalibrated Parameter

Method (Li, Tam, & Tompkins, 2004), Fixed Item Linking (Paek & Young, 2005), and
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fixed parameter calibration (FPC) (Kim, 2006).

In FPC, the parameters of the common items in the new form are fixed to those of
the old form (Domaleski, 2006; Paek & Young, 2005; Li, Tam, & Tompkins, 2004; Kim,
2006). The remaining items are then allowed to be estimated using conventional
estimation algorithms. No linking is necessary at any stage of a testing program if FPC is
used.

A variety of software options and methods exist for estimating parameters. With
Bilog MG, multigroup concurrent calibration and FPC can be implemented using
MMLE. The advantage to multigroup estimation is that the distributions of the groups
are free to vary during the parameter estimation process. Multilog can also be used to
perform concurrent calibration with or without prior distributions specified using MMLE.
Bigsteps and Winsteps can perform FPC for the Rasch model using JMLE which does
not assume any prior distribution. Also, IRT Code Language (Hanson, 2002) can be used

to perform concurrent calibration or FPC procedures using MMLE.

IRT True Score Equating Procedures

Regardless of how calibration (Steps 2 and 3) is performed, if raw scores are
reported rather than thetas, equating is necessary to define the functional relationship
between NC scores across test forms (Step 4)(De Champlain, 1996). Either true or
observed scores can be the focal point of this equating process. In true score equating,

the TCC visually expresses the relationship between number correct true scores and

thetas. The expected true score (1) for an examinee with ability of & is given by,
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r=Y P (0) (2.16)

where P, is the probability of correctly answering itemy. In IRT true score equating, for

a given theta, a true score for form X is considered equivalent to a true score for form Y.

The form Y true score equivalent of a given true score on form X is

irty=(tx) = ty(rx_l ), (2.17)
where t," is the @ associated with true score ty,

Tx equals a true score on form X,

Ty equals a true score on form y.

Kolen and Brennan (2004) describe a three step process to equation 2.17. First,

specify a true score 1, on form X. Second, find the & that corresponds to that true score

(1« ). Third, find the true score on Form Y, Ty, that corresponds to that &. In this way,

true scores from the two forms are associated through their common theta. The process
of finding the theta that corresponds to a true score, step 2, is achieved with an iterative
process such as the Raphson Newton method. Once this is completed, the functional
relationship between true scores of two forms is used to equate observed scores (De
Champlain, 1996; Hambleton & Swaminathan, 1985; Kolen & Brennan, 2004). A SAS
macro was developed to implement the Raphson Newton method (Appendix A).

Many large-scale testing programs employ some combination of the above
mentioned calibration, item linking, and true score equating procedures. This process

usually entails equating individual forms, one to another, after a test has been
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administered. Much of the equating research over the past 20 years has focused on
equating relationships between forms after data have been collected during a test
administration. A handful of studies have been conducted on preequating. Some of the
studies reached opposing conclusions concerning the effectiveness of preequating. Fewer
still have examined equating with a calibrated item pool for fixed length tests. The next
section will review the procedures of IRT preequating, followed by a review of studies

that have investigated the performance of IRT preequating.

Preequating Procedures

Preequating can use any of the IRT CINEG estimation, item linking, and equating
procedures used in conventional IRT CINEG equating. IRT preequating differs from
postequating (Figure 1) in the sequence of steps. Figure 2 presents the steps of
preequating as it has been described by Kolen and Brennan (2004). The first step (1) is
assembling the form. The second step (2) is performing true score equating. The third
step (3) is the creation of conversion tables. After these steps are done, the test can be
administered, and scores, pass/fail decisions, and score reports can be provided
immediately upon completion of the test. Steps 1 through 3 are all that are necessary to
equate a test under the preequating model. For this reason preequating is especially
attractive to testing programs that use CBT or that have a small window of time to score,
equate, and report scores.

Steps 4 and 5 of preequating are performed simply to add new calibrated items to

the item pool. Step 4 involves estimating item parameters, and step 5 uses the common
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items to place the pilot items onto the same scale as the calibrated item pool. Any of the
previously presented item calibration methods can be used to perform these steps.

It should be noted that some researchers have adopted the term ‘item preequating’
to describe steps 4 and 5 (De Champlain, 1996). In contrast, Kolen and Brennan’s (2004)
use of the term item preequating implies steps 1 through 5. For the purposes of this
study, I am using the term preequating to refer to steps 1 through 3, and item calibration

to refer to 4 and 5.
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1. Assemble new form from items in
calibrated item bank

A 4
2. Equate new form to prior form in pool.

'

3. Create conversion table. Determine scale
score equivalent of an equated raw score.

v

Test is Idministered

4. Estimate item parameters for pilot items.

A 4
5. Use common items (all operational items) to
place item parameter estimates from new form
onto scale of pool.

Figure 2. Steps to IRT Preequating

Building a Calibrated Item Pool with Preequating

Kolen and Brennan (2004) describe how preequating can be used to create a
calibrated item pool by piloting items in each new form. Piloted items are calibrated and
linked to the scale of items from preceding forms. Table 2 presents a plan for creating a
calibrated item pool. In this simplified example, each new form contains three
operational and two pilot items. Operational items are used for two purposes: (1) to score
the tests, and (2) to link the pilot items to the pool. To start, a five item form is
assembled. Items 1 through 3 are operational and items 4 and 5 are pilot items. The form
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is assembled (step 1) and data are collected. Item parameters are estimated (step 2) using
an IRT software program for the operational form (e.g., items 1 through 3). Then after
scoring (step 3) is complete, the pilot items are calibrated (step 4) and linked (Step 5) to
the operational items. The linked pilot items are then added to the calibrated item pool
(Step 6). Form 2 is then assembled consisting of items 3 through 7 (Step 1). True score
equating (Step 2) is then performed using the common items 3 - 5. Conversion tables are
made (Step 3) and form 2 is administered. Scores can be determined with the use of the
conversion tables. Some time after the tests have been scored, the piloted items can be
calibrated, linked, and added to the item bank (steps 4 through 6). Steps 1 through 6 can

be repeated as many times as necessary to build a calibrated item pool.
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Table 2. A Plan to Create a Calibrated Item Pool

Administration Step

1 Step 1. Form 1 is assembled (item 1 - item 5)
Step 2. Operational test is calibrated
Step 3. Operational test is scored.
Step 4. Pilot items are calibrated and linked to the test.
Step 5. Link pilot items to pool
Step 6. Place linked pilot items in item bank

2 Step 1. Form 2 is assembled (item 3 — item 7)
Step 2. True score equating is performed using common items (item 3-
item 5).

Step 3. Conversion tables are made.
Form 2 is administered
Step 4. Estimate Item Parameters for pilot items (item 6 - item 7).

Step 5. Link new items to pool
Step 6. Place new parameters in item bank

Factors Affecting IRT Equating Outcomes

The factors reported in the equating literature that contribute to IRT common item
equating error include violation of IRT assumptions, population nonequivalence,
parameter estimation method, linking method, and quality of common items (Kolen &
Brennan, 2004). Of all these threats to equating, the greatest cause for concern for the
Rasch model is violations of model assumptions and their interaction with population
nonequivalence. Hambleton and Swaminathan (1985) describe four assumptions of the
Rasch model: unidimensionality, equal discrimination indices, minimal guessing, and
nonspeeded test administrations. This next section will present the assumptions of

unidimensionality, equal discrimination indices, minimal guessing, and then discuss the
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issues of population nonequivalence, quality of common items, and calibration linking

method.

Assumption of Unidimensionality

Many studies have examined the robustness of IRT equating to violations of the
assumption of unidimensionality. The majority of these studies concluded that IRT
equating was robust to violations of IRT assumptions (Bogan & Yen, 1983; Camili,
Wang, & Fesq, 1995; Cook, Dorans, Eignor, & Petersen, 1985; Dorans & Kingston,
1985; Wang, 1985; Yen, 1984; Smith, 1996). However, most of these referenced studies
were performed with actual data using the 3PL model, a few on the 2PL model, and one
on the Rasch model. None of these studies examined IRT preequating.

A few studies have explicitly examined IRT Preequating with the 3PL model.
Stocking and Eignor (1986) found that when the assumption of unidimensionality was
violated the » parameters were overestimated, which led to substantial equating error.
Prior research on the American College Test (ACT) and the Scholastic Aptitude Test
(SAT) showed that preequating is sensitive to multidimensionality and item context
effects (Eignor, 1985; Kolen & Harris, 1990; Hendrickson & Kolen, 1999). Kolen and
Harris (1990) found that with the ACT Mathematics Test, preequating produced more
equating error than identity equating, which is equivalent to not equating at all. These
problems were so severe that the idea of preequating was abandoned for these programs.
The probable cause for equating error under multidimensionality is the presence of bias

in the item parameter estimates (Kolen & Brennan, 2004). Li and Lissitz reported the
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presence of bias in item parameter estimates when data are not strictly unidimensional
(2004).

While there are many studies that cast doubt on the viability of IRT preequating
under multidimensionality, some studies have obtained favorable results with IRT
preequating under known multidimensional tests. The Law School Admissions Test
(LSAT) used a section preequating design with the 3PL model in the 1990s. A section
preequating design pilots items within test sections that are spiraled to achieve equivalent
groups during test administration. Concurrent calibration is then used to calibrate the
pilot items with the operational items (De Champlain, 1995). This design is essentially
the same as the preequating design used in this study, except that in a section preequating
design pilot items are piloted in sections. Perhaps one benefit of piloting items in this
manner is that it can control for item context effects.

Camilli, Wang, and Fesq (1995) used actual LSAT data from six different test
administrations to estimate parameters for the 3PL model. They compared TCCs and
true score conversion tables based on item parameters from two item pools: 1) a
heterogeneous item set based on calibrations from an intact test, containing two distinct
content areas, and 2) a homogenous item set that was based on separate calibrations of
content area 1 and content area 2. They found that the converted true scores differed by
less than two points for all six forms and all conditions examined. These differences
were quite small considering the standard deviation for the LSAT was around 15 raw
score points.

De Champlain (1995) used LSAT data to examine the interaction effects of

multidimensionality and ethnic subgroup on true score preequating. In contrast to prior
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studies that assumed constant multidimensional factors across groups, De Champlain
examined how different factor structures between ethnic groups may affect true score
preequating. Even though a two dimensional model did account for the item responses in
the majority group, it did not account for the item responses of a minority subgroup. The
subgroup differed from the majority group in ability by .56 of a standard deviation.
Despite the different factor structures between the subgroup and the majority group, the
mean absolute difference of true score preequated scores was negligible.

Bolt modeled simulated data after LSAT data (1999) with the 3PL model. He
examined the effects of two dimensional test data when the dimensions were correlated at
different levels. Using an equity criterion in which the first two moments of the
conditional equated score distributions were compared, Bolt found that true score
preequating was fairly robust to violations of unidimensionality when compared to
equipercentile equating. When dimensions were correlated >.70 true score equating was
usually superior to equipercentile and linear equating methods. Even when the
correlations of the dimensions was as low as .30 true score equating was similar though

not as effective as equipercentile equating.

Assumption of Equal Discriminations

The assumption of equal item discriminations is an assumption of the Rasch
model. Curry, Bashaw, and Rentz (1978) examined the robustness of the Rasch model to
violations of the assumption of equal item discriminations. Estimated abilities were quite

similar to generated abilities, suggesting that the Rasch model was robust to
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nonequivalent discriminations. Gustafsson (1980) examined the effects of a negative
correlation between difficulty and discrimination parameter estimates. Results showed
that when difficulty and discrimination were statistically independent, mean ability
estimates from high and low groups were nearly identical. However, as the correlation
between difficulty and discrimination moved away from zero, bias in the ability estimates
increased. For instance, if the correlation of the difficulty and discrimination were
negative, ability estimates were positively biased if they were calculated with parameters
estimated by the low ability group. This finding corroborated Slinde and Linn’s (1978)
finding. Forsyth, Saisangijan, and Gilmer (1981) observed that item parameter
invariance depended on the difference between mean discrimination values for two sets
of items. A more recent study compared the performance of the 1PL, 2PL, and 3PL
models and concluded that even though the 2PL and 3PL models better accounted for the
response data, the Rasch model produced better ability estimates (Du, Lipkins, & Jones,
2002). This was true despite the fact that as much as 20 percent of the items had
discriminations that did not fit the Rasch model. The poor performance of the 2PL and
3PL models was attributed to the sample size (500) of this study, which produced item

parameter estimates with relatively large standard errors.

Assumption of Minimal Guessing

The studies that examined Rasch vertical scaling demonstrated the tendency for
low ability groups to guess. This phenomenon has occurred repeatedly across tests,

contexts, and studies (Slinde & Linn, 1978; Loyd & Hoover, 1981; Skaggs & Lissetz,

57



1986). Some studies that minimized guessing did show parameter invariance (Forsyth,
Saisangijan, & Gilmer, 1981). These studies underscore the importance of minimizing
guessing. Minimizing guessing can be done by producing forms that are well matched to
the ability of the target group and/or by careful development of option choices. Matching
the ability level of different groups is appropriate for vertical scaling contexts, such as
grade levels. However, producing forms of different difficulty is not always appropriate
for testing programs that administer fixed lengths tests to populations and subgroups that
differ in ability. For instance, certification and licensing exams that are designed to
produce pass/fail decisions, are usually created to produce maximum information
surrounding the cut score, which would require forms of equal difficulty, regardless of
what group of examinees are taking the exam. In such settings, the Rasch model requires
item writers to create items with attractive distracters to prevent guessing among low
ability examinees. Developing tests that have high conditional reliabilities around the
expected means of the majority and subgroups is another strategy that can be employed.
Holland and Dorans consider forms of high reliability to be a requirement of
equating (2006). Holland and Dorans contend that highly reliable forms are necessary in
order to obtain equating functions that are population invariant (2006). Population
invariance is an indication of the effectiveness of an equating method. As guessing
increases, the maximum information decreases which will result in less reliability (Yen &
Fitzpatrick, 2006). So, it is easy to infer that test forms with substantial guessing may not
be population invariant. While forms with high reliability are important, perhaps an even
more important consideration is the similarity of the reliability of the forms being equated

(Kolen & Brennan, 2004). It is unclear to what extent test reliability will be reduced as a
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result of guessing, and what affects reduced reliability may have on equating

nonequivalent populations.

Quality of Common Items

It is well established that CINEG equating depends largely on the
representativeness of the common items to the larger test (AERA, NCME, APA, 1999;
Cook & Petersen, 1987; Michaelides, 2004; Holland & Dorans, 2002; Kolen & Brennan,
2004; Motika, 2001). Holland and Dorans identified three factors that are most important
in common items: 1) integrity over time, 2) stability over time, and 3) the common
items’ correlations with the scores being equated (Holland & Dorans, 2006).

Some researchers recommend that raw scores from common items and raw scores
from the total test should be similar in difficulty and should correlate highly.
Recommendations include correlations of .80 or higher (Motika, 2001). One way to
increase the correlation is to ensure that the common items are content representative
(Motika, 2001). Larger sets of common items usually increase the correlation. It is
necessary that the common items perform equally well between the groups. Zwick
attributed considerable equating error found in links from 1984 to 1986 in the National
Assessment of Educational Progress (NAEP) to change in item order and the time
permitted to answer the items. For this reason, experts recommend that common items
remain in the same or similar position across forms so as to prevent item order and
context effects (Cook & Petersen, 1987). Kolen and Brennan (2004) recommend that
common items be screened to ensure that they work equally well between groups. Their
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recommendation is that the proportion of examinees correctly answering a common item
across forms should not differ by more than 0.10.

Instability in the common items can be detected when using concurrent
calibration or separate calibration with a linking method by comparing the parameter
estimates of the common items from two administrations. In Rasch equating, a number
of indices have been proposed as measures of stability for common items. These indices
include the p-value cut off criterion of .30, Wright and Stone's T statistic, robust Z
statistics, Linacre's displace measure (Arce-Ferrer, 2008), item-within-link fit analysis,
and item-between-link fit analysis (Wright & Bell, 1984). Some researchers recommend
the use of Differential Item Functioning (DIF) analysis, where the base form examinees
are treated as the reference group and the new form examinees are treated as the focal
group (Cook & Petersen, 1987; Holland & Dorans, 2006). Enough common items have
to be included in the test to allow for the removal of some in case of inconsistent
performance, without under-representing subdomains. All of these guidelines assume
unidimensionality and may have to be made stricter if this assumption is violated (Kolen
& Brennan, 2004).

Another issue that arises when using calibrated item pools is related to item
parameter drift of the common items. Item parameter drift is defined as any significant
changes in item parameters across time, not attributed to context or order effects. Most
prior studies that have examined the effects of item parameter drift on equating have
shown negligible effects when analyzing real data (Wollack, Sung, & Kang, 2006).
Wollack et al.'s explanation for this was that in real data the drift was bidirectional and

canceled itself out (2006). Du et al.’s study showed that instability in the 2PL and 3PL
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item parameter estimates caused by sample sizes of 500 can also contribute to differences
in item parameter estimates across time and undermine preequating (2002).

Context effects can also affect the stability of common items which can threaten
equating. ldeally, the performance of an item will not depend on its location in an exam
or its relation to other items in the exam. However, prior studies have demonstrated that
the item order and context does change the performance of items (Kolen & Brennan,
2004). The best remedy to this threat is to keep items in fixed locations and similar
contexts in a test. Another strategy is to identify items that are inconsistent in
performance and remove them from the linking process, provided that the content
representativeness of the common items is not destroyed. Context effects may be more
prevalent in exams that are more multidimensional (Eignor, 1985; Hendrickson & Kolen,

1999; Kolen & Harris, 1990;).

Equivalence of Populations

Another factor that can contribute to equating error is population nonequivalence.
Population nonequivalence--differences in latent ability distributions between groups
taking alternate forms--can be caused by many factors, including time of year effects
(Kolen & Brennan, 2004), differential preparation of examinees by trainers (Prowker,
2006), ethnicity (De Champlain, 1996), and native language (Kolen & Brennan, 2004).
Equating methods usually assume that the two groups taking the two forms are from the
same population. Linear equating addresses this assumption by creating a weighted

synthetic group, representing a single population from which the two groups came (Kolen
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& Brennan, 2004). Even though the CINEG design was especially designed to
accommodate nonequivalent groups, experts warn that CINEG methods cannot equate
data from groups if differences in mean ability are too large (Kolen & Brennan, 2004).
Kolen and Brennan urged practitioners to conduct their own simulation studies for their
specific contexts. Kolen and Brennan (2004) report that equating methods diverge when
mean differences between scores on common items reach 0.30 of a standard deviation
unit. Equating methods begin to fail when differences reach 0.50. Also, Kolen and
Brennan report that ratios of group standard deviations on common items of less than
0.80 or greater than 1.2 lead to differences in methods (2004). One study demonstrated
that mean differences of one standard units increased equating error in the Angoff IV
linear equating method by 50 percent (Motika, 2001).

Studies conducted in the 1970s and 1980s that investigated parameter invariance
in a vertical scaling context tend to cast doubt on the viability of the Rasch model for
vertical scaling. Rasch invariance did not hold in a study by Slinde and Linn (1978).
The ability level of the group used for calibration affected the accuracy of the linking
results (according to Wright’s standardized difference statistic). The differences in
ability between groups used in this study were as large as 1.8 logits or nearly two
standard deviations. Similar results were obtained when Slinde and Linn conducted a
similar study with different test data. In this study they found that comparable ability
estimates were obtained from two subtests when using groups of moderate to high ability.
However, when low ability groups were used to estimate the ability of moderate to high
ability examinees, ability estimates were variable. Gustafsson (1979), Slinde, and Linn

(1978) concluded that the root cause for the inconsistent ability estimates was guessing.
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Loyd and Hoover (1980) found similar results as Slinde and Linn (1978) with
groups that differed less in ability. Scaling between any two levels of test difficulty was
influenced by the group upon which the parameters were based. Loyd and Hoover
(1980) believed multidimensionality contributed to the problems of vertical scaling.
Skaggs and Lissitz (1986) suggested that for at least some tests, the factor structure
changed across ability levels, so items were unidimensional at one level of ability, but
multidimensional at another level. Divgi (1981) found in an investigation of Rasch
vertical scaling, that low and high ability examinees obtained higher equivalent scores if
their ability estimates were based on a difficult test rather than an easier test. One of
Divgi’s conclusions was that Wright’s standardized difference statistic should not be used
as a sole criterion for assessing equating bias.

Using Wright’s standardized difference statistic, Forsyth, Saisangijan, and Gilmer
(1981) investigated item and person invariance using data that slightly violated Rasch
assumptions. They obtained reasonably good evidence of item and ability invariance.
However, they observed that the degree of invariance was related to the difference
between mean discrimination values for the two sets of items. This finding suggests that
Rasch equating requires equivalent a parameters within each form and across forms.
Holmes (1982) performed vertical scaling with data that satisfied Rasch assumptions.
His results agreed with the studies conducted by Slinde and Linn (1978, 1979).

All of these studies from the 1970s and 1980s were based on actual data rather
than simulated data. Hence, parameter bias was not assessed. More recent studies of
Rasch vertical scaling used true experimental designs with simulated data. DeMars

conducted a simulation study, comparing MMLE and JMLE under concurrent calibration
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on nonequivalent groups in which the uncommon items were matched to the ability of the
target group. DeMars found the parameter estimates for MMLE and JMLE were very
similar, provided that group differences were modeled in the IRT software (2002).
Pomplun, Omar, and Custer (2004) compared Bilog MG and Winsteps. The study
provided evidence that vertical scaling can produce accurate item and ability parameter
estimates. Both of these studies used data modeled with the Rasch model, so violations
of assumptions to the model were not assessed. Neither of these studies performed true

score equating.

Method of Calibration

The accuracy and precision of item parameter estimates necessarily contribute to
equating error. Since calibration methods vary in accuracy and precision, it is likely that
equating effectiveness will depend, in part, on calibration method. While concurrent
calibration does appear to provide greater precision (Hanson & Beguin, 2002; Kim &
Kolen, 2006), it may be more sensitive to violations of unidimensionality than separate
calibration. Beguin, Hanson, and Glas compared SCSL with concurent calibration using
data generated by a multidimensional model and found SCSL produced more accurate
estimates (2000). Kim and Cohen (1998) recommend the use of separate calibrations
with a linking method for smaller sample sizes. Kolen and Brennan (2004) as well as
Beguin and Hanson (2002) recommend separate calibration rather than concurrent
calibration. Hanson views the fact that each common item is estimated twice during

separate calibration as a benefit, because any discrepancies between the two parameter
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estimates may indicate problems with specific items. Proponents of the Rasch model
have advocated a number of indices for screening common items (Wolfe, 2006). Except
for Linacre’s displacement statistic, most of these indices require separate calibrations.
So, it appears that concurrent calibration is likely to produce more precise estimates than
separate calibration; however, separate calibration is more conducive to detecting
problematic common items and is therefore less risky (Kolen & Brennan, 2004). While
separate calibration appears to be favored by some experts, FPC should also be
considered for its ease of use.

FPC with MMLE requires accurate prior distributions for item parameter
estimation (Paek & Young, 2005; Kim, 2006). Prowker compared equating effectiveness
using FPC, using 1PL, 2PL and 3PL IRT models in the context of student growth. He
found that mean differences in ability of greater than .50 had deleterious effects on IRT
equating accuracy (Prowker, 2005). Paek and Young (2005) studied the effectiveness of
FPC methods when performed with MMLE to capture simulated change in means and
standard deviations in scores. They found they could correct equating error introduced
by misspecified prior means and standard deviations with an iterative prior update
calibration procedure (Paek & Young, 2005). It is unfortunate that this study did not
include larger mean differences between groups, since differences greater than .50 seem
to introduce more equating error (Kolen & Brennan, 2004; Prowker, 2005). The extent to
which these findings generalize to other testing settings is unclear.

FPC may not work well when ability distributions are largely different (Li, Tam,
& Tompkins, 2004). No prior research has investigated its robustness to violations of IRT

assumptions such as multidimensionality (Kim, 2005). Few studies have compared FPC
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to concurrent calibration and separate estimation with a linking method (Kim, 2005).
Hanson (2002) and Kim (2006) called for more research on FPC methods under violated
assumptions. Potential drawbacks to FPC include longer computing times to reach
convergence, non-convergence, inaccuracies in estimating non-normal latent
distributions, and potentially less precision (Kim, 2005).

Domaleski (2006) conducted Rasch preequating with actual data using Winsteps
and FPC. He implemented preequating and postequating in an actual testing program
simultaneously and compared conversion tables from both approaches. He found that
Rasch preequating results were very similar to postequating. Domaleski’s (2006) study
differed from the preequating design used in this study in that he obtained item
precalibrations from pilot test administrations in which entire intact forms were
administered to volunteer examinees, rather than piloting small sets of items with

operational forms as done in the present study.

Summary of Literature Review

Prior research clearly shows many threats to Rasch preequating. Prior research
has shown that preequating is vulnerable to multidimensionality (Eignor & Stocking,
1986). The probable cause for equating error with multidimensional data is the presence
of bias in the item parameter estimates (Kolen & Brennan, 2004). Li and Lissitz (2004)
report the presence of bias in item parameter estimates when data are not strictly
unidimensional. Eignor and Stocking (1986) discovered positive bias in item parameter

estimates under multidimensional data. This effect was magnified when population
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nonequivalence interacted with multidimensionality (Eignor & Stocking, 1986).

The Rasch model requires equivalent item discriminations and items with little or
no guessing (Hambleton & Swaminathan, 1985). Parameter recovery studies provide
evidence that the Rasch model does not perform well under the presence of guessing
(Skaggs & Lissitz, 1985). Parameter recovery studies provide conflicting results
concerning the robustness of the Rasch model to nonequivalent item discriminations
(Curry, Bashaw, & Rentz, 1978; Gustafsson, 1980; Slinde & Linn, 1978; Forsyth,
Saisangijan, & Gilmer, 1981). A recent study produced evidence that preequating under
the Rasch model can produce acceptable levels of precision surrounding the mean of the
score distribution, even if item discriminations are not equivalent (Du et al., 2002).

The Rasch model has been criticized in years past for not working effectively
when group ability differences are large (Skaggs & Lissitz, 1986; Camilli, Yamamoto, &
Wang, 1993; Williams, Pommerich, & Thissen, 1998). However, Linacre and Wright
(1998), DeMars (2002) and more recently Pomplun, Omar, and Custer (2004), obtained
accurate item parameter estimates when scaling vertically with the JIMLE method.

Preequating to a calibrated item bank requires that items are piloted to obtain item
parameter estimates. Kolen and Brennan warn of the risk that piloted items may become
biased during estimation because they are not calibrated within the context of an intact
test form (2004). Prior studies have demonstrated preequating’s sensitivity to item
parameter instability (Du, Lipkins, & Jones, 2002) and item context effects (Kolen &
Harris, 1990). Item context effects can be controlled to some degree by keeping common
items in fixed locations across forms (Kolen & Brennan, 2004) and selecting stable items

(Smith & Smith, 2006) that are resistant to context effects, and piloting content
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representative sets of items rather than isolated items. The purpose behind piloting
content representative item sets rather than isolated items is to keep the factor structure
constant across all the calibrations of piloted items (Kolen & Brennan, 2004).

FPC is one item calibration method that can work under a preequating approach
that can potentially simplify the calibration procedures because it does not require a
separate linking step. It can simplify the calibration process, only if convergence
problems reported by some (Kim, 2006) are not too common. Much of the prior research
on FPC has focused on such software as Parscale (Jodoin, Keller, & Swaminathan, 2003;
Prowker, 2006), Bilog MG, Multilog, and IRT Code Language (ICL) software (Kim,
2006). All of these software programs implement MMLE through the Expectation
Maximization (EM) algorithm. FPC has been shown to work less effectively under non-
normal latent distributions (Paek & Young, 2005; Kim, 2005; Li, Tam, & Tompkins,
2004) when conducted with MMLE. Very little if any published research can be found on
FPC in conjunction with Bigsteps/Winsteps, which use a JMLE method that does not

assume any priors.

The Need for More Research on Preequating with the Rasch Model

The equating literature provides many guidelines to the test developer who plans
to implement IRT preequating. These guidelines include directions on how to develop
test forms, how to select and screen common items, how many samples are needed for
good results, strengths and weaknesses of various equating methods, and how much

random error can be expected for specific IRT methods under ideal conditions. To all of

68



these issues, clear recommendations have been made and supported by studies based on
simulated and actual data.

However, many questions concerning IRT preequating for smaller sample sizes
remain unanswered. How well will Rasch preequating perform when populations differ
greatly in ability? How well will Rasch true score preequating perform under moderate
to high levels of multidimensionality? How well will Rasch true score preequating
perform when the discrimination parameters are not equal? How much guessing can the
Rasch true score preequating method tolerate? How will Rasch true score preequating
perform when violations of assumptions interact? At the present time, few equating
studies have attempted to address the question of interaction of these threats to IRT true
score preequating. As a result, test developers who consult the literature are leftin a
guandary concerning the performance of Rasch true score preequating. This is
especially true for test developers who are in circumstances that are not ideal for
equating, such as the equating of translated tests in which language groups differ
substantially in ability, or the equating of tests designed to measure growth over long
spans of time. Clearly, much research is needed in the area of Rasch preequating with a
calibrated item pool before the method can be used with the same confidence as
conventional IRT equating methods.

The conclusion that Kolen and Brennan (2004, p. 207) reach concerning
preequating to a calibrated pool is summed up in the following statement:

"On the surface, preequating seems straightforward. However, its implementation can be

quite complicated. Context effects and dimensionality issues need to be carefully
considered, or misleading results will be likely."
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CHAPTER THREE

METHODS

Purpose of the Study

The purpose of this study was to compare the performance of Rasch true score
preequating methods to Levine true score linear equating and identity equating under
levels of violated Rasch assumptions (unidimensionality, no guessing, and equivalent
discrimination parameters) and realistic levels of population nonequivalence. The main
goal of this study was to delineate the limits of Rasch true score preequating under the
interactions of multidimensionality, population nonequivalence, item discrimination
nonequivalence, and guessing. In contrast to many prior studies, this study investigated
the effectiveness of equating to a calibrated item bank, rather than to a single prior form.
This study further examined equating error across multiple administrations to determine
if error accumulated across links. A secondary purpose was to compare FPC to the SCSL
method.

Research Questions

1. Do Rasch true score preequating methods (FPC and SCSL) perform better than
postequating methods (identity and linear equating) when the IRT assumption of

unidimensionality is violated, but all other IRT assumptions are satisfied? As for the
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preequating methods, does the FPC method perform at least as well as the SCSL method

under the same conditions?

2. Do Rasch true score preequating methods (FPC and SCSL) perform better than
postequating methods (identity and linear equating) when populations are
nonequivalent, and IRT model assumptions are satisfied? Does the FPC method perform

at least as well as the SCSL method under the same conditions?

3. Do Rasch true score preequating methods (FPC and SCSL) perform better than
postequating methods (identity and Linear equating) when the Rasch model assumption
of equivalent item discriminations is violated, but populations are equivalent and other
IRT model assumptions are satisfied? Does the FPC method perform at least as well as

the SCSL method under the same conditions?

4. Do Rasch true score preequating methods (FPC and SCSL) perform better than
postequating methods (identity and linear equating) when the Rasch model assumption of
no guessing is violated, but populations are equivalent and other IRT model assumptions
are satisfied? Does the FPC method perform at least as well as the SCSL method under

the same conditions?

5. How does Rasch preequating perform when response data are simulated with a three
parameter, compensatory two dimensional model, the assumption of equivalent item

discriminations is violated at three levels (mild, moderate, severe violations), the
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assumption of no guessing is violated at three levels (mild, moderate, severe), population
non-equivalence is manipulated at three levels (mild, moderate, severe) and the
unidimensional assumption is violated at three levels (mild, moderate, severe)?

a. What are the interaction effects of multidimensionality, population non-
equivalence, nonequivalent item discriminations, and guessing on random
and systematic equating error?

b. At what levels of interaction does Rasch preequating work less effectively
than identity equating or linear equating?

c. How does FPC compare to SCSL in terms of equating error under the
interactions?

d. Does equating error accumulate across four equatings under the

interactions?

Hypotheses

Hypothesis 1: Preequating error will begin to exceed criteria when population
nonequivalence exceeds 0.50 of a standard deviation of the raw score.

Hypothesis 2: Preequating will be more robust to violations of the a parameter
than the no guessing assumption.

Hypothesis 3: Preequating error will increase rapidly as assumptions are

simultaneously violated.
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Hypothesis 4: The violations of model assumptions will result in error in the item
parameter estimates. Error in the item parameter estimates will produce error in the Test
Characteristic Curves. Error in the TCCs will increase the SEE and bias of preequating.

Hypothesis 5: Item parameter error will accumulate in the item bank as the item
bank grows in size across linkings. Equating error will accumulate across equatings,

because of the increasing error in item parameter estimates.

Study Design

The study was conducted in two phases. Phase One examined main effects, research
questions 1 through 4. Phase Two focused on interaction effects represented by questions 5a
through 5d. The purpose of Phase One was to determine the limits of Rasch true score equating
under severe violations. The defined limits in Phase One were then used to set the ranges for the

levels in Phase Two. The hypotheses were tested using results from Phase One and Phase Two.

Factors Held Constant in Phase One

In order to make this study feasible, a number of factors were held constant. The
number of operational items was fixed to 60 items. Many prior simulation studies use
test lengths of around 50 items (Hanson & Beguin, 2002; Kim, 2006). Additional factors
held constant included the number of pilot items (20 items), the number of operational
items associated with each dimension (30 items with theta 1, 30 items with theta 2), the

number of pilot items associated with each dimension (10 items with theta 1, 10 items
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with theta 2), and the difficulty of each new form. The number of pilot items was set to
20, to simulate what is typical among testing programs that use pilot items in operational
tests. The number of items associated with each dimension was chosen to be equal (30
and 30) in an effort to produce two equally dominant dimensions, representing a worst
case scenario for the violation of unidimensionality. Tables B1, and B2 display the
descriptive statistics of the ten forms that were used in Phase One (Appendix B). The b
parameters were modeled to fit a N(0,1) distribution across all conditions. The same set
of b parameters was used across all form A test forms. The b parameters were then
lowered by .50 of a standard deviation and used across all form B test forms. This
produced a new form that was substantially easier than the base form, again representing
a worse case scenario. Conformity to a test blueprint was modeled by ensuring that 30
operational and 10 pilot items for dimension one, and 30 operational and 10 pilot items
from dimension two were included in each form. An important variable that contributes
to random error is sample size. Phase One was conducted with a sample size of 500
examinees. Phase Two was conducted with a sample size of 100 in an effort to find the
limits of preequating. It was assumed for purposes of this study that item parameter drift
and item context effects were adequately controlled, therefore item parameters were not

manipulated to simulate any type of random or systematic error.

Manipulated Factors in Phase One

While there are many more than four factors that could affect preequating, four

factors stood out as the most important to manipulate. The first manipulated factor was
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population nonequivalence. Population nonequivalence was selected as a manipulated
variable because unlike characteristics of items, the test developer and psychometrician
have no control over the ability of populations or subgroups. Population nonequivalence
in the present study was defined as differences in the shape of the ability distribution
between groups of examinees that completed alternate forms of an exam. | used
Fleishmann coefficients to model multidimensional, non-normal ability distributions (Fan
& Fan, 2005). Fleishmann coefficients were chosen because they can easily mimic the
skewness typically seen in raw scores of criterion referenced tests due to ceiling or floor
effects, as well as skewness seen in low ability groups, as in De Champlain’s (1995)
study.

Tables C1 through C3 in Appendix C show the descriptive statistics of the
simulated ability distributions shown in Figure 3. The means ranged from 0 to -1.20.
The Fleishman coefficients used to produce these distributions are presented in Table D1
(Appendix D). These levels of nonequivalence were chosen to cover the range of
distributions typically seen in criterion referenced tests. Given the magnitude of mean
differences between groups reported in prior equating studies, it is improbable to see
mean differences much larger than 1.15 standard deviation units (De Champlain, 1996;

Prowker, 2006).
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Figure 3. Generated Theta Distributions at Five Levels of Population Nonequivalence

Multidimensionality was also manipulated in this study. Multidimensionality in
this study is considered to be present in an exam if responses to items depend on more
than one latent trait or ability. Unidimensional IRT assumes that responses to items
depend on one ability or dimension. While any number of dimensions is possible, the

number of dimensions in this study was restricted to two. The strength of the correlation
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between the two dimensions was manipulated to model levels of dimensionality. The

levels of dimensionality for Phase One, ro o, = .90, .70, .50, .40, and .30, were selected

based on information gleaned from Bolt’s (1999) study.

The third and fourth variables | manipulated in Phase One were equivalent item
discriminations and the presence of guessing, respectively. Nonequivalent
discriminations were chosen to be manipulated, to replicate the findings of previous
research conducted with actual test data that showed preequating produced acceptable
precision around the mean of the scale score with forms containing nonequivalent point
biserial correlations with means of .35 and standard deviations of .17 (Du et al., 2002).
Guessing was included in this study because it has repeatedly caused problems for
parameter invariance in prior studies. Most importantly, these variables were
manipulated to determine how tolerant preequating was to the interaction of
multidimensionality, population nonequivalence, equivalent item discriminations, and the
presence of guessing. Despite an extensive literature review, | am not aware of any
previous studies that have investigated these exact interactions under the 1PL model.

A uniform distribution (U) was used to model the a and ¢ parameters (Baker &
AL-Karni, 1991; Kaskowitz & De Ayala, 2001; Kim, 2006; Swaminathan & Gifford,
1986). To manipulate the equivalence of item discriminations, the a parameters were
manipulated at five levels (U(1,1), U(.70, 1.0), U(.50, 1.10), U(.40, 1.20), U(.30, 1.30).
Since item discriminations contribute to test reliability, the simulated a parameters were
manipulated so that the height of the TIFs remained approximately constant. This kept
the test reliability approximately consistent across levels. The target reliability of the

forms was 0.90, which is appropriate for a high stakes test. The levels of the ¢ parameter
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misspecification scale (U(0,.05, U(0,.10), U(0,.15), U(0,.20), U(0, .25)) were chosen to
cover the range of what is typically seen in three parameter models under four option

multiple choice exams.

Equating Criteria

While there is no consensus on the best measures of equating effectiveness (Kolen
& Brennan, 2004), three commonly employed measures used in equating studies include:
(1) the Root Mean Square Error (RMSE), (2) the Standard Error of Equating (SEE), and
(3) bias of the equated raw scores (Hanson & Beguin, 2002; Pomplun, Omar, & Custer,
2004). These measures represent total equating error, random equating error, and
systematic equating error, respectively. Total error and systematic error were calculated

with the formulas below:

RMSE(H )= (h, ~h,)?Ir (3.1)

BIAS(H,) =Y (h, ~h,) Ir (3.2)

In calculating equating error, 4, is the criterion equated score and ﬁy is the

estimated equated raw score, and r is the number of replications. Negative bias values
indicate that the estimated equated score is less than the criterion. In this study r = 20.

The RMSE and bias were calculated at each raw score point.
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The criterion equated scores were obtained by implementing random groups
equipercentile equating on true scores derived from a compensatory two dimensional IRT
model. Random groups equipercentile equating was chosen as the criterion equating
method because it requires few assumptions to implement. Large samples were used to
avoid the need for smoothing. To simulate random groups equating, random samples of
25,000 examinees were drawn from two populations. Test forms were spiraled among
the examinees by randomly assigning examinees to one of two forms. Spiraling the test
forms produced two equivalent groups assigned to each form. The compensatory two
dimensional model was used to produce the probabilities of a positive response to each
item for all examinees. The probabilities of a positive response for each item were then
summed to produce true scores for each examinee. Equipercentile equating was then
used to equate the true scores using RAGE-RGEQUATEvV3 software (Kolen, Hanson,
Zeng, Chien, & Cui, 2005).

The standard error of equating is a measure of random equating error and can be
estimated with the RMSE and bias. The standard error of equating at each possible raw

score was estimated with:

SEE(H,) = J (RMSE(H,)? — BIAS(H,)? (3.3)

Formulas 3.1 through 3.3 were used to calculate total error, random error, and
systematic error for equivalent scores at all 61 points on the raw score scale. Standard

errors of equating and bias estimates were then plotted and visually inspected.
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Parameter Recovery

Formula 3.1 was used to calculate the total error of the assumed a, estimated b,

and assumed c item parameters. In calculating item parameter error, 4, was the

generated item parameter for item ,and ﬁy was the estimated item parameter, and r was

the number of replications.

Phase One Conditions

In Phase One, each variable was manipulated at five levels while all other
variables were kept ideal and constant. Table 3 shows the 17 conditions. Each condition
consisted of a sample size of 500 examinees. A total number of 20 bootstrap samples
were drawn with replacement for each experimental condition. While precedence would
suggest 50 replications are necessary to obtain good SEE estimates with the 3PL model
(Kim & Cohen, 1998; Hanson & Beguin, 2002; Kim, 2006; Li and Lissitz, 2004), |
discovered by experimentation, that only 20 replications were necessary to obtain
adequate precision in the SEE with the Rasch model (Figure 4). Figure 4 shows a
comparison between standard errors of equating estimated with 20 and 50 replications.
These estimates were based on samples of only 100 examinees. These results likely

overstate the difference that would be seen with sample sizes of 500. The added
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investment of computer resources needed to produce 50 replications rather than 20 is

hard to justify for such a small improvement in precision.

Table 3. Design Matrix for Main Effects

Condition Unidimensionality Population Nonequivalence a parameter c parameter

1 Ideal Ideal Ideal Ideal

2 Mild Ideal Ideal Ideal

3 Moderate Ideal Ideal Ideal

4 Severe Ideal Ideal Ideal

5 Very Severe Ideal Ideal Ideal

6 Ideal Mild Ideal Ideal

7 Ideal Moderate Ideal Ideal

8 Ideal Severe Ideal Ideal

9 Ideal Very Severe Ideal Ideal

10 Ideal Ideal Mild Ideal

11 Ideal Ideal Moderate Ideal

12 Ideal Ideal Severe Ideal

13 Ideal Ideal Very Severe  Ideal

14 Ideal Ideal Ideal Mild

15 Ideal Ideal Ideal Moderate
16 Ideal Ideal Ideal Severe
17 Ideal Ideal Ideal Very Severe

Note: See table D1 for operational definitions of each level by factor.
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Figure 4. Bootstrap Standard Errors of Equating for 20 (plot A) and 50 replications (plot

B). Sample sizes of 100 examinees were used in each replication.

Simulation Methods
Data
Reckase (1985) developed a multidimensional compensatory 3 parameter logistic

IRT model which can be considered an extension of the unidimensional 3PL model:

expla' @+d,)

1+expla/6+d,) 34

P@)=c,+(1-c,)

where

P,(0) is the probability of a correct response on item y for an examinee at ability 6,
a', is a vector of parameters related to the discriminating power of the test item,
d, is a parameter related to the difficulty of the test item,

¢, is a pseudo-chance level parameter, and

0 is a vector of trait scores for the examinee on the dimensions.

A test containing two subsets of items can be modeled with a compensatory two

dimensional IRT model in which a, = 0 for 0,in Subset One, and a; = 0 for 04 in Subset
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Two (Reckase, Ackerman, & Carlson, 1988). This is equivalent to using a
unidimensional model to simulate Subset One using & simulating Subset Two using &,
and then combining Subset One and Subset Two to form one test. | used the latter of
these two methods to generate response data from a two dimensional compensatory
model.

Items 1 - 30 made up Subset One, and items 31 — 60 made up Subset Two. &1
was used to simulate Subset One for person j, and &, was used for Subset Two and
person j. The correlation of each theta varied according to the condition. For Subset
One, item responses for 100,000 examinees per time period were simulated according to
the 3PL IRT model by sampling abilities from the & distribution and using the IRT item
parameters (Tables B1, B2, and B3 in Appendix B). Item response probabilities were
then computed according to the IRT 3PL model, and in each case, the probability was
compared to a random uniform number. If the response probability was greater than the
random number, the response was coded 1; otherwise the response was coded 0. Item
responses for subset 2 for person ;j were produced in the same manner by sampling
abilities from the & distribution. Then Subset One and Subset Two were combined to
form a single test. Once item responses were generated for each condition, Bigsteps was

used to estimate item parameters using the FPC method and separate calibration.

Item Linking Simulation Procedures

In order to perform an item parameter recovery study, it was necessary to place all

item parameter estimates on the same scale as the generated item parameters (Yen &
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Fitzpatrick, 2006). Yen and Fitzpatrick (2006) recommend linking estimated items to the
generated items to ensure that the estimated and generated item parameters are
comparable. Because the modeled data were multidimensional, an extra procedure was
necessary to link the estimated item parameters to the generating item parameters. Doran
and Kingston (1985) devised a five step procedure to place item parameters estimated
under multidimensional conditions onto the scale of the item parameters estimated under
unidimensional conditions. | used a variation of this Doran and Kingston procedure to
place the estimated item parameters from multidimensional tests onto the scale of the
generated item parameters. First, | calibrated Subset One and linked these item
parameter estimates to the scale of the generated items. Second, I calibrated Subset Two
and linked these item parameter estimates to the scale of the generated items. Finally, |
combined the linked item parameter estimates from Subset One and Subset Two to form
a complete set. Once the estimated item parameters were placed on the generated scale, |
linked all subsequent pilot items from each form in the usual manner, ignoring the
multidimensional nature of the data.

Figure 5 displays the linking plan devised for Phase One. This bank consists of
100 items. Form A in time period one consists of 60 operational items, and 20 pilot
items. According to this plan, the 20 pilot items from time period one are treated as

operational items in form B during time period two.
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items
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Figure 5. Linking Plan and Assignment of Items to Forms in Phase One

Phase Two

Phase two extended Phase One in a number of important ways. Firstly, in Phase
Two, | examined the interaction effects of violations of model assumptions. Secondly,
because the overarching purpose of this study was to define the limits of preequating and
since preequating was generally robust to violations of assumptions in Phase One, |
elected to lower the sample size from 500 to 100 in an effort to force preequating to
produce larger standard errors of equating. If preequating worked adequately with small
samples as small as 100, then the utility of the method would increase, especially for
smaller testing programs. Thirdly, to determine if equating precision and accuracy
deteriorated across item calibrations (research question 5d and hypothesis 5), | examined

equating error across five forms rather than two.
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Phase Two Manipulated Factors

The levels for all manipulated factors were reduced from five to three in Phase
Two. Because preequating proved to be quite robust to the violations in Phase One, |
focused on the more severe levels of violations in an effort to find the limit of
preequating. The a parameter was modeled again with a uniform distribution, U(0.50,
1.10), U(0.40,1.20), U(0.30, 1.30). The ¢ parameter was modeled with a uniform
distribution, U(0, 0.15), U(0, 0.20), U(0, 0.25). Population nonequivalence was modeled
at three levels, mean shift of 0, -0.60, and -1.20. (Figure 3 and Figure D1 in Appendix
D). Finally, two dimensional response data were simulated using thetas correlated at

three levels, r9192:.90, .60, and .30.

Phase Two Conditions

Crossing all the levels of four manipulated factors with all other manipulated
factors produced a 3 X 3 X 3 X 3 matrix. Table 4 shows the 81 conditions. Each
condition consisted of a sample size of 100 examinees. A total number of 20 bootstrap
samples were drawn with replacement for each experimental condition. To answer
Research Question 5, equating was performed between the base form and the new form
for all 81 conditions shown. To answer research question 5d, equating was performed
across five forms for a subset of the 81 conditions. A subset of seven conditions was
used rather than the entire 81 conditions because substantial redundancy was found in the

results across the subset of conditions. This implied that equating five forms for
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additional conditions would produce little new knowledge. Table 4 provides the number
of forms equated per condition.

To summarize and describe the interaction effects of multidimensionality,
population nonequivalence, nonequivalent a parameters, and guessing on equating error,
analysis of variance was conducted. Global measures of equating bias and SEE were
used to summarize error across all raw score points. Even though the SEE and bias
varied across the score continuum, the pattern of the variation was consistent across
conditions. The pattern of preequating bias tended to reach its maximum value at lower
raw scores and diminished across the rest of the score continuum. The pattern of the
preequating SEE tended to reach its maximum near the mean of the score distribution and
its minimum toward the scale extremes. Considering the consistency of the patterns
shown in the preequating bias and SEE, it seemed reasonable to use means to summarize
the equating error across the scale. Absolute differences between the criterion score and
the mean equated score from 20 replications were averaged across 61 raw score points to
calculate a global measure of equating bias. Absolute values were used because the
direction of bias varied across the raw score scale. The SEE was also averaged across 61
raw score points to produce the mean standard error of equating (MSEE). The mean
absolute bias of equating and the MSEE were then subjected to ANOVA to obtain effect

size measures of the main and interaction effects of all conditions in Phase Two.
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Table 4. Design Matrix for Phase Two

Violations of the 1PL Model Assumptions

Violation of the Assumption of Unidimensionality

relez =.90

Population Nonequivalence

relez =.60

relez =.30

a parameter ¢ parameter 0 -060 -120 0 -060 -1.20 0 -0.60 -1.20
U(50, 1.10) U(0, .15) 5 1 1 1 1 1 1 1 1
U(0, .20) 1 5 1 1 1 1 1 1 1
U(o, .25) 1 1 1 1 1 1 1 1 1
U(.40, 1.20) U(0, .15) 1 1 1 5 1 1 1 1 1
U(0, .20) 1 1 1 1 5 1 1 1 1
U(0, .25) 1 1 1 1 1 5 1 1 1
U(.30, 1.30) U(0, .15) 1 1 1 1 1 1 1 1 1
U(0, .20) 1 1 1 1 1 1 1 5 1
U(0, .25) 1 1 1 1 1 1 1 1 5

Note: The values in the cell indicate the number of equatings performed within each

condition.
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Phase Two Simulation Procedures

In Phase Two, data were simulated in the same manner as Phase One, however,
the linking procedure was extended to include five forms to answer question 5d. Figure 6
displays the linking plan used in Phase Two. Each subsequent form utilizes the pilot
items from the prior time period. According to this plan, 20 of 60 items in time period
two are former pilot items estimated during time period one; at time period three, 40 of
60 items in form C are former pilot items. At time period four, 60 of 60 items in form D
are former pilot items. Lastly, at time period five, none of the items in form E were
administered in time period one. In this design accumulated item bias and equating error
are likely to be detectable across the equated forms. This linking plan was thus designed
to permit me to test hypothesis 5, i.e., that equating error will increase across linkings as
item parameter error accumulates in the item bank and as the item bank grows in size.

A program in Statistical Analysis Software (SAS) 9.1 was written to perform the
simulation procedures (Appendix A). Sections of this code use Fleishman coefficients
which were adapted from code originally published by Fan and Fan (2005). Table 5 lists
the procedures used to calculate the bootstrap standard errors and bias across the three

forms.

89



ltern Bank of 160 items
- Form A :
b= B0 operational items E_D pilot
= iterns
e Form B 20 pilat
E 60 operational items itarns
o
2| Form C _
El w B0 operational tems 20 pilet
=l E iterns
o | =
I
- Form D 20 pilot
@ B0 operational items .
c iterns
0 . Fortm El't 20 pilot
2 operational items itams

Figure 6. Linking Plan and Assignment of Items to Forms in Phase Two

Analysis of the simulation results consisted of plotting the bootstrap SEE and the

bias at 60 points along the raw score scale for all equating methods for all 17 conditions.

Standard errors of equating below .10 of a raw score standard deviation were considered

sufficiently precise (Kolen & Brennan, 2004). The magnitude of systematic error in

equating was evaluated by comparing the bias of preequating with that of identity

equating and linear equating all along the raw score scale.
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Table 5. Steps to Calculating Bootstrap Standard Error and Bias Across Specified

Number of Forms

Order Step

1

w N

(¢, ]

10

11
12
13

14
15

16
17
18
19

21

22

Set up simulation
Generate 2 populations of 100,000 examinees each
Randomly sample 25,000 examinees from population 1
Obtain the base form

Create criterion conversion table
Obtain the new form
Randomly sample 25,000 examinees from population 2
Randomly assign examinees from step 2 and 5 to both forms, producing equivalent
Groups
Calculate true scores for base and new form using generated parameters and 3PL
compensatory 2D model
Equate true scores from base and new form using random groups equipercentile equating

Administer exam with pilot items
Randomly sample examinees from population 1
Create response strings using generated item parameters from base form and thetas from sample

Calibrate operational items
Estimate operational item parameters for base form using Bigsteps
Calibrate operational items in subtest 1 to generated item scale using SCSL
Calibrate operational items in subtest 2 to generated item scale using SCSL

Calibrate pilot items and preequated
Calibrate pilot items with the Rasch model using FPC and then SCSL and add pilot items to pool
Preequate new form to base form

Administer new form with pilot items
Randomly sample examinees from population 2
Create response strings using generated item parameters from new form and thetas from sample
Perform Levine true score equating (chain to original form if necessary)
Calibrate pilot items from new form using FPC and then SCSL and add pilot items
to pool

Repeat procedures
Repeat steps 4 through 8 and steps 4 through 19 for specified number of forms within
replication 1
Repeat steps 9 - 21 for 20 replications to obtain bias of equating and SEE for specified
Forms
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CHAPTER FOUR

RESULTS

Phase One

Preequating was first performed under ideal conditions to define a baseline for
comparing the performance of Rasch preequating under conditions of violated
assumptions. Figure 7 displays summary graphs for an ideal condition. Plot 1 shows
four equivalent, normally distributed theta distributions used for generating response
data. Plot 2 shows a scree plot illustrating the unidimensional nature of the data. Plots 3
through 5 display the RMSE of the assumed a, estimated b, and assumed ¢ item
parameters. These plots display the RMSE of parameters associated with each
calibration method (FPC and SCSL). Under this ideal condition the item parameters
remain uniformly flat and close to zero for all assumed and estimated parameters. Plot 6
shows the true score distributions derived from the generated theta and item parameters.
These true score distributions were used in defining the criterion equating function via
random groups equipercentile equating. The difference between these two distributions
is caused by form differences, since the two groups for each form attained equivalence
via random assignment. Plot 7 and 8 are Test Characteristic Curves derived from item

parameter estimates obtained from the FPC method and the SCSL methods, respectively.
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Figure 7. Ideal Conditions and Equating Outcomes. Note: The identity line in Plot 11 extends beyond the scale of the graph. RMSE =

Root mean squared error.
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equivalent score on the base form according to equating method. The criterion
difference was obtained from the equipercentile conversion table. Plot 10 and 11 displays
the SEE and bias of equating by method. Research Questions 1 through 4 were answered
by comparing the results from the most violated conditions to the results from the ideal

condition.

Research Question 1

Do Rasch true score preequating methods (FPC and SCSL) perform better than
postequating methods (identity and linear equating) when the IRT assumption of
unidimensionality is violated, but all other IRT assumptions are satisfied? As for the
preequating methods, does the FPC method perform at least as well as the SCSL method
under the same conditions?

Rasch true score preequating produced less equating error than the postequating
methods of identity and Levine true score linear equating, when the assumption of
unidimensionality was violated with data produced by a two dimensional compensatory
model. Rasch true score preequating was unaffected by multidimensionality. The SEE
and the bias of preequating under the most severe condition of multidimensionality
(Figure 8, plot 10 and 11) remained nearly identical to the SEE and bias of preequating
under the ideal condition (Figure 7). FPC performed as well as SCSL under

multidimensionality.
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Figure 8. Equating Outcomes under the Severely Violated Assumption of Unidimensionality. Note: The identity line in Plot 11

extends beyond the scale of the graph. RMSE = Root mean squared error.
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Research Question 2

Do Rasch true score preequating methods (FPC and SCSL) perform better than
postequating methods (identity and Linear equating) when populations are
nonequivalent, and IRT model assumptions are satisfied? Does the FPC method perform
at least as well as the SCSL method under the same conditions?

Rasch true score preequating produced less equating error than the postequating
methods of identity and Levine true score linear equating when populations were
nonequivalent and all other IRT assumptions were satisfied. The SEE and the bias of
preequating under the most severe condition of nonequivalence (Figure 9, plot 10 and 11)
remained nearly identical to the SEE and bias of preequating under the ideal condition
(Figure 7). The FPC method performed as well as the SCSL under population

nonequivalence.
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Figure 9. Equating Outcomes Under Severely Nonequivalent Populations. Note: The identity line in Plot 11 extends beyond the

scale of the graph. RMSE = Root mean squared error.
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Research Question 3

Do Rasch true score preequating methods (FPC and SCSL) perform better than
postequating methods (identity and Linear equating) when the Rasch model assumption
of equivalent item discriminations is violated, but populations are equivalent and other
IRT model assumptions are satisfied? Does the FPC method perform at least as well as
the SCSL method under the same conditions?

Rasch true score preequating produced less equating error than identity and
Levine true score linear equating when the Rasch model assumption of equivalent item
discriminations was violated. The SEE and the bias of preequating under the most severe
condition of nonequivalent item discriminations (Figure 10, plot 10 and 11) remained
nearly identical to the SEE and bias of preequating under the ideal condition (Figure 7).
This robustness to nonequivalent a parameters surfaced despite the marked increase in
RMSE in the assumed a and estimated 5 parameters (plot 4). The FPC method

performed as well as the SCSL under population nonequivalence.
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Figure 10. Equating Outcomes Under Severely Nonequivalent Item Discriminations. RMSE = Root mean squared error.
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Research Question 4

Do Rasch true score preequating methods (FPC and SCSL) perform better than
postequating methods (identity and Linear equating) when the Rasch model assumption
of no guessing is violated, but populations are equivalent and other IRT model
assumptions are satisfied? Does the FPC method perform at least as well as the SCSL
method under the same conditions?

Rasch true score preequating produced less equating error than the postequating
methods of identity and Levine true score linear equating when the Rasch model
assumption of no guessing was violated, but populations were equivalent and other
IRT model assumptions were satisfied. The SEE of preequating under the most severe
condition of guessing (Figure 11, plot 10 and 11) remained nearly identical to the SEE of
preequating under the ideal condition (Figure 7). Bias increased under the severe
condition of guessing. Equating bias was maximum at the lower end of the score scale
(plot 11), when the no guessing assumption was severely violated (plot 5). The FPC

method performed as well as the SCSL under population nonequivalence.
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mean squared error.
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Phase Two

Research Question 5a

What are the interaction effects of multidimensionality, population
nonequivalence, nonequivalent item discriminations (a parameters), and guessing (¢
parameters) on random and systematic equating error?

Table 6 displays the mean absolute bias for all conditions. The mean absolute
bias ranged from 0.51 to 1.48. The absolute bias was least when the a parameter ranged
from .40 to 1.20 and the ¢ parameter ranged from 0 to .15. The absolute bias was greatest
when the a parameter ranged from .30 to 1.30, the ¢ parameter ranged from 0 to .25, and
populations nonequivalence was -1.20. Table 7 presents 1 effect sizes for each main and
interaction effect. The interaction effect of nonequivalent a parameters and guessing
explained 67 percent of the variance in the bias of the SCSL method, and 71 percent of
the variance in the bias of the FPC method. The main effect of guessing explained 18
percent of the variance in the bias of the SCSL method, and 18 percent of the variance in
the bias of the FPC method. The main effect of nonequivalent a parameters explained ten
percent of the variance in the bias of the SCSL method, and five percent of the variance
in the bias of the FPC method. None of the other factors or interactions had meaningful

effects on the bias of preequating.
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Tabls 8
Mean Abselute hizs of Equatmp by Method

Population Monsquivalsnes Population Monsguivalanes Population Nonesquivalanes
shift =-1.20, FC{a =0, shift = -.60, FC{a =-ms07i9sz, shift = -1.20, FC{a=-tes145523,
b=lLe=-a d=0 b =10598508, © = - a, d =00Es355ET) b=l11sses12, d=00rrm9ET3)
Dimensionslity Dimensionality Dimensionalite
IEE=:I-;| IEE=:I-E f,E'=:|.3' IEE=:I-E| 1',5'=:|.E f,E'=:|.3' 1',5,5::'.; f,E'=:|.E rEE=:I-3
A C FBC SCSL FPC SCSL FPC SCSL  FPC SCSL FPC SCSL FPC SCSL FPC SCSL FPC SCSL FPC SCSL
ULS0, 110 0,15y 095 1.04 099 107 0992 108 100 109 050 106 106 1.13 105 113 079 089 098 1406
00,2 0.81 08B0 086 083 092 090 097 095 083 081 094 094 Q&Y 086 083 083 094 093
0,25 068 095 069 075 077 083 Q063 0.70 062 068 075 080 069 0.76¢ 062 068 0.67 0.72
U40, 1200 0,15 0.51 049 055 03534 057 057 051 049 060 058 062 061 053 032 056 0.534 0.54 052
00,2 080 083 090 093 099 104 082 OB 102 105 093 100 093 097 092 097 09 103
00,25 089 100 0B84 095 100 110 099 109 087 097 073 080 OB9 100 093 104 091 1.03
30,130 .. 13y 065 083 074 Q87 072 0B6 069 0DE2 069 0B84 075 087 069 083 067 0.E1 067 0E1
g, .2 068 0.79 069 080 069 079 066 O78 072 080 068 077 070 0.8 0469 079 080 087
U0,.23 139 142 134 137 131 134 131 133 134 138 140 143 146 148 136 138 1.34 137

Note: FC = Fleishman Coefficients. FPC = Fixed Parameter Calibration. SCSL = Separate Calibration with the Stocking and Lord
method. The mean absolute bias of equating was calculated by finding the absolute difference between the criterion equated score and

the estimated equated score at each score, and averaging across all 61 score points.
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Table 7

Variance of Equating Bias

Source DF SS SSTotal n? SS SSTotal n?
Stockina & Lord FPC

Populations 2 000 424 000 000 424 0.00
Dimensions 2 002 424 000 002 424 0.01
Population*Dimensions 4 001 424 0.00 002 424 0.00
a 2 042 424 010 023 424 0.05
Populations*a 4 001 424 000 001 424 0.00
Dimensions*c 4 002 424 001 003 424 0.01
Population*Dimensions*a 8 0.03 424 001 003 424 0.01
c 2 075 424 018 076 424 0.18
Populations*c 4 002 424 000 002 424 0.00
Dimensions*a 4 001 424 000 002 424 0.00
Population*Dimensions*c 8 0.01 424 000 0.02 424 0.00
a*c 4 284 424 067 302 424 071
Population*a*c 8 001 424 000 001 424 0.00
Dimensions*a*c 8 002 424 0.00 002 424 0.00

Population*Dimensions*a*c 16 0.06 424 0.01 0.06 424 0.01
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Table 8 displays the MSEE for all Phase Two conditions. The MSEE ranged
from 0.14 to 0.36. Table 9 presents n° effect sizes for each condition. The interaction of
population nonequivalence, multidimensionality, nonequivalent item discriminations, and
guessing explained the largest portion of the variance at 17 percent. While the
interactions of the violated assumptions were present, there was not a substantial amount
of total variance to explain. Violations of model assumptions had no meaningful effect
on the variance of the MSEE. These results underscore the fact that the SEE for Rasch

preequating is primarily a function of sample size.
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Table 8

Mean Standard Error of Equating (MSEE) bv Method

¥
Population Nonequivalence Population Nonequivalence Population Nonequivalence
Shift=-1.20, FC(a =0, Shift =-.60, FC(a = 049072962, Shift =-1.20, FC(a=098145923,
b=1,c=-a,d=0) b =1.05999806, c=-a, d =003639937) b=1.11999612, d=007279873)
Dimensionality Dimensionality Dimensionality
Igg = 09 Igg — 0.6 Iga — 0.3 Iga — 0.9 Igg = 0.6 Iga — 0.3 Igg — 0.9 Tgg = 0.6 Igg = 03
A C FPC SCSL FPC SCSL FPC SCSL  FPC SCSL FPC SCSL FPC SCSL FPC SCSL FPC SCSL FPC SCSL
U(50,1.10) U(0,.15) 023 020025 0 029 027 027 024 024 022 028 025 024 023 020 020023 020
U(0,.200 021 020 024 22 0.16 027 025 029 027 025 02 0.26 025023 021 023 021
U(0,.25) 0.24 3 0.18 0.1 024 023 024 022 016 027 025 025 22 0.20
U(40,1200 U(0,.15) 023 022 022 021 023 022 021 020021 01% 027 026 025 023021 019 022 021
U020y 020 0.18 030 027 018 0.17 029 027 023 021 023 02 0.3 032 020 019 02 .
U(0,.25) 027 025 024 2022 020 027 023 024 022017 016 024 022021 018 021 020
U(30,130) U(D,.15) 024 022 024 022 028 025 0 0,25 026 024 017 015 023 023 027 024 029 027
U(0,.200 023 022 028 026 0.19 0.17 25 023 025 023 019 017 024 022023 022 020 0.18
U0,25 024 021 016 014 028 025 022 020026 024 025 023 028 026029 026 026 023

Note: FC = Fleishman Coefficients. FPC = Fixed Parameter Calibration. SCSL = Separate Calibration with the Stocking and Lord

method. The MSEE was calculated by averaging the SEE across the raw score scale.
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Table 9

Variance of the Standard Error of Equating by Method

Source

DF SS SS Total

2

SS SS Total

2

n n
Stockina & Lord FPC

Populations 2 000 013 000 000 0.16 0.00
Dimensions 2 001 013 007 001 016 0.07
Population*Dimensions 4 001 013 0.07 001 0.16 o0.07
a 2 000 013 001 000 016 0.01
Populations*a 4 001 013 005 001 016 0.05
Dimensions*c 4 000 013 002 000 016 0.02
Population*Dimensions*a 8 001 013 009 001 0.16 0.09
c 2 000 013 000 000 0.16 0.00
Populations*c 4 001 013 006 001 0.16 0.06
Dimensions*a 4 002 013 012 002 016 0.12
Population*Dimensions*c 8 001 013 008 0.01 0.16 0.08
a*c 4 000 013 003 000 0.16 0.03
Population*a*c 8 002 013 013 002 016 0.12
Dimensions*a*c 8 001 013 011 002 016 011
Population*Dimensions*a*c 16 0.02 0.13 0.17 0.02 0.16 0.16
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Research Question 5b

At what levels of interaction does Rasch preequating work less effectively than
identity equating or linear equating?

There were no conditions under which Rasch preequating worked less effectively
than identity or linear equating (Figures 7 - 18). Rasch preequating produced less bias
and SEE than did the identity or Linear equating methods across all conditions (Table
10). Identity equating produced the most equating error, followed by Levine true score

linear equating, SCSL, and FPC.

Table 10. Mean Absolute Bias Across All Conditions

Levine's Stocking &
Linear True Lord
Equating Error Count Identity Score Calibration FPC
Mean Absolute Bias 81 2.41 1.61 0.91 0.85
Mean Standard 81 N/A 0.78 0.23 0.24

Error

Research Question 5S¢

How does FPC compare to SCSL in terms of equating error under the interactions?
Preequating with FPC was slightly more accurate than preequating with SCSL,
but less precise (Table 10). However, in a practical sense, the magnitudes of the

differences were negligible. This can be seen in Figure 11 which displays the mean of
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the standard errors of equating and bias from all conditions. The error lines for the FPC

and the SCSL methods are nearly indistinguishable.

>
Lo wowm o
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o0 0 5 10 15 20 25 30 35 40 45 50 55 60 g 0O 5 10 15 20 25 30 35 40 45 50 55 60
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===* Linear True Score ==== [inear True Score
== Stocking & Lord == Stocking & Lord

Figure 12. The Mean Standard Error of Equating (SEE) (plot A) and the Mean Bias of
Equating (plot B) of All Conditions by Method. The horizontal axis is the observed (raw)

score scale.

Research Question 5d

Does equating error accumulate across four equatings under the interactions?

In the ideal condition, depicted in Figure 13, the SEE increased from a maximum
of 0.37 in the first equating to a maximum of 0.75 in the fourth equating. While thisis a
substantial increase in error, the maximum value of the SEE remained below the
conservative criterion of 0.10 of a standard deviation of the raw score for this condition.
The bias remained small across all equatings.

Under moderately violated conditions, depicted in Figure 14, the SEE increased
more substantially from the first equating to the fourth equating. The SEE increased

from a maximum of 0.37 in the first equating to 0.80 in the fourth equating. The SEE
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approached the conservative criterion of 0.10 of a standard deviation of the raw score for
this condition. The bias improved across the equatings.

Under severely violated conditions, depicted in Figure 15, the SEE exceeded the
criterion at the fourth equating. The SEE increased from a maximum of 0.37 to a
maximum of 0.88.

Under the most severely violated conditions, depicted in Figure 16, the SEE
exceeded the criterion at the third equating. The SEE increased from a maximum of 0.37
to a maximum of 1.03. The SCSL method appeared to perform better in terms of bias

than did the FPC method.
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CHAPTER FIVE

DISCUSSION

This chapter presents the substantive conclusions and implications of the study.
First, the results for Phase One and Phase Two are summarized, followed by a discussion
of the four hypotheses presented in the methods section. An explanation is offered for
the cause of preequating’s sensitivity to violations of the no guessing assumption.
Results from an additional condition are then presented that provide support for this
explanation. Implications of the results of this study to classification consistency and
accuracy are discussed. The limitations of the study and suggestions for future research

are then presented.

Phase One

In Phase One, simulation results provide evidence that preequating was robust to
multidimensionality, population nonequivalence, and nonequivalent item discriminations.
The finding that Rasch true score equating is robust to violations of the assumption of
unidimensionality is consistent with studies previously conducted with the 3PL model
(Bogan & Yen, 1983; Camili, Wang, & Fesq, 1995; Cook Dorans, Eignor, & Petersen,
1985; Dorans & Kingston, 1985; Wang, 1985; Yen, 1984; Smith, 1996). However, these

findings do contradict the studies on preequating under the 3PL model that concluded
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preequating was not robust to multidimensionality (Eignor, 1985; Kolen & Harris, 1990;
Hendrickson & Kolen, 1999). Given the many types of multidimensionality that can be
present, perhaps the robustness of IRT true score equating depends on the type of
multidimensionality. This study provides evidence that Rasch true score equating is
robust to at least one type of multidimensionality: a 2D compensatory model with a
simple structure. The likely cause for this result is the fact that the JMLE procedure
targets a composite theta (Reckase, Ackerman, & Carlson, 1988). Provided that the test
forms are produced consistently according to a blueprint, the same composite measure is
targeted during parameter estimation and equating. This produces consistent and
accurate equating.

Sample sizes of 500 examinees produced very small SEE. The SEE for all
conditions remained well below the conservative criterion of 0.10 standard deviations of
the raw score. In fact the SEE remained below 0.25 of a raw score point across all
conditions. The SEE for preequating remained smaller than linear equating across all
conditions. This outcome was consistent with Kolen and Brennan’s recommendation to
use a sample of 400 examinees for Rasch true score equating (2004).

The bias of preequating remained less than Levine’s true score linear equating
method and less than the identity equating for all conditions. This result that an IRT true
score preequating method produced less equating error than linear equating is consistent
with earlier findings (Bolt, 1995; Kolen & Brennan, 2004).

The accuracy of difficulty parameter estimates in this study were negatively
affected by the nonequivalent a parameters, however, the error in the assumed « and

estimated b parameters had little effect on preequating. Preequating bias reached its
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maximum at the low end of the score scale when guessing was most severe. These
results were consistent with Du, Lipkins, and Jones’s equating study (2002).

The finding that Rasch true score preequating was not robust to violations of the
assumption of no guessing was consistent with earlier studies that suggested that the
Rasch model does not perform well under guessing (Slinde & Linn, 1978; Loyd &

Hoover, 1981; Skaggs & Lissetz, 1986).

Phase Two

In comparison to identity equating and Levine’s true score equating, Rasch
preequating performed well under the interaction effects of violated assumptions.
However, the magnitude of equating bias in some conditions would be unacceptably
large for some testing applications. The fact that a substantial interaction between
nonequivalent item discriminations and guessing was found in this study, may help
explain the contradictory results of some past studies that have examined the feasibility
of Rasch true score equating. The results of this study suggest that Rasch true score
equating is tolerant of low levels of guessing; however, if low levels of guessing interact
with moderate levels of nonequivalent item discriminations, substantial bias can appear.

It is very likely that when highly and positively skewed ability distributions
coincide with guessing or with nonequivalent discriminations and guessing, then equating
bias at the low end of the score scale would coincide with the large proportion of low
scoring examinees. It can be inferred that this condition would represent the worst case
scenario for Rasch preequating, in which a large proportion of examinees obtain scores in

the area of the score scale where equating bias is most substantial. In the testing
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situations simulated in this study, equated scores underestimated the actual score. If
accuracy of equated scores is important at the low end of the scale, as they often are for
the measurement of growth for instance, then the bias would be unacceptably large. For
criterion referenced tests, in which cut scores are located near or above the middle of the
distribution, the bias caused by violations may be small enough to be acceptable for many
applications.

Equating error did accumulate across equatings. In most conditions, the
magnitude of the accumulated error was not large enough to exceed the criteria. The bias
was inconsistent in the direction in which it changed. In some instances the bias
increased, and in other instances it decreased across equatings. In contrast, the SEE

consistently increased across linkings.

Hypotheses

Contrary to Hypothesis 1, preequating error did not exceed the criteria when
population nonequivalence exceeded .50 standard deviations. Population nonequivalence
did have a more substantial affect on linear equating. Rasch true score equating was not
affected by nonequivalent populations in this study.

Results of this study confirmed Hypothesis 2. Rasch preequating was more
robust to violations of the a parameter than the no guessing assumption. Relatively
minor violations of the no guessing assumption created substantial bias at the low end of
the score scale. In contrast, even the most severe violations of nonequivalent

discriminations created very small amounts of bias (Figure 10, plot 11).
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Hypothesis 3 stated that preequating error would increase rapidly as assumptions
were simultaneously violated. Hypothesis 3 was partially confirmed. Moderate levels of
nonequivalent item discriminations increased the negative effects of guessing
substantially. Typically this interaction increased the maximum bias slightly, but had a
greater effect on the range of bias across the score scale. Guessing alone tended to create
bias at the lower end of the score scale in the score range of 0 to 25 scale points (Figure
11, Plot 11), but if moderate levels of nonequivalent item discriminations interacted with
guessing, the range of the bias extended toward the middle of the scale (Figure 17, Plot
11). Sometimes this effect on bias was magnified across multiple equatings (Figure 15,

Plot 11). In other instances the bias diminished across equatings (Figure 14).
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Figure 17. Equating Outcomes Under the Interaction of Moderate Guessing and Moderate Nonequivalent Item Discriminations.

RMSE = Root mean squared error.
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Interactions of multidimensionality and population nonequivalence had little
direct effect on preequating error. When population nonequivalence and guessing
interacted, they tended to shrink the variance of the score distribution (compare plot 6 in
Figures 17 and Figure 18). The effect of this interaction was to lower the criterion for the
SEE (Plot 10). Otherwise, multidimensionality, population nonequivalence, and their
interactions with other factors had no significant negative effect on preequating in this

study.
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Figure 18. Equating Outcomes Under the Interaction of Severe Guessing and Moderate Levels of Nonequivalent Item Discriminations

and Moderate Levels of Population Nonequivalence. RMSE = Root mean squared error.
122



Hypothesis 4 stated that violations of model assumptions would result in error in
the item parameter estimates, which would result in increased error in the SEE and bias
via the TCC. Results of this study generally support this hypothesis, but only for
violations of the no guessing assumption and its interaction with violations of the
nonequivalent discrimination. Compensatory two dimensional data had no visible effect
on the RMSE of Bigstep’s difficulty parameter estimates (contrast Figure 7 with Figure 8,
Plot 2 and Plot 4). Population nonequivalence had no visible effect on the RMSE of
Bigstep’s difficulty parameter estimates (contrast Figure 7 with Figure 9, Plot 1 and 4).
However, violations of the assumption of equivalent discriminations substantially
increased the error in Bigstep’s difficulty parameter estimates (contrast Figure 7 with
Figure 10, Plots 3 and 4). Yet, the error introduced in the difficulty parameters and the
assumed « parameters had little effect on preequating (Figure 10, Plot 11). Violations of
the assumption of no guessing also increased the error in Bigstep’s difficulty parameter
estimates (contrast Figure 7 and Figure 11, plots 3 and 4). Although error in the
difficulty parameters may have had some effect on the equating, the primary cause of the
equating error under the conditions with modeled guessing resulted from the Rasch
model predicting lower true scores (Figure 11, Plot 7 and 8) than what the generated
parameters were capable of producing (Plot 6). Because the Rasch model TCCs
predicted the lowest true score to be zero, the Raphson Newton method began its search
at a raw score of zero, many points below where it actually should have begun. It
appears that as a direct result of starting at the incorrect minimum raw score, the Raphson

Newton method produced biased results.
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The bias introduced by guessing is a symptom of a more general problem in
Rasch true score preequating. Namely, the further away from zero that a raw score
distribution begins, the greater the bias. If the minimum raw score is close to zero, then
the bias remains local to very low scores; however, if the minimum raw score is distant
from zero, then bias spreads across the score continuum.

To investigate this more general problem further, | produced a condition with no
violated assumptions, except that the test form was very easy relative to the ability of the
population (Figure 19). Using a form so mismatched to the ability of the population is
not considered good practice, but in some testing contexts, low scores are not common.
Although not shown, the Test Information Function would not be well aligned with the
ability distribution of the examinees. This condition produced a negatively skewed score
distribution (Plot 6), which resulted in a minimum raw score of ten points. This
condition created the same type of equating bias at the low end of the score range (Plot
11) that guessing produced. These results clearly show that it is not guessing alone that
can cause equating bias at the extremes of a score scale, but such bias will appear in
preequated conversion tables anytime the minimum or maximum raw score does not

match the minimum or maximum of the scale.
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Figure 19. Equating Outcomes When All Assumptions are Satisfied and the Difficulty of the Test is Misaligned with the Ability of the

Examinees. RMSE = Root mean squared error.
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In Rasch true score postequating, this problem could be addressed by starting the
Rapshon Newton procedure at the lowest raw score of the new form and then using
Kolen’s ad hoc procedure (Kolen & Brennan, 2004) to estimate equivalents between the
minimum raw score and all incorrect raw score. However, in a preequating context, the
minimum raw score is unknown. Using estimates for the pseudo-guessing parameter
would probably be the best approach to this problem. Other solutions to this problem may
be possible.

These results have implications for testing programs that use Rasch true score
equivalent scores to classify examinees. If guessing is present and/or the test forms are
not well matched to the ability of examinees, classification inaccuracy will probably
increase under preequating. Classification inaccuracy will probably increase because cut
scores for standards are usually defined on the first form produced for a testing program.
Bias in the equating would underestimate or overestimate equivalent scores of examinees
around the cut score, thereby creating incorrect classification decisions. The magnitude
of bias and classification inaccuracy would likely be consistent across forms to the extent
that the forms are parallel and the population is stable. Because relatively easier new
forms, produce equivalent scores that are negatively biased, easier forms would tend to
increase false negative decisions at the cut score.

Consistency of classification would not be affected as much by high minimum
raw scores induced by guessing or easy forms as would classification accuracy. It is
likely that examinees would all be affected in a similar manner by the bias observed in
this study. Relative to large sample equipercentile equating, low ability examinees would

receive lower equated scores caused by the bias introduced via high minimum raw scores
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induced by guessing and easy forms. If a pilot study was conducted for the purpose of
defining a cut score, and then classification decisions began with the second form, then
all classified examinees would likely be classified consistently, provided test assembly
procedures are well defined and consistent. Otherwise, if the cut score is applied to
examinees from the first form, examinees around the cut score would likely be affected
differently in the first form than subsequent forms.

In general, accumulating item parameter error did increase preequating error
across four equatings, confirming hypothesis 5. The SEE increased in magnitude with
each new equating, although rarely exceeding the criterion by the fifth form. The bias
was less predictable than the SEE. The bias was not constant across multiple equatings,

sometimes increasing, and sometimes decreasing.

Recommendations

Based on the results of this study, Rasch true score preequating can be
recommended for sample sizes of 100 or more, provided that precision and accuracy is
required only around the mean of the score distribution, and provided that only two forms
are being equated. As violations of model assumptions increase and the item bank
increases, random error can quickly accumulate to produce high levels of SEE. To
prevent this, items in the pool could be recalibrated as the sample sizes grow, thereby
keeping random equating error in check. Even under violated conditions, Rasch true
score preequating generally produced better equating results than identity or linear
equating. For instance, criterion referenced tests that have cut scores high in the scale

score would be appropriate tests to use with Rasch true score preequating. Results of this
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study do support the use of measuring growth via true score postequating, provided that
Kolen’s ad hoc procedure is used to produce equivalent scores between all incorrect and
the lowest raw score. Results from this study do not support the use of Rasch true score
preequating for tests that do not produce scores at or near zero and that require accuracy
at the extremes of the score scale. If accuracy all along the score scale is needed and if
raw scores of zero are unlikely, then Rasch true score preequating should not be used. If
accuracy and precision is needed all along the score continuum, then one may use the
3PL model if sample sizes permit it. Rasch true score postequating with Kolen’s ad hoc
procedure is a better alternative to preequating when accuracy is needed all along the
score scale.

Although sample size was not manipulated in this study, inferences can be made
concerning sample size. If at all possible, sample sizes of 500 should be used in Rasch
true score equating, especially if guessing is known to be present. To a limited extent,
the effects of violations of IRT assumptions on the RMSE of equating can be offset by
increasing the sample size from 100 to 500, thereby reducing the random component of
equating error. Not only would the larger sample size offset a small portion of the
equating bias, but a larger sample size will help to keep the SEE in check across multiple
equatings.

Results of this study support the use of either FPC or SCSL in developing a
calibrated item bank. FPC has a cost advantage over SCSL, since SCSL requires the use
of additional software and expertise in item linking. In contrast, FPC offers the
advantage of using the same software to estimate and calibrate the items in the bank,

saving considerable time, effort, and cost. However, this cost savings is lost if DIF
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analysis is performed during the equating process, since DIF analysis requires two sets of
item parameter estimates. DIF analysis is recognized as a best practice, as a means of
screening common items during the equating process (Kolen & Brennan, 2004). Also, a
limitation of this study was that the TCCs were mostly parallel. If the TCCs were not
parallel, the SCSL method may produce better results than the FPC method, since the
SCSL accommodates mean differences in the a parameter between forms, and the FPC
method always assumes the a parameter is equal to one, both within and across forms.
So, this study demonstrated that FPC is a viable procedure on its own for parallel TCCs,
but if TCCs are not parallel, or if DIF analysis is to be performed, separate calibration
may be the best alternative, since it provides two sets of estimates for each item.

There are both advantages and disadvantages to implementing preequating. The
primary advantage to using preequating is that scores can be released immediately at the
end of the test administration. However, a disadvantage to reporting scores immediately,
is that no review of the items can be conducted after the test is administered. Therefore,
to prevent any unexpected problems with items, careful attention should be given to the
appearance of items to ensure that they are presented identically to past presentations of
the items. Also, it is advisable to keep items in relatively the same position across forms
(Kolen & Brennan, 2004). Moreover items used for scoring and calibration purposes
should be carefully selected for the property of population invariance. All of these
safeguards should reduce the risk of items performing differently than expected. Even
still, it is advisable to implement preequating with a postequating design and inspect the
performance of the method for a time period, before replacing postequating with

preequating to a calibrated item bank (Kolen & Brennan, 2004).
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Limitations

As previously stated, to make this study feasible many factors that would likely
affect the performance of preequating have been held constant. Item parameter drift was
not an active variable, although in a real world context, items do tend to drift both
nonuniformly and uniformly. While studies have suggested that item parameter drift has
negligible effects on normal equating (Wells, Subkoviak, & Serlin, 2002), item parameter
drift may have a strong negative effect on preequating since preequating depends on
precalibrated items. In order for the results of this study to hold, parameter drift may
have to be minimal or all together absent. The effects of parameter drift on equating
could be the focus of a future study.

This study used 20 items as pilot items during each administration; as a result, a
large number of items (60) are shared in common between forms. Having a maximum
number of common items is ideal for CINEG equating and in fact was chosen for this
reason, but may not be typical. Many linking designs require a minimum of common
items between forms so as to minimize item exposure. Researchers should take care not
to assume that the results of this study will apply to test forms that share a moderate to
minimum number of common items (i.e., 20% to 50%).

Item context effects also pose a major threat to preequating (Kolen & Brennan,
2004). This study did not manipulate item context effects, so, the results generalize to
items that are not susceptible to item context effects. In order to use Rasch preequating
successfully, practitioners should exclude common items that show any susceptibility to
context effects.

In this study unrounded equivalent raw scores were used in calculating random
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error and systematic error. Standard errors of rounded raw scores or scales scores could
also have been used to evaluate preequating. The drawback to using scale scores is that
they are very specific to a testing program, and so results do not generalize well to other
programs with different scales. However, the SEE of scale scores will be larger than
those of unrounded equivalent scores.

Another limitation to the study is the fact that test form similarity was not
manipulated. The magnitude of the difference between the forms was held constant. The
magnitude of the shift in the difficulty parameters was quite large (-.50 standard
deviations), so I suspect that most item banks would be able to produce forms less
dissimilar as this. The TCCs were also mostly parallel. If the average discrimination of
two forms differed substantially, then the results may not apply. In that situation, the
SCSL method may produce better results than the FPC method, since the SCSL
accommodates mean differences in item discriminations between forms.

A two dimensional compensatory model was used to simulate violations of
unidimensionality. More than three dimensions may produce different results. The use
of a noncompensatory model may have resulted in a different outcome as well. This
study examined two dimensional tests with a simple structure, in that subtest one scores
depended exclusively on dimension one, and subtest two scores depended exclusively on
dimension two. However, a test could be multidimensional in other ways, such as when a

positive response to an individual item depends on multiple dimensions.
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Future research

Because this study used a true experimental design, it attains a high degree of
internal validity; however, simulation studies are sometimes criticized for having low
external validity, since real data are not used. It could be argued that this study achieved
a higher level of realism than most simulation studies, since four factors were
manipulated simultaneously to produce multiple, concurrent model violations.
Nonetheless, it would be advisable to perform additional research using actual data to
validate the feasibility of Rasch true score preequating.

Applying different equating criteria to the simulation results may have produced
different interpretations of the outcomes. A follow up study could be performed to
investigate the effectiveness of Rasch preequating using Lord’s equity criteria. While
this study focused on the limitations of Rasch preequating, other studies could focus on
strategies to extend the limitations defined by this study. For instance, Kolen and
Brennan have suggested the use of double linkings as a strategy to reduce the SEE (Kolen
& Brennan, 2004). Another study could examine the effect of using double or triple links
on the SEE across multiple equatings.

Another line of inquiry could examine the effect of repeating examinees on Rasch
preequating. Repeating examinees would likely alter the score distribution over time and
may represent an additional source of error in the item bank.

A logical extension of this study would be to vary the number of common items
used across forms, and vary the length of the test. As mentioned in the literature review
of this paper, prior studies have suggested that equating results largely depend on the

number and quality of common items. Since the current study used a relatively large
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number of common items, it would be valuable to know if the findings of this study hold
true even when operational forms contain as few as 20 percent of the operational items in
common. It also would be interesting to see if these results hold true with very short or
very long tests.

Since high minimum raw scores induced by guessing or very easy tests, proved to
be the biggest threat to the accuracy of true score equating with the Rapshon Newton
method, a follow up study could be performed to investigate alternative approaches to
dealing with minimum raw scores that are distant from zero. Kolen devised an ad hoc
procedure for the 3PL model, using linear interpolation to extend the conversion table to
scores between the sum of the ¢ parameters and all incorrect raw scores (Kolen &
Brennan, 2004). A new procedure needs to be developed that can accommodate score
distributions that do not extend to all incorrect raw scores for a preequating context. For
instance, would preequating results improve if the Rapshon Newton procedure was set to
start at the minimum raw score of the base form distribution, rather than zero? In this
same line of thinking, would a constant ¢ parameter improve true score equating?
Empirical work can be performed on strategies to obtain a good constant ¢ parameter
estimate under small sample sizes. It appears to me that any improvement to the false
assumption that the ¢ parameter equals zero, would improve preequating results. This
leads me to believe that an IRT model that assumes equivalent a parameters, models b
parameters, and models a constant ¢ parameter, may produce better preequating results

than Rasch preequating.

133



Conclusion

For those who use the Rasch model, this study offers insight into the limitations
of true score preequating. Rasch preequating will not produce accurate equating at the
extremes of the score scale, if the range of the scores do not extend across the entire score
continuum. This scenario can be caused by guessing or by forms that are not well
matched to the ability of the examinees. The bias at the extremes of a score scale may be
irrelevant to testing programs that use scores for pass/fail decisions, especially if the cut
score is close to the mean of the distribution. If a program requires accurate equating all
along the score scale, Rasch true score postequating with the Rapshon Newton method
will likely produce accurate results, provided the Raphson Newton method starts at the
minimum raw score rather than zero. The FPC method is a cost efficient and effective
approach to building the calibrated item bank, but separate calibration may be the best

calibration choice to facilitate DIF analysis in the equating process.
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/*********************************************************************/

/[* TRUE SCORE PREEQUATI NG SI MULATI ON PROGRAM
[* TH S PROGRAM CONTAI NS MACROS TO SI MULATED THE FOLLOW NG
*
-
/ *
/ *
/ *
/ *
/ *
/ *

A SI MPLE 2 DI MENSI ONAL FACTCOR STRUCTURE

POPULATI ON NONEQUI VALENCE, | NCLUDI NG MULTI DI MENSI ONAL SKEWNESS
3PL | TEM PARAMETERS FOR OPERATI ONAL AND PI LOT | TEMS

DI CHOTOMOUS | TEM RESPONSES

PARAVETER ESTI MATI ON USI NG BI GSTEPS

| TEM CALI BRATI ON USI NG FPC | N Bl GSTEPS

| TEM LI NKI NG USI NG POLYST ( STOCKI NG AND LORD METHOD)

[* CREATI ON OF A CALI BRATED | TEM POCL

[* UNLI M TED ADM NI STRATI ONS AND UNLI M TED REPLI CATI ONS

/* lO ESTI MATI ON OF ESTI MATED PARAVETER STANDARD ERRCRS AND BI AS
/* NOTE: I N ORDER TO RUN THESE MACROCS, BI GSTEPS AND POLYST MJUST BE
*/

/* STORED I N THE FOLDER DEFI NED BY THE ' &OUTPATH MACRO VARI ABLE

*/

/*********************************************************************/

CONPOTE®WNE

DATA A (TYPE=CORR);

_TYPE_=' CORR';

I NPUT _TYPE_ $ X1 X2 Y1 Y2 ;
CARDS;

MEAN 0 00O

N 500 500 500 500

STID 1111

CORR 1. . .

CORR .90 1 .

CORR .90 .90 1 .
CORR .90 .90 .90 1
- PROC PRINT: RUN:

%MACRO MAKE_POPULATI ONS

(X1A=-0.0, X1B = 1, X1C = 0, X1D =0,
X2A=-0.0, X2B = 1, X2C = 0, X2D =0,
Y1A=-0.0, Y1B = 1, YiC = 0, Y1D =0,
Y2A=-0.0, Y2B = 1, Y2C = 0, Y2D =0,

QUTPATH = C:\ DI SSERTATI ON S| MULATI ON, CONDI TI ON= COND1, COR = .90,
SHIFT_P = -0, PRINT = *);

DATA AA(type=corr);

SET A

IF _N_ =5 THEN X1 = &COR; /*NMANI PULATE THE CORRELATI ONS*/
IF _N_ =6 THEN X2 = &COR; /*MANI PULATE THE CORRELATI ONS*/
IF _N_ =7 THEN X1 = &COR; /*MANI PULATE THE CORRELATI ONS*/
IF _N_ =7 THEN Y1 = &COR; /*MANI PULATE THE CORRELATI ONS*/
&PRI NT PROC PRI NT;

RUN;

PRCC PRI NT DATA = A RUN;

PRCC FACTOR DATA = AA NFACT = 4 QUTSTAT=FACOUT NOPRI NT;
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TI TLEL " CORRELATI ON = &COR ";
TITLE2 " ";

TITLE3 " ";

RUN;

DATA PATTERN. SET FACOUT;

| F _TYPE_=' PATTERN ;

DROP _TYPE_ _NAME ;

RUN;

PRCC PRI NT DATA = FACOUT,;
TITLE "FACTOR PATTERN ";
RUN;

DATA N_FACTORS;

SET FACOUT;

| F 1| NDEX( UPCASE(_NAME_) , "FACTOR') ;
CALL SYMPUTX (' N_FACTORS', N);
RUN;

/********************************************************************

Not e: This next section of code was adapted from Fan & Fan (2005)
**************************************************************/

PROC | M;

USE PATTERN, * USE THE FACTOR PATTERN NATRI X;

READ ALL VAR _NUM_ I NTO F;

F=F; * DI AGONAL NMATRI X CONTAI NI NG STDS FOR 4 VARI ABLES;

00
0 0,
10
01

X=RANNOR( J( 100000, 4, 0)); * GENERATE A DATA MATRI X (100000xN_FACTORS);
X=X : * TRANSPOSE THE DATA MATRI X (4x100000);

Z=F*X; * TRANSFORM UNCORRELATED VARI ABLES TO CORRELATED ONES;

Z=Z": * TRANSPOSE THE DATA MATRI X BACK (100000x4):

* FLEI SHVAN POAER TRANSFORMATI ON FOR EACH OF 4 VARI ABLES;

X1= &X1A + &X1B *Z[, 1] +&X1C *Z[ , 1] ##2- &X1D *Z[ , 1] ##3; | * CHANGE THE SHAPE
HERE* /

X2= &X2A +&X2B *Z[, 2] +&X2C *Z[ , 2] ##2- &X2D *Z[ , 2] ##3; | * CHANGE THE SHAPE
HERE* /

Yl= &Y1A + &Y1B *Z[, 3] +&Y1C *Z[, 3] ##2- &Y1D *Z[ , 3] ##3; | * CHANGE THE SHAPE
HERE* /

Y2= &Y2A +&Y2B *Z[, 4] +&Y2C *Z[, 4] ##2- &Y2D *Z[ , 4] ##3; | * CHANGE THE SHAPE
HERE* /

Z=X1| | X2| | Y1| | Y2;

Z=7*STD; *TRANSFORM THE SCALES OF THE VARI ABLES TO SPECI FI ED STDS;
CREATE DAT FROM Z[ COLNAME={ X1 X2 Y1 Y2}];

APPEND FROM Z;

/*******************************************************************

Note: This indicates the end of the section of code that was adapted
from Fan & Fan (2005)***********************************************/

DATA DAT,;

SET DAT;

Y1l Y1 + &SHI FT_P; /*SH FT THE ENTI RE DI STRI BUTI ON LEFT*/
Y2 Y2 + &SH FT_P;
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CANDI D_| D_X =COVPRESS(' X' || _N);
CANDI D I D_Y =COVPRESS(' Y' || _N);

&PRI NT PROC PRI NT;

RUN;

/ *TRUE THETAS FOR EACH GROUP*/
DATA GROUPX;

SET DAT,;

KEEP CANDI D_I D _X X1 X2,

RUN;

DATA GROUPY,
SET DAT,;
KEEP CANDI D ID Y Y1 Y2,

RUN;

PROC MEANS DATA=DAT N MEAN STD SKEW KURT,;
VAR X1 X2 Y1 Y2,
QUTPUT QUT = ALLSTATS

SKEW =

SKEWL SKEW?

KURT=KURT1 KURT2

MEAN =

STD =

RUN:

MEAN1 MEAN2
STD1 STD2

DATA ALLSTATS;
SET ALLSTATS;

CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
RUN;

SYMPUTX (' MEANL' , ROUND( MEANL, .01 ));
SYMPUTX (' STDL', ROUND( STDL, .01) );

SYMPUTX (' SKEWL' , ROUND( SKEWL, .01)) ;
SYMPUTX (' KURT1' , ROUND( KURT1, .01) );

SYMPUTX (' MEAN2' , ROUND( MEAN2, .01 ));
SYMPUTX (' STD2' , ROUND( STD2, .01) );

SYMPUTX (' SKEW2' , ROUND( SKEW2, _01)) ;
SYMPUTX (' KURT2' , ROUND( KURT2, .01) );

%PUT &MEANL,

PRCC CCORR DATA =DAT NOSI MPLE;
VAR X1 X2 Y1 Y2 ;

RUN, QUIT;
DATA DAT;

SET DAT;

XX1 = ROUND( X1, .1);
XX2 = ROUND(X2, .1);
YY1 = ROUND(Y1, .1);
YY2 = ROUND(Y2, .1);

&PRI NT PROC PRI NT;
&PRI NT VAR XX1 XX2 YY1 YY2; RUN,

RUN;

PRCC FREQ DATA = DAT NOPRI NT;
TABLE XX1 / OUT =QUT1,;

RUN;
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&PRI NT PROC PRI NT DATA = QUT1; RUN;

PROC FREQ DATA = DAT NOPRI NT;
TABLE XX2 / OUT =QUT2;
RUN;

PROC FREQ DATA = DAT NOPRI NT;
TABLE YY1 / OUT =QUT3;
RUN;

PRCC FREQ DATA = DAT NOPRI NT;
TABLE YY2 / OUT =QUT4;
RUN;

DATA QUTL,
SET QUT1,
RENAME XX1
THETA = 1,
RUN;

DATA QUTZ,
SET QUTZ,
RENAME XX2
THETA = 2;
RUN;

VALUE;

VALUE;

DATA QUTS;
SET QUTS;
RENAME YY1
THETA = 3;
RUN;

VALUE;

DATA QUT4,
SET QUT4,
RENAME YY2
THETA = 4,
RUN;

VALUE;

DATA BOTH,
SET OQUT1 QUT2 QUT3 QUJT4;
&PRI NT PROC PRI NT; RUN;

SYMBOL1 | =3 C=BLUE W1 H=1;
SYMBOL2 |=J C=RED W1 H=1;
SYMBOL3 | =J C=BLACK Wr1l H=3.5;
SYMBOL4 |1 =) C=GREEN W1 H=3.5;
SYMBOLS 1= C=ORANGE W2 H=3.5;
SYMBOL6 | =J C=PURPLE W2 H=3.5;
SYMBOL7 1= C=YELLOW W2 H=3.5;

/*MAKE FOLDER FOR OQUTPUT*/

OPTI ONS NOXWAI T ;

Data _null _;

call system ("nkdir &OUTPATH &CONDI TI ON');
RUN;

ODS PDF FI LE = " &OUTPATH &CONDI TI ON\ POPULATI ONS. PDF";
PROC GPLOT DATA = BOTH,
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PLOT COUNT* VALUE=THETA;

TI TLE1 " POPULATI ON ABI LI TY DI STRIBUTI ONS - CORRELATION = &COR';
TITLE2 "STAT ABILITY 1 ABILITY 2";

TI TLE3 " MEAN &VEANL &VEAN2" ;

TITLE4 "STD &STD1 &STD2";

TI TLE5 " SKEW &SKEW &SKEWR" ;

TI TLE6 " KURT &KURT1 &KURT2" ;

RUN;

QIT;

ODS PDF CLOSE;

DATA DAT,;

SET DAT,;

FI LE " &OUTPATH &CONDI TI ON\ POPULATI ON X. TXT " DSD;
PUT CANDID ID X X1 X2 ;

RUN;

DATA DAT,;

SET DAT,;

FI LE " &OUTPATH\ &CONDI TI ON\ POPULATI ON Y. TXT " DSD;
PUT CANDID ID Y Y1 Y2 ; RUN,

QT

DATA _NULL_:

COR = &COR

CALL SYMPUTX (' COR ', COR);
RUN;

%MEND:;

152



/ * MAKE | TEM PARAVETERS*/

%MACRO MAKE_| TEM PARAMS( PRI NT = *, THETA2 = .10, OUTPATH=

C:\ DI SSERTATI ON\ S| MULATI ON, CONDI TION = COND1, N_OPER | TEMS = 60, Al
=.30 , A2 =.85, B1=0, B2=1, Cl= .001):

DATA | TEM PARAVS;

ARRAY A [ &N _OPER | TEMS] Al - A&N_OPER | TEMNS;

ARRAY B [ &N _OPER | TEMS] Bl - B&N_OPER | TEMNG:

ARRAY C [ &N _OPER | TEMS] Cl - C&N_OPER | TEMNS:

DO | =1 TO & _OPER | TENS;

SEED = 989898989; / * CONSI DER SAVI NG A SAS GENERATED SEED FOR FUTURE
REPLI CATI ON*/

Al1] = ((RAND(' UNI FORM ) * &A1) + &A2):

B[1] = RAND(' NORMVAL', &B1, &B2):
d1] = RAND(' UNI FORM ) * &CL;
END;

&PRI NT PROC PRI NT;

RUN;

PROC TRANSPOSE DATA= | TEM PARAMS OUT = T_I TENS;
VAR Al - A&N OPER | TEMS Bl- B&N OPER | TEMS Cl - C&N OPER | TEMS;
RUN;

&PRI NT PROC PRI NT DATA = T_I TEMS; RUN;

DATA T_| TEMNS;

SET T_I TEMVS;

I F I NDEX(_NAME ,' A')> O THEN PARAM = ' A’ :

I F INDEX(_NAME , ' B )> O THEN PARAM = ' B':

I F INDEX(_NAVE_,' C )> 0 THEN PARAM = ' C ;
SEQUENCE = COVPRESS(_NAME_ , 'A B, C) :
RUN;

PROC SCRT DATA = T_| TEMS;

BY SEQUENCE;

RUN;

PRCC TRANSPOSE DATA = T_I TEMS QOUT= TT_I TEMS;
| D PARAM

VAR COL1;

BY SEQUENCE;

RUN;

DATA TT_| TEMVS;

SET TT_I TEMS;

| TEM D = COVPRESS(" | TEM' | | SEQUENCE) ;
RUN;

DATA TRUE_| TEM PARAMVETERS;
RETAI N | TEM D SEQUENCE A B C
SET TT_I TEMS;

ORDER = | NPUT( SEQUENCE, 8.);
DROP _NAME_;

PROC SORT;

BY ORDER;

&PRI NT PROC PRI NT;

RUN;

&PRI NT PROC PRI NT DATA = TRUE_|I TEM PARAMETERS; RUN;
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PRCC MEANS DATA = TRUE_I TEM PARAMETERS,
VAR A B C
RUN;

/*ADD THE OPERATI ONAL | TEMS TO THE POOL OF GENERATED | TEMS */
OPTI ONS NOXWAI T ;

Data _null _;

call system ("nkdi r &OUTPATH &CONDI TI ON\ REP1\ | TEMS") ;

RUN;

DATA BASE FORM | TEMS;

SET TRUE_| TEM PARAMVETERS;

IF _N_ =< 30 THEN ABILITY = 1;

IF _N_> 30 THEN ABILITY = 2;

IF ABILITY = 2 THEN B = B - &THETAZ;

FORM = "A"; ADM N_EVENT = 1; CAL_METHOD = ' GENERATED ;

FI LE " &OUTPATH &CONDI TI ON\ REP1\ | TEMS\ GENERATED_POOL. TXT" DSD;

PUT FORM $ ADM N_EVENT CAL_METHOD $ ITEM D $ SEQUENCE A B C ABI LI TY;
&PRI NT PROC PRI NT;

RUN;

%MEND,;
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%MACRO ASSEMBLE_FORM (PRINT = , THETA2 = 0, OUTPATH=, CONDI TI ON=COND1,
REPLI CATI ON=REP1, ADM N_EVENT =1, N_PILOT_I TEMS= 20, FORM = A, Pl LOT_FORM
=B, SHFT =1, START_ITEMID = 61, REPLACE = N);

DATA TRUE_| TEM PARAMETERS;

I NFI LE " &OUTPATH\ &CONDI TI ON\ REP1\ | TEMS\ GENERATED POOL. TXT" DSD;

| NPUT FORM $ ADM N_EVENT CAL_METHOD $ |ITEM D $ ORDER A B C ABI LI TY;
&PRI NT PROC PRI NT;

RUN;

PROC PRI NT DATA = TRUE_| TEM PARANMETERS; RUN;

DATA PI LOT_I TEMS;

SET TRUE_I TEM PARAMETERS;

IF N < 61;

RUN;

DATA PI LOT | TEMS;

SET PI LOT_I TEMS;

R = RAND(" NORMAL', 0, 1) ;
PROC SORT;

BY ORDER;

&PRI NT PROC PRI NT;

RUN;

DATA PI LOT_| TEVS;
SET PI LOT_| TENS;

| TEM D = COVPRESS(' | TEM || _N +&START ITEMID - 1 );
ORDER2 = N + &START ITEMID - 1 ;

IF _N_ <= & PILOT_| TEVS;

NEWB =B + &SHI FT :

*NEW B = RAND(' NORVAL', &SHIFT, 1) + B;

DROP B SEQUENCE R ORDER ;

&PRI NT PROC PRI NT;

RUN;

DATA PI LOT_I TEMS;
SET PI LOT_I TEMS;

IF _N_ =<10 THEN ABILITY = 1,
IF _N_>10 THEN ABILITY = 2;
IF ABILITY = 2 THEN B = B - &THETAZ;

FORM = " &PI LOT_FORM';

RENAME NEW B = B ORDER2 =CRDER
&PRI NT PROC PRI NT;

RUN;

DATA SET1 SETZ2,

SET TRUE_I TEM PARAMETERS,

| F ABILITY =1 THEN OUTPUT SET1,
IF ABILITY = 2 THEN OQUTPUT SETZ2,
RUN;

PROC SORT DATA = SETI1,

BY DESCENDI NG CORDER,

PROC PRI NT; RUN,

PROC SORT DATA = SETZ2,

BY DESCENDI NG CRDER;

PRCC PRI NT; RUN,

DATA SET1,
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SET SET1,

IF _N_ =<30;
RUN;

DATA SET2;
SET SET2;

IF _N_ =<30;
RUN;

DATA TRUE_| TEM PARAMETERS,
SET SET1 SET2 PI LOT_| TEMS;
PROC SORT,

BY ORDER;

RUN;

DATA TRUE_I TEM PARAMETERS,
SET TRUE_I TEM PARAMETERS,
SEQUENCE = ORDER,

RUN;

PROC PRI NT DATA = TRUE_|I TEM PARAMETERS;

TI TLE "FORM = &ORM “;

RUN;

/ * MAKE FOLDER FOR | TEMS*/

OPTI ONS NOXWAI T ;

Data _null _;

call system ("nkdir &OUTPATH &CONDI TI ON\ &REPLI CATI ON\\ | TEMB") ;
RUN;

/* MAKE FOLDER FOR FORMS*/

OPTI ONS NOXWAI T ;

Data _null _;

call system ("nkdi r &OUTPATH &CONDI TI ON\ &REPLI CATI ON\ FORMB" ) ;

RUN;

DATA TRUE_| TEMS;

SET TRUE_| TEM PARAMVETERS;

FI LE " &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ FORMS\ FORM &FORM . TXT " DSD;
PUT ORDER ITEMD A B C ABILITY;

RUN;

/*ADD JUST THE PI LOT | TEMS TO THE POOL OF GENERATED | TEMS */

DATA BASE_FORM | TEMS;

SET TRUE_ I TEM PARAMETERS;

IF _N_ >60;

ADM N_EVENT = &ADM N_EVENT; CAL_METHOD = ' GENERATED ;

FI LE " &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ | TEVMS\ GENERATED POOL. TXT" DSD
MOD;

PUT FORM $ ADM N_EVENT CAL_METHOD $ | TEM D $ SEQUENCE A B C ABI LI TY;
&PRI NT PRCC PRI NT;

RUN;

%MEND,;
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%MACRO SPI RAL (PRI NT = *, OUTPATH =C:\ DI SSERTATI ON\ SI MULATI ON,
CONDI TI ON = COND1, SAMPLE_SI ZE = 50000);

DATA POPX:;

| NFI LE " &OUTPATH &CONDI TI ON\ POPULATI ON X. TXT " DSD;
I NPUT CANDID_ID X $ THETAL THETA2 ;

GROP =' X' ;

RUN;

DATA POPX:;

SET POPX;

R = RAND(' NORMAL' , O, 1)

PROC SORT;

BY R

RUN;

DATA POPX:;

SET POPX;

IF _N_ =< &SAWPLE_SI ZE;

RUN;

DATA POPX;

SET POPX;

COUNT +1;

| F COUNT =5 THEN DO,
COUNT = 1;

END;

RUN;

DATA GRPX1 GRPX2 CGRPX3 GRPX4;
SET POPX;
I F COUNT
| F COUNT
RUN;

1 THEN OUTPUT GRPX1;
2 THEN OUTPUT GRPX2;

DATA POPY;

| NFI LE " &OUTPATH &CONDI TI ON\ POPULATI ON Y. TXT " DSD;
I NPUT CANDID_ID X $ THETAL THETA2 ;
GROP ='Y' ;

RUN;

DATA POPY;

SET PCPY:

R = RAND(' NORMAL' , O, 1)

PROC SORT;

BY R

RUN;

DATA POPY;

SET PCPY;

IF _N_ =< &SAWPLE_SI ZE;

RUN;

DATA POPY;

SET POPY;

COUNT +1;

| F COUNT =5 THEN DO,
COUNT = 1;

END;

RUN;

DATA GRPY1 GRPY2 CRPY3 GRPY4;
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SET POPY;
I F COUNT
I F COUNT
RUN;

1 THEN OUTPUT GRPY1,
2 THEN QUTPUT GRPYZ;

DATA GRPLXY;

SET GRPX1 GRPY1,
PROC SORT,;

BY GROUP;

RUN;

DATA GRP2XY,

SET GRPX2 GRPY2;

PROC SORT,;

BY GROUP;

RUN;

DATA GRP1XY,

SET GRP1XY;

FI LE " &OUTPATH &CONDI TI ON\ GRP1LXY. TXT " ; /*RETRI EVE FORM FROM FI RST
REPLI CATI ON*/

PUT CANDI D I D X THETA1L THETAZ2 GROUP;
RUN;

DATA GRP2XY,

SET GRP2XY;

FI LE " &OUTPATH\ &CONDI TI ON\ GRP2XY. TXT " ; /*RETRI EVE FORM FROM FI RST
REPLI CATI ON*/

PUT CANDI D_| D X THETA1 THETA2 GROUP,

RUN;

PROC MEANS DATA = GRPLXY;
VAR THETAL THETA2;

OUTPUT OUT = MN_GRP1XY:
RUN;

DATA MN_GRPLXY;

SET MN_GRP1XY;

FI LE " &OUTPATH\ &CONDI TI ON\ MOVENTS_GRPLXY. TXT " ;
PUT _STAT_ THETAL THETA2;
RUN;

PROC MEANS DATA = GRP2XY;
VAR THETAL THETA2;

OUTPUT OUT = MN_GRP2XY:;
RUN;

DATA MN_GRP2XY;
SET MN_GRP2XY;

FI LE " &OUTPATH &CONDI TI ON\ MOVENTS_GRP2XY. TXT " :
PUT _STAT THETAL THETA2;

RUN;

%MEND;
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%MACRO GET_POP_TRUE_SCORES( PRI NT =* |, EXCLUDE_FORM = , POOL =YES , PCP =,
LIMT_POOL = 300, GROUP = 1, SAMPLE_SI ZE= 100, OUTPATH=

C: \ DI SSERTATI ON\ SI MULATI ON, CONDI TI ON =COND1, REPLI CATI ON = REP1, FORM
= A, ADM N EVENT = 1, START_THETAL = 1, N TEMS= 80, N_OPER | TEMS=60,
END_THETAL = 30, START_THETA2 = 31,

END THETA2 = 60, CAL_METHOD = STOCK_LORD, START_PI LOT_THETAL =

61, END_PI LOT_THETAL = 70, START_PILOT_THETA2 = 71, END PI LOT_THETA2 =
80) ;

[*GET THE | TEM I DS FOR THE SPECI FI ED FORM FROM THE CGENERATED FORMS*/
% F &POOL = YES %HEN %O

DATA FORVEBFORM

I NFI LE " &OUTPATH\ &CONDI TI ON\ REP1\ | TEMS\ GENERATED_POCL. TXT " DSD,

/ *RETRI EVE FORM FROM FI RST REPLI CATI ON*/

I NPUT FORM $ ADM N METHCD $ ITEMD $ ORDER A B C ABILITY;

RUN;

DATA FORMEFORM

SET FORMEFORM

*I'F FORM NE " &EXCLUDE_FORM';
I F FORM EQ " &FORM';

RUN;

YEND;

% F &POOL NE YES %HEN %0,

DATA FORVEFORM

I NFI LE " &OUTPATH\ &CONDI TI ON\ REP1\ FORMS\ FORM_&FORM . TXT " DSD;
/ *RETRI EVE FORM FROM FI RST REPLI CATI ON*/

I NPUT ORDER ITEMD $ A B C ABILITY;

RUN;

DATA FORVEBFORM

SET FORVEBFORM

IF _N_ =<60;
RUN;

YEND;

DATA _NULL_;

SET FORMEFORM
CALL SYMPUTX (' N_IN FORM, _N_):
RUN;

[ *GET THE POPULATI ON*/

DATA RESPONSES;

I NFI LE " &OUTPATH\ &CONDI TI ON\ GRP&CROUP. XY. TXT " ; /*RETRI EVE FORM FROM
FI RST REPLI CATI ON*/

I NPUT CANDID_ID X $ THETAL THETA2 GROUP $;

RUN;

YO | = 1 %0 &N_I N_FORM
DATA TEST&! :

SET FORMBFORM

IF N = &;

CALL SYMPUTX (' A ,A);

159



CALL SYMPUTX ('B'
CALL SYMPUTX (' C
CALL SYMPUTX (' AB
RUN;

,B);
,C);
ILITY , ABI LI TY);

/ * MODEL RESPONSES TO SUBTEST 1 OPERATI ONAL TEST*/
%WF &BILITY = 1 9%HEN %O,

DATA RESPONSES;

SET RESPONSES;

P& = &C + (1- &C)* (EXP(&A* 1* (THETAL- &B))/ (1 +EXP(&A* 1*( THETAL -
&B))));

R& = RAND(' UNI FORM ):

X& = 0;

|F P& > R& THEN X& = 1;

RUN;

YEND;

%F &BILITY = 2 9%HEN %O,

DATA RESPONSES;

SET RESPONSES;

P& = &C + (1- &C)* (EXP(&A* 1* (THETA2- &B))/ (1 +EXP(&A* 1*( THETA2 -
&B))));

R& = RAND(' UNI FORM ):

X& = 0;

|F P& > R& THEN X& = 1;

RUN;

YEND;

DATA RESPONSES;

SET RESPONSES;

TRUE_SCORE = SUMOF P1 - P& _IN_FORM);/*FIRST X N | TEVS ARE
OPERATI ONAL*/

PERCENT_TRUE_SCORE = TRUE_SCORE/ &\_| N_FORM

EXP_TRUE_SCORE = PERCENT TRUE_SCORE* 60;

RUN;

YEND;

DATA RESPONSES&GROUP. _&FORM

SET RESPONSES;

EXP_TRUE_SCORE = ROUND( EXP_TRUE_SCORE, 1) ;

&PRI NT PROC PRI NT;

RUN;

PROC FREQ DATA = RESPONSES&GROUP. &FCRM NOPRI NT;
TABLE EXP_TRUE_SCORE/ OUT = FREQ &FORM

RUN;

DATA FREQ &FORM

SET FREQ & ORM

COUNT_&FORM = COUNT;

RUN;

PROC PRI NT DATA = FREQ &FORM

TI TLE " FREQUENCY OF ROUNDED EXPECTED TRUE SCORES FOR FORM &FORM AND
GROUP &GROUP “;

RUN;
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DATA FREQ &FORM

SET FREQ &FORM

N_| TEVS =&N_| N_FORM ;

FI'LE " &OUTPATH\ &CONDI TI ON\ FREQ &FORM . TXT " DSD;
PUT EXP_TRUE_SCORE COUNT_&FORM PERCENT N_| TENS;
RUN;

%MEND,;

161



%MACRO EQUI PERCENTI LE_EQUATE (PRI NT =*, OUTPATH =
C. \ DI SSERTATI ON\ SI MULATI ON, BASE = , NEWFORM = , CONDI TION = CONDL );

DATA FREQ &BASE;

| NFI LE " &OUTPATH\ &CONDI TI ON\ FREQ &BASE. . TXT " DSD;
| NPUT EXP_TRUE_SCORE COUNT_&BASE PERCENT N_| TEMVS ;
&PRI NT PROC PRI NT;

RUN;

DATA FREQ &NEWFORM

I NFI LE " &OUTPATH\ &CONDI TI ON\ FREQ_&NEWFORM . TXT " DSD;
I NPUT EXP_TRUE_SCORE COUNT_&NEWORM PERCENT N_| TEMS ;
&PRI NT PROC PRI NT;

RUN;

DATA DI STRI B;

DO EXP_TRUE_SCCRE =0 TO 60 BY 1,
QUTPUT; END;

&PRI NT PROC PRI NT;

RUN;

DATA DI STRI B2;

MERGE DI STRI B FREQ &BASE FREQ &NEWFORM
BY EXP_TRUE_SCORE;

|F COUNT_&BASE = . THEN COUNT_&BASE

| F COUNT_&NEWFORM = . THEN COUNT_&NEWFORM

non
oc

CONVERSI ON = EXP_TRUE_SCORE;
DROP CQUNT PERCENT;
RUN;

OPTI ONS NOXWAI T ;

Data null _;

call system ("nkdir &OUTPATH &CONDI TI ON\ POP_EQUATI NG &NEWFORM') ;
RUN,;

OPTI ONS NOXWAI T ;

Data null _;

call system ("CD &OUTPATH EQUI PERCENTI LE") ;

CALL SYSTEM (" COPY RAGE. EXE

&OUTPATH\ &CONDI TI ON\ POP_EQUATI NG &NEWFORM') ;

CALL SYSTEM (" COPY TEMPLATE_PRE_EQ SAS

&QOUTPATH &CONDI TI ON\ POP_EQUATI NG\ &NEWFORM' ) ;

CALL SYSTEM (" COPY TEMPLATE_PRE. SAS

&OUTPATH\ &CONDI TI ON\ POP_EQUATI NG &NEWFORM' ) ;

CALL SYSTEM (" COPY TEMPLATE_PCST. SAS

&QUTPATH\ &CONDI T1 ON\ POP_EQUATI NG\ &NEWFORM' ) ;

CALL SYSTEM (" COPY W N. CTL &OUTPATH\ &CONDI TI ON\ POP_EQUATI NG &NEWFORM') ;
CALL SYSTEM (" COPY BAT. BAT &OUTPATH &CONDI TI ON\ POP_EQUATI NG\ &NEWFORM') ;
CALL SYSTEM (" COPY CONTROL. TXT

&OUTPATH\ &CONDI TI ON\ POP_EQUATI NG &NEWFORM') ;

RUN;

DATA DI STRI B2;

SET DI STRI B2;

FI LE " &OUTPATH\ &CONDI TI ON\ POP_EQUATI NG &NEWFORM EQUI P. TXT *;
PUT EXP_TRUE_SCORE COUNT_&NEWFCRM COUNT_&BASE CONVERSI ON,
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RUN;

OPTI ONS NOXWAI T ;

Data null _;

call system ("nkdir &OUTPATH &CONDI TI ON\ POP_EQUATI NG &NEWFORM') ;
RUN;

OPTI ONS NOXWAI T ;

Data _null _;

call system ("CD &OUTPATH\ &CONDI TI ON\ POP_EQUATI NG &NEWFORM') ;
call system ("BAT. BAT");

RUN;

DATA EQUATI NG RESULTS;

| NFI LE " &OUTPATH\ &CONDI TI ON\ POP_EQUATI NG\ &NEWFORM OUT. TXT "
I NPUT @ WORDS $80. @ SCORE 11. @2 SE 11. @3 NOSMOOTH 11.;
| F | NDEX( UPCASE( WORDS) , " RAW SCORE MOVENTS FOR POSTSMOOTHI NG ") >0 THEN
STOP = 1;

|F STOP = 1 THEN CALL SYMPUTX ('STOP', N);

RUN; %PUT &STOP;

DATA EQUATI NG RESULTS;

SET EQUATI NG RESULTS;

IF _N_ < &STOP:

| F SCORE NE _;

DROP WORDS STOP;

RUN;

DATA FORMA;
DO SCORE =0 TO 60 BY 1,
OUTPUT; END; RUN,

DATA EQUATI NG_RESULTS;

SET EQUATI NG_RESULTS;

A= NOSMOOTH,

KEEP SCORE A,

RUN;

&PRI NT PROC PRI NT DATA = EQUATI NG_RESULTS; RUN;

DATA EQUATI NG_RESULTS2,

VERGE FORMA EQUATI NG_RESULTS;

BY SCORE;

&PRI NT PROC PRI NT;

RUN;

DATA EQUATI NG_RESULTS2;

SET EQUATI NG_RESULTS2;

NEWFORM = " &NEWFORM' ;

FI LE " &OUTPATH &CONDI TI ON\ EQUI PERCENTI LE_CONV_TABLE. TXT " MOD,
PUT NEWFORM SCORE A ; /*NEWORM FORVA FORM_NEW /
RUN;

%MEND;
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%MACRO MAKE_RESPONSES (PRI NT =* , SAVMPLE_SI ZE= 100, OUTPATH=
C: \ DI SSERTATI ON\ S| MULATI ON, CONDI TI ON =COND1, REPLI CATI ON = REP1,
= X, FORM= A, ADM N _EVENT = 1, START THETAL = 1, NI TEMS= 80,
N_OPER | TEMS=60, END THETAL = 30, START THETA2 = 31,

END THETA2 = 60, START PILOT THETAL = 61, END PI LOT_THETAL = 70,
START_PI LOT_THETA2 = 71, END_PI LOT_THETA2 = 80);

/ * MODEL RESPONSES*/
DATA DAT,

GRrOUP

I NFI LE " &OUTPATH\ &CONDI TI ON\ POPULATI ON &GROUP. . TXT " DSD ; /*RETRI EVE

FORM FROM FI RST REPLI CATI ON*/
| NPUT CANDI D_| D_&CGROUP $ THETAl THETAZ2 ;
RUN;

DATA THETAS;

SET DAT,;

R = RAND(' NORVAL', 0, 1); /*RANDOWMLY ORDER EXAM NEES*/
PROC SORT,;

BY R

RUN;

DATA RESPONSES;

RETAI N CANDI D_| D_&GROUP THETA1 THETAZ2,

SET THETAS;

IF _N_ <= &SAMPLE_SI ZE; / * SELECT FI RST 100 EXAM NEES*/
DROP R,

&PRI NT PROC PRI NT;

RUN;

/ * MAKE FOLDER FOR QUTPUT*/

OPTI ONS NOXWAI T ;

Data _null _;

call system ("nkdi r &OUTPATH &CONDI TI ON\ &REPLI CATI O\\ ABI LI TI ES") ;
RUN;

/ * PLACE EXAM NEES | N FOLDER*/
DATA RESPONSES;

SET RESPONSES;

ADM N_EVENT = &ADM N_EVENT;
METHOD = " GENERATED';

FORM = " &FORM';

FI LE " &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ABI LI TI ES\ GENERATED_THETAS. TXT "

DSD MOD;
PUT FORM ADM N_EVENT METHOD CANDI D_| D_&GROUP THETA1 THETAZ,
RUN;

[ * END*/

[ *GET THE TRUE | TEM PARAVETERS*/

DATA TRUE_I T_PARAMS;

I NFI LE " &OUTPATH\ &CONDI TI ON\ REP1\ FORMS\ FORM _&FORM . TXT " DSD;
/ *RETRI EVE FORM FROM FI RST REPLI CATI ON*/

INPUT CRDER ITEMD $ A B C ABILITY;

&PRI NT PROC PRI NT;
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RUN;

WO | = 1 %0 &NI TEMS;

DATA TEST& ;

SET TRUE_ | T_PARAVS;

IF N = &;

CALL SYMPUTX (' A ,A);

CALL SYMPUTX ('B',B);

CALL SYMPUTX (' C ,C);

CALL SYMPUTX (' ABILITY' , ABILITY);
RUN;

/ * MODEL RESPONSES TO SUBTEST 1 OPERATI ONAL TEST*/

%F &BILITY = 1 9%HEN 9%DO, / * MAKE SUBTEST ONE CORRESPONDI NG TO THETAL*/
DATA RESPONSES;

SET RESPONSES;

P& = &C + (1- &C)* (EXP(&A* 1*( THETAL- &B))/ (1 +EXP(&A* 1* ( THETAL -
&B))));

R& = RAND(' UNI FORM ) ;

X&l = 0;

|F P& > R& THEN X& = 1;

RUN;

YEND;

/*MODEL RESPONSES TO SUBTEST 2 OPERATI ONAL TEST*/

%WF &BILITY = 2 %HEN %0 / * MAKE SUBTEST TWO CORRESPONDI NG TO THETA2*/
DATA RESPONSES;

SET RESPONSES;

P& = &C + (1-&C)* (EXP( &A* 1* (THETA2- &B))/ (1 +EXP(&A*1*( THETA2 -
&B))));

R& = RAND(' UNI FORM );

X&l = 0;

|F P& > R& THEN X& = 1;

RUN;

%END,;

DATA RESPONSES;

SET RESPONSES;

SUBL = SUM OF X&START THETAL - X&END THETA1):
SUB2 = SUM OF X&START THETA2 - X&END THETA2);
COWPCS| TE = ( THETAL + THETA2)/ 2;

TRUE_SCORE = SUMOF P1 - P& _OPER | TEMB);/*FIRST X N | TEVMS ARE
OPERATI ONAL*/

PERCENT_TRUE_SCORE = TRUE_SCORE/ &_OPER_| TEMS;
OBSERVED_SCORE = SUBL + SUB2;

RUN;

YEND;

&PRI NT PROC PRI NT DATA= RESPONSES;

&PRI NT VAR CANDI D_| D_&GROUP TRUE_SCORE PERCENT_TRUE_SCORE THETA1 THETAZ2
SUBL1 SUB2 X1 - X50;

RUN;

DATA RESPONSES;

SET RESPONSES;

LENGTH STRING $ 100.;

ARRAY C[ &NI TEMS] X1 - X&NI TEMS;

DO J =1 TO &N TEMs;
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STRING = COMPRESS(STRING | T J]);
END;

&PRI NT PROC PRI NT;

RUN;

&PRI NT PROC PRI NT data = responses;run;

PROC CCORR DATA= RESPONSES;

VAR SUB1 SUB2 THETA1 THETA2 TRUE_SCORE OBSERVED SCORE ;

RUN;

/ *MAKE A PERVANENT RECORD OF THE CRI TERI ON TRUE SCORES AND THETAS*/

DATA CRI TERI ON_MEASURES:

RETAI N FORM REPLI CATI ON CANDI D_| D &GROUP THETA1 THETA2 COMPOSI TE SUBL
SUB2 TRUE_SCORE PERCENT TRUE_SCORE OBSERVED SCORE;

SET RESPONSES;

FORM = " &FORM';

CONDI TI ON = " &CONDI TI ON';

REPLI CATI ON = " &REPL| CATI ON';

KEEP FORM REPLI CATI ON CANDI D_| D_&GROUP THETAL THETA2 COMPOSI TE SUBL
SUB2 TRUE_SCORE PERCENT TRUE_SCORE OBSERVED SCORE;

FI LE " &OUTPATH\ &CONDI TI ON\ CRI TERI ON_SCORES. TXT " DSD MOD;

PUT FORM REPLI CATI ON CANDI D_| D &GROUP THETA1 THETA2 COMPOSI TE SUB1 SUB2
TRUE_SCORE PERCENT_TRUE_SCORE OBSERVED SCORE ;

RUN;

/*SEND THE RESPONSE MATRI X OUT FOR LI NEAR EQUATI NG*/

OPTI ONS NOXWAI T ;

Data _null _;

call system ("nkdir

&QOUTPATH\ &CONDI Tl ON\ &REPLI CATI O\\ ADM N&ADM N_EVENT\ LI NEAR") ;
RUN;

DATA LI NEAR_DATA;

SET RESPONSES,;

FORM = " &FORM';

KEEP FORM CANDI D_| D_&GROUP X1 - X&N_OPER | TEMS;
RUN;

proc export data=LI NEAR DATA

out fil e="&OUTPATH &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ LI NEAR\ EXAM
. DAT" dbns=dl m r epl ace;

delimter=",6";

run;

%MEND,;
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%MACRO COPY_FORMS( CONDI TI ON = COND, OQUTPATH =C: \ DI SSERTATI ON\\ SI MULATI ON,
FI LE = FORMS);

OPTI ONS NOXWAI T

Dat a
cal |
RUN;

_null _;

system (" nkdir &OUTPATH &CONDI TI ON\ REP1\ FORMS") ;

OPTI ONS NOXWAI'T

Dat a
cal |
RUN;

_null _;

system (" nkdir &OUTPATH &CONDI TI ON\ REP1\ | TEMS") ;

OPTI ONS NOXWAI T;

Dat a
cal |
CALL
CALL
CALL
CALL
CALL
CALL
RUN;

_null _;

system (" CD &UTPATH\ &FI LE") ;

SYSTEM (" COPY FORM A. TXT &OUTPATH\ &CONDI TI ON\ REP1\ FORMS" )

SYSTEM (" COPY FORM B. TXT &OUTPATH\ &CONDI TI ON\ REP1\ FORMS") :

SYSTEM (" COPY FORM C. TXT &OUTPATH\ &CONDI TI ON\ REP1\ FORME" ) ;

SYSTEM (" COPY FORM D. TXT &OUTPATH\ &CONDI TI ON\ REP1\ FORMS") ;

SYSTEM (" COPY FORM E. TXT &OUTPATH &CONDI TI ON\ REP1\ FORMS") ;

SYSTEM (" COPY GENERATED POOL. TXT &OUTPATH &CONDI TI ON\ REP1\ | TEMS') ;

%MEND;
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%MACRO CALI BRATE (PRINT = *, LINK_METH=STOCKI NG, ESTI MATE =Y,
ADM N_EVENT = 1, LINK_START=1, LINK_STOP=60, N_LINK_ | TEMS=60, FORMEA,
BASE FORM = A, GROUP = X, BASE POOL = GENERATED, BASE CAL_METHOD =
GENERATED, QUTPATH =C: \ DI SSERTATI O\\ SI MULATI ON , CONDI TI ON =CONDL
REPLI CATI ON = REP1, CAL_METHOD = SEPARATE, SEPARATE=, N SELECTED = 80,
FIRST_OPER ITEM D = 1, FIRST_PILOT_I TEM D=61, N_REPLACED= 0,
CALI BRATE_PILOTS =, FPC = );
OPTI ON MLOG C SYMBOLGEN,
% F &ESTI MATE = Y %HEN %0,
OPTI ONS NOXWAI T ;
Data _null _;
call system ("nkdir
&OUTPATH\ &CONDI Tl ON\\ &REPLI CATI ON\ ADM N&GADM N_EVENT\ &CAL_VETHOD') ;
RUN;

DATA RESPONSESZ;

SET RESPONSES;

FI LE
" &OUTPATH &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_ METHOD\ EXAM DA
T

PUT @ CANDID | D &GROUP @1 STRING ;
RUN;

% F &REPLI CATI ON NE 1 % HEN %G,
OPTI ONS NOXWAI T ;
Data _null _;
call system ("nkdir
&OUTPATH\ &CONDI Tl ON\\ &REPLI CATI ON\ | TEMB" ) ;

RUN;
OPTI ONS NOXWAI T ;
Data _null _;

call system ("CD
C: \ DI SSERTATI ON\ SI MULATI ON\\ &CONDI TI ON\ REP1\ | TEMB") ;

CALL SYSTEM (" COPY GENERATED POOL. TXT
&OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ | TEMS") ;

RUN;

YEND;

OPTI ONS NOXWAI T ;
Data _null _;
call system ("CD C.\ D SSERTATI O\\ SI MULATI ON") ;
CALL SYSTEM (" COPY BI GSTEPS. EXE
&QOUTPATH\ &CONDI Tl ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHOD') ;

RUN;

DATA TEMP_:

LI NE14 = "DFI LE=DEL. TXT";
BLANK = " ":

LINE13 = "PFILE = EXAM N. TXT";
LI NE10 = "I AFI LE= ANCHOR. | AF";

LI NE15= " MUCON=100";
% F &SEPARATE = Y 9@HEN %DO,

/ * SEPARATE CAL| BRATI ON W TH LI NKI NG*/
CALL SYMPUTX ('LINE14', LINE14) ;
CALL SYMPUTX ('LINE13', LINE13) ;
CALL SYMPUTX (' LINELO', BLANK);
YEND;
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RUN;

% F &CALI BRATE_PI LOTS = Y %HEN %0,

DATA TEMP_:

SET TEMP_;

CALL SYMPUTX (' LINE14', BLANK) ;/*REMOVE THE COMMAND TO

DELETE THE PILOT | TEMS*/

CALL SYMPUTX (' LINE13', LINEL3) ;/* */

CALL SYMPUTX (' LINE10', BLANK);

YEND;

%F &PC = Y %HEN %0,

DATA TEMP_;

SET TEMP_;

CALL SYMPUTX (' LINE14', LINE13) ;

CALL SYMPUTX ('LINE13', LINE15);/*MJCON COMVAND TO
LIM T | TERATI ONS TO 100*/

CALL SYMPUTX (' LINE10', LINEL0);

YEND;

RUN;
|/ * CREATE W NSTEPS SYNTAX FI LE FOR */
data rasch;

LI NE1 = " & NST";

LINE2 = " TITLE=" &CAL_METHOD FORME&FORM M
LINES = " N =&N_SELECTED';

LINE4 = " | TEMI=11";

LINES = " NAME1=1";

LINE6 = " PERSON=EXAM NEE";

LINE7 = " | TEM=I TEM';

LI NE8 = " CCDES=10 ";

LI NE9 = " DATA=EXAM DAT";

LI NE1O = "&l inel0";

LI NE11 = "I FI LE=I TEMS. TXT";

LI NE12 =" CGRFI LE=GRFI LE. TXT";

LI NE13 = "&LI NE13";

LI NE14 = "&LINE14 "; /*PRCOVWP=S*/
LI NE1S = " ";

LI NE1l6 = " &END';

run,

PROC TRANSPOSE DATA = RASCH QUT = T_RASCH,
VAR ALL ;
RUN;
/*BU LD THE COMVAND PAGES FOR Bl GSTEPS*/
DATA T_RASCH,
SET T_RASCH,
FI LE
" &QOUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL _METHCD\ Bl G I N.
CON ";
PUT @1 CO.1;
RUN;

/*1 NCREMENT THE | TEM I D LI ST*/

DATA _NULL_;

STOP = &N _SELECTED + &FI RST_OPER | TEM D - 1;
START = &FI RST_OPER | TEM D

CALL SYMPUTX (' START', START );
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CALL SYMPUTX (' STOP', STOP );
RUN;
/*PRINT THE | TEM | D LI ST*/
DATA FORVEFORM
| NFI LE
" &OUTPATH\ &CONDI TI ON\ REP1\ FORVB\ FORM &FORM . TXT" DSD;
| NPUT SEQUENCE ITEMD $ A B C; &RI NT PROC PRI NT;
RUN;

DATA FORVEBFORM ;

SET FORVEBFORM

FI LE
" &OUTPATH &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHCD\ Bl G_I N.
CON'" MOD,

PUT @1 I TEM D;

RUN;

DATA CCCC,

FI LE
" &OUTPATH\ &CONDI Tl ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_VETHCD\ Bl G_| N.
CON" MOD;

PUT @1 "END NAMES";

RUN;
[/ * MAKE THE DELETE FI LE*/
data Pl LOT;
file

" &QOUTPATH &CONDI Tl ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_ METHOD\ DEL. TXT

run,

DO | = 61 %O 80;
data PI LOT;
file

" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_ METHOD\ DEL. TXT
" MOD,

put @ n &I n ,

run;

YEND,

% F & CAL_METHOD = FPC %HEN %0,

/ *RETRI EVE THE | TEM POOL*/

DATA FI XED2;

SEQUENCE = N_:

| NFI LE
" &OUTPATH &CONDI TI ON\ &REPLI CATI ON\ | TEMB\ FPC_POOL. TXT" DSD ;

INPUT FORM $ ADM N CAL_METHOD $ | TEM D $ ORDER
ABC:;

RUN;

/*RETRI EVE THE NEW FORM | TEM | DS*/

DATA FORM_ I TEM DS;

I NFI LE
" &OUTPATH\ &CONDI TI ON\ REP1\ FORVB\ FORM _&FORM . TXT" DSD; / * USE FORM | N
FI RST REPLI CATI ON*/

| NPUT SEQUENCE ITEMD $ A B C

KEEP | TEM D,
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&PRI NT PROC PRI NT; RUN;
PROC SCRT DATA = FORM. I TEM DS; BY | TEM D; RUN,;
PROC SORT DATA = FI XEDZ; BY | TEM D; RUN,;

DATA FI XED3;
MERGE FI XED2 (IN =H) FORM ITEM DS (IN =J);

BY | TEM D;

IFH IF J;

ORI G_ORDER = | NPUT( COMPRESS(I TEM D, ' I TEM ), 8.) ;
PROC SORT;

BY ORI G_ORDER;

&PRI NT PROC PRI NT; RUN;

DATA FI XED3;
SET FI XEDS3;
NEW FORM SEQ = N ;
FI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHOD\ ANCHOR
| AF"
PUT NEW FORM SEQ +1 B +10 | TEM D;

RUN;
YEND;
/*control Bigsteps*/
data bi g bat;
lines = "bigsteps BIGIN con BIG QUT.txt";
run;
data bi g_bat;
set big_bat;
file

" &QOUTPATH &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHCD\ Bl G. BAT

put @ Ilines;
run;

OPTI ONS noXWAIT ; /*command stops SAS and gives
DOS and CIPE control until they are finished.*/

Data _null _;/*frequently used trick to perform
a process reserved for data steps.*/

call system ("CD
&QOUTPATH\ &CONDI Tl ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHOD\ ") ;
/*trigger the batch file*/

call system ("BI G BAT "); /*trigger the batch
file*/

run; QU T,;

DATA BIG N;

RUN;

% ET NOBS = 1;*SET NOBS TO 1,
%.ET CNTR =0;

%0 %NTI L( &NOBS>1 OR &CNTR =20) ;

DATA _NULL_;
CNTR = &CNTR +1;
CALL SYMPUTX (' CNTR , CNTR);
RUN;
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DATA BI G N,
CAL_METHOD = "&CAL_NETHOD "
| NFI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_MVETHOD\ | TEMB. T
XT " TRUNCOVER;
| NPUT
@ SEQUENCE $6. @ MEASURE $7. @9 COUNT $6.
@6 SCORE $5. @3 ERROR $ 6.
@9 IMNSQ $ 6. @6 |ZSTD $7. @4 OWNSQ $6.
@1 OzSTD $8. @0 DI SPL $5. @6 PTBS $4.
@5 | TEM D $12. ;
RUN;
DATA THETI N;
TIME = 1;
CAL_METHOD = "&CAL_METHOD "
| NFI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_VETHOD\ EXAM N.
TXT " TRUNCOVER:
| NPUT
@ SEQUENCE 6. @ MEASURE 7. @9 COUNT 6.
@6 SCORE 5. @3 ERROR 8.
@9 IMNSQ 8. @6 1ZSTD 6. @4 OWNSQ 6.
@1 OZSTD 6. @9 DISPL 5. @6 PTBS 5.
@1 RECORD $ 7.;
RUN;

DATA THETI N,

SET THETIN,;

| F ERROR NE _;
&PRI NT PROC PRI NT;
RUN;

PROC CONTENTS DATA = Bl G N OUT=CHECK;
RUN;

DATA _NULL_;

SET CHECK;

CALL SYMPUTX (' NOBS' , NOBS ) ; RUN;
YEND;

DATA BI GSTEPS N ;
set BIGN;
IF error ne " ";

&PRI NT PROC PRI NT;

&PRI NT TI TLE " &N _SELECTED ";
&PRI NT TI TLE2 " ";

run,

* CONVERT ALL OF THE CHARACTER VARI ABLES TO NUVERI C
VARI ABLES;
DATA Bl GSTEPS_N;
SET BI GSTEPS_N;
ARRAY CHAR [11 ] SEQUENCE MEASURE COUNT SCORE ERROR | MNSQ
| ZSTD OMNSQ CZSTD DI SPL pTBS :
ARRAY NUM [ 11 ] SEQUENCE_ MEASURE_ COUNT_ SCORE_ ERROR_
I MNSQ_ | ZSTD. OMNSQ_ OzSTD_ DI SPL_ pTBS_ ;
DO = 1 TO 11;
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NUM 1] = INPUT(CHAR[ ], 8.);
END;, DROP SEQUENCE MEASURE COUNT SCORE ERROR | MNSQ
| ZSTD OMWNSQ CZSTD DI SPL pTBS :
RUN;

DATA BI GSTEPS_N;

SET BI GSTEPS_N;

KEEP | TEM D MEASURE_;
| F MEASURE_ NE _;
PROC SORT;

BY | TEM D,

&PRI NT PROC PRI NT;
RUN;

/ *PLACE EXAM NEES | N FOLDER*/

DATA THETI N;

SET THETI N,

ADM N _EVENT = &ADM N_EVENT;

LI NKED = "UNLI NKED";

METHOD = " &CAL_METHOD';

FORM = " &FORM';

FI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ABI LI TI ES\ UNLI NKED THETAS. TXT " DSD
MOD;

PUT FORM ADM N_EVENT METHOD LI NKED RECORD
MEASURE;

RUN;

[ * PLACE EXAM NEES | N FOLDER*/

OPTI ONS NOXWAI T

Data null _;

call system ("nkdir
&OUTPATH\ &CONDI Tl ON\ &REPLI CATI ON\ | TEMS" ) ;

RUN;

DATA Bl GSTEPS N;

SET Bl GSTEPS N;

A E =1;

C E =0;

ADM N_EVENT = &ADM N_EVENT;

LI NKED = "UNLI NKED";

METHOD = " &CAL_NETHOD';

FORM = " &FORM';

FI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ | TEMS\ UNLI NKED | TEMS. TXT " DSD MOD;

PUT FORM ADM N _EVENT METHOD LINKED ITEMD A E
MEASURE  C E;

RUN,;

%END; /*END THE ESTI MATI ON STEP*/
[ * PERFORM LI NKI NG*/
/[ *MAKE FI LE FOR POLYST*/

% F &CAL_METHOD NE FPC %HEN %G / * NO LI NKI NG
| S DONE UNDER FPCt/
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% F &CALI BRATE PI LOTS = N %HEN %DC,

DATA Bl GSTEPS N;

SET Bl GSTEPS N;

ORDER = | NPUT( COVPRESS(I TEM D, ' I TEM ), 8.);

| F ORDER >60 AND ORDER <81 THEN DELETE; / * DROP
THE PI LOT | TEMS*/

PROC SORT;

BY | TEM D;

RUN;

%END,;

/| *GET THE BASE FORM | TEMS*/

DATA BASE FORM | TEMS;

| NFI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI O\\ | TEMB\ &BASE_CAL_MVETHOD.  POOL. TXT"
DSD;

| NPUT FORM $ ADM N EVENT CAL_METHOD $ ITEMD $
SEQUENCE A B C;

&PRI NT PRCC PRI NT;

RUN;

% F &REPLI CATI ON NE REP1 AND &BASE_CAL_METHOD =
GENERATED %HEN %0,

DATA BASE_FORM | TEMS;

SET BASE_FORM | TEMS;

IF FORM = "A";

RUN;

YEND;

/*1 NCLUDE OR EXCLUDE PI LOT | TEMS*/
% F &CALI BRATE PI LOTS = N %HEN %DGC,
DATA BASE FORM | TEMS2;

SET BASE FORM | TEMS;

ORDER = | NPUT( COVMPRESS(I TEM D, ' I TEM ), 8.);
/*EXCLUDE PI LOT | TEMS*/

| F ORDER >60 THEN DELETE;

PROC SORT NODUP;

BY | TEM D;

RUN;

%END,;

% F &BASE_CAL_METHOD = GENERATED 9%THEN %DO,
DATA BASE_FORM | TEMS2;

SET BASE_FORM | TEMS;

C= 0;/*SET C TO 0*/

ORDER = | NPUT( COVPRESS(I TEM D, ' | TEM ), 8.);
/ * SELECT El THER SUBTEST 1 OR SUBTEST 2*/
PROC SORT NODUP;

BY ORDER

RUN;

DATA BASE_FORM | TEMS2;

SET BASE_FORM | TEMB2;

| F ORDER => &L NK_START AND ORDER =<
&LI NK_STOP;

PROC SORT NCDUP;

BY | TEM D;
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RUN;
YEND;

% F &CALI BRATE_PI LOTS = Y %IHEN %0,
DATA BASE_FORM | TEMS2;
SET BASE_FORM | TEMS;

ORDER = | NPUT( COMPRESS(I TEM D, ' I TEM ), 8.);

*| F ORDER >80 THEN DELETE;/*| NCLUDE PI LOT | TEMS
ALONG W TH THE OTHER | TEMB*/

PROC SORT NCDUP;

BY | TEM D;

RUN;

&PRINT PROC PRI NT DATA =
BASE_FORM | TEMS2; RUN;

YEND;

DATA COVMON_| TENS:;
SET BASE_FORM | TEMS2;

LENGTH | $12.;

| = | TEM D;

KEEP | :

&PRI NT PROC PRI NT;

RUN;

DATA COVMON_| TENS:

SET COWON_| TEMS;

RENAME | = | TEM D;

RUN;

PROC SORT DATA = COWMON_ | TEMS NCDUP;
BY | TEM D; RUN;

% F &BASE_CAL_METHOD = GENERATED %IHEN %G,
PROC SORT DATA= BI GSTEPS N,

BY ORDER;

RUN;

DATA BI GSTEPS_NN,
SET BI GSTEPS_N;

| F ORDER => &LI NK_START AND ORDER =<
&LI NK_STOP;

RUN;

%END;

% F &BASE_CAL_METHOD NE GENERATED %'HEN %O,

DATA BI GSTEPS NN,
SET Bl GSTEPS N;
RUN;

%END,;

PROC SORT DATA = BI GSTEPS_NN ;
BY | TEM D,
RUN,;

DATA Bl GSTEPS_N2;

MERGE COMMON I TEMS (IN =H ) BI GSTEPS_NN (1 N=K);
BY | TEM D;
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COMMON | TEMS*/

(IN =K);

("NN, _N); RUN;

IFH IFK
&PRI NT PROC PRI NT;
RUN;

DATA _NULL_:

SET Bl GSTEPS_N2;

CALL SYMPUTX ( 'N_OPER ITEMS , N_);
RUN;

DATA COVMON_I TEMS; / *RESTRI CT THE BASE FORM TO

SET Bl GSTEPS_N2;

KEEP | TEM D,

RUN,;

PRCC SCRT DATA = BASE_FORM. | TEMS2 NODUP;
BY | TEM D; RUN,

DATA BASE_FORM | TEMS2;
VERGE COVMON_I TEMS (IN =H ) BASE_FORM | TEMS2

BY | TEM D,
IFH IFK
RUN,;

DATA T;
SET THETIN;

T = ROUND( MEASURE, .01) ;

PROC FREQ DATA = T NOPRI NT;

TABLE T/ OUT = T_P; RUN,

DATA NULL_: SET T_P;, CALL SYMPUTX

DATA T_P; /*NEWY ESTI MATED PARANVETERS*/
SET T_P;

P = PERCENT/ 100;

FI LE

" &OUTPATH &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_ METHCOD\ POLYST_

I N. TXT" MOD;

PUT @ T +1 P ;

RUN;

% F &BASE_CAL_METHOD = GENERATED %HEN %0,
DATA BASE_ABI LI Tl ES;
I NFI LE

" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ABI LI Tl ES\ &BASE_CAL_METHOD. _ THETAS. TX

T " DSD,

THETA1 THETAZ,

THETAS FROM BASE FORM/

| NPUT FORM $ ADM N_EVENT METHOD $ CANDID ID $

I F 1 NDEX( FORM " &BASE_FORM') >0;
RUN;

DATA BASE_ABI LI TI ES; / * DATA SET CONTAI NI NG

SET BASE_ABI LI Tl ES;
KEEP THETA1 THETA2 T,
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THETA = (THETAL + THETA2 )/ 2;/*USE COVPOSI TE
THETA*/

T = ROUND( THETA, .01);

PROC FREQ NCPRI NT;

TABLE T/ OUT = T_P_BASE; RUN;

DATA NULL_: SET T_P_BASE; CALL SYMPUTX
(" NB', N);:RUN

YEND;
% F &BASE_CAL_NMETHOD NE GENERATED %HEN %O,
DATA BASE_ABI LI Tl ES;
I NFI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ABI LI Tl ES\ &BASE_CAL_METHOD. _ THETAS. TX
T " DSD,
I NPUT FORM $ ADM N_EVENT METHCD $ TT $
CANDI D | D $ THETA,
| F 1 NDEX( FORM " &BASE_FORM') >0;
RUN,;

DATA BASE_ABI LI TI ES; / * DATA SET CONTAI NI NG
THETAS FROM BASE FORM/

SET BASE_ABI LI TI ES

KEEP THETA T

T = ROUND( THETA, .01);

PROC FREQ NCPRI NT;

TABLE T/ OUT = T_P_BASE; RUN;

DATA NULL_: SET T_P_BASE; CALL SYMPUTX
(" NB', N):RUN

YEND;

%END; / *END OF GETTI NG PARAMS FROM POOL AND
ESTI MATED ABI LI TI ES*/

/*PRINT THE POLYST COMMAND FI LE TO A TXT FILE*/

DATA P:

FI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHOD\ POLYST
IN. TXT";

PUT @ "MO DR';

PUT @ "N &N LINK | TEVB';

PUT @ "NE DI ";

RUN;

/*OQUTPUT THE THE A, B, AND C ESTI MATES FOR THE
NEW FORM /

DATA Bl GSTEPS_N2;

SET Bl GSTEPS_N2;

AE = 1;

CE = 0;

FI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM NSADM N_EVENT\ &CAL_METHOD\ POLYST _
I N TXT" MOD;

PUT @ A E +1 MEASURE_ +1 C_E
RUN;

DATA LI NE;
LINE = "OL D ";
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FILE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHOD\ POLYST _
I N TXT" MOD;
PUT @ LINE;

RUN;

/*OUTPUT THE THE A, B, AND C PARAMS. FOR THE
BASE FORM/

DATA BASE_FORM | TENB2;

SET BASE_FORM | TENB2;

FILE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHOD\ POLYST _
I N TXT" MOD;

PUT @ A +1 B +1 C

RUN;

/*POLYST LI NES FOR THE NEW DI STRI BUTI ON¥/

DATA _NULL_:

FILE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHOD\ POLYST _
I N TXT" MOD;

PUT @ "ND &N SE DI ";

RUN;

/*T_P = FREQUENCI ES FROM ABI LI TY DI STRI BUTI ONS*/
DATA T_P; /*NEW PARAMETERS*/
SET T_P;
P = PERCENT/ 100;
FILE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHOD\ POLYST _
I'N. TXT" MOD;
PUT @ T +1 P ;
RUN;

/*POLYST LINES FOR THE BASE FORM DI STRI BUTI ON*/
DATA _NULL_:
FI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHOD\ POLYST
I N. TXT" MOD;
PUT @ "OD &\B SE DI ";
RUN;

DATA T_P_BASE; /*NEW PARAMVETERS*/
SET T_P_BASE;
P = PERCENT/ 100;
FI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL METHOD\ POLYST _
I N. TXT" MOD;
PUT @ T +1 P ;
RUN,;

/*FINAL LI NES FOR POLYST*/

DATA _NULL_;

FI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHOD\ POLYST
I N TXT" MOD;

PUT @ "FS NO NO';

PUT @ "SC 1.00";

PUT @ "BY':
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RUN;

/* CONTROL PCLYST TO PRODUCE TRANSFORVATI ON
CONSTANTS*/

OPTI ONS NOXWAI T ;

Data _null _;

call system ("CD C.\ D SSERTATI O\\ SI MULATI ON") ;

CALL SYSTEM (" COPY POLYST. EXE
&OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHOD') ;

RUN;

DATA PQLY;
LINE = "pol yst. exe<control .txt";
FI LE
" &OUTPATH &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL _METHOD\ POLY. BA
™;
PUT @ LI NE;
RUN;

DATA CONTROL;

LINEL = "PCLYST_I N txt";

LINE2 = "out.txt ";

FI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHOD\ CONTRCL
CTXTY

PUT @ LI NE1,;

PUT @ LI NE2;

RUN;

OPTI ONS noXWAI T ;
Data _null _;
call system ("CD
&OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHCD ") ;
call system ("poly.bat ");
run; QU T,;

DATA CONSTANTS;
I NFI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_METHCD\ QUT. TXT

INPUT @ CAL_METHOD $ 10. @6 SLOPE 9. @8
| NTERCEPT 9._;
CAL_METHOD = TRANSLATE( CAL_METHOD, " ","/");
| F 1 NDEX( UPCASE( CAL_NMETHOD) , " &LI NK_NMETH') > O0;
CALL SYMPUTX (' SLOPE ' , SLOPE );
CALL SYMPUTX (' I NTERCEPT ', | NTERCEPT );
&PRI NT PROC PRI NT; RUN;

/*APPLY THE TRANSFORMATI ONS TO THE PARAMETERS*/
DATA BI GSTEPS_NN;
SET Bl GSTEPS_NN;
A E = 1/ &SLOPE;
B_E = &SLOPE*MEASURE  + &l NTERCEPT;
CE =0
&PRI NT PROC PRI NT;
RUN;
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% F CAL_METHOD = FPC %HEN %G,

DATA Bl GSTEPS_NN,

SET Bl GSTEPS_NN,

A E=1;/*ASSUME A = 1 FOR ALL FPC LI NKS*/

RUN;
YEND;
DATA THETI N,
SET THETIN,;
LI NKED_THETA = &SLOPE* MEASURE + &l NTERCEPT,
RUN;
[ *STORE THE LI NKED THETAS*/
DATA THETI N,
SET THETIN,;

ADM N_EVENT = &ADM N_EVENT;
LI NKED = " LI NKED";
METHOD = "&CAL_NETHOD';
FORM = " &FORM';
FI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ABI LI TI ES\ &CAL_NMETHOD. _THETAS. TXT "
DSD MOD;
PUT FORM ADM N_EVENT METHOD LI NKED RECORD
LI NKED_THETA;
RUN;

%END; / *END LI NKI NG PROCESS*/

[ * COMPARE GENERATI NG PARAVETERS TO ESTI MATED
PARAVETERS* /

DATA TRUE_I T_PARANS;

LENGTH | TEM D $12.;

I NFI LE
" &OUTPATH &CONDI TI ON\ REP1\ FORVB\ FORM _&FORM . TXT" DSD; / *FORM | N FI RST
REPLI CATI ON*/

| NPUT SEQUENCE ITEMD $ A B C

&PRI NT PROC PRI NT; RUN;

PROC SORT DATA
BY | TEM D; RUN,

TRUE_| T_PARANB;

PROCC SCORT DATA
BY | TEM D; RUN,

Bl GSTEPS_NN;

% F &CAL_METHOD = FPC %THEN 9O,/ *ADD THE A AND C
PARAMB TO THE FPC B ESTI MATES*/

DATA BI GSTEPS_NN;

SET Bl GSTEPS_N;

AE =1 BE = MEASURE_; CE = 0

RUN;

DATA THETI N;

SET THETIN;

LI NKED_THETA = MEASURE;

RUN;

YEND;

DATA BOTH | _PARANS;

MERGE TRUE_| T_PARAMVS BI GSTEPS NN;

BY | TEM D;

| F MEASURE_ = . THEN DELETE;
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/*incorporate the

UNLI NKED_ABS DI F = ABS(MEASURE_ - B);

LI NKED_ABS DI F= ABS(B_E - B);

ORI G_SEQ = | NPUT( COMPRESS(I TEM D, ' I TEM ), 8.);
PROC SORT;

BY ORI G_SEQ &PRI NT PROC PRI NT;

RUN;

DATA EST_THETA;
SET THETIN;

KEEP RECORD MEASURE LI NKED_THETA;
RENAME RECORD = CANDI D_| D_&GROUP;
&PRI NT PROC PRI NT;

PROC SORT;

BY CANDI D_| D_&GROUP;

RUN;

PROC SORT DATA = GROUP&GROUP;

BY CANDI D_| D_&GROUP;

RUN;

true scores into this nerge*/

DATA THETAS;
MERGE GROUP&GROUP EST_THETA (I N =H);

BY CANDI D_| D_&GROUP;

IF H

COVPOSI TE = (&GROUP. 1 + &GROUP. 2)/ 2;

UNLI NKED_ABS DI F = ABS( MEASURE- COVPOSI TE) ;

LI NKED_ABS DI F = ABS( LI NKED_THETA- COVPCSI TE) ;
RUN;

[ * REPORT PARAVETER RECOVERY*/
ODS PDF FILE =

" &OUTPATH &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_ METHCD\ PARAM R

ECOVERY. PDF ";

SUME;

PRCC MEANS DATA = BOTH_I _PARAMS SUM

VAR UNLI NKED_ABS_DI F LI NKED_ABS DI F;

TI TLE " UNLI NKED VERSUS LI NKED | TEM PARAMETERS ",

RUN;

PRCC MEANS DATA = THETAS SUM

VAR UNLI NKED_ABS_DI F LI NKED_ABS DI F; OUTPUT QUT = ALL

TI TLE " UNLI NKED VERSUS LI NKED THETAS ";
RUN; &PRI NT PROC PRI NT DATA = ALL; RUN;
ODS PDF CLOSE;

PROC SORT DATA = BOTH_| _PARAMS5; BY SEQUENCE, RUN,

DATA FI NAL_| TEVS;
SET BOTH_| _PARANS;

SEQ = | NPUT (COVPRESS(I TEMD,' I TEM ), 8.);
PROC SORT;

BY SEQ

&PRI NT PROC PRI NT:

RUN;

DATA FI NAL_I TEMS;
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SET FI NAL_| TEMNB;
SEQUENCE = N_;
FI LE
" &OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N&ADM N_EVENT\ &CAL_MVETHOD\ FI NAL_|
TEMS. TXT " DSD;
PUT | TEM D SEQUENCE A B C MEASURE_. AE B E CE
UNLI NKED_ABS DI F LI NKED ABS DI F ; RUN;

/ * ACCUMULATE ALL | TEM ESTI MATES I N A CUMJLATI VE
FI LE*/

DATA FI NAL_CUM

SET FI NAL_| TEMS;

IF _N >60; /*ACCUMJLATE ONLY THE PI LOT | TEMS*/

CONDI TI ON = " &CONDI TI ON*;

REPL| CATI ON = " &REPLI| CATI ON';

ADM N= " &ADM N_EVENT";

CAL_METHOD = " &CAL_METHOD';

FI LE
" C:\ DI SSERTATI ON\ SI MULATI ON\ &CONDI TI ON\ FI NAL_| TEMS. TXT" DSD MOD;

PUT | TEM D CONDI TI ON REPLI CATI ON CAL_METHOD ADM N
I TEMD SEQUENCE A B C MEASURE_ A E B E C_E UNLI NKED_ABS DI F
LI NKED_ABS DI F ;

RUN;
% F &BASE CAL_METHOD NE GENERATED %HEN %00

/* ACCUMULATE ALL | TEM ESTI MATES I N A CUMULATI VE
FI LE*/

DATA FI NAL_THETAS;

SET THETAS;

CONDI TI ON = " &CONDI TI ON*;

REPL| CATI ON = " &REPL| CATI ON';

ADM N= " &ADM N_EVENT";

CAL_METHOD = " &CAL_METHOD';

FI LE
" C:\ DI SSERTATI ON\ SI MULATI ON\ &CONDI TI ON\ FI NAL_ THETAS. TXT" DSD MOD;

PUT ADM N CONDI TI ON REPLI CATI ON CAL_METHOD COWPOSI TE
MEASURE LI NKED_THETA UNLI NKED_ABS_DI F LI NKED_ABS_DI F;

RUN;
YEND;

/ *PLACE | TEM PARAMETERS | N POOL*/

% F &CALI BRATE_PI LOTS = Y %HEN %00,

DATA FI NAL_I TEMS;

SET FI NAL_I TEMS;

| F SEQUENCE <61 THEN DELETE;

RUN;

&PRI NT PROC PRI NT DATA= FI NAL_I TEMS; RUN,

YEND;

/ *MAKE FOLDER FOR QUTPUT*/

OPTI ONS NOXWAI T ;

Data _null _;

call system ("nkdir
&OUTPATH\ &CONDI TlI ON\ &REPLI CATI ON\\ | TEMS") ;

RUN;

DATA FI NAL_| TEVS;

SET FI NAL_| TENS;

LENGTH CAL_METHOD $ 20.;
CAL_METHOD = "&CAL_NETHOD';
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FORM = " &FORM';

ADM N_EVENT = "&ADM N_EVENT";

FI LE
" C:\ DI SSERTATI ON\ S| MULATI ON\ &CONDI TI ON\ &REPLI CATI ON\ | TEMS\ &CAL_MVETHOD. _
POOL. TXT" DSD MOD;

PUT FORM ADM N_EVENT CAL_METHOD | TEM D SEQUENCE A E
BECE;

RUN;

% F &CAL_METHOD = SEPARATE 9@ HEN 9%DO, /*PUT THE VERY
FI RST | TEMS PARAMS. | N EACH POOL*/

DATA FI NAL_| TEVS;

SET FI NAL_| TENS;

LENGTH CAL_NMETHOD $ 20.:

CAL_METHOD = "&CAL_NETHOD';

FORM = " &FORM';

ADM N_EVENT = "&ADM N_EVENT";

FI LE
" C:\ DI SSERTATI ON\ S| MULATI ON\ &CONDI TI ON\ &REPLI CATI ON\ | TEMS\ STOCK_LORD_PO
OL. TXT" DSD MOD;

PUT FORM ADM N_EVENT CAL_METHOD | TEM D SEQUENCE A E
BECE

RUN;

DATA FI NAL_| TEVS;

SET FI NAL_| TEMNB;

LENGTH CAL_METHOD $ 20.;

AE = 1;

CAL_METHOD = "&CAL_NETHOD':

FORM = " &FORM';

ADM N_EVENT = "&ADM N_EVENT";

FI LE
" C:\ DI SSERTATI ON\ S| MULATI ON\ &CONDI TI ON\ &REPLI CATI ON\ | TEMS\ FPC_POCL. TXT"
DSD MOD;

PUT FORM ADM N_EVENT CAL_METHOD | TEM D SEQUENCE A E
BECE

RUN;

| * SAVE COPI ES*/

OPTI ONS NOXWAI T ;

Data _null _;

call system ("nkdir
&QOUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N1\ SEPARATE\ SET&LI NK_START. TQ&LI NK
_STOP");

RUN;

OPTI ONS NOXWAI T ;

Data null _;

call system ("CD
&OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N1\ SEPARATE") ;

CALL SYSTEM (" COPY PCOLYST_I N. TXT
&OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N1\ SEPARATE\ SET&LI NK_START. TO&LI NK
_STOP");

CALL SYSTEM (" CORPY QUT. TXT
&OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N1\ SEPARATE\ SET&LI NK_START. TQ&LI NK
_STOP");
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CALL SYSTEM (" COPY FI NAL_| TEMS. TXT
&OUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ ADM N1\ SEPARATE\ SET&LI NK_START. TO&LI NK
_STOP");
RUN;
%END,;
%MEND;

YUSLOBAL T F TS;
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%MACRO EQUATE_TRUE_SCORES (PRINT = *, D=1, OUTPATH = , CONDI TI ON-,
REPL| CATI ON = , CAL_METHOD = , NEW.FORM =B);

/*NOTE: THI'S CODE WLL WORK WTH A 1PL MODEL, NOT A 2 OR 3PL MODEL*/
DATA OPER _BASE_FORM

I NFI LE " &OUTPATH\ &CONDI TI ON\\ REP1\ FORMS\ FORM_A. TXT" DSD;

I NPUT SEQUENCE ITEMD $ A B C ABILITY;

KEEP | TEM D,

IF _N_ =<60;

&PRI NT PROC PRI NT;
PROC SORT;

BY | TEM D,

RUN;

DATA OPER_NEW FORM
| NFI LE " &OUTPATH &CONDI TI ON\ REP1\ FORMB\ FORM &NEW FORM . TXT" DSD;
| NPUT SEQUENCE ITEMD $ A B C ABI LI TY;

KEEP | TEM D
IF _N_ =<60;
&PRINT PROC PRI NT;
PROC SORT;

BY | TEM D;

RUN;

DATA POQL;

D = &b

| NFI LE " &OUTPATH\ &CONDI TI ON\ &REPLI CATI O\\ | TEMB\ &CAL_METHOD. _POOL. TXT"
DSD;

| NPUT FORM $ ADM N METHOD $ I TEM D $ SEQUENCE A B C

&PRI NT PROC PRI NT;

PROC SORT;

BY | TEM D;

RUN,;

DATA PARAMSL:
MERGE POOL OPER _BASE_FORM (I N =H);
BY | TEM D;

I|F H

&PRI NT PROC PRI NT:

TI TLE " BASE FORM :

PROC SORT:

BY SEQUENCE:

RUN:;

DATA PARAVB2;
MERGE POOL OPER NEW FORM (I N =H);
BY | TEM D,

IF H

&PRI NT PROC PRI NT;

TI TLE " NEW FORM';

PROC SORT;

BY SEQUENCE;

RUN;
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OPTI ONS SYMBOLGEN MLCG G,

DATA CONV_TABLE; / * START THE CONVERSI ON TABLE BY DEFI NI NG SOVE | NI TI AL
VALUES* /

TRUESCORE_2 = 0;

PERCENT 2 = 0;
THETA = - 99;
PERCENT 1 = O0;
TRUESCORE 1 =
RUN;

DATA _NULL_;/*OBTAIN THE N OF | TEMS | N THE NEW FORM/
SET PARAVS2;

CALL SYMPUTX('N, N);

RUN;

0;

DATA _NULL_;/*OBTAIN THE N OF | TEMS | N THE POOL*/
SET PARANSL;

CALL SYMPUTX (‘NN , N_);

RUN;

% ET PRINT = *;/*TURN PRI NTI NG ON ( ) FOR DEBUGGE NG OR OFF (*) */

UWET T = -3;/*STARTI NG GUESS OF THETA*/

WET F = 1;/*ASSI GN A VALUE GREATER THAN 0 TO THE FUNCTI ON*/

%0 TS=1 %O &N, /*DEFINE A LOOP THAT W LL REPEAT N TI MES ( N=LENGTH OF
THE NEW FORM */

% ET F = 1; /*RESET THE FUNCTI ON BEFORE EACH RUN CF THE
RAPHSON NEWION METHOD* /

%0 WH LE (&F >0.0001); /* PERFORM RAPHSON NEWION METHOD
VWHI LE THE FUNCTI ON | S GREATER THAN CRI TERI ON*/

DATA D&TS;

SET PARAMS2;

TARCET=&TS/ &N, / * DEFI NE THE TARGET VALUE AS THE PERCENT
CORRECT TRUE SCORE*/

T=&T; /*STARTI NG VALUE ( GUESS) FOR THETA*/

PROB =C + (1-C)*(EXP(D*A*(T - B))/(1 +EXP(D*A*(T -
B))));/*PROBABI LI TY OF 1*/

DERI VATI VE = (D*A*( 1- PROB) * (PROB- C) )/ ( 1- C) ; / * DERI VATI VE*/

SUM P + PROB; / * EXPECTED NUMBER CORRECT TRUE SCORE FOR THETA

&T*/
SUM D + DERI VATI VE; /*SUM OF DERI VATI VES FOR THETA &T*/
MN_P = SUM P/ &N; / * EXPECTED PERCENT CORRECT TRUE SCORE FOR
THETA &T*/
MN_D = SUM D/ &N; / * AVERAGE DERI VATI VES FOR THETA &T*/

FUNCTI ON = MN_P- TARGET; / * FUNCTI ON TO M NI M ZE*/

NUME- 1* MN_D;

T _TEMP = T- (TARGET-M\_P)/ (- 1*M\_D); / *OBTAI N A TEMPORARY
THETA ESTI MATE THAT M NI M ZES THE FUNCTI ON*/

| F ABS(T_TEMP - TARGET)>.00001 THEN T = T_TEMP,
OUTPUT; / * TEST THE THETA AGAI NST THE CRI TERI ON*/

/ *REPLACE THE PRI OR THETA W TH THE NEW TEMPORARY THETA,
STORE THE FUNCTI ON, AND THE EXPECTED PERCENT CORRECT TRUE SCORE*/
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F &N THEN CALL SYMPUTX(' T', T );
F &N THEN CALL
SYMPUTX(' F', ROUND( ABS( FUNCTI ON) , .0000001)) ;
IF _N_ = &N THEN CALL SYMPUTX(' MN p2',MN p );
&PRI'NT PROC PRI NT;
&PRINT TI TLE "&TS ";
RUN;

N
N
5

DATA DD&TS;

SET PARAMS1; / *ENTI RE POOL OR FORM/

PROB =C + (1-O) *(EXP(D*A*(&T - B))/ (1 +EXP(D*A*(&T -
B))));/*PROBABILITY OF 1 FOR EACH | TEM I N POOL*/

SUM P + PROB;/*SUM OF PROBABI LI Tl ES*/

MN_P=SUM P/ &N, /*DI VIDE THE SUM OF PROBABI LI TIES BY THE N
OF THE NEW FORM */

IF _N_ = &N THEN CALL SYMPUTX(' MN_pl1', M\ p );/*STORE THE
EXPECTED PERCENT CORRECT TRUE SCORE*/

&PRI NT PROC PRI NT;

&PRINT TITLE "A true score of &W p2 on form?2 is
equi valent to a true score of &W pl on form1";

&PRI NT TI TLE2 "&TS";

RUN;

%END; / *END OF RAPHSON NEWION LOOP*/

DATA RESULT&t s; / * SAVE RESULTS*/

TRUESCORE 2 = &TS; / *NEW FORM | NTEGER TRUE SCORE*/

PERCENT 2 = &WN P2;

THETA = &T;

PERCENT 1 = &WN P

TRUESCORE_1 = &I\/N PL*&N; /*EXPECTED NUVBER CORRECT TRUE SCORE*/
RUN;

PRCC APPEND BASE = CONV_TABLE DATA = RESULT&TS; RUN; / * APPEND RESULTS*/
&PRI NT PROC PRI NT DATA = CONV_TABLE;

&PRI NT TI TLE " CONVERSI ON TABLE";

RUN;

YEND;

&PRI NT PROC PRI NT DATA = CONV_TABLE;

TI TLE " CONVERSI ON TABLE";

RUN;
OPTI ONS NOXWAI T ;
Data null _;

call system ("nkdir &OUTPATH &CONDI TI ON\ &REPLI CATI ON\ CONV_TABLES") ;
RUN;

DATA CONV_TABLE;

SET CONV_TABLE;

EST_A = TRUESCORE_1;

FORM = " &NEW FORM ";

RENAVE PERCENT_2 = PTS_&NEW FORM PERCENT_1 = PTS_BASE;
RUN;

proc export dat a=CONV_TABLE

out fil e=" &QOUTPATH\ &CONDI TI ON\ &REPLI CATI ON\ CONV_TABLES\ &CAL_METHOD. _ CONV
_TABLE_&NEW. F(RM TXT" dbms=dl m repl ace;

delimter=",";

run;
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DATA CUM _CONV_TABLE;

SET CONV_TABLE;

FORM = " &NEW FORM';

REPLI CATI ON = " &REPLI CATI ON';

FI LE " &OUTPATH\ &CONDI TI ON\ &CAL_METHOD. _ CONV_TABLE. TXT " MOD;
PUT FORM REPLI CATI ON TRUESCORE_2 THETA EST_A,

RUN;

/ * COMPARE TO CRI TERI ON CONV. TABLE*/

DATA CRI TERI ON_CONV_TABLE;

I NFI LE " &OUTPATH\ &CONDI TI ON\ EQUI PERCENTI LE_CONV_TABLE. TXT " MOD;
I NPUT FORM $ TRUESCORE_2 A ;

RUN;

DATA CONV_TABLE;

VMERGE CRI TERI ON_CONV_TABLE CONV_TABLE (I N =H);
BY FORM TRUESCCRE_2,

I F H

RUN;

DATA CUM CONV_TABLE;
SET CONV_TABLE;

METHOD = " &CAL_NETHOD';

REPLI CATI ON = "&REPL| CATI ON';

FI LE " &OUTPATH &CONDI TI ON\ DI FFERENCE. TXT " MOD DSD;
PUT METHOD FORM REPLI CATI ON TRUESCORE_2 A EST_A:
RUN;

&PRI NT PROC PRI NT DATA = CUM CONV_TABLE: RUN;
/*EMPTY THE CONV. TABLE */

DATA CONV_TABLE;

RUN;

%MEND,;
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/******************************************************************/

[* PURPOSE OF MACRO |'S TO PERFORM LI NEAR EQUATI NG
[* PERFORIVS:

*/
*/

I * 1. TUCKER LI NEAR EQUATI NG * )
| * 2. LEVINE LI NEAR EQUATI NG *)
| * 3. LEVINE TRUE SCORE EQUATI NG */
I * * )
| * PROGRAM ALSO | MPLEMENTS MANTEL HAENZEL DELTA DI F AND REMOVES*/
| * | TEMB FLAGGED W TH SEVERE DI F * )
I * *
| * NI TEMS = NUVMBER OF | TEMS ON TEST *
I * CUT = NUMBER CORRECT RAW CUT SCORE * )
| * REMOVE_ C = Y =YES, REMOVE | TEMS FLAGGED W TH DI F AT LEVEL ' C
*)
| * PASSFAI L = Y =YES, CALCULATE PASS/ FAI L * )
I * ROUND_BUF = AMOUNT TO ADJUST SCALE, MAY BE USED TO ADJUST SCALE
*
/
| * ODSOUT = */
I * BASE = NAVE OF BASE FORM */
| * NEWEORM = NAME OF NEW FORM */
| * _A_ = SLOPE OF LI NEAR SCALE CONVERSI ON */
I * "B_ = I NTERCEPT FOR LI NEAR SCALE CONVERSI ON * )
| * CIPE = Y =, SEND DATA OUT FOR Cl PE */
| * PRINT = |F * THE DO NOT PRI NT ALL DATA SETS */

/* ROUND_SCALE = | F Y THEN ROUND THE SCORE SCALE TO NEAREST WHCLE N
*/
[* */

/******************************************************************/

%MACRO LI NEAR EQUATE (fol der _path= C:\EHT\, CONDI TION =

CONDL, REPLI CATI ON = REP1, ADM N_EVENT = 1, NI TEMB =60, CUT = 55,
REMOVE C =,

PASSFAI L =, ROUND BUF = , ODSOUT =, OUTPATH =, BASE =, NEWORM = ,
A =1 B =1, CPE =N, PRNT =*, ROUND SCALE=,

NEW ADM N =2, BASE_ ADM N = 1, MONTH = );
i bnanme | "&f ol der_path";

/*GET THE BASE FORM/

DATA BASE;

infile "c:\eht\xeaa. txt truncover dsd delimter=" 09 x;

I NPUT AN6O6 AN69 AN250 AN4A76 AN94 AN216 AN701 AN687 AN37 AN309
ANA12 AN361 AN6 AN697 AN4A71 AN237 AN225 AN387 AN550 AN296
AN209 AN544 AN441 AN299 AN671 AN614 AN626 AN206 AN398 AN386
AN593 AN462 AN561 AN820 AN194 AN4A94 ANB19 AN396 AN113 AN263
AN290 AN584 ANA9 AN201 AN124 AN463 ANB13 AN224 AN435 AN700
AN182 AN668 AN633 AN326 AN664 AN578 AN198 AN4A56 AN4G5 AN622
AN538 AN654 AN159 ANA3 AN353 AN684 AN647 AN586 AN514 AN355
AN4A81 AN52 AN308 AN336 ANLO3 AN251 AN590 AN63 AN812 AM11;
rscore = sum (of _NUMERIC);

proc print;run;

dat a BASE;

set base;

RAW SCORE2 = RSCORE;
run;

189



PROC FREQ DATA = BASE NOPRI NT;

TABLE RAW SCORE2/ OUT= BASEFREQ

RUN;

DATA BASEFREQ,

SET BASEFREQ

RENAME COUNT = BASE_COUNT PERCENT = BASE_PERCENT,
RUN;

[ *GET NEW | TEMS*/
DATA NEWFORM

SET L. MATRI X&NEWFORM
RUN;

| * SAVE COPI ES*/
OPTI ONS NOXWAI T

Data null _;
call system ("nkdir &OUTPATH\ &NEWFORM') ;
RUN,;
DATA DELETED,;

SET NEWFORM

| F RAW SCORE2 = O0;

PROC PRI NT;

RUN;

proc export data=DELETED outfil e="&OUTPATH &NEWFORM DELETED. TXT"
dbms=dl m r epl ace;

delimter=",6";

run;

/ *REMOVE ANY SCORES OF 0*/
DATA NEWFORM

SET NEWFORM

| F RAW SCORE2 = O THEN DELETE;
RUN;

PROC FREQ DATA = NEWORM NOPRI NT;
TABLE RAW SCORE2/ QUT= NEWFREQ
RUN;

data fregs;

retain raw _score2 base_count count base_percent percent;
ner ge basefreq newfreq;

by raw score2?;

renane count = new_count percent = new_percent;

proc print;run;

proc export data=freqs outfil e="&0OUTPATH &NEWFORM FREQUENCI ES. TXT"
dbns=dl m r epl ace;

delimter=",";
run;

PRCC CONTENTS DATA = NEWFORM QUT = | TEM DS; RUN,
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DATA T_N;
SET | TEM DS;
CALL SYMPUTX (' N_OBS' , NOBS );

| F SUBSTRN( NAME, 1, 2) = "AN';
RENAME NAME =I TEM D1 ;
NEWFORM =1;

KEEP NAVE NEWFORM

PROC SORT;

BY | TEM D1;

PROC PRI NT; RUN;

PROC SORT DATA = T_B;

BY | TEM D1; RUN;

PROC SQ. NOPRI NT;

SELECT DI STINCT | TEM D1

I NTO. NEW | TEMS SEPARATED BY " "
FROM T_N

ORDER BY | TEM DI;

QT

9%PUT &NEW | TENS;

[ * NOW BASE | TEMS*/

PROC CONTENTS DATA = BASE QUT = | TEM DSB; RUN,

DATA T_B;
SET | TEM DSB;

| F SUBSTRN( NAME, 1, 2) = "AN';
RENAME NAME =I TEM D1 ;
NEWFORM =1;

KEEP NAVE NEWFORM

PROC SORT;

BY | TEM D1;

PROC PRI NT; RUN;

PROC SCORT DATA = T_B;
BY | TEM D1; RUN,

PROC SQL NOPRI NT;

SELECT DI STINCT | TEM D1

| NTOO BASE | TEMS SEPARATED BY " "
FROM T_B

ORDER BY | TEM D1;

QT

9%PUT &BASE_| TEMS;

/ * COMBI NE THEM TO | SOLATE THE COWVON | TEMS*/
DATA | TEMLI ST;

MERGE T_N (INsU) T_B (INY);

BY | TEM Di;

IF U IFY;

&PRI NT PROC PRI NT:

RUN;

PROC SQL NOPRI NT;
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SELECT DI STINCT | TEM D1

| NTO COMMON_| TEMS SEPARATED BY " "
FROM | TEMLI ST

ORDER BY | TEM D1;

QT

%PUT &COMVON_| TENS;

[ *OBTAI N P VALUES*/
PRCC MEANS DATA = BASE;
VAR &BASE_| TEMS;

QUTPUT QUT = BASE_P
MEAN =

RUN:
&PRI NT PROC PRI NT DATA =BASE_P; RUN;

PRCC TRANSPOSE DATA = BASE P OQUT = T_BASE P (RENAME=(CCL1 = BASE P ));
VAR &BASE_| TEMS;

RUN;

&PRI NT PROC PRI NT DATA = T_BASE_P; RUN;

PROC MEANS DATA = NEWFORM
VAR &NEW | TEMS;

OUTPUT OUT = NEW P

MEAN =

RUN;

&PRI NT PROC PRI NT DATA =NEW P; RUN;

PROC TRANSPOSE DATA = NEWP OUT = T_NEWP (RENAMES(COL1 = NEWP ) );
VAR &NEW | TEMS;

RUN;

&PRI NT PROC PRI NT DATA = T_NEW P; RUN;

PROC SORT DATA =T_NEW P;
BY _NAME ; RUN;

/ *MERGE ALL PVALUES BY | TEM DS*/
PROC SORT DATA = T_BASE_P;

BY _NAME

RUN;

DATA ALLPVALUES;

MERGE T_BASE P (INeY) T_NEWP (IN = U);
BY _NAME ;

ITEMDL = _NAVE ;

RUN;

DATA ALLPVALUES NEW UNI QUE BASE_UN QUE;
SET ALLPVALUES;
IF BASE_P NE . AND NEWP NE . THEN OUTPUT ALLPVALUES;

|F BASE P NE . AND NEWP = . THEN OUTPUT BASE_UN QUE;
IF BASE P = . AND NEWP NE . THEN OUTPUT NEW UNI QUE;
RUN;

PROC MEANS DATA = NEW UNI QUE NOPRI NT;

VAR NEW P;
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QUTPUT OQUT = MEAN_NEW UNI QUE
MEAN=;
RUN;

DATA MEAN_NEW UNI QUE;

SET MEAN_NEW UNI QUE;

CALL SYMPUTX ( ' M.NEWP_UNI QUE , NEWP);
RUN;

PROC MEANS DATA = BASE_UNI QUE NOPRI NT;
VAR BASE_P;

OUTPUT OUT = MEAN_BASE_UNI QUE

MEAN=;

RUN;

DATA MEAN BASE_UNI QUE;

SET MEAN_BASE_UNI QUE;

CALL SYMPUTX ( ' M BASE P_UNI QUE , BASE_P);
RUN;

PROC MEANS DATA = ALLPVALUES NOPRI NT:

VAR BASE_P;

OUTPUT OUT = MEAN_BASE_COMMON

MEAN=;

RUN;

DATA MEAN BASE_COVMVON;

SET MEAN_BASE_COVMON;

CALL SYMPUTX ( ' M_BASE_P_COWON , BASE_P);
RUN, %PUT &M BASE_P_COVNON;

PROC MEANS DATA = ALLPVALUES NOPRI NT;
VAR NEW P;

OUTPUT OUT = MEAN_NEW COMMON

MEAN=;

RUN;

DATA MEAN_NEW COVMVON;

SET MEAN_NEW COVMVON;

CALL SYMPUTX ( ' M_NEWP_COWON , NEWP);
RUN;

%PUT &M NEW P_COWMON ;

DATA ALLPVALUES;

SET ALLPVALUES;

D FF = NEW.P- BASE_P;

PROC SORT,;

BY DI FF;

&PRI NT PROC PRI NT;

TITLE " DI FFI CULTY OF COMVON | TEMS BETWEEN BASE AND NEWFORM *;
RUN;

proc export data=ALLPVALUES outfil e="&0OUTPATH\ &NEWFORM ALLPVALUES. TXT"
dbns=dl m r epl ace;

delimter=",";
run;

/*DI F ANALYSI S STARTS HERE*/
[ *APPEND THE | TEMS | DS TO THE MATRI X OF RESPONSES FOR THE NEWFORM/
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PROC TRANSPOSE DATA = BASE1l OUT = T_BASE | TEMS;
VAR X1 - X&NI TEMS;

RUN;

DATA T_BASE_| TEMS;

SET T_BASE | TEVS;

RENAME COL1 = ITEMD ;

RUN;

&PRI NT PROC PRI NT DATA = T_BASE | TEMS; RUN;

DATA BASE_FORMZ;

SET BASE;

GROUP = 1,

KEEP &COVMON_| TEMS GROUP;
proc print;

RUN;

DATA NEW FORMZ,

SET NEWFORM

GROUP = 2;

KEEP &COVMON_| TEM5S GROUP;
RUN;

DATA BOTH,
SET BASE_FORM2 NEW FORMR:

TOTRI GHT = SUM OF &COWVVON_| TEMB) ;
| F TOTRI GHT NE .;

PROC PRI NT;

RUN;

ODS OUTPUT CMHETHREE COMMONRELRI SKS =RR;
PROC FREQ DATA = BOTH,

TABLES TOTRI GHT* GROUP* ( &COMVON_| TEMS) / CVH NOPRI NT;
TI TLEL "BASE (REF) VS. NEWFORM FOCAL)";

RUN;

DATA CHI SQ

SET THREE;

| F UPCASE( ALTHYPOTHESI S) = ' NONZERO CORRELATI ON ;
RENAME VALUE = CHI SQ

|F PROB < '.0001' THEN PROB = '.0001';

&PRI NT PROC PRI NT;

RUN;

DATA RELRI SK;

SET RR;

| F UPCASE( STUDYTYPE) = ' CASE- CONTRCL' ;
RENAME VALUE = ALPHA;

RUN;

DATA BOTHZ,

MERCGE CHI SQ RELRI SK;
&PRI NT PROC PRI NT;
RUN;
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DATA DI F_RESULTS;
SET BOTHZ;

DELTA = LOG(ALPHA) * (-2.35);
LEVEL = 'B';

| F (ABS(DELTA) < 1.0) OR (PROB > 0.05) THEN LEVEL = 'A';

| F (ABS(DELTA) > 1.5) AND ((LOWERCL > 1.0) AND (UPPERCL > 1.0))
THEN LEVEL = ' C ;

| F (ABS(DELTA) > 1.5) AND ((LOWERCL < 1.0) AND (UPPERCL < 1.0))
THEN LEVEL = ' C ;

| TEM D = SUBSTRN( TABLE, 20, 10);

IF LEVEL = ' A THEN LEVEL1 = '3';
|F LEVEL = 'B THEN LEVEL1 = '2';
IF LEVEL = 'C THEN LEVEL1 = '1';
LENGTH | TEM DL $32. ;

| TEM DL = COVPRESS(| TEM D) ;

PROC SORT;

BY | TEM Di;

&PRI NT PROC PRI NT;

RUN;

PROC SORT DATA = ALLPVALUES;

BY | TEM D1; RUN;

DATA ALLPVALUES2;

MERGE ALLPVALUES DI F_RESULTS;

BY | TEM Di;

ABS_DELTA = ABS(O - DELTA);

PROC SORT;

BY LEVEL1 DESCENDI NG ABS_DELTA;

: PROC PRI NT;

RUN;

PROC CONTENTS DATA = ALLPVALUES2 OUT = CNTS NOPRI NT;
DATA _NULL_;

SET CNTS;

CALL SYMPUTX(' CNT', NOBS);

RUN;, 9PUT &CNT;

*SEE CAM LLI & SHEPARD, P. 121 OR CLAUSEN NCME PAPER;
/*END OF DIF ANALYSI' S, BEG N EQUATI NG*/

data al | pval ues2;

set all pval ues2;

rename _nane_ = item di;

run;

PROCC FREQ DATA= ALLPVALUES2 NOPRI NT;

TABLE LEVEL/ QUT = CNTS_DI F;
RUN;
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%@.ET A DIF = O;
%.ET B_DIF = 0O;
%.ET CDF = 0;

DATA CNTS_Di F,
SET CNTS_Di F;

IF LEVEL = "A" THEN CALL SYMPUTX (' A_DIF, COUNT );
IF LEVEL = "B" THEN CALL SYMPUTX (' B_DIF', COUNT );
IF LEVEL = "C'" THEN CALL SYMPUTX (' C DI F, COUNT );
PRCC PRI NT;

RUN;

DATA TEMP,

MAX_ DI F_REMOVE = (&CNT - 20);

CALL SYMPUTX ( ' MAX DI F_REMOVE , MAX_DI F_REMOVE ) :
RUN;

o%PUT &MAX_DI F_REMOVE;

DATA ALLPVALUESZ;

SET ALLPVALUESZ;
DELETE_ITEM = "N ;

/ *

R = RAND(' NORMAL' , 0, 1);
PROC SORT,

BY R */

&PRI NT PROC PRI NT;

RUN;

% F &REMOVE_C = Y %HEN %G,

DATA ALLPVALUESZ;

SET ALLPVALUESZ;

DELETE_ ITEM = "N ;

IF LEVEL = 'C AND _N_ <= &VAX DI F_REMOVE THEN DELETE_I TEM = "Y' ;
PROC PRI NT;

RUN;

YEND;

PROCC SCORT DATA = ALLPVALUESZ;

BY DESCENDI NG DELETE_I TEM LEVEL1,
PROC PRI NT;

RUN;

proc export data=ALLPVALUES2 outfil e="&OUTPATH &NEWFORM DI F. TXT"
dbns=dl m r epl ace;

delimter=",";
run;

DATA ALLPVALUESZ;
SET ALLPVALUESZ;

| F DELETE_ITEM = "N ;
RUN;

[* LIMT TO 50 COVMON | TEM5 |F YOU WANT TO SEND OQUT TO CI PE*/
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WF & PE = Y %HEN %G,
DATA ALLPVALUESZ;

SET ALLPVALUES?;

IF _N_<51;

RUN;

YEND;

% F &CNT <20 %HEN %G,

DATA MESSACE;

MESSAGE = "THERE ARE ONLY &CNT COVMON | TEMS ON FORM &NEWFORM  EQUATI NG
CANNOT BE PERFORMVED. *;

PROC PRI NT NOBS;

RUN;

proc export data=MESSAGE outfil e=" &OUTPATH &NEWFORM MESSAGE. TXT"
dbms=dl m r epl ace;

delimter=",";
run;

PROC APPEND BASE = NO_EQUATE NEW = MESSAGE; RUN;

YEND;

% F & CNT >=20 9%IHEN %G,/ *1 F 20 OR MORE COVMON | TEVMS THEN EQUATE*/

PROC SQL NOPRI NT;
SELECT DI STINCT | TEM D1

I NTO. COMMONL SEPARATED BY '
FROM ALLPVALUES?

ORDER BY | TEM D1;

RUN, QUIT; 9%UT &COMVONL;

PROC SQL NOPRI NT;

SELECT DI STI NCT | TEM D1

I NTG COVMONZ2 SEPARATED BY '
FROM ALLPVALUES2

ORDER BY | TEM D1,

RUN, QUIT, %UT & COVMONZ,

FI LENAME ODSQUT " &ODSOUT" ;
OPTI ONS ORI ENTATI ON = LANDSCAPE;

/*DO SOVE WORK ON THE BASE FORM/

DATA BASE:;

SET BASE;

COWON = SUM OF &COMMVONL) ; / * COWON | TEVB AFTER REMOVAL OF DI F | TENS*/
RAW BASE = SUM OF &BASE_| TEMB) ;

RUN;

PRCC CCORR QUTP = BASE_CORR DATA = BASE COV NOPRI NT;

VAR RAW BASE COMVON,
RUN;

197



DATA _NULL_;
SET BASE_CORR:

| F UPCASE(_TYPE ) = 'MEAN THEN CALL SYMPUTX (' B_MN R , RAW BASE ):
| F UPCASE(_TYPE ) = ' MEAN THEN CALL SYMPUTX (' B_MN C , COMMON ) ;

| F UPCASE(_TYPE ) = 'STD THEN CALL SYMPUTX (' B_STD R , RAWBASE );
| F UPCASE(_TYPE ) = 'STD THEN CALL SYMPUTX (' B_STD C , COWON );

| F UPCASE(_TYPE ) = 'N THEN CALL SYMPUTX ('B N R , RAW BASE );

| F UPCASE(_TYPE ) = 'N THEN CALL SYMPUTX ('B_N_C , COMVON ):

| F UPCASE(_TYPE ) = 'COV AND UPCASE(_NAME ) = ' COWON THEN CALL

SYMPUTX (' B_COV' , RAW BASE )

| F UPCASE(_TYPE ) = ' CORR AND UPCASE(_NAME )= ' COWON THEN CALL
SYMPUTX (' B_COR , RAW BASE )

RUN;

%PUT & MN R &B MN C & STD R &B STD C &8 N R & N C & COR &B_COV;
/ * NOW THE NEW FORM/

DATA NEWFORM

SET NEWFORM

COWDN = SUM OF &COMVONR) ;

RAW NEW = SUM OF &NEW | TEMB) ;

&PRI'NT PROC PRI NT;

RUN;

PROC CORR OUTP = NEW CORR DATA = NEWFORM NOPRI NT COV:

VAR RAW NEW COMMVON:

RUN;

DATA _NULL_;
SET NEW CORR:

| F UPCASE(_TYPE ) = 'MEAN THEN CALL SYMPUTX (' N_MN R , RAW NEW):
| F UPCASE(_TYPE ) = 'MEAN THEN CALL SYMPUTX ('N_MN _C , COMMON ) ;

| F UPCASE(_TYPE ) = 'STD THEN CALL SYMPUTX (' N_STD R, RAW NEW);
| F UPCASE(_TYPE ) = 'STD THEN CALL SYMPUTX (' N_STD _C , COMMN );

| F UPCASE(_TYPE ) = 'N THEN CALL SYMPUTX (' N_N_R , RAW NEW);

| F UPCASE(_TYPE ) = 'N THEN CALL SYMPUTX (' N_N_C , COMVON ):

| F UPCASE(_TYPE ) = 'COV AND UPCASE(_NAME ) = ' COWON THEN CALL

SYMPUTX (' N_COV' , RAW NEW ) ;

| F UPCASE(_TYPE ) = 'CORR AND UPCASE(_NAME )= ' COWON THEN CALL
SYMPUTX (' N_COR , RAW NEW ) ;

RUN;

%PUT & COR & N C &N N R &N STD R &N STD C &N_MN R & MN_C &N COV; RUN;

/ * THESE VALUES COVE FROM THE EXAMPLE | N KOLEN AND BRENNAN 2004, AND
WERE USED TO VALI DATE THE ACCURACY OF THI'S CODE W TH THE COMMON | TEM
PROGRAM FOR EQUATI NG ( Cl PE) .

£ X*] ] *

%.ET N_M_R =15. 8205;

WET N_
%ET N STD R =6. 5278;
%.ET N_STD C =2. 3760;
% ET N_COV = 13.4088;
%.ET N_COR = . 8645;

[*Y*] ] *
%.ET B_MN R
%.ET B_MN_C =5. 862;
%.ET B_STD R =6. 8784;
%.ET B_STD C =2. 4515;

18. 6728;
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14.7603;
. 8753 ;

%.ET B_COV
%.ET B_COR
*

OPTI ONS MLOG C SYMBOLGEN;

DATA EQUATE;

TUCKER SLOPE = &B COV/ (&B _STD C**2);

LEVI NE_SLOPE = (&B STD R**2)/ &B COV,
TRUE_SCORE_SLOPE1 (&B_STD R**2)/ &B_COV;
TRUE_SCORE_SLOPE2 (&N _STD R**2)/ &N _COV;
W = 1;

W = 1-W;

Y1 =&N COV/ (&N _STD C**2) ;

Y2 =&B COV/ (&B_STD C**2) ;

M5 =&N MN R-W2*Y1*(&N MN C - & MN O);

SS = SQRT((&N_STD_R** 2- \\2* Y1** 2* (&N_STD_C** 2-
&B_STD_C**2) ) +( WL* W2* Y1** 2% (&N_MN_C- &B_MN_C) **2) ) :
MSY =&B_MN_R+TUCKER SLOPE* (&N _MN_C- & M\ O):

SSY = SQRT(&B_STD_R** 2+TUCKER SLOPE** 2* (&N _STD C**2- &B_STD C**2)

/ *DEFI NE THE LI NEAR TUCKER EQUI VALENTS*/
T _EQUIV = (SSY/ SS)*(0-&N_MN_R) +MVBY:
TE1=0*( SSY/ SS) ;

TUCK_I NT=T_EQUI V- TEL;

TUCK_SLOPE= SSY/ SS;

T EQ = TUCK_| NT+( TUCK_SLOPE*0) ;

/ *DEFI NE THE MEAN TUCKER EQUI VALENTS*/
M T _EQUV = (1)*(0-&_M_R) +\VBY;

M TE1=0*( 1)

M_TUCK_| NT=T_EQUI V- TE1;

M _TUCK_SLOPE= 1;

M T _EQ = TUCK_I| NT+( TUCK_SLOPE*0) :

/ *DEFI NE THE LEVI NE LI NEAR EQUI VALENTS*/
LMSY=&B_MN_R+LEVI NE_SLOPE* (&N _MN_C- & M C) ;

LSSY =SQRT(&B_STD R** 2+LEVI NE_SLOPE** 2* (&N _STD C**2- &B STD C**2));

L_EQUI V =(LSSY/ SS) * (0- &_M\_R) +LNBY;
LE1=0* (LSSY/ SS);

LEVI NE_| NT=L_EQUI V- LE1;

LI VE_SLOPE= LSSY/SS;

L_EQ = LEVI NE_I NT+( LI VE_SLOPE*0) :

/ *DEFI NE THE LEVI NE MEAN EQUI VALENTS*/
M L_EQU V =(1)*(0-&_MN_R) +LMBY;

M LE1=0*( 1)

M LEVI NE_I NT=L_EQUI V- LE1;

M LI VE_SLOPE= 1;

ML_EQ = LEVI NE_| NT+( LI VE_SLOPE*0) :

[ *DEFI NE THE LEVI NE TRUE SCORE EQUI VALENT*/
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LTS_EQUI V=( TRUE_SCORE_SLOPE1/ TRUE_SCORE_SLOPE2) * ( 0-
&N_MN_R) +&B_MN_R+TRUE_SCORE_SLOPE1* (&N _MN_C- & MN O);
TSCORE_SLOPE=TRUE_SCORE_SLOPE1/ TRUE_SCORE_SLOPE2;

LTS2=

TSCORE_SLOPE* 0;

TSCORE_INT =LTS EQUIV - LTS2 ;

CALL
CALL

CALL
CALL

CALL
CALL

CALL
CALL

CALL
CALL
RUN;

SYMPUTX (' TUCK_SLOPE' , TUCK_SLOPE) ;
SYMPUTX (' TUCK_I NT' , TUCK_I NT) ;

SYMPUTX (' M TUCK_SLOPE' , M_TUCK_SLOPE) ;
SYMPUTX (' M_TUCK_I NT' , M_TUCK_I NT) ;
SYMPUTX (' LI VE_SLOPE', LI VE_SLOPE) ;
SYMPUTX (' LI VE_I NT', LEVI NE_I NT);
SYMPUTX (' M LI VE_SLOPE' , M LI VE_SLOPE) ;
SYMPUTX (' M LI VE_I NT', M LEVI NE_I NT) ;

SYMPUTX (' TSCORE_SLOPE' , TSCORE_SLOPE) ;
SYMPUTX (' TSCORE_I NT' , TSCORE_I NT) ;

&PRI NT PROC PRI NT DATA = EQUATE;

&PRI NT Tl TLE1 " EQUATI NG RESULTS";

&PRI NT TI TLE2 " TUCKER_EQUATED = &TUCK_I NT + &TUCK_SLCPE * X ";

&PRINT TITLE3 "LEVI NE_EQUATED = &LIVE_INT + &LIVE SLOPE * X ",

&PRI NT TI TLE4 " TRUE_SCORE_EQUATED = &TSCORE_I NT + &TSCORE_SLCOPE * X ",

&PRI NT TI TLE5 " TUCKER MEAN EQUATED
&PRI NT TITLE6 "LEVI NE_MEAN EQUATED

RUN:

proc

&M TUCK_I NT + &M TUCK_SLOPE * X ";
&M LI VE_INT + &M LI VE_SLOPE * X

export dat a=EQUATE

out fil e=" &QOUTPATH &NEWFORM EQUATI NG_STATI STI CS. TXT" dbns=dl m r epl ace;
delimter=",6";

run,

DATA RAW SCORES;
NAVE = " SCORES';

X0 =

0;

ARRAY X[ 80] X1 - X80;
X_RAVEO;

DO |

=1 TO 80;

X_RAW =X_RAW + 1;

X[1]

END;

=X_RAW

DROP X_RAW I ;
&PRI NT PROC PRI NT; RUN;

PROC TRANSPOSE DATA = RAW SCORES QUT = CONV_TABLE PREFI X = X;
VAR X0 - X80;

RUN;
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/ * CREATE THE LI NEAR FORMULAS FOR THE CONVERSI ON TABLE*/
DATA CONV_TABLE;

SET CONV_TABLE;

TUCK_SCALE | NT=(& B_+& A *( &TUCK_I NT));
TUCK_SCALE_SLOPE=( (& A *&TUCK_SLOPE) ) :

M TUCK_SCALE_I NT=(& B _+& A *(&M TUCK_I NT)):
M TUCK_SCALE_SLOPE=( (& A_* &M TUCK_SLOPE) ) ;

LI VE_SCALE_| NT=(& B _+& A _*(&LI VE_INT));
LI VE_SCALE_SLOPE=((& A _*&LI VE_SLOPE)):

M LI VE_SCALE_| NT=(& B +& A *( &M LI VE_I NT));
M LI VE_SCALE_SLOPE=((& A *&M LI VE_SLOPE));

TSCORE_SCALE | NT=(& B_+& A *( &TSCORE_I NT)):
TSCORE_SCALE_SLOPE=( (& A _* &TSCORE_SLOPE) ) ;

TUCK_SCALE_SCORE=( X1* TUCK_SCALE_SLOPE) +TUCK_SCALE_| NT;

LI VE_SCALE_SCORE=( X1*LI VE_SCALE_SLOPE) +LI VE_SCALE_I NT;
TSCORE_SCALE_SCORE=( X1* TSCORE_SCALE_SLOPE) +TSCORE_SCALE | NT;
&rint proc print;

&rint WHERE X1 = 1;

&print VAR TUCK_SCALE_I NT TUCK_SCALE_SLOPE LI VE_SCALE_I NT

LI VE_SCALE_SLOPE TSCORE_SCALE | NT TSCORE_SCALE_SLOPE;

RUN;

[ * CREATE THE LI NEAR FORMULAS FOR THE CONVERSI ON TABLE*/
DATA CONV_TABLE;
SET CONV_TABLE;

RENAME X1 =&NEWFORM / * THE EQUI VALENT |'S THE ESTI MATED BASE*/
TUCK_SCALE | NT=(& B_+& A *( &TUCK_I NT));
TUCK_SCALE_SLOPE=( (& A *&TUCK_SLOPE)):

M TUCK_SCALE_| NT=(& B +& A *( &M TUCK_I NT));
M TUCK_SCALE_SLOPE=( (& A _*&M TUCK_SLOPE) ) ;

LI VE_SCALE_| NT=(& B +& A _*(&LI VE_INT));
LI VE_SCALE_SLOPE=((& A _*&LI VE_SLOPE)):

M LI VE_SCALE_I NT=(& B +& A *(&M LI VE_INT));
M LI VE_SCALE_SLOPE=((& A_*&M LI VE_SLOPE) ) ;

TSCORE_SCALE | NT=(& B_+& A _*(&TSCORE_|I NT)):
TSCORE_SCALE_SLOPE=( (& A _*&TSCORE_SLOPE) ) ;

TUCK_SCALE_SCORE=( X1* TUCK_SCALE_SLOPE) +TUCK_SCALE_| NT;
LI VE_SCALE_SCORE=( X1* LI VE_SCALE_SLOPE) +LI VE_SCALE_| NT;
TSCORE_SCALE_SCORE=( X1* TSCORE_SCALE_SLOPE) +TSCORE_SCALE | NT;
M TUCK_SCALE_SCORE=( X1* M TUCK_SCALE_SLOPE) +M TUCK_SCALE_| NT;
M LI VE_SCALE_SCORE=( X1* M LI VE_SCALE_SLOPE) +M LI VE_SCALE_| NT;
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RNDED_TUCKSS =ROUND( TUCK_SCALE_SCORE, 1) ;
RNDED_LEVSS =ROUND( LI VE_SCALE_SCORE, 1) ;
RNDED_TRUESS =ROUND( TSCORE_SCALE_SCORE, 1) ;

M _RNDED_TUCKSS =ROUND( M TUCK_SCALE_SCORE, 1) ;
M_RNDED_LEVSS =ROUND( M LI VE_SCALE_SCORE, 1) :
RUN;

proc export data=CONV_TABLE

out fil e=" &OUTPATH &NEWFORM CONVERSI ON_TABLE. TXT" dbns=dl m r epl ace;
delimter=",6";

run;

[ * CALCULATE THE PERCENT PASSI NG ACCORDI NG TO EACH EQUATI NG METHCD*/

%.ET TUCKSS CUT = 0;
%.ET LEVSS_CUT = 0;
%.ET TRUESS_CUT = 0;

DATA TUCK ( KEEP=RNDED TUCKSS TUCK_SCALE | NT TUCK_SCALE SLOPE &NEWFORM)
LEV ( KEEP=RNDED_LEVSS LI VE_SCALE | NT LI VE_SCALE_SLOPE &NEWFORM) TS

( KEEP=RNDED TRUESS TSCORE_SCALE | NT TSCORE_SCALE SLOPE &NEWFORM) ;

SET CONV_TABLE;

I F RNDED_TUCKSS = 75 THEN OUTPUT TUCK ;

| F RNDED_LEVSS = 75 THEN QUTPUT LEV;

| F RNDED_TRUESS = 75 THEN QUTPUT TS;

| F RNDED_TUCKSS = 75 THEN CALL SYMPUTX (' TUCKSS _CUT ', &NEWORM );
|F RNDED_LEVSS = 75 THEN CALL SYMPUTX (' LEVSS_CUT', &NEWFORM );

| F RNDED_TRUESS = 75 THEN CALL SYMPUTX (' TRUESS _CUT ', &NEWFORM );
RUN;

/ *FI GURE THE PERCENT PASSI NG'/
DATA PASSES:

SET NEWFORM

TUCKSS_CUT = &TUCKSS_CUT ;
LEVSS_CUT=&LEVSS_CUT;
TRUESS_CUT=&TRUESS_CUT;

TUCKER PASS = 0;
| F RAW SCORE => TUCKSS_CUT THEN TUCKER PASS

I
=

LEVI NE_PASS = 0;
| F RAW SCORE => LEVSS_CUT THEN LEVI NE_PASS = 1,

TSCORE_PASS = 0;
| F RAW SCORE => TRUESS_CUT THEN TSCORE_PASS

I
=

| DENTI TY_PASS = 0;
| F RAW SCORE => 55 THEN | DENTI TY_PASS = 1,
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KEEP CANDI DATEI D RAWSCORE2 TSCCORE_PASS LEVI NE_PASS TUCKER_PASS
| DENTI TY_PASS;
RUN;

proc export data=PASSES outfil e="&UTPATH &NEWFORM PASS FAI L. TXT"
dbns=dl m r epl ace;

delimter=",";
run;

PRCC FREQ DATA
PROC FREQ DATA
PROC FREQ DATA
PROC FREQ DATA

PASSES ; TABLE | DENTI TY_PASS/ QUT= | DENTI TY_PASS; RUN,
PASSES ; TABLE LEVI NE_PASS/ OUT= LEVI NE_PASS; RUN,
PASSES ; TABLE TUCKER_PASS/ QUT= TUCKER_PASS; RUN,
PASSES ; TABLE TSCORE_PASS/ QUT= TSCORE_PASS; RUN,

DATA _NULL_: SET | DENTI TY_PASS; | F | DENTI TY_PASS = 1 THEN CALL SYMPUTX
(' | DENT_PASS ', PERCENT ); RUN, %PUT & DENT_PASS;

DATA _NULL_: SET LEVI NE_PASS; | F LEVI NE_PASS = 1 THEN CALL SYMPUTX

(' LEVI NE_PASS ', PERCENT ); RUN; %PUT & DENT_PASS:

DATA _NULL_: SET TUCKER PASS: | F TUCKER PASS = 1 THEN CALL SYMPUTX

(' TUCKER PASS ', PERCENT ); RUN; %PUT & DENT_PASS;

DATA _NULL_: SET TSCORE_PASS; | F TSCORE_PASS = 1 THEN CALL SYMPUTX

(' TSCORE_PASS ', PERCENT ); RUN; %PUT & DENT_PASS:

DATA TUCK;
SET TUCK;

PASS = &TUCKER pASS;
RENAVE TUCK_SCALE | NT

I NTERCEPT TUCK_SCALE_SLCPE = SLOPE RNDED_TUCKSS

= SCALE_SCORE;
METHOD = "TUCKER  ";
RUN;

DATA LEV;

SET LEV;

PASS = &LEVI NE_PASS;
RENAME LI VE_SCALE | NT

| NTERCEPT LI VE_SCALE_SLOPE = SLOPE RNDED_LEVSS

= SCALE_SCORE;

METHOD = "LEVI NE "
RUN;

DATA TS;

SET TS;

PASS = &TSCORE_pASS;

RENAVE TSCORE_SCALE | NT = | NTERCEPT TSCORE_SCALE_SLOPE = SLOPE
RNDED_TRUESS = SCALE_SCORE;

METHOD = " TRUE_SCORE o

RUN;

DATA _NULL_;
SET ALLPVALUESZ;

CALL SYMPUTX (' COWON REMAINING , N_);
RUN;

DATA SUWVARY;
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RETAI N METHOD NEWFCRM &NEWFORM | NTERCEPT SLOPE SCALE_SCORE PASS
| DENTI TY_PASS ;

SET TUCK LEV TS;

MEAN_BASE_COWMON = &M BASE_P_COMMON ;
MEAN_NEW COMWON = &M NEW P_COMVON

MEAN BASE_UNI QUE = &M BASE_P_UNI QUE ;
MEAN_NEW UNI QUE = &M NEWP_UNI QUE

| DENTI TY_PASS = &l DENT_pASS;
N_OBS = &N_OBS;

FORM = " &NEWFORM

BASE = " XEAA";

MONTH = " &MONTH';

RENAVE &NEWFORM = NEWFORM
REMOVE_C = "&REMOVE_C';

ADF = &ADF
BDF =& DIF;
CDF =& DF

MAX_TO REMOVE = &MVAX DI F_REMOVE;

COVMON_REMAI NI NG = &COVMON_REMAI NI NG,

RUN;

proc export data=SUMVARY outfil e=" &OUTPATH &NEWFORM SUMVARY. TXT"
dbns=dl m r epl ace;

delimter=",6";

run;

DATA RAW SCORES;
SET NEWFORM

RENAVE RAW SCORE2 = &NEWFORM

KEEP CANDI DATE_| D RAW SCORE2;

PROC SORT;

BY &NEWFORM

RUN;

DATA SCORE_EQUI VALENTS;

MERGE RAW SCORES (IN = U ) CONV_TABLE;

BY &NEWFORM | F U

| DENTITY = 20 + &NEWFORM

KEEP CANDI DATE_I D &NEWFORM | DENTI TY RNDED_TUCKSS RNDED LEVSS
RNDED_TRUESS M _RNDED TUCKSS M RNDED_LEVSS;
RUN;

proc export data=SCORE_EQUI VALENTS out fi | e=" &QOUTPATH &NEWFORM SCORE
FI LE. TXT" dbns=dl m r epl ace;

delimter=",";
run;

PRCC FREQ DATA = SCORE_EQUI VALENTS;
TABLE RNDED_TUCKSS/ QOUT=TUCKS ;
RUN;

proc export data=TUCKS outfil e=" &QOUTPATH &NEWFORM TUCKER SCORE

DI STRI BUTI ON. TXT" dbns=dl m r epl ace;
delimter=",6";

204



run;

PROC FREQ DATA = SCORE_EQUI VALENTS;
TABLE RNDED _LEVSS/ QUT=LEVS ;
RUN;

proc export data=LEVS outfil e="&UTPATH &NEWORM LEVI NE SCORE
DI STRI BUTI ON. TXT" dbns=dl m r epl ace;

delimter=",6";

run;

PROC FREQ DATA = SCORE_EQUI VALENTS;
TABLE RNDED _TRUESS/ QOUT=TSCCRE ;
RUN;

proc export data=TSCORE outfil e=" &QOUTPATH &NEWFORM TRUE SCORE
DI STRI BUTI ON. TXT" dbns=dl m r epl ace;

delimter=",";

run;

PROC FREQ DATA = SCORE_EQUI VALENTS;
TABLE M RNDED TUCKSS/ OUT=M TUCKS ;
RUN;

proc export data=M TUCKS outfil e=" &OUTPATH &NEWFORM MEAN TUCKER
DI STRI BUTI ON. TXT" dbns=dl m r epl ace;

delimter=",6";

run;

PROC FREQ DATA = SCORE_EQUI VALENTS;
TABLE M RNDED LEVSS/ OUT=M LEVSS ;
RUN;

proc export data=M LEVSS outfil e="&0OUTPATH &NEWFORM MEAN LEVI NE
DI STRI BUTI ON. TXT" dbns=dl m r epl ace;

delimter=",6";

run;

PROC FREQ DATA = SCORE_EQUI VALENTS;
TABLE | DENTI TY/ OUT=I DENT ;
RUN;

proc export data=I DENT outfil e="&OUTPATH\ &NEWFORM | DENTI TY
DI STRI BUTI ON. TXT" dbns=dl m r epl ace;

delimter=",";
run;

PROC APPEND BASE = EQUATED2 DATA = SUMVARY  FORCE; RUN,
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YEND;

PROC SCORT DATA =EQUATEDZ,
BY METHOD FORM RUN,

PROC PRI NT DATA= EQUATEDZ;

TI TLE "EQUATED FORMS ";

RUN;

PRCC PRI NT DATA =NO_EQUATE;

TI TLE "FORMS NOT EQUATED";

RUN;

PROC DATASETS;

SAVE t_b LI ST EQUATED2 NO _EQUATE; QUIT; RUN

%MEND,;
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%MACRO SCORE (PRI NT=*, OUTPATH =C:\ DI SSERTATI ON\ S| MULATI ON , CONDI TI ON
=CONDL , CAL_METHOD = STOCK_LORD ) ;

/ *GET THE OBSERVED RAW SCORES AND THE GENERATI NG TRUE SCORES*/
DATA CRI TERI ON;

| NFI LE " &OUTPATH\ &CONDI TI ON\ CRI TERI ON_SCORES. TXT " DSD ;

| NPUT FORM $ REPLI CATION $ CANDID | D $ THETAL THETA2 COMPOSI TE SUBL
SUB2 TRUE_SCORE PERCENT TRUE_SCORE OBSERVED SCORE ;

&PRI NT PROC PRI NT;

RUN;

PROC SORT DATA = CRI TERI ON;

BY REPLI CATI ON FORM OBSERVED SCORE;

&PRI NT PROC PRI NT;

RUN;

[ **]

DATA TS_CONV;

| NFI LE " &OUTPATH\ &CONDI TI ON\ &CAL_METHOD. _CONV_TABLE. TXT " ;

| NPUT FORM $ REPLI CATI ON $ TRUESCORE_2 PTS THETA PTS BASE;
OBSERVED_SCORE = TRUESCORE_2;

METHOD = "&CAL_METHOD  ";

PROC SORT;

BY REPLI CATI ON FORM TRUESCORE_2;

&PRI NT PROC PRI NT;

RUN;

DATA SCORE_FI LE;

MERGE CRI TERION (IN =H) TS_CONV:

BY REPLI CATI ON FORM OBSERVED SCORE;

IF H

&PRI NT PROC PRI NT; RUN;

PROC APPEND BASE = &CONDI TI ON. _RESULTS DATA = SCORE_FI LE; RUN;

%MEND,;
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%MACRO EQUI P ( PRI NT=*, QUTPATH = C: DI SSERTATI ON\ SI MULATI ON, CONDI TI ON =
COND1, FORM = B, ADM N = 2, QOUTPATH =C:\ DI SSERTATI O\\ SI MULATI ON) ;

DATA POPX;

I NFI LE " &OUTPATH\ &CONDI TI ON\ POPULATI ON X. TXT" DSD;
I NPUT CANDID $ X1 X2;

RUN;

DATA POPY,

I NFI LE " &OUTPATH\ &CONDI TI ON\ POPULATI ON Y. TXT" DSD;
I NPUT CANDID $ Y1 Y2,

RUN;

DATA DAT,;
SET PCOPX POPY,
RUN;

DATA DAT;
SET DAT;

X1 = ROUND(X1, .1);

X2 = ROUND(X2, .1);

Y1 = ROUND(Y1, .1);

Y2 = ROUND(Y2, .1);

&PRI NT PROC PRI NT;

&PRINT VAR X1 X2 Y1 Y2; RUN;
RUN;

PROC FREQ DATA = DAT NOPRI NT;
TABLE X1 / OQUT =QUT1,;
RUN;

PROC FREQ DATA = DAT NOPRI NT;
TABLE X2 / QUT =QUTZ2;

RUN;
PRCC FREQ DATA = DAT NOPRI NT;
TABLE Y1 / QUT =QUT3;

RUN;

PRCC FREQ DATA = DAT NOPRI NT;
TABLE Y2 / QUT =QUT4;
RUN;

DATA QUTL,

SET QUTL,

RENAME X1 = VALUE;
THETA = 1,

RUN;

DATA QUTZ,

SET QUTZ;

RENAVE X2 = VALUE,
THETA = 2,

RUN;

DATA QUTS;
SET QUTS;
RENAME Y1

VALUE;
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THETA = 3,
RUN;

DATA QUT4,

SET QUT4,

RENAMVE Y2 = VALUE,
THETA = 4,

RUN;

DATA ALLTHETAS;

SET OQUT1 QUT2 QUT3 QUT4;

| F PERCENT = . THEN DELETE;
&PRI NT PROC PRI NT; RUN;

DATA FORMA;
| NFI LE " C:\ DI SSERTATI ON\ S| MULATI ON\ &CONDI TI O\ FREQ A. TXT" DSD ;
| NPUT SCORE COUNT PERCENT NI TEMNS ;

FORM =" FORM A";

&PRI NT PROC PRI NT;

RUN;

DATA FORVEFORM

I NFI LE " C:\ DI SSERTATI ON\\ SI MULATI ON\ &CONDI TI ON\ FREQ_&FORM . TXT" DSD
I NPUT SCORE COUNT PERCENT NI TEMS ;

FORM =" FORM_&FCORM';

&PRI NT PROC PRI NT;

RUN;

DATA BOTH_ TS;

SET FORMA FORME&EFORM

&PRI NT PROC PRI NT;

RUN;

&PRI NT PROC PRI NT DATA = BOTH; RUN;
DATA TEMP122;

SET BOTH_TS;

PROC SCRT DATA = TEMP122,

BY DESCENDI NG COUNT;

RUN;

DATA NULL_;

SET TEMP122;

COUNT = COUNT + 200;

IF N =1 THEN CALL SYMPUTX (' MAX CNT', COUNT );
RUN;

%MEND,;

%MACRO MAKE_TCC (PRI NT=*, N_REPS=50, CAL_METHOD = FPC, OUTPATH
=C: \ DI SSERTATI ON\ SI MULATI ON, REPLI CATI ON = REP1, CONDI TI ON = COND,
FORM2=B, FORML=A );
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WO R = 1 %O &N_REPS;

proc i nport
dat af i | e=" &OUTPATH\ &CONDI TI ON\ REP&R\ CONV_TABLES\ FPC_CONV_TABLE_&FORM?. .
TXT" out =FPC&FORM2 dbns=csv repl ace;
get nanes=YES;
run;

proc inport
dat af i | e=" &OUTPATH &CONDI TI ON\ REP&R\ CONV_TABLES\ STOCK_LORD CONV_TABLE_&
FORM2. . TXT" out =SL&FORM2 dbns=csv repl ace;
get nanes=YES;
run;

DATA FPC&FORM;
SET FPC&FORMZ,
METHOD = "FPC_";
RUN;

DATA SL&FORME;
SET SL&FORMZ,
METHOD = " SCSL";
RUN;

DATA &FORMZ,
SET FPC&FORM2 SL&FORM?;
RUN;

DATA &FORML;
SET &FORMP;

RAVWBCORE=TRUESCORE _1;

FORM = " &FORML" ;

REP =" &REPLI CATI ON';

KEEP RAWSCORE THETA FORM REP METHOD;
RUN;

DATA &FORMZ;

SET &FORMZ;

RAWSCORE= TRUESCORE_2 ;

FORM = " &FORMR" ;

REP =" &REPLI| CATI ON';

KEEP RAWSCCRE THETA FORM REP METHOD;
RUN;

DATA BOTH&FORMZ. _ &R

SET &ORML &FCRMR

| F THETA > 4 THEN THETA
| F THETA <-4 THEN THETA
&PRI NT PROC PRI NT; RUN;

o
L

%WF &N REPS = 1 %HEN %O
DATA NEWKFORM;

SET BOTH&FORM2. _&R;

RUN;
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YEND;
YELSE %0

DATA NEWKFORMZ,

SET NEWKFORMZ2 BOTH&FORMR.

RUN;
YEND;

YEND;

_&R

&PRI NT PROC PRI NT DATA = NEWB; RUN;
DATA NEWKFORM;
SET NEWRFORMZ,

METHODZ =

THETA = ROUND( THETA, .1);
RAWSCORE = ROUND( RAWSCORE, 1) ;

RUN;

COVMPRESS( METHCD| | " _"| | FORM ;

PROC MEANS DATA = NEWKFORM2 NOPRI NT;
CLASS METHOD2 FORM RAWSCORE

VAR THETA,

QUTPUT QUT = ALLMEANS&FORM?

MEAN = ;
RUN;

DATA SCSLALLMEANS&FORM2 FPCALLMEANS&FORM?;
SET ALLMEANS&FORMZ;

IF FORMNE " ";

| F METHOD2

NE " ",

METHOD_ = COVPRESS(" FORM "| | SUBSTRN( METHOD2, 6, 1)) ;

VETHOD2
METHOD2
METHOD2

I
I
I
| F METHOD2

MmMT T

VETHOD2
METHOD2
METHOD2
METHOD2

MmMT T

VETHOD2
METHOD2

m T

EQ "SCSL_A"
EQ "SCSL_B"
EQ "FPC__A"
EQ "FPC__B"

EQ "SCSL_C'
EQ "SCSL_D'
EQ "FPC__C'
EQ "FPC_ D'

EQ " SCSL_E"
EQ "FPC__E"

IF _TYPE_ EQ 7;
&PRINT PROC PRI NT;

RUN;

%MEND,;

THEN
THEN
THEN
THEN

THEN
THEN
THEN
THEN

THEN
THEN

QUTPUT
QUTPUT
QUTPUT
QUTPUT

QUTPUT
QUTPUT
QUTPUT
QUTPUT

QUTPUT
QUTPUT

SCSLALLVEANS&FORMZ;
SCSLALLMEANS&FORMZ;
FPCAL L MEANS&FORMR;
FPCAL L MEANS&FORMR;

SCSLALLVEANS&FORMZ;
SCSLALLMEANS&FORMZ;
FPCAL L MEANS&FORMR;
FPCAL L MEANS&FORMR;

SCSLALLVEANS&FORMZ;
FPCAL L MEANS&FORMR;
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%MACRO | TEM RECOVERY ( PRI NT=*, QUTPATH = C: DI SSERTATI ON\ SI MULATI ON,

CONDI TION = COND, FORM = B, ADMN = 1);

DATA | TEM ESTS;

| NFI LE " &OUTPATH\ &CONDI TI ON\ FI NAL_| TEMS. TXT" DSD ;

I NPUT N CONDI TION $ REPLI CATION $ CAL_METHOD $ ADM NI STRATION |ITEM D $

SEQUENCE A B C MEASURE_ A E B_E C_E UNLINKED ABS DI F LI NKED _ABS DI F

&PRI NT PROC PRI NT;

RUN;
DATA all _crit_est;
SET
Bl AS_A
Bl AS_B
BI AS C

o n
r\/\’\|
W
m

SQ ERRCOR A
SQ ERROR B
SQ ERROR C

A) **2;
B)**Z;
C)**Z;

TRNTINT
~~~
vy
m

| TEM ORDER = COVPRESS(I TEM D, ' | TEM )
&PRI NT PROC PRI NT;
RUN;

proc neans data = all _crit_est nean var

CLASS CAL_METHOD itemnl D ADM NI STRATI ON

var A MEASURE C BIAS A BIAS B BIAS C SQ ERROR A
SQ ERROR B SQ ERRCOR C

out put out =

nean =

STD = STA STDMEASURE  STB STDBB STDBA STDBC STDEA

noprint;

sghi as

STDEB STDEC,
run;

dat a sqgbi as2
set sqbi as;

if type_ =7,
RVBE_A = SQRT(SQ ERROR_A);
RVBE B = SQRT(SQ ERROR B);

RMBE_C = SQRT(SQ _ERROR_O);

ST_ERROR A = SQRT(RVBE_A**2 - BIAS A**2 );
ST ERROR B = SQRT(RVBE _B**2 - BIAS B**2 );
ST_ERROR C = SQRT(RVBE_C**2 - BIAS C**2 );

KEEP CAL_METHOD | TEM D _FREQ MEASURE
STDVEASURE_ STC

RVBE_A RVBE_B RMBE_C ST _ERROR A ST _ERROR B ST _ERROR C ADM NI STRATI ON
_type_;

proc sort;

by ADM NI STRATI ON

&PRI NT PROC PRI NT;

run,

Bl AS_A BIAS_B Bl AS_C STA

DATA | TEM_ERROR;

SET sgbi as2
| F ADM NI STRATI ON = &ADM N
RUN;
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PROC SORT DATA = | TEM ERROR;
BY CAL_NMETHOD; RUN;

DATA | TEM ERROR,;

SET | TEM ERROR;

BY CAL_METHOD;

| TEM +1;

| F FI RST. CAL_METHOD THEN DG,
| TEM =1;

END;

| F CAL_METHOD
| F CAL_METHOD
RUN;

"STOCK_LO'" THEN METHOD = " SCSL";
"FPC' THEN METHOD = "FPC_";

%MEND,;
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%MACRO COLLECT _COMMON (
PRI NT =,
CAL_METHOD = STOCK_LORD,

OLD ADM N = 1,/*USED FOR SELECTI ON*/
OLD_FORM = A,/ * LABELI NG ONLY*/

NEW ADM N = 2,/ *USED FOR SELECTI ON*/
NEW FORM = B, / * LABELI NG ONLY*/

QUTPATH =C: \ DI SSERTATI ON\ SI MULATI ON,
CONDI TI ON = CONDI TI ON_7,

END = 50

)

9O | = 1 %O &END;
DATA | TEM ESTSL_&l ;
| NFI LE

" &QOUTPATH\ &CONDI TI ON\ REP&I \ ADM N&OLD ADM N\ &CAL_METHOD\ FI NAL_| TEMS. TXT"
DSD ;

INPUT ITEMD $ ORDER A B C EST B LINKED A LI NKED B LI NKED C ERRORL
ERROR2;

ADM NI STRATI ON = " ADM N1";

FORM = "&0O.D FORM';

RUN,;

DATA | TEM ESTS2_&l ;

| NFI LE

" &QOUTPATH\ &CONDI TI ON\ REP&I \ ADM N&NEW ADM N\ &CAL _METHOD\ FI NAL | TEMS. TXT"
DSD ;

INPUT ITEMD $ ORDER A B C EST B LINKED A LI NKED B LI NKED C ERRORL
ERROR2;

ADM NI STRATI ON = " ADM N&NEW ADM N';

FORM = " &NEW FORM';

RUN,;

UF 1 =1 %WHEN %0

DATA ALL_COMVON;

SET | TEM ESTS1_&l | TEM ESTS2_é&l ;
RUN;

YEND;

%UF | >1 %HEN %0,

DATA ALL_COWMON;

SET ALL_COWMON | TEM ESTS1 &l | TEM ESTS2_&l ;
RUN;

YEND;

%END,;

DATA ALL_COMVON;

SET ALL_COMVON;

COMMON = " COVMON &OLD_FORM &NEW FORM';
RUN;

PRCC MEANS DATA = ALL_COVMON NOPRI NT;
CLASS FORM | TEM D
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VAR A B LINKED A | I NKED B EST_B;
QUTPUT QUT = ALL_COW MEANS
MEAN =;

RUN;

DATA ALL_COVM MEANS;

SET ALL_COWM MEANS;

IF _TYPE = 3;

RUN;

DATA &0OLD_FORM &NEW FORM

SET ALL_COVM MEANS;

|F FORM = "&OLD FORM " THEN OUTPUT &OLD FORM
| F FORM = "&NEW FORM " THEN OUTPUT &NEW FORM
KEEP | TEM D FORM LI NKED B LI NKED_A:;

RUN;

PROC SORT DATA
BY | TEM D,

PROC SCORT DATA
BY | TEM D,

RUN;

DATA &OLD_FORM
SET &0LD_FORM
RENAME LI NKED B = BASE B LI NKED A = BASE A FORM = BASE_FORM
RUN;

&0LD_FORM

&NEW FORM

DATA COMMON_SI DE_BY_SI DE;

MERGE &OLD FORM (1 NEJ) &NEW FORM (1 N=H);
BY | TEM D;

IE H IF J;

RUN;

%MEND,;
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%MACRO GET_EI GEN_VAL(UNI = CONDI TI ON_17, NEWt CONDI TI ON_102, CORR=.90 );

proc inport datafile="&OUTPATH &NEW REP1\ ADM N1\ LI NEAR\ exam dat "
out =BASE dbns=csv repl ace;
get nanes=YES;

run;
dat a base;
set base;

drop formcandid id x;run;

dat a baseZ2;

set base;

subl = sun{of x1 - x30);
sub2 = sun{of x31 - x60);
run;

proc corr data = base2;
var subl sub2;
run;

PROC FACTOR DATA=base METHOD=P pri ors=m SCREE CORR RES outstat = El GEN
noprint;

RUN;

dat a ei gen;

set eigen;

if _TYPE_ = "ElI GENVAL";

RUN;

PROC TRANSPCOSE DATA= EI GEN QUT=T_EI GEN;
ID _TYPE_;

VAR X1 - X60;

RUN;

dat a NEW

set t_eigen;

n=_n_;

CONDI TI ON = " &CORR';

run;

proc inmport datafil e="&0OUTPATH &UNI \ REP1\ ADM N1\ LI NEAR\ exam dat "
out =UNI dbns=csv repl ace;

get nanes=YES;
run;

data UNI;
set UNI;
drop form candi d_i d_x; run;

data UNI 2;

set UN;

subl = sun{of x1 - x30);
sub2 sum(of x31 - x60);
run;

proc corr data = base2;
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var subl sub2;
run;

PRCC FACTOR DATA=UNI METHOD=P pri ors=m SCREE CORR RES out st at

noprint;

RUN;

data UNI;

set El GEN1;

if TYPE = "ElI GENVAL";
RUN;

PROC TRANSPCSE DATA= UNI OUT=T_EI GENI;
ID _TYPE ;

VAR X1 - X60;

RUN;

data t_eigenl;

set t_eigenl;

n=_n_;

CONDI TION = ". 90";

run;

DATA T_EI GEN_BOTH;
SET NEW T_EI GENL;
RUN;

%MEND,;
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%MACRO THETA_RECOVERY (PRI NT=*, OUTPATH = C: DI SSERTATI ON\\ SI MULATI ON,
CONDI TION = COND1, FORM = B, ADMN = 1);

DATA ESTS;

I NFI LE " &OUTPATH\ &CONDI TI ON\ FI NAL_THETAS. TXT" DSD ;

| NPUT ADM NI STRATI ON CONDI TION $ REPLI CATION $ CAL_METHOD $ TRUE_THETA
UNLI NKED ESTI MATE UNLI NKED_ABS DI F LI NKED_ABS DI F ;

RUN;

DATA ESTS2;
SET ESTS;
TRUE_THETA2 = ROUND( TRUE_THETA, .50) ;

ESTI MATE2 = ROUND( ESTI MATE, .50) ;
UNLI NKED2 = ROUND( UNLI NKED, _50)
PROC SORT;

BY CAL_METHOD;

RUN;

PROC FREQ DATA = ESTS2 NOPRI NT;
TABLE THETA2/ OUT= FREQSI,

BY CAL_METHOD;

RUN;

PROC FREQ DATA = ESTS2 NOPRI NT;
TABLE ESTI MATE2/ OUT= FREQS2;

BY CAL_METHOD;

RUN;

PROC FREQ DATA = ESTS2 NOPRI NT;
TABLE UNLI NKED2/ OUT= FREQS3;

BY CAL_METHOD;

RUN;

DATA FREQSL;

SET FREQSL;

METHOD = COMPRESS( CAL_METHOD| | " GENERATED') ;
RENAME THETA2 = THETA,

RUN;

DATA FREQS2;
SET FREQSZ;

METHOD = COMPRESS(CAL_METHOD| | " _LINKED  ");
RENAVE ESTI MATE2 = THETA;

RUN;

DATA FREQSS;
SET FREQS3;

METHOD = COMPRESS( CAL_METHOD| | " _UNLI NKED ")
RENAVE UNLI NKED2 = THETA;

RUN;

DATA FREQS;

SET FREQS1 FREQS? :
RUN:

DATA ESTS;
SET ESTS;
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| F ADM NI STRATI ON = &ADM N,

THETA2 = ROUND( ESTI MATE, .5);

Bl AS = ( ESTI MATE- TRUE_THETA) ;

SQ ERRCR = ( ESTI MATE- TRUE_THETA) ** 2;
&PRI NT PROC PRI NT;

RUN;

proc print data ests; run;

proc neans data ESTS nean var noprint;
CLASS CAL_METHOD THETAZ;

var ESTI MATE Bl AS SQ _ERRCR ;

out put out = sqbias

nean =

STD = STESTI MATE ;

run;

dat a THETA RECOVERY;

set sqbi as;

if type_ = 3

RVMSE = SQRT(SQ_ERROR);

ST_ERROR= SQRT(RMSE**2 - BIAS**2 );

|F CAL_METHOD NE " SEPARATE";

| F | NDEX( CAL_METHOD, ' STOCK' ) >0 THEN CAL_METHOD = "SCSL";
KEEP THETA2 CAL_METHOD _FREQ MEASURE Bl AS RMSE ST_ERROR _type_;
/*proc sort;

by ADM NI STRATI ON; */

&PRI NT PROC PRI NT;

run;

%MEND;

219



%MACRO EQUATI NG (PRI NT =*, CONDI TI ON = COND1, OUTPATH =
C:\ DI SSERTATI ON\ SI MULATI ON ) ;

DATA CRI TERI ON,

I NFI LE " &OUTPATH\ &CONDI TI ON\ CRI TERI ON_SCORES. TXT " DSD ;
I NPUT FORM $ REPLICATION $ CANDID_ID $ THETA1 THETA2 COWCOSI TE SUBL
SUB2 TRUE_SCORE PERCENT_TRUE_SCORE OBSERVED SCORE ;

&PRI NT PROC PRI NT;

RUN;

PRCC SCRT DATA = CRI TERI ON,

BY REPLI CATI ON FORM OBSERVED_SCOCRE;

&PRI NT PROC PRI NT;

RUN;

%.ET STD B
%.ET STD C
%.ET STD D
%.ET STD E

eeee

proc neans data = CRI TERI ON nean var STD,
CLASS FORM ;
var OBSERVED SCORE ;
out put out = DESCRI PTI VES
nmean =
STD = STDh,
run;
&PRI NT PROC PRI NT DATA = DESCRI PTI VES; RUN;
DATA _NULL_;
SET DESCRI PTI VES;
IF FORM = "A THEN CALL SYMPUTX (' STD A", STD);

IF FORM = 'B' THEN CALL SYMPUTX (' STD B, STD);
IF FORM = 'C THEN CALL SYMPUTX (' STD_C, STD);
IF FORM = 'D THEN CALL SYMPUTX (' STD D, STD);
IF FORM = "E THEN CALL SYMPUTX (' STD E , STD);

RUN, %PUT &STD_A;

DATA CONV_TABLES;

| NFI LE " &OUTPATH\ &CONDI TI ON\ DI FFERENCE. TXT " DSD;

| NPUT METHOD2 $ FORM $ REPLI CATI ON $ OBSERVED CRI TERI ON ESTI MATE;
| F | NDEX( METHOD, "GENERATE") = 0;

&PRI NT PROC PRI NT;

RUN;

DATA CRI T_DI FFERENCE;

SET CONV_TABLES;

DI FFERENCE = OBSERVED - CRI TERI ON,
METHOD11 = ' CRI TERI ON

KEEP OBSERVED DI FFERENCE METHOD11 form
RUN;

DATA DI FFERENCES;

SET CONV_TABLES;

DI FFERENCE = OBSERVED - ESTI MATE ;

| F METHOD2 = "I DENTI TY" THEN DELETE;
METHOD11 = METHODZ,

KEEP OBSERVED DI FFERENCE METHCD11 form
RUN;
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DATA DI FFERENCES;

SET DI FFERENCES CRI T_DI FFERENCE;

I F
I F
I F
I F

RUN;

| NDEX( METHOD11, ' STOCK' ) >0 THEN METHOD1

| NDEX( METHOD11, ' LI NEAR ) >0 THEN METHOD1
| NDEX( METHOD11, ' FPC ) >0 THEN METHOD1

| NDEX( METHOD11, ' CRI TERI O ) >0 THEN METHOD1

PROCC MEANS DATA = DI FFERENCES NOPRI NT;

CLASS FORM METHOD1 OBSERVED
VAR DI FFERENCE

OUTPUT OUT = DI FF

MEAN=:

RUN;

DATA DI FF

SET DI FF;

IF _TYPE_ = 7;

RUN;

DATA DB DC DD DE;

SET DI FF,

IF FORM = "B" THEN OUTPUT
IF FORM = "C'" THEN OUTPUT
IF FORM = "D' THEN OUTPUT
IF FORM = "E" THEN OUTPUT
RUN;

mE& s

&PRI NT PROC PRI NT DATA = DB; RUN,

PROC SCRT DATA = DB;
BY FORM OBSERVED,;
RUN;

PROCC TRANSPOSE DATA
| D METHODL,

VAR DI FFERENCE;

BY FORM OBSERVED,;
RUN;

é
g

PRCC SCRT DATA = DC;
BY FORM OBSERVED,;
RUN;

PROC TRANSPOSE DATA
| D METHODL,

VAR DI FFERENCE;

BY FORM OBSERVED,;
RUN;

DC aUJT =

PRCC SCRT DATA = DD

BY FORM OBSERVED,;

RUN;

PROCC TRANSPOSE DATA = DD QUT =
| D METHODL,

VAR DI FFERENCE;

BY FORM OBSERVED,;
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RUN;

PROC SCORT DATA = DE;

BY FORM OBSERVED,;

RUN;

PROC TRANSPOSE DATA = DE OQUT = T_DE;
| D METHODL;

VAR DI FFERENCE;

BY FORM OBSERVED;

RUN;

/*ADD THE | DENTI TY EQUATI NG*/

DATA | DENTI TY;

SET CONV_TABLES;

| F METHOD2 = ' FPC ;

| F REPLI CATI ON = "REP1";

METHODZ2 = "1 DENTI TY";

ESTI MATE = OBSERVED;

&PRI NT PROC PRI NT; RUN;

DATA CONV_TABLES;

SET CONV_TABLES | DENTI TY,

RUN;
DATA COND1_RESULTS;
SET CONV_TABLES;
Bl AS = ESTI MATE- CRI TERI ON,
SQ ERRCOR = (ESTI MATE- CRI TERI ON) ** 2;
&PRI NT PROC PRI NT;
RUN;

proc neans data = COND1_RESULTS nean var ;
CLASS FORM METHOD2 OBSERVED;

var ESTI MATE BIAS SQ ERROR ;

out put out = sqgbias

nmean =

STD = STD _ESTI MATE STD BI AS STD _SQ ERROR ;
run;

dat a sqbi as?;

set sqbi as;

LENGTH METHOD $12. ;

VETHOD = METHODZ;

if _type_ =7,

RVBE = SQRT(SQ _ERROR);

ST_ERROR = SQRT(RMSE**2 - BIAS**2 );
DROP METHODZ;

*KEEP _FREQ METHOD ESTI MATE BIAS RMSE ST _ERROR FORM _type_
ST ERR CRIT;

proc sort;

by FORM OBSERVED ;

&PRI NT PROC PRI NT;

run;

&PRI NT PROC PRI NT DATA = SQBI AS2; RUN;

DATA ST_ERR CRI T;
DO OBSERVED =0 TO 60 BY 1;
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FORM = "B";
QUTPUT; END;

DO OBSERVED =0 TO 60 BY 1;
FORM = "C';
QUTPUT; END;

DO OBSERVED =0 TO 60 BY 1;
FORM = "D';
QUTPUT; END;

DO OBSERVED =0 TO 60 BY 1,
FORM = "E";

QUTPUT; END;

RUN;

DATA ST_ERR CRI T;
SET ST _ERR CRIT;

METHOD = " CRI TERI ON';

IF FORM = ' B THEN ST_ERROR
IF FORM = ' C THEN ST_ERROR
IF FORM = ' D THEN ST_ERROR
|F FORM = ' E THEN ST_ERROR
&PRI NT PROC PRI NT; RUN;

(.10* &STD B);
(.10* &STD O);
(.10* &STD D);
(.10* &STD E);

DATA SQBI AS2;
SET SQBIAS2 ST_ERR CRIT;

&PRI NT PROC PRI NT;
RUN;

PROC SCRT DATA = S@BI AS2,

BY FORM

RUN;

DATA S(QBI AS3;

SET S@BI AS2,

| F METHOD = "I DENTI TY" THEN DELETE;
RUN;

DATA B C D E;
SET SQBI AS3:

| F | NDEX( METHOD, ' STOCK' ) >0 THEN METHOD =
| NDEX( METHOD, ' LI NEAR ) >0 THEN METHOD =
| NDEX( METHOD, ' FPC ) >0 THEN METHOD =

| NDEX( METHCD,

FORM = "B" THEN OUTPUT
FORM = "C' THEN OUTPUT
FORM = "D' THEN OUTPUT
FORM = "E' THEN OUTPUT
RUN;

&PRI NT PROC PRI NT DATA = B: RUN;

MMM
moow

/ * NOW SYSTEMATI C ERROR*/
DATA SB SC SD SE;
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| NDEX( METHOD, " CRI TER') = O;

| NDEX( METHOD, ' STOCK' ) >0 THEN METHCOD = "4, SCSL";

SET SQBI AS2;
I
I
I
| F I NDEX( METHOD, ' FPC ) >0 THEN METHOD =
I

F
E
F 1| NDEX( METHOD, ' LI NEAR ) >0 THEN METHOD =
E
F

| NDEX( METHOD, ' | DENTI TY' ) >0 THEN METHOD = "1.

IF FORM = "B" THEN OUTPUT SB;
IF FORM = "C'" THEN OUTPUT SC;
IF FORM = "D' THEN OQUTPUT SD;
IF FORM = "E'" THEN OUTPUT SE;
RUN;

&PRi NT PROC PRI NT DATA = SB; RUN,

PRCC SCRT DATA = SB;

BY FORM OBSERVED,;

RUN;

PROC TRANSPOSE DATA = SB QUT = T_SB;
| D METHOD;

VAR BI AS ST_ERRCR;

BY FORM OBSERVED,;

RUN;

DATA T_BIAS B ;

SET T_SB;

IF _NAME_ = 'BIAS' THEN OUTPUT T_BI AS B;
RUN;

PRCC SCORT DATA = B;

BY FORM OBSERVED;

RUN;

PROC TRANSPOSE DATA = B OQUT = T_B;
| D METHOD,

VAR BI AS ST_ERROR;

BY FORM OBSERVED;

RUN;

DATA T_RAND_B;

SET T_B;

IF _NAME_ = ' ST _ERROR THEN OUTPUT T_RAND B;
RUN;

[*Cx/

PROC SCRT DATA = SC,

BY FORM OBSERVED,;

RUN;

PRCC TRANSPOSE DATA = SC QUT = T_SC;
| D METHOD,

VAR BI AS ST_ERRCR,

BY FORM OBSERVED,;

RUN;

DATA T_BIAS C ;
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SET T_SC,
IF _NAME_ = 'BIAS' THEN OUTPUT T_BIAS C
RUN;

PRCC SCORT DATA = C

BY FORM OBSERVED;

RUN;

PROC TRANSPOSE DATA = C QUT = T_G
| D METHOD,

VAR BI AS ST_ERROR;

BY FORM OBSERVED;

RUN;

DATA T_RAND G
SET T_C

IF _NAME_ = ' ST_ERROR THEN OUTPUT T_RAND C
RUN;

| *D*/

PROC SORT DATA = SD;

BY FORM OBSERVED;

RUN;

PROC TRANSPOSE DATA = SD OUT = T_SD;
| D METHOD;

VAR BI AS ST_ERROR:

BY FORM OBSERVED;

RUN;

DATA T_BIAS D ;

SET T_SD;

IF _NAME_ = 'BIAS' THEN OUTPUT T_BIAS D,
RUN;

PROC SCRT DATA = D

BY FORM OBSERVED,;

RUN;

PROC TRANSPCSE DATA = D QUT = T_D;
| D METHOD,

VAR BI AS ST_ERRCR,

BY FORM OBSERVED,;

RUN;
DATA T_RAND D;

SET T_D,

IF _NAME_ = ' ST _ERROR THEN OUTPUT T_RAND D;
RUN;

[ *E*/

PRCC SCRT DATA = SE;

BY FORM OBSERVED;

RUN;

PROC TRANSPOSE DATA = SE QUT = T_SE;
| D METHOD;

VAR BI AS ST_ERROR;

BY FORM OBSERVED;

RUN;
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DATA T_BIAS E ;

SET T_SE;

IF _NAME_ = 'BIAS THEN OUTPUT T_BIAS E;
RUN;

PROC SCRT DATA = E;

BY FORM OBSERVED

RUN;

PRCC TRANSPOSE DATA = E QUT = T_E;
| D METHOD;

VAR BI AS ST_ERRCR,

BY FORM OBSERVED

RUN;

DATA T_RAND E;

SET T_E;

IF _NAME = 'ST ERROR THEN OUTPUT T_RAND E
RUN;

proc print data = t_bias_e;run;

%MEND,;

%macro del cat (cat nane);
% f 9%ysfunc(cexist(&atnane)) % hen %lo;
proc greplay nofs igout=&cat nane;
delete _all _;
run;
%end;
qui t;
%mend del cat;
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%MACRO PLOT (PRI NT =*, FORM2 =B, FTEXT = SWSS, LIGHTTEXT = bl ack,
NOTE=, OUTPATH = C:\ DI SSERTATI ON\ SI MULATI ON, CONDI TI ON =COND1, DATASET
=BOTH, LI NE_NAME=THETA, NAME = PLOT1, YAXIS = COUNT,

XAXI S=VALUE, M N X= -4, MAX X = 4, BY =1, MN_Y=0, MAX.Y = 1, BY_Y =
.25,

TI TLE = THETAS, SUB_TITLE= , Y_LABEL=COUNT, X LABEL =THETA,
START_LEGEND = 25, START_SYMBOL= 30,

START_Y = 75, COLORL = GREEN, COLOR2 =BLUE, COLOR3 = ORANGE, COLOR4 =
BLACK,

COLOR5 = PURPLE, COLOR6 =RED, JO N_POI NTS=J, VREF=0, POSI TI ON =TOP
LEFT INSIDE, ACROSS = 1, DOWN =4, CAPTI ONs, SPECI AL=);

OPTI ONS NOXWAI T ;

Data null _;

call system ("nkdir &OUTPATH &CONDI TI ON\ RESULTS\ &FORMR2" ) ;
RUN;

dat a dat a3;
set &dat aset;
length htnm $400;
htm = "title="||quote(trimleft(round(percent, .01 )))]||" % of

exam ness earned a score of || trimleft(&XAXIS))]| |
on THETA' | [trin(left(&LINE_NAME))||"." )
[1" "] "href=""|]|"/files/HM__FILES/SC.htm"|]|""";
&PRI NT PRCC PRI NT;
run;

/*make LEGEND for plot*/

proc freq data = &dataset NOPRI NT;
tabl e &LI NE_NAVME/ out = LI NE_NAME;
run;

DATA LI NE_NAME2;

SET LI NE_NAME;

order =0; order2 = 0; b = 0;
drop count percent;

proc sort;

by &LI NE_NAME ;

&PRI NT PRCC PRI NT;

RUN;

DATA _NULL_;
SET LI NE_NAMEZ;

BLANK = " "

CALL SYMPUTX (' FIRST', BLANK );
CALL SYMPUTX (' SEC , BLANK) ;
CALL SYMPUTX (' THI RD , BLANK) ;
CALL SYMPUTX (' FOURTH , BLANK ) ;
CALL SYMPUTX (' FI FTH , BLANK );
CALL SYMPUTX (' SI XTH , BLANK) ;
RUN;

DATA _NULL_;
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SET LI NE_NAME2;

IF _N_ = 1 THEN CALL SYMPUTX (' FIRST', &LI NE_NANE) ;
IF _N_ = 2 THEN CALL SYMPUTX (' SEC , &I NE_NAME );
IF _N_ = 3 THEN CALL SYMPUTX (' THIRD , &1 NE_NANE) ;
IF _N_ = 4 THEN CALL SYMPUTX (' FOURTH , &I NE_NAVE) ;
IF _N_ =5 THEN CALL SYMPUTX (' FI FTH , &1 NE_NAME );
IF _N_ = 6 THEN CALL SYMPUTX (' SIXTH , &1 NE_NAME );
RUN; %PUT &SEC;

proc transpose data = LINE _NAME2 out =t _LINE NAME prefix = &LI NE_NAME;
var &LI NE_NAME;
run;

&rint proc print data= t_LINE _NAVE; run

dat a yl egend,;

yyl = &start_y;/*vertical |ocation of |egend*/
yy2 =yyl - 5

yy3 =yy2 - 5

yy4 = yy3 - 5

yys = yyd - 5;

yy6 = yys - 5;

SS1 = &start_y-1;/*vertical location of synbol s*/
SS2 = SS1 - 5

SS3 = SS2 - 5;

SS4 = SS3 - 5

SS5 = S$4 - 5;

SS6 = SS5 - 5;

run;

data null _;

set yl egend;

call synputx ('yyl', yyl);
call synputx ('yy2', yy2);
call synputx ('yy3', yy3);
call synputx ('yy4', yy4d );
call synputx ('yy5, yy5 );

)

call synputx ('yy6', yy6

call synputx ('ssl', ssl
call synputx ('ss2', ss2
call synputx ('ss3', ss3
call synputx ( ss4
call synputx ('ssb5', ssb
call synputx ('ss6', ss6
run;

— N N N e

data pl ot3_annol;

| ength text $60. color $8. function $9.

retain xsys '3 ysys '3" function 'label' when "a' y_pct 82
hsys '4' size 2;

set t_LINE_NAME

if n_=1 then do;

228



Xx=&START LEGEND; y=&yyl; text="&FIRST "; col or="&CO.ORL"
;style="&F text"; output;

x=&START_LEGEND; y=&yy2; text="&SEC "; col or="&COLOR2" ; output;
X=&START LEGEND;, y=&yy3; text="&THI RD "; col or="&COLOR3" ; out put ;
X=&START_LECGEND; y=&yy4; text="&FCURTH "; col or="&COLOR4"
;style="&ftext"; output;
/* x=&START_LEGEND; y=&yy5; text="&FIFTH "; col or="&COLOR5" ; output;
Xx=&START LEGEND;, y=&yy6; text="&SIXTH "; col or="&COLORG" ; out put ; */

x=55; y=86; text="&SUB TITLE "; color="& ighttext" ; size = 3.00;
out put ;

when="a'; style="&f text"; color="& ighttext"; hsys='3"; size=6;
function='label"'; xsys='1'; x=50; ysys='3"; y=15; position="5";
text ="&X LABEL";
out put ;

when="a'; style="&f text"; color="& ighttext"; hsys='3"; size=6;
function='label'; xsys='1'; x=50; ysys='3'; y=8; position='5";
t ext =" &CAPTI ON';

out put ;
FUNCTION = 'SYMBOL'; style =" "; TEXT = "DOT "; color="&COLORL" ;
x=&START_SYMBCOL; y=&ssl; size = 5.00; output;
FUNCTI ON = ' SYMBOL' ; TEXT = "TRI ANGLE "; col or="&COLOR2" ;

X=&START_SYMBOL; y=&ss2; size = 5.00; output;

FUNCTI ON = ' SYMBOL' ; TEXT = "SQUARE"; col or="&COLOR3" ;
Xx=&START_SYMBCOL; y=&ss3; size = 5.00; output;

FUNCTION = ' SYMBOL'; TEXT = "CIRCLE "; col or="&COLOR4" ;
X=&START_SYMBCOL; y=&ss4; size = 5.00; output;

FUNCTION = 'SYMBOL'; style =" "; TEXT = "DOT "; color="&COLORL" ;
Xx=&START _SYMBOL +4; y=&ssl; size = 5.00; output;
FUNCTI ON = ' SYMBOL' ; TEXT = "TRI ANGLE "; col or="&COLOR2" ;

Xx=&START_SYMBCOL +4; y=&ss2; size = 5.00; output;

FUNCTI ON = ' SYMBOL'; TEXT = "SQUARE"; col or="&COLOR3" ; Xx=&START_SYMBOL
+4; y=&ss3; size = 5.00; output;

FUNCTION = ' SYMBOL'; TEXT = "CIRCLE "; col or="&COLOR4" ;
Xx=&START_SYMBCOL +4; y=&ss4; size = 5.00; output;

FUNCTION = 'SYMBOL'; style =" "; TEXT = "DOT "; color="&COLORL" ;
x=&START _SYMBOL +8; y=&ssl; size = 5.00; output;
FUNCTI ON = ' SYMBOL' ; TEXT = "TRI ANGLE "; col or="&COLOR2" ;

X=&START_SYMBOL +8; y=&ss2; size = 5.00; output;

FUNCTI ON = ' SYMBOL'; TEXT = "SQUARE"; col or="&COLOR3" ; x=&START_SYMBOL
+8; y=&ss3; size = 5.00; output;

FUNCTI ON = ' SYMBOL'; TEXT = "CIRCLE "; col or="&COLOR4" ;
Xx=&START_SYMBCOL +8; y=&ss4; size = 5.00; output;
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function=' nove';

SI ZE = 2; out put ; function="draw ;
functi on=' nove'; x=&START_SYMBCL -

SI ZE = 2; out put ; function='draw ;
functi on=' nove'; x=&START_SYMBOL -

SI ZE = 2; out put ; function='draw ;
function='nove'; x=&START_SYMBOL -

SIZE = 2; out put ; function='draw ;

end;

&rint proc print;

run;

/ *end of LEGEND*/

x=&START_SYMBOL -

3; y=&ssl ; col or="&COLORL";
X=&START_SYMBOL+11; out put;
3; y=&ss2 ; col or="&COLOR2";
X=&START_SYMBOL+11,; out put ;
3; y=&ss3; col or="&CO.OR3";
X=&START_SYMBOL+11,; out put ;
3; y=&ss4 ; col or="&COLOR4";

X=&START_SYMBOL+11,; out put ;

FI LENAME GRAPHOUT " &OUTPATH\ &CONDI TI ON\ RESULTS\ &FORMR" ;

GOPTI ONS RESET=ALL
DEVICE = G F
GSFNAME=GRAPHOUT

E)pt i ons nm ogi c synbol gen;
gopti ons xpi xel s=300 ypi xel s=200;

goptions gunit=pct htitle=8 htext=5 ftitle=&f text ftext=&Ftext

ctext =&l i ghttext;

% ET MAJORCOLOR =BLUE ; *cx50A6C2,
%.ET FTEXT = 'SWSS' ;

axi sl col or=&ighttext
"& | abel" )
axi s2 col or =&l i ghttext
(&M n_X to &max_X by &by )

% F &TI TLE = _ 9HEN %0
titlel j=I c=WH TE "&TI TLE";
YEND;

footnotel h=10 " ";

proc sort data = datas3;
by &LI NE_NAMNE;
&PRI NT PROC PRI NT;

run,

data |ine_nane;

set |ine_naneg;
drop count percent;
run;

proc sort data = LI NE_NAME;
by &LI NE_NAME; r un;

dat a dat a34;

nmerge data3 (in=u) LINE_NAME;
by &LI NE_NAME;

if u;
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run;

| egendl LABEL = NONE

value = ("&FI RST " "&SEC' "&TH RD' "&FOURTH " "&FIFTH ")
ACRCSS = &ACROSS DOWN = &DOWN

POSI TION = (&position)

MODE =PROTECT

CFRAME = VWHI TE

OFFSET = (1 PCT);

synbol 1 i =&JO N_PO NTS v=dot c=&COLORL w=2 h=4 ;
synbol 2 i =&JO N_PO NTS v=TRI ANGLE c=&COLOR2 w=2 h=4 ;
synbol 3 i =&JO N_PO NTS v=SQUARE c=&COLOR3 w=2 h=4 ;
synbol 4 i =&JO N_POI NTS v=Cl RCLE c=&COLOR4 w=2 h=4 :
TITLE2 ' '

% F &SPECI AL = %HEN %0,

proc gpl ot dat a=dat a34 anno=pl ot 3_annol;/* */
pl ot &YAXI S* &XAXI S=&LI NE_NAME / haxis = axis2 vaxi s=axi sl
vr ef =&VREF
nof r ane
name=" &NANE"
NOLEGEND
HTML = HTM;
run; quit;
YEND;
9% F &SPECI AL = Y %HEN %O,

synmbol 1 i =&JO N_PO NTS v=NONE c=&COLOR1 w=4 h=4 ;
synmbol 2 i =&JO N_PO NTS v=NONE c=&COLOR2 w=4 h=4 ;
synmbol 3 i =&JO N_PO NTS v=NONE c=&COLOR3 w=4 h=4 ;
synmbol 4 i =&JO N_PO NTS v=NONE ¢c=&COLOR4 w=4 h=4 ;

[
[
[
[

synbol 5 i =NONE v=DOT ¢=&COLOR1 w=4 h=5 ;
[
[
[

synmbol 6 i =NONE v=TRI ANGLE ¢c=&COLOR2 w=4 h=5 ;
synbol 7 i =NONE v=SQUARE c=&COLOR3 w=4 h=5 ;
synbol 8 i =NONE v=Cl RCLE ¢=&COLOR4 w=4 h=5 ;

% F 9JPCASE( &Y _LABEL) = BI AS %HEN %O,
% ET D SET = T_BI AS &FORM;
%_ET CRI T=I DENTI TY;

%END,;

% F 9JPCASE( &Y _LABEL) NE BI AS %HEN %G,
% ET D SET = T_RAND &FORM?;
%.ET CRI T=CRI TERI ON;

%END,;

% F 9JPCASE( &Y_LABEL) EQ DI FFERENCE % IHEN %DO,
% ET D SET = T_D&FORMZ;
%_ET CRI T=CRI TERI ON;

%END,;

DATA &D_SET,
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SET &D_SET;

| F OBSERVED = 2 OR OBSERVED = 12 OR OBSERVED = 22 OR OBSERVED = 32 OR
OBSERVED = 42 OR OBSERVED = 52 THEN DO

ONE = 1 _&CRIT;

END;

| F OBSERVED = 5 OR OBSERVED = 15 OR OBSERVED = 25 OR OBSERVED = 35 OR

OBSERVED = 45 OR OBSERVED = 55 THEN DO
TWO = 2 |lts;
END;

| F OBSERVED = 7 OR OBSERVED = 17 OR OBSERVED = 27 OR OBSERVED = 37 OR
OBSERVED = 47 OR OBSERVED = 57 THEN DO

THREE = _3_ fpc;

END;

| F OBSERVED = 10 OR OBSERVED = 20 OR OBSERVED = 30 OR OBSERVED = 40 OR
OBSERVED = 50 OR OBSERVED = 60 THEN DO
FOUR = _4_  sCsL;
END;
RUN;
proc gpl ot data=&D SET anno=pl ot 3_annol;
plot 1 &CRIT. *observed

2 |1ts*OBSERVED

_3__fpc*observed

4  sCSL*observed

ONE* OBSERVED

TWO* OBSERVED

THREE* OBSERVED

FOUR* OBSERVED
/ overlay haxis = axi s2 vaxi s=axi sl

vref =0
nof r ane
name=" &NANE"
NOLEGEND,;
run; quit;

YEND;
%MEND;
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%3 OBAL MAX_CNT COR SHI FT Al C1,

%MACRO S| MULATE (FILE = FORMB, OUTPATH = C:\ DI SSERTATI ON\ S| MULATI ON,
CONDI TION = COND2, COR = .90, SHFT P=0, YA=0, YB=1, YC=0, YD =
0, AL = .05, A2 =1, Cl = .25 EQUATE B =Y, EQUATE_C =Y, EQUATE D =Y,
EQUATE_E =Y, BOOT_STRAP = N, START BOOT =2, END BOOT = 50, CALIBRATE =
, EQUATE =);
% F &EQUATE B = Y 9%THEN %DO,

9MAKE_POPULATIONS ( OUTPATH =C: \ DI SSERTATI ON\ S| MULATI ON,
CONDI TI ON = &CONDI TI ON, SHI FT_P = &SHI FT_P, COR = &COR, Y1A=&YA, Y1B =
&YB, YIC = &YC, Y1D =&YD, Y2A=&YA, Y2B = &YB, Y2C = &YC, Y2D =&YD);
DM " CLEAR OUTPUT":
DM " CLEAR LOG';

Y€COPY_FORMS( CONDI TI ON = &CONDI Tl ON, QUTPATH =C: \ DI SSERTATI O\\ SI MULATI ON,
FI LE = &FI LE);

* OAKE_| TEM PARAMS( PRI NT =* | THETA2 = 1, CONDI TI ON
=&CONDI TION, N _OPER | TEMS = 60, Al =&Al/*STD*/ , A2 =&A2/ * LOCATI ON*/,
B1=0, B2=1.1 , Cl= &Cl);

/ * ASSEMBLE FORM A*/ * ASSEMBLE_FORM ( PRI NT =* | THETA2 = 0, OUTPATH=
C: \ DI SSERTATI ON\ SI MULATI ON, CONDI TI ON =&CONDI TI ON, REPLI CATI ON = REP1,
N Pl LOT | TEMS= 20, FORMEA, SHIFT = +1.5, START_ITEMID = 61, REPLACE
N);

/ * ASSEMBLE FORM B*/ * YASSEMBLE_FORM (PRI NT = *, THETA2= 0,
OUTPATH= C:\ DI SSERTATI ON\ S| MULATI ON, CONDI TI ON =&CONDI Tl ON,

N Pl LOT_| TEMS= 20, FORMEB, SHIFT = +1.2, START_ITEMID = 81, REPLACE
Y )

/ * EQUATE GENERATED VALUES*/ *UEQUATE_TRUE_SCORES ( OUTPATH

=C: \ DI SSERTATI ON\\ SI MULATI ON, CONDI TI ON=&CONDI TI ON, REPLI CATI ON =REP1,
NEW FORM =B, CAL_METHOD = CGENERATED);

DM " CLEAR QUTPUT";

DM " CLEAR LOG';

%SP IRAL( OUTPATH =
C: \ DI SSERTATI ON\ SI MULATI ON, CONDI TI ON= &CONDI TI ON, SAMPLE_SI ZE =
50000) ;
DM " CLEAR OUTPUT";
DM " CLEAR LOG';

9GET_POP_TRUE_SCORES( PRI NT
=* CONDI TI ON =&CONDI TI ON, CAL_METHOD = GENERATED, FORM = A,
EXCLUDE_FORM = B, POOL =YES , GROUP = 1, OUTPATH=
C: \ DI SSERTATI ON\ SI MULATI ON,

ADM N_EVENT = 1, START_THETAl = 1,
NI TEMS= 80, N_OPER | TEMS=60, END THETALl = 30, START_THETA2 = 31,
REPLI CATI ON = REP1,

END THETA2 = 60, LIM T_POOL=80

61, END_PI LOT_THETA1 = 70, START_PILOT_THETA2 =
80) ;

, START_PI LOT_THETA1
71, END_PI LOT_THETA2
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9MAKE_RESPONSES (PRI NT =*, QUTPATH=
C. \ DI SSERTATI ON\ SI MULATI ON, CONDI TI ON =&CONDI TI ON, REPLI CATI ON = REP1,
GROUP = X, FORM = A, ADM N_EVENT =1, SAMPLE_SI ZE=500);
DM " CLEAR QUTPUT";
DM " CLEAR LOG';
/ * CALI BRATE SUBTEST 1 TO CGENERATED*/ &CALI BRATE %CALIBRATE (PRI NT = *,
LI NK_METH = MEAN_MEAN, ESTI MATE =Y, LINK_START = 1, LINK_STOP = 30,
N _LINK ITEM5S = 30, ADM N_EVENT = 1, CONDI TI ON = &CONDI TI ON, REPLI CATI ON
= REP1, FORMEA, BASE_FORM = A, BASE_CAL_METHOD = CGENERATED, CAL_METHOD
= SEPARATE, SEPARATE = Y, FIRST_OPER ITEMD = 1,
FI RST_PI LOT_I TEM D=61, N_SELECTED = 80, N_REPLACED = O,
CALI BRATE_PI LOTS =N, FPC =N );
[ * CALI BRATE SUBTEST 2 TO GENERATED*/ &CALI BRATE %CALIBRATE (PRI NT = *,
LI NK_VETH = MEAN_MEAN, ESTI MATE = N, LINK_START = 31, LINK_STCP = 60,
N_LINK_ I TEMS = 30, ADM N_EVENT = 1, CONDI TI ON = &CONDI TI ON, REPLI CATI ON
= REP1, FORMFA, BASE_FORM = A, BASE_CAL_METHOD = GENERATED, CAL_METHOD
= SEPARATE, SEPARATE = Y, FIRST_OPER ITEMD = 1,
FI RST_PI LOT_I TEM D=61, N_SELECTED = 80, N_REPLACED = O,
CALI BRATE_PI LOTS =N, FPC =N);

[ * CALI BRATE PI LOT | TEMS*/ &CALI BRATE %CALIBRATE (PRINT = *, ADM N_EVENT =
1, LINK_METH = MEAN_MEAN, CONDI TI ON = &CONDI TI ON, REPLI CATI ON =

REP1, FORMEA, BASE_FORM = A, BASE_CAL_METHOD = SEPARATE, CAL_METHOD =
STOCK_LORD, SEPARATE = Y, FIRST_OPER ITEMD = 1, FIRST_PILOT_| TEM D=61,
N_SELECTED = 80, N_REPLACED = 0, CALIBRATE_PILOTS =Y , FPC =N );

[ * CALI BRATE PI LOT | TEMS*/ &CALI BRATE %CALIBRATE (PRINT = *, ADM N_EVENT =
1, LINK_VMETH = MEAN_MEAN, CONDI TI ON = &CONDI TI ON, REPLI CATION =

REP1, FORMEA, BASE_FORM = A, BASE_CAL_METHOD = NA, CAL_METHOD = FPC,
SEPARATE = N, FIRST_OPER ITEM D = 1, FIRST_PILOT_I TEM D=61, N _SELECTED
= 80, N_REPLACED = 0, CALIBRATE_PILOTS =Y , FPC =Y );

DM " CLEAR QUTPUT";
DM " CLEAR LOG';

YET_POP_TRUE_SCORES( PRI NT
=+ CONDI TI ON =&CONDI TI ON, CAL_METHOD = GENERATED, FORM = B,
EXCLUDE_FORM = B, POOL =NO, GROUP = 1, OUTPATH=
C:\ DI SSERTATI O\ SI MULATI ON,

ADM N_EVENT = 1, START THETAL = 1,
NI TEMB= 80, N_OPER | TEMS=60, END THETA1 = 30, START_THETA2 = 31,
REPL| CATI ON = REP1,

END THETA2 = 60, LIM T_POOL=80

61, END_PI LOT_THETAL = 70, START_PILOT_THETA2 =
80) ;

, START_PI LOT_THETAL
71, END_PI LOT_THETA2

&EQUATE %EQUIPERCENTILE_EQUATE
(OUTPATH = C:\ DI SSERTATI ON\ S| MULATI ON, BASE = A, NEWFORM =B , CONDI Tl ON
= &CONDI TION ) ;

DM " CLEAR OUTPUT";

DM " CLEAR LOG';

| * PREEQUATE* / &EQUATE YEQUATE_TRUE_SCORES ( OUTPATH
=C: \ DI SSERTATI ON\ S| MULATI ON,  CONDI TI ON=&CONDI TI ON,  REPLI CATI ON =REP1,
NEW FORM =B, CAL_METHOD = STOCK_LORD);

| * PREEQUATE* / &EQUATE YEQUATE_TRUE_SCORES ( OUTPATH
=C: \ DI SSERTATI ON\ S| MULATI ON,  CONDI TI ON=&CONDI TI ON,  REPLI CATI ON =REP1,
NEW FORM =B, CAL_METHOD = FPC);
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9MAKE_RESPONSES (PRI NT =*, QUTPATH=
C:\ DI SSERTATI ON\ SI MULATI ON, CONDI TI ON =&CONDI TI ON, REPLI CATI ON = REP1,
GROUP =Y, FORM = B, ADM N_EVENT =2, SAMPLE_SI ZE=500) ;

DM " CLEAR QUTPUT";
DM " CLEAR LOG';
/ * POSTEQUATE LI NEAR*/ &EQUATE %_INEAR_EQUATE( CONDI TI ON =
&CONDI TI ON, REPLI CATION = REP1, ADM N EVENT = 1, N TEMS =60, CUT = 55,
REMOVE _C = N, PASSFAIL =N, ROUND BUF = , CDSCOUT
=C. \ DI SSERTATI O\\ SI MULATI ON\ &CONDI TI ON\ REP1\ ADM N2\ LI NEAR, out pat h
=C: \ DI SSERTATI ON\ SI MULATI ON,

base=A,
BASE ADMN = 1, newform=B ,NEWADMN =2, A =1, B =1, CIPE = N,
PRI NT = *, ROUND_SCALE=N)

/ *CALI BRATE OPER. | TEMS*/ &CALI BRATE %ALIBRATE (PRI NT = *, ADM N_EVENT =
2, LINK_METH = MEAN_MEAN, CONDI TION = &CONDI TI ON, REPLI CATI ON =

REP1, FORMEB, GROUP = Y, BASE_FORM = A, BASE_CAL_METHOD = STOCK_LORD,
CAL_METHOD = STOCK_LORD, SEPARATE = Y, FIRST_OPER | TEM D = 21,

FI RST_PI LOT_| TEM D=81, N_SELECTED = 80, N_REPLACED = 20,

CALI BRATE_PILOTS =Y , FPC =N );

/ *CALI BRATE PI LOT | TEMS*/ &CALI BRATE ~ %€ALIBRATE (PRI NT = *, ADM N_EVENT
= 2, LINK_METH = MEAN_MEAN, CONDI TI ON = &CONDI TI ON, REPLI CATI ON =

REP1, FORMEB, GROUP = Y, BASE_FORM = A, BASE_CAL_METHOD = NA,

CAL_METHOD = FPC, SEPARATE = N, FIRST_OPER I TEM D = 21,

FI RST_PI LOT_| TEM D=81, N_SELECTED = 80, N_REPLACED = 20,

CALI BRATE_PI LOTS =Y , FPC =Y );

DM " CLEAR OUTPUT":

DM " CLEAR LOG';

YEND,;
% F &EQUATE C = Y %HEN %D0,
*UASSEMBLE FORM ( PRI NT = *|
QUTPATH= C:\ DI SSERTATI ON\ SI MULATI ON, CONDI TI ON =&CONDI TI ON,
N PILOT_I TEMS= 20, FORMEC, SHI FT = -.50, START_ITEM ID = 101, REPLACE
Y%ET_POP_TRUE_SCORES( PRI NT
=* CONDI TI ON =&CONDI Tl ON, CAL_METHOD = GENERATED, FORM = C, POOL
=GENERATED , GROUP = 1, QUTPATH= C:\ DI SSERTATI O\\ SI MULATI QN,
ADM N_EVENT = 1, START_THETAl1 = 1,
Nl TEMS= 80, N OPER | TEM5=60, END THETAl1 = 30, START_THETA2 = 31,
REPLI CATI ON = REP1,
END THETA2 = 60, LIM T_POOL=80

, START_PI LOT_THETA1 61, END_PI LOT_THETA1 = 70, START_PILOT_THETA2 =

71, END_PI LOT_THETA2 = 80);
DM " CLEAR OUTPUT":
DM " CLEAR LOG';
&EQUATE %EQUIPERCENTILE_EQUATE
(OUTPATH = C:\ DI SSERTATI ON\ S| MULATI ON, BASE = A, NEWFORM =C , CONDI Tl ON

= &CONDI TION ) ;

DM " CLEAR OUTPUT":

DM " CLEAR LOG';

/ * PREEQUATE*/ &EQUATE Y%EQUATE_TRUE_SCORES ( OUTPATH

=C: \ DI SSERTATI ON\ S| MULATI ON, CONDI TI ON=&CONDI TI ON,  REPLI CATI ON =REP1,
NEW FORM =C, CAL_METHOD = STOCK_LORD);

235



| * PREEQUATE* | &EQUATE YEQUATE_TRUE_SCORES ( OUTPATH
=C: \ DI SSERTATI O\\ SI MULATI ON, CONDI TI ON=&CONDI TI ON, REPLI CATI ON =REP1,
NEW FCRM =C, CAL_METHCD = FPQ);

DM " CLEAR QUTPUT";
DM " CLEAR LOG';

OMAKE_RESPONSES ( PRI NT =*, QUTPATH=
C: \ DI SSERTATI ON\ SI MULATI ON, CONDI TI ON =&CONDI Tl ON, REPLI CATI ON = REP1,
GROUP = Y, FORM = C, ADM N_EVENT =3, SAMPLE_SI ZE=500) ;

&EQUATE
%_INEAR_EQUATE( CONDI TI ON = &CONDI TI ON, REPLI CATI ON = REP1,
ADM N EVENT = 1, NITEMS =60, CUT = 55, REMOVE C = N, PASSFAIL =N,
ROUND BUF = , GDSQUT
=C: \ DI SSERTATI O\\ SI MULATI ON\\ &CONDI TI ON\ REP1\ ADM N2\ LI NEAR, out pat h
=C: \ DI SSERTATI ON\ SI MULATI ON,
base=B,

BASE ADMN = 2, newWform=C ,NEWADMN =3, A =1, B =1, CIPE = N,
PRI NT = *, ROUND_SCALE=N)
DM " CLEAR OUTPUT";
DM " CLEAR LOG';
/ * CALI BRATE OPER. | TEMS*/ &CALI BRATE YCALIBRATE (PRI NT =
* ADM N_EVENT = 3, CONDI TION = &CONDI TI ON, REPLI CATI ON = REP1, FORM=C,
GROUP = Y, BASE FORM = B, BASE CAL NMETHOD = STOCK LORD, CAL_METHOD =
STOCK _LORD, SEPARATE = Y,FIRST OPER ITEM D = 41, FIRST_PILOT | TEM D=101
N _SELECTED = 80, N REPLACED = 20, CALIBRATE PILOTS =Y , FPC =N );
/ * CALI BRATE PI LOT | TEMS*/ &CALI BRATE %CALIBRATE (PRI NT = *, ADM N_EVENT
= 3, CONDI TI ON = &CONDI TI ON, REPLI CATI ON = REP1, FORM=C, GROUP =Y,
BASE FORM = B, BASE CAL NMETHOD = NA, CAL_METHOD = FPC,
SEPARATE = N, FIRST OPER ITEM D = 41, FIRST_PILOT | TEM D=101 N _SELECTED
= 80, N _REPLACED = 20, CALIBRATE PILOTS =Y , FPC =Y );
%END;
% F &EQUATE D = Y %HEN %DO0,
DM " CLEAR OUTPUT";
DM " CLEAR LOG';

*UASSEMBLE_FORM (PRI NT = *, OUTPATH=

C: \ DI SSERTATI ON\ SI MJLATI ON, CONDI TI ON =&CONDI TI ON, N_PI LOT_I TEMS= 20,
FORMED, SHIFT = -1.50, START_ITEMID = 121, REPLACE =Y );

%ET_POP_TRUE_SCORES( PRI NT
=*, CONDI TI ON =&CONDI TI ON, CAL_METHOD = GENERATED, FORM = D, POCL
=GENERATED , CGROUP = 1, QUTPATH= C:\ DI SSERTATI ON\ SI MULATI ON,

ADM N_EVENT = 1, START_THETAl = 1,
NI TEMS= 80, N_CPER_| TEMS=60, END THETAl1 = 30, START_THETA2 = 31,
REPLI CATI ON = REP1,

END THETA2 = 60, LIM T_POOL=80

, START_PI LOT_THETA1 61, END_PI LOT_THETA1 = 70, START_PILOT_THETA2 =

71, END_PI LOT_THETA2 = 80);
&EQUATE %EQUIPERCENTILE_EQUATE
(OUTPATH = C:\ DI SSERTATI ON\ SI MULATI ON, BASE = A, NEWFORM =D , CONDI TI ON

= &CONDI TION ) ;

DM " CLEAR OUTPUT";

DM " CLEAR LOG';

| * PREEQUATE* / &EQUATE Y%EQUATE_TRUE_SCORES ( OUTPATH
=C: \ DI SSERTATI ON\ SI MULATI ON, CONDI TI ON=&CONDI TI ON,  REPLI CATI ON =REP1,
NEW FORM =D, CAL_METHOD = STOCK_LORD);
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| * PREEQUATE*/ &EQUATE YEQUATE_TRUE_SCORES ( OUTPATH
=C: \ DI SSERTATI O\\ SI MULATI ON, CONDI TI ON=&CONDI TI ON, REPLI CATI ON =REP1,
NEW FCRM =D, CAL_METHCD = FPQ);

UMAKE_RESPONSES ( PRI NT =*, QUTPATH=
C: \ DI SSERTATI ON\ SI MULATI ON, CONDI TI ON =&CONDI Tl ON, REPLI CATI ON = REP1,
GROUP = Y, FORM = D, ADM N_EVENT =4, SAMPLE_SI ZE=500);
&EQUATE
%_INEAR_EQUATE( CONDI TI ON = &CONDI TI ON, REPLI CATI ON = REP1,
ADM N EVENT = 1, NITEMS =60, CUT = 55, REMOVE C = N, PASSFAIL =N,
ROUND BUF = , GDSQUT
=C: \ DI SSERTATI ON\ SI MULATI ON\\ &CONDI TI ON\ REP1\ ADM N2\ LI NEAR, out pat h
=C: \ DI SSERTATI ON\\ SI MULATI CN,
base=C,
BASE ADMN = 3, newWform=D ,NEWADMN =4, A =1, B =1, CIPE = N,
PRI NT = *, ROUND_SCALE=N)
DM " CLEAR OUTPUT";
DM " CLEAR LOG';
/ * CALI BRATE OPER. | TEMS*/ &CAL| BRATE YCALIBRATE (PRI NT =
* ADM N_EVENT = 4, CONDI TION = &CONDI TI ON, REPLI CATI ON = REP1, FORMED,
GROUP = Y, BASE FORM = C, BASE CAL_ NMETHOD = STOCK LORD, CAL_METHOD =
STOCK LORD, SEPARATE = Y,FIRST OPER ITEM D = 61, FIRST _PILOT | TEM D=121
N_SELECTED = 80, N _REPLACED = 20, CALIBRATE PILOTS =Y , FPC =N);
/ * CALI BRATE PI LOT | TEMS*/ &CAL| BRATE YCALIBRATE (PRI NT =
* ADM N_EVENT = 4, CONDI TION = &CONDI TI ON, REPLI CATI ON = REP1, FORMED,
GROUP = Y, BASE FORM = C, BASE CAL_ NETHOD = NA, CAL_METHOD =
FPC, SEPARATE = N, FI RST_OPER I TEM D = 61,
FI RST PILOT_| TEM D=121 N SELECTED = 80, N _REPLACED = 20,
CALI BRATE PILOTS =Y , FPC =Y );
%END;
% F &EQUATE E = Y %HEN %D0,
DM " CLEAR OUTPUT";
DM " CLEAR LOG';
*OUASSEMBLE FORM (PRI NT = *, OUTPATH=
C: \ DI SSERTATI ON\\ SI MULATI ON, CONDI TI ON =&CONDI TI ON, N _PI LOT_|I TEMS= 20,
FORMEE, SHIFT = -1.5, START ITEMID = 141, REPLACE =Y );
%ET_POP_TRUE_SCORES( PRI NT
=*, CONDI TI ON =&CONDI TI ON, CAL_METHOD = GENERATED, FORM = E, POCL
=GENERATED , GROUP = 1, QOUTPATH= C:\ DI SSERTATI ON\ SI MULATI ON,
ADM N _EVENT = 1, START _THETAl = 1,
NI TEMS= 80, N _COPER | TEMS=60, END THETAl1 = 30, START_THETA2 = 31,
REPLI CATI ON = REP1,
END THETA2 = 60, LIM T _POO.=80

, START_PI LOT_THETA1 61, END_PI LOT_THETAl = 70, START_PILOT_THETA2 =

71, END_PI LOT_THETA2 = 80);
DM " CLEAR OUTPUT";
DM " CLEAR LOG';
&EQUATE %EQUIPERCENTILE_EQUATE

(OUTPATH = C:\ DI SSERTATI ON\ SI MULATI ON, BASE = A, NEWFORM =E , CONDI TI ON
= &CONDI TION ) ;

[ * PREEQUATE*/ &EQUATE %&EQUATE_TRUE_SCORES ( OUTPATH

=C:\ DI SSERTATI ON\ SI MULATI ON, CONDI TI ON=&CONDI TI ON,  REPLI CATI ON =REP1,
NEW FORM =E, CAL_NMETHOD = STOCK_LORD):
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/ * PREEQUATE*/ &EQUATE %EQUATE_TRUE_SCORES ( OQUTPATH
=C: \ DI SSERTATI ON\\ SI MULATI ON, CONDI TI ON=&CONDI TI ON, REPLI CATI ON =REP1,
NEW FORM =E, CAL_METHOD = FPC);
DM " CLEAR OUTPUT";
DM " CLEAR LOG';
UMAKE_RESPONSES ( PRI NT =*, QUTPATH=
C: \ DI SSERTATI ON\ SI MULATI ON, CONDI TI ON =&CONDI Tl ON, REPLI CATI ON = REP1,
GROUP = Y, FORM = E, ADM N_EVENT =5, SAMPLE_SI ZE=500);
&EQUATE
%_INEAR_EQUATE( CONDI TI ON = &CONDI TI ON, REPLI CATI ON = REP1,
ADM N EVENT = 1, NITEMS =60, CUT = 55, REMOVE C = N, PASSFAIL =N,
ROUND BUF = , GDSQUT
=C: \ DI SSERTATI ON\ SI MULATI ON\\ &CONDI TI ON\ REP1\ ADM N2\ LI NEAR, out pat h
=C: \ DI SSERTATI ON\\ SI MULATI CN,
base=D,

BASE ADMN = 4, newWform=E ,NEWADMN =5, A =1, B =1, CIPE = N,
PRI NT = *, ROUND _SCALE=N);
YEND;

* YSAVE LIN CONV(FORMS = E D C B A, QUTPATH
=C: \ DI SSERTATI ON\\ SI MULATI ON, CONDI TI ON = &CONDI TI ON, REPLI CATI ON
=REP1) ;

% F &BOOT_STRAP = Y 9%FTHEN 900,
YRESAMPLE( START BOOT =&START BOOT , END BOOT =&END BOOT, OUTPATH =
&OUTPATH , CONDI TI ON = &CONDI TI ON, EQUATE B = Y, EQUATE_C =Y, EQUATE D
=Y, EQUATE E =V);

YEND;

%MEND SI MULATE;

%MACRO RESAMPLE( START BOOT =2 , END_BOOT =50, OUTPATH =
C:\ DI SSERTATI ON\ S| MULATI ON , CONDI TION = CONDI TI ONL, EQUATE B = Y,
EQUATE_C =Y, EQUATE D =Y, EQUATE E =VY););

9%DO RS = &START _BOOT %O &END BOOT;

%AKE_RESPONSES (PRI NT =*, OUTPATH= C:\ DI SSERTATI ON\ S| MULATI ON,
CONDI TI ON =&CONDI TI ON, REPLI CATI ON = REP&RS, GROUP = X, FORM = A,
ADM N_EVENT =1, SAVPLE_SI| ZE=500) ;

%W F &EQUATE B = Y WHEN %0,

[ * CALI BRATE SUBTEST 1 TO GENERATED*/ “CALIBRATE (PRI NT = *, ESTI MATE =Y,
LI NK_START = 1, LINK_STOP = 30, N_LINK_ITEMS = 30, ADM N_EVENT = 1,
CONDI TION = &CONDI TI ON, REPLI CATI ON = REP&RS, FORM=A, BASE_FORM = A,
BASE_CAL_METHOD = GENERATED, CAL_METHOD = SEPARATE, SEPARATE =Y,
FIRST_CPER_ITEM D = 1, FIRST_PILOT_|I TEM D=61, N_SELECTED = 80,
N_REPLACED = 0, CALIBRATE_PILOIS =N, FPC =N );

[ * CALI BRATE SUBTEST 2 TO GENERATED*/ ¥CALIBRATE (PRI NT = *, ESTI MATE =
N, LINK_START = 31, LINK_STOP = 60, N_LINK_ |ITEMS = 30, ADM N_EVENT = 1,
CONDI TI ON = &CONDI TI ON, REPLI CATI ON = REP&RS, FORM=A, BASE_FORM = A,
BASE_CAL_METHOD = GENERATED, CAL_METHOD = SEPARATE, SEPARATE =Y,
FIRST_CPER_ITEM D = 1, FIRST_PILOT_| TEM D=61, N_SELECTED = 80,
N_REPLACED = 0, CALIBRATE_PILOTS =N, FPC =N);

YCALIBRATE (PRINT = *, LI NK_METH = MEAN_MEAN, ADM N_EVENT = 1,
CONDI TI ON = &CONDI TI ON, REPLI CATI ON = REP&RS, FORMEA, BASE_FORM = A,
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BASE_CAL_METHOD = SEPARATE,  CAL_METHOD = STOCK_LORD, SEPARATE =Y,
FIRST OPER ITEMD = 1, FIRST_PILOT | TEM D=61, N_SELECTED = 80,
N_REPLACED = 0, CALIBRATE_PILOTS =Y , FPC =N ):

YCALIBRATE (PRINT = * LI NK_METH = MEAN_MEAN, ADM N_EVENT = 1, CONDI TI ON
= &CONDI TI ON, REPLI CATI ON = REP&RS, FORMFA, BASE_FORM = A,
BASE_CAL_METHOD = NA, CAL_METHOD = FPC, SEPARATE = N,
FIRST_CPER_ITEM D = 1, FIRST_PILOT_|I TEM D=61, N_SELECTED = 80,
N_REPLACED = 0, CALIBRATE_PILOTIS =Y , FPC =Y );

| * PREEQUATE*/

YEQUATE_TRUE_SCORES ( OUTPATH =C: \ DI SSERTATI ON\ SI MULATI ON,

CONDI TI ON=&CONDI TI ON, REPLI CATI ON =REP&RS, NEW FORM =B, CAL_METHOD
STOCK_LORD) ;

| * PREEQUATE*/

YEQUATE_TRUE_SCORES ( OUTPATH =C: \ DI SSERTATI ON\ SI MULATI ON,

CONDI TI ON=&CONDI TI ON, REPLI CATI ON =REP&RS, NEW FORM =B, CAL_METHOD
FPC) ;

9MAKE_RESPONSES (PRI NT =*, QUTPATH= C:\ DI SSERTATI O\\ SI MULATI ON,
CONDI TI ON =&CONDI TI1 ON, REPLI CATI ON = REP&RS, GROUP = Y, FORM = B,
ADM N_EVENT =2, SAMPLE_SI ZE=500) ;

/ * POSTEQUATE LI NEAR*/
9%_INEAR_EQUATE( CONDI TI ON = &CONDI TI ON, REPLI CATI ON = REP&RS,

ADM N_EVENT = 1, NI TEMS =60, CUT = 55, REMOVE_C = N, PASSFAIL =N,
ROUND_BUF = , ODSOUT

=C: \ DI SSERTATI O\ S| MULATI ON\ &CONDI TI ON\ REP1\ ADM N2\ LI NEAR, out pat h
=C: \ DI SSERTATI ON\ S| MULATI ON, base=A, BASE_ ADM N = 1, newform =B
,NEWADMN =2 , A =1, B =1, CPE =N PR NI = * ROUD_SCALE=N)
YEND;

%W F &EQUATE_C = Y WHEN %0

YCALIBRATE (PRINT = *, ADM N_EVENT = 2, CONDI TI ON = &CONDI Tl ON,

REPLI CATI ON =REP&RS, FORMFB, GROUP = Y, BASE_FORM = A, BASE_CAL_METHOD
STOCK_LORD, CAL_METHOD = STOCK_LORD, SEPARATE = Y, FI RST_OPER_| TEM D
21, FIRST_PILOT_I TEM D=81, N_SELECTED = 80, N_REPLACED = 20,

CALI BRATE_PI LOTS =Y , FPC =N);

/ * CALI BRATE PI LOT | TEMS*/

YCALIBRATE (PRINT = *, ADM N_EVENT = 2, CONDI TI ON
REPLI CATI ON = REP&RS, FORM=B, GROUP = Y, BASE _FORM = A, BASE_CAL_METHOD =
NA, CAL_METHOD = FPC, SEPARATE = N, FI RST_COPER_| TEM D
= 21, FIRST_PILOT | TEM D=81, N _SELECTED = 80, N _REPLACED = 20,

CALI BRATE_PI LOTS =Y , FPC =Y );

&CONDI T1 ON,

| * PREEQUATE* /
YEQUATE_TRUE_SCORES ( OUTPATH =C:\ DI SSERTATI ON\ SI MULATI ON,

CONDI TI ON=&CONDI TI ON,  REPLI CATI ON =REP&RS, NEW FORM =C, CAL_METHOD
STOCK_LORD) ;

| * PREEQUATE*/

Y%QUATE_TRUE_SCORES ( QUTPATH =C:\ DI SSERTATI O\\ SI MULATI ON,

CONDI TI ON=&CONDI T1 ON, REPLI CATI ON =REP&RS, NEW FORM =C, CAL_METHOD
FPQO) ;
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9MAKE_RESPONSES (PRI NT =*, QUTPATH= C:\ DI SSERTATI O\\ SI MULATI ON,
CONDI TI ON =&CONDI TI ON, REPLI CATI ON = REP&RS, GROUP =Y, FORM = C,
ADM N_EVENT =3, SAMPLE_SI ZE=500) ;

/ * POSTEQUATE LI NEAR*/

%_INEAR_EQUATE( CONDI TI ON = &CONDI TI ON, REPLI CATI ON = REP&RS,

ADM N_EVENT = 1, NITEMS =60, CUT = 55, REMOVE_C = N, PASSFAIL =N,
ROUND_BUF = , CDSOUT

=C: \ DI SSERTATI ON\ SI MULATI ON\ &CONDI TI ON\ REP1\ ADM N2\ LI NEAR, out pat h
=C. \ DI SSERTATI ON\\ SI MULATI ON, base=B, BASE ADM N = 2, newform =C
,NEWADMN =3, _A =1, B =1, CPE =N PRINT = * ROUND_SCALE=N) ;
YEND;

% F &EQUATE D = Y %HEN %DO,

YCALIBRATE (PRINT = *, ADM N_EVENT = 3, CONDI TI ON = &CONDI Tl ON,

REPLI CATI ON = REP&RS, FORM=C, GROUP =Y, BASE_FORM = B, BASE_CAL_METHOD
= STOCK_LORD, CAL_METHOD = STOCK_LORD, SEPARATE =Y, FI RST_OPER_| TEM D
= 41, FIRST_PILOT_I TEM D=101 N_SELECTED = 80, N_REPLACED = 20,

CALI BRATE_PI LOTS =Y , FPC =N );

YCALIBRATE (PRINT = * ADM N_EVENT = 3, CONDI TI ON = &CONDI Tl ON,

REPLI CATI ON = REP&RS, FORM=C, GROUP =Y, BASE_FORM = B, BASE_CAL_METHOD
= NA CAL_METHOD = FPC, SEPARATE =

N, FIRST_OPER I TEM D = 41, FIRST_PILOT_I TEM D=101 N_SELECTED = 80,
N_REPLACED = 20, CALIBRATE_PILOTS =Y , FPC =Y );

| * PREEQUATE* /

Y%EQUATE_TRUE_SCORES ( OUTPATH =C: \ DI SSERTATI ON\ S| MULATI ON,

CONDI TI ON=&CONDI TI ON, REPLI CATI ON =REP&RS, NEW FORM =D, CAL_METHCOD
STOCK_LORD) ;

| * PREEQUATE* /

YEQUATE_TRUE_SCORES ( OUTPATH =C: \ DI SSERTATI ON\ SI MULATI ON,
CONDI TI ON=&CONDI Tl ON, REPLI CATI ON =REP&RS, NEW FORM =D, CAL_METHOD
FPC) ;

9MAKE_RESPONSES (PRI NT =*, QUTPATH= C:\ DI SSERTATI O\\ SI MULATI ON,
CONDI TI ON =&CONDI TI ON, REPLI CATI ON = REP&RS, CGROUP = Y, FORM = D,
ADM N_EVENT =4, SAMPLE_SI ZE=500) ;

[ * POSTEQUATE LI NEAR*/

%_INEAR_EQUATE( CONDI TI ON = &CONDI TI ON, REPLI CATI ON = REP&RS,

ADM N_EVENT = 1, NITEMS =60, CUT = 55, REMOVE C = N, PASSFAIL =N,
ROUND_BUF = , ODSOUT

=C: \ DI SSERTATI O\ SI MULATI ON\ &CONDI TI ON\ REP1\ ADM N2\ LI NEAR, out pat h
=C: \ DI SSERTATI ON\ S| MULATI ON, base=C, BASE_ADM N = 3, newform =D
 NEWADMN =4 , A =1, B =1, CPE =N PR NI = *, ROUND SCALE=N);

YEND;
% F &EQUATE_E = Y YWHEN %0

YCALIBRATE (PRINT = * ADM N_EVENT = 4, CONDI TI ON = &CONDI Tl ON,
REPLI CATI ON = REP&RS, FORMED, GROUP = Y, BASE_FORM = C, BASE_CAL_METHOD
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STOCK_LORD,  CAL_METHOD = STOCK_LORD, SEPARATE = Y, FI RST_OPER | TEM D
61, FIRST_PILOT_| TEM D=121 N_SELECTED = 80, N_REPLACED = 20,
CALI BRATE_PILOTS =Y , FPC =N );

YCALIBRATE (PRINT = *, ADM N_EVENT = 4, CONDI TI ON = &CONDI Tl ON,

REPLI CATI ON = REP&RS, FORMED, GROUP = Y, BASE_FORM = C, BASE_CAL_METHOD
= NA CAL_METHOD = FPC, SEPARATE =

N, FIRST_OPER_I TEM D = 61, FIRST_PILOT_|I TEM D=121 N_SELECTED = 80,
N_REPLACED = 20, CALIBRATE_PILOTS =Y , FPC =Y );

| * PREEQUATE*/

YEQUATE_TRUE_SCORES ( OUTPATH =C: \ DI SSERTATI ON\ SI MULATI ON,

CONDI TI ON=&CONDI TI ON, REPLI CATI ON =REP&RS, NEW FORM =E, CAL_METHOD
STOCK_LORD) ;

| * PREEQUATE*/

YEQUATE_TRUE_SCORES ( OUTPATH =C: \ DI SSERTATI ON\ SI MULATI ON,

CONDI TI ON=&CONDI TI ON, REPLI CATI ON =REP&RS, NEW FORM =E, CAL_METHOD
FPC) ;

9MAKE_RESPONSES (PRI NT =*, QUTPATH= C:\ DI SSERTATI O\\ SI MULATI ON,
CONDI TI ON =&CONDI TI ON, REPLI CATI ON = REP&RS, GROUP = Y, FORM = E,
ADM N_EVENT =5, SAMPLE_SI ZE=500) ;

/ * POSTEQUATE LI NEAR*/

9%_INEAR_EQUATE( CONDI TI ON = &CONDI TI ON, REPLI CATI ON = REP&RS,

ADM N_EVENT = 1, NI TEMS =60, CUT = 55, REMOVE_C = N, PASSFAIL =N,

ROUND_BUF = , ODSOUT

=C: \ DI SSERTATI O\ S| MULATI ON\ &CONDI TI ON\ REP1\ ADM N2\ LI NEAR, out pat h

=C: \ DI SSERTATI ON\ SI MULATI ON, base=D, BASE_ADM N = 4, newform =E

,NEWADMN =5, A =1, B =1, CPE =N, PRNT = * ROUND_SCALE=N);
YEND;

YEND;

%MEND,;
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APPENDIX B: DESCRIPTIVE STATISTICS OF GENERATED TEST FORMS
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Table B1

Descriptive Statistics of 60 Operational a, b, and ¢ Item Parameters for Phase 1 Forms

FORM

W > W > w > W >

W >

Mean Standard Deviation Minimum Maximum
a b c a b c a b c a b c
FORM 1 (Ideal form)

1.03 0.07 0.02 0.01 0.87 0.01 1.00 -1.77 0.00 1.05 2.02 0.05

1.02 -0.43 0.02 0.01 1.15 0.01 1.00 -3.06 0.00 1.05 202 0.05
FORM 2 (a = ideal, ¢ = mild)

1.03 0.07 0.05 0.01 0.87 0.03 1.00 -1.77 0.00 1.05 202 0.10

1.02 -0.43 0.05 0.01 1.15 0.03 1.00 -3.06 0.00 1.05 202 0.10

FORM 3 (a = ideal, ¢ = moderate)

1.03 0.07 0.08 0.01 0.87 0.05 1.00 -1.77 0.00 1.05 202 0.15

1.02 -0.43 0.07 0.01 1.15 0.04 1.00 -3.06 0.00 1.05 202 0.15
FORM 4 (a = ideal, ¢ = severe)

1.03 0.07 0.10 0.01 0.87 0.06 1.00 -1.77 0.00 1.05 202 0.20

1.02 -0.43 0.10 0.01 1.15 0.06 1.00 -3.06 0.00 1.05 202 0.20

FORM 5 (a = ideal, ¢ = very severe)
1.03 0.07 0.12 0.01 0.87 0.08 1.00 -1.77 0.00 1.05 202 0.25
1.02 -0.43 0.13 0.01 1.15 0.07 1.00 -3.06 0.01 1.05 202 0.25
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Table B2

Descriptive Statistics of 60 Operational «, b, and ¢ Item Parameters for Phase 1Forms

FORM

W > W > w > W >

W >

Standard
Mean Deviation Minimum Maximum
a b c a b c a b c a b c
FORM 6 (a =ideal, ¢ = ideal)
1.03 0.07 0.02 0.01 0.87 0.00 1 -1.77 0.00 1.05 2.02 0
1.02 -0.43 0.02 0.01 1.15 0.00 1 -3.06 0.00 1.05 2.02 0
FORM 7 (a = mild, ¢ = ideal)
0.85 0.07 0.00 0.09 0.87 0.00 0.70 -1.77 0.00 1.00 2.02 0.00
0.85 -0.43 0.00 0.09 1.15 0.00 0.71 -3.06 0.00 0.99 2.02 0.00
FORM 8 (@ = moderate, ¢ = ideal)
0.85 0.07 0.00 0.18 0.87 0.00 0.52 -1.77 0.00 1.12 2.02 0.00
0.81 -0.43 0.00 0.19 1.15 0.00 0.53 -3.06 0.00 1.14 2.02 0.00
FORM 9 (a =severe, ¢ = ideal)
0.80 0.07 0.00 0.21 0.87 0.00 0.40 -1.77 0.00 1.17 2.02 0.00
0.76 -0.43 0.00 0.23 1.15 0.00 0.41 -3.06 0.00 1.18 2.02 0.00
FORM 10 (a = very severe, ¢ = ideal)
0.78 0.07 0.00 0.24 0.87 0.00 0.34 -1.77 0.00 1.28 2.02 0.00
0.78 -0.43 0.00 0.29 1.15 0.00 0.33 -3.06 0.00 1.29 2.02 0.00
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Table B3

Descriptive Statistics of 60 Operational a, b, and ¢ Item Parameters used in Phase 2

FORM

mooOw> mooOw> mooOw>

mooOw>

Mean Standard Deviation Minimum Maximum
a b c a b c a b c a b c
FORM 11 (a = ideal, ¢ = ideal)
1.03 0.07 0.00 0.01 0.87 0.00 1.00 -177  0.00 1.05 2.02 0.00
1.02 -0.43 0.00 0.01 115 0.00 1.00 -3.06 0.00 1.05 2.02 0.00
1.02 -0.43 0.00 001 114 0.00 1.00 -3.06 0.00 1.05 2.02 0.00
1.02 -0.38 0.00 001 116 0.00 1.00 -3.06 0.00 1.05 2.02 0.00
1.02 -0.34  0.00 0.01 1.13 0.00 1.00 -296 0.00 1.05 2.02 0.00
FORM 12 (a = moderate, ¢ = moderate)
0.76 0.07 0.09 0.17  0.87 0.04 051 -1.77 0.01 1.10 2.02 0.14
0.82 -0.43 0.07 0.17 115 0.05 054 -3.06 0.00 1.09 2.02 0.15
0.80 -0.43 0.08 016 114 0.05 053 -3.06 0.00 1.08 2.02 0.15
0.74 -0.38 0.09 0.18 1.16 0.04 050 -3.06 0.00 1.08 2.02 0.15
0.79 -0.34  0.09 0.17 113 0.04 053 -296  0.00 1.10 2.02 0.15
FORM 13 (a = moderate, ¢ = severe)
0.84 0.07 0.11 0.17  0.87 0.06 050 -1.77  0.00 1.09 2.02 0.20
0.79 -0.43 0.09 0.17 115 0.06 051 -3.06 0.00 1.10 2.02 0.19
0.82 -0.43 0.10 017 114 0.06 052 -3.06 0.00 1.08 2.02 0.20
0.80 -0.38 0.09 0.16 1.16 0.06 051 -3.06 0.00 1.10 2.02 0.20
0.78 -0.34  0.10 0.18 1.13 0.05 050 -296  0.00 1.09 2.02 0.20
FORM 14 (@« =moderate, ¢ =very severe)
0.80 0.07 0.12 0.18 0.87 0.07 051 -1.77  0.00 1.09 2.02 0.25
0.78 -0.43 0.13 0.16 1.15 0.08 051 -3.06 0.00 1.08 2.02 0.25
0.78 -0.43 0.13 017 114 0.07 051 -3.06 0.00 1.09 2.02 0.24
0.80 -0.38 0.12 0.18 1.16 0.06 051 -3.06 0.01 1.10 2.02 0.23
0.78 -0.34  0.13 0.17 113 0.07 050 -296 0.01 1.07 2.02 0.25
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Table B4

Descriptive Statistics of 60 Operational a, b, and ¢ Item Parameters used in Phase 2

FORM

mooOw> mooOw> mooOw>»

mooOw>

Mean Standard Deviation Minimum Maximum
a b c a b c a b c a b c
FORM 15 (a = severe, ¢ =moderate)
0.84 0.07 0.08 0.22 0.87 0.04 0.41 -1.77 0.00 1.15 2.02 0.15
0.80 -0.43 0.08 0.23 1.15 0.04 0.40 -3.06 0.00 1.16 2.02 0.15
0.79 -0.43 0.07 0.25 1.14 0.05 0.43 -3.06 0.00 1.20 2.02 0.15
0.80 -0.38 0.07 0.25 1.16 0.04 0.43 -3.06 0.00 1.19 2.02 0.15
0.84 -0.34 0.08 0.22 1.13 0.05 0.42 -2.96 0.00 1.17 2.02 0.15
FORM 16 (a = severe, ¢ =severe)
0.81 0.07 0.11 0.23 0.87 0.05 0.41 -1.77 0.00 1.18 2.02 0.20
0.81 -0.43 0.09 0.24 1.15 0.05 0.41 -3.06 0.00 1.19 2.02 0.19
0.79 -0.43 0.10 0.25 1.14 0.05 0.42 -3.06 0.00 1.20 2.02 0.20
0.81 -0.38 0.09 0.23 1.16 0.06 0.41 -3.06 0.00 1.19 2.02 0.20
0.80 -0.34 0.09 0.22 1.13 0.06 0.45 -2.96 0.00 1.18 2.02 0.19
FORM 17 (a = severe, ¢ = very severe)
0.77 0.07 0.12 0.24 0.87 0.07 0.41 -1.77 0.01 1.18 2.02 0.24
0.80 -0.43 0.12 0.22 1.15 0.07 0.40 -3.06 0.01 1.18 2.02 0.25
0.76 -0.43 0.12 0.23 1.14 0.06 0.41 -3.06 0.00 1.19 2.02 0.24
0.82 -0.38 0.12 0.26 1.16 0.07 0.43 -3.06 0.00 1.18 2.02 0.25
0.78 -0.34 0.13 0.21 1.13 0.07 0.43 -2.96 0.01 1.19 2.02 0.25
FORM 18 (a = very severe, ¢ = moderate)
0.79 0.07 0.07 0.30 0.87 0.04 0.30 -1.77 0.00 1.27 2.02 0.14
0.83 -0.43 0.08 0.30 1.15 0.04 0.32 -3.06 0.00 1.29 2.02 0.15
0.76 -0.43 0.07 0.30 1.14 0.04 0.30 -3.06 0.00 1.25 2.02 0.15
0.83 -0.38 0.07 0.29 1.16 0.04 0.30 -3.06 0.00 1.26 2.02 0.15
0.78 -0.34 0.08 0.31 1.13 0.04 0.30 -2.96 0.00 1.29 2.02 0.15
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Table B5

Descriptive Statistics of 60 Operational a, b, and ¢ Item Parameters used in Phase 2

FORM

mooOw>

mOoOw>

Mean Standard Deviation Minimum Maximum
a b c a b c a b c a b c
FORM 19 (a = very severe, ¢ =severe)
078 0.07 011 031 0.87 0.06 031 -1.77 0.00 128 202 0.20
084 -043 0.0 028 115 0.06 031 -3.06 0.00 129 202 0.20
0.77 -043 0.10 027 114 0.05 031 -3.06 0.01 129 202 0.20
082 -0.38 0.10 028 116 0.06 034 -3.06 0.00 129 202 0.20
084 -0.34 0.0 030 1.13 0.05 031 -296 0.01 128 202 0.20
FORM 20 (a = very severe, ¢ =Very severe)
079 0.07 0.13 0.28 0.87 0.08 031 -1.77 0.00 129 202 025
0.80 -0.43 0.10 031 115 0.08 0.31 -3.06 0.00 1.30 2.02 0.25
0.76 -043 0.12 032 114 0.07 0.30 -3.06 0.00 129 202 025
0.80 -0.38 0.13 029 116 0.07 0.30 -3.06 0.00 1.30 2.02 025
078 -0.34 0.14 031 113 0.07 030 -296 0.01 126 2.02 0.25
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APPENDIX C: DESCRIPTIVE STATISTICS FOR GENERATED THETA DISTRIBUTIONS
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Table C1

Generated One Dimensional and Two Dimensional Thetas

Descriptive Statistics for Modeled Theta Distributions

Group Means Standard Deviations Skewness Kurtosis Correlation

Thetal Theta?2 Thetal Theta?2 Thetal Theta?2 Thetal Theta?2 Theta 1 and Theta 2

Base form -0.003 0.000 1.000 1.001 0.000  0.005 0.006 0.002 0.302
New form -0.004  -0.001 1.000 1.001 -0.001  0.013 0.008  -0.001 0.299
Base form 0.000 0.002 0.997 0.996 -0.006  0.005 0.015 0.000 0.599
New form -0.001 0.003 0.999 0.998 -0.004 0.004 0.012 -0.001 0.599
Base form 0.005 0.004 1.001 1.000 0.002  0.001 0.000 -0.014 0.901
New form 0.005 0.007 1.000 1.001 0.000  0.003 -0.016  -0.002 0.901

Note: 100,000 Thetas per form were modeled to be equivalent between groups and correlated at .90, .60, and .30 within groups.
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Table C2

Generated One Dimensional and Two Dimensional Thetas Shifted -.60 STD

Descriptive Statistics for Modeled Theta Distributions

Group Means Standard Deviations Skewness Kurtosis Correlation
Thetal Theta 2 Thetal Theta?2 Thetal Theta2 Thetal Theta2 Theta 1 and Theta 2
Base form -0.001 -0.001 1.004 1.000 0.002 0.002 0.004 -0.009 0.299
New form -0.603 -0.600 1.052 1.051 0.275 0.275 0.023 0.017 0.294
Base form -0.001 -0.003 1.002 0.999 -0.007 0.005 0.009 -0.003 0.602
New form -0.602 -0.604 1.052 1.050 0.280 0.273 0.022 0.019 0.599
Base form 0.001 0.002 0.998 0.999 0.013 0.012 0.015 -0.004 0.899
New form -0.601 -0.600 1.051 1.049 0.284 0.286 0.039 0.054 0.899

Note: 100,000 Thetas were shifted -0.60 STD between groups and correlated at .90, .60, and .30 within groups.
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Table C3

Generated One Dimensional and Two Dimensional Thetas

Descriptive Statistics for Modeled Theta Distributions

Group Means Standard Deviations Skewness Kurtosis Correlation

Thetal Theta2 Thetal Theta2 Thetal Theta2 Thetal Theta2 Thetaland Theta 2

Base form  -0.001 -0.003 0.999 0.996 0.017 -0.004  0.009 -0.028 0.304
New form  -1.199 -1.206 1.108 1.102 0.534 0.499 0.280 0.140 0.302
Base form  0.002 0.000 0.997 0.999 0.013 0.014 0.020 -0.013 0.601
New form  -1.198 -1.201 1.106 1.106 0.516 0.513 0.210 0.190 0.596
Base form  -0.002 -0.001 1.002 1.003 -0.005 -0.003 -0.012 -0.023 0.901
New form  -1.200 -1.202 1.108 1.110 0.497 0.506 0.143 0.160 0.899

Note: 100,000 Thetas were shifted -1.20 STD between groups and correlated at .90, .60, and .30 within groups.
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