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the surface investigation of the deformed specimens, shown as the inserts in Fig. 9a, b, 
respectively. The microstructure of the alloy deformed at 850 °C and 0.1 s−1 is shown in 
Fig. 9c. A typical necklace-type structure was observed, which is the main mechanism 
of recrystallization nucleation (Momeni et al. 2014). Some recrystallized grains around 
original grain boundaries and some elongated grains are still present in the microstruc-
ture. This means that the DRX is incomplete and the microstructure is called mixed-
grain microstructure (Wang et al. 2015b). Based on the above results and analysis, these 
hot deformation conditions should be avoided for this alloy.

With the increasing temperature, the specimen deformed in the domain A exhibits 
completed DRX structure in Fig. 9d, e, respectively. Some new and fine DRX grains are 
observed. Both specimens are deformed in the domain A with high efficiency (>0.3), 

Fig. 9  Optical images of the microstructure of the hot compressed specimens deformed at strain of 0.6 and 
different conditions: a 650 °C, 1 s−1; b 750 °C, 1 s−1; c 850 °C, 0.1 s−1; d 900 °C, 1 s−1; e 950 °C, 0.1 s−1 and  
f 950 °C, 0.001 s−1, where the insets show the corresponding specimen pictures
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corresponding with Fig.  9d. Shi et  al. (2015) reported that the completed DRX in the 
stability region has high efficiency of power dissipation. Lu et al. (2013) found that the 
highest efficiency of power dissipation was obtained when the DRX was fully completed. 
Comparing Fig. 9d, e, the DRX grains deformed at 950 °C and 0.1 s−1 obviously grow in 
size, mainly due to recrystallized grains at high temperature having large driving force 
for nucleation and growth (Kong et al. 2015). This means that the grain boundary bulg-
ing through strain-induced grain boundary migration is the dominant nucleation mech-
anism of DRX. However, the recrystallized grains are still fine and homogenous. It can 
be concluded that the above hot deformation conditions represent the optimal process-
ing window. The microstructure of the specimen deformed in the instability region at 
the strain rate of 0.001 s−1 and temperature of 950 °C (domain C) is shown in Fig. 9f. It 
can be seen that the DRX grains marked by arrow become coarse. Surface cracks were 
also observed in the insert of Fig. 9f.

SEM images of the alloy deformed at the strain rate of 10 s−1 and 650 °C are shown in 
Fig. 10. The cracks marked by the arrows appeared in the alloy at these deformation con-
ditions. The instability mechanisms are associated with cracking at low temperature and 
high strain rate (Lv et al. 2014). This is in a good agreement with the processing maps 
results. Therefore, the alloy can easily fracture during deformation processing, and this 
region therefore should be avoided in industrial practice.

Conclusions
Hot deformation behavior and the microstructure of the Cu–Cr–Zr–Nd alloy have been 
investigated in the 650–950 °C temperature range and the 0.001–10 s−1 strain rate range. 
The following conclusions can be drawn from this investigation:

1.	 The flow stress strongly depends on the deformation temperature and the strain rate. 
The flow stress increases with the strain rate at constant temperature, and decreases 
with the deformation temperature at a constant strain rate. The flow curves exhib-

Fig. 10  SEM images showing cracks in the compressed specimen at deformation temperature of 650 °C and 
strain rate of 10 s−1, where the insets show the corresponding specimen picture
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ited typical characteristics of dynamic recrystallization at high temperatures and low 
strain rates.

2.	 The apparent activation energy for hot deformation of the Cu–Cr–Zr–Nd alloy is 
404.84 kJ/mol. The constitutive equation for the flow stress can be expressed as:

	

3.	 Based on the DMM principles, the processing maps at the strain of 0.3, 0.4, 0.5 and 
0.6 were established. According to the analysis of processing maps data and micro-
structure observations, the optimal hot working processing parameters for the Cu–
Cr–Zr–Nd alloy are in the temperature range of 900–950 °C and the strain rate range 
of 0.1–1  s−1. Full dynamic recrystallization structure with fine and homogeneous 
grain size can be obtained at optimum conditions.
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