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SUMMARY

We investigated whether ancestry-specific genetic factors affect tuberculosis (TB) progression risk in a
cohort of admixed Peruvians. We genotyped 2,105 patients with TB and 1,320 household contacts (HHCs)
who were infected withMycobacterium tuberculosis (M. tb) but did not develop TB and inferred each individ-
ual’s proportion of native Peruvian genetic ancestry. Our HHC study design and our data on potential con-
founders allowed us to demonstrate increased risk independent of socioeconomic factors. A 10% increase
in individual-level native Peruvian genetic ancestry proportion corresponded to a 25% increased TB progres-
sion risk. This corresponds to a 3-fold increased risk for individuals in the highest decile of native Peruvian
genetic ancestry versus the lowest decile, making native Peruvian genetic ancestry comparable in effect
to clinical factors such as diabetes. Our results suggest that genetic ancestry is amajor contributor to TB pro-
gression risk and highlight the value of including diverse populations in host genetic studies.

INTRODUCTION

Tuberculosis (TB), caused by Mycobacterium tuberculosis

(M. tb), is the leading cause of death from an infectious disease

worldwide.1,2 Similar to other infectious diseases, the develop-

ment of TB after M. tb infection is determined in part by human

genetic factors.3 Previous twin studies have shown that under

comparable environmental and social conditions, TB concor-

dance is higher in monozygotic twins than in dizygotic twins.3

Similarly, human genomics studies of TB have identified a num-

ber of variants that are associated with TB risk.4–7 However,

there is little concordance between known TB susceptibility

loci in different populations,3 suggesting that the risk alleles

driving TB risk in different populations may be heterogeneous.

Because pathogens are a major selective force in shaping our

genome,8 it is reasonable to think that the high historical preva-

lence of TB in Europe over the past 2,000 years may have led to

reduced frequencies of risk alleles in the European population.

Indeed, a recent study showed that the negative selection ex-

erted by the high burden of TB is likely to explain the sharp

drop in the frequency of rs34536443, a missense variant in

TYK2 that confers TB risk, after the Bronze age (2,500 years

ago).9 Similarly, a previous study of TB risk among admixed

South Africans showed that European genetic ancestry protects

against TB disease.10 It is thus plausible that genetic ancestry

contributes to differences in the incidence of TB across popula-

tions. However, quantifying the contribution of ancestry-specific

genetic factors to TB risk can be challenging because genetic
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ancestry can track with non-genetic sociodemographic TB risk

factors, such as smoking and under-nutrition.2

Here, we aim to understand the role of ancestry-specific ge-

netic factors that affect TB progression risk independently of so-

cioeconomic and environmental factors in a cohort of Peruvian

individuals. Peru has one of the highest TB incidences in South

America.11 The genetic makeup of contemporary Peruvians is

shaped by extensive admixture between native residents of

Peru and the Europeans, Africans, and Asians that have arrived

in Peru since the 16th century.12 We recruited patients with TB

and M. tb-infected household contacts (HHCs) in whom we as-

certained infection status by tuberculin skin testing (TST). We

specifically picked controls in this way to make sure they were

exposed and infected and to focus specifically on TB progres-

sion risk. We also ascertained sociodemographic and known

TB clinical risk factors in all participants. We then used genotype

data to quantify the genetic diversity in our cohort and to esti-

mate the proportion of native Peruvian genetic ancestry (i.e.,

the indigenous genetic ancestry component of the genome of

contemporary Peruvians) in each individual. Finally, we tested

the association between genetic ancestry and TB progression

risk after accounting for potential confounding effects.

RESULTS

Study design and case-control definition
We conducted a longitudinal, HHC genetic study of pulmonary

TB in Lima, Peru (STAR Methods; Figures S1 and S2). All cases

(n = 2,105) had confirmed active TB.Within 14 days of enrollment

of index TB cases (i.e., the first TB patient in each household), we

screened their HHCs for signs and symptoms of active TB aswell

as for latent TB as measured by a TST. These tests were

repeated at 2, 6, and 12 months (STAR Methods; Figure 1). We

refer to HHCs who were identified as having TB within 14 days

of enrollment of index TB cases as ‘‘baseline cases’’ and to

HHCs who were diagnosed with TB after this period until the

end of the 12 months follow up as ‘‘secondary’’ or ‘‘secondary

clustered cases’’ (see STAR Methods for details). Controls (n =

1,320) are HHCs of index cases who were TST positive but

who did not develop TB during 12 months of active follow up

(STAR Methods). In addition to individuals’ TB status, we also

collected extensive information on sociodemographic risk fac-

tors for TB (STAR Methods; Table 1).

Global ancestry inference
We quantified the global genetic ancestry for each individual in

our cohort, assuming four ancestral populations (K = 4) based

on Peru’s population history12 (Figure S3). These four popula-

tions corresponded to native Peruvian, European, West African,

and East Asian genetic ancestry with average proportions 0.80

(standard deviation [SD] = 0.15), 0.16 (0.11), 0.03 (0.07), and

0.01 (0.03), respectively (Table 1; Figure 2A; Table S1; Figure S4).

These proportions were consistent with previous genetic studies

of Peruvians.12 Increasing the number of clusters revealed finer

substructures within each of the four main ancestral clusters

(Figure S5; Table S2).

Correlation between self-reported race and genetic
ancestry
Self-reported race or ethnicity is frequently used in epidemiolog-

ical or medical studies to account for an individual’s background.

However, self-reported race/ethnicity can be a poor proxy for ge-

netic ancestry in admixed populations.13–15 In our cohort, the ma-

jority of participants self-identify their race as ‘‘American Indian +

White’’ and their ethnicity as ‘‘Latino’’ (74%and 99%respectively;

Table 2). Genetic ancestry proportions differ significantly between

self-reported race categories (ANOVA p < 10-30 for all four tested

Figure 1. Our household-contact study design

We recruited patients in a large catchment area that included 20 urban districts

and �3.3 million residents. Within 14 days of enrollment of index cases, we

contacted their household contacts (HHCs). HHCs with pulmonary TB were

recruited as cases (baseline cases). HHCs that were TST positive but did not

have active TBwere recruited as controls. All individuals were followed up with

for 1 year, and all HHCs were evaluated for signs and symptoms of pulmonary

and extra-pulmonary TB disease at 2, 6, and 12 months after enrollment and

were recruited as cases if they developed active TB during follow up (sec-

ondary cases). HHCs that remained or became TST positive but did not

develop active TB were recruited as controls. The final cohort included 2,105

TB cases and 1,320 TST-positive HHCs.
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Table 1. Cohort’s demographic information

Mean (SD) p value

Native Peruvian genetic ancestry

NAT tertile 1 0.64 (0.13) <2.2 3 10�308

NAT tertile 2 0.84 (0.03)

NAT tertile 3 0.94 (0.03)

European genetic ancestry

NAT tertile 1 0.26 (0.10) <2.2 3 10�308

NAT tertile 2 0.14 (0.03)

NAT tertile 3 0.06 (0.03)

West African genetic ancestry

NAT tertile 1 0.08 (0.10) 3.6 3 10�185

NAT tertile 2 0.015 (0.02)

NAT tertile 3 0.005 (0.006)

East Asian genetic ancestry

NAT tertile 1 0.02 (0.05) 1.4 3 10�59

NAT tertile 2 0.007 (0.01)

NAT tertile 3 0.003 (0.006)

Age

NAT tertile 1 33.26 (15.59) 2.0 3 10�8

NAT tertile 2 29.02 (13.12)

NAT tertile 3 34.90 (17.05)

TB status control (%) case (%)

NAT tertile 1 0.16 0.17 2.3 3 10�16

NAT tertile 2 0.12 0.22

NAT tertile 3 0.11 0.23

Sex female (%) male (%)

NAT tertile 1 0.13 0.20 4.7 3 10�6

NAT tertile 2 0.14 0.19

NAT tertile 3 0.16 0.17

Smoking status heavy (%) light (%) non-smoker (%) NA (%)

NAT tertile 1 0.02 0.02 0.29 0.008 2.2 3 10�26

NAT tertile 2 0.004 0.01 0.31 0.007

NAT tertile 3 0.002 0.004 0.32 0.005

Drinking status heavy (%) light (%) non-drinker (%) NA (%)

NAT tertile 1 0.04 0.11 0.17 0.02 1.5 3 10�12

NAT tertile 2 0.03 0.09 0.2 0.01

NAT tertile 3 0.02 0.09 0.22 0.01

Body mass index normal (%) overweight (%) underweight (%) NA (%)

NAT tertile 1 0.007 0.04 0.28 0.004 0.12

NAT tertile 2 0.01 0.04 0.28 0.004

NAT tertile 3 0.007 0.03 0.29 0.004

Previous TB No (%) Yes (%)

NAT tertile 1 0.31 0.03 0.09

NAT tertile 2 0.30 0.04

NAT tertile 3 0.30 0.04

(Continued on next page)
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genetic ancestries; Figure 3). For example, individuals who self-

identified as ‘‘Black’’ had a higher proportion of West African ge-

netic ancestry than the average of all other categories (mean

[SD] = 0.25 [0.23] versus 0.3 [0.6]; Figure 3). Nonetheless, native

Peruvian ancestry was the dominant genetic ancestry in all cate-

gories of self-reported race (Figure 3). Similarly, 18% of individ-

uals with high (>0.9) proportion of native Peruvian genetic

ancestry (n = 985) self-identified as ‘‘American Indian’’ compared

with only 7% of individuals with low (<0.5) proportion of native

Peruvian genetic ancestry (n = 140; Tables S3 and S4). In all

tertiles of native Peruvian ancestry, the majority of individuals

self-reported as ‘‘American Indian + White’’ followed by ‘‘Amer-

ican Indian’’ (Table S5). Altogether, these results suggest that

self-reported race and genetic ancestry are correlated; however,

individuals who self-report the same race can have drastically

different levels of genetic ancestry proportions.

We then tested whether self-reported race is associated with

TB progression risk. No category of self-reported race was

significantly associated with TB status, suggesting that in our

cohort, self-reported race is not a risk factor for TB progression

(Table S6).

Association between genetic ancestry and TB
progression risk
To examine the relationship between genetic ancestry and TB

progression risk in Peruvians, we applied logistic regression to

test the effect of the estimated fraction of native Peruvian, Euro-

pean, West African, and East Asian genetic ancestries on case-

control status after adjusting for age, sex, and socioeconomic

status. Additionally, we included a random household effect to

account for environmental factors and a genetic relatedness ma-

trix to account for cryptic relatedness between individuals. We

observed a significant association between increased native

Peruvian genetic ancestry and TB progression risk (odds ratio

per 0.1 increase in native Peruvian genetic ancestry proportion

[ORNAT0.1] = 1.25, 95% confidence interval [CI] = 1.18–1.33, p =

1.13 10�13; Table 3), and European,West African, and East Asian

genetic ancestries were associated with reduced TB progression

risk (Table 3). Adjusting for self-reported race (Table S7) or

removing 430 related individuals (kinship coefficient R 0.125)

did not change these results (Figure S6; Table S8). Similarly, strat-

ifying by sex did not change our results (Figure S7; Table S9).

Next, to test whether these associations were independent of

each other, we performed conditional analyses between ances-

tries. Native Peruvian genetic ancestry remained significantly

associated with increased TB progression risk conditioned on

the other ancestries, but the other ancestries showed no associ-

ation with TB progression risk after conditioning on native Peru-

vian genetic ancestry (Table 3).

In our cohort, native Peruvian is the main genetic ancestry and

the only one that is associated with an increased TB progression

risk relative to other ancestry components.We observed a signif-

icantly higher level of native Peruvian genetic ancestry in cases

compared with the infected HHCs (0.82 [SD = 0.13] and 0.78

[0.17], t test p = 8.8 3 10�19; Figure 2B) and a higher probability

of being a case with an increasing proportion of native Peruvian

genetic ancestry. Individuals with the highest level of native

Peruvian genetic ancestry (top decile, average native Peruvian

genetic ancestry proportion = 0.97 [0.01], n = 232 cases, 110

controls) were three times more likely to progress to active TB

(OR = 2.90, 95% CI = 1.99–4.26, p = 2.8 3 10�8; Figure 2C)

compared with the individuals with the lowest level of native Pe-

ruvian genetic ancestry (bottom decile, average native Peruvian

genetic ancestry proportion = 0.48 [0.13], n = 149 cases, 194

controls). Assuming a larger number of ancestral clusters did

not substantively change the association between native Peru-

vian genetic ancestry and TB progression risk (Table S10).

As a sensitivity analysis and to rule out the effect of individual-

level non-genetic confounders, we addedWest African and East

Asian genetic ancestry proportions, BMI, education level, and

BCG vaccination, smoking, alcohol use, and previous TB status

to our model. Including these additional covariates did not

Table 1. Continued

Mean (SD) p value

Education above high school (%) below high school (%)

NAT tertile 1 0.1 0.23 4.7 3 10�7

NAT tertile 2 0.09 0.24

NAT tertile 3 0.07 0.26

BCG vaccination no (%) yes (%)

NAT tertile 1 0.03 0.3 5.6 3 10�04

NAT tertile 2 0.04 0.29

NAT tertile 3 0.05 0.28

Socioeconomic group low (%) middle (%) high (%) NA (%)

NAT tertile 1 0.10 0.13 0.08 0.01 0.79

NAT tertile 2 0.11 0.13 0.08 0.01

NAT tertile 3 0.11 0.14 0.08 0.01

The cohort includes 2,105 individuals with active TB (cases) and 1,320 infected HHCs (controls). We divided the cohort into tertiles based on native

Peruvian genetic ancestry and tested the association of these tertiles with each covariate individually. Two-sided p values are calculated using the

ANOVA for quantitative variables and using the chi-square test for categorical variables. For quantitative variables, mean (SD), and for categorical vari-

ables, percentages are shown. NA, not available. The socioeconomic group is a household-level variable; all other variables are individual-level vari-

ables. Numbers are rounded to two or three decimal places.
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change the observed association between native Peruvian

genetic ancestry and TB progression risk (ORNAT0.1 = 1.23

[1.11–1.35], p = 6.5 3 10�5; Figure 2D; Table S11).

Collectively, these results suggest that native Peruvian genetic

ancestry is associated with increased TB progression risk inde-

pendently of other genetic ancestries or non-genetic factors that

can track with genetic ancestry such as sociodemographic or

known clinical TB risk factors. However, these results do not

rule out the possibility of this association being the result of other

non-genetic confounders related to phenotypic heterogeneity,

exposure, or transmission. We thus performed a series of statis-

tical analyses to account for these potential confounders.

Accounting for phenotypic heterogeneity
To test if phenotypic heterogeneity in our cohort could explain

our results, we restricted the analysis to microbiologically

confirmed TB cases (n = 2,043) andHHCswhowere TST positive

at baseline and did not develop active TB during the 1 year follow

up (n = 950). These analyses resulted in an OR similar to the

larger cohort (ORNAT0.1 = 1.28 [1.20–1.37], p = 5.6 3 10�14;

Table S12). We also considered that cases and controls who

were from the same household may share a more similar

ancestry profile compared with average, which may bias our re-

sults. For this, we tested the association of native Peruvian ge-

netic ancestry with TB progression risk using half of the cases

(n = 791) and the same number of controls who were not from

the same household as cases and after correction for age, sex,

socioeconomic status, and genetic relatedness. This analysis

had a similar result to the analysis performed using the whole

cohort (ORNAT0.1 = 1.19 [1.10–1.28], p = 1.0 3 10�12).

Accounting for transmission and exposure
While index cases might have acquired TB in the community,

secondary cases are more likely to result from within household

Figure 2. Native Peruvian genetic ancestry is associated with TB progression risk

(A) ADMIXTURE analysis results using K = 4 clusters. The average proportions of native Peruvian (red), European (yellow), West African (green), and East Asian

(pink) genetic ancestry were 0.8 (standard deviation [SD] = 0.15), 0.16 (0.11), 0.03 (0.07), and 0.01 (0.03), respectively. X axis: individuals (axis ticks not shown). Y

axis: genomic proportion. Displayed populations from left to right: Utah residents with Northern and Western European ancestry (CEU from the 1000 Genomes

Project), Yoruba (YRI from the 1000Genomes Project), Southern HanChinese (CHS from the 1000Genomes Project), Andean (fromReich et al.’s study), Northern

American-Indians (North Amerind, from Reich et al.’s study), Central American-Indians (Central Amerind, from Reich et al.’s study), Altaic (Siberians speaking

Altaic languages, from Reich et al.’s study), Puerto Ricans from Puerto Rico (PUR from the 1000 Genomes Project), Colombians from Medellin, Colombia

(CLM from the 1000 Genomes Project), Mexican Ancestry from Los Angeles USA (MXL from the 1000 Genomes Project), Peruvians from Lima, Peru (PEL

from the 1000 Genomes Project), TB cases form this study (n = 2,106), and TB controls from this study (n = 1,320).

(B) Probability density distribution of native Peruvian genetic ancestry proportion in TB cases and controls. TB cases have a higher proportion of native Peruvian

genetic ancestry than infected HHCs (two-sided t test p = 8.8 3 10-19). Y axis: density. X axis: native Peruvian genetic ancestry (NAT) proportion.

(C) Individuals in the higher native Peruvian genetic ancestry decile have a higher TB risk. Individuals with the highest level of native Peruvian genetic ancestry (top

decile, average native Peruvian genetic ancestry proportion = 0.97 [0.01], n = 232 cases, 110 controls) are three times more likely to progress to active TB (OR =

2.90, 95% CI = 1.99–4.26, p = 2.83 10-8) compared with the individuals in the bottom decile (average native Peruvian genetic ancestry proportion = 0.48 [0.13],

n = 149 cases, 194 controls). X axis: average native Peruvian genetic ancestry proportion for each decile; error bars show standard error. Y axis: TB odds ratio

(OR) after correction for age, sex, socioeconomic status, household, and genetic relatedness. ORs are shown relative to the first decile. Error bars show 95%CI.

Each decile includes 398 individuals.

(D) Native Peruvian genetic ancestry remained significantly associatedwith TB progression risk after controlling for eight additional individual covariates including

West African and East Asian genetic ancestry proportion, smoking, drinking, previous TB status, education level, BMI, and BCG vaccination. Similarly, native

Peruvian genetic ancestry remained significantly associated with TB progression risk when we restricted our cohort to secondary or secondary clustered cases

and their HHCs. Circles show OR for 0.1 increase in native Peruvian genetic ancestry; error bars show 95% CI. NAT, native Peruvian genetic ancestry.
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transmission. To account for potential differences in exposure

and transmission between index cases and HHCs, we tested

the association between native Peruvian genetic ancestry and

TB progression in secondary cases (n = 213) and controls from

the same households (n = 214) and after adjusting for age, sex,

socioeconomic status, household, and genetic relatedness, as

we did in our primary analysis. We observed an OR similar to

the one observed for the whole cohort (ORNAT0.1 = 1.30 [1.12–

1.51], p = 4.4 3 10�3; Figure 2D; Table S12).

We further restricted the cohort to secondary clustered TB

cases to ensure that their TB disease was the result of within

household transmission or infection from circulatingM. tb strains

rather than reactivation of an old infection. While this analysis

had a much smaller sample size, the results were consistent

with our previous analyses (n = 58 TB cases and 48 HHCs,

ORNAT0.1 = 1.67 [1.13–2.47], p = 1.0 3 10�2; Figure 2D;

Table S12). Native Peruvian genetic ancestry proportion was

similar between baseline and secondary cases from the same

households, which is consistent with the conclusion that differ-

ences in native Peruvian genetic ancestry proportion are not

associated with differences in exposure (n = 135 baseline and

213 secondary cases, ORNAT0.1 = 1.02 [0.86–1.22], p = 0.28;

Table S11).

Admixture mapping
We performed local ancestry inference followed by admixture

mapping to look for specific genomic regions that might explain

the association between native Peruvian genetic ancestry and

TB progression risk (n = 889,203 markers following imputation,

quality control [QC], and pruning). No locus passed the

genome-wide significance threshold (p < 4.3 3 10�6). However,

we observed suggestive evidence of association at 5p23.2 (OR =

1.34 [1.17–1.53], p = 2.93 10�5; Figure S8). When we restricted

the analysis to cases with microbiologically confirmed TB (n =

2,043) and HHCs who were TST positive at baseline and did

not progress to active TB over the 1 year follow up (n = 950),

the signal on 5p23.2 got stronger (OR = 1.39 [1.20–1.61], p =

1.5 3 10�5; Figure S8) and closer to the genome-wide signifi-

cance threshold set using permutation for this analysis

(p < 1.03 10�5). This locus overlaps a 100Mb region on chromo-

some 5 (125855350-125963352), which includes the coding

sequence ofALDH4A1 and 69 variants that were nominally asso-

ciated with TB progression risk in our cohort (Table S13).4–7

However, understanding whether any of these variants or other

variants in this locus might explain the observed admixture map-

ping signal requires further investigation.

DISCUSSION

Our results suggest that relative to other tested genetic ances-

tries, native Peruvian genetic ancestry is associated with TB

progression risk independently of population structure, the soci-

odemographic factors that we tested here, and factors related to

exposure or transmission. In our cohort, individuals with the

highest proportion of native Peruvian genetic ancestry are three

timesmore likely to progress to active TB compared with individ-

uals with the lowest level of native Peruvian genetic ancestry. To

compare, this effect is similar to the reported effect of diabetes

on TB risk based on previous cohort studies.16

Compared with native Peruvian genetic ancestry, European

and West African genetic ancestries were associated with

reduced TB progression risk. This protective effect can be the

result of the long, shared history of these populations with

M. tb,17 which could have led to selective pressures that have

mitigated TB genetic risk if such pressures were not present in

pre-colonization Peru.18 However, we want to emphasize that

the effect of native Peruvian ancestry on TB progression risk is

relative to other ancestries that we tested here and cannot be

causally detangled from the effect of other genetic ancestries.

While our results show a strong genome-wide signal for the ef-

fect of native Peruvian genetic ancestry on TB risk, we did not

identify any single locus that can explain this effect, suggesting

that it is driven by a polygenic architecture withmany variants ex-

erting modest impact. This conclusion is in line with our previous

genome-wide association study (GWAS) of TB progression in the

current cohort where we showed SNP heritability (h2g) of TB pro-

gression in Peruvians to be 21.2% yet found only one genome-

wide significant locus (3q23) associated with TB progression

risk.7 We did not identify any association in 3q23 locus in our

admixture mapping analysis; however, GWAS and admixture

mapping results can be complementary and do not necessarily

always point to the same risk loci.19,20 In addition to the poly-

genic structure or TB progression, our power to detect specific

TB progression risk loci through admixture mapping may have

also been affected by the lower accuracy of local ancestry infer-

ence in multi-way admixture scenarios compared with two-way

admixtures.10 Altogether, these results suggest that conclusively

identifying TB progression risk loci requires larger studies with

greater statistical power.

To our knowledge, this study is the first large-scale genetic

study to look at the effect of indigenous ancestry on TB or

TB progression risk in South or Latin American populations.

However, the role of indigenous ancestry in the apparently

increased burden of TB among native populations of America

has been extensively debated for over 200 years.21,22 These

debates are rooted in epidemiological studies showing a high

TB burden and mortality rates in post-contact indigenous

Table 2. Self-reported race and ethnicity in our cohort (n = 3,425)

Self-reported race Count

American Indian + White 2,538

American Indian 515

White 289

Black 42

American Indian + Black 15

Asian 6

Black + White 6

American Indian + White + Asian 1

NA 13

Self-reported ethnicity Count

Latino 3,410

Not Latino 9

NA 6
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Americans compared with Europeans.21,22 More recent evi-

dence for the role of genetic factors related to indigeneity

and TB risk comes from candidate gene23 or family24 studies.

However, these debates remain inconclusive mainly due to

the challenges associated with separating population-specific

genetic risk factors from non-genetic risk factors that track

with genetic ancestry.21,22

Our study is different from these previous genetic studies in

three ways. First, our study uses genetic data to quantitatively

assign genetic ancestry, whereas previous studies used self-re-

ported ancestry, which is often a poor proxy for genetic ancestry

in admixed populations13,15 and thus can lead to misclassifica-

tion of participants. Second, we carefully phenotyped all individ-

uals and ascertained infection status using TST to ensure that all

individualswere exposed toM. tb. This is an important distinction

as different genetic factors might underlie different stages of the

disease (e.g., infection versus progression upon infection).7

Third, our HHC, longitudinal study design allowed us to ensure

that all controls were exposed toM. tb and to rigorously account

for potential non-genetic factors that track with genetic ancestry.

In addition to its relevance for better understanding the ge-

netic architecture of TB progression, our study provides a

framework for similar future studies where it is important to ac-

count for environmental and socioeconomic factors to identify

genetic factors that affect disease outcomes. Our results also

highlight that differences in infectious disease burden among

different populations cannot be solely attributed to variations

in sociodemographic factors and can be partially due to ge-

netic differences. Our results also highlight that differences in

infectious disease burden among different populations cannot

be solely attributed to variations in sociodemographic factors

and can be partially due to genetic differences. Currently, the

majority of human genomics studies of complex traits are

done in populations of European ancestry.25 However, with

the increasing clinical applications of complex trait genomics

data,26 this European bias can lead to increased health dispar-

ities.27 Our results underline the importance of conducting

large-scale human genomics studies in diverse populations in

order to get a better understanding of population-specific ge-

netic risk for TB and other complex diseases, to get a compre-

hensive picture of the genotype-phenotype relationship, and to

enable all human populations to benefit from the results of hu-

man genomics research.

Limitations of the study
One caveat of our study is that we have not tested for all possible

non-genetic TB risk factors. For example, while we tried to ac-

count for factors related to exposure by including only partici-

pants with a documented household exposure to an index TB pa-

tient, we do not have information on possible community or

workplace exposures. We also could not correct for potential

biases and unmeasured social discriminations and inequalities

that might track with both genetic ancestry and TB progression

risk.While thesemay be potential confounders, we consider it un-

likely to explain the entirety of our signal: such biases are likely to

track with households, and correction for household in our ana-

lyses did not alter our results. We note that the distribution of de-

mographic variables such as sex, age, and education level in our

cohort may differ from that in the general population. However,

accounting for these covariates does not change our results, sug-

gesting that our findings are unlikely to be driven by demo-

graphics. Finally, we emphasize that while our study brings proof

that TB risk can vary across populations with different genetic an-

cestries, our results cannot be generalized to all indigenous pop-

ulations, as different populations have different histories, and the

sociodemographic factors, the primary determinants of TB risk,

vary widely across different indigenous populations.2,28
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Borda, V., Tarazona, D., Trujillo, O., Sanchez, C., et al. (2018). Evolutionary

genomic dynamics of Peruvians before, during, and after the Inca Empire.

Proc. Natl. Acad. Sci. USA 115, E6526–E6535. https://doi.org/10.1073/

pnas.1720798115.

13. Mersha, T.B., and Abebe, T. (2015). Self-reported race/ethnicity in the age

of genomic research: its potential impact on understanding health dispar-

ities. Hum. Genom. 9, 1. https://doi.org/10.1186/s40246-014-0023-x.

14. Sucheston, L.E., Bensen, J.T., Xu, Z., Singh, P.K., Preus, L., Mohler, J.L.,

Su, L.J., Fontham, E.T.H., Ruiz, B., Smith, G.J., and Taylor, J.A. (2012). Ge-

netic ancestry, self-reported race and ethnicity in African Americans and

European Americans in the PCaP cohort. PLoS One 7, e30950. https://

doi.org/10.1371/journal.pone.0030950.

15. Kumar, R., Seibold, M.A., Aldrich, M.C., Williams, L.K., Reiner, A.P., Co-

langelo, L., Galanter, J., Gignoux, C., Hu, D., Sen, S., et al. (2010). Genetic

ancestry in lung-function predictions. N. Engl. J. Med. 363, 321–330.

https://doi.org/10.1056/nejmoa0907897.

16. Jeon, C.Y., andMurray,M.B. (2008). Diabetesmellitus increases the risk of

active tuberculosis: a systematic review of 13 observational studies. PLoS

Med. 5, e152. https://doi.org/10.1371/journal.pmed.0050152.

17. Comas, I., Coscolla, M., Luo, T., Borrell, S., Holt, K.E., Kato-Maeda, M.,

Parkhill, J., Malla, B., Berg, S., Thwaites, G., et al. (2013). Out-of-Africa

migration and Neolithic coexpansion of Mycobacterium tuberculosis

with modern humans. Nat. Genet. 45, 1176–1182. https://doi.org/10.

1038/ng.2744.

18. Woodman, M., Haeusler, I.L., and Grandjean, L. (2019). Tuberculosis ge-

netic epidemiology: a Latin American perspective. Genes 10, 53. https://

doi.org/10.3390/genes10010053.

19. Galanter, J.M., Gignoux, C.R., Torgerson, D.G., Roth, L.A., Eng, C., Oh,

S.S., Nguyen, E.A., Drake, K.A., Huntsman, S., Hu, D., et al. (2014).

Genome-wide association study and admixture mapping identify different

asthma-associated loci in Latinos: the Genes-environments & Admixture

in Latino Americans study. J. Allergy Clin. Immunol. 134, 295–305.

https://doi.org/10.1016/j.jaci.2013.08.055.

20. Daya, M., Rafaels, N., Brunetti, T.M., Chavan, S., Levin, A.M., Shetty, A.,

Gignoux, C.R., Boorgula, M.P., Wojcik, G., Campbell, M., et al. (2019).

Author Correction: association study in African-admixed populations

across the Americas recapitulates asthma risk loci in non-African popula-

tions. Nat. Commun. 10, 4082. https://doi.org/10.1038/s41467-019-

12158-w.

21. McMillen, C.W. (2008). ‘The red man and the white plague’: rethinking

race, tuberculosis, and American Indians, ca. 1890–1950. Bull. Hist.

Med. 82, 608–645. https://doi.org/10.1353/bhm.0.0094.

22. Jones, D.S. (2003). Virgin soils revisited. William Mary Q. 60, 703–742.

23. Zembrzuski, V.M., Basta, P.C., Callegari-Jacques, S.M., Santos, R.V.,

Coimbra, C.E., Salzano, F.M., and Hutz, M.H. (2010). Cytokine genes

are associated with tuberculin skin test response in a native Brazilian pop-

ulation. Tuberculosis 90, 44–49. https://doi.org/10.1016/j.tube.2009.11.

002.

24. Greenwood, C.M., Fujiwara, T.M., Boothroyd, L.J., Miller, M.A., Frappier,

D., Fanning, E.A., Schurr, E., and Morgan, K. (2000). Linkage of tubercu-

losis to chromosome 2q35 loci, including NRAMP1, in a large aboriginal

Canadian family. Am. J. Hum. Genet. 67, 405–416. https://doi.org/10.

1086/303012.

25. Sirugo, G., Williams, S.M., and Tishkoff, S.A. (2019). The missing diversity

in human genetic studies. Cell 177, 1080. https://doi.org/10.1016/j.cell.

2019.04.032.

26. Sun, J., Wang, Y., Folkersen, L., Borné, Y., Amlien, I., Buil, A., Orho-Mel-
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and data should be directed to and will be fulfilled by the lead contact, Soumya Ray-

chaudhuri (soumya@broadinstitute.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Individual-level TB status and genotyping data are available through dbGAP (dbGAP: phs002025.v1.p1). No custom code was used

to draw the central conclusions of this work. All the software and packages used in this work are included and referenced in themanu-

script. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study participants
We obtained blood samples for genotyping with informed consent from participants and following approval by the Institutional Re-

view Board of Harvard School of Public Health (Reference number 19332) and by the Research Ethics Committee of the National

Institute of Health of Peru.

The individuals included in the current study are a subset of a much larger cohort that we have collected and described in detail

previously.29,30 We recruited participants from 106 district health centers in Lima, Peru in a catchment area encompassing 12 of the

43 districts of metropolitan Lima and 3.3 million inhabitants (Figure S2). In this study, we included the subset of this larger study that

were HIV-negative TB patients and HHCs and provided a blood sample. There are 3425 individuals in the final cohort including 43%

females (N total = 2015 patients with active TB and 1320 HHCs with latent TB). The average age in our cohort is 31.29 years old (sd =

15.23).

Phenotype description
We define cases as those individuals with confirmed TB diagnosis by the presence of acid-fast bacilli in a sputum smear, a positive

M. tb culture, or based on diagnosis by a physician. We performed mycobacterial interspersed repetitive units (MIRU) based geno-

typing on all cultured M. tb isolates. Index cases are the first TB cases within each household.

We define controls as HHCs of index cases (i.e. individuals who live in the same house as the index case) who are infected with

M. tb but did not progress to active diseases through the one-year follow-up. We determined the infection status of HHCs using

TST and evaluated them for signs and symptoms of pulmonary and extra-pulmonary TB disease at baseline, and at two, six, and

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Individual-level TB status and

genotyping data

Luo et al., 2019 phs002025.v1.p1

Software and algorithms

Plink Chang et al., 2015 https://www.cog-genomics.org/plink/

PCAdmix Brisbin et al., 2012 https://sites.google.com/site/pcadmix/downloads/copyright_1-0

ADMIXTURE Alexander et al., 2009 https://dalexander.github.io/admixture/download.html

GENESIS R package Conomos et al., 2016 https://bioconductor.org/packages/release/bioc/html/GENESIS.html

lme4qtl Ziyatdinov et al., 2018 https://github.com/variani/lme4qtl

Other

The 1000 Genomes Project Consortium, 2015 https://www.internationalgenome.org/home

Genotyping data from Native Siberian

and Native Americans

Reich et al., 2012 Direct communication with authors
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12 months after enrollment. While cases were not excluded based on TB history, controls with a history of active TB or previous pos-

itive TST were excluded. We chose this study design because HHCs of individuals with TB are highly exposed to M.tb and are at a

high risk of developing TB31,32; hence our strategy allowed us to focus on TB progression by including controls that were exposed to

the pathogen and were infected. To adjust for any residual confounding that might be missed by our household recruitment study

design, we also collected extensive sociodemographic and clinical variables at baseline including self-reported race and ethnicity,

age, sex, body mass index (BMI), smoking, alcohol use, previous TB, socioeconomic status, education level, and BCG vaccination.

We refer to HHCs who receive a TB diagnosis within 14 days of enrollment of index cases as ‘‘baseline’’ cases. We refer to HHCs

that developed active TB (e.g. became TB cases) 14 days or more after index case enrollment as ‘‘secondary cases’’ and to second-

ary cases that their M. tb strain shared exact MIRU genotyping with another TB case as ‘‘secondary clustered cases’’. In analyses

focused on secondary or secondary clustered cases, controls were restricted to HHCs of these cases (i.e. if a household did not have

any secondary or secondary clustered cases HHCs from that household were not included as controls).

METHOD DETAILS

Categorizing smoking, drinking, body mass index (BMI), and socioeconomic status
We categorized participants according to their alcohol intake as follows: nondrinkers if they reported having consumed no alcoholic

drinks per day, light drinkers if they reported drinking <40 g or <3 alcoholic drinks per day and heavy drinkers if they reported drinking

40 g of alcohol or more or 3 or more drinks per day.33 For smoking, we classified people as nonsmokers if they reported no cigarette

smoking, as light smokers if they reported smoking one cigarette per day, and as heavy smokers if they reported smoking more than

one cigarette per day.33 We categorized people with BMI z-scores of less than �2 as underweight and those greater than 2 as over-

weight. For children, we defined the nutritional status based on the World Health Organization BMI z-score tables.34 We calculated

household-level composite socioeconomic scores (SES) using principal component analysis (PCA) as described before30 by sum-

marizing the following household-level factors: type of housing, the total number of rooms in the house, exterior wall material, primary

floor material, primary roof material, type of water supply, type of sanitation facility, and type of lighting in the house. We categorized

the continuous SES scores into tertiles corresponding to low, middle, and upper socioeconomic status groups.

Genotyping and global ancestry inference
We extracted genomic DNA from participants’ whole blood. To optimally capture the genetic diversity of Peruvians, we designed a

customized array (LIMAArray) with 712,200markers. In addition to the general genome-widemarkers from theAffymetrix Axiom�my-

Design custom genotyping array, we supplemented our array using codingmarkers from exome sequencing data of 116 Peruvian TB

cases from the samepopulation as our studypopulation in order to optimally capturePeruvian’s genetic variation, andparticularly rare

andprotein-coding variations7 (MethodS1).Our array included 1.6%coding and 98.4%non-codingSNPs. FollowingQCand filtering,

wekept 677,232genotypedvariants touse fordownstreamPCAandgenetic ancestry inference.Wemergedgenotypingdata fromour

cohort, with previously published data from the 1000Genomes Project phase 3 (2,054 individuals from 26 populations)35 and Siberian

andNative American populations fromReich et al.36 (493 individuals from 57 native American populations and 245 individuals from17

Siberian populations), by matching on the chromosome, position, reference, and alternate alleles using PLINK (version 1.90b3w).37

After merging the datasets, we excluded variants with an overall minor allele frequency (MAF) < 1%.We then pruned the data for link-

age disequilibrium (LD) by removing themarkers with r2 > 0.1 with any other marker within a sliding window of 50markers per window

and an offset of 10 using PLINK. The final merged dataset included 22198 variants (Methods S2, S3, and S4). We used the Genome-

wide Complex Trait Analysis tool (GCTA),38 version 1.26.0) to perform PCA and ADMIXTURE39 (version 1.3), an unsupervised clus-

tering method, with K = 4-7 clusters to perform global ancestry inference on this dataset (Figure S3). We used reference populations

inADMIXTUREanalysis todeterminewhat genetic ancestry eachcluster represents. For example, if a clusterwas thedominant cluster

in the European individuals from the 1000Genomes Project35 we concluded that this cluster represents European genetic ancestry in

admixed Peruvians from our cohort. All genetic analyses were done using GRCh37.

Kinship estimation and genetic relatedness matrix (GRM)
We used the PC-Relate40 implemented in the GENESIS R package (version 2.6.1) to estimate the kinship coefficients between in-

dividuals and to generate a genetic relatedness matrix (GRM). We removed rare variants (MAF <1%), regions with known long-range

linkage disequilibrium (LD),41 and variants in high LD (r2 > 0.2 in a window of 50 kb and an offset of 5) using Plink (version 1.90b3w). In

total, 551 pairs had kinship coefficientsR0.125 corresponding to second-degree relatives or closer. Of these, 36 pairs were parent-

child, 72 were sib pairs, and 453 were second-degree relatives. Of related pairs, we randomly removed one individual. In total 430

individuals were removed. The remaining cohort included 1,929 TB cases and 1,066 HHCs. All remaining pairwise relatedness es-

timates were <0.125 (Figure S6).

Testing the association between global genetic ancestry proportions and TB progression risk
To test the association of genetic ancestry proportions with TB progression risk we used the following logistic mixed model frame-

work implemented in lme4qtl42 R package:
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log

�
yi

1 � yi

�
= q+ bageXd;age + bsexXd;sex + bancXd;anc + bsesXd;ses + ð1jhouseholdÞ+GRM (Equation 1)

Yi is the probability of individual i being a case, qis the intercept, bage is a vector of effect estimates for individual-level standardized

age {0–1}, bsex is a vector of effect estimates for individual-level sex {male, female}, bnat is a vector of effect estimates for individual-

level native Peruvian, European, West African, or East Asian genetic ancestry proportions {0–1}, Xs are the corresponding values for

individual d, as appropriate. household is a categorical random effect for the household each individual comes from and GRM is a

matrix of pairwise genetic relatedness values between individuals {0–0.5}.

We also performed the following sensitivity analyses to test the effect of additional covariates, phenotypic heterogeneity, or factors

related to exposure or transmission on our results. First, in addition to native Peruvian genetic ancestry, age, sex, socioeconomic

status, household, and GRM, we also included the following individual-level covariates in the above model: West African and East

Asian genetic ancestries BMI, smoking, alcohol use, previous TB, education level, and BCG vaccination. Second, we restricted

the analysis to 2043 microbiologically confirmed TB cases and 950 HHCs who were TST positive at baseline and did not develop

active TB during the one year follow up and tested the association of native Peruvian genetic ancestry and TB progression risk using

Equation 1. Third, we restricted the analysis to secondary cases (N = 213) and their HHCs (N = 214) and tested the association of

native Peruvian genetic ancestry and TB progression risk using Equation 1. Finally, we performed a sensitivity analysis using 58 sec-

ondary clustered TB cases and their 48 HHCs and tested the association of native Peruvian genetic ancestry and TB progression risk

using Equation 1.

For all above analyses, we removed individuals with any missing values for the included covariates. For all analyses, we calculated

z-score for given covariates and used Wald test to calculate a two-sided p value.

Testing the association between self-reported race and TB progression risk
To test the association between self-reported race and TB progression we used the following logistic regression model framework

implemented in R’s glm function:

log

�
yi

1 � yi

�
= q+ bself � reported raceXd; self � reported race (Equation 2)

Yi is the probability of individual i being a case, q is the intercept, bself � reported race is a vector of effect estimates for self-reported race

(categorical variable with eight categories).

Local ancestry inference
‘‘Local ancestry’’ is defined as the genetic ancestry of an individual at a particular locus, where an individual can have 0, 1, or 2 copies

of an allele derived from each ancestral population.43We performed local ancestry inference using PCAdmix,44 using imputed data to

increase the number of shared markers between our data and reference data. Following phasing and imputation as described pre-

viously,7 we excluded SNPs with imputation quality score r2 < 0.4, HWE p value < 10�5 in controls, or a missing rate per SNP greater

than 5% which left 7,756,401 markers. To increase the number of overlapping variants between our cohort and the reference panel,

we chose reference individuals with whole-genome sequencing data available including 25 native American individuals from the Si-

mons Genome diversity project45 plus 5 individuals from the 1000 Genomes Project35 PEL that had inferred native Peruvian genetic

ancestry >0.95 based on ADMIXTURE analysis at K = 4 clusters as proxy for native Peruvian genetic ancestry, 30 randomly selected

individuals from the 1000 Genomes study CEU as proxy for European genetic ancestry, 30 randomly selected individuals from the

1000 Genomes study YRI as proxy for West African genetic ancestry, and 30 randomly selected individuals from CHS population as

proxy for East Asian genetic ancestry. We then merged our data with the reference panel data and restricted the merged dataset to

variants with MAF >5% in each of the reference populations. The post-QC dataset included 2,910,169 variants. We phased the

merged data using SHAPEIT2.46 After phasing and following PCAdmix developer’s recommendation, we used PLINK (version

1.90b3w) to remove the markers with r2 > 0.8 with any other marker within a sliding window of 20 markers per window and an offset

of 10 using. 889,203 variants after pruning remained for use in local ancestry inference.We then used SHAPEIT246 (version v2.r837) to

generate VCF files followed by Beagle (version 4.1) to generate input files for PCAdmix. All files were generated per chromosome.

Finally, we performed local ancestry inference on each chromosome using PCAdmix (version 3) with the following options -bed

and -ld 0 and recombination maps from the 1000 Genomes Project.47 Local ancestry inference was done in windows of 20 SNPs

and in total local ancestry was inferred for 44470 intervals. Genomic regions with long-range LD41 including the major histocompat-

ibility complex were excluded for admixture mapping. To avoid noise introduced by potential phenotypic heterogeneity, we repeated

our admixture mapping analysis using cases with microbiologically confirmed TB (N = 2043) and HHCs who were TST positive at

baseline and did not progress to active TB over the one year follow up (N = 950) (Figure S8). For SNPs within windows with the lowest

association p value, we report variant-level summary statistics (Table S13).

Admixture mapping
We used admixture mapping, a method to associate the inferred ancestry of a locus with a trait in an admixed population,48 to search

for genomic loci that can explain some of the observed association between native Peruvian genetic ancestry and TB progression.
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We used the Generalized Mixed Model Association Test (GMMAT, version 1.0.3),49 a generalized linear mixed model framework to

check the association between the inferred local native Peruvian genetic ancestry {coded as a number between 0 and 2 for local

native ancestry posterior probability, 0 means no native Peruvian allele and 2 means 2 native Peruvian alleles} and TB progression

risk {case, control}. We included standardized age {0–1}, sex {male, female}, global EUR, AFR, and ASI genetic ancestry proportions

{0–1}, and amatrix of pairwise genetic relatedness {0–0.5} as covariates in themodel.While the total number of loci testedwas 44,470

we recognized that adjacent markers were highly correlated and that Bonferroni correction would be too stringent. Hence, to define

the significance threshold for admixture mapping we permuted the case-control status and repeated the association analysis 1000

times. We then used the lowest p value from each permutation to generate an empirical null distribution. The fifth percentile of this

distribution was used as the cutoff for genome-wide significance.

QUANTIFICATION AND STATISTICAL ANALYSIS

All the statistical methods and softwares used in this study are listed in the corresponding sections in the method details. The sta-

tistical significance was determined by properly accounting for multiple testing as described in the method details. All p values are

two-sided.
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