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In educational settings, researchers are likely to encounter multilevel data with

cross-classified structure. However, due to the lack of familiarity and limitations of

statistical software for cross-classified modeling, most researchers adopt less optimal

approaches to analyze cross-classifiedmultilevel data in testingmeasurement invariance.

We conducted two Monte Carlo studies to investigate the performances of testing

measurement invariance with cross-classified multilevel data when the noninvarinace

is at the between-level: (a) the impact of ignoring crossed factor using conventional

multilevel confirmatory factor analysis (MCFA) which assumes hierarchical multilevel data

in testing measurement invariance and (b) the adequacy of the cross-classified multiple

indicators multiple causes (MIMIC) models with cross-classified data. We considered two

design factors, intraclass correlation (ICC) and magnitude of non-invariance. Generally,

MCFA demonstrated very low statistical power to detect non-invariance. The low

power was plausibly related to the underestimated factor loading differences and

the underestimated ICC due to the redistribution of the variance component from

the ignored crossed factor. The results demonstrated possible incorrect statistical

inferences with conventional MCFA analyses that assume multilevel data as hierarchical

structure for testing measurement invariance with cross-classified data (non-hierarchical

structure). On the contrary, the cross-classified MIMIC model demonstrated acceptable

performance with cross-classified data.

Keywords: cross-classified multilevel data, measurement invariance, multilevel confirmatory factor analysis,

cross-classified MIMIC, non-hierarchical structure data, simulations, Monte Carlo

INTRODUCTION

In educational and other social science research, multilevel data are commonly encountered.
Although studies have investigated a variety of methodological issues related to multilevel
modeling, such studies primarily have been limited to hierarchical linear models (Bell et al., 2013).
Hierarchical linear models (HLMs) assume that in multilevel data, the levels are strictly nested or
hierarchical, which means that a lower-level observation belongs to one and only one higher-level
cluster. For example, in education settings, a student belongs to only a particular classroom while
that classroom belongs to only a particular school. However, multilevel data may not always have
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a strictly nested or hierarchical structure, especially in education
settings. For example, students are more likely to be nested
within the schools they attend and the neighborhoods where they
live at the same time, while schools and neighborhoods are not
nested within each other. Instead, schools and neighborhoods
are cross-classified with each other at the same level. This type
of non-hierarchical multilevel data is also called cross-classified
multilevel data. The use of cross-classified multilevel models
has become more frequent in empirical research (e.g., Fielding,
2002; Jayasinghe et al., 2003; Marsh et al., 2008). On the other
hand, some researchers did not fully consider the cross-classified
structure of the data by simply ignoring one of the cross-classified
factors in the data and used HLMs in their analyses (e.g., George
and Thomas, 2000; Ma and Ma, 2004).

With increased understanding of the importance of proper
analytic approach for cross-classified multilevel data (Goldstein,
1986, 1995; Rasbash and Goldstein, 1994; Raudenbush and
Bryk, 2002), many major multilevel modeling textbooks have
introduced techniques for handling cross-classified multilevel
data such as cross-classified random effect modeling (CCREM)
that can be specified in various multilevel modeling computer
programs (e.g., HLM, SAS, MLwiN, and R). However, research
examining the impact of misspecifying cross-classified multilevel
data as strictly hierarchical multilevel data in different analytical
settings such as structural equation modeling (SEM) has been
quite limited.

A few methodological investigations have been conducted
to examine the effects of misspecifing cross-classified multilevel
data as strictly hierarchical multilevel data by ignoring one of
the crossed factors in linear regression modeling (Berkhof and
Kampen, 2004; Meyers and Beretvas, 2006; Luo and Kwok, 2009).
In general, these studies have found that not fully taking a cross-
classified multilevel data structure into account (i.e., treating the
cross-classified data as strictly hierarchical by ignoring a crossed
factor) can cause bias in variance component estimates, which
results in biased estimation of the standard errors of parameter
estimates. Ultimately, this may lead to incorrect statistical
conclusions. In particular, Luo and Kwok’s (2009) simulation
study found that under the situation in which the crossed factors
were completely cross-classified (i.e., nonzero ICCs associated
with the factors), all variance components from the ignored
crossed factor at the higher level were redistributed/added to
the variance component at the lower level (i.e., overestimated
variance component) while the variance component of the
remaining crossed factor was underestimated.

Testing measurement invariance (MI) has become
increasingly common in social science research when a measure
is used across subgroups of a population or different time points
of repeated measures. MI holds when persons of the same ability
on a latent construct have the identical probability of obtaining
a given observed score regardless of the group membership
(Meredith and Millsap, 1992). Testing measurement invariance
is a very important step before one can meaningfully compare
the (mean) difference on a latent construct or the corresponding
composite score between groups. The use of a measure with
measurement bias (i.e., non-invariance) might lead to invalid
comparisons. In other words, when measurement invariance is

violated, observed differences in latent constructs or composite
scores between subgroups or across time are ambiguous and
difficult to interpret (Meredith and Teresi, 2006). Therefore, it is
important to confirm that the scale we use measures the same
latent construct (or has exactly the same meaning) across the
groups we intend to compare.

Although many researchers have discussed the importance of
establishing measurement invariance and the practical impact
of measurement bias (Widaman and Reise, 1997; Borsboom,
2006; Meredith and Teresi, 2006; Yoon and Millsap, 2007; Fan
and Sivo, 2009), there is very limited research on measurement
invariance in multilevel data with non-hierarchical structure.
For measurement invariance testing with hierarchical multilevel
data, multilevel confirmatory factor analysis (MCFA; Mehta
and Neale, 2005; Kim et al., 2012a) is widely used. However,
in reality, multilevel data may not always have a strictly
hierarchical structure, particularly in research situations where
lower-level observations are nested within multiple higher-
level clusters (e.g., schools and neighborhoods or items and
raters) that are cross-classified simultaneously at the same level.
When levels of multilevel data are cross-classified, conventional
multilevel modeling cannot be used to model the cross-classified
clustering effects. Because conventional multilevel modeling
cannot account for the effects of multiple cluster factors
simultaneously when these multiple cluster unit factors are
crossed at the same level, it treats cross-classified multilevel data
as strictly nested multilevel data by ignoring one of the crossed
factors (e.g., either schools or neighborhoods; items or raters) in
the analysis.

In addition, the current capability of commonly available
SEM software does not permit multiple-group comparison
along with multilevel confirmatory factor analysis (MCFA) for
cross-classified multilevel data yet, which is a critical feature for
testing measurement invariance. Although many researchers
understand the importance of establishing measurement
invariance for a measure and conducting a correct analysis for
cross-classified multilevel structured data, they might treat the
cross-classified multilevel data as hierarchical multilevel data by
ignoring crossed factor(s) in measurement invariance testing
under some circumstances such as the limitations/restrictions
of current SEM software. Hence, it is important to examine the
potential impact of ignoring the cross-classified data structure
in conventional multilevel CFA. This study is the first to test
measurement invariance with cross-classified multilevel data
within multilevel SEM framework.

The primary purpose of the present study was to investigate
the consequences of having non-invariance with cross-classified
multilevel data. In the present study, we conducted two Monte
Carlo studies. First, we examined the performance of MCFA
(i.e., misspecified model) in detecting a non-invariant factor
loading across between-level groups after treating a cross-
classified data as strictly hierarchical multilevel data in Study
1. Second, we investigated the adequacy of the cross-classified
multiple indicators multiple causes (MIMIC) model in detecting
a non-invariant intercept across between-level groups by fitting
a correct model in testing measurement invariance with cross-
classified data in Study 2. Both studies focused on non-invariance
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at the between-level grouping. We examined the statistical
power of measurement invariance testing and simulation factors
that impacted the statistical power. Below we first briefly
review the conventional MCFA and cross-classified MCFA for
measurement invariance testing, followed by the research design
and simulation study conditions.

MATERIALS AND METHODS

Comparison between Conventional MCFA
and Cross-Classified MCFA
The simplest two-level conventional MCFA and two-level
cross-classified MCFA of a single factor with four observed
variables used for the simulation study are illustrated in
Figures 1A,B, respectively. For this study, we examine the
two MCFAs for continuous variables. A summary table of the
differences and similarities between conventional MCFA and
cross-classified MCFA is provided in Supplementary Material.
Consider the example of a two- level conventional MCFA in
which students (i) are strictly nested within schools (j) and
a two-level cross-classified MCFA in which students (i) are
cross-classified by schools (j1) and neighborhoods (j2). Adopting
the notation of Rasbash and Goldstein (1994), Xi(j1 j2) refers
to observed variables of student outcome where i indexes a
within-level unit, j1 indexes a cluster of crossed factor of
school (FB1), and j2 indexes a cluster of crossed factor of
neighborhood (FB2).

The relation between the observed variables and the latent
factors for MCFA and cross-classified MCFA can be expressed as
Equations (1a) and (1b), respectively.

Xij = τ + Ληij + εij (1a)

Xi(j1 j2) = τ + Ληi(j1 j2) + εi(j1 j2) (1b)

where X is a matrix of observed scores, τ is a vector of intercepts,
Λ is a matrix of factor loadings, η is a matrix of latent or
common factor scores, and ε is a matrix of unique factor scores or
residuals (Kaplan, 2009). It is assumed that the observed variables
are multivariate normally distributed. In multilevel CFA, the
assumption that observations are independent and identically
distributed (Muthén, 1994) should be relaxed with the multilevel
data where lower observations nested within higher-level clusters
are dependent/correlated with each other.

By allowing random effects to vary across clusters, the latent
factor scores (ηij) for MCFA can be decomposed into two parts
(Equation 2a) whereas the latent factor scores (ηi(j1 j2)) for cross-
classified MCFA can be decomposed into three parts (Equation
3b) as follows:

ηij = α + ηwij + ηBj (2a)

ηi(j1 j2) = αj1 + αj2 + ηwij + ηBj1 + ηBj2 (2b)

where α is the expected value or grandmean of ηij and αj1 and αj2

are the expected values or mean of each crossed-factor of FB1 and
FB2 at the between-level, respectively. ηwij is the individual effects

FIGURE 1 | Two-level conventional multilevel confirmatory factor analysis (MCFA) depicted in (A) and two-level cross-classified MCFA depicted in (B).

FW is within-level latent factor; FB is between-level latent factor; FB1 and FB2 are the two crossed factors 1 and 2, respectively, at the between-level. In the within part

of the model, XI–X4 are the continuous observed variables, and the random intercept is shown as a filled circle at the end of the arrow pointing to each observed

variable.
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for both models, whereas ηBj is for one cluster effect for MCFA
and ηBj1 and ηBj2 represent cluster effects of the crossed-factors
FB1 and FB2, respectively for cross-classified MCFA.

In the same way, observed variable of Xij and Xi(j1 j2) can also
be re-expressed into two parts for MCFA (Equation 4a), that is,
within-level and between- level components and three parts for
cross-classifiedMCFA(Equation 3b), that is, one within-level and
two between-level components as,

Xij = τB + ΛWηWij +ΛBηBj + εwij+εBj (3a)

Xi(j1 j2) = τBj1 + τBj2+ ΛWηWij + ΛBj1
η
Bj1

+ ΛBj2
η
Bj2

+ εBj1

+εBj2 + εwij (3b)

where τ is the intercept of observed variable (Xij) at the cluster
level.

For multilevel CFA, the intercept of an observed variable is
only expressed with the intercept (τB for MCFA and τBj1and τBj2
for cross-classified MCFA) at the between-level. This is because
an individual score is the combination of the group mean
and its deviation from the group means (Heck and Thomas,
2009). It should be noted that unlike the multilevel model
for strictly hierarchical data, in which only one intercept (τB)
is estimated at the between-level for MCFA, two intercepts
(τBj1 and τBj2 for FB1 and FB2, respectively) are estimated
for cross-classified MCFA due to the two crossed factors of
FB1 and FB2 at the between-level of an observed variable
(Xi(j1 j2)).

Given that factor means vary across clusters as expressed in
Equation (2), the variance of the factor can be partitioned into
two components for conventional MCFA and three components
for cross-classified MCFA as follows:

V
(
ηij

)
= ΨT = ΨW +ΨB (4a)

V
(
ηi(j1 j2)

)
= ΨT = ΨW + ΨBj1

+ ΨBj2
(4b)

where ΨB is the between-level factor variance for MCFA and
ΨBj1

and ΨBj2
are the between-level factor variances for the two

crossed factors of FB1 and FB2 in cross-classified MCFA. ΨW

is the within-level factor variance for both models, and ΨT is
the total factor variance which is the sum of between-level and
within-level factor variances. The ratio of the between variance
to the total variance which is called intraclass correlation (ICC)
can be viewed as an indicator of data dependency (Snijders
and Bosker, 1994; Raudenbush and Bryk, 2002). For the total
variability between two crossed factors, two variance components
(i.e., ΨBj1

and ΨBj2
for FB1 and FB2, respectively) are summed

up as suggested by Meyers and Beretvas (2006). Under the
completely cross-classified situation (i.e., units in a cluster of one
crossed factor can affiliate with any clusters of the other crossed
factor and vice versa), the two crossed factors (i.e., complete
cross-classification situation) are independent from each other.
The ICC in MCFA (Equation 5a) and the two ICCs for the
two crossed-factors in cross-classified MCFA can be estimated

as follows:

ICCηB =
9B

9W + 9B
(5a)

ICCηBj1 =
9Bj1

9W + 9Bj1 + 9Bj2
,

ICCηBj2 =
9Bj2

9W + 9Bj1 + 9Bj2
(5b)

where ICCηB refers to the ICC for the between factor FB in
MCFA while ICCηBj1and ICCηBj2 refer to the ICCs for the
two crossed factors FB1 and FB2 in cross-classified MCFA,
respectively. It should be noted that we assume the equality
of the factor loadings across the two factors at the between-
level and the equality of factor loadings across the within- and
between- levels (Rabe-Hesketh et al., 2004; Mehta and Neale,
2005). It is called factorial invariance across levels or cross-
level factorial invariance. The variance of the unique factor or
residual also comprises two elements for MCFA (Equation 6a);
that is, between-level component and within-level component.
Similarly, there ae three elements in the residual variance for
cross-classified MCFA; that is, two between-level components
and one within-level component (Equation 6b) as,

V
(
εij

)
= ΘW + ΘB (6a)

V
(
εi(j1 j2)

)
= ΘW + ΘBj1

+ ΘBj2
(6b)

Finally, with the independence assumption between the common
factor (η) and the unique factor (ε) as in a regular CFA
(Cov (η, ε) = 0), the covariance structures of the MCFA
(Equation 7a) and cross-classified MCFA (Equation 7b) are
defined as follows:

ΣB = ΛBΨ BΛ
′
B + ΘB,

ΣW = ΛW ΨWΛ′
W + ΘW,

ΣT = ΛW ΨWΛ′
W + ΛBΨ BΛ

′
B + ΘW + ΘB (7a)

ΣBj1
= ΛBj1

Ψ
Bj1

Λ′
Bj1

+ ΘBj1
,

ΣBj2
= ΛBj2

Ψ
Bj2

Λ′
Bj2

+ ΘBj2,

ΣW = ΛW ΨWΛ′
W + ΘW,

ΣT = ΛW ΨWΛ′
W + ΛBj1

Ψ
Bj1

Λ′
Bj1

+ ΛBj2
Ψ

Bj2
Λ′

Bj2

+ ΘW + ΘBj1
+ ΘBj2

(7b)

ΣB is the between-level variance matrix for MCFA whereas ΣBj1
and ΣBj2

are the between-level variance matrices of crossed-
factor FB1 and FB2, respectively for cross-classified MCFA. ΣW

is the within-level variance matrix for both MCFAs, and ΣT is
the total variance matrix, which is the sum of within-level and
between-level variance matrices.

Factorial Invariance in Cross-Classified
Multilevel Data
One primary issue with assessing the measurement invariance in
multilevel data (Curran, 2003; Mehta and Neale, 2005; Selig et al.,
2008; Zyphur et al., 2008; Jones-Farmer, 2010; Kim et al., 2012a) is
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data dependency. This is of concern because with multilevel data
the measurement bias (i.e., measurement non-invariance) across
groups can be found at different levels, including the individual
level, the cluster level (group or organizational level), or both.
In other words, measurement invariance can be examined at
different levels in multilevel data (Mehta and Neale, 2005),
depending on the interest of measurement invariance. With the
use of MCFA, we can test measurement invariance at different
levels in multilevel data (Kim et al., 2012a).

Measurement invariance within a factor model is called
factorial invariance. Factorial invariance (FI) can be represented
within a linear factor model with mean and covariance
structures whereas measurement invariance is a broad term
that includes both linear and nonlinear relationships between
observed variables and latent factors considering the entire score
distribution (Yoon, 2008). Under the linear CFA framework, FI
is defined as the equivalence of parameters specified in the model
across groups. Thus, researchers check different levels of factorial
invariance sequentially depending on the equivalent parameters
in the testing of invariance. The levels of FI are discussed shortly.

Like FI testing with conventional multilevel data, the
differences across groups can be found and tested at the
individual-level, the organizational-level (cluster or between), or
both with cross-classified multilevel data. Greater complexity
might arise with FI testing of cross-classified multilevel data due
to multiple higher level clusters (e.g., schools and neighborhoods;
items and raters). Specifically, for the multiple higher level
clusters, non-invariance can exist at each organizational-level
cluster or both.

In general, FI testing can be conducted using a series of
multiple-group CFA models, which impose identical parameters
across groups. That is, the models that investigate the
invariance of factor pattern (configural invariance), factor
loadings (metric or weak invariance), latent intercepts (scalar
or strong invariance), and unique factor or residual variances
(strict invariance) are tested across groups in the sequential order.
As discussed before, because cross-classified MCFA has multiple
cluster-level crossed factors (e.g., students nested within schools
and neighborhoods) compared to only one group-level factor in
conventional CFA, for each between-level group comparison the
separate FI testing should be conducted to detect the violation
of invariance at the different between-level models across the
different between-level comparison clusters.

To illustrate FI in cross-classified multilevel data, suppose
that a grouping variable exists at the organizational level such
as a treatment administered at schools, at neighborhoods, or at
both crossed factors. With a grouping variable at the between-
level, the two-level cross-classified MCFA (two crossed factors
representing each cluster unit such as schools and neighborhoods
at the same level as defined in Equation 1b through Equation
7b) can be directly expanded to multiple-group cross-classified
MCFA by incorporating a group indicator as follows:

Xi(j1 j2)g = τBj1g + τBj1g + ΛBj1g
η
Bj1g

+ ΛB2gηBj2g
+ ΛWgηWijg

+εBj1g + εBj2g + εwijg,

ΣBj1g
= ΛBj1g

Ψ
Bj1g

Λ′
Bj1g

+ ΘBj1g
,

ΣBj2g
= ΛBj2g

Ψ
Bj2g

Λ′
Bj2g

+ ΘBj2g,

ΣWg = ΛWg Ψ
Wg

Λ′
Wg + Θwg (8)

where a subscript, g is a group indicator (1, 2, . . . , G) and others
are as described above.

First, configural invariance evaluates whether the groups of
interest have equivalent patterns for the within-level model
and the two between-level models (e.g., number of factors in
within and between models and number of indicators for each
factor). Second, when testing metric/weak invariance, the null
hypotheses of the invariance of factor loadings,H03, can be tested
at both between-level crossed-factors FB1 and FB2 and at the
within-level, respectively as such

H03Bj1
: 3Bj11

= 3Bj12
= · · · = 3Bj1G

,

H03Bj2
: 3Bj21

= 3Bj22
= · · · = 3Bj2G

,

H03W : 3W1 = 3W2 = · · · = 3WG (9)

Third, when testing scalar/strong invariance, the null hypotheses
of the invariance of intercepts, H0τ , can be additionally
tested only at the between-level crossed-factors FB1 and FB2,
respectively as such

H0τBj1
: τBj11 = τBj12 = · · · = τBj1G,

H0τBj2
: τBj21 = τBj22 = · · · = τBj2G (10)

Fourth, when testing strict invariance, the null hypotheses of
the invariance of unique variances,H0Θ , can be tested at both
between-level crossed-factors FB1 and FB2, and at the within-
level, respectively as such

H02Bj1
: 2Bj11

= 2Bj12
= · · · = 2Bj1G

,

H02Bj2
: 2Bj21

= 2Bj22
= · · · = 2Bj2G

,

H02W : 2W1 = 2W2 = · · · = 2WG (11)

STUDY 1: TESTING FACTORIAL
INVARIANCE USING MULTILEVEL
CONFIRMATORY FACTOR ANALYSIS
(MCFA) WITH CROSS-CLASSIFIED DATA

Methods
Data Generation
Table 1 and Supplementary Material present the population
values of parameters and Mplus script, respectively, that were
used for generating the cross-classified data.

Partial cross-classification
In order to mimic real educational settings, we created the partial
cross-classification structure. As followed by Luo and Kwok’s
(2009) simulation study, we created 50 neighborhoods (FB2)
nested within 20 schools (FB1) and students are cross-classified
by schools and neighborhoods. In a full cross-classification,
students from a specific school can live in any neighborhood and
students from a specific neighborhood can go to any school. For
example, all 50 neighborhoods are selected as cross-classifiedwith
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TABLE 1 | Population parameters used for cross-classified multilevel data generation.

Level ICC DIF Target factor loading Factor variance Unique variance

G1 G2 1(G1-G2)

Between (FB1, school) Small Small 0.75 0.15 0.10 0.05

Medium 0.90 0.65 0.25

Large 0.55 0.35

Medium Small 0.75 0.15 0.25 0.05

Medium 0.90 0.65 0.25

Large 0.55 0.35

Large Small 0.75 0.15 0.50 0.05

Medium 0.90 0.65 0.25

Large 0.55 0.35

Between (FB2, neighborhood) ignored in the analysis Small Small 0.10 0.05

Medium 0.90 0.90 None

Large

Medium Small 0.25 0.05

Medium 0.90 0.90 None

Large

Large Small 0.50 0.05

Medium 0.90 0.90 None

Large

Within Small Small 1.00 0.25

Medium 0.90 0.90 None

Large

Medium Small 1.00 0.25

Medium 0.90 0.90 None

Large

Large Small 1.00 0.25

Medium 0.90 0.90 None

Large

ICC is intra-class correlation. DIF is the difference in between-level factor loadings of the target item between groups. G1 is group 1 as a reference group; G2 is group 2 as a focal group

where the factor loading of one item was set to be smaller than the factor loading of G1 in the study.

all 20 schools. In reality, however, a partially cross-classified data
condition in which students living in certain neighborhoods only
go to certain schools and students attending certain schools only
live in certain neighborhoods is more likely to occur.

In the current Monte Carlo study, a two-level fully cross-
classified MCFA pertinent to Equation (2b) was first generated
usingMplus version 7.4 (Muthén andMuthén, 1998-2012). Then,
we modified the generated full cross-classification structure data
in order to create the partial cross-classification structure data
(see Figure 2 for the structure). To create the partially cross-
classified structure as shown in Figure 2, we first generated
fully cross-classified data (50 neighborhoods × 20 schools × 20
students). Then, we selected the 10 neighborhoods in the sample
and then designated only 4 schools for these 10 neighborhoods
to create data in which students from these 10 neighborhoods
go to the 4 designated schools not to any school (800 = 10
neighborhoods × 4 schools × 20 students). This process was
repeated five times for all 50 neighborhoods, which yielded
five blocks of subsets. Finally, these five blocks of subsets were
combined. Under the partial cross-classified situation, a total of

4000 observations (i.e., 800 × 5 blocks) were generated for each
simulated data set. We constructed a balanced design with two
groups of equal size (i.e., 10 observations per group). This design
reflects a common research situation in which two groups have
similar sample sizes with an unknown direction of possible bias.

Factor structure
For the within and between models, we simulated a single factor
with four factor indicators (DiStefano and Hess, 2005) of two
groups while assuming factorial invariance across levels (i.e.,
the equivalence of factor loadings with the same number of
factors across the between and within levels. For the population
parameters, we referred to previous simulation studies on both
measurement invariance and multilevel SEM (Hox and Maas,
2001; Maas and Hox, 2005; Yoon and Millsap, 2007; Kim et al.,
2012b). In the present study, the factor loadings of the four
items ranged from 0.7 through 1.0 at both levels (within-level
and between-level, FB1 and FB2). The factor loading of one item
is fixed at one for identification. The unique variances of the
four observed variables were set to 0.25 for within-level (Hox
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FIGURE 2 | Partial cross-classification data structure where students are cross-classified by schools (FB1) and neighborhoods (FB2).

and Maas, 2001) and 0.05 for between-level (see item-level ICC
section below).

Simulation Design Factors
Two main design factors, namely, magnitude of the
noninvariant factor loading and intraclass correlation

(ICC), were considered. For the invariance testing,
the target groups existed only at the between-level
clusters (e.g., public and private schools). Thus, for the
invariance (or 0 difference) condition, all parameters
were set to be identical across groups. On the other
hand, for the non-invariance condition, one of the
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between-level factor loadings was set to be different
across groups only for the remaining crossed factor (e.g.,
schools).

The magnitude of difference in the target between-level factor
loading (λBj1 ) at the FB1 crossed factor between the two groups
(i.e. the difference between λBj1 for group 1 and the λBj2 for group
2) was simulated at three levels: 0.15, 0.25, and 0.35 for small,
medium and large differences, respectively where the group
1(G1) is a reference group and the group 2 (G2) is a focal group.
The magnitude of difference was determined on the basis of
the previous literature regarding the factorial invariance testing
(Meade and Lautenschlager, 2004; Stark et al., 2006; French and
Finch, 2008).

The intraclass correlation (ICC) was another design factor
considered in this simulation study. Previous simulation studies
have showed that the ICC could affect the statistical power for
detecting non-invariance in MCFA, particularly at the between-
level (Hox and Maas, 2001; Kim et al., 2012a). Based on
previous simulation studies (Hox and Maas, 2001; Maas and
Hox, 2005), three ICC conditions were examined in the study:
small, medium, and large. The different levels of ICCs were
simulated by varying the size of both ΨBj1 and ΨBj2 between-
level crossed factor variances of FB1 and FB2, respectively.
Both crossed factor variances were set to be the same with
three different levels: 0.10, 0.25, and 0.50 while the within-
level factor variance (Ψw) was always fixed (1.00). Based on
Equation (6b), these combinations of variances resulted in three
different levels of ICCs: 0.08, 0.17, and 025 for small, medium,
and large ICCs, respectively. For the residual variance, the
within-level was set to 0.25 and the between-level was set to
0.05. Given the simulated factor variances, factor loadings, and
residual variances, the item-level ICCs ranged 0.08–0.13 for
small ICC, 0.13–0.25 for medium ICC, and 0.20–0.46 for large
ICC. These ICC levels represent common situations encountered
in educational research with multilevel data (Hox and Maas,
2001; Maas and Hox, 2005). Especially, when ICC is low, the
statistical power for detecting the non-invariant factor loading
became low even with a large number of clusters (Kim et al.,
2012a).

By combining the two study conditions (magnitude of non-
invariant factor loading and ICC), a total of 9 (3×3) scenarios
were investigated in the study. We generated 1000 replications
for each scenario.

Multiple-Group MCFA
The generated data sets with cross-classified MCFA of two
groups were then analyzed using the conventional multiple-
group MCFA (i.e., the misspecified model) by ignoring one of
the crossed factors (i.e., FB2) and treating the data as hierarchical
multilevel data. To explore the performance of the conventional
multiple-group MCFA with cross-classified data, we used the
Type=TWOLEVEL routine in Mplus, recommended by Kim
et al. (2012a) for the conventional multilevel data. When target
groups are at the between-level, the TYPE=TWOLEVEL routine
decomposes the variance and covariance matrix into within- and
between- models for the analysis. Thus, the within- and between-
level variance components can be separately investigated. All

data analyses were conducted using Mplus 7.4. Supplementary
Material provides the Mplus scripts that were used for analyzing
MCFA.

Model Selection Criteria

Chi-square difference test (1 χ2)
For factorial invariance testing, we conducted the likelihood ratio
test between a baseline model (i.e., configural invariance model)
and sequentially more restricted invariance model (i.e., weak
invariance model) under the null hypothesis of no difference
between two models. When the null hypothesis is failed to
reject (non-significant at α = 0.05), we conclude that the more
restricted invariance model holds under study, indicating that
weak invariance holds. Conversely, when the null hypothesis
is rejected (significant at α = 0.05), we conclude that the less
restricted invariance model holds under study, indicating the
presence of a non-invariant factor loading.

The maximum likelihood estimation with robust standard
errors (MLR) is employed as an estimator for continuous
variables in the study. The MLR yields a robust chi-square test
(Kaplan et al., 2009) by utilizing robust standard errors and
a mean-adjusted chi-square statistic test. For comparing two
competing models, the MLR requires the Satorra-Bentler scaled
chi-square difference test (Satorra and Bentler, 1994; Brown,
2006; Heck and Thomas, 2009).

Goodness-of-fit indices
Considering the sensitivity of the χ2 test statistic to sample size,
we have additionally examined the performance of the following
difference (1) of the goodness-of-fit indices in comparing the
two competing invariance models (configural versus metric): (a)
IC (i.e., 1 AIC and 1 BIC; (b) 1 SRMR between and within; (c)
1 CFI; and (d) 1 RMSEA. The recommended cutoff values for
determining the goodness-of-fit indices for the metric invariance
model over the configural invariance model are: both 1AIC
and 1BIC ≤ 4 (Burnham and Anderson, 2002), 1SRMR ≤

0.01 (Chen, 2007), 1CFI ≤ 0.01 (Cheung and Rensvold, 2002),
and 1RMSEA ≤ 0.015 (Chen, 2007). Under the non-invariance
conditions, if the 1 fit-index was smaller than the cutoff value,
this indicated a miss/failure in detecting the non-invariance.
Conversely, when the obtained value was larger than the cutoff
value, this indicated a hit/success in detecting the non-invariance.

Analysis of Simulation Results
We examined the statistical power and Type I error rate of
the chi-square difference test and goodness-of-fit indices and
the relative bias of the parameter of interest to explore the
performance of multiple-group conventional MCFA (ignoring
a crossed factor of cross-classified multilevel data and treating
the data as hierarchical data) in detecting the between-level
non-invariant factor loading.

Type I error rate
For the invariant condition, Type I error rate was examined.
Type I error referred to the proportion of the cases in which
the 1 χ2 test falsely detected invariance as non-invariance over
1000 replications. The invariance at factor loading across groups
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should lead to failing to the rejection of equal factor loadings
across groups (metric invariance) in the 1 χ2 tests of the
misspecified model (multiple-group conventional MCFA).

Statistical power
Under the non-invariant conditions, we expected the null
hypothesis of the 1 χ2 test to be rejected because one of the
between-level factor loadings was simulated to be different (or
non-invariant) across groups. The (empirical) statistical power
rate was defined as the proportion of the cases in which the
non-invariance at the between-level factor loading was correctly
detected through the chi-square difference (1 χ2) test and the 1

goodness of fit indices when using the conventional MCFA for
testing factorial invariance.

Relative bias
The relative bias of the factor loadings of the non-invariant
indicator (i.e., λw at the within-level; λBj1 at the between-level)
and the factor variance at each level (i.e., Ψw at the within-level;
ΨBj1 at the between-level) in multiple-group conventional MCFA
(misspecified Model) were examined. For the non-invariance
condition, we set one of the between-level factor loadings to be
different across groups for one of the crossed factors. The target
parameter of the relative bias is the between-level factor loading
(λBj1 ) of one group (group 2 in the current study) which was
set to be smaller (i.e., non-invariant) than the factor loading of
the other group (group 1 in the current study). The relative bias
of DIF was also examined. The group difference (i.e., group 1–
group 2) in the target between-level factor loading λBj1 is the
size of non-invariance (DIF). For estimating the relative bias,

we used the group mean estimates across the replications from
configural invariance model. The relative bias of the estimates
was computed using the following equation:

B(β̂) =
β̂ − β

β

where β̂ was the parameter estimate across the valid replications
in the misspecified model, and β was the population parameter.
To evaluate the estimated relative bias, we applied cutoffs
of 0.05 for the loading estimates and of 0.10 for the
factor variance estimates, which have been recommended as
the acceptable magnitude of relative bias (Hoogland and
Boomsma, 1998). That is, when relative bias is below 0.05
and 0.10 for the loading estimates and for the factor variance
estimates, respectively, the parameter estimate of interest is
considered unbiased. A positive relative bias indicates an
overestimation of the target parameter (i.e., factor loading
and factor variance in this simulation study), whereas a
negative relative bias indicates an underestimation of the target
parameter.

Results
Table 2 presents the empirical statistical power rate for the non-
invariant models in conventional MCFA. Table 3 depicts the
relative bias for the target factor loading estimates and factor
variance estimates in conventional MCFA. All MCFA models
were successfully analyzed.

TABLE 2 | Summary of empirical power rate of Satorra-Bentler chi-square difference test (1 χ
2) and 1 goodness-of-fit indices in factorial invariance

testing using multiple-group MCFA (misspecified model).

Simulation design factors

Intra-class correlation (ICC) Small Medium Large

Difference in Factor Loading Small Medium Large Small Medium Large Small Medium Large

at between-level (DIF) (0.15) (0.25) (0.35) (0.15) (0.25) (0.35) (0.15) (0.25) (0.35)

1 χ
2 TEST (df = 3)

Mean 1 χ2 0.06 0.12 0.19 0.18 0.44 0.80 0.57 1.52 2.73

Standard deviation 0.07 0.12 0.21 0.16 0.41 0.74 0.49 1.38 2.35

Empirical power rates 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

1 GOODNESS-OF-FIT INDICES EMPIRICAL POWER RATES

∆ AIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∆ BIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∆ CFI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∆ RMSEA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∆ SRMR Within 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∆ SRMR Between 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01

For factorial invariance testing, we used the conventional multiple-group multilevel CFA with Type = TWOLEVEL routine in Mplus 7.4 and compared between configural invariance

model and metric invariance model. For simulation design factors, the three different levels of ICC, 0.08, 0.17, and 0.25 are corresponding to small, medium and large levels; the three

different magnitudes of non-invariant factor loading, 0.15, 0.25, and 0.35 are corresponding to small, medium and large loading difference between two groups. In 1 χ2 test, Mean is

the average of Satorra-Bentler Chi-square difference test statistics across 1000 replications; Standard Deviation in the corresponding standard deviation of 1 χ2 test; Empirical power

rate is the rejection rate. As for goodness-of-fit Indices, Akaike- and Bayesian-information criteria (AIC and BIC, respectively); comparative fit index (CFI); the root mean square error of

approximation (RMSEA); and the standardized root mean square residual (SRMR) within and between were used.
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TABLE 3 | Relative bias in factor loading and factor variance in the configural invariance model (misspecified conventional MCFA).

Simulation design

factors

Factor loading Factor variance

Within Between Difference in

λBj1 (1 G1-G2)

Within Between

ICC DIF RB PE RB SE RMSE RB PE RB SE RMSE RB PE RMSE RB PE RB SE RMSE RB PE RB SE RMSE

Small Small 0.00 0.03 0.02 0.20 0.06 0.17 −0.95 0.02 0.09 0.03 0.10 −0.08 0.22 0.09

Medium 0.00 0.03 0.02 0.37 0.06 0.26 −0.95 0.02 0.09 0.03 0.10 −0.14 0.23 0.09

Large 0.00 0.03 0.03 0.62 0.06 0.29 −0.96 0.03 0.09 0.03 0.09 −0.20 0.25 0.08

Medium Small 0.00 0.04 0.02 0.17 0.07 0.15 −0.85 0.03 0.23 0.03 0.24 −0.05 0.17 0.09

Medium 0.00 0.04 0.02 0.33 0.07 0.23 −0.85 0.04 0.23 0.03 0.24 −0.10 0.19 0.09

Large 0.00 0.04 0.02 0.54 0.08 0.31 −0.85 0.06 0.23 0.03 0.24 −0.13 0.20 0.10

Large Small 0.00 0.04 0.02 0.15 0.09 0.13 −0.71 0.05 0.46 0.06 0.47 −0.04 0.18 0.17

Medium 0.00 0.04 0.02 0.28 0.09 0.19 −0.71 0.08 0.46 0.06 0.47 −0.06 0.18 0.18

Large 0.00 0.04 0.02 0.46 0.09 0.26 −0.71 0.11 0.46 0.06 0.47 −0.07 0.18 0.18

For Simulation design factors, ICC is intra-class correlation; DIF is the difference in a target factor loading (λBj1 ) at the between-level across two groups. G1 is group 1 as a reference

group; G2 is group 2 as a focal group where the factor loading of one item was set to be smaller than the factor loading of G1 in the study. λw and λBj1 are the estimated parameter

of the target factor loading at the within- and between-level (remaining), respectively. 9w and 9Bj1 are the factor variance at the within- and between-level (remaining), respectively.

RB PE is the relative bias of parameter estimates. RB SE is the relative bias of the standard errors of the corresponding parameter. RMSE is the root mean square error of parameter

estimates.

Empirical Statistical Power for Detecting
Non-Invariance
For the invariant model, the Type I error rates with the Satorra-
Bentler chi-square difference test (1 χ2) and the 1 goodness
of fit indices were all zero for all study conditions and were
not tabled to save space. For the non-invariant model, Satorra-
Bentler chi-square difference test (1 χ2) and 1 goodness-of-
fit indices showed extremely low power rates (zero or close to
zero). The average of 1 χ2 statistics and the corresponding
standard deviation of the 1 χ2 statistics across valid replications
are also reported in Table 2. In summary, when the between-
level factor loadings were invariant across groups, conventional
MCFA performed very well in terms of Type I error even though
one of the crossed factors at the between level was completely
ignored and the data were treated as strictly hierarchical. On the
contrary, when the crossed factors were not fully considered and
the cross-classified data were treated as strictly hierarchical with
the presence of non-invariance at between-level factor loadings
across groups, MCFA performed very poorly with zero or near
zero power rates regardless of the size of non-invariance and the
level of ICC.

Relative Bias of Parameter Estimates
Table 3 summarizes the relative bias of parameter estimates (RB
PE), the relative bias of the standard error of corresponding
parameter estimates (RB SE), and root mean squared error
(RMSE) for the target factor loading estimates (i.e., λw at the
within-level; λBj1 at the between-level) and the factor variance
estimates (i.e., 9w at the within-level; 9Bj1 at the between-level)
in group 2 (focal group; set to be smaller than reference group
1). For the standard deviation of bias of the parameter estimates,
we reported RMSE. Furthermore, for an evaluation of the quality
of the standard errors, the relative bias of the standard error of

the parameter estimates (RB SE) was computed by quantifying
how large the difference is between the mean estimated standard
error and the standard deviation of the parameter estimates
across replications (Hoogland and Boomsma, 1998; Cheung and
Chan, 2005). The relative bias below 0.10 in their standard errors
indicates good estimation methods used for the study (Hoogland
and Boomsma, 1998). The relative bias of the parameter estimates
of interest for group 1 was not reported for the simplicity of
the table because the relative bias were almost zero for all study
conditions. In addition, the relative bias of the non-invariance
in λBj1 across groups (group 1–group 2) and corresponding
RMSE were reported. The relative bias was estimated only for the
non-invariant conditions.

Difference in Target Non-Invariant Factor Loading

Estimates between Groups (DIF)
The parameter of the between-level factor loading λBj1 in group 2
appears overestimated in MCFA. The relative bias of λBj1 ranged
from 0.46 to 0.67 for large DIF, from 0.28 to 0.37 for the medium
DIF, and from 0.15 to 0.20 for small DIF. Because no relative bias
of λBj1 was observed in group 1, the overestimated parameter
estimates of λBj1 in group 2 led to the underestimated DIF in
λBj1 . This underestimation of DIF became more serious as the
ICC decreased. The relative bias ranged from−0.71 to−0.96 and
was above the cutoff in the absolute value (i.e., 0.05). In contrast,
the parameter estimates of the within-level factor loading λw in
both group 1 and group 2 were unbiased regardless of study
conditions. No substantial relative bias in the standard errors of
λw and λBj1 was observed for all study conditions.

Factor Variance
The relative biases of the factor variance at the within level (9w)
were almost identical across two groups for all study conditions.
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The within factor variance 9w was generally overestimated
and the greater overestimation was associated with the larger
ICC. On the other hand, the between factor variance 9Bj1 in
group1 was positively biased whereas the between factor variance
9Bj1 in group 2 was negatively biased (i.e., underestimated by
relative bias 0.10–0.20 above the cutoff of 0.10) when the DIF
size was medium and large. This underestimation of 9Bj1 in
group 2 became serious as the ICC decreased. In addition, the
overestimation of the standard error of 9Bj1 became serious as
the ICC decreased.

STUDY 2: TESTING FACTORIAL
INVARIANCE USING CROSS-CLASSIFIED
MULTIPLE INDICATORS MULTIPLE
CAUSES (MIMIC) MODEL WITH
CROSS-CLASSIFIED DATA

We examined cross-classified multiple indicators multiple causes
(MIMIC) model to fit a correct model in testing measurement
invariance with cross-classified data using Mplus (version 7.4).
MIMIC modeling (Jöreskog and Goldberger, 1975; Muthén,
1989) is one of several methods used to test factorial invariance
and population heterogeneity (e.g., Kim et al., 2012b). MIMIC
models employ an observed variable as a covariate of latent
factors. The inclusion of a grouping covariate allows testing a
group difference via a regression-type analysis.

Testing factor loading invariance that Study 1 focused on
requires a grouping covariate and its interaction with the
between-level factor. However, this type of interaction terms is
not allowed with the Bayesian estimator which is the default
estimator with cross-classified data in the current software (i.e.,
Mplus version 7.4). Therefore, in Study 2, we tested cross-
classified MIMIC model to examine the feasibility of testing
intercept invariance with cross-classified data. Supplementary
Material provides the Mplus script that was used for analyzing
cross-classified MIMIC.

Methods
Data Generation and Simulation Design Factors
We simulated the intercept at the between-level of one target
item to be different across two groups with 500 replications.
The size of non-invariance associated with the intercept was
0.25 and 0.50, representing small and large non-invariance (i.e.,
DIF). Other than the parameter of non-invariance, two groups
have the identical population parameters. Two levels of ICC,
namely 0.08 and 0.25 for small and large levels, respectively were
simulated. Thus, when intercept non-invariance was simulated
to evaluate power in detecting non-invariance, 4 conditions
(2 ICC × 2 DIF size) were created. In addition, complete
invariance conditions with two ICC levels (i.e., small and large
ICC with invariant intercepts) were generated to examine Type
I error.

Analytic Procedures
Instead of modeling a separate MCFA for each group, cross-
classified MIMIC constructs a single model with a grouping

variable as a covariate, assuming strict invariance between two
groups. To test the intercept invariance, the assumption of
strict invariance should be relaxed by allowing a difference
in the intercept between groups. Thus, a set of nested cross-
classified MIMC models are typically analyzed. First, one
direct effect (i.e., the target item regressed on the grouping
covariate) of one crossed factor (School in the study) is
constructed to test the factorial invariance of the intercept.
The model with one direct effect on the target item (i.e.,
relaxed model) and the model in which the direct effect was
constrained to be zero assuming invariance of the intercept
(i.e., constrained model) are compared. The statistical support
of the relaxed model with the direct effect indicates the non-
invariance of the target intercept. Of note is that to evaluate
the feasibility of the cross-classified MIMIC model for factorial
invariance testing with cross-classified data, we investigated
the significance and magnitude of the direct effect in the
relaxed model instead of conducing the model comparison
between the constrained and relaxed mdoels. We consider
the statistical significance of the direct effect in the relaxed
model at α = 0.05 as the presence of non-invariance in the
intercept (i.e., the intercepts are statistically significantly different
between two groups). Thus, with the intercept non-invariance
conditions, the proportion of cases in which the direct effect
from the grouping covariate to the target item was statistically
significant at α = 0.05 was considered as power; the same
proportion was considered as Type I error with the invariance
conditions. In addition, the relative bias for the magnitude of
the direct effect as well as the factor variance at each level was
evaluated.

Results
First, the Type I error rates for invariant models and power
rates for non-invariant models in detecting the group difference
(i.e., direct effect of a grouping covariate on the target non-
invariant item) using cross-classified MIMIC are presented in
Table 4 along with the parameter estimates of the direct effect.
When there was invariance for the between-level intercept, Type
I error was almost zero across valid replications regardless of ICC.
When there was non-invariance for the between-level intercept
only, the power was 1 in the large ICC conditions and close to 1
(0.975 and 0.994 for the small and large DIF, respectively) in the
small ICC conditions. In summary, the cross-classified MIMIC
with a grouping covariate appeared adequate for detecting non-
invariance in the between-level intercept only regardless of the
size of DIF and ICC and yielded unbiased estimates of the direct
effect.

Second, the parameter estimates and relative bias of factor
variance at the within- and the between-level are presented
in Table 5. The within-level factor variance parameters were
unbiased across all study conditions whereas the between-level
factor variances for two crossed factors were slightly biased.
The school-level factor variance where the group difference
was constructed was slightly underestimated (e.g., relative bias
of −0.12 above the cutoff in absolute value of 0.10 in small
ICC conditions) whereas the neighborhood-level factor variance
where no group difference was present was slightly overestimated
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TABLE 4 | Type I error and power of cross-classified multiple indicators multiple causes (MIMIC) models to detect intercept non-invariance.

Simulation design factors Direct effect (group difference on a target item) Proportion in detecting group difference Valid replications

DIF ICC Population Parameter p-value

parameter (DIF) estimates (SE)

None Small 0.00 0.00 0.479 0.000 487

(0.018)

Large 0.00 0.00 0.479 0.000 500

(0.015)

Small Small 0.25 0.25 0.008 0.975 487

(0.017)

Large 0.25 0.25 0.005 1.000 500

(0.005)

Large Small 0.50 0.50 0.001 0.994 500

(0.008)

Large 0.50 0.50 0.000 1.000 500

(0.000)

To fit the correct model, we used cross-classified MIMIC modeling with Type=CROSSCLASSIFIED routine in Mplus 7.4 using cross-classified data. ICC is intra-class correlation. DIF is

the difference in a target intercept at the between-level across two groups. For simulation design factors, the two different levels of ICC, 0.08 and 0.25 are corresponding to small and

large levels; the two different magnitudes of non-invariant intercept, 0.25, and 0.50 are corresponding to small and large intercept difference between two groups. SE is the average

standard error of the corresponding estimates. We consider the statistical significance of the direct effect in the relaxed model at α = 0.05 as the presence of non-invariance in the

intercept (i.e., the intercepts are statistically significantly different between two groups). Thus, with the intercept non-invariance conditions (i.e., DIF = Small and Large), the Proportion

in Detecting Group Difference was considered as power; the same proportion was considered as Type I error with the invariance conditions (i.e., DIF = None).

(e.g., relative bias of 0.10 above the cutoff in absolute value of 0.10
in large ICC conditions), but overall the factor variance estimates
appear unbiased given the raw bias was not substantial (e.g.,
0.01, 0.03, and 0.05). Because the performance of cross-classified
MIMIC is unknown, issues related to the direction of the bias call
for further investigation.

DISCUSSION

Testing measurement invariance is a very important step before
one can meaningfully compare the (mean) difference on a latent
construct or the corresponding composite score between groups.
Measurement invariance testing can be utilized to examine
possible differences between groups at the organizational units
of a particular measure. For between-level grouping comparison,
more complexity arises with factorial invariance (FI) testing
in cross-classified multilevel data due to the multiple crossed
factors compared to FI testing in conventional multilevel data.
Ideally, the multiple crossed factors should be taken into
account when conducting FI test. However, to date, no statistical
program can fully conduct FI testing and take into account the
cross-classified data structure simultaneously. For this reason,
researchers possibly treat cross-classified data as a conventional
multilevel data (i.e., as strictly nested or hierarchical) by ignoring
one of the crossed factors. Hence, it is important to examine the
potential impact of ignoring the cross-classified data structure in
FI testing.

According to the simulation results, we found two biases in
multiple group MCFA when misanalysing the partially cross-
classified multilevel data. Due to the redistribution of variance

component mechanism (Luo and Kwok, 2009), the variance of
the ignored crossed factor (9Bj2 , between-level) redistributes
to the lower level and results in substantial overestimation of
the variance component at the lower level (9w, within-level)
whereas the remaining between level factor variance 9Bj1 in
the focal group is slightly underestimated. The combination of
the substantially overestimated (inflated) 9w and the slightly
underestimated 9Bj1 results in an underestimated ICC in
multiple-group MCFA given that ICC is computed by using the
total variability, the sum of factor variance components (9Bj1 at
the between-level and 9W at the within-level) as a denominator
and 9Bj1 , as a numerator. As shown by Kim et al. (2012a), ICC
is related to the statistical power for detecting non-invariant
factor loadings when testing factorial invariance in multilevel
data and lower ICC is typically linked to lower statistical power
even under large sample size conditions and a correctly specified
MCFA model. Given the relation between ICC and the power,
the underestimation of ICC due to the variance redistribution
in the misspecified multiple-group MCFA possibly leads to low
power of detecting factor loading non-invariance at the between
level.

In addition to ICC, we found the bias in the magnitude of
non-invariance/difference in the target factor loadings between
the two groups at the between-level λBj1 . Under the non-invariant
conditions, the target between-level factor loading in one of the
groups (i.e., λBj1 for reference group, group 1) was set to 0.90
while the same factor loading for the other group (i.e., λBj1 for
focal group, group 2) was set to be smaller: 0.55, 0.65, or 0.75
to represent for large (0.35), medium (0.25), and small (0.15)
differences, respectively. Nevertheless, given that no relative bias
of λBj1 for group1 was found, the positively biased λBj1 for
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TABLE 5 | Parameter estimates and relative bias of factor variance using cross-classified multiple indicators multiple causes (MIMIC) models with a

grouping variable as a covariate.

Simulation conditions Population parameters Parameter estimates Relative bias of parameter estimates

DIF ICC Within Neighborhood School Within Neighborhood School Within Neighborhood School

level level level level level level level level level

None Small 1.00 0.10 0.10 0.99 0.11 0.09 −0.01 0.07 −0.09

Large 1.00 0.50 0.50 0.99 0.55 0.47 −0.01 0.10 −0.05

Large Small 1.00 0.10 0.10 0.99 0.11 0.09 −0.01 0.07 −0.12

Large 1.00 0.50 0.50 0.99 0.55 0.47 −0.01 0.10 −0.05

Small Small 1.00 0.10 0.10 0.99 0.11 0.09 −0.01 0.07 −0.12

Large 1.00 0.50 0.50 0.99 0.55 0.47 −0.01 0.10 −0.05

ICC is intra-class correlation. DIF is the difference in a target intercept at the between-level across two groups. Population parameters are the generated factor variances in the simulation.

Parameter estimates are the average of the estimated factor variances across valid replications.

group 2 led to reducing the differences between the two groups,
compared with the originally simulated differences. Hence, given
all other conditions were held constant, the reduction in the
difference between the non-invariant loadings would result in
lower statistical power to detect such diminished effect and
failure in detecting the violation of metric invariance when
the crossed factors were not fully taken into account in FI
testing. Note that we tested the factor loadings of all items
simultaneously for metric invariance. If the factor loading of each
item is tested one by one, it might be possible to improve the
power, but this item-level analysis was not investigated in this
study.

Furthermore, the investigation on the performance of
cross-classified MIMIC in detecting the group difference at
the between-level intercept only revealed that cross-classified
MIMIC with a grouping covariate appears adequate for
invariance testing. We examined the cross-classified MIMIC
models that included one direct effect (i.e., the target item
regressed on a grouping covariate) at only one of crossed
factors (e.g., school-level). In the cross-classified MIMIC, the
overestimation of within-level factor variance of one group due to
variance redistribution did not occur. The power rates to detect
the non-invariance in the between-level intercept only were also
very high.

In summary, according to the findings from our simulation
study, when the between-level factor loadings are invariant across
the between-level comparison groups, conventional MCFA
appears to perform well for cross-classified multilevel data even
though a crossed factor was omitted in testing measurement
invariance. On the other hand, for the non-invariant conditions
two potential sources of bias (i.e., the underestimated ICC
and the underestimated factor loading difference) might lead
to the low statistical power in detecting the between-level
factor loading non-invariance when researchers misanalyze the
cross-classified multilevel data using multiple-group MCFA.
The failure to detect the non-invariant factor loading resulted
in concluding the non-invariant model as invariant between
groups. In conclusion, given the redistribution of variance
components and underestimation of the size of factor loading
difference, the conventional multilevel CFA is not recommended

for factorial invariance testing for cross-classified multilevel
data.

Limitation and Directions for Future
Research
Our current findings need to be interpreted given certain
limitations. First, sample size was not considered as a simulation
factor in our simulation study. Second, to mimic more realistic
education settings, the current study followed Luo and Kwok’s
(2009) simulation study and created the partial cross-classified
data structure. Fifty neighborhoods (feeder, FB2) nested within
20 schools (receiver, FB1) were created and students were cross-
classified by schools and neighborhoods. For future research
different levels of partial cross-classification can be considered
by combining two conditions: (a) the number of feeder
(neighborhoods) selected as cross-classified and (b) the number
of receivers (schools) assigned as cross-classified. In other words,
we can create a more cross-classified data structure by increasing
the selected number of feeder (neighborhoods, FB2) or receiver
(schools, FB1).

Third, in this study, the research scenario for the misspecified
model (MCFA) focused on the invariance at the factor loading
only. In practice, non-invariance may exist for other parameters
such as intercepts or both factor loadings and intercepts. In
addition, non-invariance can occur at both within and between
models simultaneously. Moreover, the structures of the within-
and between-models may not always be identical. Overall,
the performances of MCFA need to be studied under these
more complex research settings with various sources of non-
invariance.

Furthermore, due to the limitation of software, the research
scenario for a correct model (cross-classified MIMIC) only
focused on the invariance at the intercept only. Future research
on the performances of cross-classified MIMC would be very
beneficial in testing factorial invariance with cross-classified
data. In addition, further development of software for such
model (i.e., multiple group cross-classified SEM) or alternative
option (e.g., cross-classified MIMIC with a factor by covariate
interaction at the between level) for analyzing this type of data is
needed.
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