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ABSTRACT 

Analysis of the impacts of land-use change on streamflow is crucial for the 

sustainable development of water resources and land-use management practices. 

Specifically, the understanding of the urbanization impacts on streamflow will 

significantly help water resources and land-use managers and planners in decision-

making processes. Therefore, this study was designed to analyze the potential impacts of 

future land-use change, specifically of urbanization on the streamflow of the Chipola 

River using the Soil and Water Assessment Tool (SWAT) in ArcGIS for four years 

(2015-2018). 

Implementing the SWAT model required 1) a digital elevation model (DEM); 2) 

land use maps from 2016 and future years; 3) a soil map; and, 4) meteorological data as 

inputs. Meteorological data included hourly rainfall, temperature (min., max.), wind, 

solar radiation, and relative humidity data. Scenario-based land-use change analysis was 

performed using two land use maps. A land-use map for the year 2016 was considered as 

the “baseline scenario” and was used to develop future land use maps, which represented 

the “future scenario” in this study. In developing a future land-use map, a five-mile buffer 

was developed along primary and secondary roads of the basin. It was assumed that low-

density urban areas would be converted to high-density, and agricultural areas would be 

converted to low-density urban areas within the five-mile buffer. After inputting all the 

required data into SWAT, the model was run for four years (2015-2018) using the 

baseline scenario and the future scenario.
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The SWAT streamflow outputs were calibrated and validated against real-world, 

observed streamflow data of the United States Geological Survey (USGS) stream gauge. 

The Sequential Uncertainty Fitting (SUFI-2) algorithm in SWAT Calibration and 

Uncertainty Procedures (SWAT-CUP) were used for calibration and validation. The 

recommended split data approach was used; one-half of the data (from 2015-2016) was 

used in calibration, and the other half of the data (from 2017-2018) was used in the 

validation process. 

Model goodness of fit was evaluated using the following statistical coefficients: 

1) Nash Sutcliffe efficiency (NSE); 2) coefficient of determination (R2); and, 3) percent 

bias (PBIAS). These statistical analyses gave values of 0.81, 0.84, and 9.5 for calibration, 

and values of 0.76, 0.80, and -11.4 for validation, respectively. Defined evaluation 

criteria of these statistics suggest that values of NSE and R2 >0.75, while the value of 

PBIAS <10 is considered “very good.” Compared with the defined evaluation criteria, the 

calibrated and validated values represented successful calibration and validation of the 

streamflow of the Chipola River. 

After the successful calibration and validation of the SWAT outputs, calibrated 

parameters were written back to the original models of the baseline scenario and the 

future scenario. Results of calibrated streamflow between the two scenarios showed that 

there was an average increase of 2% streamflow between the selected years of study. The 

statistical difference of 2% in calibrated streamflow between the two land-use scenarios 

may suggest a positive link between urbanization and streamflow. This link between 

increased urbanization and streamflow of the Chipola River may provide useful 

information to land-use managers and planners designing policy for the Chipola Basin.
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CHAPTER 1: INTRODUCTION 

Streamflow is a critical component of the global hydrologic cycle because of its 

tendency to affect the distribution of water resources (Tao et al., 2014). It is also a 

primary control of surface water bodies due to impacting various biogeochemical factors 

such as water temperature, chemical/nutrient loading, stream geomorphology, suspended 

sediment regime, and aquatic habitat and biodiversity (Kellner & Hubbart, 2019). 

Various factors can have long-term effects on the streamflow of a river. These 

factors include climate change, construction of large artificial lakes, diversion of water 

for irrigation purposes, and land-use change in the upstream river basin (Costa, Botta, & 

Cardille, 2003). Of these variables, land-use change is especially critical (Du et al., 

2013). 

Land-use change, specifically urbanization, has the potential to alter the global 

hydrologic cycle by affecting soil infiltration, evapotranspiration, and streamflow (Kim, 

Choi, Choi, & Park, 2013). For example, covering large-area watersheds with impervious 

cover often results in reduced local surface erosion rates, and increased surface runoff, 

(Lin, Hong, Wu, Wu, & Verburg, 2007) flooding events, and peak discharges. 

Impervious cover is also linked to altered streamflow (Kim, Kwon, Park, & Lee, 2005). 

Besides its impacts on existing water resources, land-use change is also 

recognized as a significant variable for its effects on future water resources (Takamatsu, 

Kawasaki, Rogers, & Malakie, 2014). Therefore, for the maintenance and sustainability
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 of future water resources, appropriate adaptation measures, and land-use management 

policies are necessary (Tong, Sun, Ranatunga, He, & Yang, 2012). 

The effects of land-use change on water resources depend on soil-climate-

topography-vegetation interactions. These interactions vary among basins and therefore 

they remain difficult to predict (Dos Santos, Laurent, Abe, & Messner, 2018). Although 

some global-level studies have highlighted the role of existing land-use change on 

streamflow, the role of future land-use change remains far from clear (Tao et al., 2014). 

A physical understanding of the interactions between land-use change and 

streamflow is essential for predicting the potential streamflow consequences of land-use 

change (Du et al., 2013). The methods for detecting the effects of land-use change on 

streamflow include historical data analysis and hydrologic modeling (Tang, Yang, Hu, & 

Gao, 2011). 

An analysis of the historical effects of land-use on streamflow may be used to 

predict the impacts of future land-use change (Schilling, Jha, Zhang, Gassman, & Wolter, 

2008). Hydrologic modeling is also a valuable tool for quantifying the complex 

interactions of land-use change and the streamflow (Dos Santos et al., 2018; Ghaffari, 

Ghodousi, Ahmadi, & Keesstra, 2010). 

Although the effects of existing land-use change on the streamflow of the basins 

are well documented, studies that quantify the impacts of future land-use change on 

streamflow are limited (Chu, Knouft, Ghulam, Guzman, & Pan, 2013; Kim et al., 2013). 

Therefore, this study was designed to quantify the potential impacts of future 

land-use change on the streamflow of the Chipola River using historical data analysis and 

a hydrologic model, Soil and Water Assessment Tool (SWAT). 
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1.1 Objectives 

The specific objectives of this study were: 

 to quantify the potential impacts of future land-use change on the streamflow of 

the Chipola River by using an integrated hydrologic simulation model – Soil and 

Water Assessment Tool (SWAT) in ArcGIS; 

 to calibrate and validate the streamflow of the SWAT model by using the 

Sequential Uncertainty Fitting (SUFI-2) in SWAT Calibration and Uncertainty 

Procedures (SWAT-CUP); and, 

 to give recommendations, based on the results, for better land-use and water 

management practices in the future. 

1.2 Hypotheses 

The null hypothesis stated that there would be no change in the streamflow of the 

Chipola River due to land-use change, while the alternate hypothesis stated that there 

would be an increase in the streamflow of the Chipola River. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Streamflow and Land-use Change 

Streamflow (Q) is composed of baseflow (BF) and stormflow (SW). Stormflow is 

surface runoff and comprises the significant portion of the streamflow during a rainy 

season. Baseflow (BF) is groundwater discharge to a stream and is considered a primary 

source of seasonal streamflow. The relative proportion of the stormflow and the baseflow 

vary with time and are affected by numerous factors including: watershed characteristics, 

climate change, and anthropogenic activities such as land-use change (Zhang & Schilling, 

2006). 

Land-use change is a process of transforming the natural landscape by 

anthropogenic activities. There are generally two types of land-use change: 1) 

conversion, and 2) modification. The conversion deals with the process of converting one 

land-use type to another. The modification involves maintenance of the land-use type in 

regard to changes in its attributes (Paul & Rashid, 2016). 

Urbanization is an essential component of land-use change and is defined as the 

conversion of a traditional agricultural area to a metropolitan city area. The significance 

of urbanization continues to increase with the increasing migration of the world’s 

population into cities. Urbanization falls into four categories, such as 1) leapfrog 

expansion, 2) concentric expansion, 3) linear expansion, and 4) multi-nuclei expansion 

(Liu, Zhan, & Deng, 2005).
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A type of urbanization that shows scattered development on isolated tracks, that 

are separated from other and vacant areas, is called leapfrog expansion. The growth of a 

city in all directions that causes substantial changes in urban land use is called concentric 

expansion. An expansion that occurs along a transportation axis, such as a highway, 

expressway, and along rivers, is called linear expansion. Finally, multinuclei expansion is 

a type of urbanization in which a city has more than one center apart from the central 

business district (Liu et al., 2005). 

Land-use change, such as urbanization, can affect critical atmospheric 

components in the global hydrologic cycle (Sun & Caldwell 2015; Takamatsu et al., 

2014). These components include precipitation, evapotranspiration, and land surface 

temperatures (Takamatsu et al., 2014). In addition to affecting atmospheric components, 

land-use change can also result in the alteration of infiltration and groundwater recharge. 

These alterations, in turn, affect the runoff-base flow ratio, as well as the streamflow 

quantity (Niraula, Meixner, & Norman, 2015).  

The effect of land-use change on streamflow is scale-dependent as it varies over 

time and space (Buck, Niyogi, & Townsend, 2004). Streamflow change is the most 

common estimate for studying the effects of climate change and land-use change on 

water resources. It can also inform the decision-making processes of water resources 

management (Niraula et al., 2015). Assessment of land-use change impacts on 

streamflow usually involves an approximation of spatial patterns of hydrologic 

consequences to various factors. These factors include land-use change maps, an 

examination of temporal responses in channel discharge concerning land-use change, and 

a comparison of simulated streamflow to land-use change (Nie et al., 2011). 
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2.2 Role of Hydrologic Models in Quantifying Relationship Between Land-use 

Change and Streamflow 

Hydrologic models are playing an essential role in planning for the sustainable 

use of water resources (Abbaspour et al., 2015). Several hydrologic models have been 

developed to analyze and predict the complicated relationship between land-use change 

and streamflow. Types of such models include: 1) conceptual lumped models, 2) fully 

distributed models, and 3) semi-distributed models (Isik, Kalin, Schoonover, Srivastava, 

& Lockaby, 2013). 

Conceptual lumped models typically use empirical or conceptual formulations for 

hydrologic components (Paudel, Nelson, Downer, & Hotchkiss, 2010). These models use 

spatially-averaged parameters for the whole watershed (Pullar & Springer, 2000), and 

represent the hydrological components, as well as watershed as a single homogeneous 

unit (Paudel et al., 2010). However, due to heterogeneity in the watershed’s 

characteristics, the model predictions become less accurate and informative (Pullar & 

Springer, 2000). Examples of conceptual lumped models include Nedbor-Afstromnings 

Model (NAM), and Identification of unit Hydrographs And Component flows from 

Rainfall, Evaporation, and Streamflow data (IHACRES) (Isik et al., 2013). 

Fully distributed models tend to simulate both the physical processes as well as 

the spatial heterogeneity of a watershed. These models divide the watershed into smaller 

grid cells. Water flowing through the basin is routed from one grid cell to another and 

allows simulation of the basin heterogeneity at each grid cell. The grid resolution chosen 

is generally small enough to characterize the spatial variation of hydrological components 

(Paudel et al., 2010). 
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Distributed models tend to account for local heterogeneity conditions and provide 

a better understanding of land processes within a watershed (Pullar & Springer, 2000). 

However, requiring a large amount of input data, these models become complex and, 

therefore, ineffective for daily operational hydrology. There is also sometimes inadequate 

information about the physical processes of the basin. However, these models require 

complete information on the basin processes to evaluate the model’s parameters. Some 

studies have reported that simple models were equally successful as complex models 

(Gosain et al., 2011). Examples include: Water balance-Simulation Model (WASIM), 

European Hydrological System Model (MIKE-SHE), The Distributed Hydrology Soil 

Vegetation Model (DHSVM), Systeme Hydrologique Europeen Transport (SHETRAN), 

Regional Hydro-Ecological Simulation System (RHESSys), Tracer Aided 

Catchment model – Distributed (TAC-D), and TOPMODEL-Based Land surface-

atmosphere Transfer Scheme (TOPLATS) (Isik et al., 2013). 

Semi-distributed models were developed to address the difficulties associated 

with conceptual lumped and fully-distributed models. These models represent a 

compromise between the conceptual lumped and fully-distributed models (Gosain et al., 

2011).  

The semi-distributed models divide the basin into homogeneous sub-basins based 

on the drainage area or the topography. Hydrological components are considered 

homogeneous within each sub-basin (Paudel et al., 2010). These models operate on 

simple, but physically-based, algorithms. These models represent spatial heterogeneity by 

using observable physical characteristics of the basin, such as topography, land use, and 

soil. Studies also report that semi-distributed models were better than the conceptual 
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lumped models. The significant advantage of these models lies in their relating of 

parameter values to land-use characteristics, providing an approach for land-use change 

analysis (Gosain et al., 2011). Examples of these models include: Simple Lumped 

Reservoir Parametric (SLURP), Hydrological Land-use Change (HYLUC), Precipitation 

Runoff Modelling System (PRMS), Soil and Water Integrated Model (SWIM) and the 

Soil and Water Assessment Tool (SWAT) (Isik et al., 2013). 

Among the aforementioned physically-based, semi-distributed models, the SWAT 

model is well-recognized for its ability to analyze the impacts of land-use management 

practices on water resources of large complex watersheds (Khatun, Sahana, Jain, & Jain, 

2018; Setegn, Srinivasan, & Dargahi, 2008).  

2.3 Application of SWAT model in Urbanization and Streamflow Studies 

The primary use of the SWAT model is to address the impacts of land-use change 

practices on the streamflow of rivers (Spellman, Webster & Watkins, 2018). The SWAT 

model is being applied globally, and its application suggests that urbanization and 

streamflow have a linear relationship (Nguyen, Recknagel, & Meyer, 2019).  

For example, Wu et al. (2015) studied the relationship between future 

urbanization and streamflow of the three rural catchment basins in Oregon’s Willamette 

Valley. Land-use change scenarios were developed assuming increasing urbanization and 

decreasing agricultural trends between 1990 and 2050. The findings of their study 

suggest that urbanization resulted in increased streamflow quantity.  

Similar results were also reported by Nguyen et al. (2019) in their study on the 

impacts of projected climate change and urbanization on the streamflow of the Torren 

River, Australia. Climate change and land-use change scenarios of hypothetical 

urbanization were developed for the period 2021 to 2050. Climate change scenarios 
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represented a decrease in the monthly streamflow of the Torren River, while land-use 

change scenarios depicted an increase. Therefore, urbanization was a more significant 

concern than climate change for this basin. 

Kim et al. (2013) also studied the impacts of future land-use change and climate 

change on the streamflow of the Hoeya River Basin, Korea, and reported similar trends as 

reported in other studies. They developed two climate change, and two land-use change 

storylines for the period 2020 to 2050. First, the land-use change storyline called for more 

rapid urbanization than the second storyline. The results of this study suggest that 

although the effects of climate change were greater on the streamflow, land-use change 

resulted in significant seasonal impact, with the first storyline having a greater impact 

than the second one. 

While the studies mentioned above reported increased streamflow linked to 

increased urbanization, Quyen et al. (2014) reported no change in the streamflow of the 

Srepok River, Vietnam. They studied the historical effects of land-use change on the 

streamflow of Srepok River Basin, Vietnam, using maps of the years 2000 and 2010. 

Urbanization increased, while agricultural land decreased, between the selected years of 

study. 

Besides its global application, the SWAT model was used by Hovenga (2015) to 

study the Apalachicola River Basin, Florida. In this study area, the Chipola River, which 

is a tributary of the Apalachicola River, was also included. They studied the impacts of 

land-use change and climate change on streamflow and sediment loading of the river. The 

findings of their study suggest that climate change was linked to increased streamflow 

and sediment loading. The future land-use change also resulted in increased sediment 



 

 

10 

 

loading due to reduced forest cover, but resulted in minimal streamflow increase. The 

minimal streamflow increase could be stated in terms of a low urbanization trend 

considered in the study. 

Analysis of these studies also suggests that long-term urbanization trends are 

linked to an increased streamflow of the rivers. However, short-term urbanization trends 

may have little to no impact on the streamflow, as reported by Quyen et al. (2014) and 

Hovenga, 2015. Analysis of these studies also suggests that the SWAT model is a 

successful one for quantifying the relationship between urbanization and streamflow. 

Following the success of the Apalachicola-Chipola River study by Hovenga, 2015, it is 

concluded that SWAT model can be used in quantifying the relationship between 

urbanization and streamflow of the Chipola River.    

2.3 The SWAT Modelling 

The Soil and Water Assessment Tool (SWAT) is a time-continuous, and process-

based river basin model. It was developed to measure the effects of non-point sources of 

pollution in large river basins and to assess the alternate management decisions for water 

resources (Arnold et al., 2012). 

The SWAT model requires a digital elevation model (DEM), land use-map, soil 

map, and meteorological data (Nie et al., 2011). The SWAT model divides a watershed 

into sub-watersheds or sub-basins. Sub-basins are further divided into a series of uniform 

hydrological response units (HRUs) based on soil type and land-use (Kibena, Nhapi, & 

Gumindoga, 2014).). HRUs have unique occurrences of land cover, soil type, and slope 

class. Any piece of land within one sub-basin comprising the same combination of land-

use, soil, and the slope will be considered as one HRU. The SWAT models all 
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hydrological processes for each HRU independently of the position of that HRU in the 

watershed (White et al., 2011).  

The sub-basin or sub-watershed components of the watershed can be divided into 

eight major categories in SWAT: such as hydrology, nutrients, weather, pesticides, soil 

temperature, sedimentation, agricultural management, and crop growth (Arnold et al., 

1998a). 

Water balance is the major force behind all SWAT processes as it can affect the 

movement of nutrients, sediments, pathogens, pesticides, and plant growth. The SWAT 

uses the following equation for the calculation of water balance (Pervez & Henebry, 

2015).     

𝑆𝑊𝑡 = 𝑆𝑊ₒ + ∑ 0

𝑡

𝑖=1

(R − Qsurf − ETi − Pi − Qgw) 

        where, 

Swt = final soil water content (mm) 

SWo = initial soil water content on a dayi(mm) 

R = amount of precipitation 

Qsurf = amount of surface runoff 

ETi = amount of evapotranspiration  

Pi = amount of percolation 

Qgw = amount of return flow 

Hydrological components simulated by the SWAT model include 

evapotranspiration, percolation, lateral flow, groundwater flow (return flow), surface 

runoff, transmission losses, and ponds. Evaporation and transpiration are simulated 

independently of one another. Evaporation is simulated using exponential functions of 
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water content and soil depth, whereas transpiration is calculated using a linear function of 

leaf area index and potential evapotranspiration (Nie et al., 2011). 

The SWAT model can use one of three methods to calculate potential 

evapotranspiration, including Priestley and Taylor, Hargreaves, and Penman-Monteith 

methods (Nie et al., 2011). The Penman-Monteith method requires air temperature, wind 

speed, relative humidity and net radiation as inputs. The Priestley-Taylor method requires 

net radiation, and the Hargreaves method requires air temperature as input (Saleh et al., 

2018). 

Percolation is calculated using the crack-flow model and storage routing 

technique. Lateral flow is simulated simultaneously with percolation using a kinematic 

storage model. In contrast, groundwater flow (baseflow) into each channel is calculated 

based on water table height, hydraulic conductivity of shallow aquifer, and distance from 

sub-basin to the main channel (Nie et al., 2011).  

In SWAT modeling, runoff is predicted separately for each sub-basin and routed 

to obtain the total flow for the basins. This process increases the accuracy of the model 

and provides a better physical description of the water balance (Arnold et al., 1998a).  

The SWAT model uses two methods to model surface runoff: 1) the Green-Ampt 

method and 2) the curve number (CN) method (White et al., 2011). 

The Green-Ampt method is a physically-based, infiltration excess, rainfall-runoff 

method. It is used to calculate runoff of the regions having hydrologic soil groups A or B. 

In these regions, the rainfall rate often exceeds the saturated conductivity of the soil 

(White et al., 2011). These regions have a high percentage of sandy soil and low runoff 

potential when thoroughly wet. The water transmission is not restricted (de Boer, 2016). 
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The Green-Ampt method is also applied to regions having dual soil hydrologic group 

B/D. This dual group suggests these regions have low runoff potential, water 

transmission is not restricted, and the water table exists within 60cm of the surface (de 

Boer, 2016). The SWAT model requires sub-daily precipitation data to simulate surface 

runoff by the Green-Amp method (King, Arnold, & Bingner, 1999). 

The curve number (CN) is an empirically-based, infiltration loss, rainfall-runoff 

method (Kannan, Santhi, Williams, & Arnold, 2008). It is used to calculate runoff of the 

regions with hydrologic soil groups C or D. These regions have a high percentage of clay 

and high runoff potential when thoroughly wet. The water movement is somewhat 

restricted in soils of hydrologic group C, while highly restricted in group D (de Boer, 

2016). The SWAT model requires daily precipitation data to simulate surface runoff by 

the curve number method (Ndomba, Mtalo, & Killingtveit, 2008). 

In the SWAT model, flow from all hydrologic response units (HRUs) are summed 

at the sub-basin level and are routed through the stream using either the variable storage 

method or the Muskingum method. Both of these methods are variations of the kinematic 

wave approach (Gassman et al., 2007). 

Due to its comprehensive nature, the SWAT model is recognized by the United 

States Environmental Protection Agency (USEPA) and has been integrated into the 

USEPA’s Better Assessment Science Integrating Point and Non-Point Sources (BASINS) 

(Abbaspour et al., 2015). 

2.3.1 Advantages and Disadvantages of the SWAT Model 

Following several decades of development, the Soil and Water Assessment Tool 

(SWAT) model has become a highly-used water quality and river basin-scale model. It is 
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highly supported by online documentation, multiple geographic information systems 

(GIS) interface tools, and online resources. It also has the capability to address a wide 

range of water resources issues due to its comprehensive nature, strong model support, 

and open access to the users (Gassman et al., 2014). 

The SWAT model is versatile as it can incorporate multiple environmental 

processes. It also supports effective watershed management practices (Gassman et al., 

2007) by effectively simulating surface water quality and quantity (Glavan & Pintar, 

2012). 

The SWAT model also is known as a deterministic model – each successive 

model run that uses the same inputs will produce the same outputs. This characteristic of 

the SWAT model makes it a valuable tool for isolating hydrologic response to a single 

variable, such as land-use change (Baker & Miller, 2013). 

The fundamental strength of the SWAT model lies in its flexibility to combine 

upland and channel processes and land management (Gassman et al., 2007; Arnold et al., 

2012). However, this strength sometimes becomes a weakness due to the lack of 

sufficient monitoring data required for the characterization of input parameters (Gassman 

et al., 2007). 

The strength of the SWAT model that enables its widespread use also has 

associated weaknesses that require further improvement, such as the oversimplification of  

hydrologic response units (HRUs). There are also some weaknesses associated with 

depicting the physical processes accurately due to a lack of sufficient monitoring data, 

inadequate data needed to characterize input parameters, or insufficient scientific 

understanding (Gassman 2007). 
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Although the SWAT model has associated advantages and disadvantages, the 

SWAT model was chosen for this study to quantify the impacts of land-use change on 

streamflow of the Chipola River for the three reasons: free access for the users, the 

availability of online resources, and its successful application in previous urbanization 

and streamflow studies. 

2.4 Calibration of Hydrologic Models 

When a combination model is used to simulate the processes of a physical system, 

it produces outputs affected by the input data. Therefore, to test the accuracy of the 

developed model, simulated results need to be compared with the observed data. The 

observed data is also sometimes subject to uncertainties. Accuracy of the desired model 

can be achieved by the process of calibration (Refsgaard & Storm, 1990), which is crucial 

for proper hydrological modeling (Shivhare, Dikshit, & Dwivedi, 2018). 

Calibration is the process of modifying the parameters that can influence model 

outputs, assisted by observed data and evaluated estimations of evapotranspiration, 

runoff, and other model outputs (Shivhare et al., 2018).  

In principle, three calibration techniques can be applied: 1) manual calibration, 2) 

automatic calibration and, 3) a combination of manual calibration and automatic 

calibration (Refsgaard & Storm, 1990). 

2.4.1 Manual Calibration 

Manual calibration, also known as trial and error calibration (Refsgaard & Storm, 

1990), is a process whereby model parameters are adjusted by the user to predict the 

model results corresponding to the observed data. It is an essential step for analysis of a 

simulated model (Sultana, Dhungana, & Bhatta, 2019). 
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Manual calibration is performed to reduce prediction uncertainty by adjusting the 

model parameters to the desired level (Sultana et al., 2019). Expert judgment and 

extensive knowledge about the catchment are required for adequate determination of the 

parameter adjustments (Gassman et al., 2007; Sultana et al., 2019). Following the 

adjustment of parameters, model outputs are compared with the observed data for 

analysis of the yielded results (Sultana et al., 2019; Gassman et al., 2007). 

However, manual calibration is a daunting and tedious task because it can take a 

longer time in the calibration of a single basin depending on the size of the basin, spatial 

resolution, and the simulation period (Sultana et al., 2019; Bekele & Nicklow, 2007). 

Manual calibration also becomes less feasible in visualizing the conceptual relationship 

between the model parameters and the basin characteristics due to the involvement of 

numerous parameters in hydrologic models. The involvement of numerous parameters 

can also result in unpredictable results during the adjustment of multiple parameters 

(Bekele & Nicklow, 2007). Furthermore, due to heterogeneity of the calibrated 

parameters, and the subjectivity involved, confidence in the model simulations and 

consistency among users cannot be fully achieved (Kim, Benham, Brannan, Zeckoski & 

Doherty, 2007). 

Due to the issues involved and the daunting nature of the manual calibration, 

automatic calibration procedures are developed, which are more efficient and effective 

(Kim et al., 2007). 

2.4.2 Automatic Calibration 

The automatic calibration uses a numerical algorithm, which finds the minimum 

and maximum values of the given objective function. The purpose of automatic 
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calibration is to find parameter values through as many combinations and permutations as 

possible and to achieve the “best” parameters. The best parameter values are used to 

ensure accuracy (Refsgaard & Storm, 1990). 

 Automatic calibration can find the “best” parameters quickly and is less 

subjective than manual calibration (Bekele & Nicklow, 2007). It is also faster than 

manual calibration, and therefore, confidence in the model simulations can be stated 

explicitly. An added benefit is the easy use of optimization packages. These packages 

may also result in a good agreement between the model outputs and the observed data 

(Kim et al., 2007) 

However, algorithms used in optimization packages try to compensate for data 

errors by adjusting parameter values, which may result in inadequate and physically 

unrealistic simulation outputs when applied to a dataset not included in the calibration 

process. Automatic calibration also avoids use of prior knowledge inherent to the 

structure of the model and results in uncertainty of the statistical analysis (Refsgaard & 

Storm, 1990). 

Due to the stated issues with automatic calibration, many surface water 

hydrologists do not consider it helpful. Therefore, automatic calibration has not been 

incorporated into surface water hydrologic models (Kim et al., 2007). 

2.4.3 Combination of Manual and Automatic Calibration 

A combination of manual and automatic calibration provides for an initial 

adjustment of the parameter values made manually, followed by automatic calibration 

within the defined range of physically-realistic values. Reversing the order is also 

feasible; testing the sensitivity of parameters using automatic calibration first, followed 
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by manual calibration. Combining the calibration processes is valuable in the calibration 

for hydrologic models (Refsgaard & Storm, 1990). 

2.5 Calibration and Validation of the SWAT model 

The manual calibration of hydrological models, such as SWAT, is not feasible for 

large-scale basins. Whereas, automatic calibration provides a reliable, labor-saving tool 

by significantly reducing the subjectivity and frustrations involved in manual calibrations 

(Arnold et al., 2012).  

The SWAT-CUP (calibration and uncertainty procedures) is a free auto-

calibration program and was developed for the calibration of the SWAT outputs 

(Abbaspour et al., 2015; Sultana et al., 2019). It can also be used for validation, and 

sensitivity and uncertainty analysis of the SWAT outputs (Sultana et al., 2019). In 

SWAT-CUP, all model parameters such as streamflow, water quality, and weather 

generator parameters, can be included in the process of calibration (Arnold et al., 2012). 

The SWAT-CUP comprises five different calibration methods and functionalities 

for validation and sensitivity analysis (Abbaspour et al., 2015). These methods and 

functionalities include: Particle Swarm Optimization (PSO), Markov chain Monte Carlo 

(MCMC), Parameter Solution (ParaSol), Generalized Likelihood Uncertainty Estimation 

(GLUE), and Sequential Uncertainty Fitting (SUFI-2) (Rouholahnejad et al., 2012).  

Of these methods and functionalities, the Sequential Uncertainty Fitting (SUFI-2) 

is the algorithm in the SWAT-CUP (Abbaspour, Vaghefi, & Srinivasan, 2018) that uses a 

combination of manual and automatic calibration approaches (Pagliero, Bouraoui, Diels, 

Willems, & McIntyre, 2019). 
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2.5.1 Calibration and Validation using SUFI-2 in SWAT-CUP 

The SUFI-2 program provides the flexibility to manually adjust the parameters 

and their ranges between the automatic calibration runs. It also provides the flexibility to 

perform sensitivity and uncertainty analyses on outputs as the user moves between 

manual and automatic calibration. Sensitivity analysis helps smooth the process of 

calibration, while uncertainty analysis provides statistics for the goodness of fit (Arnold 

et al., 2012). 

The SUFI-2 involves the following steps in the process of calibration: 

1. Development of default or initial parameters as created by the SWAT model 

and preparation of input files for the SUFI-2 program in SWAT-CUP. 

2. Running the model with default parameters and plot the observed and 

simulated results at each gauge station for the entire duration. 

3. Splitting the entire data equally for calibration and validation periods. 

4. Determining the most sensitive parameters for the observed values of interest. 

5. Assigning an initial uncertain range to each parameter globally. 

6. Running the SWAT-CUP-SUFI2 model with 300-500 simulations and 

analyzing the results for each gauge station. 

7. Performing the sensitivity analysis and analyzing the results. 

8. After analyzing the model performance in step 6, regionalizing the respective 

parameters (Arnold et al., 2012). 

Correct parameterization is the most crucial step in the process of calibration. The 

selection of correct parameters is based on the knowledge of hydrologic processes and 

the variability in the land-use, soil, slope type, and location of the sub-basin (Arnold et 
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al., 2012). Parameterization is therefore defined as “the process of imparting the analyst’s 

knowledge of the physical processes of the watershed to the model” (Arnold et al., 2012, 

p. 1500). 

After correct parameterization, sensitivity analysis can be performed, which is the 

process of analyzing the rate of change in model outputs concerning changes in model 

inputs. It is, therefore, necessary to identify critical parameters and to ensure their 

precision for calibration (Arnold et al., 2012). Sensitivity analysis provides information 

on the most critical parameters in the study area. It also helps to decrease the number of 

parameters by eliminating non-sensitive parameters during the calibration process 

(Abbaspour et al., 2018) 

Two types of sensitivity analysis can be performed: local sensitivity analysis or 

one-at-a-time (OAT), and global sensitivity analysis or all-at-a-time (AAT). In OAT, all 

parameters are kept constant except one. The remaining parameter is variable while its 

effect on objective function or model output is analyzed. While in AAT, all parameters 

are kept variable, and a large number of simulations (500-1000 or more) are required to 

see their impacts on the objective function or the output model (Abbaspour et al., 2018). 

Both types of sensitivity analyses have associated advantages and disadvantages. 

The local sensitivity analysis is simple and quick; however, the sensitivity of one 

parameter is often dependent on the sensitivity of other parameters, which are fixed to 

values of unknown accuracy (Arnold et al., 2012; Abbaspour et al., 2018). The global 

sensitivity analysis produces more reliable results than the local sensitivity analysis. 

However, it requires a substantial number of simulations (Arnold et al., 2012), which 
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affects parameter values and the relative sensitivity of the parameters (Abbaspour et al., 

2018). 

After performing sensitivity analysis, a student t-test identifies the significance of 

each parameter. In the student t-test, parameters having the larger absolute t-stat, and 

smaller p-values are considered the most sensitive (Abbaspour et al., 2018). 

 The SUFI-2 program is also used to map all the uncertainties on the parameters. 

It also tries to capture maximum observed data within 95% prediction uncertainty 

(95PPU) of the model in an iterative process. The 95PPU is calculated at the 97.5% and 

2.5% levels of the cumulative distribution of an output variable that is obtained through 

Latin hypercube sampling (Abbaspour et al., 2018) – a statistical method that produces 

controlled random samples (Emam, Kappas, Fassnacht, & Linh, 2018).  

For the goodness of fit, two bands are compared (the 95PPU for model 

simulation, and the band representing the measured data including its error), known as p-

factor and r-factor by the first author (Abbaspour et al., 2015). The p-factor is known as 

the fraction of measured data and its error bracketed by 95PPU, while the r-factor is the 

ratio of the average width of the 95PPU band and the standard deviation of the measured 

variable. The p- and r-factors are used to measure the strength of the calibration. The p-

factor varies from 0 to 1, while r value <1.5 is desirable. When acceptable p and r values 

are reached, the parameter ranges are known as calibrated (Abbaspour et al., 2015; 

Abbaspour et al., 2018). Subsequently, 1- p-factor is the model error, and it represents the 

observed data not captured by the model during the process of calibration (Abbaspour et 

al., 2018). 
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After the successful calibration of parameters, validation is used to build 

confidence in the calibrated parameters (Abbaspour et al., 2018). Validation is the 

process of comparing the model outputs with the observed data without further modifying 

the parameters used in the process of calibration (Shivhare et al., 2018). Similar to 

calibration, validation is also quantified by p-factor, r-factor (Abbaspour et al., 2018).  

The SUFI-2 allows the user to select the objective function from a range of ten 

different objective functions (Abbaspour et al., 2015). The selection of an objective 

function must correspond to the goal of the project as there is no defined unique creation 

for the selection of objective function (Abbaspour, Johnson, & Van Genuchten, 2004). So 

far, Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), are most 

commonly used statistics for calibration and validation (Arnold et al., 2012). 

The Nash-Sutcliffe efficiency (NSE) represents the fraction of the observed 

streamflow variance produced by the model (Van Liew, & Mittelstet, 2018). For Nash-

Sutcliffe efficiency (NSE), model quality is tested using different levels. If the model has 

value NSE value of <0.5, it is considered “unsatisfactory,” if it has NSE value from 0.54-

0.65, it is considered “satisfactory.” When the model has an NSE value of 0.65-0.75, it is 

considered  “good,” and the model with NSE value of 0.75-1 is considered “very good” 

(Me, Abell, & Hamilton, 2015). 

The coefficient of determination (R2) represents how well the observed 

streamflow and simulated regression line approaches a perfect match (Gassman et al., 

2007). Similar to NSE, model quality is tested using different levels. If the coefficient of 

determination (R2) has a value of <0.5, the model is considered “unsatisfactory.” 

However, if it has the value of “0.5-0.6”, the model is considered as “satisfactory.” With 



 

 

23 

 

a value of 0.6-0.7, the model is considered “good,” and with a value of 0.7-1, the model 

is considered “very good” (Me et al., 2015). 

Vilaysane et al. (2015) used the two commonly-used statistics; Nash-Sutcliffe 

efficiency (NSE), and coefficient of determination (R2) to evaluate the model’s goodness 

of fit. Using the SUFI-2 algorithm, they calibrated (1993-2000) and validated (2001-

2008) the streamflow of the Xedone River Basin for daily, as well as monthly, time-step. 

For daily time-step, calibration gave NSE and R2 values of 0.819, 0.821, while validation 

gave 0.707 and 0.732, respectively. For monthly time-step, calibration gave NSE and R2 

values of 0.925 and 0.927, and validation gave values of 0.856, 0.910, respectively. As 

the values of these statistics were “very good” for daily, as well as monthly, time-step, 

Vilaysane et al. (2015) suggested that the calibrated streamflow values could be used for 

the analysis of land-use change, climate change, water quality analysis, sediment yield, 

and for planning dam and flood disaster risk management. 

Mehan et al. (2017) also used NSE and R2 to determine the model’s goodness of 

fit. Using the SUFI-2 algorithm, they calibrated (1987-1994) and validated (1995-2000) 

the streamflow of the Skunk Creek watershed for daily, as well as monthly, time-step. 

For daily time-step, calibration gave NSE, and R2 values of 0.56 and 0.70, and validation 

gave values of 0.55 and 0.44, respectively. For monthly time-step, both statistics gave a 

similar value of 0.84 for calibration and values of 0.76 and 0.77 for validation. The 

results of this study suggest that model performance was better for monthly time-step 

rather than for daily time-step. A conclusion of this study, therefore, is that the 

integration of SUFI-2 in SWAT-CUP sped-up the calibration process. 
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NSE and R2 statistics were also used by Jain et al. (2017) to evaluate model 

goodness. Daily calibration (1992-2000) and validation (1992-2000) was performed for 

the streamflow of the Beas River, India. Both statistics, NSE and R2, gave similar values, 

0.60 for calibration, and differing values of 0.48 and 0.57 for validation. They suggested 

that results of calibration and validation were acceptable for daily time-step, and 

calibration values could be used to simulate future changes in streamflow and water 

balance of the watershed. 

While studies are most commonly using the NSE and R2 statistics, Van Liew & 

Mittelstet (2018) recommended the use of another objective function, percent bias 

(PBIAS), for the evaluation of model’s goodness of fit. Percent bias (PBIAS) signifies 

the measure of average bias of the simulated output as smaller or higher than their 

observed values (Van Liew, & Mittelstet, 2018). A positive value of PBIAS indicates 

model underestimation bias, while a negative value indicates model overestimation bias 

(Molina-Navarro, Trolle, Martinez-Prrez, Sastre-Merlin, & Jeppesen, 2014). 

Similar to NSE and R2, PBIAS results are tested using four different levels. When 

PBIAS has a value >25, the model results are considered as “unsatisfactory,” when 

PBIAS has a value from 15-25, then model performance is considered “satisfactory,” is 

considered “good” when it has a value from 10-15, and is considered “very good” when it 

has a value <10 (Nie et al., 2011; Me et al., 2015). 

PBIAS is being used in combination with other commonly-used statistics, such as 

NSE and R2. For example, Oliveira et al. (2018) used PBIAS, in addition to NSE, to 

evaluate the model goodness of fit. Using the SUFI-2 algorithm, they performed 

calibration and validation for the streamflow of the Grande River. Calibration was 
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performed from 1994 to 1998, and validation was performed from 1999 to 2001. 

Calibration gave an NSE value of 0.72 and a PBIAS value of 2%, while validation gave 

an NSE value of 0.63 and a PBIAS value of 10%. These statistics were considered 

“satisfactory” for the daily time-step. Oliveria et al. (2018) suggested that the calibrated 

values could be used to analyze the impact of land-use change on the streamflow of the 

Grande Riven Basin. 

Although the aforementioned studies have used a combination of two statistics to 

describe the results of their calibration and validation, the usage of multiple statistics is 

also in practice. Besides the statistical selection criteria, these studies only calibrated and 

validated streamflow at one gauge station. However, SUFI-2 is capable of calibrating and 

validating the streamflow at multiple gauge stations (Abbaspour et al., 2018) 

The above-mentioned two approaches were used by Zhou et al. (2014) for the 

calibration and validation of the streamflow of the Lake Dianchi Basin. They used three 

statistical criteria; R2, NSE, and PBIAS to test the model performance, and performed 

calibration and validation at three gauge stations. However, calibration (2001-2006) and 

validation (2007-2009) was performed for monthly time-steps only. Calibration for the 

first gauge station, “Panlongjiang,” gave R2, NSE, and PBIAS values of 0.64, 0.60, and 

3.63, respectively, and validation gave values of 0.56, 0.48, and 27.02, respectively. 

Calibration for the second gauge station, “Baoxianghe,” gave R2, NSE, and PBIAS values 

of 0.81, 0.76, and -11.20 respectively, and validation gave 0.86, 0.78, and 7.98, 

respectively. Calibration for the third gauge station, “Haikouflow,” gave R2, NSE, and 

PBIAS values of 0.68, 0.62, and -13.91 respectively, and validation gave 0.76, 0.72, and -

4.19, respectively. Zhou et al. (2014) suggested that the results of calibration could be 
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used to analyze the streamflow of Lake Dianchi. An observation resulting from this 

study, was that PBIAS values suggest that streamflow was underestimated for the first 

stream gauge, while it was overestimated for the second and third stream gauge. Thus, it 

can be concluded that, in addition to explaining the acceptability of the results of 

calibration and validation, the use of PBIAS is constructive for explaining the 

“overestimation” or “underestimation” of the calibrated and validated streamflow results. 

Following an analysis of all the reviewed papers, I concluded that these studies 

successfully employed the SUFI-2 algorithm in streamflow calibration and validation. 

The selection of SUFI-2 made the calibration process quick. I also concluded that 

selection of multiple statistical criteria helps to better explain the results of calibration 

and validation and that SUFI-2 gives better results of monthly calibration and validation 

rather than the daily. 

Although researchers successfully employed SUFI-2 in reviewed studies, most of 

did not apply split data approach recommended by Arnold et al. (2012). Rather, most 

used their data for calibration and only a small amount of data for validation. The only 

exception was the study by Vilaysane et al. (2015). 

Following the analysis of all the papers reviewed herein, this study aimed to use 

the recommended split data approach for calibration and validation in the SUIF-2 

program. This study also aimed to calibrate and validate the simulated streamflow on a 

monthly time-step to obtain better average streamflow results. Finally, this study aimed to 

use three statistical techniques, NSE, R2, and PBIAS, to evaluate the model’s 

performance.
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CHAPTER 3: METHODOLOGY 

3.1 Study Site 

The study site for this research is the Chipola River Basin, the largest tributary of 

the Apalachicola River Basin, Florida (Chen et al., 2012). The Chipola River has a 

surface water drainage basin of approximately 3,333 square kilometers (km2) (Denson, 

Rasmussen, & Harris, 2016; Barrios & Chelette, 2004). The study site has an average 

elevation of 120 meters above the mean sea level and has flat terrain sloping down to the 

southwest and southeast (Verdi, 2007). 

The Choctaw, headwaters of the Chipola River, originates southeast of Dothan in 

Houston County, Alabama, to the south of the Dead Lakes area in central Gulf County, 

Florida (Denson et al., 2016; Barrios & Chelette, 2004). The two main tributaries of the 

Chipola River - Cowarts Creek, and Marshall Creek - unite in northern Jackson County, 

Florida, approximately 14 kilometers north of Marianna (Barrios, & Chelette, 2004). The 

tributaries then flow south through Calhoun and Gulf Counties, join the Apalachicola 

River near the Wewahitchka town and ultimately drain into the Gulf of Mexico (Denson 

et al., 2016; Verdi, 2007). 

The Chipola River Basin was selected as the study site for this research for 

several compelling reasons. The Chipola Basin is undeveloped, having only a few towns 

located near the river. There are no large urban city centers, and industrialization is 

minimal (Elder & Mattraw, 1984). Urbanization within this basin has steadily increased 

over the last 30 years (Verdi, 2007). Dothan City, Alabama, has a major developed area 
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within the basin. Land-uses in this basin consist of farms, bottomland deciduous forests, 

and silviculture. During low and medium flows of the Chipola River, groundwater is the 

greatest contributor, while during high flows, groundwater flow is diluted and replaced 

by surface runoff (Barrios & Chelette, 2004). Further development in the upstream basin 

may result in altering the streamflow of the river (Elder & Mattraw, 1984). For example, 

as a result of clearing for urbanization, the Chipola Basin may no longer be able to 

control and hold the streamflow and may result in downstream flooding (Clark, 1980). 

The Chipola River is being fed by 63 springs, including a first magnitude spring, 

Jackson Blue. This spring makes the Chipola River Basin a vital source of freshwater for 

the Apalachicola River and Bay. The Chipola River is distinctive among Florida rivers 

for its relatively clear water and hard limestone bottom that provides habitats and support 

for a variety of aquatic organisms (Birdsong et al., 2015). Apart from providing habitat to 

diverse aquatic organisms, the Chipola River also hosts and protects a threatened fish 

species, Alabama Shad (Collins, 2016). 

Currently, the Chipola River Basin is relatively rural but may be subject to 

urbanization in the future. An increase in streamflow linked to increased urbanization 

could present major issues for this basin in the future, such as increased runoff and flood 

events, which would ultimately affect aquatic organisms. In order to and prevent the 

impacts of urbanization on this river, it is necessary to first have a comprehensive 

understanding of the response of streamflow to increased urbanization. 
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Figure 1: Study Site 
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3.2 Data Collection 

This study required a digital elevation model (DEM), land use maps (current and 

future), a soil map, and meteorological data as inputs for the SWAT model. 

Meteorological data included hourly rainfall, temperature (min., max.), wind, solar 

radiation, and relative humidity; data were obtained from the weather station, “Mariana.” 

Real-world observed streamflow data required for the calibration and validation 

of the simulated streamflow were obtained from the stream gauge, “Chipola River near 

Altha.” Figure 1 represents the location of the weather station and the stream gauge. A 

brief summary of all data sources used in this study is provided in Table 1. 
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Table 1: Data Sources 

Data Type Data Sources 

Hydrologic unit code 8 (HUC 8) 

watershed boundary 

United States Geological Survey National 

Hydrography Dataset (USGS NHD) 

http://prd-tnm.s3-website-us-west-

2.amazonaws.com/?prefix=StagedProducts/Hydro

graphy/NHD/HU8/HighResolution/ 

United States (US) shapefile Topologically Integrated Geographic Encoding 

and Referencing (TIGER) 

https://catalog.data.gov/dataset/tiger-line-

shapefile-2017-nation-u-s-current-state-and-

equivalent-national 

Primary and secondary roads’ 

shapefiles (2019) 

Topologically Integrated Geographic Encoding 

and Referencing (TIGER). 

https://www.census.gov/geographies/mapping-

files/time-series/geo/tiger-line-file.html  

Digital elevation model (DEM), 

10m (2019) 

United States Geological Survey National 

Elevation Dataset (USGS NED) 

https://viewer.nationalmap.gov/basic/ 

Land-use land cover (LULC) 

map, 30m (2016)  

National Land Cover Database (NLCD) 

https://www.mrlc.gov/data?f%5B0%5D=region%

3Aconus 

STATSGO Soil map (2016) United States Department of Agriculture (USDA) 

https://websoilsurvey.sc.egov.usda.gov/App/WebS

oilSurvey.aspx 

Meteorological data (2013-2018)  Florida Automated Weather Network (FAWN) 

https://fawn.ifas.ufl.edu/data/fawnpub/ 

Streamflow data (2015-2018) United States Geological Survey (USGS) 

https://waterdata.usgs.gov/fl/nwis/rt 

 

Note: This study used a “land-use land cover map” to represent “land-use map.” 

3.3 Data Pre-processing 

The digital elevation model (DEM) grids were merged using the “create mosaic 

dataset” and “add rasters to mosaic dataset” tools in ArcGIS 10.5.1. After merging, DEM 

was projected into universal transverse Mercator (UTM). 

A rectangular shapefile using, “ArcCatalog” and “Editor Tool,” was created in 

ArcGIS using the study area as a reference. This shapefile served to extract land-use and 

soil maps’ area greater than the area of hydrologic unit code 8 (HUC 8) basin. The 

http://prd-tnm.s3-website-us-west-2.amazonaws.com/?prefix=StagedProducts/Hydrography/NHD/HU8/HighResolution/
http://prd-tnm.s3-website-us-west-2.amazonaws.com/?prefix=StagedProducts/Hydrography/NHD/HU8/HighResolution/
http://prd-tnm.s3-website-us-west-2.amazonaws.com/?prefix=StagedProducts/Hydrography/NHD/HU8/HighResolution/
https://catalog.data.gov/dataset/tiger-line-shapefile-2017-nation-u-s-current-state-and-equivalent-national
https://catalog.data.gov/dataset/tiger-line-shapefile-2017-nation-u-s-current-state-and-equivalent-national
https://catalog.data.gov/dataset/tiger-line-shapefile-2017-nation-u-s-current-state-and-equivalent-national
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://viewer.nationalmap.gov/basic/
https://www.mrlc.gov/data?f%5B0%5D=region%3Aconus
https://www.mrlc.gov/data?f%5B0%5D=region%3Aconus
https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx
https://fawn.ifas.ufl.edu/data/fawnpub/
https://waterdata.usgs.gov/fl/nwis/rt
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extracted land-use and soil maps covered the entire delineated basin defining hydrologic 

unit response (HRU) analysis in the SWAT. After extraction, land-use and soil maps 

were projected to UTM projection. Projection (WGS_1984_UTM_Zone_16N) was kept 

similar for each dataset to avoid inaccuracies. 

The units of meteorological data and streamflow data were converted to SWAT-

required units. The SWAT model requires “millimeter (mm)” units for precipitation, 

“Celsius (C˚)” for temperature, “meters per second (m/s)” for wind, “percent” for relative 

humidity, and the “megajoule per square meter (MJ/m2)” for solar radiation data. After 

unit conversion, meteorological data were written into text files for the SWAT, and 

locator files for each dataset were written as well. 

3.4 Development of Future Land-use Map 

For the development of a future land-use map of the Chipola Basin, “linear 

expansion urbanization” was considered due to the rural characteristics of the basin. In 

this expansion, it was assumed that low-density urban areas would be converted to high-

density, and agricultural areas would be converted to low-density within a five-mile 

buffer of primary and secondary roads. The five-mile buffer was used to analyze the 

urbanization impacts in the maximum area of the basin. All other land-use classes were 

kept constant. 

Primary and secondary road shapefiles for the states of Alabama and Florida were 

merged and clipped. After clipping, the roads shapefile was projected using UTM 

projection. A five-mile buffer was produced along the primary and secondary roads. 
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The land-use (2016) map was converted to a vector shapefile, clipped, and then 

erased, using the five-mile buffer. The clip feature provided a shapefile of land-use 

classes within the five-mile buffer. The erase feature removed the land-use classes within 

the five-mile buffer of the existing land-use map of 2016. Clipped and erased shapefiles 

were then dissolved using the “gridcode” field. In the clipped shapefile, the low-density 

urban areas were converted to high-density, and the agricultural areas were converted to 

low-density by changing the value of the “gridcode” field. After the conversion of land-

use classes, clipped and erased shapefiles were merged, one vector shapefile containing 

the future land-use map remained. 

The final step was to convert this vector shapefile into raster format because 

SWAT requires a raster format of a land-use map for simulation. The vector shapefile 

was converted to raster, with the same cell size (30m), and same number of columns and 

rows (3144, 6048) as the 2016 land-use map to keep the area of the two maps similar. 

The cell size was described, and the “same processing extent” feature was used in the 

“feature to polygon” tool. Figure 2 illustrates the methodology for the development of the 

roads’ buffer. Figure 3 illustrates the methodology for the development of the future land-

use map.
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Figure 2: Flowchart for the development of the five-mile roads buffer along Alabama (AL) and Florida (FL) roads 
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Figure 3: Flowchart for the development of future land-use land cover map using the five-mile buffer (figure 2) 

 



 

 

36 

 

3.5 SWAT Modelling 

After pre-processing, data were ready to be input into the SWAT model. For this 

study, SWAT version 2012 was used as an extension in ArcGIS 10.5.1. The sections that 

follow discuss the methodology for hydrologic modeling of the Chipola Basin. The 

conceptual framework for the methodology is provided in Figure 4. 

 
Figure 4: Conceptual framework for the SWAT modelling 

3.5.1. Automatic Watershed Delineation 

For automatic watershed delineation, a 10m digital elevation model (DEM) was 

uploaded into the SWAT model and the meter was selected as its z unit. After selecting 

the z unit, flow direction and accumulation was calculated. A threshold area of 2000 

Hectares (Ha) was defined for each hydrologic response unit (HRU) for depiction of the 

streams' frequency and extent in the watershed. An outlet close to the location of the 

United States Geological Survey (USGS) stream gauge was added manually to calculate 

streamflow for that sub-basin. The streamflow for this sub-basin could then be used in the 

process of calibration and validation. Streams and outlets were created, which resulted in 
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the creation of 100 outlets and 100 sub-basins. The watershed was delineated and the 

sub-basin parameters were calculated (Figure 5). 
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Figure 5: Automatic watershed delineation of the Chipola River 
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3.5.2 HRU Analysis 

A land-use map, soil map, and slope definitions were required for hydrologic 

response unit (HRU) analysis. 

3.5.2.1 Land-use Data 

The land-use map for the year 2016 was uploaded and “value” was selected in the 

grid field. After selecting the grid field, the SWAT model calculated the percentage area 

for each land-use class. The user table created for land-use classes was uploaded, which 

resulted in land-use codes for the SWAT model. The same process was repeated in the 

second simulation, which used future land-use map. 

The land-use map of 2016 was considered as the “baseline scenario” and the 

future land-use map was considered as the “future scenario.” Figure 6 shows land-use 

maps of the two scenarios. Figure 7 shows the total change in the land-use classes that 

occurred between the baseline and future scenarios. As figure 7 shows, most of the low-

density urbanization occurred in the upstream river basin, while high-density 

urbanization occurred in the middle stream. Results for the agricultural area were 

negligible, occupying only 0.01% area of the basin’s area. 

Table 2 shows the SWAT land-use codes, along with the percentage area of each 

land-use class of the two scenarios, and the percentage difference between these 

scenarios. 
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Figure 6: Land-use maps for baseline and future scenarios
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Figure 7: Total change in land-use classes 
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Table 2: Description of SWAT codes and LULC classes’ percentages 

 Land Use Classes 

SWAT 

Land-use 

Codes 

Area/year 

 Area/year 

%age 

Difference 

in Area 

354532.9 

Hectares/ 

2016 LULC 

354532.9 

Hectares/ 

Future 

LULC 

Open water WATR 0.93% 0.93% 0% 

Developed, low-density URLD 6.37% 19.34% 12.97% 

Developed, medium-

density URML 0.24% 0.24% 0% 

Developed, high-density URHD 0.07% 6.24% 6.17% 

Barren land SWRN 0.08% 0.08% 0% 

Deciduous forest FRSD 0.72% 0.72% 0% 

Evergreen forest FRSE 29.31% 29.31% 0% 

Mixed forest FRST 0.70% 0.70% 0% 

Shrub/Scrub RNGB 7.87% 7.87% 0% 

Herbaceous RNGE 4.92% 4.92% 0% 

Hay/Pasture PAST 3.51% 3.51% 0% 

Agriculture AGRR 19.15% 0.01% -19.14% 

Woody wetlands WETF 25.61% 25.61% 0% 

Emergent herbaceous 

wetlands WETN 0.52% 0.52% 0% 
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3.5.2.2 Soil Data 

The soil map was uploaded using the “Load ArcSWAT US STATSGO from disk” 

option. “Value” was selected in the grid field, and “ArcSWAT STATSGO” was selected 

automatically by the SWAT for the soil database options. The SWAT model calculated 

the percentage area for each soil class, then soil class codes were written by the SWAT 

using the “Stmuid” field. Reclassification was done using the “reclassify” feature. 

Figure 8, shows that hydrologic soil groups A, B and B/D dominate the Chipola 

Basin while hydrologic soil groups C and D cover only a minor portion. The dominance 

of hydrologic soil groups A, B and B/D suggests that sandy soil is abundant and that 

runoff should be calculated using the Green-Ampt method rather than the Curve Number 

method (White et al., 2011). 



 

 

44 

 

 

Figure 8: Hydrologic soil groups of the Chipola Basin 
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3.5.3.3 Slope Definition 

The SWAT model automatically calculates slope percentage using a digital 

elevation model (DEM), which can be reclassified into multiple classes. Five slope 

classes were created with the first-class showing 0%-2% slope, the second class with 2%-

5% slope, the third class with 5%-7% slope, the fourth class with 7%-10% slope, and the 

fifth class with >10% slope (Figure 9). 

Following the reclassification of slope classes, "land-use, soil, and slope 

definition" was completed using the overlay button. 
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Figure 9: Slope classification of the Chipola Basin 
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3.5.4 HRU Definition 

As a result of this study, multiple hydrologic response units (HRUs) were created 

and thresholds for land-use, soil, and slope classes were defined. Five percent (5%) 

threshold for land-use classes, ten percent (10%) threshold for soil classes, and a five 

percent (5%) threshold for slope classes were defined. Definitions of these thresholds 

suggest that any sub-basin with an area less than these identified thresholds will be 

reapportioned to the dominant classes, resulting in the modeling of the whole basin area 

(Butcher, Johnson, Nover, & Sarkar, 2014). From a total of 100 sub-basins, 2938 

hydrologic response units (HRUs) were created for the baseline scenario, while 2942 

HRUs were created for the future scenario. The difference in the creation of HRUs can be 

attributed to different land-use maps. 

3.5.5 Writing Input Tables 

The SWAT model required meteorological data for writing input tables. Weather 

data definition was selected under “writing input tables,” and “WGEN_US_FirstOrder” 

was selected for weather generator data. 

Hourly-rainfall data were uploaded for the calculation of runoff using the Green-

Ampt method. The selection of the Green-Ampt method was essential due to the 

dominance of soil hydrologic groups A and B in the Chipola Basin.  Daily temperature 

(min., max.), wind, solar radiation, and relative humidity data were uploaded. The 

respective locator files were also uploaded and “weather data definition” was completed. 

The availability of all the meteorological data resulted in the calculation of 

evapotranspiration and potential evapotranspiration using the Penman-Monteith method. 
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3.5.5 Write SWAT input tables 

After the completion of weather data definition, SWAT database tables were 

selected to be written. 

3.5.6 Edit SWAT input 

The watershed parameters were edited, and the rainfall-runoff method was 

selected as “Sub-daily Rain/G&A/Hourly route (1),” and channel routing was selected as 

“Muskingum.” After editing the watershed parameters, the basin file was rewritten. 

3.5.7 SWAT Simulation 

The SWAT model was simulated for monthly time-step with a warm-up period of 

2 years. The warm-up period is required by the SWAT to ensure accurate results. The 

SWAT model was run for the period, 2015 through 2018, using the baseline scenario 

(first simulation) and the future scenario (second simulation). During these simulations, 

the land-use map was replaced, keeping all input data constant. Only land-use maps were 

replaced as focus of this study was analysis of the impacts of land-use change on the 

streamflow of the Chipola River. 

The SWAT simulations produced streamflow data for both the baseline and future 

scenarios. After establishing the simulated streamflow, the next step was to perform a 

sensitivity analysis and to calibrate and validate these outputs. 

3.6 Sensitivity Analysis, Calibration, and Validation 

The following section discusses the sensitivity analysis, calibration, and 

validation of the simulated streamflow when compared with the observed streamflow 

data provided by the USGS gauge station “Chipola River near Altha.” The sensitivity 

analysis, calibration, and validation were performed using the Sequential Uncertainty 

Fitting (SUFI-2) program in the SWAT-CUP 2019 version 5.2.1 by linking “TxtInOut” 
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files generated by the SWAT. The SUFI-2 algorithm was selected for this study for its 

semi-automatic nature, common usage, and its free availability. Methodology (attached 

as appendix B) for SUFI-2 was given in the SWAT-CUP user manual and was followed 

after making some changes according to the study area. The most commonly-used 

statistical method, Nash-Sutcliffe efficiency (NSE), was selected as the primary objective 

function. The recommended split data approach was used; one-half of the data (2015-

2016) was used for calibration, and the other half (2017-2018) was used for validation. 

Global sensitivity analysis was performed prior to performing calibration and validation 

to analyze the sensitivity of the parameters. 

3.6.1 Global Sensitivity Analysis or AAT 

Sensitivity analysis was performed using “global sensitivity analysis” in SUFI-2 

for its ability to analyze the sensitivity of parameters all at once. The sensitivity analysis 

was performed by running 500 simulations of four default parameters (CN2, 

ALPHA_BF, GW_DELAY, and GWQMN) in SUFI-2. 

The first parameter, runoff curve number (CN2), computes runoff depth after a 

rainfall event in a river basin (Liew, Arnold, & Bosch, 2005). It is associated with initial 

soil water conditions, soil permeability, and land-use (Cao et al., 2018). The second 

parameter, baseflow alpha-factor (ALPHA_BF), is the index of groundwater flow 

response to recharge (Malago, Pagliero, Bouraoui, & Franchini, 2015). 

The third parameter, groundwater delay (GW_DELAY), is the lag between the 

time during which the water exits the soil profile and enters the shallow aquifer (Arnold 

et al., 2013). The fourth parameter, water depth in shallow aquifer required for return 
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flow (GWQMN), is the threshold water depth in the shallow aquifer required for return 

flow to the stream (GWQMN) (de Andrade et al., 2019; Liew et al., 2005). 

Parameters were deemed sensitive if they had a p-value ≤0.05 (Me et al., 2015). 

Of the four default parameters, two parameters (ALPHA_BF and GW_DELAY) were 

found sensitive during the student t-test. Therefore, the non-sensitive parameters (CN2, 

GWQMN) were eliminated. 

Global Sensitivity Analysis was performed again by adding four additional 

parameters (GW_REVAP, ESCO, CH_N2, CH_K2) to the list of sensitive parameters to 

improve the calibration results. The first parameter, groundwater “revap” coefficient 

(GW_REVAP), controls the amount of water that leaves the shallow aquifer to the root 

zone. The second parameter, soil evaporation compensation factor (ESCO), adjusts the 

depth distribution for evaporation from the soil to measure the impact of capillary action, 

cracks and crusting (Liew et al., 2005). 

The third sensitive parameter, channel hydraulic conductivity (CH_K2) in the 

main channel alluvium, and the fourth sensitive parameter, main channel Manning’s “n” 

(CH_N2) for channel flow, are the physical parameters that control the flow of water and 

sediment transport in the channel network of the basin (Arnold et al., 2013). 

The added parameters were selected by “trial and error” calibration. These 

parameters were selected by making inferences about the hydrological processes of the 

study area. Five hundred simulations were run again to get the results of global sensitivity 

analysis. Four parameters, ALPHA_BF, CH_N2, CH_K2, and GW_DELAY, were found 

sensitive in this process. The non-sensitive parameters (GW_REVAP, ESCO) were 

eliminated. Table 5 represents the final list of sensitive parameters found in the student-t-
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test, along with their p-values and t-values. These parameters are arranged in descending 

order of their sensitivity, suggesting that ALPHA_BF is the most sensitive parameter, 

while GW_DELAY is the least sensitive parameter. These parameters were then used in 

the process of calibration and validation. 

Table 3: List of Final Sensitive Parameters found in Student t-test 

Sensitivity 

Rank 

Sensitive  

Parameters 

 

Description 

 

t-Value 

 

p-Value 

1 ALPHA_BF Baseflow alpha factor (days) 19.16 0.00 

2 CH_N2 Main channel Manning’s “n” -13.57 0.00 

3 CH_K2  Main channel effective 

hydraulic conductivity 

(mm/hr.) 

-11.25 0.00 

4 GW_DELAY  Groundwater delay time 

(days) 

-3.33 0.00 

 

 3.6.2 Streamflow Calibration using SUFI-2 

After performing the global sensitivity analysis, calibration of the SWAT 

streamflow outputs was carried out. Calibration was performed from 2015 to 2016 with a 

warm-up period of 2 years (2013-2014). Several iterations were run. The final iteration, 

with 1000 simulations, was used to obtain the results for calibration. 

Table 3 presents the list of parameters, calibrated by SUFI-2, along with their 

minimum, maximum, and final fitted values. The final fitted values were then used to 

write the parameters back into the original SWAT model baseline and future scenarios. 

Table 4: List of parameters calibrated by SWAT-CUP 

 

 

No. 

 

Calibrated 

Parameters 

 

 

Description 

 

Min. 

Value 

 

Max. 

Value 

Final 

Fitted 

Value 

1 ALPHA_BF Baseflow alpha factor (days) 0.4 1 0.90 

2 GW_DELAY Groundwater delay time (days) 30 77 52 

3 CH_N2 Main channel Manning’s “n” 0 0.3 0.09 

4 CH_K2 Main channel effective hydraulic 

conductivity (mm/hr.) 

7 89 79 
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3.6.3 Streamflow Validation using SUFI-2 

After achieving the desired results for calibration, the process of validation was 

started. The range of parameters, and the number of simulations, were kept analogous to 

the range of parameters used during the process of calibration. 

3.7 Writing Calibrated Parameter back to the Original SWAT Model 

After the successful calibration and validation of the simulated streamflow, the 

final fitted calibrated parameters (See Table 4), were written back into the original 

SWAT models of baseline and future scenarios using the manual calibration helper in 

SWAT. The manual calibration helper allows users to multiply, replace, or add a 

threshold to a parameter. The final fitted values served as threshold values and were used 

to replace old values of ALPHA_BF, CH_N2, CH_K2, and GW_DELAY, and both 

models were rerun.
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 SWAT Model Calibration, Validation, and Uncertainty Analysis 

In this section, I discuss the evaluation of calibrated parameters, the evaluation of 

model performance, the analysis of land-use change scenarios, the evaluation of model 

error, and the limitations of the study. 

4.1.1 Evaluation of Calibrated Parameters 

The calibrated parameters, ALPHA_BF, GW_DELAY, CH_N2, CH_K2, were 

found to have fitted values of 0.90 days, 52 days, 0.09, and 79 mm/h, as provided in 

Table 4. The sensitive parameters (ALPHA_BF and GW_DELAY) control processes that 

happen at a greater depth (Heuvelmans, Muys, & Feyen, 2006). The most sensitive 

parameter ALPHA_BF has a default range of 0-1. The value of 0 indicates no connection 

to groundwater (Baker & Miller, 2013). ALPHA_BF, with a value of 0.90 days, indicates 

a rapid response to recharge due to the presence of shallow soils (Malago et al., 2015). 

The next sensitive parameter, GW_DELAY, with a calibrated value of 52 days, 

indicates the presence of deeper aquifer in the Chipola Basin (Liew et al., 2015). 

The sensitive parameter CH_N2, with a calibrated value of 0.09, indicates the 

presence of weeds and brush in the channel. The last sensitive parameter CH_K2, with a 

calibrated value of 79 mm/h, indicates that the bed material of the Chipola Basin is 

composed of clean sand and gravel (Arnold et al., 2013).
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4.1.2 Evaluation of Model Performance 

Model’s goodness of fit was evaluated using Nash-Sutcliffe efficiency (NSE), 

coefficient of determination (R2), and percent bias (PBIAS) during the processes of 

calibration and validation. NSE was selected as the primary objective function at the 

outlet 72 of the watershed against the USGS gauge station, while R2 and PBIAS were 

calculated as a secondary function. 

The calibration process returned an NSE value of 0.83 and an R2 value of 0.84, 

both are considered “very good” for streamflow. The model underpredicted streamflow, 

as depicted by the positive value of PBIAS (5.8). This underestimation may be explained 

due to inability of the SWAT model to capture flood peaks. However, the lower value of 

PBIAS indicates that the results of the calibration results of streamflow are “very good.” 

The values of statistical analysis produced by SUFI-2 are summarized in Table 5. The 

hydrograph produced by SUFI-2 during calibration is provided as Figure 10. The green 

region shows 95% prediction uncertainty (PPU) by the simulation. The p-factor of 0.71 

suggests that 71% of the observed streamflow data could be bracketed by uncertainties, 

and the p-factor had a value of 0.74. Both the p-factor and r-factor are considered 

acceptable. These results suggest that SUFI-2 captured observed data very well during 

the process of calibration, and that calibrated values can be used for analysis of change in 

streamflow due to land-use change scenarios. 

 



 

 

55 

 

  
  

  
  

  
  

  
  
  

  
  
F

lo
w

 m
3
/s

  

 

Months (Jan, 2015 – Dec, 2016) 

 

Figure 10: Calibration hydrograph 

The validation process yielded an NSE value of 0.76, and R2 yielded a value of 

0.80, both of which are considered “very good” for streamflow. However, the results of 

PBIAS were not consistent with the calibration results, as the negative value of PBIAS 

indicated an overestimation of streamflow. The contrast of PBIAS between calibration 

and validation can be explained in terms of short data duration. Consistency of PBIAS 

results can be achieved by using long term streamflow data. However, a p-factor value of 

0.63 and an r-factor value of 0.80 are considered adequate for the model. The low value 

of PBIAS also indicates that the results of the model are very good and can be used in the 

analysis of land-use change. 

Table 5 summarizes the results of calibration and validation. The hydrograph 

produced by SUFI-2 during the process of validation is provided as Figure 11. 
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Table 5: Calibration and Validation Results of simulated streamflow 

Method (SUFI2) p-Factor r-factor NSE R2 PBIAS 

Calibration (2015-2016) 0.71 0.74 0.83 0.84 5.8 

Validation (2017-2018) 0.63 0.80 0.76 0.80 -11.2 
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Figure 11: Validation hydrograph 

4.1.3 Analysis of Land-use Change Scenarios 

Streamflow calculations for the baseline scenario averaged 49.14 m3/s. However, 

streamflow calculated for the future scenario averaged 51.14 m3/s over four years. An 

analysis of land-use change scenarios depicted an overall average increase of 2% in the 

streamflow of the Chipola River over four years. The increase in streamflow can be 

attributed to an increase in urbanization from 6.68% to 25.82%. However, a 2% increase 

in the streamflow is not significant when compared to a total increase of 19.14% of 

urbanized area. The reason behind low streamflow increases lies in the fact that the 

Chipola Basin is heavily forested with a total forest cover of 29.45%. The forest cover is 

still 10.31% greater than the overall increased urbanized area of 19.14%  and plays a role 

in minimizing the increased runoff from the urbanized areas. 
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Table 6 shows the monthly streamflow for two land-use scenarios and attached in 

Appendix C. Graph 1 shows a comparison of streamflow data for the baseline and future 

scenarios. 

Graph1: Comparison of  streamflow of baseline scenario and future scenarios 

4.2 Evaluation of Model Error 

Although the calibrated results of the SWAT model suggested that there 

would be a 2% increase in the streamflow of the Chipola River, it was necessary to 

consider the model error. 

During the process of calibration, the model captured 71% of the observed 

data, as depicted by the p-factor (0.71) of the Nash-Sutcliffe efficiency (NSE). Model 

error (0.29), suggested that 29% of the observed streamflow data was not captured 

during the process of calibration.  

Another source of the error could be in writing the calibrated parameters back 

into the original SWAT models using the manual calibration helper in the SWAT 

model. The manual calibration helper is subject to uncertainties as it does not always 
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yield the exact results yielded by the SUFI-2. Therefore, it may be concluded that a 

2% increase in the streamflow of the Chipola River may be subject to uncertainties. 

4.3 Study Limitations 

Several limitations were associated with this study and are detailed below. 

This study required hourly-rainfall data for calculating runoff using the Green-

Ampt method; however, hourly rainfall data were limited to only one weather station 

(Marinara). A lack of  weather stations in the basin impacted the ability of the SWAT 

model to account for changing conditions and resulted in homogenous weather data 

reporting for the entire basin. Model performance could thereby be improved if hourly-

rainfall data from multiple weather stations were available. 

This study also simulated streamflow for only four years (2015-2018), as weather 

data for the year 2012 were not available. This resulted in a negative PBIAS for the 

calibration period (2015-2016) and a positive PBIAS for the validation period (2017-

2018). This contrast of PBIAS in calibration and validation could have been avoided if 

weather data for the year 2012 were available. The availability of weather data for a 

longer duration would help to calculate streamflow for a longer duration and could 

therefore provide long term analysis of change in streamflow due to land-use change. 

This study used the SWAT model to predict streamflow change over time, but the 

SWAT failed to capture the flood peaks. This failure of the SWAT model is associated 

with the fact that SWAT was not designed to capture flood peaks (Arnold et al., 1998a). 

The choice of a model capable of capturing flood peaks could further improve the results 

of this study. 

Another limitation of this study is the non-availability of stream gauge data at the 

downstream of the Chipola River. Data of the stream gauge calibrated and validated for 
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this study was located in sub-basin 72 of the Chipola Basin, suggesting that streamflow 

was calculated for only 72 of 100 sub-basins. Change in streamflow for the entire basin 

could be calculated if streamflow data were available at the downstream of the Chipola 

River. A stream gauge located at the downstream could give a more realistic calculation 

of the overall streamflow change of the Chipola River. 

Lastly, this study attempted to predict future conditions of the streamflow by 

developing a hypothetical future land-use map. More accurate predictions be developed 

by using a more sophisticated technique, such as Cellular Automata (CA)-Markov chain 

model. CA Markov chain model is capable of producing better spatio-temporal maps of 

land-use change and it has been used in numerous studies (Hamad, Balzter, & Kolo, 

2018). Parsa et al. (2016) used the CA-Markov model in the study area of Arasbaran 

biosphere reserve-Iran to create future land-use maps and reported that the model could 

be useful in policy design.
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CHAPTER 5: SUMMARY, CONCLUSION, AND RECOMMENDATIONS 

This research was performed in the study site of the Chipola River Basin using a 

semi-distributed model SWAT. This study had three objectives. The first objective was to 

quantify the potential impacts of land-use change on streamflow of the Chipola River by 

using an integrated hydrologic simulation model Soil and Water Assessment Tool 

(SWAT) in ArcGIS. 

The SWAT model was run for monthly time-steps using both baseline and future 

scenarios for four years (2015-2018).  The SWAT model did produce streamflow results 

for both scenarios; however, due to uncertainties associated with hydrologic models, the 

SWAT-simulated streamflow results could not be trusted. Therefore, it was necessary to 

calibrate and validate the results, which led to the second objective of this study. 

The second objective of this study was to calibrate and validate the streamflow 

results of the SWAT model using the Sequential Uncertainty Fitting (SUFI-2) in SWAT 

Calibration and Uncertainty Fitting (SWAT-CUP). 

SWAT streamflow results were calibrated (2015-2016) and validated (2017-2018) 

against observed streamflow data using the SUFI-2 algorithm in SWAT-CUP. 

Calibration and validation produced very good results for NSE, R2 and PBIAS. 

Calibrated streamflow averaged 49.14 m3/s and 51.14 m3/s for the baseline scenario and 

for the future scenario, respectively. Results suggested that there would be an average 

increase of 2% in the streamflow of the Chipola River for four years (2015-2018). 

However, the 2% statistic was subject to uncertainties due to an associated error of 29% 

during the calibration process, and using manual calibration helper for writing calibrated 

parameters back into original SWAT models.  Therefore, the null hypothesis, stating that 
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there would be no change in the streamflow of the Chipola River due to increased 

urbanization, was accepted. Statistical results of calibration and validation also concluded 

that the SWAT model was reasonably capable of analyzing the impacts of land-use on 

streamflow of the Chipola River and could be applied to future studies of this basin.  

Based on the results, it was also concluded that urbanization had a positive 

relationship with the streamflow of the Chipola River. Despite the increased urbanization 

in the Chipola Basin, an increase in streamflow was minimal with forest cover currently 

playing a positive role in controlling runoff from urban areas. An alternative land-use 

class assignment to future land-use map, or consideration of concentric or multi-nuclei 

expansion, may result in a significant increase in streamflow for the Chipola River. 

Developing future soil maps according to future land-use maps may also result in 

significant increases in streamflow for the Chipola River.  

The third objective of was to give recommendations based upon results, for better 

land-use and water management decisions in the future. The following are the 

recommendations based upon the results of this study: 

1) Results of this study suggest that urbanization is linked to an increase in the 

streamflow of the Chipola River; however, the increase is almost negligible. If 

land managers and planners plan for urbanization as designed in this study, 

Chipola River Basin would support urbanization effectively. 

2) Results of this study lead to the conclusion that forest cover is playing an 

important role in preventing urban runoff. Therefore, it is recommended to 

protect the forest cover when planning for urbanization. 
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3) Although increased urbanization would result in minimal impact on the 

streamflow of the Chipola River, it is still necessary to take steps avoid this 

impact. Therefore, a recommendation is to design stormwater management 

practices that could reduce runoff from urbanized areas. 

4) A final conclusion is that an alternate land-use class assignment, or alternate 

urbanization scheme, may result in a significant increase in the streamflow of 

the Chipola River. Therefore, effective land-use management and planning is 

recommended for the Chipola Basin in addition to designing storm water 

management systems and practices. 

The results of this study provide a good understanding of the impacts of land-use 

change, specifically of urbanization, on the streamflow of the Chipola River. The 

outcomes of this research can help in the development of land management practices that 

include regulatory actions, monitoring activities, and land-use management and planning 

for protecting increased streamflow. 
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APPENDICES 

Appendix A 

AL Alabama 

AAT All-At-a-Time 

ALPHA_BF Baseflow Alpha-Factor  

BF Baseflow 

BASINS Better Assessment Science Integrating Point and Non-Point 

Sources  

C˚ Celsius 

CN Curve Number 

CH_N2 main channel Manning’s “n” 

CH_K2 channel hydraulic conductivity 

DHSVM The Distributed Hydrology Soil Vegetation Model 

DEM Digital Elevation Model  

ESCO soil evaporation compensation factor 

FL Florida 

FAWN Florida Automated Weather Network 

GLUE Generalized Likelihood Uncertainty Estimation 

GW_DELAY groundwater delay  
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GW_REVAP groundwater “revap” coefficient  

GIS Geographic Information Systems 

Ha Hectares  

HRUs hydrological response units 

HUC8 Hydrologic unit code 8 

HYLUC Hydrological Land-use Change 

IHACRES Identification of unit Hydrographs And Component flows from 

Rainfall, Evaporation, and Streamflow data  

km2 square kilometers  

LULC Land-use land cover  

mm Millimeter 

m/s meter per second 

m3/s Cubic meter per second 

MJ/m2 megajoule per square meter 

MIKE-SHE European Hydrological System Model  

MCMC Markov chain Monte Carlo 

NSE Nash Sutcliffe efficiency  

NAM Nedbor-Afstromnings Model 

NLCD National Land Cover Database 

OAT one-at-a-time  

PBIAS percent bias 

PSO Particle Swarm Optimization 

ParaSol Parameter Solution 
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PRMS Precipitation Runoff Modelling System  

R2 coefficient of determination 

RHESSys Regional Hydro-Ecological Simulation System 

SUFI-2 Sequential Uncertainty Fitting-2  

SWIM Soil and Water Integrated Model 

SLURP Simple Lumped Reservoir Parametric 

SHETRAN Systeme Hydrologique Europeen Transport 

SW Stormflow 

SWAT Soil and Water Assessment Tool  

SWAT-CUP SWAT Calibration and Uncertainty Procedures 

TAC-D Tracer Aided Catchment model – Distributed 

TOPLATS TOPMODEL-Based Land surface-atmosphere Transfer Scheme  

TIGER Topologically Integrated Geographic Encoding and Referencing  

USGS NHD United States Geological Survey National Hydrography Dataset  

USEPA United States Environmental Protection Agency  

USGS NED United States Geological Survey National Elevation Dataset 

USGS United States Geological Survey  

UTM universal transverse Mercator  

USDA United States Department of Agriculture  

WASIM Water balance-Simulation Model 
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Appendix B 

Procedure for SWAT-CUP Calibration 

SUFI-2 Project setup: 

 Start 

 New 

 Next 

 Described “TxtInOut” location 

 Next 

 SWAT version described “2012” 

 Architecture Processor described “32 bit” 

 Project type described “SUFI-2” 

 Next 

 Project name and location described 

After setting up the project, following steps were followed: 

Calibration Inputs 

 Par_inf.txt: used to add parameters and define their min and max values. 

Number of parameters and no. of desired simulations was added. Such as no. of 

parameters “4”, no. of simulation “1000”. 

 “SUFI2_swEdit.def” file: Starting and ending no. of simulations were 

defined. Such as starting no. of simulation “1”, ending no. of simulation “1000”. 

 “File.Cio” file: Following changes were made in this file: 

NYBR = 4, IYR = 2013, IDAF = 1, IDAL = 366, NYSKIP = 2 

Where, 
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NYBR = Number of years simulated 

IYR = Beginning year of simulation 

IDAF = Beginning Julian day of simulation 

NYSKIP = number of years to skip output printing/summarization 

Observation 

 “Observed_rch.txt” file: Following changes were made in this file: 

number of observed variables defined = 1 

FLOW_OUT_72 was defined to calibrated sub-basin 72 

No. of data points = 24 

Following observed data was copied: 

1 FLOW_OUT_1_2015            55.98 

2 FLOW_OUT_2_2015            45.70 

3 FLOW_OUT_3_2015            41.26 

4 FLOW_OUT_4_2015            75.78 

5 FLOW_OUT_5_2015            48.70 

6 FLOW_OUT_6_2015            41.85 

7 FLOW_OUT_7_2015             29.39 

8 FLOW_OUT_8_2015             20.29 

9 FLOW_OUT_9_2015             17.29 

10 FLOW_OUT_10_2015 30.89 

11 FLOW_OUT_11_2015 70.28 

12 FLOW_OUT_12_2015 58.90 

13 FLOW_OUT_1_2016             103.02 

14 FLOW_OUT_2_2016             90.30 

15 FLOW_OUT_3_2016             74.59 

16 FLOW_OUT_4_2016             129.24 

17 FLOW_OUT_5_2016             46.89 

18 FLOW_OUT_6_2016             36.22 

19 FLOW_OUT_7_2016             31.49 

20 FLOW_OUT_8_2016             33.81 

21 FLOW_OUT_9_2016   20.27 

22 FLOW_OUT_10_2016 15.53 

23 FLOW_OUT_11_2016 13.91 

24 FLOW_OUT_12_2016 59.52 
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Extraction 

 Var_file_rch.txt 

One variable was defined “FLOW_OUT_72.txt” 

 SUFI2_extract_rch.def file: Following changes were made in this file 

 number of variables to get = 1 

 total number of reaches (subbasins) in the project = 100 

 number of reaches (subbasins) to get for the first variable = 1 

 reach (subbasin) numbers for the first variable = 72 

 beginning year of simulation not including the warm up period = 2015 

 end year of simulation = 2016 

 time step (1=daily, 2=monthly, 3=yearly) = 2 

Objective Function 

 Observed.txt file 

 number of observed variables = 1 

 Objective function type = 5 (for NSE) 

 this is the name of the variable and the subbasin number to be included in 

the objective function = FLOW_OUT_72 

 Number of data points = 24 

 Observed data was copied again in this file. 

 Var_file_name.txt 

 FLOW_OUT_72.txt 

 “Save All” 

 “Calibrate” 
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 “Execute all” 

 Pressed “Y”, and enter 

 SUFI2_pre.bat finished quickly 

 Process finished, close the window? Pressed ok 

 Start the execution of SUFI2_Run.Bat. Pressed ok. 

 After the process is finished. Close the window, pressed ok. 

 Start the execution of SUFI2_post.Bat. Pressed ok. 

 SUFI2_post.bat finished quickly 

 Process finished, close the window? Pressed ok 

 Do you want to save this iteration? Pressed yes and named the iteration with 

the desired name. 

 Process of calibration was complete. Read outputs from Summary_stat.txt 

file. 
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Procedure for SWAT-CUP Validation 

Procedure for validation is similar to calibration. Except following changes were 

made in the following files: 

 File.cio 

NBYR = 6 

IDAL = 365 

NYSKIP = 4 

 “Observed_rch.txt” file:  

Following observed data for years 2017-2018 was added 

1 FLOW_OUT_1_2017             100.58 

2 FLOW_OUT_2_2017             63.40 

3 FLOW_OUT_3_2017             43.04 

4 FLOW_OUT_4_2017             35.59 

5 FLOW_OUT_5_2017             22.81 

6 FLOW_OUT_6_2017             43.21 

7 FLOW_OUT_7_2017             36.67 

8 FLOW_OUT_8_2017             25.96 

9 FLOW_OUT_9_2017             32.34 

10 FLOW_OUT_10_2017 19.58 

11 FLOW_OUT_11_2017 16.41 

12 FLOW_OUT_12_2017 17.38 

13 FLOW_OUT_1_2018             18.17 

14 FLOW_OUT_2_2018             71.16 

15 FLOW_OUT_3_2018             50.69 

16 FLOW_OUT_4_2018             44.26 

17 FLOW_OUT_5_2018             31.38 

18 FLOW_OUT_6_2018    46.41 

19 FLOW_OUT_7_2018   30.55 

20 FLOW_OUT_8_2018             51.71 

21 FLOW_OUT_9_2018             32.31 

22 FLOW_OUT_10_2018 68.92 

23 FLOW_OUT_11_2018 86.79 

24 FLOW_OUT_12_2018 138.58 
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 SUFI2_extract_rch.def file 

Beginning year of simulation not including the warm up period = 2017 

End year of simulation = 2018 

 Observed.txt file 

 Data for years 2017-2018 was added 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

80 

 

Appendix C 

Date 

Observed 

streamflow (m3/s) 

Baseline Scenario 

Streamflow (m3/s) 

Future Scenario 

streamflow (m3/s) 

Jan-15 55.98 68.38 66.23 

Feb-15 45.70 59.08 59.2 

Mar-15 41.26 41.55 41.83 

Apr-15 75.78 62.25 74.05 

May-15 48.70 58.71 58.9 

Jun-15 41.85 36.73 37.88 

Jul-15 29.39 28.42 33.93 

Aug-15 20.29 18.36 20.02 

Sep-15 17.29 12.48 13.27 

Oct-15 30.89 14.08 13.44 

Nov-15 70.28 47.49 49.42 

Dec-15 58.90 54.09 58.15 

Jan-16 103.02 92.59 91.52 

Feb-16 90.30 79.3 81.24 

Mar-16 74.59 64.05 67.55 

Apr-16 129.24 93.73 95.49 

May-16 46.89 52.3 52.37 

Jun-16 36.22 32.86 35.21 

Jul-16 31.49 19.61 21.25 

Aug-16 33.81 22.29 34.16 

Sep-16 20.27 17.76 22.5 

Oct-16 15.53 18.68 15.42 

Nov-16 13.91 11.53 8.141 

Dec-16 59.52 71.13 81.24 

Jan-17 100.58 97.5 99.04 

Feb-17 63.40 78.38 75.62 

Mar-17 43.04 51.34 49.69 

Apr-17 35.59 37.31 38.43 

May-17 22.81 24.33 26.69 

Jun-17 43.21 39.57 49.76 

Jul-17 36.67 68.25 68.67 

Aug-17 25.96 51.3 48.52 

Sep-17 32.34 49.83 48.14 

Oct-17 19.58 33.78 31.67 

Nov-17 16.41 19.95 18.51 

Dec-17 17.38 13.72 14.85 

Jan-18 18.17 11.39 16.76 

Feb-18 71.16 91.16 97.85 
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Mar-18 50.69 74.64 76.69 

Apr-18 44.26 60.85 63.42 

May-18 31.38 43.38 47.05 

Jun-18 46.41 47.19 52.18 

Jul-18 30.55 45.62 49.33 

Aug-18 51.71 59.93 57.32 

Sep-18 32.31 39.96 37.86 

Oct-18 68.92 50.81 53.16 

Nov-18 86.79 72.05 74.66 

Dec-18 138.58 119 126.5 

Average 48.31 49.14 51.14 

 


