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Abstract Abstract 
Self-assessment measures of competency are blends of an authentic self-assessment signal that 
researchers seek to measure and random disorder or "noise" that accompanies that signal. In this study, 
we use random number simulations to explore how random noise affects critical aspects of self-
assessment investigations: reliability, correlation, critical sample size, and the graphical representations 
of self-assessment data. We show that graphical conventions common in the self-assessment literature 
introduce artifacts that invite misinterpretation. Troublesome conventions include: (y minus x) vs. (x) 
scatterplots; (y minus x) vs. (x) column graphs aggregated as quantiles; line charts that display data 
aggregated as quantiles; and some histograms. Graphical conventions that generate minimal artifacts 
include scatterplots with a best-fit line that depict (y) vs. (x) measures (self-assessed competence vs. 
measured competence) plotted by individual participant scores, and (y) vs. (x) scatterplots of collective 
average measures of all participants plotted item-by-item. This last graphic convention attenuates noise 
and improves the definition of the signal. To provide relevant comparisons across varied graphical 
conventions, we use a single dataset derived from paired measures of 1154 participants' self-assessed 
competence and demonstrated competence in science literacy. Our results show that different numerical 
approaches employed in investigating and describing self-assessment accuracy are not equally valid. By 
modeling this dataset with random numbers, we show how recognizing the varied expressions of 
randomness in self-assessment data can improve the validity of numeracy-based descriptions of self-
assessment. 
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self-assessment, Dunning-Kruger Effect, knowledge surveys, reliability, graphs, numeracy, random number 
simulation, noise, signal 
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Introduction 

Self-assessment is a personal judgment of one's capacity to perform competently 

with present skills and knowledge. How accurately do peoples' self-assessments 

of their competency predict their demonstrated competency when they engage a 

challenge? Answering this question is the essence of studies that seek to measure 

self-assessment skill. 

Self-assessment is a valuable metacognitive skill that improves through 

instruction (Kruger and Dunning 1999; Caputo and Dunning 2005). Bell and 

Volckmann (2011) suggested that early identification of students with poor self-

assessment skills could allow timely training in self-assessment that might help 

these students to have greater success in college. Because self-assessment appears 

to be valuable and teachable, instructors from varied disciplines increasingly seek 

to measure their students' ability to accurately self-assess their competencies. 

Self-assessment differs from self-efficacy (Bandura 1997), which refers to 

metacognitive confidence in one's abilities to acquire the capacity for competence 

through future preparation. Good self-assessment skills help to improve learning 

by building self-efficacy and “contribute to higher student achievement and 

improved behavior” (Ross 2006). 

Our incentive for this paper began in 2011 while studying how students' self-

assessments of perceived science literacy compared with their performances on a 

test of science literacy. We adopted a graphical convention used by Bell and 

Volckmann (2011). Their graphs displayed patterns resulting from the measures 

of self-assessed competencies of chemistry students and their actual proficiencies 

on chemistry tests. The patterns revealed the least-competent students as those 

most overconfident about their competence. 

As our data grew, we watched our graphical patterns generated from 

measures of science literacy becoming identical with those of Bell and 

Volckmann. We began to suspect that the graphical convention we employed in 

common with Bell and Volckmann might account for this convergence, and we 

confirmed our suspicion by graphing nonsense data generated by random 

numbers. In that graphical convention, random numbers generated patterns very 

similar to those produced by our actual data. We subsequently used random 

number simulations of real data to examine other graphical conventions employed 

in the literature of self-assessment. 

At first, measuring a person's skill in self-assessment of competency appears 

simple. It involves comparing a direct measure of confidence to perform taken 

through one instrument with a direct measure of demonstrated competence taken 

through another instrument. For people skillful in self-assessment, the scores on 

both self-assessment and performance measures should be about equal. 
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Departures from perfect self-assessment register by degrees in overconfidence or 

underconfidence. 

In practice, measuring self-assessment accuracy is not simple. Obtaining 

meaningful results that have quantitative significance requires attention to the 

construction of the measuring instruments. The paired instruments must address a 

common construct; they must be capable of acquiring reliable data, and the 

investigators must acquire enough data before they can produce a contribution 

characterized by reproducible results. Unfortunately, investigators can still graph 

the data acquired while ignoring these fundamentals, and they can make 

convincing interpretations of the resulting patterns. 

Several graphical conventions unique to the self-assessment literature 

generate artifact patterns that are easy to mistake as offering meaningful 

portrayals of self-assessment. 

These difficulties contribute to the current situation when “…it remains 

unclear whether people generally perceive their skills accurately or inaccurately” 

(Zell and Krizan 2014, p. 111). The purpose of our paper is to increase awareness 

of these aspects when interpreting existing self-assessment literature and when 

doing the research to produce new knowledge about self-assessment. 

In investigating the relationship between self-assessed competence and actual 

competence, the role of mathematics lies in describing the relationships; the role 

of the behavioral sciences lies in explaining them. The numerical description is 

indispensable because it assures that a credible signal exists that can be explained. 

In this paper, we focus solely on the descriptive role and employ our data to 

advance that understanding. We reserve contributing to explanations about the 

nature of self-assessment for a separate paper now in preparation. 

To address the descriptive role, we find it useful to view human self-

assessment measures as a blend of two components. The first is a meaningful self-

assessment signal that investigators seek to detect and measure. The second is 

random noise that accompanies the signal. This simple distinction is between the 

order that is characteristic of a relevant signal and the disorder characteristic of 

irrelevant random noise. To study the effects of random noise on self-assessment 

measures, we simulate random noise with random numbers. In this paper, we do 

not discuss noise from a behavioral science perspective. For such a discussion, see 

Mueller and Weidemann (2008). 

We advanced our understanding of self-assessment measures by following a 

practice recommended by teachers of quantitative literacy: use authentic data, and 

employ the power of spreadsheets to model the problem (Gaze 2014). 

Spreadsheets are especially helpful to answer “What if…?” questions through 

simulations. The awareness gained by doing so aided our understanding of 

published literature and planning further study of our data. 
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Competing Positions on Self-Assessment 

Disparate results from self-assessment studies give rise to competing positions on 

self-assessment. One position holds that self-assessments of learning and 

competency offer little more than the random noise that arises from responses that 

are mere guesses about competency. As such, students' self-ratings of their 

understanding should contribute little value to assessments of their actual 

knowledge, skills or abilities to think. This position emerges whenever 

researchers consider relationships measured between self-assessed competence 

and actual competence as insignificant (Bowers et al. 2005; Porter 2012, 2013). 

Contradicting this position are two positions that consider self-assessed 

competence as meaningful and measurable. One of these positions holds that 

people tend toward overconfidence in their abilities, with many being “unskilled 

and unaware of it.” This view arises from findings that identify the least-

proficient performers as those with the most over-inflated self-assessments 

(Kruger and Dunning 1999; Ehrlinger et al. 2008; Bell and Volckmann 2011). 

The other position holds that self-assessment ratings, overall, reflect the 

competence that people usually can demonstrate. This position arises when 

researchers consider relationships between measures of self-assessed competence 

and actual competence as significant (Nuhfer and Knipp 2006; Favazzo et al. 

2014). 

Methods 

We employ a single dataset1 derived from paired measures of self-assessed 

competence and demonstrated competence throughout this study. Employing 

common data facilitates meaningful comparisons between disparate graphical 

conventions. 

We compare each graph of authentic data to an equivalent graph constructed 

from random numbers and then explain the value derived from doing the 

simulation. By modeling pure noise with random numbers, we show how noise 

sometimes mimics the signal that investigators seek to measure, how it affects 

portrayals of self-assessment data, and how it sometimes confounds efforts to 

understand self-assessment. 

Instruments 

The Science Literacy Concept Inventory (from here on called the SLCI) is an 

instrument that tests proficiency in understanding science's way of knowing. Our 

direct measures of competency come from 1154 participants (undergraduates, 

                                                 
1 Included in the Excel workbook of Appendix A under Additional Files for this article. 
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graduate students, and professors) who completed the SLCI. The participants 

represent selective and open-admission institutions and seem representative of the 

American higher education community. 

The SLCI offers 25 multiple-choice items with four choices consisting of 

three distracters and only one correct answer. The 25 items map to 12 concepts 

(Nuhfer et al. 2010), which are relevant to understanding science's way of 

knowing the physical world. The SLCI's length is similar to that exhibited by the 

20-item Quantitative Literacy Reasoning Assessment (QLRA, Gaze et al. 2014) 

and to that of the well-established 30-item Force Concept Inventory of physics 

(Lasry et al. 2011). Based upon testing of over 18,000 participants, the SLCI 

exhibits content, construct, criterion, concurrent, and discriminant validity. We 

provide evidence for this validity in another paper now under review. 

A 25-item Knowledge Survey of the Science Literacy Concept Inventory 

(from now on called the KSSLCI) provides the quantitative measures of 1154 

participants' self-assessments of competencies. Ross (2006) noted that self-

assessment measures usually have high reliability, and knowledge surveys have 

particularly high reliability (Nuhfer and Knipp 2006). Well-constructed 

knowledge survey items express challenges that are specific and directly 

assessable through observed performance. The KSSLCI yielded self-assessed 

competency measures with Cronbach Coefficient Alpha Reliability = .94 and 

Spearman-Brown prophecy = .93. 

Knowledge surveys (Nuhfer and Knipp 2003; see tutorials and downloadable 

examples2) query individuals to self-assess by rating their present ability to meet 

the challenge expressed in each item by responses on a three-point multiple-

choice scale: 

A. I can fully address this item now for graded test purposes. 

B. I have partial knowledge that permits me to address at least 50% of this item. 

C. I am not yet able to address this item adequately for graded test purposes. 

The choices A through C register in data as numbers 2, 1, and 0 respectively. 

Simple three-item choice formats appear psychometrically sound (Landrum et al.  

1993; Rodriguez 2005; Baghaei and Amrahi 2011) and expedite quick, clear 

distinctions. 

In this study, we expressed every participant's 25-item KSSLCI rating in 

percent as derived from (sum of item scores*2)/100. This expression allows 

comparisons with the measured competency scores expressed as percent correct 

on the 25-item SLCI. 

Our participants completed both instruments online in one sitting, and our 

1154 data pairs come from completed instruments with no missing responses. The 

                                                 
2 http://www.merlot.org/merlot/viewMaterial.htm?id= 437918 (accessed Dec 2, 2015) 
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participants were able to complete the measures at their pace so that participants 

could be reflective and engage with the exercise under relaxed everyday 

conditions rather than in a timed environment. 

In our design for this study, we maximized alignment of our two instruments 

by having the KSSLCI and the SLCI derive their measures from the identically 

worded 25 items. Challenges articulated differently often communicate different 

meanings and can trigger different levels of comprehension (Gendall and Hoek 

1990). In such cases, participants studied might have a significant self-assessment 

capability, but poorly aligned instruments are insufficient to capture that trait. 

Reliability, Random Noise, and Random Numbers 

Data acquired that are unreliable or obtained from misaligned instruments are 

likely to be mostly noise. Before we could begin graphing or further studying 

paired measures, we needed to confirm that both of our instruments collected data 

that revealed a signal and thus were distinct from pure noise. If such were not the 

case, our study could not have progressed further. In studies of self-assessment, 

this is particularly necessary because a position already exists that argues that 

human self-assessments are mostly random noise. 

 … if the critics are correct, and students lack the cognitive ability to accurately answer 

most survey questions, then the critics are, in essence, arguing that students must be 

generating random self-assessment responses to survey questions (McCormick and 

McClenney 20123) (Porter, 2013, p. 202). 

Theoretical models of cognition, and empirical evidence to date demonstrate that self-

reported learning gains are mostly noise and cannot be used to assess student learning 

(Porter, 2012, p. 6). 

Quantifying reliability offers a way to learn when instruments yield data that 

are largely random noise. The Spearman-Brown definition of reliability (Jacobs 

and Chase 1992), 𝑅 =  2𝑟/(1 + 𝑟), offers a clear relationship between reliability 

(𝑅) of an instrument to discriminate between different individuals' abilities and 

the internal coefficient of correlation (𝑟), which is a measure of the instrument's 

ability to generate data that can correlate with itself. A rule of thumb is to accept 

only data with a minimum reliability (𝑅) of .7 for research purposes (DeVellis 

2003), which implies an internal correlation of about 𝑟 =  .54. 

Figure 1A displays a split-halves approach to calculating a Spearman-Brown 

Reliability (𝑅). One derives 𝑟 as the linear correlation coefficient obtained by 

correlating each of our 1154 participants' scores generated from the odd-

numbered items with their scores generated from the even-numbered items on the 

                                                 
3 Although Porter (2013) cited McCormick and McClenney (2012) in his quotation, their 2012 text 

discloses reservations about self-assessments being only random guesses. 
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25-item KSSLCI. The internal correlation's value of 𝑟 =  .876 yielded by 

participants' self-assessments produced a Spearman-Brown Reliability (𝑅) of .93. 

What pattern would a scatterplot produce if the data were simply random 

noise? To address this question, we replaced our 1154 measures of self-assessed 

competency (KSSLCI) with random numbers. To produce our random number 

simulation, we used the RANDBETWEEN (0,2) command of EXCEL in each of 

the 25 cells for recording a random 3-item self-rating on the 25-item knowledge 

survey. We then replaced the actual self-assessment ratings for each of our 1154 

respondents with the ratings calculated from these random numbers. Figure 1B is 

an expression of noise produced from paired data that consist of the means (even 

and odd items on the simulated 25-item instrument) of two sets of random 

numbers bounded by 0 and 100. Plotting means of each pair generates a 

somewhat circular pattern clustered around the theoretical mean point of (50, 50). 

The pattern reveals no trend that differentiates individuals by high or low self-

assessment confidence. In contrast, Figure 1A reveals an ordered trend and 

confirms that the self-assessment signal we sought to measure is present. 

Some noise is probably present in all measures of human behavior. An 

expression of the perfect self-assessment signal in Figure 1A would have been a 

correlation of 𝑟 =  1, with all data points in Figure 1A plotting directly on the 

regression line. We view the difference between this theoretically perfect 

expression of 𝑟 =  1.0 and our actual measured self-assessments of 𝑟 =  .876 as 

arising largely from some noise present in our actual data. 

 

 
Figure 1. Comparison of split-halves (𝑦) vs. (𝑥) scatterplot patterns yielded from correlating 1154 

participants' KSSLCI ratings calculated on even and odd items (A) with these same participants' 
ratings replaced with random numbers 0, 1 or 2 (B). 

Preparing a random number model of a dataset, displaying randomness 

visually, and comparing the graphical patterns as done in Figure 1 may at first 

appear trivial. Indeed, to most readers, the results shown are probably intuitively 

obvious in the familiar convention of the (𝑦) versus (𝑥) scatterplot used in that 

figure. However, such results are not intuitively obvious in other graphical 

conventions that we address later. The value of comparing patterns of authentic 
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data with those yielded by simulation of the data with random numbers lies in 

helping to distinguish the patterns of random noise from the patterns of a strong 

signal in any graphical convention. 

In a parallel approach, we used our dataset to measure the SLCI's reliability 

too, through several conventions. All proved numerically similar: Cronbach 

Coefficient Alpha = .85, Kuder-Richardson KR20 = .85, Kuder-Richardson KR21 

= .84, and Spearman-Brown prophecy = .87. Thus, we confirmed that both of our 

instruments collect reliable data that are measurably distinct from random noise. 

Studies performed with good instruments may still fail to achieve reliability 

if the database of participants is too small to allow a signal to emerge from the 

noise. Later in this paper, we show how random number simulations can help 

reveal the size of the database needed for reproducibility. 

Reliability rests on the data furnished by the instrument, not the instrument 

itself. Therefore, it is not safe to employ a standardized instrument whose known 

reliability is derived from a much larger database than the dataset under 

investigation. Just as reliability must be established from the dataset under 

consideration, a random number simulation of actual data must employ the same 

number of participants as exist in the actual dataset. 

At the end of data acquisition stage, we assigned random numbers to the 

1154 lines that contained both the SLCI and their equivalent KSSLCI data. We 

then sorted the data by random number assignment and ran reliability estimates on 

successively smaller splits of our dataset. We could then see the reliability that 

both instruments yielded from smaller subsets. This result confirmed that our 

dataset of 1154 participants was several times as large as that required for 

establishing reproducible results. 

Before we could use our data to describe the relationships between paired 

measures, we needed to confirm that our instruments yielded reliable data, were 

well aligned, that the data we collected differed substantially from random noise, 

and that our dataset was sufficiently large. Having done so, we next use the data 

to explore the issues that occur when investigating relationships between paired 

measures of self-assessed competency (KSSLCI) and actual competency (SLCI). 

Results 

Simple Scatterplots and Linear Correlation 

Calculating a linear correlation coefficient between individuals' self-assessed 

ratings of competency and scores generated on a test of competency is a prevalent 

approach to determining a meaningful relationship between the two (Dunning and 

Helzer 2014). The most common graphical convention for expressing results is a 

simple (𝑦) vs. (𝑥) scatterplot with a best-fit line (Fig. 2). In this convention, 
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patterns depicting the order of the self-assessment signal (Fig. 2A) are distinct 

from the disorder of random noise (Fig. 2B). 

Reliability is fundamental to understanding paired correlations. When 

researchers publish correlations produced by two sets of measures of 

undocumented reliability (Bowers et al. 2005), readers cannot evaluate the results 

in the absence of knowing what was correlated. 

 Cashin (1988, p. 2) provided brief but valuable guidelines regarding the 

usefulness of correlations expected from studies that utilize the instruments of the 

social sciences such as tests and surveys: 

Correlations between .20 and .49 are practically useful. Correlations between .50 and .70 

are very useful but they are rare when studying complex phenomenon. 

Considering data as mixtures of signal and noise clarifies why higher 

correlations are rare in the social sciences. Measures captured by a test or a survey 

consist of a mix of signal and noise, so data accumulated by a single test or survey 

instrument at best achieves an imperfect correlation with itself. The degree to 

which data yielded by any instrument can correlate with itself limits the degree to 

which it can meaningfully correlate with data yielded by another instrument. A 

correlation coefficient derived from pairing measures from two imperfect 

instruments should thus be even lower than the internal correlation of the least 

reliable of the paired measures. 

The Spearman-Brown reliabilities of the SLCI and the KSSLCI, yield 

respective internal correlations of each of 𝑟 =  .73 and .87. The internal 

correlation of our least-reliable instrument is 𝑟 =  .73 from the SLCI. The actual 

correlation coefficient between the paired SLCI scores and KSSLCI ratings for 

our example is 𝑟 =  .60 with highly significant 𝑝 < .0001 (Fig. 2A). In contrast, 

a random noise simulation of our dataset (Fig. 2B) yields 𝑟 =  .02 with 

insignificant 𝑝 < .5053. 

 
Figure 2. Scatterplots (𝑦 vs. 𝑥) between actual self-assessment measures (A) and simulated self-

assessment measures with random numbers (B) for 1154 participants. SLCI scores measure actual 
competence. KSSLCI ratings measure self-assessed competence. 
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The pattern in Figure 2A reveals that people who self-assessed on the 

KSSLCI that they would do poorly on the SLCI did tend to score lower, and those 

who self-assessed that they would do well, as a whole, scored higher. To be sure, 

this general trend had many exceptions. The 𝑟 of .60 reveals that the relationship 

between self-assessed competency and demonstrated competency does not permit 

prediction of one from the other at the level of individual participants. Of all of 

the graphical depictions of self-assessments, the scatterplot in Figure 2B 

expresses the pattern that most people intuitively recognize as a display of 

randomness with no significant trend. 

Global Items Contrasted with Knowledge Surveys 

Global items are single queries written to elicit self-assessments of general 

competence in a broad area such as humor, science, logical thinking, or overall 

performance on a long test. In our measures of self-assessment, we asked 

participants to self-assess competency through three global items and a 

knowledge survey consisting of 25 specific measures that map into a broader 

common area (Table 1). Our first global question employed a description of the 

SLCI (Table 1). When participants self-assessed their understanding of science 

literacy in response to that query, the responses produced a correlation of 𝑟 =
 .29 between the participants' self-assessed competencies and their actual SLCI 

performance scores. While positive and significant at the 99% confidence level, 

taking the 25-item knowledge survey (KSSLCI) immediately after answering that 

global query seemed to clarify to participants the specifics of the challenges that a 

science-literate person should be able to meet. The correlation between the 

KSSLCI and the SLCI (𝑟 =  .60) was more than double that generated by 

correlating the first global item with the SLCI. 

Table 1.  

Correlations between the Science Literacy Concept Inventory (SLCI) and Four Self-Assessments.  

Self-Assessments in % 

Correlation 

with SLCI 

scores in % 

1. "A multiple choice test has been designed to measure how well citizens understand the thinking 
process that scientists employ to understand the physical world. The test is not timed and can be done 

online in any setting. The test does not depend upon factual recall of knowledge. Any factual 

information needed or meanings of any technical terms used are provided within the test itself. Based 
on your feelings of self-assessment at this time, what is the score in percent (Write as % an estimate 

between 0% and 100%) that you believe that you would obtain if you took such a test?"  

𝑟 =  .29 

2. Knowledge Survey (KSSLCI): cumulative rating in % derived from all 25 items in total 𝑟 =  .60 

3. "Based only on your gut feelings established after taking this knowledge survey, what score in 

percent (between 0% and 100%) do you think you would obtain if you actually had to answer the 
twenty-five questions?" 

𝑟 =  .51 

4. "Now that you have completed taking the Inventory, what score in percent (between 0% and 100%) 

do you think you actually obtained?" 𝑟 =  .59 ∗ 

Items 1, 3 and 4 are general global queries. Participants completed these in the numerical sequence provided.  

*𝑁 =  1154 except for Item #4 that was added later in this study where 𝑁 =  662. 
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Thereafter, the participants appeared to retain the understanding established 

through taking the KSSLCI in the two subsequent global assessments (Table 1). 

No teaching occurred to produce this increased understanding. 

Most published studies that we cite in this paper employed global items to 

measure self-assessment accuracy. Table 1 shows that numerical results can differ 

depending on whether people self-assess their competence through global items or 

instruments like the SLCI and KSSLCI. Our self-assessment measures employed 

in the graphical representations in this paper derive only from the paired measures 

of the SLCI and KSSLCI (Item #2 in Table 1). In describing self-assessment 

accuracy, the graphical relationships remain the same regardless of the 

instruments used to generate the paired measures. Considering both of these self-

assessments as equivalent may be problematic for explaining self-assessment 

accuracy. Such explanations are not addressed in this paper. 

Computing the linear correlation coefficient between self-assessed 

competency and demonstrated competency is likely to be a fruitful effort when 

done with a sufficiently large and reliable database. The scatterplot with a best-fit 

line is informative, especially when we can view the patterns yielded by actual 

data next to patterns yielded by random number simulations of those same data. 

However, improved understanding of self-assessment results from going beyond 

calculating a correlation coefficient (Dunning and Helzer, 2014). 

Kruger-Dunning Graphical Convention 

Online searches for “Dunning-Kruger Effect” reveal a popular belief that the 

general populace is “unskilled and unaware of it,” with a significant portion of the 

populace inclined to make self-assessments that grossly inflate their actual 

abilities. This belief originated from an influential paper (Kruger and Dunning 

1999) that employed global queries and provided results in a graphical convention 

typified by Figure 3. It displays the worst-performing participants as grossly 

overestimating their ability to perform and the best-performing participants as 

having a tendency toward accurate self-assessment or toward underestimating 

their ability to perform by small amounts. 

In this convention, the self-assessed competency ratings and actual 

competency scores are tabulated in two columns of a spreadsheet, followed by the 

sorting of both columns together in the ascending order of actual competency. 

This sorting is necessary for tabulating the same participants' self-assessments and 

performance measures as thirds (Bell and Volckmann 2011) or quartiles (Kruger 

and Dunning 1999; Kennedy et al. 2002; Ehrlinger et al. 2008; Pazicni and Bauer, 

2013). The computational algorithm we used to construct our Kruger-Dunning 

graphs is as follows: 
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1. Use participants' responses to calculate each participant's raw test score and self-

assessment score. Place into spreadsheet respectively as columns 1 and 2. 

2. Convert participants' test scores and self-assessments into percentiles and place into 

columns 3 and 4. 

3. Sort columns 1 and 2 together by ascending participants' competency scores. Later, do the 

same with columns 3 and 4. 

4. Define the boundary scores of four quartiles in the test as raw scores. Later, do the same 

with the data expressed in percentiles. Note that different software packages that convert 

raw scores into percentiles or that define the quartile boundaries use different conventions 

that may produce slightly different results (Hyndman and Yanan 1996). 

5. Compute the average ratings for self-assessments as percentiles by quartile; plot these 

points, and connect these points by lines as shown in Figures 3, 4 and 5. 

Published research that employed this graphical convention showed results 

that almost invariably supported those of Kruger and Dunning (1999). They 

concluded that the poorest performers are those who greatly overestimate their 

abilities, and the best performers are those who tend to underestimate theirs 

slightly (Fig. 3). 

 

 
Figure 3. Kruger-Dunning convention of line chart of data aggregated by 

quartiles showing self-assessed competency to recognize humor as compared 

to actual test performance of competency in 60 participants (adapted with 

permission of American Psychological Association from Kruger and Dunning, 

1999, Fig 1, p. 1124). The "Actual Test Score" is equivalent to our SLCI 
scores; the "Perceived Ability" is equivalent to our KSSLCI ratings. 
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Figure 4 employs the convention of Figure 3 to provide a synopsis of the full 

scatterplot (Fig. 2A). Whereas Figure 3 portrays a case in which overestimation 

greatly exceeds underestimation of abilities, Figure 4 shows only a modest 

difference between overestimation and underestimation. 

 
Figure 4. Line chart generated by graphing 1154 paired SLCI scores and 

KSSLCI ratings (perceived ability) through the Kruger-Dunning convention. 

Pairs expressed in percentiles are sorted by SLCI scores followed by 

calculating averages of SLCI scores and KSSLCI ratings within each quartile. 

Some investigators publish similar graphs but employ raw data as percentages 
(see Ehrlinger et al. 2008). 

We can use random numbers to understand better this convention by 

knowing the patterns that our data would produce if they consisted of a perfect 

signal devoid of noise (Fig. 5A) or if they were only pure noise (Fig. 5B). 

Consider the common case in which some people overestimate their abilities, 

some underestimate, and some estimate fairly accurately. After sorting the paired 

measures by the performance measure, the average of the top quartile of 

performance scores will always exceed the average of the accompanying self-

assessments of the members of that quartile. Likewise, the average of the bottom 

quartile of performance scores will always be less than the average of the 

accompanying self-assessments of the members of the bottom quartile. 

In the depiction of pure signal devoid of noise, both self-assessed 

competence and actual competence are identical. The self-assessed competence 

line coincides with the line that portrays the actual competency measure (Fig. 5, 

“SLCI Score”). In both measures, connecting the means of each quartile produces 

a line that slopes positively at about 45° (Fig. 5B, “KSSLCI Rating”). 
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In graphing random noise, the plot of self-assessed competence produces a 

nearly horizontal line that lies along the common mean of the 50th percentile (Fig. 

5B). Interestingly, Figures 5B and 2B represent the same random number data. 

 

 
Figure 5. Kruger-Dunning type line charts of simulated data for 1154 data points (A) shows a 

pure self-assessment signal that results when the self-assessment KSSLCI ratings are the same as 

the actual SLCI performance scores. B shows the pattern of pure random noise generated by 
graphing random number pairs bounded by 0 and 100. 

Actual self-assessment measures are blends of signal and noise, so 

simulations like those in Figure 5A and 5B are useful for detecting the signal-to-

noise ratio in actual human self-assessment measures. We can see that the self-

assessment “KSSLCI Rating” line in Figure 4 derived from our actual data is 

steeply inclined and seems rotated just a few degrees clockwise from its position 

in the simulated perfect self-assessment (Fig. 5A). Figure 4 expresses a high 

signal-to-noise ratio with a closer pattern semblance to Figure 5A than to Figure 

5B. 

Figure 5 reveals a key for detecting the degree of relative influence of noise 

versus signal in this graphical convention. In random number datasets of 

sufficient size, the means of the random self-assessments (Fig. 5B, “KSSLCI 

Ratings”) for every quartile will be about equal and close to 50. Connecting these 

means produces a nearly horizontal line along the 50th percentile. The more that 

this self-assessed competence line displays horizontality, the more likely that the 

data producing the line is random noise. The expressed overconfidence by the 

least competent (Bottom Quartile) and underconfidence by the most competent 

(Top Quartile) are both large in the random number simulation (Fig. 5B), and the 

degree of inaccuracy is about the same for both. 

The Kruger-Dunning convention offers a convenient way to use random 

number simulation to discover whether our dataset is sufficiently large to yield 
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reproducible results. Such simulations require using the same number of pairs of 

random numbers in the simulation as exists in the dataset. For an example, we 

will use 60, to simulate the dataset size that produced Figure 3. The theoretical 

mean of an unsorted set of random numbers bounded by 0 and 100 lies at the 50th 

percentile. Our dataset apportions 14 participants into each performance quartile. 

If this is sufficient, the mean of each quartile should be near the 50th percentile 

(dashed line, Figs. 6A, 6B). We can run several simulations with these random 

number data to see the reproducibility obtained from a dataset of this size and 

with the given bounds. 

Five replications (Fig. 6A) indicate that when sorted by the data column 

containing the measures of actual competency, the lines that portray actual 

competency (red lines in Figs. 6A, 6B) in all five simulations are so consistent 

that their line plots are indistinguishable from one another. However, each 

replication produces notably different results from the accompanying measures of 

self-assessed competencies. 

The differences are large enough to show that another study with a similar 

number of participants may not reproduce the initial results. Figure 6 shows the 

degree to which increasing our study populationfrom 60 to 400 will improve 

reproducibility by allowing the mean of each quartile to represent more accurately 

the theoretical true mean. 

 

 
Figure 6. Kruger-Dunning type graphs of random number simulations of two self-assessment 

studies of varied sizes showing five replications of each study. A simulates a study with 60 

participants. B shows the effect of raising the study population to 400 participants. In B, the 

quartile means in every replication cluster more tightly along the true mean at the 50th percentile 
(dashed). 

The Kruger-Dunning convention can produce useful and informative graphs 

when sufficient and reliable data exist, but the convention carries two hazards. 

One is that a database too small to generate reproducible results will yield patterns 

that seem persuasive and meaningful to interpret. The second is that random noise 
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produces patterns that appear ordered and invite interpretation. Only some X-

shaped patterns displayed in this convention present a meaningful self-assessment 

signal. Investigators who model their data with random numbers should achieve 

the understanding needed to avoid both hazards. 

Bell-Volckmann and Pazicni-Bauer Graphical Conventions 

Figures 7 and 8 employ a (𝑦 − 𝑥) versus (𝑥) convention that graphs the difference 

between self-assessment ratings and performance scores on the ordinate and the 

actual performance scores on the abscissa (Bell and Volckmann 2011; Pazicni and 

Bauer 2013). We used the following computational algorithm to present our data 

through this graphical convention: 

1. Use participants' responses to calculate each participant's competency score and self-

assessment ratings. Place into spreadsheet columns 1 and 2. 

2. Calculate the difference between each participant's self-assessment score and test of 

competency score. Place into spreadsheet column 3. 

3. Sort the three columns in ascending order of participants' competency scores. 

4. Define the boundary scores of lower, mid and upper thirds (or quartiles). 

5. Average the scores and differences from spreadsheet columns 1 and 3 within each third (or 

quartile) and plot as the column graph of the type shown in Figure 7. 

 

 
Figure 7. Column graph of (𝑦 − 𝑥) vs. (𝑥) type that summarizes self-assessment 

accuracies in an introductory chemistry class by thirds. The ordinate depicts the 

difference between the self-assessment ratings from a knowledge survey and actual exam 

scores. The abscissa portrays the exam scores. (Adapted from Bell and Volckmann 2011, 

p 1473, Fig. 6, with permission of American Chemical Society). 

The column graph (Fig. 7) displays the worst-performing students on a 

chemistry final exam as those who most seriously overestimate their performance. 
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The scatterplot (Fig 8A) discloses our raw data by the individual participants 

before it becomes aggregated by performance into thirds to provide the column 

graphs of Figure 8B. Like our Figure 8A, Pazicni and Bauer (2013, p. 28, Fig. 5) 

display raw data as a (𝑦 − 𝑥) vs. (𝑥) scatterplot. Our data graphed in this 

convention yield a correlation of 𝑟 =  − .39, whereas Pazicni and Bauer's data 

yielded 𝑟 =  − .587. 

 

Figure 8. Actual data graphed as (𝑦 − 𝑥) vs. (𝑥) type scatterplot (A) and column graph (B) 

from 1154 participants. B employs the data from A to depict the mean accuracies of the 

bottom, middle, and top thirds of performers. 

All figures produced by this convention invite the conclusion that the 

highest-performing participants are very good judges of their abilities, whereas 

the lowest-performing participants greatly overestimate their abilities to perform. 

However, arriving at this conclusion overlooks recognizing that the probability of 

overestimation increases from right to left in graphs like Figure 8A. The 

impossibility of being able to overestimate one's confidence by any percentage 

points (ppts) beyond a test score of 100% defines a ceiling. High performers 

cannot overestimate their competence by much. Numerically, they have little 

potential to do so. 

Kruger and Dunning were aware of this problem: “If one has a low score, one 

has a better chance of overestimating one’s performance than underestimating it.” 

(Kruger and Dunning 1999, p.1124). By creating a random number simulation of 

Figure 8, we can appreciate the power of that “better chance” to influence the 

portrayals of data. 

To create our simulation, we used Excel's command RANDBETWEEN (0, 

25) to generate a random number data value for each participant's “KSSLCI 

rating” and “SLCI score.” We then multiplied each random number by 4 to 

simulate the patterns yielded by a 25-item instrument in scores ranging from 0% 

to 100%. Graphing these random numbers in the convention of Figure 8A 

produces a scatterplot (Fig. 9A) that depicts a pronounced negative relationship 

between the simulated inaccuracy of self-assessed competency (derived by 

subtraction, KSSLCI‒ SLCI) and the simulated actual competency (SLCI). The 

random number simulation mimics the human-generated responses in our Figure 
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8A and the responses shown in the similar figure published by Pazicni and Bauer 

(2013, p. 28, Fig. 5). 

 
Figure 9. Scatterplot of type (𝑦 − 𝑥) vs. (𝑥) produced by replacing the 1154 data pairs from 

Figure 8A with random numbers (A). The column graph (B) displays the data from Figure A 
aggregated by the bottom, middle, and top thirds of “test performers.” 

Random number simulations (Fig. 9A) reveal how this graphical convention 

renders a pattern from random noise that entices researchers into describing it as a 

trait of human self-assessments. The significant negative correlations (Figs. 8A 

and 9A) that researchers interpret as the inverse relationship between performance 

and the degree of inaccuracy of self-assessment are maximized by random data 

(Fig. 9A). The closer a correlation derived from actual data approaches 𝑟 =  −.7 

in the graphical convention of Figures 8A and 9A, the more the actual data 

resemble random noise. 

Presenting such data aggregated into column graphs like Figures 7 and 8B 

conceals the nature of the data that were aggregated. This type of graph makes the 

artifact imposed by ceiling effects more difficult to discover. It seems best to 

avoid employing the convention shown in Figures 7, 8 and 9 in future research. 

Collective Self-Assessments 

Random number simulations (Figs. 5A and 9B) show that true random noise is as 

likely to contribute overestimation as underestimation to self-assessment 

measures. If the noise in actual measurements is mostly random, then, given a 

sufficiently large database, averaging collective data from all participants on 

every item should attenuate such noise and allow the signal-to-noise ratio to 

increase. Instruments like the KSSLCI and the SLCI that collect multiple 

measures that map to a single unifying construct offer an opportunity to do this on 

an item-by-item basis (Fig. 10). 

The 1154 participants' item-by-item average ratings derived from the three-

point scale of the KSSLCI proved similar to their average performance scores on 

the corresponding items of the SLCI (Fig. 10A). Item-by-item, the collective 

mean self-assessments of participants displayed a substantial positive relationship 

(at 𝑟 =  .76) to their mean collective performances (Fig. 10B). The signal-to-
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noise ratio appears improved, indicating that the character of the noise present in 

our measures was largely random because averaging attenuated it. 

 
Figure 10. Means from 1154 participants of SLCI scores and KSSLCI self-assessment ratings 

on each item (Fig. 10A). Scatterplot of item-by-item average KSSLCI ratings versus item-by-

item average SLCI scores reveals a strong correlation between collective self-assessment and 

collective performance (Fig. 10B). 

For comparison, we replaced all 1154 participants' responses to each item on 

the SLCI and KSSLCI with appropriate random numbers (Fig. 11). In the case of 

the KSSLCI, we employed Excel's RANDBETWEEN(0,2) to randomize 

expressions of three levels of confidence. For the SLCI, we used 

RANDBETWEEN(0,1) to generate randomized correct (1) and incorrect (0) 

responses. 

 
Figure 11. Simulated self-assessment ratings via the KSSLCI for 1154 "participants" and their 

simulated competency scores for the SLCI (A). Random numbers represent all KSSLCI and 

SLCI responses. Correlation between collective self-assessment and collective performance 

on an item-by-item basis is an insignificant 𝑟 =  .06 (B). 

Figure 11A shows that when the measurements consist of purely random 

noise, the simulated knowledge survey ratings and inventory scores on every item 

become nearly identical. All converge, as expected, around the mean of 50%. The 

pattern in Figure 11B converges much more tightly around the point (50, 50) that 

marks the theoretical means than it does in Figure 1B. The tighter pattern results 

because the averages of 1154 randomly chosen scores and ratings bounded by 0 

and 100 offer a higher probability of converging at the theoretical mean of 50 than 

do averages calculated from fewer ratings (12 and 13 in the case of Figure 1B). 

Figure 2B displays no such clustering around the mean because none of the 

plotted points derives from averaging. 
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Histograms of Self-Assessed Accuracy 

Figure 10A indicates that both the KSSLCI and the SLCI instruments are 

measuring the same construct with scales of measures that are comparable. 

Therefore, it seems permissible to construct histograms of self-assessment 

accuracy based on differences (KSSLCI − SLCI) of the data yielded by the two 

instruments. The algorithm for constructing the histograms simply apportions the 

participants into intervals with increments of ten percentage-point (ppt) 

differences (Fig. 12). 

Histograms seldom appear in the self-assessment literature because only 

large studies furnish the representative data needed to construct a meaningful 

histogram. Stinson and Xiaofeng (2008) employed data from 555 respondents to 

produce a histogram similar to our Figure 12. 

Figure 12 reveals the distribution by categories of self-assessment accuracy 

across our 1154 participants. This representation permits disclosure of how 

greatly each subset of the participants errs in their accuracy of self-assessment and 

the proportions of the participants that populate each subset. The value of a 

histogram becomes apparent after considering the challenge of finding those with 

“good” self-assessment skills in Figure 2. 

 

 
Figure 12. Histogram showing distributions by the accuracy of self-assessment for 1154 

measures computed by the difference (KSSLCI-SLCI) in ten percentage-point intervals. 

Numbers above the intervals are the percent of the study population in each data range. 

Perfect self-assessment is zero (0). 

We designated self-assessment accuracies within ±10% of zero as good self-

assessments. We derived this designation from 69 professors self-assessing their 

competence, and 74% of them achieving accuracy within ±10%. On this basis, 

Figure 12 shows that 49% of participants achieved good self-assessment. Outside 

these bounds, 31% over-assessed, and 20% under-assessed. 

If the distributions of 1154 participants were truly random across twenty 

categories, then the null hypothesis states that our 1154 participants should 
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distribute equally across each of the twenty intervals. Each interval would have 

about 58 respondents. 

However, the histograms employed in self-assessment plot the differences 

between self-assessed ratings and test score, bounded by 0% and 100%. In 

computing the differences (the KSSLCI rating minus the SLCI score), there are 

101 possible subtractions to generate zero (0) ppts, whereas there is only one 

possible subtraction that can generate either 100 ppts or ‒100 ppts. The 

probability of generating a value near zero is about two orders of magnitude 

greater than producing a value near the sides (±100) of these histograms. 

Figure 13 is a histogram's depiction of pure noise produced by using the 

random numbers bounded by 0 and 100 that generated Figures 2B, 5B, 9, and 11. 

Because of the influence of probability, that pattern differs from the expected 

pattern of the null hypothesis. Because random noise is present in our actual 

measures, it is also an influence on Figure 12, just as it is on Figures 2A, 4, 8A, 

and 10. 

A simple chi-square test4 reveals that the distribution produced by random 

chance (Fig. 13) is statistically different from the null hypothesis at 𝑝 < .00001. 

We can see from simulating our data with random numbers that Figure 13 is 

actually the expected distribution of 1154 random values bounded by 0 and 100. 

We can use the number of individuals in each of the intervals in Figure 13 as our 

expected values for a more informed new null hypothesis. A second chi-square 

test confirms that the distribution in Figure 12 is truly different from that in Figure 

13 at  𝑝 < .00001. 

 
Figure 13. Histogram showing distributions of the accuracy of self-assessment computed 

from differences (KSSLCI-SLCI) in ten percentage point intervals. Here, the 1154 

participants' responses were replaced by random numbers in increments of 4 ppts with bounds 

of 0 and 100 in both the KSSLCI and the SLCI. Numbers above the intervals are the percent 

of the population in each interval. 

                                                 
4 Included in Excel workbook in Appendix A. 
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The pattern of Figure 13 contains no self-assessment signal. If one is unaware 

of what randomness looks like in a histogram, one might easily interpret Figure 

13 as 18% of human participants' having good self-assessment skills, a general 

tendency toward accurately sensing their capabilities and no tendency toward 

overestimating or underestimating their competencies. 

By graphing our actual data and comparing it to a random number 

simulation, we can recognize that Figure 12 shows 49% of participants having 

good self-assessment abilities. This result is greater than the 18% showing good 

self-assessment abilities that random chance produced (Fig. 13). The chi-square 

test shows that the distributions depicted in these two figures differ significantly 

from one another, which reveals that our real data carry a self-assessment signal 

that rises above the level of noise. If the data obtained from our actual study 

produced a distribution not significantly different from the distribution expected 

from random noise, further interpretation of the data would be meaningless. 

Histograms appear to offer an informative presentation for displaying the 

distributions of participants' magnitudes and frequencies of self-assessment 

accuracy. Histograms that graph percentage-point differences of self-assessed 

performance and actual performance do portray random noise in patterns that can 

mimic those produced by real data. Lack of understanding the influence of 

random noise on histograms and how to determine when they portray a signal 

significantly different from noise can lead to unsound interpretations. 

Conclusions 

Random number simulations are useful for informing the collection of data, the 

graphing of data, and producing interpretations. They improve the understanding 

of self-assessment measures by revealing whether datasets are large enough, 

whether instruments produce reliable data, and whether graphical patterns express 

a meaningful self-assessment signal or primarily represent noise. 

Of the graphical conventions that we studied, the (𝑦) versus (𝑥) scatterplots 

with a best-fit line that represent the self-assessment responses of each participant 

and the scatterplots that represent the participants' collective average responses 

item-by-item generated the fewest artifacts. 

The problematic graphical conventions all employ calculated differences to 

produce the graphs. The most troublesome are the Bell-Volckmann and Pazicni-

Bauer graphical conventions. These display raw data (scatterplots) and aggregated 

data (column charts) in (𝑦 − 𝑥) versus (𝑥) formats. In these, the influences of 

ceiling effects are so severe as to make these conventions untenable. 

Construction of line charts drawn in the Kruger-Dunning convention does not 

require directly calculating differences. Instead, these line charts require users to 

estimate the differences from the distances between the lines in order to interpret 
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the graphs. This convention carries the influence of ceiling effects wherein the 

quantile containing the least-competent people overestimate their competency the 

most, simply because they can. The top quantile represents the most-competent 

participants who, by definition, simply cannot overestimate by as much. A 

strength of this convention is that it can reveal the signal-to-noise ratio of the 

measures and allow estimates of the critical size of a dataset needed to generate 

reproducible results. 

Histograms of self-assessment accuracy also employ differences but in a 

more-constrained way. Unlike broad aggregates of thirds or quartiles, the 

histogram intervals group only those participants within a narrow range of self-

assessment skill. Every interval of a histogram has the same range of percentage 

points (10 ppts in the case of Figs. 12 and 13). The portrayal of all such intervals 

together as a histogram generates a detailed picture that reduces the influence of 

the ceiling effect. However, histograms introduce a second illusory pattern 

wherein more participants may appear to have good self-assessment skills than is 

the case. This illusion occurs because the random noise present in imperfect 

measures of self-assessment imparts a strong probability toward producing a 

normal distribution centered at the value of perfect self-assessment. The degree to 

which histograms can factually represent actual self-assessment skills depends 

greatly on the signal-to-noise ratios in the measures. When the ratio is large, it 

may be the most informative way to portray human self-assessment. When the 

ratio is small, it may offer one of the most deceptive portrayals of any convention. 

Not all numerical approaches employed to describe the relationship of self-

assessed competence to actual competence are equally valid.  Some numerical 

approaches do not offer valid descriptions of the relationship. Random number 

simulations allowed us to discover unanticipated idiosyncrasies associated with 

collecting data and describing the results of self-assessment measures. Performing 

such simulations should likewise be helpful to other investigators. 
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