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Abstract 

 
This dissertation explores the intersection of graph theory and deep learning, focusing on 

enhancing the robustness of deep neural networks (DNNs) and applying these advancements to 

complex problems like cancer diagnosis and treatment. We investigate the structural properties 

of graphs and their influence on neural network performance, particularly in multimodal 

learning. The work delves into the design space of DNN architectures using graph-theoretic 

measures, transforming graphs into DNN architectures for various tasks, and examining their 

robustness against noise and adversarial attacks. The study extends to medical imaging, 

highlighting advanced DNN architectures like U-Net for brain tumor segmentation. It addresses 

the evolution of digital pathology, the challenges of task-specific AI/ML models, and the 

transformative potential of foundation models and generative AI. The integration of multimodal 

oncology data through Graph Neural Networks (GNNs) and Transformers is explored, 

showcasing their potential in improving diagnostic and prognostic models. The development of 

the Multimodal Integration of Oncology Data System (MINDS) and SeNMo, a deep learning 

model for multi-omics data, underscores the significance of harmonizing diverse data types for 

personalized cancer care. We also proposed a GNN-based hierarchical relational model, 

PARADIGM, that enhances survival predictions by integrating multimodal datasets. The 

compilation of articles is structured into eight chapters, each focusing on different aspects of 

learning, from theoretical foundations to practical applications, offering a comprehensive 

overview of the field and its implications for future research and clinical practice in oncology 

and computational pathology. 



Chapter 1: Introduction

The intersection of graph theory and deep learning represents a rapidly evolving frontier in

artificial intelligence (AI) research. This compilation of different articles aims to explore how

graph-theoretic principles can enhance the robustness of deep neural networks (DNNs) and how

graphs can be applied to complex, real-world problems, such as cancer diagnosis and treatment. By

investigating the structural properties of graphs and their influence on neural network performance,

especially in the realm of multimodal learning, we provide a comprehensive literature that bridges

theoretical insights with practical application of graphs and graph learning in oncology.

The architectures of deep artificial neural networks (DANNs) are a subject of extensive research,

driven by the quest to enhance their predictive performance. However, the robustness of these ar-

chitectures—particularly their resilience to noise and adversarial attacks—remains less thoroughly

explored, especially in computer vision applications. We present a detailed investigation into the

relationship between the robustness of DANNs and their underlying graph architectures. Our ex-

ploration begins by delving into the design space of DANN architectures using graph-theoretic

robustness measures. We transform these graphs into DANN architectures, applying them to vari-

ous image classification tasks. This approach allows us to investigate how the robustness of trained

DANNs against noise and adversarial attacks correlates with their underlying graph structures. No-

tably, we demonstrate that the robustness of DANNs can be quantified prior to training using graph

structural properties such as topological entropy and Olivier-Ricci curvature. These measures show

significant reliability, especially for complex tasks and larger DANNs, suggesting that structural

properties can be predictive of network robustness.

Next we transition to the medical domain and study machine learning and its applications

on medical data. In the realm of medical imaging, brain tumor segmentation stands out as a
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critical application. This process involves the pixel-level delineation of brain tumor structures

in medical images, such as Magnetic Resonance Imaging (MRI). Accurate brain segmentation

is essential for radiotherapy treatment planning and improving tumor surveillance. Despite the

challenges posed by the complex topology of anatomical structures, noise from image acquisition,

and the heterogeneity of tumor signals, machine learning (ML) techniques, including DNNs, have

significantly advanced classification and segmentation tasks. In this context, supervised learning

models, particularly architectures like U-Net and its variants, have shown remarkable performance

in brain tumor segmentation.

Digital pathology has revolutionized the traditional practice of analyzing tissue under a micro-

scope by transforming it into a computer vision workflow. Whole slide imaging enables patholo-

gists to view and analyze microscopic images on a computer monitor, facilitating computational

pathology. AI and ML have propelled computational pathology to new heights, achieving near or

above-human performance in many image processing tasks. However, the performance of task-

specific AI/ML models is often constrained by the availability of annotated training datasets and

their generalizability to new datasets or unseen variations.

Cancer research, with its intricate complexity of biological, clinical, and molecular charac-

teristics, demands sophisticated data integration techniques. Traditional analytical methods often

fall short of capturing the comprehensive landscape of cancer’s multifaceted characteristics. The

integration of multimodal data—ranging from clinical records to digitized histopathology slides

and molecular data—presents opportunities for enhancing the accuracy and reliability of cancer

diagnosis and treatment. Graph Neural Networks (GNNs) and Transformers have emerged as

powerful tools for multimodal learning, capable of synthesizing information from diverse sources

to provide a nuanced understanding of cancer. The advent of foundation models and generative AI

marks a significant shift in AI/ML development. Foundation models are large AI models trained on

extensive datasets and later fine-tuned for specific tasks using modest amounts of annotated data.

These models offer in-context learning, self-correction, and prompt adaptation to user feedback,

presenting transformative potential for digital pathology and beyond.
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However, the problem is that large scale, ML-ready data is not readily available for research.

We present a multimodal data integration systems, called Multimodal Integration of Oncology

Data System (MINDS), that consolidates disparate data into an interconnected, patient-centric

framework. MINDS exemplifies a flexible, scalable, and cost-effective metadata framework for

fusing public cancer data into a comprehensive system, enabling researchers to uncover diagnostic

and prognostic insights through harmonized multimodal data. We also extended MINDs to an

embedding or vector database system called HoneyBee that provides the feature vectors from

embedding models hosted on the open-source Hugging Face platform.

Having embedding models to generate unimodal embeddings is a pre-requite in multimodal

learning. However, in the realm of multi-omics research, there is no deep learning model that has

been trained across a wide breadth of data heterogeneity. We build a deep neural network called

SeNMo (Self-normalizing Network for Multi-omics) that has demonstrated robust performance in

handling high-dimensional multi-omics data. SeNMo’s ability to predict patient outcomes using

diverse molecular data types across multiple cancer types showcases the transformative potential

of multi-omics approaches in oncology.

Finally, we present a GNN-based hierarchical relational model for predicting clinical outcomes

in cancer. This model integrates multimodal, heterogeneous datasets to generate relational embed-

dings and improve survival predictions. By converging individual data modalities into a unified

view, our solution offers a comprehensive framework for understanding the genetic, physiological,

and psychosocial aspects of cancer.

In summary, this work explores the intersection of deep learning, graph theory, and multimodal

data integration, highlighting the potential of advanced AI/ML models to transform cancer diag-

nosis, treatment, and research. The subsequent chapters delve deeper into these topics, presenting

empirical findings and discussing their implications for the future of oncology and computational

pathology. This compilation is structured into eight chapters, each presenting a different aspect

of learning. Chapter 1 introduces the fundamental concepts of graph structures and how graph-

theoretic measures are related to the robustness of DNNs. Chapter 2 delves into brain tumor
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segmentation using advanced DNN architectures. Chapter 3 discusses the evolution and challenges

of digital pathology and introduces foundation models. Chapter 4 explores the integration of mul-

timodal oncology data and its implications for cancer care. Chapter 5 reviews the advancements

in GNNs and Transformers for multimodal learning in oncology. Chapter 6 presents the MINDS

framework for integrating diverse oncology data. Chapter 7 introduces SeNMo, a multi-omics

model for predicting cancer outcomes. Finally, Chapter 8 proposes a GNN-based model for clinical

outcome prediction, emphasizing the convergence of heterogeneous data.

4



Chapter 2: Exploring Robust Architectures for Deep Artificial Neural Networks

2.1 Note to Reader

This chapter has been previously published in Nature Communications Engineering as: Waqas,

A., Farooq, H., Bouaynaya, N.C. et al. Exploring Robust Architectures for Deep Artificial Neural

Networks. Nat. Commun Eng 1, 46 (2022), and has been reproduced with permission from Nature

Publishing [735].

2.2 Introduction

The architecture or structure of a deep artificial neural network (DANN) is defined by the

connectivity patterns among its constituent artificial neurons. The mere presence or absence of a

connection between two neurons or a set of neurons may provide a useful prior and improve the

predictive performance of a DANN. A range of architectures has been developed over years to tackle

various machine learning tasks in computer vision, natural language processing, and reinforcement

learning [283, 360, 361, 624, 614, 395, 364, 386, 287, 671, 362, 355, 356, 358, 353, 363, 624, 355].

In general, the process of the development of DANN architectures is manual, iterative and time

consuming. AutoML and neural architecture search (NAS) attempt to use machine learning and

search the design space of DANNs for architectures that may yield maximum test data accuracy.

After the selection of a suitable DANN architecture for the given task, the optimal values of

the connections (parameters or weights) are found using the training dataset and the well-known

gradient descent or one of its variant algorithms [433, 189]. Recently, considerable research efforts

have been focused on automating the laborious task of DANN architecture design and development

using techniques of autoML and NAS [757, 778, 797, 183, 456]. However, all such efforts are
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primarily focused on improving the test accuracy of the DANN on the given task. In the real world,

DANNs face the challenging problem of maintaining their predictive performance in the face of

uncertainties and noise in the input data [175, 11, 356, 359]. The noise can be in the attributes of

the input samples (attribute noise), and it can be in the associated class label (label noise). DANNs

exhibit intrinsic robustness to label noise, and the test accuracy of DANNs drop only marginally

against the tens of percentage increase in the label noise [223, 354, 721, 66, 356, 359, 353, 360, 364].

So, the term “noise" in this work refers to the more hostile sample noise, called the attribute noise.

The challenge of noise in the attributes of data is further exacerbated for mission-critical application

areas, such as clinical diagnosis, autonomous driving, financial decision-making, cyberspace, and

defense. Although we have used computer vision for hypothesis testing in this work, we believe

that the proposed concepts are equally applicable to other fields mentioned above. Ideally, a

real world deployment-ready DANN should be robust to or equivalently maintain its predictive

performance against two different types of noise, natural and malicious. The natural noise is

related to the out-of-distribution generalization. Such noise is caused by the day-to-day changes

in input data, e.g., changes in the hardware or software configurations used for processing input

data. The malicious or adversarial noise is generated by an adversary for fooling the DANN

into producing an erroneous decision [672, 354]. The adversarial attacks can be at training time

(poisoning attack) or at inference time (evasion attack) [50, 359, 364]. The attacks themselves

can be targeted in the feature-space [672] or in the problem space [556]. The attacker can have a

perfect knowledge (white-box attacks), limited knowledge (gray-box attacks), or zero knowledge

(black-box attacks) [556]. Here, the knowledge ✓ = (D,X , f ,w) is a set that may contain training

data D , features X , model f and its parameters w . Black-box attacks are strict subset of white-box

attacks, and white-box attacks perform better than other attacks against a DANN [115]. This

means that gradient-based attacks outperform gradient-free attacks [115]. Following these facts

and the Kerckhoffs’ principle [351], in this work we have employed white-box attacks assuming

attacker’s perfect knowledge at inference time. Moreover, this work focuses on evaluating the

inherent robustness of DANNs to identify the architectures that have a natural relative immunity to
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adversaries and insults. Mechanisms on improving the robustness of DANNs is not covered in this

work.

It has been shown with the help of Percolation theory that the architecture or structure underlying

a network of any real-world system may play a key role in defining its robustness to various

insults and attacks [67, 356, 359]. Graph-theoretic measures, such as network topological entropy

and Ollivier-Ricci curvature, successfully quantify the functional robustness of various networks

[678]. Examples include studying the behavior of cancer cells, analyzing the fragility of financial

networks, studying the robustness of brain networks, tracking changes attributable to age and Autism

Spectrum Disorder (ASD), and explaining cognitive impairment in Multiple Sclerosis (MS) patients

[606, 607, 211, 212]. Recently, the relationship between the architectures of DANNs (quantified

by various graph-theoretic measures before training) and their predictive accuracy (available after

training) has been established [757, 778]. Various graph-theoretic measures (e.g., path length

and clustering coefficient) calculated from the architectures of DANNs are quantitatively linked to

their accuracy on various image classification tasks. However, the relationship between the graph-

theoretic measures related to the robustness (e.g., entropy and Ollivier-Ricci curvature) of the

architecture of DANNs and their performance against natural and adversarial noise has never been

explored. Establishing such a relationship will allow the autoML and NAS research community to

design and develop robust DANNs without training and testing these architectures.

Graph-theoretic measures that are related to the vulnerability and robustness of networks can

be categorized into graph connectivity measures, adjacency spectrum measures, and Laplacian

spectrum measures [227]. Based on the graph properties such as Ollivier-Ricci curvature, be-

tweenness centrality, and shortest path length between nodes, more advanced network measures

have been recently proposed. For example, graph and node-based multifractal analysis [755, 588],

and fitness-based network efficiency for heterogeneous nodes [583] quantify the topology and ro-

bustness of complex networks. In this work, we study graph-theoretic properties of architectures

of DANNs to quantify their test-time robustness. Specifically, we use the graph measures of

topological entropy and curvature of the architecture of DANNs as robustness metrics. We have
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considered all three aforementioned categories of graph-robustness measures in our experiments.

Our choice of reporting the curvature and entropy as the robustness measures of DANNs is based

on empirical evidence presented in this paper. We make two distinct research contributions to the

robustness analysis of DANNs: (1) We establish a quantitative relationship between the graph-

theoretic robustness measures of entropy and curvature of DANNs (available before training) and

the robustness of these DANNs to natural and adversarial noise (evaluated after training DANNs).

Previous studies explored graph measures that relate to the performance of DANNs, but robustness

of DANNs through graph-robustness measures has never been studied. We show that graph entropy

and curvature are related to DANNs’ robustness and these structural measures can identify robust

architectures of DANNs even before training for the given task. (2) We show that relationship

between the graph robustness measured using entropy and Ollivier-Ricci curvature and the robust-

ness performance of DANN against noise and adversarial attacks becomes significantly stronger

for complex tasks, larger datasets, and bigger DANNs. Given that the sizes of DANNs and the

complexity of tasks/datasets are growing significantly for many real-world applications, the strong

entropy-robustness relationship assumes greater importance. The autoML/NAS design problems

where robustness of DANNs is vital, our analysis can help identify robust architectures without the

need to train and test these DANNs under various noisy conditions.

In Fig. 2.1, we provide an overview of the proposed approach. Fig. 2.1(a) illustrates how

graph-theoretic measures are often applied in Network Science (NetSci) to study various real-

world networks. The illustrated examples include biological systems such as brain networks,

economic systems such as financial networks, and social systems such as social networks. Path

length, graph connectivity, efficiency, degree measures, clustering coefficient, centrality, spectral

measures (curvature, entropy), and fractal analysis are the graph-theoretic measures that researchers

have employed for studying real-world networks [606, 211, 212, 607, 635, 707].
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Figure 2.1 Exploring robustness of DANNs with graph-theoretic measures.

Fig. 2.1(b) illustrates our proposed methodology. Our approach consists of five steps: (1)

build random, scale-free, or small-world networks or graphs using classical families of graphs,

(2) calculate graph-theoretic measures of these random graphs in the graph domain and select a

small subset from the entire design space for further analysis, (3) convert selected random graphs

into architectures of DANNs (e.g., MLPs, CNNs, ResNets, EfficientNets), (4) train, validate and

test these DANNs under different natural noise and adversarial conditions, and (5) analyze and

link the robustness of architectures (measured with graph-theoretic properties) to the performance

of trained DANNs against natural noise and adversarial attacks. We hypothesize that the graph-

theoretic measures that quantify the robustness of networks/graphs in the NetSci domain will also

provide insight into the robustness of DANNs in the deep learning domain. We provide empirical

evidence to support our hypothesis. We use the term DANN for deep artificial neural networks,
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graphs for unweighted directed acyclic graphs, and network for various networks as used in the

network science (NetSci) domain.

Figure 2.2 The graph design space for generating random graphs.

2.3 Results

2.3.1 Graph Design Space

Being a sub-field of autoML, Neural Architecture Search (NAS) is the process for searching

suitable architectures of neural networks for a given task [207]. Design space is a component of

NAS and is composed of a set of architectures of neural networks [569]. We use two graph mea-

sures, average path length (L) and clustering coefficient (C), for exploring the graph design space.

Extensively used in prior works [742, 654, 71], these measures smoothly span the whole design

space of the random graphs as illustrated in Fig. 2.2. We generate 2.313 Million (M) candidate

random graphs using Watts-Strogatz flex (WS-flex) graph generator for a range of C and L values

as illustrated in Fig. 2.2(a). We chose WS-flex because its graphs are superset of graphs generated
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by three classical methods including, Watts-Strogatz (WS), Erdős Rényi (ER), and Barabási-Albert

(BA) [742, 208, 23]. We downsample 2.313 M candidate WS-flex graphs into coarser bins of

3854 and 54 graphs (Fig. 2.2(b)&2.2(c)), where each bin has at least one representative graph. We

visualize our candidate graphs using their average path length(L), clustering coefficient (C), and

entropy (H). Entropy is a graph-theoretic measure for robustness and we visualize our design space

spanned by (C , L,H), as depicted in Fig. 2.2(d)&2.2(e). Fig. 2.2(a)&2.2(e) also depict the extreme

cases of complete and sparse graphs. For a complete graph, we have (C , L,H) = (1.0, 1.0, 4.1).

We transform the downsampled 54 graphs into DANNs using the technique of relational graphs

proposed by You et al. [778]. The same 54 graphs are transformed into multiple types of

DANNs including, multilayer perceptrons (MLPs), convolutional neural networks (CNNs), and

residual neural networks (ResNets). Because of the flexibility and generalizability of the relational

graphs, our graphs to DANNs transformation framework can be translated into diverse architectures,

including MLPs, CNNs, ResNets, EfficientNets, etc. We use four image classification datasets of

varying complexity to train and evaluate DANNs built using 54 different graph structures. These

datasets include Canadian Institute For Advanced Research for ten classes (CIFAR-10), hundred

classes (CIFAR-100), Tiny ImageNet, and ImageNet [384, 341, 598]. The robustness of trained

DANNs is quantified by subjecting these models to various levels and types of natural and malicious

noise. We used three types of additive noise, Gaussian, Speckle, and Salt&Pepper. For malicious

noise, we employ three different adversarial attacks with varying severity levels. These include

Fast Gradient Sign Method (FGSM) [254], Projected Gradient Descent (PGD) [466], and Carlini

Wagner (CW) [116].

2.3.2 Performance Trends of DANNs

Fig. 2.3 presents predictive performance of different MLPs, CNNs, and ResNets built using 54

selected graphs and trained on four different image classification datasets. Performance evaluation

of the trained DANNs is done using randomly selected 30 different sets of clean, adversarial, and

noisy images. The test accuracy numbers presented in Fig. 2.3 are average values across all tests.
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Figure 2.3 Test accuracies of different Deep Artificial Neural Networks.

MLPs on CIFAR-10 shown by panel 1 of Fig. 2.3 presents test accuracies of 54 MLPs under

different conditions. The average clean test accuracy is 66.3±0.46%, which drops to 33.6±0.64%

under PGD attack and to 32.3±1.9% for the CW attack. With FGSM attack levels of ✏=[0.001, 0.005,

0.015, 0.04], the test accuracy drops to [62.2± 0.72%, 46.6± 0.6%, 20.7± 0.54%, 4.34± 0.44%].

For low noise level of natural or additive noise (�2
noise=0.1), test accuracy under Gaussian noise is

58.1 ± 0.50% and under speckle noise 57.8 ± 0.52%. For high noise level (�2
noise=0.6), the test
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accuracy under Gaussian noise is 51.2 ± 0.55% and under speckle noise 48.1 ± 0.55%. Under

Salt&Pepper noise(salt vs. pepper=0.5), the test accuracy is 57.06± 0.5%.

CNNs on CIFAR-10 shown by panel 2 of Fig. 2.3 shows the average test accuracies of 8-layer

CNNs built from the same 54 candidate graphs. We observe that the average clean test accuracy

for CNNs is 84.19 ± 1.26%, dropping to 8.07 ± 1.43% under PGD attack, and to 34.35 ± 3.12%

under CW attack. We noticed similar trends for various levels of FGSM attacks, as well as for the

Gaussian, speckle, salt&pepper noise.

CNNs on CIFAR-100 shown by panel 3 of Fig. 2.3, presents CNNs trained on CIFAR-100

dataset. The average test accuracy is 62.49 ± 2.24% for clean test dataset, which reduces to

6.35± 0.64% for the PGD attack, and 22.83± 0.94% for the CW attack. With FGSM attack levels

of ✏=[0.0001, 0.001, 0.01], the test accuracy is [61.19±2.30%, 51.32±2.06%, 10.71±0.83%]. For

Gaussian noise levels of �2
noise=[0.001, 0.01, 0.05], the test accuracy of CNNs is [53.75 ± 2.01%,

45.29±2.12%, 23.76±1.66%]. For speckle noise levels of �2
noise=[0.01, 0.05, 0.1], the test accuracy

is [52.54 ± 2.00%, 40.82 ± 2.11%, 27.79 ± 2.10%]. For salt&pepper noise, the test accuracy is

15.14± 1.81%. The drop in test accuracy for all cases is significantly more than that of CIFAR-10

dataset.

ResNet-18 on Tiny ImageNet given by panel 4 of Fig. 2.3 shows 54 different ResNets trained

on Tiny ImageNet. The average clean test accuracy is 54.08± 2.54%, 27.45± 2.90% under PGD

attack, and 16.00 ± 2.10% under CW attack. For the FGSM attack levels of ✏=[0.0001, 0.001,

0.004], the accuracy is [52.53± 2.85%, 39.86± 2.78%, 15.97± 2.04%]. For Gaussian noise levels

of �2
noise=[0.1, 0.6], the test accuracy is [36.81± 1.96%, 20.44± 2.47%]. For speckle noise levels

of �2
noise=[0.3, 0.6], the test accuracy is [30.73 ± 2.31%, 19.34 ± 2.53%]. For salt&pepper noise,

the test accuracy is 33.00± 2.24%.

ResNet-18 on ImageNet shown by panel 5 of Fig. 2.3 presents ResNets trained using ImageNet.

Due to the large number of images available for training, the average clean test accuracy of

all 54 ResNets-18 was 66.0 ± 0.62%, a significant improvement over Tiny ImageNet experiments

(54.08±2.54%). Under PGD attack, the test accuracy drops to 22.75±1.39%, and to 16.78±1.54%
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under CW attack. For the FGSM attack levels of ✏=[0.0005, 0.002, 0.003], the accuracies are

[43.47 ± 1.40%, 10.96 ± 1.09%, 5.27 ± 0.65%]. Similar trends are observed for the additive

Gaussian and speckle noise under the �2
noise=[0.001, 0.01, 0.1]. For salt&pepper noise, the test

accuracy drops to 25.39± 2.35%.

For the comparison of MLPs vs. CNNs on CIFAR-10, we observed that CNNs achieve higher

accuracy on the clean test data as compared to MLPs on CIFAR-10 dataset. However, under

adversarial conditions (FGSM, PGD, and CW attacks), the drop in the performance of CNNs is

significantly higher than MLPs as shown in panels 1 and 2 of Fig. 2.3. The test accuracy drop

is ⇠ 76% for CNNs compared to ⇠ 33% for MLPs under PGD attack. For the CW attack, the

accuracy drop for CNNs is⇠ 50% compared to⇠ 34% for MLPs. The same trend was observed for

all severity levels of the FGSM attack. Generally, as expected CNNs outperform MLPs under clean

test conditions; however, MLPs are more robust to adversarial perturbations as compared to CNNs.

We argue that the observed fragility of CNNs is linked to their weight sharing and shift-invariant

characteristics, which was previously noted by Zhang et al. [796].

2.3.3 Robustness Analysis

Our work is a cross-pollination between graph theory and deep learning. We attempt to link

the robustness of graphs underlying the architectures of DANNs to their performance against noise

and adversarial attacks. On the graph theory side, we use entropy and Ollivier-Ricci curvature to

quantify the robustness of graphs. These graphs, in turn, are used to build architectures of DANNs.

On the deep learning side, we train these DANNs and quantify their robustness using test accuracy

against various types of noise and adversarial attacks. Entropy and Ollivier-Ricci curvature have

been extensively studied in the NetSci. These measures have been shown to capture the robustness

of cancer networks [678, 606], track changes in brain networks caused by age and Autism Spectrum

Disorder [211], explain cognitive impairment in patients with Multiple Sclerosis [212], identify

financial market’s fragility [607], and detect communities in complex social networks [635]. We

study the robustness of DANNs and establish the statistical correlation of the observed robustness
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with entropy and curvature. The correlation results for entropy of graphs and robustness of DANNs

for different datasets are given in Fig. 2.4, 2.5, and 2.6. The correlation results between the

robustness of DANNs and graph measures such as curvature, average degree, and global efficiency

are provided in Supplementary Notes 2.9, 2.10, and 2.11, respectively.

Figure 2.4 Test accuracy vs. entropy for ResNet-18 on ImageNet.

ResNet-18 on ImageNet and Tiny ImageNet shown by Fig. 2.4 presents 54 ResNet-18 DANNs

trained on ImageNet and tested on clean images, adversarial examples generated with FGSM, PGD,

and CW attacks, and images with additive Gaussian, speckle, and salt&pepper noise. Each sub-plot

shows entropy (H) of the underlying graph structure and the test accuracy of corresponding ResNet-

18 under various conditions. The Pearson product-moment correlation coefficient values between

entropy and accuracy along with p values are shown on each sub-plot. There was a very strong

positive correlation between the two variables, r = 0.73, n = 54, p<0.05 for the clean test dataset.

We note similar behavior under PGD and CW attacks, that is, a strong correlation between entropy

and accuracy exists, r = 0.69 for PGD and r = 0.85 for CW, p < 0.05 for both. Similarly, strong

positive correlation trends exist for various severity levels of FGSM attack, Gaussian, speckle, and

salt&pepper noise. The correlations in these experiments are all statistically significant (p < 0.05).

In general, across all types of adversarial attacks and noises, the DANNs corresponding to graphs
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with higher entropy showed stronger robustness and vice versa. Additional results are provided in

Supplementary Figs. 2.10 and 2.11.

Figure 2.5 Test accuracy vs. entropy for ResNet-18 on Tiny ImageNet.

Fig. 2.5 presents test accuracy vs. entropy plots for 54 ResNet-18 models trained using Tiny

ImageNet and tested under various noisy conditions. We observe a strong positive correlation

between entropy and predictive performance under all noise conditions, except Gaussian noise

where correlation is moderate. However, there is a notable decrease in the Pearson product-

moment correlation coefficient values in all noise categories compared to the same DANNs when

trained and tested on ImageNet. As Tiny ImageNet is a subset of ImageNet with only 200 distinct

classes instead of 1,000, the observed decrease in the correlation may be linked to the reduction in

complexity of the task, i.e., 200 classes instead of 1,000.

In Fig. 2.6(a)&(b), we present accuracy vs. entropy plots for the 54 8-layer CNNs trained on

CIFAR-100 and CIFAR-10 datasets and tested under various noisy conditions. For the CIFAR-

100 experiments, we observe very strong correlation between entropy and predictive performance

except for CW (r = 0.40, p < .05), PGD (r = 0.39, p < .05) adversarial attacks, and salt&pepper

noise (r = 0.47, p < .05). For CIFAR-10 dataset, there is a strong correlation between entropy

and predictive performance except for the PGD, CW attacks and salt&pepper noise which were not

statistically significant.
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Figure 2.6 Accuracy vs. entropy for CNNs.

We opine that the weak correlation between graph entropy and DANNs’ performance under PGD

and CW attacks is due to the strong nature of PGD and CW attacks on relatively simple classification

tasks of CIFAR compared to Tiny ImageNet and ImageNet. This opinion was strengthened from

the evaluation results of the CNNs on a more straightforward classification task of CIFAR-10. We

observe that the correlation of entropy with the predictive performance of CNNs reduces for all

categories. Moreover, the entropy’s correlation with accuracy under CW attack becomes negative.

Under PGD attack and salt&pepper noise, it becomes insignificant with p>0.05 as highlighted by

the red text in respective subplots of Fig. 2.6. Additional results are provided in Fig. 2.12.
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2.3.4 Effect of Task and Model Complexity

We observed that DANNs’ robustness, evaluated under noisy conditions, and the robustness

of underlying graph structures, quantified using entropy, are strongly correlated. Moreover, this

correlation has a strong dependence on the complexity of the model and/or the dataset. In our

settings, the model complexity refers to the number of parameters in the model and the task

complexity refers to the number of classes in the dataset. As the complexity of the task and/or

model increases, the correlation between robust performance and entropy of DANNs increases, as

shown in Fig. 2.7.

In Fig. 2.7(a), models evaluated for the 10-class and 100-class tasks are 8-layer CNNs.

For 200-class and 1000-class tasks, ResNet-18 models were evaluated. We note that for the

same 8-layer CNNs, increasing the complexity of the task (from 10 classes of CIFAR-10 to 100

classes of CIFAR-100) results in increase in the correlation values as noted by the Student’s t-test

(t = �2.31, n = 34, p < .05). The same holds true for increasing the task complexity from

200 classes of Tiny ImageNet to 1000 classes of ImageNet and using the same ResNet-18 models

(t = �4.66, n = 23, p < .05). Comparing two different models evaluated on separate tasks, we

notice insignificant increase in the correlation values (i.e., p>0.05) as in the case of 8-layer CNN

models evaluated on CIFAR-100 dataset versus ResNet-18 models evaluated on Tiny ImageNet

dataset. While Student’s t-test is used to compare two related samples, we used the F-test to see

the equality of the two unrelated populations (CNNs vs. ResNet-18s) for performance variance

on separate tasks. We observe that there is significance difference between variances of the two

analyzed sets of experiments, F (14, 14) = 2.61, p < 0.05. In Fig. 2.7(b), we present the effect

of increasing the model complexity measured by the number of parameters against the entropy-

robustness correlation. We observe that for the same CIFAR-100 dataset, as the model complexity

increases from ⇠0.3 M parameters in ResNet-29 to ⇠1.3 M in CNN, the entropy-robustness

correlation increases significantly (t = �6.8, n = 23, p < .05). Similarly, the entropy-robustness

correlation increases significantly (t = �5.85, n = 27, p < .05) when model complexity increases

from ⇠0.5 M parameters in ResNet-41 to ⇠1.3 M in CNN for CIFAR-100 task. We also note that
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this increase in significance is large when difference between the number of parameters between

models is large. Our analysis of DANNs’ robustness show that a correlation exists between graph

entropy and robustness of DANNs, and this correlation has a strong dependence on the complexity

of task and model.

Figure 2.7 Effect of task and model complexity on entropy-robustness relationship.

We summarize our results and robustness analysis here. The graph structural entropy of complex

DANNs, like ResNets, is a strong indicator of their robustness against all of the analyzed additive

noise and adversarial attacks on complex tasks such as 1000-class ImageNet. As we reduced the

task complexity to 200-class Tiny ImageNet, the entropy-robustness relationship decreased for all

categories of noise and adversarial attacks. Similarly, graph entropy of relatively simple DANNs,

like 8-layer CNNs, is a strong indicator of robustness against relatively simple adversarial attacks,
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like FGSM, and all types of additive noise on the CIFAR-100 task. But under strong adversarial

attacks, such as PGD and CW, the entropy-robustness relationship reduces for 8-layer CNNs.

Similar trends were observed when testing the same 8-layer CNNs on the CIFAR-10 task. The only

limitation we encountered in our analysis was that of MLPs trained and evaluated over CIFAR-10

dataset, as given in Section 2.8 and Fig. 2.9.

2.4 Discussion

In this work, we have shown that graph structural properties such as entropy and curvature can

quantify the robustness of DANNs before training. We calculated entropy and curvature of a set

of random graphs, which were later transformed into architectures of different types of DANNs.

The DANNs were trained and their robustness was evaluated using different types of natural and

adversarial noise. We noted that the robustness of trained DANNs was highly correlated with

their graph measures of entropy and curvature. We also noted that the said correlations were even

stronger for relatively large models and complex tasks.

Currently various autoML and NAS techniques are being developed to search for accurate

model architectures for the given datasets and/or tasks [183, 797, 456, 58, 814]. We argue that

for many mission-critical applications, the robustness of these models is equally or in some cases

more important than accuracy. However, as there are currently no assured ways of estimating

the robustness of DANNs in the graph design space except training and testing the candidate

DANNs in the deep learning domain. We suggest that the users of autoML/NAS techniques should

incorporate entropy and Ollivier-Ricci curvature information into their search framework. Using

the graph representation of DANNs within the defined search space, the structure and associated

topological properties of DANNs, such as entropy and curvature can be studied. Integrating

these structural measures with the existing performance criterion shall enable the autoML/NAS

algorithms to quantitatively and qualitatively select robust DANNs instead of exhaustively searching

through all possible candidates. The users and autoML/NAS algorithms can directly identify and

choose the most robust model out of all the models that meet the accuracy criteria set by the user.
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Such a practice would allow users or autoML/NAS algorithms to choose accurate as well as robust

DANNs keeping in view the application area of the machine learning model. In Supplementary

Note 2.15, we have given an algorithm as a guideline for selecting the robust architecture of a

DANN for a given design space.

We have focused our analyses in this work on the computer vision application. However,

there are a plethora of other applications and tasks where robustness quantification of DANNs

is important [805, 522, 246, 380]. A possible future direction is to extend the presented analy-

sis to more complex applications (e.g., natural language processing, graph data, and Deep Chip

industry [379, 821, 336, 679, 368]) and larger models (e.g., Transformers, and Vision Transform-

ers [633, 813]). Given our current analysis, we anticipate that for the larger datasets, complex

tasks, and huge models, the graph robustness measures will be even more relevant and will help

users/autoML/NAS algorithms find robust DANN architectures.

2.5 Methods

We start by presenting the techniques we employed for generating random graphs in the graph

theory domain. Next, we describe the graph-theoretical properties used in our experiments to

study random graphs. These graph measures are needed to study the structural information of the

random graphs. Next, we provide details on transformations for building DANN architectures from

random graphs and training these DANNs for various computer vision classification tasks. Finally,

we present the multiple conditions, including natural noise and adversarial attacks that we used to

evaluate the trained DANNs and quantify their robustness.

2.5.1 Generating Random Graphs

Random graphs are extensively used in percolation studies, social sciences, brain studies, and

deep learning to understand the behavior of natural systems and DANNs [208, 344, 71, 70, 757].

We used random graphs, called relational graphs, employed recently in deep learning [778].
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A recent a study used relational graphs and showed that the performance of a DANN can be

quantified using its graph properties such as clustering coefficient and path length [778]. The

relational graphs are generated through the WS-flex graph generator. WS-flex is a generalized

version of the WS model having same-degree constraint relaxed for all nodes. Parameterized

by N nodes, K average degree, and P rewiring probability, we represent these graphs by WS-

flex(N ,K ,P). For the graph generator, we use notation g(✓, s), where g is the generator (for

example, WS-flex), ✓ represents parameters (N ,K ,P), and s is the random seed. It is important

to note that WS-flex(N ,K ,P) graph generator encompasses the design space of all the graphs

generated by the three classical families of random graph generators, including Watts-Strogatz

(WS), Erdős Rényi (ER), and Barabási-Albert (BA) [742, 208, 23, 778].

2.5.2 Graph-Theoretic Measures

Average Path Length (L) is a global graph measure defined as the average shortest path distance

between any pair of graph nodes. It depicts the efficiency of the graph with which information is

transferred through the nodes [483]. Small values of L indicate that the graph is globally efficient,

and the information is effectively exchanged across the whole network and vice versa. Let G be an

unweighted directed graph having V , a set of n vertices {v1, v2, ..., vn} 2 V . Let d(v1, v2) be the

shortest distance between v1, v2 and d(v1, v2) = 0 if v2 is unreachable from v1. Then, average path

length L is defined as,

L =
1

n(n � 1)

X

i 6=j

d(vi , vj). (2.1)

Clustering Coefficient (C ) is a measure of the local connectivity of a graph. For a given node i

in a graph, the probability that all its neighbors are also neighbors to each other is called clustering

coefficient. The more densely interconnected is the neighborhood of a node, the higher is its

measure of C . Large value of C is linked with the resilience of the network against random network

damage [655]. The small-worldness of networks is also assessed by C [473]. For a node i with
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degree ki , clustering coefficient Ci is defined as,

Ci =
2di

ki(ki � 1)
, 0  Ci  1. (2.2)

where di is the number of edges between the ki neighbors of node i .

Graph Spectral Measures focus on eigenvalues and eigenvectors of the associated graph adja-

cency and Laplacian matrices. We will use topological entropy and Ollivier-Ricci curvature.

• Topological Entropy (H) of graph G having adjacency matrix AG , is the logarithm of the

spectral radius of AG , i.e., logarithm of the maximum of absolute values of the eigenvalues

of AG [139].

H = log(�AG ). (2.3)

• Ollivier–Ricci Curvature (ORC) is the discrete analog of the Ricci curvature [519, 520].

From the many alternatives of Ricci curvature [185], we use the definition presented by

Farooq et al. [211] (see Fig. 6 of ref). Let (X , d) be a geodesic (a curve representing the

shortest path between two points on a surface or in a Riemannian manifold) metric space

having a family of probability measures {px : x 2 X}. Then, ORC ORC (x , y) along the

geodesic connecting x and y is,

ORC (x , y) = 1� W1(px , py )

d(x , y)
, (2.4)

where W1 is the earth mover’s distance (Wasserstein-1 metric), and d is the geodesic distance

on the space. Curvature is directly proportional to the robustness of the network. The larger

the curvature, the faster will be the return to the original state after perturbation. Smaller

curvature means slow return, which is also called fragility [211].

We now provide the notion of robustness and fragility used in this paper. Fluctuation theo-

rem [171] gives the concept of measuring a network’s potential of returning to its “relaxed" and

unperturbed state when subjected to some random perturbation. Let p�,↵(t) denote the probability
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that under some perturbation � at time t, the observable mean deviation of the network from its

relaxed state is greater than ↵. The rate R at which a dynamic system returns to its original state

after perturbation is given by the following function,

R := lim
t!1

✓
�1

t
log p�,↵(t)

◆
. (2.5)

Here, a large value of R denotes a prompt return to relaxed state after a small perturbation (�),

called the network robustness, whereas, a small R means slow return from a large perturbation

(�), called the network fragility. In the field of thermodynamics, entropy is closely related to the

rate function R from large perturbations [171, 172]. Fluctuation theorem [171, 170] states that,

given random perturbations to the network, change in system entropy �H is positively correlated to

change in robustness�R , and negatively correlated to change in fragility�F , (since�R := ��F ).

�H ⇥�R > 0, (2.6)

�H ⇥�F  0. (2.7)

Entropy �H and curvature �ORC are also positively correlated (see Equation (7) of Tannen-

baum et al. [678]), that is,

�H ⇥�ORC > 0. (2.8)

From Equations (2.6) and (2.8), we see that graph curvature and robustness are also positively

correlated,

�ORC ⇥�R > 0. (2.9)

Equations (2.6) and (2.9) are the primary motivation in this work to study the curvature and

entropy of deep neural networks.
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2.5.3 From Graphs to DANNs

Let G = (V , ") be a graph having node-set V = {v1, v2, ..., vn}, where node v has feature

vector xv , and edge set "={(vi , vj) | vi , vj 2 V }. The neighborhood of node v is defined as

N(v) = {u | (u, v) 2 "}. To transform the graphs into DANNs, we adopt the concept of neural

networks as relational graphs [778]. In relational graph, a single node represents one input channel

and one output channel. Edge in the relational graph represents a message exchange between the

two nodes it connects. The message exchange is a message function having node feature xv as input

and a message-aggregation function as output. The aggregation function takes a set of messages

as input and gives an updated node feature as output. One iteration of this process is one round of

message exchange. At each round, each node sends messages to its neighbors, receives messages

from all the neighbors, and aggregates them. At each edge, message transformation occurs through

a message function f (.), followed by summation at each node through an aggregation function F (.).

The i-th message exchange round between nodes v and u can be expressed as,

x(i+1)
v = F (i)({f (i)v (x(i)u ), 8u 2 N(v)}). (2.10)

You et al. have shown that Equation (2.10) is the general definition of message exchange that

can be used to instantiate any neural architecture [778]. We generate MLP, CNN, ResNet-18,

and ResNet-29 for each of the 54 random graphs generated from the WS-flex generator. We have

illustrated the graph-to-DANN transformation for a 64-node complete graph, generated from the

WS-flex generator, to a 5-layer MLP, 8-layer CNN, and ResNet-18 models in the Supplementary

Note 2.7 and Supplementary Fig. 2.8.

The same 54 WS-flex random graphs were transformed into a total of 216 DANNs having 54

neural networks in each of the four categories (MLP, CNN, ResNet-18, and ResNet-29). MLPs

were trained on CIFAR-10 dataset, whereas, the CNNs were used for training on CIFAR-10 and

CIFAR-100 datasets. The same ResNets-18 were used for training on ImageNet and Tiny ImageNet

datasets. The baseline architectures have a complete graph structure for each architecture category.

25



To ensure consistency of our results, we trained each MLP and CNN five times and ResNets one

time on respective datasets. The results reported in this paper are average values calculated for

thirty different inferences over random test inputs for each MLP and CNN, whereas, five random test

inference runs for each ResNet. List of frameworks and hyperparameters used in our experiments

are provided in Supplementary Note 2.12. The compute resources and wall clock times are given

in Supplementary Note 2.13.

2.5.4 Datasets

We used four different image classification datasets for our experiments that allowed us to train

DANNs of different sizes on tasks that varied in their complexity. We used 10-class CIFAR-10 [384]

dataset to train MLPs and CNNs. CIFAR-100 [384] dataset having 100 classes was used to train

CNNs and ResNet-29. Both datasets have 50,000 training images and 10,000 validation images.

To further scale our experiments, we trained ResNet-18 on the Tiny ImageNet [341] dataset having

200 classes. Each class in Tiny ImageNet has 500 training images and 50 validation images. We

also trained ResNet-18 on the ImageNet [598] dataset having 1,000 classes, 1.2 M training images

and 50,000 validation images.

2.5.5 Robustness Analysis

We assessed the robustness of DANNs against natural additive noise and malicious noise

(adversarial attacks). First, we evaluated the models using clean test images from respective

datasets. Then we fed DANNs with different test images corrupted with additive noise and

adversarial attacks. It is important to note that we chose the severity levels of adversarial attacks

and additive noise so that the predictive performance of DANNs is at the minimum greater than

3%. We observed at higher levels of noise, the performance would naturally drop to 0%, which was

not helpful in our analysis. Moreover, different severity levels work on different datasets owing to

the inherent features and attributes of the data.
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We evaluated DANNs using adversarial examples generated from three different types of attacks,

(1) Fast Gradient Sign Method (FGSM) [254], (2) Projected Gradient Descent (PGD) [466], and

(3) Carlini Wagner (CW) [116].

Consider a valid input x0 and a target class y0. It is possible to find x through non-random

perturbation to x0 that changes a DANN’s prediction to some other y ; such x is called an adversarial

example. Given a loss function J(x;w), x0 be the input to the model having parameter w, the

adversarial example x is created by the adversarial attack as,

FGSM : x = x0 + ✏ · sign(rxJ(x0;w)), (2.11)

PGD : x t+1 = ⇧x+B{x t + ↵ · sign(rxJ(x
t ;w))}, (2.12)

CW : min
x
kx � x0k2 + c · max{(max

i 6=j
{gj(x)}� gt(x)), 0}. (2.13)

In Equation (2.11), ✏ is the severity level of the attack and should be small enough to make

the perturbation undetectable. In Equation (2.12), x t is an adversarial example after t-steps, ↵

is the step-size, ⇧x+B refers to the projection operator for each input x having a set of allowed

perturbations B chosen to capture the perceptual similarity between images. In Equation (2.13),

c > 0 is the attack magnitude, i is the input class, and j is the target class. FGSM and PGD have

the l1-distance metric, whereas CW, a regularization-based attack, has l2-distance metric in our

analysis.

For the FGSM attacks, we used eighteen severity levels, ✏=[0.0001, 0.0005, 0.001, 0.0015,

0.002, 0.0025, 0.003, 0.004, 0.005, 0.01, 0.015, 0.02, 0.025, 0.04, 0.045, 0.06, 0.08, 0.3]. For the

PGD attacks on CIFAR datasets, we used max(B) = 0.008, ↵ = 2/255, and t = 7. For the Tiny

ImageNet dataset, we used max(B) = 0.002, ↵ = 2/255, and t = 10, and for the ImageNet dataset,

we used max(B) = 0.001, ↵ = 2/255, and t = 10. For the CW attacks on CIFAR datasets, we

used c = 0.007 and steps= 100. For the Tiny ImageNet dataset, we used c = 0.01, steps= 100,

whereas for the ImageNet dataset, we used c = 5e � 7 and steps= 100.
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For testing under additive noise, we used three different types of noise to generate corrupt images

for all the datasets, (1) Gaussian, (2) speckle, and (3) salt&pepper noise. For each noise type, we

used different levels of corruption quantified by the variance and monitored the performance

drop. The noise variance used in our experiments for the Gaussian and speckle noise types are

�2 = [0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]. For the salt&pepper noise type, we used the

maximum ratio of salt vs. pepper=0.5, where salt changes a pixel value to 1 randomly and pepper

changes a pixel value to 0 randomly, in the input image. Sample images for each dataset used in our

experiments, with noise types and levels are shown in Supplementary Note 2.14, Supplementary

Figs. 2.14 and 2.15.

2.5.6 Statistical Analysis

We conducted various statistical tests to ascertain the significance of our analysis. We computed

the Pearson product-moment correlation coefficient to assess the relationship between adversarial

accuracy and the graph robust structural properties. We also computed the Pearson product-

moment correlation coefficient between different structural graph-theoretic measures as shown in

Supplementary Fig. 2.13. For reference, Pearson product-moment correlation coefficient r ranges

from �1 to +1, where larger the absolute value of r , the higher is the degree of correlation and

stronger is the relationship between variables, and vice versa. Specifically, the absolute values of

r = 0 indicates no relationship, 0 < r  0.3 indicates weak relationship, 0.3 < r  0.4 indicates

moderate relationship, 0.4 < r  0.7 indicates strong relationship, r > 0.7 indicates very strong

relationship, and r = 1 indicates perfect relationship. We used the Student’s t-test to establish that

average of the correlations between entropy and robustness for two types of datasets as well as

two model types are statistically different. This analysis established how entropy is related to the

increase in model size and task complexity. The significance level in all these analyses is set to

95%, i.e., p < 0.05 indicates statistically significant values.
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2.6 Data and Code Availability

The datasets used in this study are publicly available on following links: CIFAR-10 and CIFAR-

1001, Tiny ImageNet2, and ImageNet3. The source data of figures are given in Supplementary Data.

Correspondence should be addressed to A.W. For the simulations in deep learning domain, we

have used PyTorch machine learning library, primarily developed by Facebook’s AI Research lab.

The base-code for relational graph experiments (https://github.com/facebookresearch/graph2nn/)

is under the MIT License with copyright (c) Facebook, Inc. and its affiliates. The calculations in

graph domain and graph theoretic measures have been coded in Matlab software. Both of these

code-packages (in PyTorch and Matlab) are published in the GitHub repository associated with this

paper (https://github.com/Waasem/RobDanns).

2.7 Graph to DANN Transformation

Figure 2.8 Schematic for graph to DANN transformation.

2.8 Further Results and Limitations of the Study

In our experiments with 5-layer MLPs trained and tested over CIFAR-10 dataset, we noticed

that graph structural measures do not efficiently quantify the robustness of MLPs for low severity

levels of adversarial attacks and additive noise. MLPs are very dense networks having no weight

sharing. Each neuron in MLP has multiple edges across layers, making them fully connected (FC)
1https://www.cs.toronto.edu/~kriz/cifar.html
2https://www.kaggle.com/c/tiny-imagenet/overview
3https://www.image-net.org/
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networks. Under insults such as adversarial attack and natural noise, the MLPs are inherently robust

because multiple neurons collectively contribute to the same task. MLPs depict superior accuracy

for a given task than CNNs under a robust training regime [194]. We believe that because of the

in-built robust nature of MLPs, the graph structural properties such as entropy and curvature do

not significantly differentiate robust and fragile MLPs. Results of MLPs trained five times on the

CIFAR-10 dataset and randomly evaluated thirty times are illustrated in Supplementary Fig. 2.9.

The correlation between entropy and accuracy of MLPs is insignificant for most of the evaluation

categories.

Figure 2.9 Test accuracy vs. entropy for MLPs trained on CIFAR-10 dataset.

Figure 2.10 Additional results for ResNet-18 on ImageNet dataset.
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Figure 2.11 Results for ResNet-18 trained and evaluated on Tiny ImageNet dataset.

Figure 2.12 Results for robustness evaluation of CNN on CIFAR-100.

Figure 2.13 Correlation of entropy and curvature with other graph measures.
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2.9 Curvature vs. Test Accuracy

Table 2.1 Curvature vs. test accuracy

ResNet-18 CNN
Metric ImageNet Tiny ImageNet Metric CIFAR-100 CIFAR-10
Clean Accuracy 0.50 0.55 Clean Accuracy 0.83 0.45
FGSM(✏=.001) 0.56 0.49 FGSM(✏=.0001) 0.79 0.42
FGSM(✏=.002) 0.68 0.45 FGSM(✏=.001) 0.83 0.46
FGSM(✏=.003) 0.64 0.35 FGSM(✏=.005) 0.81 0.43
FGSM(✏=.004) 0.69 0.35 FGSM(✏=.01) 0.64 0.44
PGD(B=0.001) 0.61 - FGSM(✏=.015) 0.45 0.46
PGD(B=.002) - 0.48 PGD(B=.008) 0.52 0.07†

CW(c=5e-7) 0.78 - CW(c=.007) 0.36 -0.33
CW(c=.1) - 0.38

ResNet-18 CNN
Metric ImageNet Tiny ImageNet Metric CIFAR-100 CIFAR-10
Gau(�2=.001) 0.49 0.08† Gau(�2=.001) 0.80 0.41
Gau(�2=.01) 0.45 0.10† Gau(�2=.01) 0.66 0.47
Gau(�2=.05) 0.38 0.13† Gau(�2=.05) 0.50 0.12†

Gau(�2=.1) 0.37 0.14† Spkl(�2=.01) 0.76 0.44
Spkl(�2=.001) 0.49 0.07† Spkl(�2=.05) 0.58 0.47
Spkl(�2=.01) 0.46 0.09† Spkl(�2=.1) 0.43 0.23†

Spkl(�2=.05) 0.45 0.14† S&P(ratio=.5) 0.59 0.15†

Spkl(�2=.1) 0.36 0.21†

S&P(ratio=.5) 0.33 0.34

Pearson correlation coefficient between graph curvature and test accuracy of DANNs. All values except (†) are
significant, r(52), p<0.05. The bold font indicates the better accuracy of the same DANN on one dataset compared to
the other dataset. † denotes insignificant correlation values, r(52), p>0.05. These results indicate that curvature can
quantify the robustness of DANNs, especially in complex tasks and bigger models.
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2.10 Average Degree vs. Test Accuracy

Table 2.2 Average degree vs. test accuracy

ResNet-18 CNN
Metric ImageNet Tiny ImageNet Metric CIFAR-100 CIFAR-10
Clean Accuracy 0.60 0.63 Clean Accuracy 0.89 0.47
FGSM(✏=.001) 0.61 0.54 FGSM(✏=.0001) 0.85 0.44
FGSM(✏=.002) 0.71 0.51 FGSM(✏=.001) 0.88 0.49
FGSM(✏=.003) 0.67 0.44 FGSM(✏=.005) 0.83 0.46
FGSM(✏=.004) 0.72 0.44 FGSM(✏=.01) 0.63 0.47
PGD(B=0.001) 0.65 - FGSM(✏=.015) 0.45 0.49
PGD(B=.002) - 0.55 PGD(B=.008) 0.48 0.09†

CW(c=5e-7) 0.82 - CW(c=.007) 0.37 -0.33
CW(c=.1) - 0.45

ResNet-18 CNN
Metric ImageNet Tiny ImageNet Metric CIFAR-100 CIFAR-10
Gau(�2=.001) 0.58 0.15† Gau(�2=.001) 0.85 0.44
Gau(�2=.01) 0.53 0.17† Gau(�2=.01) 0.71 0.51
Gau(�2=.05) 0.46 0.20† Gau(�2=.05) 0.51 0.14†

Gau(�2=.1) 0.45 0.22† Spkl(�2=.01) 0.82 0.46
Spkl(�2=.001) 0.57 0.15† Spkl(�2=.05) 0.63 0.50
Spkl(�2=.01) 0.54 0.16† Spkl(�2=.1) 0.46 0.26†

Spkl(�2=.05) 0.54 0.22† S&P(ratio=.5) 0.56 0.16†

Spkl(�2=.1) 0.45 0.28
S&P(ratio=.5) 0.42 0.42

Pearson correlation coefficient between average degree of graphs and test accuracy of DANNs. All values except
(†) are significant, r(52), p<0.05. Bold text indicates better accuracy of the same DANN evaluated on one dataset
compared to the other dataset. † mark the insignificant correlation values, r(52), p>0.05. Average degree of graphs
are also related to robustness of DANNs.
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2.11 Global Efficiency vs. Test Accuracy

Table 2.3 Global efficiency vs. test accuracy

ResNet-18 CNN
Metric ImageNet Tiny ImageNet Metric CIFAR-100 CIFAR-10
Clean Accuracy 0.73 0.78 Clean Accuracy 0.93 0.45
FGSM(✏=.001) 0.71 0.68 FGSM(✏=.0001) 0.90 0.43
FGSM(✏=.002) 0.80 0.65 FGSM(✏=.001) 0.90 0.49
FGSM(✏=.003) 0.67 0.50 FGSM(✏=.005) 0.83 0.48
FGSM(✏=.004) 0.75 0.54 FGSM(✏=.01) 0.58 0.48
PGD(B=0.001) 0.71 - FGSM(✏=.015) 0.34 0.50
PGD(B=.002) - 0.66 PGD(B=.008) 0.45 0.15†

CW(c=5e-7) 0.85 - CW(c=.007) 0.43 -0.27
CW(c=.1) - 0.52

ResNet-18 CNN
Metric ImageNet Tiny ImageNet Metric CIFAR-100 CIFAR-10
Gau(�2=.001) 0.71 0.36 Gau(�2=.001) 0.89 0.43
Gau(�2=.01) 0.67 0.38 Gau(�2=.01) 0.78 0.52
Gau(�2=.05) 0.59 0.39 Gau(�2=.05) 0.51 0.17†

Gau(�2=.1) 0.55 0.39 Spkl(�2=.01) 0.88 0.46
Spkl(�2=.001) 0.70 0.35 Spkl(�2=.05) 0.70 0.51
Spkl(�2=.01) 0.68 0.37 Spkl(�2=.1) 0.51 0.28
Spkl(�2=.05) 0.67 0.42 S&P(ratio=.5) 0.48 0.13†

Spkl(�2=.1) 0.59 0.46
S&P(ratio=.5) 0.52 0.52

Pearson correlation coefficient between global efficiency measure of graphs and test accuracy of DANNs. All
values except (†) are significant, r(52), p<0.05. Bold text indicates better accuracy of the same DANN evaluated on
one dataset compared to the other dataset. † mark the insignificant correlation values, r(52), p>0.05. These results
indicate that global efficiency of graphs is also related to robustness of DANNs.
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2.12 Frameworks and Hyperparameters

Frameworks and corresponding packages used in our experiments are given in Supplementary

Table 2.4. The hyperparameters used in the training and evaluation of DANNs are given in

Supplementary Table 2.5. For the sake of procedural consistency and comparisons of results, the

set of parameters other than the those mentioned in Supplementary Table 2.5 are kept the same as

in original experiments for relational graphs by their respective authors [778].

Table 2.4 Frameworks and packages used in our codebase.

Package name Version
Ubuntu 20.04.3

Operating systems Windows 10
macOS 11.6

Programming languages Python 3.6.15
Matlab R2020a

Deep learning framework Pytorch 1.4.0
torchvision 0.5.0
RobustBench -

Adversarial library torchattacks 3.2.1
foolbox(optional) 3.3.1
art(optional) 1.9.0
scikit-image 0.17.2
scikit-learn 0.24.2

Miscellaneous scipy 1.4.1
numpy 1.19.5
networkx 2.3
pyyaml 5.1.2

Adversarial attacks FGSM -
(torchattacks) PGD -

CW -
Additive noise Gaussian -
(scikit-image) Speckle -

Salt & Pepper -
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Table 2.5 Training & eval hyperparameters for our DANN experiments.

CIFAR-10 CIFAR-100 TinyImageNet ImageNet

Hyperparam MLPs CNNs CNNs ResNet29 ResNet18 ResNet18

Epochs 200 100 350 150 75 75

Batch size 256 1024 32 512 256 450

Base lr 0.1 0.1 0.025 0.021 0.1 0.025

lr policy Cosine step=[0, 25, 50, 70]

Momentum 0.9

Weight decay 0.0005 0.01 0.0005 0.01 0.006 0.0001

Drop out - - FC: p=0.1 - Conv:p=0.2, -

FC:p=0.5

Trg iterations 5 5 5 5 1 1

Eval iterations 30 30 30 30 5 5
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2.13 Compute Resources and Wall-clock Times

Training time for a 5-layer MLP transformed from the WS-flex random graph on CIFAR-10

dataset is approximately 7 minutes on NVIDIA TITAN RTX GPU. Each MLP was trained five

times with random seed, consuming approximately 40 minutes in training the model. On the

NVIDIA TITAN RTX GPU, training of all 54 MLPs on CIFAR-10 dataset approximately took 3

days. For CIFAR-100 dataset, the 54 CNNs took approximately 5 days in training the DANNs,

five times each. For Tiny ImageNet experiments on the 54 ResNet-18s, the baseline model took

approximately 3 hours on TITAN RTX GPU, whereas, the longest training time for a ResNet-18

was approximately 18 hours. Total time for training 54 ResNet-18 models on Tiny ImageNet

was approximately 22 days. Training the baseline model of ResNet-18 on ImageNet dataset took

approximately 70 hours (3 days) on TITAN RTX GPU, the longest training time for a ResNet-18

model on ImageNet was approximately 123 hours (5 days). Total training time for 54 ResNet-18

models on ImageNet was approximately 3 months with parallel training on four GPUs. All the

aforementioned training times include the inference times for FGSM, PGD, and CW adversarial

attacks as well as Gaussian, Speckle, and Salt&Pepper additive noise. For tracking the experiments,

visualization of results, and hyperparameter tuning, we used the Weights and Biases [81] which is

a freely available performance visualization platform for machine learning tasks.
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2.14 Sample Images

Figure 2.14 Comparison of clean images from ImageNet dataset with adversarial examples.
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Figure 2.15 Comparison of clean images from ImageNet dataset with noisy images.

2.15 Algorithm for Robust Model Selection

We propose algorithm 2.1 as a guideline for selecting the robust architecture of DANN for a

given task without the need to undergo the train-validate-test loop for all the choices of architectures.

The input parameters of the algorithm include dataset x , task t, number of nodes n, the number of

DANNs to be considered ↵, and the binary flag about using ensemble of models. For all possible

(⌧ ) number of graphs in the given design space of n-node graphs, calculate curvature (ORC ) and

entropy (H). Select ↵ number of graphs having highest ORC and H values, generate DANNs from

39



these ↵ graphs, train DANNs for the downstream task t, and evaluate under natural and malicious

noise inputs. All these ↵DANNs have higher robustness than the rest of (⌧�↵) DANNs. Select the

DANN with the highest test accuracy, or use ensemble of these ↵ number of DANNs. Selection of

parameter ↵ is at the user’s discretion as per availability of resources such as computational power

and time, generally ↵ 10.

Algorithm 2.1 Robust Model Selection
Input: data x , task t, nodes n, number of graphs to be selected ↵, ensemble
repeat

for each ⌧ graph 2 n-node design space do
find all graphs G⌧ (n)
calculate H(G⌧ ), OR(G⌧ ) (graph measures)

end for
for i  1 to ↵ do

Gi  max(G⌧ (H ,OR)) . graphs having highest entropy, curvature
RG↵  Gi . add to the list of robust graphs

end for
until↵ robust graphs (RG↵) found
{required number of graphs found}
repeat

convert robust graphs to neural networks, RG↵ ! NN↵
for j  1 to ↵ do

train, validate NNj(x , t)
calculate test accuracy RobAcc(NNj) with noisy, adversarial inputs

end for
if ensemble then

select Robust NN = avg(RobAcc(NNj))
else

select Robust NN = max(RobAcc(NNj))
end if

untilRobust Neural Network found
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Chapter 3: Brain Tumor Segmentation and Surveillance with Deep Artificial Neural

Networks

3.1 Note to Reader

This chapter has been previously published in Springer as: Waqas, A., Dera, D., Rasool, G.,

Bouaynaya, N.C., Fathallah-Shaykh, H.M. (2021). Brain Tumor Segmentation and Surveillance

with Deep Artificial Neural Networks. In: Elloumi, M. (eds) Deep Learning for Biomedical Data

Analysis. Springer, Cham., and has been reproduced with permission from Springer [734].

3.2 Introduction

The task of brain tumor segmentation, presented in this chapter, is the confluence of multiple

techniques usually employed in diverse fields of science such as Digital Image Processing (DIP),

Computer Vision (CV), and Machine Learning (ML). ML algorithms, specifically Deep Artificial

Neural Networks (DNNs), have achieved state-of-the-art accuracy in CV related tasks, including

image segmentation. DNNs are built using large stacks of individual artificial neurons, each of

which performs mathematical operations of multiplication, summation, and non-linear operations.

One of the key reasons for the success of DNNs is the ability to learn useful features automatically

from the data as opposite to manual selection by expert humans [394, 363, 355]. Various architec-

tures of DNNs employed for brain tumor segmentation have been discussed along with a case study

of one of those architectures in detail. We discuss a new technique for quantifying uncertainty in

the output decision of DNNs. We also present different techniques for tumor surveillance.

The rest of the chapter is organized as follows: In section 3.3, we touch upon the relevant

theoretical background of the techniques involved in solving the tumor segmentation problem.
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We discuss image segmentation in general and medical image segmentation, particularly, and the

concept of surveillance in the medical sphere. Section 3.4 demonstrates brain tumor segmentation

through DNNs. Section 3.5 presents the particularly suited Inception modules in Deep Learning

(DL) for brain tumor segmentation. Section 3.6 explains the concept of uncertainty estimation

in the decision made by DNNs. Finally in Section 3.7, we discuss tumor surveillance techniques

supported by a case study followed by conclusion in Section 3.8.

3.3 Theoretical Background

The task of brain tumor segmentation using DNNs inherently involves various tasks. Therefore,

it is imperative to imbibe some basic theoretical background about these concepts, which leads up

to the task-at-hand.

3.3.1 Image Segmentation

A picture is worth a thousand words. This is because a picture contains far more information

in a few pixels that the human brain can process simultaneously as compared to the numerous

words that can express the same amount of information sequentially. Thus, understanding the

image and extracting useful information from it bears the central role in the fields of DIP and

CV. Classification task, in particular, assigns a label or class to an input image. However, image

classification does not provide pixel-level information, such as the location of objects in an image,

objects’ shapes and boundaries, information about which pixel belongs to which object, etc. For this

purpose, images are segmented by assigning a specific label to pixels with similar characteristics

in an image. Segmentation is a technique frequently used in DIP and CV fields for extracting

useful information from images [29]. It is the process of partitioning an image into segments

(having sets of pixels) representing various objects in the image. The purpose is to modify the

representation of an image into a more elaborate format, which is easy to understand anatomically

and helpful in extracting meaningful information for analysis. In usual practice, this process is

used to locate objects of interest and draw boundaries/shapes conforming to these objects in an
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image(s). Image segmentation has contributed to many spheres of human life, ranging from the

film-making industry to the field of medicine [657]. For example, the green screens used in

Marvel [472] movies employed segmentation to extract the foreground objects and place them on

different backgrounds depicting dangerous real-life scenes, Fig. 3.1(a). An example of medical

image segmentation includes the identification of multiple organs in the abdomen and thorax, as

shown in Fig. 3.1(b,c). Various techniques are used for classical image segmentation, e.g., region-

based [256](threshold segmentation, regional growth segmentation), edge-detection [786](Sobel

operator, Laplacian operator), clustering-based [786](K-means), and weak-supervised learning

[764] methods in CNN. Further details on classical image segmentation techniques are beyond the

scope of this chapter, so we will confine ourselves to medical image segmentation, in general, with

particular focus on brain tumor [474] segmentation.

Figure 3.1 Use of image segmentation in Marvel movies and medical imaging.

43



3.3.2 Brain Tumor Segmentation

Brain tumors [474] are masses or growths of abnormal cells in the brain, categorized into

primary and secondary or metastatic types. Primary brain tumors originate from brain cells,

whereas secondary tumors metastasize into the brain from other organs [516]. The most common

type of primary brain tumors are gliomas [553], which arise from brain glial cells, and can be of Low-

Grade (LGG) or High-Grade (HGG) sub-types. HGGs are aggressively-growing and infiltrative

malignant brain tumors, which usually require surgery or radiotherapy and have poor survival

prognosis with the highest mortality rate and prevalence [73]. Magnetic Resonance Imaging (MRI)

is a crucial diagnostic tool for brain tumor analysis, monitoring and surgery planning. Several

complimentary 3D MRI modalities such as T1, T1 with gadolinium-enhancing Contrast (T1C),

T2-weighted (T2), and FLuid-Attenuated Inversion Recovery (FLAIR) are acquired to emphasize

different tissue properties and areas of tumor spread. For example, in T1C MRI modality, the

contrast agent (e.g., gadolinium) emphasizes hyper-active tumor sub-regions.

Brain tumor segmentation [96, 363, 355, 624] is the technique of labeling tumor pixels in

an MRI to distinguish them from normal brain tissues and artifacts. These MRI scans are the

representation of the internal structure or function of the brain’s anatomic region in the form of an

array of picture elements called pixels or voxels. It is a discrete representation resulting from a

sampling/reconstruction process that maps numerical values to positions of the space. The number

of pixels used to describe the field-of-view of an acquisition modality is an expression of the detail

with which the anatomy or function can be depicted. Depiction of the numerical value of pixel

depends on the imaging modality, acquisition protocol, reconstruction, and post-processing. MRI

scans come in various file formats and standards but the six commonly used are: Analyze [475],

Neuroimaging Informatics Technology Initiative (NIfTI) [509], Minc [711], PAR/REC format used

by Philips MRI scanners [616], Nearly Raw Raster Data (NRRD) [512], and Digital imaging and

communications in medicine (Dicom) [182]. A comparison of characteristics of these formats is

shown in Fig. 3.2. In clinical practice, the process of separating the tumor pixels from normal brain

tissues provides useful information about existence, growth, diagnosis, surveillance and treatment
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planning. The process of manual delineation requires anatomical knowledge by specially trained

persons, whereas such manual practices are expensive, time-consuming, and are prone to errors

due to human limitations. The process of automated segmentation of brain tumors from 3D images

facilitates in overcoming these shortcomings [391].

Figure 3.2 Summary of medical imaging file formats

3.3.3 Tumor Surveillance

National Cancer Institute (NCI), part of the U.S. National Institutes of Health (NIH), defines

tumor surveillance as closely watching a patient’s condition but not treating it unless there are

changes in test results. Surveillance is also used to find early signs that a disease has come back.

It may also be used for a person who has an increased risk of a disease, such as cancer [311]. The

process of surveillance regularly involves (scheduled) medical tests and examinations to track the

growth of the tumor. The term has also been used in the realm of public health, wherein collective

information of a disease, such as cancer, is recorded in a group of people belonging to a specific
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category (ethnic, age, gender, regional, etc.) Active surveillance is extremely beneficial, especially

for patients with low-risk cancer diagnoses. Apart from the routine biopsy, active surveillance is

almost surgically noninvasive. It helps in the delay of more invasive treatments such as surgical

removal of a tumor, sparing the patients from burdensome side effects and potential complications

for as long as possible. Moreover, by deferring the invasive treatment to the point when the disease

worsens, active surveillance enables cancer patients to maintain a quality of life. A case in point

is the exceptionally beneficial surveillance of low-risk prostate cancer in men. The reason for

this success is that almost 50% of prostate cancer diagnoses are categorized as low-risk with less

possibility of spread, and few cases may never require advanced forms of treatment. Such cases

do not immediately need to be aggressively treated in the absence of worsened disease while the

specialists keep records of the tumor’s growth over time. Surveillance allows the specialists to

monitor the disease right from the onset, thus leveraging them the liberty to analyze the effects and

progress of disease and determine the next course of action [585]. A study by Harvard researchers

found that the aggressiveness of prostate cancer at diagnosis appears to remain stable over time for

most men. If patients had chosen active surveillance, then this could make them feel more confident

in their decision about treatment [552]. Early detection of the tumor through surveillance could

assist both the patients and the specialists in taking more considered decisions about treatment.

3.3.4 Deep Learning Segmentation Task

Computer Vision (CV) is the field of computer science that aims to replicate (to some extent) the

complex nature of the human vision system into modern-day computers and machines. It endeavors

to enable machines to visually gaining a high-level understanding of objects in the imagery in its

quest to mimic the humans. A chronological insight in some of the most active topics of research

in computer vision can be found in [673]. Most attractive topics in today’s CV tasks include object

classification (i.e., categorizing objects in an image), localization (i.e., spatially locating objects in

an image), detection/ recognition and segmentation (i.e., identifying the category of each pixel in

an image) as shown in Fig. 3.3.
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Figure 3.3 Important computer vision tasks.

The commonly used classical image segmentation techniques, described in section 3.2.1 above

have been replaced by their more efficient counterparts in ML because of the former’s inherently

rigid algorithms and the need for human intervention. Image segmentation is the fundamental

component of DL, which is part of a broader family of ML. Compared with other DL algorithms,

CNNs have proven to be the more efficient selection for segmentation tasks from imagery. Image

segmentation using CNN involves feeding the CNN with the desired image as an input and getting

the labels of each pixel, i.e., labeled image as an output. Instead of processing the complete image

at once, CNN deals with a fraction of image conforming to its filter, convolving and ultimately

mapping over the entire image. To learn more on CNNs, a concise explanation supported by a

visualization can be referred to at [199, 198].

3.3.5 Motivation

A large population suffers from fatalities caused by cancer, and brain tumors are one of the

leading causes of death for cancer patients, especially children and adolescents. Brain tumors

account for one in every 100 cancers diagnosed annually in the United States [640]. In 2019, the
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American Cancer Society reported that 23,820 new brain cancer cases were discovered in the United

States [637]. One of the most frequent primary brain tumors is glioma [292], which affects the

glial cells of the brain as well as the surrounding tissues. The HGG or GlioBlastoMa (GBM) is the

most common and aggressive type with a median survival rate of one to two years [103]. Although

neurosurgery may be the only therapy for many brain tumors [400], other treatment methods such

as radiotherapy and chemotherapy are also used to destroy the tumor cells that cannot be physically

resected or to slow their growth. Before the treatment through chemotherapy, radiotherapy, or brain

surgeries, there is a need for medical practitioners to confirm the boundaries and regions of the

brain tumor and determine where exactly it is located and the exact affected area. Moreover, all of

these invasive treatments face challenging practice conditions because of the structure and nature

of the brain. These conditions make it very difficult to distinguish the tumor tissue from normal

brain parenchyma for neurosurgeons based on visual inspection alone [488, 363, 355, 624].

Moreover, such manual-visual practices usually involve a group of clinical experts to define the

location and the type of the tumor accurately. This lesion localization process is laborious, and

its quality depends on the physicians’ experience, skills, slice-by-slice decisions, and the results

may still not be universally accepted among the clinicians. Treatment protocols for high-grade

pediatric brain tumors and general low-grade tumors recommend regular follow-up imaging for up

to 10 years. For these longitudinal studies, a comparison of the current MRI with all prior imaging

takes a very long time, which is practically infeasible. Automated computer-based segmentation

methods present an excellent solution to the challenges mentioned above by saving physician’s time

and providing reliable and accurate results while reducing the diagnosis efforts of surgeons on a

single patient [347]. Brain tumor segmentation is motivated by assessing tumor growth, treatment

responses, computer-based surgery, treatment of radiation therapy, and developing tumor growth

models. Thus, the computer-assisted diagnostic system is meaningful in medical treatments to

reduce the workload of doctors and to get accurate results.
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3.3.6 Challenges

Segmentation of gliomas in pre-operative MRI scans — conventionally done by expert board-

certified neuro-radiologists and other physicians — provides quantitative morphological characteri-

zation and measurement of glioma sub-regions. The quantitative analysis task is challenging due to

the high variance in appearance and shape, ambiguous boundaries and imaging artifacts. Although

computer-aided techniques have the advantage of fast speed, consistency in accuracy and immunity

to fatigue [629], automatic segmentation of brain tumors in multi-modal MRI scans is still one

of the most difficult tasks in medical image analysis and applications. Automatic segmentation

involves dealing with a complicated and massive amount of data, artifacts due to patient’s motion,

limited acquisition time, and soft tissue boundaries that are usually not well defined. Moreover,

many classes of tumors have a variety of irregular shapes, sizes, and image intensities, especially

the surrounding structures of tumors. Numerous attempts have been made in developing ML algo-

rithms for segmenting normal and abnormal brain tissues using MRI images, which will be covered

in detail in section 3.4. However, feature selection to enable automation is challenging and requires

a combination of computer engineering and medical expertise. Thus, developing fully-automated

brain tumor segmentation remains a challenging task, and a large part of the research community is

currently involved in overcoming this challenge in bringing state-of-the-art ideas in this field into

reality.

3.4 Brain Tumor Segmentation Using Deep Artificial Neural Networks

The task of segmenting brain tumor in MRI images has been adopted in DNNs from the image

segmentation task in CV. This section focuses on these techniques imported in DL from CV and

also gives an overview of the various DL architectures employed on brain MRI datasets.

49



Figure 3.4 Few image segmentation techniques in computer vision.

3.4.1 Image Segmentation in Computer Vision Realm

Image segmentation is the task of finding groups/ clusters of pixels that belong to the same

category. It divides an input image into segments to simplify image analysis. These segments

represent objects or parts of objects and comprise sets of pixels belonging to each part. Practically,

the segmentation sorts pixels into larger components, eliminating the need to consider individual

pixels as units of observation. In statistics, this problem is known as cluster analysis and is a widely

studied area with many different algorithms [349, 322, 321, 320]. In CV, image segmentation is

one of the oldest and most extensively used problems dates back to the 1970s [99, 589, 547, 518,

594, 275]. Some of the most extensively known techniques developed for image segmentation

are: (a) active contours [85]; (b) level sets [160]; (c) region splitting and graph-based merging

[218]; (d) mean shift (mode finding) [152]; (e) normalized cuts (splitting based on pixel similarity

metrics), as depicted in Fig. 3.4. The segmentation process itself has two forms, namely; semantic,

and instance segmentation. The former classifies all the pixels of an image into meaningful or

50



semantically interpretable classes of objects and is usually referred to as dense prediction. The

latter identifies each instance of each object in an image and differs from semantic segmentation in

that it does not categorize every pixel. For example, in Fig. 3.3, semantic segmentation classified

all cars, while instance segmentation identifies each one individually. Various metrics are used

for performance evaluation of image segmentation including pixel accuracy Pacc , mean accuracy

Macc , Intersection-over-Union (IoU) MIU , frequency weighted IoU FIU and Dice coefficient [445].

Let nij indicate the number of pixels of class i predicted to belong to class j , where there are ncl

different classes, and let ti =
P

j nij indicates the number of pixels of class i , then the performance

evaluation terms mentioned above are defined by:

Pacc =
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i ti
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Dice Similarity Coefficient (DSC) has also been extensively used for evaluating segmentation

algorithms in medical imaging applications [62]. DSC between a predicted binary image P and

ground truth binary image G , both of size N x M is given by:

DSC (P ,G ) = 2

PN�1
i=0

PM�1
j=0 PijGij

PN�1
i=0

PM�1
j=0 Pij +

PN�1
i=0

PM�1
j=0 Gij

, (3.5)

where i and j represent pixel indices for the height N and width M . The range of DSC is [0, 1],

and a higher value of DSC corresponds to a better match between the predicted image P and the

ground truth image G .

The application of image segmentation techniques in the medical imaging field opened a new

frontier of knowledge with advances in the areas of diabetic retinopathy detection, skin cancer

51



classification, brain tumor segmentation and many more. In this chapter, we will restrict ourselves

to brain tumor segmentation only and look at the various techniques employed in Artificial Neural

Networks (ANNs) for brain tumor segmentation.

3.4.2 Deep Artificial Neural Networks and Image Segmentation

DNNs have achieved significant milestones in the CV field. DNNs have multiple layers between

the input and output layers. The basic element of ANN, i.e., artificial neuron, has multiple inputs

that are weighted and summed up, followed by a transfer function or activation function. Then the

neuron outputs a scalar value. An example of ANN is illustrated in Fig. 3.5 [441]. Inspired by

biological processes, ANNs use shared-weight architecture where the connectivity pattern between

neurons mimics the organization of the brain visual cortex [231, 393]. ANNs imitate the concept

of receptive fields where individual cortical neurons respond to stimuli only in a restricted field of

view. Because of their shared-weight architecture and translation invariance characteristics, ANNs

are shift or space-invariant. Due to the linear operations followed by the non-linear activations,

ANNs are capable of extracting higher-level representative features [261] and can compute any

function [507].

Figure 3.5 Artificial neuron model and ANN model.
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3.4.3 DL-based Image Segmentation Architectures

Most prominent DL architectures used by the CV community include Convolutional Neural

Networks(CNNs), Recurrent Neural Networks (RNNs) and Long Short Term Memory (LSTM),

encoder-decoders, and Generative Adversarial Networks (GANs) [395, 291, 252, 253]. With our

focus on CNNs, let us discuss the three important DL-based image segmentation architectures.

3.4.3.1 Convolutional Neural Networks

Waibel et al. introduced Convolutional Neural Networks (CNN) that had weights shared among

temporal receptive fields, and it had back-propagation training for phoneme recognition [716].

LeCun et al. developed a CNN architecture for document recognition as shown in Fig. 3.6a [395].

The three basic components/ layers of a CNN are: 1) convolutional layer, having a kernel (or

filter) of weights convolved with the input image to extract features; 2) nonlinear layer having

an element-wise activation function applied to feature maps; and 3) pooling layer, which reduces

spatial resolution and replaces appropriate neighborhood of a feature map with some statistical

information (mean, max, etc.) [486]. Deep CNNs have performed extremely well on a wide variety

of medical imaging tasks, including diabetic retinopathy detection [263], skin cancer classification

[209], and brain tumor segmentation [146, 316, 722, 664, 107]. Some of the most well-known

CNN architectures include AlexNet [385], VGGNet [639], ResNet [284], GoogLeNet [670] which

use Inception modules architecture (explained in detail in section 3), MobileNet [293], and DenseNet

[298].

3.4.3.2 Fully Convolutional Networks

Fully Convolutional Networks (FCNs), proposed by Long et al., use convolutional layers to

process varying input sizes [445]. It was one of the first DL models for semantic segmentation. As

shown in Fig. 3.6b, the final output layer of FCN has a large receptive field and corresponds to the

height and width of the image, while the number of channels corresponds to the number of classes.

The convolutional layers classify every pixel to determine the context of the image, including the
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location of objects. FCNs have been applied to a variety of segmentation problems, such as brain

tumor segmentation [722], instance-aware semantic segmentation [420], skin lesion segmentation

[784], and iris segmentation [436].

Figure 3.6 Basic architecture of CNN and FCN.

3.4.3.3 Encoder-Decoder Based Models

Encoder-decoder models are inspired by the FCNs, and the most well-known architecture of

these models are U-Net and V-Net [593, 485]. U-Net was proposed for segmenting biological

microscopy images, and it used the data augmentation technique to learn from the available

annotated images more effectively. The U-Net architecture consists of two parts; a contracting

or down-sampling path to capture the context, and a symmetric expanding or up-sampling path for

localization of the captured context. The contracting path has FCN-like architecture that extracts

features with 3 ⇥ 3 convolutions while increasing the number of feature maps and reducing their

dimensions. Contrarily, the expanding path carries out deconvolutions by reducing the number

of feature maps while increasing their dimensions. The feature maps from the contracting path

are concatenated to the expanding path to maintain the integrity of pattern information. Finally, a
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segmentation map is generated from feature maps by 1⇥ 1 convolution operation that categorizes

each pixel of the input image. U-Net was trained on 30 transmitted light microscopy images,

and it won the International Symposium on Biomedical Imaging (ISBI) cell tracking challenge in

2015 by a large margin. V-Net [485] is another well-known FCN-based model proposed for 3D

medical image segmentation. It introduced a new objective function based on the Dice coefficient,

which enabled the model to deal with strong class imbalance between the number of voxels in the

foreground and the background. V-Net was trained end-to-end on MRI volumes depicting prostate,

and it learned to predict segmentation for the whole volume at once.

3.4.3.4 Other DL Models for Image Segmentation

In addition to the models described in previous sections, there are many families of DL ar-

chitectures that are very popular for medical image segmentation. For example, convolutional

graphical models (incorporating concepts of Conditional Random Fields (CRFs) and Markov Ran-

dom Field (MRFs)), Multi-scale pyramid network models (Feature Pyramid Network (FPN)) [429],

Pyramid Scene Parsing Network (PSPN) [802], Regional CNN (R-CNN) like Fast R-CNN, Faster

R-CNN, and Mask-RCNN, dilated or atrous convolution (DeepLab Family [131]), RNN-based mod-

els (ReNet [713], ReSeg [712]), Data-Associated RNNs (DA-RNNs) [754]), and attention-based

models (OCNet [785], Expectation-Maximization Attention Network (EMANet) [418], Criss-Cross

attention Network (CCNet) [303]). Minaee et al. has presented an elaborate review reference of all

of these models [486].

3.4.4 Brain Tumor Segmentation Task Challenge

In this section, we discuss the brain tumor segmentation task in the realm of DL. Internation-

ally held challenges on medical imaging analysis have become the standard for validation of the

proposed methods. Brain Tumor Segmentation (BraTS) Challenge [515] is one such challenge

that is held in conjunction with Medical Imaging Computing and Computer-Assisted Intervention

(MICCAI) conference [260]. The first challenge workshop was held in 2012, followed by yearly
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benchmarks held with MICCAI conferences. BraTS challenge evaluates state-of-the-art segmenta-

tion methods of brain tumors in MRI scans. It has a publicly available dataset (with accompanying

expert delineations), which is used for benchmarking the submitted contenders for segmenting

multi-institutional pre-operative MRI (mpMRI) scans having intrinsically heterogeneous (in ap-

pearance, shape, and histology) brain tumors, namely gliomas. In addition, this challenge also

encompasses the survival prediction of the patient and evaluates the algorithmic uncertainty in

tumor segmentation. The challenge evaluates segmentation of tumor sub-regions of Enhancing

Tumor (ET), Tumor Core (TC), and Whole Tumor (WT) as shown in Fig. 3.7. ET are regions of

hyper-intensity in T1C when compared to T1, and TC is the bulk of the tumor, that is typically

resected. The TC involves ET and the necrotic (fluid-filled) and the non-enhancing (solid) parts

of the tumor. WT is the complete extent of the disease, as it is comprised of the TC and the

peritumoral EDema (ED), depicted by FLAIR. The dataset for the 2018 challenge consisted of a

total of 542 patients, with 285 for training, 66 for validation, and 191 for testing scans having 210

High-Grade Glioma (HGG) and 75 Low-Grade Glioma (LGG) patients with annotations approved

from experienced neuro-radiologists through a hierarchical majority vote. The data consists of

clinically-acquired 3T multi-contrast MR scans from around 19 institutions, with ground truth

labels by expert board-certified neuro-radiologists in NIfTI files (.nii.gz). Dice coefficient and

Hausdorff distance (95%) have been used as evaluation schemes. Apart from these, Sensitivity and

Specificity are also used as metrics. An assessment of state-of-the-art ML methods used for brain

tumor segmentation under the BraTS challenge from the period 2012-2018 has been compiled by

Bakas et al. [63].

3.5 Inception Modules in Brain Tumor Segmentation

After assimilating the brain tumor segmentation problem using DNNs, let us now look at one of

the architectures that has appreciable accuracy in solving this problem. This architecture is based

on U-Net with Inception modules.
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3.5.1 Segmentation Using Inception/ Dilated Inception Modules

Cahall et al. proposed an image segmentation framework for tumor delineation that benefits

from two state-of-the-art ML architectures in CV: Inception modules and U-Net [107, 670, 593].

This new framework includes two learning regimes, i.e., learning to segment intra-tumoral structures

(necrotic and non-enhancing tumor core, peritumoral edema, and enhancing tumor) or learning to

segment glioma sub-regions (WT, TC, ET). Both learning regimes are described in section 3.3.4

above. These learning regimes were incorporated into a modified loss function based on the DSC

described in section 3.3.1 eq. 3.5 above.

Figure 3.7 Image patches with annotated tumor (glioma) sub-regions.

U-Net was originally developed for cell tracking. However, it has been applied recently to other

medical segmentation tasks, such as, brain vessel segmentation [444], brain tumor segmentation

[188], and retinal segmentation [245]. To tackle different medical imaging segmentation problems,

variations and extensions of U-Net have also been proposed, such as 3D U-Net [343, 608], H-

DenseUNet [419], RIC-UNet [791], and Bayesian U-Net [526]. Cahall et al. used a cascade

learning approach in which three different models were used first to learn the WT, then TC, and

finally, ET resulting in a proposed end-to-end implementation for all tumor sub-types [107].
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3.5.2 BraTS Dataset and Pre-processing

We used BraTS 2018 dataset, described in section 3.3.4, for experiments [480, 62, 61, 63].

The dataset contains four sequences for each patient’s MRI (T1, T1c, T2, and FLAIR) images.

It also contains ground truth in the form of pixel-level manual segmentation markings for three

intratumoral structures: necrotic and non-enhancing tumor core (labeled as 1), peritumoral edema

(labeled as 2), and enhancing tumor (labeled as 4). The glioma sub-regions have been defined as WT

having all three intratumoral structures (labeled as (1[2[4)), TC containing all except peritumoral

edema (labeled as (1 [ 4)), and ET (labeled as 4). Different sequences provide complementary

information for identifying the intratumoral structures; FLAIR highlights the peritumoral edema,

T1c distinguishes the ET, and T2 highlights the necrotic and non-enhancing tumor core. BraTS

images have been pre-processed for skull-stripping, re-sampled to an isotropic 1 mm3 resolution,

and co-registered all four modalities of each patient. Cahall et al. [107] performed additional

pre-processing in the following order:

1. Discard excess background pixels from images by obtaining the bounding box of the brain

and extracting the selected portion, effectively zooming on the brain.

2. Re-size the cropped image to 128⇥ 128 pixels.

3. Drop the images having no tumor regions in the ground truth segmentation.

4. Apply intensity windowing function to each image such that the lowest 1% and the highest

99% pixels were mapped to 0 and 255, respectively.

5. Normalize images by subtracting the mean and dividing by the standard deviation of the

dataset.

3.5.3 Deep Artificial Neural Network Architectures

In medical imaging, semantic segmentation’s accuracy depends on the ability to extract the local

structural as well as global contextual information from MRI scans while training the model. For
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this reason, many multi-path architectures in the context of medical imaging have been proposed,

and all of them extract the structural and contextual information from input data at multiple scales

[343, 280, 602]. This features extraction-aggregation concept at various scales was also done in

Inception modules [670]. However, the feature extraction mechanism in the Inception module is

different from the multi-path architectures. The Inception module applies filters of various sizes at

each layer and concatenates resulting feature maps [670]. Cahall et al. [107] proposed a modified

version of Dilated Residual Inception (DRI) [627] based on U-Net and factorized convolution

Inception module [593, 670]. DRI’s special blocks were inspired from Inception module [669]

and dilated convolution [780]. DRI has fewer parameters than the original Inception module and

employs residual connections to alleviate the vanishing gradients problem at a faster convergence

rate [284]. MultiResUNet combined a U-Net with residual Inception modules for multi-scale

feature extraction, applying the architecture to several multimodal medical imaging datasets [308].

Integration of Inception modules with U-Net has been evaluated for left atrial segmentation [719],

liver and tumor segmentation [417], and brain tumor segmentation [407].

3.5.3.1 Inception Module

The convolutional layer in the proposed Inception module [107] in the original U-Net was

replaced with an Inception module having multiple sets of 3⇥ 3 convolutions, 1⇥ 1 convolutions,

3⇥ 3 max pooling, and cascaded 3⇥ 3 convolutions as depicted in Fig. 3.8(B). At each layer on

the contracting path, the height and width of the feature maps are halved, and the depth is doubled

until reaching the bottleneck, i.e., the center of the U. On the corresponding expanding path at each

layer, the height and width of feature maps are doubled, and the depth is halved until having the

segmentation mask as the output. As with U-Net, feature maps generated on the contracting path

are concatenated to the corresponding expanding path. The authors employed a Rectified Linear

Unit (ReLU) as the activation function, with batch normalization [314] in each Inception module.

The architecture setting receives an input image of sizeN⇥M⇥D and outputs anN⇥M⇥K tensor

where N = M = 128 pixels, D = 4 represents the four MRI modalities (T1, T1c, T2, FLAIR),
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and K = 3 represents the segmentation classes (intra-tumoral structures or glioma sub-regions).

The output image of K slices is a binary image representing the predicted segments for the i th class

(0  i  K � 1). Pixel-wise activation functions (sigmoid [513] for glioma and softmax [513] for

intra-tumoral structures) are used to generate the output binary images.

3.5.3.2 Dilated Inception U-Net

Another useful architecture, called Dilated Inception U-Net (DIU-Net), integrates dilated or

astrous convolutions [131] and Inception modules in the U-Net architecture [632] as shown in Fig.

3.8(A). Here, each dilated Inception module consists of three 1 ⇥ 1 convolutional operations,

followed by one l-dilated convolutional filter (with l = 1, 2, 3), as illustrated in Fig. 3.8(C ). The

1 ⇥ 1 convolutional filters perform dimensionality reduction, while three l-dilated convolutional

filters each of size 3⇥ 3 implement atrous convolutions. In dilated convolutions, an image I of size

m ⇥ n and a discrete convolutional filter w of size k ⇥ k are convolved by:

(I ⇤ w)(p) =
X

s

I [p + s]w [s] . (3.6)

Simple convolution operation of eq. 3.6 can be generalized to l-dilated convolution (*l ) as

[780]:

(I ⇤l w)(p) =
X

s

I [p + ls ]w [s] . (3.7)

For l = 1, we get the simple convolutional operation of eq. 3.6. For l > 1, l-1 zeroes are inserted

between each filter element, creating a scaled and sparse filter of size k s ⇥ k s, where k s is defined

by:

ks = k + (k � 1)(l � 1), (3.8)

= l(k � 1) + 1. (3.9)
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The scaling s increases the receptive field of the filter by a factor ks
k .

ks
k

=
k + (k � 1)(l � 1)

k
, (3.10)

= l +

✓
�l + 1

k

◆
. (3.11)

The receptive field of the filter increases linearly with l , while the number of elements (k ⇥ k)

remains fixed.

Figure 3.8 DIU-Net, Inception module, and Dilated Inception module architectures.

3.5.3.3 Modified DSC as Objective/Loss Function

Cahall et al. used a modified version of DSC (eq. 3.5) as an objective/ loss function, after

incorporating three changes: (1) the sign of DSC was changed to convert it into a minimization
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problem, (2) a log function was introduced, and (3) a new parameter � was used to cater for

extremely large values of the loss function [107]. From initial experiments, it was empirically

observed that � = 100 provided the best segmentation performance. Modified DSC as a loss

function for a binary class (tumor or not tumor) and multi-class (for K classes) are given in the

following two equations:

LDSC (P ,G ) = �log
"
2

PN�1
i=0

PM�1
j=0 PijGij + �

PN�1
i=0

PM�1
j=0 Pij +

PN�1
i=0

PM�1
j=0 Gij + �

#
, (3.12)

LDSC (P ,G ) = �log
"
1

K

K�1X

i=0

DSC (Pi ,Gi)

#
. (3.13)

3.5.4 Experimental Setup and Results

Four different models were trained by Cahall et al. [107], two for the U-Net architecture

(intra-tumoral structures and glioma sub-regions), and two for the U-Net with Inception module

(intra-tumoral structures and glioma sub-regions). All four models were trained using k-fold cross-

validation on the dataset that was randomly split into k mutually exclusive subsets of equal or

near-equal size. Each algorithm was run k times subsequently, and each time one of the k splits

was taken as a validation subset and the rest as the training subset. Stochastic gradient descent

[597] with an adaptive moment estimator (Adam[597]) was used for training all models and their

variations [374]. With a batch size of 64 and 100 epochs, the learning rate was initially set to

10�4, which was exponentially decayed every 10 epochs. All learnable parameters (weights and

biases) were initialized based on the He initialization method [282]. Keras [143] Application

Programming Interface (API) with TensorFlow [1] backend was used for implementation, and all

models were trained on a Google Cloud Compute [255] instance with 4 NVIDIA TESLA P100

Graphical Processing Units (GPUs).
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3.5.4.1 Results - Inception Modules

For intra-tumoral structures, the addition of Inception modules to U-Net resulted in statistically

significant improvements in WT (DSC improved from 0.903 to 0.925, p < 0.001), TC (0.938

to 0.952, p < 0.001), and ET (0.937 to 0.948, p <0.001). For glioma sub-regions, significant

improvements were also noticed in WT (0.898 to 0.918, p < 0.001), TC (0.942 to 0.951, p =

0.001), and ET (0.942 to 0.948, p = 0.002). Changing the objective from intra-tumoral structures

to glioma sub-regions learning in the U-Net resulted in no difference in performance for WT (0.903

to 0.898, p = 0.307), TC (0.938 to 0.942, p = 0.284), and ET (0.937 to 0.942, p = 0.098). However,

U-Net with Inception modules, which learned the intra-tumoral structures outperformed those which

learned glioma sub-regions in WT (0.918 to 0.925, p = 0.007), but there was no difference in the

performance for TC (0.952 to 0.951, p = 0.597) and ET (0.948 to 0.948, p = 0.402). This implies

that integrating Inception modules in the U-Net architecture resulted in statistically significant

improvement in tumor segmentation performance that was quantified using k-fold cross-validation

(p < 0.05 for all three glioma sub-regions). The improvement in the validation accuracy can be

attributed to the multiple convolutional filters of different sizes employed in each Inception module.

These filters are able to capture and retain contextual information at multiple scales during the

learning process, both in the contracting as well as expanding paths. We also consider that the

improvement in the tumor segmentation accuracy is linked to the new loss function based on the

modified DSC (eq. 3.13). DSC scores for Inception modules are comparable or exceed the results of

No New-Net [317], which achieved second place in the BraTS 2018 competition, and the ensemble

approach proposed in [317, 346, 793].

3.5.4.2 Results - DIU-Net

DIU-Net showed significant improvement in the WT sub-region with an increase in the Dice

score from 0.925 to 0.931 with p < 0.05. For the TC sub-region, the Dice score improved from

0.952 to 0.957 with p < 0.05. However, for the ET, the change was not statistically significant, p =

0.114. Interestingly, DIU-Net is computationally more efficient. DIU-Net has 2.5 million fewer
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parameters than U-Net with Inception modules. In contrast, DIU-Net achieves significantly better

results at a lesser computational cost (15% fewer parameters). The Dice scores for each glioma

sub-region are comparable or exceed the results of other recently published architectures, including

No New-Net, SDResU-Net and the ensemble approach proposed in [317, 346, 793].

3.6 Uncertainty Estimation in Brain Tumor Segmentation

As mentioned before, accurate segmentation of brain tumors is crucial for treatment planning

and follow-up evaluations. Furthermore, the robustness and trustworthiness of the segmentation

results are of particular interest in medical imaging and in the clinic for diagnosis and prognosis due

to their link to human health. In this section, we propose a new DL framework, named extended

Variational Density Propagation (exVDP), that can quantify uncertainty in the output decision

[173]. In exVDP, we adopt the Variational Inference (VI) [86] framework and propagate the first

two moments of the variational distribution through all ANN’s layers (convolution, max-pooling

and fully-connected) and non-linearities. We use the first-order Taylor series linearization [539] to

propagate the mean and covariance of the variational distribution through the non-linear activation

functions in the DNNs.

We consider a CNN with a total of C convolutional layers and L fully-connected layers, where

the convolutional kernels and the weights of the fully-connected layers are random tensors. A

non-linear activation function follows every convolutional and fully-connected layer. Moreover,

the ANN contains max-pooling layers. The ANN’s weights (and biases) are represented by

⌦ = {{{W(kc )}Kc
kc=1}Cc=1, {W(l)}Ll=1}, where {{W(kc )}Kc

kc=1}Cc=1 is the set of Kc kernels in the c th

convolutional layer, and {W(l)}Ll=1 is the set of weights in L fully-connected layers. We consider

input tensor X 2 RI1⇥I2⇥K , where I1, I2, and K represent image height, width, and number of

channels, respectively.
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3.6.1 Variational Learning

We introduce a prior distribution over ANN weights, ⌦ ⇠ p(⌦). We assume that convolutional

kernels are independent of each other within a layer as well as across different layers. This

independence assumption is desirable as it promotes convolutional kernels to extract uncorrelated

features within and across layers. Given the training data D = {X(i), y(i)}Ni=1 and the prior p(⌦),

the posterior p(⌦|D) is given through the Bayes’ rule. However, p(⌦|D) is typically intractable. VI

methods approximate the true posterior p(⌦|D)with a simpler parametrized variational distribution

q�(⌦). The optimal parameters of the variational posterior �⇤ are estimated by minimizing the

Kullback-Leibler (KL) divergence between the approximate and the true posterior [84, 86].

�⇤ = argminKL [q�(⌦)kp(⌦|D)]

= argmin

Z
q�(⌦) log

q�(⌦)

p(⌦)p(D|⌦)d⌦

= argminKL [q�(⌦)kp(⌦]� Eq�(⌦) {log p(D|⌦)} .

(3.14)

The optimization objective is given by the Evidence Lower BOund (ELBO) L(�; y|X):

L(�; y|X) = Eq�(⌦)(log p(y|X,⌦))� KL(q�(⌦kp(⌦)). (3.15)

ELBO consists of two parts, the expected log-likelihood of the training data given the weights

and a regularization term, which can be re-written as:

KL(q�(⌦kp(⌦) =
CX

c=1

KcX

kc=1

KL(q�(W(kc ))kp(W(kc )))�
LX

l=1

KL(q�(W(l))kp(W(l))). (3.16)

3.6.2 Variational Density Propagation

We propose to approximate the true unknown posterior p(⌦|D) by a variational distribution

q�(⌦). We have defined Gaussian distribution as a prior over convolutional kernels and weights of

the fully-connected layers [173]. The task is now to propagate the moments of the variational dis-
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tribution q�(⌦) through various layers, i.e., convolution, activation, max-pooling, fully-connected,

and softmax. It is important to note that in our settings, the convolutional kernels, resulting ac-

tivations, extracted features, logits, and output of the softmax function are all random variables.

Therefore, instead of performing algebraic operations on real numbers, we are confronted with

operations on random variables, including (1) multiplication of a random variable with a constant,

(2) multiplication of two random variables, and (3) non-linear transformations [173] operating

over random variables. As a result of the multiplication of two Gaussian random variables [539]

or non-linear transformation, the resulting random variables may not have Gaussian distribution

[539]. Our goal is to propagate the mean and covariance of the variational distribution and later

obtain the mean and covariance of the predictive distribution, p(y|X,D). The mean of p(y|X,D)

represents the ANN’s prediction, while the covariance matrix reflects the uncertainty associated

with the output decision. An illustration of the proposed variational density propagation CNN with

one convolutional layer, one max-pooling and one fully-connected layer is shown in Fig. 3.9.

Figure 3.9 A schematic layout of the proposed variational density propagation CNN.

3.6.3 Extended Variational Density Propagation

We start with our mathematical results for the propagation of the mean and covariance of

the variational distribution q�(⌦) through convolutional layers, activation functions, max-pooling,

fully-connected layers, and the softmax function. We use first-order Taylor series for the approxi-
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mation of the first two moments (mean and covariance) after a non-linear activation function and

refer to this method as the exVDP [173].

3.6.3.1 First Convolutional Layer

The convolution operation between a set of kernels and the input tensor is formulated as a

matrix-vector multiplication. We first form sub-tensors Xi :i+r1�1,j :j+r2�1 from the input tensor

X, having the same size as the kernels W(kc ) 2 Rr1⇥r2⇥K . These sub-tensors are subsequently

vectorized and arranged as the rows of a matrix X̃ . Thus, convolving X with the k th
c kernel W(kc )

is equivalent to the multiplication of X̃ with vec(W(kc )). Let

z(kc ) = X ⇤W(kc ) = X̃ ⇥ vec(W(kc )), (3.17)

where ⇤ denotes the convolution operation and ⇥ is a regular matrix-vector multiplication. We

have defined a multivariate Gaussian distribution over the vectorized convolutional kernels, i.e.

vec(W(kc )) ⇠ N
�
m(kc ),⌃(kc )

�
. It follows that:

z(ks) ⇠ N
⇣
µz(kc ) = X̃m(kc ), ⌃z(kc ) = X̃⌃(kc )X̃T

⌘
. (3.18)

3.6.3.2 Non-linear Activation Function

We approximate the mean and covariance after the non-linear activation function  using the

first-order Taylor series approximation [539]). Let g(kc )
i =  [z(kc )i ] be the element-wise i th output

of  . We have µg(kc ) and ⌃g(kc ) :

µ
g(kc )i
⇡  (µ

z(kc )i
),

⌃g(kc ) ⇡

8
>>><

>>>:

�2
z(kc )i

✓
d (µ

z
(kc )
i

)

dz(kc )i

◆2

, if i = j .

�
z(kc )i z(kc )j

✓
d (µ

z
(kc )
i

)

dz(kc )i

◆ 
d (µ

z
(kc )
j

)

dz(kc )j

!
, if i 6= j .

(3.19)
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3.6.3.3 Max-pooling Layer

For the max-pooling, µp(kc ) = pool(µg(kc )) and ⌃p(kc ) = co-pool(⌃g(kc )), where pool represents

the max-pooling operation on the mean and co-pool represents down-sampling the covariance, i.e.,

we keep only the rows and columns of ⌃g(kc ) corresponding to the pooled mean elements.

3.6.3.4 Flattening Operation

The output tensor P of the max-pooling layer is vectorized to form the input vector b of the

fully-connected layer such that, b =


p(1)T , · · · ,p(Kc )T

�T
. The mean and covariance matrix of b

are given by:

µb =

2

66664

µp(1)

...

µp(Kc )

3

77775
,⌃b =

2

66664

⌃p(1) · · · 0
... . . . ...

0 · · · ⌃p(Kc )

3

77775
. (3.20)

3.6.3.5 Fully-connected Layer

Let wh ⇠ N (mh,⌃h) be hth weight vector of the fully-connected layer, where h = 1, · · · ,H ,

and H is the number of output neurons. We note that fh is the product of two independent random

vectors b and wh. Let f be the output vector of the fully-connected layer, then the elements of µf

and ⌃f are derived by the following proposition:

Proposition 1.

µfh = mT
h µb, (3.21)

⌃f =

8
>><

>>:

tr
�
⌃h⌃b

�
+mT

h ⌃bmh + µT
b ⌃hµb,

mT
h1
⌃bmh2 , h1 6= h2,

(3.22)

where h1, h2 = 1, · · · ,H represent any two weight vectors in the fully-connected layer.
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3.6.3.6 Softmax Function

Let the output of the ANN be y = '(f), where ' is the softmax function. Using the first-order

Taylor series approximation, the mean and covariance of the output vector, i.e., µy and ⌃y, are

derived as follows [638]:

µy ⇡ '(µf); ⌃y ⇡ J'⌃fJ
T
' , (3.23)

where J' is the Jacobian matrix of ' with respect to f evaluated at µf [638].

3.6.3.7 Objective Function

Assuming a diagonal covariance matrix for the variational posterior distribution, N indepen-

dently and identically distributed (iid) data points and usingM Monte Carlo samples to approximate

the expectation by a summation, the expected log-likelihood in the ELBO objective function is given

as follows:

Eq�(⌦)(log p(y|X,⌦)) ⇡

� NH

2
log(2⇡)� 1

M

MX

m=1

hN
2
log(|⌃y|) +

1

2

NX

i=1

(y(i) � µ(m)
y )T (⌃(m)

y )�1(y(i) � µ(m)
y )

i (3.24)

The regularization term in (3.16) is the KL-divergence between two multivariate Gaussian distri-

butions [539]. If we have a CNN with one convolutional layer followed by the activation function,

one max-pooling and one fully-connected layer, thus the regularization term in the ELBO objective

function is derived as follows:
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where (r1⇥ r2⇥K ) is the size of the kernels, K1 is the number of kernels in the convolutional layer,

H is the number of output neurons and nf is the length of the weight vectorwh in the fully-connected

layer.

3.6.3.8 Back-propagation

During back-propagation, we compute the gradient of the objective function r�L(�;D) with

respect to the variational parameters:

� =
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where (r1⇥r2⇥Kc�1) is the size of the k th
c kernel,Kc is the number of kernels in the c th convolutional

layer and H is the number of output neurons. We user�L(�;D) to update our parameters � using

the gradient descent update rule.

3.6.4 Application to Brain Tumor Segmentation in MRI Images

The performance of the proposed exVDP model on the HGG brain tumor segmentation task

using the BraTS 2015 dataset has been evaluated. The dataset consists of 5 classes, i.e. class 0 -

normal tissue, class 1 - necrosis, class 2 - edema, class 3 - non-enhancing, and class 4 - enhancing

tumor [480]. The evaluation of segmentation is based on three regions, (1) complete tumor (1, 2,

3 and 4), (2) tumor core (1, 3 and 4), and (3) enhancing tumor (class 4) [480].
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Brain tumor segmentation has been formulated as a multi-class classification problem by

randomly sampling patches from four MRI modalities, i.e., FLAIR, T1, T2 and T1c [554]. The

label of each patch has been manually set to the label of the center pixel. The sampled patches

are balanced over all classes, and a total of 100, 000 patches of size 33 ⇥ 33 are extracted from

the BraTS data of 20 patients. These patches are divided into training and validation bins (95%

for training and 5% for validation). The test set included randomly sampled 372 images, i.e.,

43, 264 patches, from each of the four modalities. The proposed exVDP model is compared with

a deterministic CNN, presented in [554]. The following CNN architecture has been used: six

convolution layers (all kernels were 3⇥3, and we had 32, 32, 64, 64, 128, 128 kernels in layers one

to six, respectively, followed by ReLU activation), two max-pooling layers, and a fully-connected

layer. The architecture is shown in Table (3.1).

DSC has been used to evaluate the segmentation results before and after adding Gaussian noise

or targeted adversarial attack (targeted class is class 3, i.e., non-enhancing tumor). The evaluation

of the proposed model on the BraTS dataset is done without doing any pre-processing or data

augmentation techniques.

In Table (3.2), DSC values for three test cases have been presented, i.e., noise-free, Gaussian,

and adversarial noise. We note that the DSC values of the proposed model are significantly higher

than that of the deterministic CNN for all cases in general and adversarial noise in particular.

Fig. 3.10 shows segmentation results for exVDP and a deterministic CNN for a representative

HGG image (with and without adversarial noise). The uncertainty map associated with each

segmentation is also presented for the exVDP model. The uncertainty map allows physicians to

review the segmentation results quickly and, if needed, make corrections of tumor boundaries in

the regions where the uncertainty is high.

3.7 Tumor Surveillance

As defined in section 3.3.3, tumor surveillance is the process of monitoring patient’s tumor in

longitudinal studies to establish severity of the disease and planning treatment accordingly. It helps
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Table 3.1 Architecture of the two models, i.e., exVDP and deterministic CNN

Layer Type Filter size HGG stride No. kernels FC units Input

1 Conv. 3⇥3 1⇥1 32 - 33⇥33⇥4

2 Conv. 3⇥3 1⇥1 32 - 33⇥33⇥32

3 Conv. 3⇥3 1⇥1 64 - 33⇥33⇥32

4 Max-pool. 3⇥3 2⇥2 - - 33⇥33⇥64

5 Conv. 3⇥3 1⇥1 64 - 16⇥16⇥64

6 Conv. 3⇥3 1⇥1 128 - 16⇥16⇥64

7 Conv. 3⇥3 1⇥1 128 - 16⇥16⇥128

8 Max-pool. 3⇥3 2⇥2 - - 16⇥16⇥128

9 FC - - - 5 6272

identifying early signs of tumor occurrence which is critical especially in case of the cancerous

tumors.

3.7.1 Rationale for Tumor Surveillance

Temporal medical imaging data is widely used in oncology as well as radiology for visual

comparison of disease over an extended period of time. The 2D medical images (CT or MRI

scans) are examined by the physicians to diagnose the disease in 4D (3D tumor volume over time)

usually referred to as change in volume over time. A detection at an earlier stage of disease is more

responsive to treatment, resulting in improved outcomes for the patient. Biological characteristics

of various tumor types such as growth, location, and patterns of local as well as metastatic disease

are the basis for surveillance scheduling, protocols, and selection of imaging techniques. Usually

low-risk tumor is subjected to active surveillance as part of a patient’s treatment plan and an ideal

candidate for active surveillance is the one which has one or more of these conditions: (1) disease

has not spread, (2) tumor is small and growing slowly, or (3) patient exhibits no symptoms of

specific cancer. The data from active surveillance is also used to look for trends and patterns

over time in certain regions/ groups of people, and to see if preventive measures are making a
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Table 3.2 Segmentation results using DSC for BraTS test dataset

Method Tumor Regions No noise Adversarial noise Gaussian noise

Complete 80.8% 77.4% 80.6%

exVDP Core 74.6% 72.6% 74.5%

Enhancing 74.0% 69.8% 73.9%

Complete 78.0% 43.4% 66.9%

Deterministic CNN Core 65.0% 47.1% 51.9%

Enhancing 75.0% 43.9% 55.7%

difference among the sample population. Apart from brain cancer, active surveillance has been

widely employed in other forms of cancer diagnosis. It has been shown that use of Prostate-Specific

Antigen (PSA) [310] testing as part of active surveillance of prostate cancer helps in understanding

tumor progression and prognosis, enabling the patients diagnosed with lower grade disease feel

more comfortable [552].

3.7.2 Surveillance Techniques

Change-point detection is the classical technique of detecting abrupt changes in sequential data,

which focuses predominantly on datasets with a single observable. It has been a long-standing

research area in statistics [72, 100], with applications in fields ranging from economics [371],

bioinformatics [521, 233], and climatology [586], wherein it is dealt as the problem of detecting

abrupt changes in temporal data. The objective is to determine if the observed time series is

statistically homogeneous or otherwise to find the point in time when the change happens. There

are two variations to the change-point detection technique: posterior and sequential. Posterior tests

are done offline after entire data is collected, and a decision of homogeneity or change-point is

made based on the analysis of all the collected data. Whereas, sequential tests are done on-the-fly

as the data is presented sequentially, and the decisions are made online. Gleason grade is another

technique used for pathological scoring of the differentiation of prostate cancer, and it has been
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the most widely used grading system for prostate tumor differentiation and prognostic indicator for

prostate cancer progression [44].

Figure 3.10 Segmentation results of exVDP and deterministic CNN.
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3.7.3 Community-level Active Surveillance

Apart from the individual tumor surveillance, the term of active surveillance is also often used

for collective cancer surveillance data and programs in the United States through Cancer Registries.

A cancer registry is an information system designed for the collection, storage, and management

of data on persons with cancer [312]. Data on cancer in the United States is collected through

two types of registries: hospital registries, which are the part of a facility’s cancer program, and

population-based registries, usually tied to state health departments. Hospital registries provide

patient’s data on care within the hospital for evaluation. Population-based registries, under state

health departments, collect information on all cases diagnosed within a certain geographic area

from multiple reporting facilities, including hospitals, doctors’ offices, nursing homes, pathology

laboratories, radiation and chemotherapy treatment centers, etc. The collected data is used to build

statistics like new cancer cases (incidence), death rates (mortality), cancer types related to types

of jobs, cancer trends over time to keep an eye on age and racial groups that are most affected by

different types of cancer. Registries are staffed under the Certified Tumor Registrar (CTR), having

pre-defined standards of training, testing, and continuing education, and they compile timely,

accurate, and complete cancer information to report to the registry. The major cancer surveillance

programs in the United States are the National Cancer Data Base (NCDB) [83], National Cancer

Institute’s (NCI) Surveillance, Epidemiology and End Results (SEER) program [312], and National

Program of Cancer Registries (NPCR) of the Center for Disease Control and Prevention (CDC)

[118]. Central Brain Tumor Registry of the United States (CBTRUS) is a registry dedicated to

collecting and disseminating statistical data on all primary benign and malignant brain tumors

[117]. A recent study [389] tries to estimate excess mortality in people with cancer and multi-

morbidity in the COVID-19 affected patients through analysis of surveillance data DATA-CAN,

the UK National Health Data Research Hub for cancer emergency [281].
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3.7.4 Surveillance of Brain Tumor

Tumors of the Central Nervous System (CNS) are the second most common tumors among

children after leukemia. Treatment protocols for high-grade pediatric brain tumors recommend

regular follow-up imaging for up to 10 years. Based on the surveillance data of high-grade childhood

brain tumor patients, a review of maximal time to recurrence and minimal time to radiologically

detectable long-term sequel such as secondary malignancies, vascular complications, and white

matter disease found that there was no recurrence of the primary brain tumor, either local or distant,

10 years or more after the end of treatment in the reviewed literature and so the results do not justify

routine screening to detect tumor recurrence more than 10 years after the end of treatment [530].

Tumor surveillance is being used for building statistical figures in a broad spectrum of ways,

including adult glioma incidence and survival by race or ethnicity in the United States [527], county-

level glioma incidence and survival variations [159], and accurate population-based statistics on the

brain and other central nervous system tumors [387]. A CBTRUS statistical report on the primary

brain and Other Central Nervous System (OCNS) tumors data diagnosed in the United States in the

period 2011-2015 states that brain and OCNS tumors (both malignant and non-malignant) were the

most common cancer types in persons age 0–14 years for both males and females. For age 15–39

years, these tumors were the second most common cancer in males and the third most common

among females in this age group. For age 40+, these were the eighth most common cancer type,

with males having eighth and females having the fifth most common brain cancer. These results

were based on the NPCR data of 388,786 brain and OCNS tumors, and 16,633 tumor cases from

SEER [528]. Tumor Surveillance among patients also enables the authorities to predict cancer

cases and death in advance and respond in time to offset the predicted scores. A recent report by

the American Cancer Society on cancer statistics in 2020 projected the number of new cancer cases

and deaths that will occur in the United States. Incidence data from 2002 to 2017 were collected,

and it was estimated that in 2020, 23,890 new cases and 18,020 deaths related to brain and ONS

tumors were projected to occur in the United States [637]. Similarly, tumor surveillance is equally

important to avoid the side effects of the aggressive forms of treatment. Patients treated for glioma,
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meningioma, and brain metastases may develop side effects of treatment, including neuropathy

(with visual loss), cataracts, hypopituitarism, cognitive decline, increased risk of stroke, and risk

of secondary tumor occurring months or even years later. The surgical treatment causes immediate

side effects, chemotherapy-caused side effects occur early after treatment (but infertility may not

manifest itself until later), and radiotherapy’s side effects occur months or even years after treatment.

The risks vary depending on the technique used and the area of the brain treated. Surveillance

enables the physicians to identify these potential late side-effects earlier which increases the length

and quality of life for patients [224].

3.7.5 An Example of Surveillance Study

In this section, we will study an example of tumor surveillance, specifically of patients having

low-grade gliomas [214]. Low-grade gliomas, constituting around 15% of all adult brain tumors,

significantly affect neurological morbidity by brain invasion. Generally, there is no universally-

accepted technique available for the detection of growth of low-grade gliomas in the clinical

setting. Clinicians usually consider visual comparisons of two or more longitudinal radiological

scans through subjective evaluation for detecting the growth of low-grade gliomas. The paper [214]

suggests a Computer-Assisted Diagnosis (CAD) method to help physicians detect earlier growth of

low-grade gliomas. This method consists of tumor segmentation, computing volumes, and pointing

to growth by the online abrupt change-of-point method considering only past measurements. The

study suggests that early growth detection of tumor sets the stage for future clinical studies to

decide upon the type of treatment-path to be undertaken and whether early therapeutic interventions

prolong survival and improve quality of life. Longitudinal (temporal) radiological studies of 63

patients were carried out with a median follow-up period of 33.6 months. These patients were

diagnosed with grade 2 gliomas by expert physicians through manual (visual) procedures as well as

detection of growth with that of the CAD method, and both detection methods were compared by

7 expert physicians [214] . Each patient had at least 4 MRI scans available for review either after

the initial diagnosis or after the completion of chemotherapy with temozolomide (if applicable).

77



The researchers calculated the time to growth detection from the impressions of the radiological

reports of these patients from 627 MRI scans. Unexpectedly, the study found large differences in

growth detection by visual comparison and by physicians aided by the CAD method. The reasons

for missing growth by the visual inspection can be attributed to one or more of these reasons: (1)

interpreting a large number of prior studies by physicians takes a very long time, (2) the practice

in vogue of comparing the current MRI to a couple of MRI scans immediately preceding it, (3)

the lack of determination of baseline MRI, (4) small changes from one scan to the next, and (5)

comparing single 2-D images overlooks the growth in the third dimension.

The study [214] showed that the CAD method helped physicians detect growth at earlier times

and significantly smaller tumor volumes than the manual standard method. Moreover, physicians

aided by the CAD method diagnosed tumor growth in 13 of 22 glioma patients labeled as clinically

stable by the standard method. Fig. 3.11 shows the volume growth curves of grade 2 gliomas

of two patients diagnosed with oligos, seen at the University of Alabama at Birmingham clinics

between 1 July 2017 and 14 May 2018 [214]. The x-axis corresponds to the time interval from the

baseline MRI, and the y-axis corresponds to the change in the volume of tumors from the baseline.

The volume at each time step until the growth detected by CAD is colored in yellow, and the

manual (visual) detection of change-point time is colored in red. The CAD for patient 1 detected a

change-point in 20 months from the baseline, whereas visual detection by a physician was done in

80 months.

Similarly, CAD detection time for patient 2 was also around 20 months, where visual detection

was in 150 months, primarily because this tumor did not grow at a faster pace. The detection

of tumor volume growth in time enabled the researchers to identify tumors with nonlinear and

non-homogeneous growth. Early growth detection holds the potential of lowering the morbidity,

and perhaps mortality of patients with low-grade gliomas. The decision to treat a patient would be

determined by the rate of growth and proximity to critical areas of the brain, once they have been

measured. The study also suggested early interventions for cases where (1) the new growth is in the
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proximity of key nonsurgical structures like the corpus callosum, (2) the rate of growth is elevated,

or (3) the tumor is sensitive to chemotherapy.

Figure 3.11 Volume growth curves of grade 2 gliomas of two patients diagnosed with oligos.

3.8 Conclusion

In this chapter, we have thoroughly reviewed the image segmentation task in the classical

CV field and examined various techniques of CV employed in DL frameworks for brain tumor

segmentation. We have also assessed multiple DL architectures having varying attributes that

make them suit-to-task employment. We have looked into a case study for in-depth analysis of

U-Net with Inception and dilated Inception modules in the context of brain tumor segmentation. A

new DL framework, called exVDP, that can quantify uncertainty in the output decision of an ANN,

has also been discussed. In the last section, we have discussed the concept of tumor surveillance,

its rationale, techniques, and an example study on low-grade gliomas surveillance.

The brain tumor segmentation community has achieved substantial progress in the last decade

because of the advances in DL. Although efforts have been made in commercializing the technology

for clinicians, there is still a long way to make brain tumor segmentation a reliable and routine tool

broadly applied to practical clinical decisions with minimal human interventions. This is due to

the lack of existing methods in the face of adversarial examples and research-oriented frameworks

that are not suited to production environments. Breakthrough is likely to come with the advent of
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effective and scalable platforms by the ML community, and direction of research towards adversarial

learning.
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Chapter 4: Revolutionizing Digital Pathology with the Power of Generative Artificial

Intelligence and Foundation Models

4.1 Note to Reader

This chapter has been previously published in Elsevier Laboratory Investigation as: Waqas, A.,

Bui, M. M., Glassy, E. F., El Naqa, I., Borkowski, P., Borkowski, A. A., & Rasool, G. (2023).

Revolutionizing digital pathology with the power of generative artificial intelligence and foundation

models. Laboratory Investigation, 100255, and has been reproduced with permission from Elsevier

[733].

4.2 Introduction

Conventional pathology methods have been crucial in diagnosing disease, heavily relying on

examining tissue samples under a microscope. With technological advancements and a growing

emphasis on precision medicine, digital pathology has emerged as a new approach for conducting

precise quantitative assessments. Digital pathology involves utilizing whole slide imaging (WSI)

to digitize and analyze tissue samples using a computer. Computational pathology further builds

on it and incorporates artificial intelligence (AI) and machine learning to enable the extraction

of information that goes beyond what the human eye can perceive. The clinical responsibilities

of pathologists, such as providing precise diagnoses and quantifying biomarkers for diagnosis,

prognosis, and predictions, may be strengthened in terms of precision, reproducibility, and scal-

ability by using AI-driven analysis tools. AI can address the challenging problems in pathology

workflow, including: (1) increasing workload and staff shortages leading to physician burnout,

(2) growing diagnostic complexity, including ever-expanding cancer protocols and biomarkers, (3)
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case variability, often involving rare diseases or overlapping morphological changes, (4) issues

with the quality of slides due to artifacts introduced by tissue folding, staining inconsistencies,

and compression artifacts, and (5) lack of standardization, which hinders interoperability between

different laboratories, platforms, image formats, and analysis tools.

AI is a broad field focused on simulating human intelligence by creating models and algorithms

to automate various tasks, such as recognizing objects in images, understanding and generating

natural language text, or making predictions based on historical data [181]. Machine learning is a

subset of AI that involves creating statistical and mathematical models and learning algorithms for

recognizing patterns in the data [667]. Artificial neural networks that attempt to mimic the human

brain’s way of analyzing data have recently made significant progress [625]. The advancements

made possible by artificial neural networks have revolutionized computer vision (a sub-field of AI

that deals with image processing) and natural language processing (a sub-field of AI that deals

with text and speech) [625]. Although the initial adoption of these technologies in medicine and

healthcare was slow, recently, medical imaging has been transforming at an unprecedented rate.

Digital and computational pathology are also rapidly evolving on the research front, with the

industry offering new AI-enabled technologies [686, 210, 622, 533, 17].

Although task-specific traditional AI tools date back to the 1970s, the decade of 2010 saw a

sharp rise in the research and development of narrow AI methods enabled by deep learning models,

e.g., convolutional neural networks (CNNs), recurrent neural networks (RNNs), and Transformers.

These AI models eliminated the need for feature engineering using domain expertise, a defining

characteristic of classical machine learning techniques widely known as pathomics in the pathology

domain [265]. For a given task, the performance of these artificial neural network-based AI

models surpassed previous AI techniques. Developing a task-specific AI starts with selecting a

particular problem, e.g., counting mitosis in a histopathology image, then curating and annotating

relevant historical data, and finally, training the model by learning optimal parameters (or weights).

Annotating (or equivalently labeling) data require experts (pathologists) to carefully review each

data sample and identify/define objects/patterns that help AI learn about the task during training.
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The performance of task-specific AI with supervised learning techniques strongly depends on

the availability of large, high-quality, annotated training datasets. Despite boasting above-human

performance, task-specific AI suffers from significant limitations, including the requirement for

a large amount of expert-annotated datasets, the lack of performance generalization (e.g., the AI

may fail if used on images generated using a staining protocol different than the one used for

generating training images), and the inability to use relevant data from other modalities, e.g.,

patient demographics, laboratory data, or their prior disease history cannot help the model improve

its prediction accuracy [210, 686]. Analysis of task-specific AI in pathology through qualitative

interviews of 24 professionals revealed such shortcomings in the existing tools, which hinder their

broad integration in the decision-making processes of pathologists [195]. For further details, the

reader is referred to the surveys reviewing the use of AI in pathology [373, 542].

The 2020s are witnessing the rise of foundation models and generative AI. Foundation models

are very large task-agnostic AI models trained using unannotated (possibly multimodal) datasets

and form the brain of generative AI [92, 493]. A trained foundation model can be adapted

to perform many different tasks using a modest amount of task-specific annotated data [493].

Training a foundation model may not require manually annotating large amounts of data as these

models use self-, semi-, or unsupervised learning techniques. Foundation models can consume

data from various modalities, including images (e.g., WSIs), text (e.g., pathology reports), and

tabular data (e.g., medical records). The well-known generative AI model, ChatGPT, is based on a

foundation model called Generative Pre-training Transformer (GPT) [524, 523, 101, 568, 566, 531].

Foundation models hold much promise for quantitative image analysis, diagnosis and prognosis,

pathology report generation, and question/answering with conversational use in pathology lab

workflow[92, 493].

Section 4.3 provides a brief overview of AI and machine learning models and advances enabled

by these task-specific AI models in computational pathology. We introduce various foundation

models, their structure, characteristics, and limitation in Section 4.4. Section 4.5 outlines the

transformative role that foundation models may play in the pathology laboratory workflow in the
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near future. We provide use cases delineating how a pathology generative AI based on a foundation

model could serve as an expert companion pathologist that assists in efficiently and objectively

performing routine laboratory tasks, including image analysis, presenting and justifying findings,

quantifying the analysis, generating reports, performing prognostics, and making predictions. We

also outline the potential role that foundation models and generative AI can play in pathology

education and training before concluding the review in Section 4.6.

Diagnosis

Digital, 
Computational 

Pathology 
Tasks

• Tumor detection, classification, localization, segmentation
• IHC, ISH grading, scoring
• Morphological subtyping and feature analysis
• Disease diagnosis, quantification, classification, clustering
• Cell Analysis (nuclear pleomorphism, cell crowding, cell polarity, mitosis, 

color, threshold, categorical thresholds, object size, heterogeneity)

• Mutation status and burden
• Biomarker discovery (nuclear, cytoplasmic, membranes)
• Defective DNA
• Therapy response

• Survival forecast
• Clinical outcome prediction

• ROI annotation (host tissue, target tissue, blood vessels, stroma, 
tumor, organ compartments, etc.)

• Cell Counting
• Stromal feature extraction/morphometry
• Rare event screening (highlighting samples, micrometastases)
• Next-generation morphology (extracting new patterns from digital 

images, clinical correlations)
• Automated management and prioritization of pathology workflows 
• Digital Image Analysis (color correction, filtering, edge detection, pixel 

intensity thresholding, mathematical transformations
• Quality assurance/Quality control

Prediction

Prognostics

Miscellaneous 

• Study of causes, nature, and effects of disease
• Examine tissues, organs, and body fluids

• Digitization of pathology specimen (WSI)
• Electronic analysis and sharing of data and reports

• Combines AI and DP to extract meaningful information
• Develop algorithms to automate pathology tasks and processes

Pathology

Digital Pathology

Computational Pathology

A

B

Figure 4.1 Pathology, digital pathology, and computational pathology - definitions and tasks.

4.3 AI in Digital Pathology

AI comprises computational methods, statistical and mathematical models, and the imple-

mentation of various algorithms to mimic human-style intelligence. AI-based technologies have

enabled pathologists and researchers to analyze large amounts of data with greater accuracy and
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Table 4.1 Definitions of key terminologies

Term Definition
Digital pathology A comprehensive term that includes various tools and systems to digitize pathology slides and associated meta-

data, as well as their storage, review, analysis, and supporting infrastructure.
Computational pathology A branch of pathology that utilizes computational techniques to analyze methods of studying disease through

patient specimens. It may involve using AI methods to analyze data and extract meaningful information from
digitized pathology images.

Artificial intelligence (AI) The field of AI aims to simulate human intelligence in machines, allowing them to perform tasks such as learning,
problem-solving, and decision-making.

Machine learning It is a branch of AI that programs computers to optimize a performance criterion using sample data or past
experience. It uses the theory of statistics to build learning models.

Artificial neurons These are the fundamental building blocks of artificial neural networks. It is a mathematical function that receives
one or more inputs, applies a weighted sum, adds a bias term, and applies a nonlinear activation function to the
result. The output of the activation function is then passed on to the next layer of neurons.

Artificial neural network A computational model inspired by the structure and function of biological neural networks in the brain. It is a
network of interconnected artificial neurons that work together to process information and make predictions or
decisions.

Neural network architec-
ture

The architecture of a neural network refers to its structure, which is determined by the number and arrangement
of its layers, the number of neurons in each layer, and the connections between the neurons.

AI training The process of teaching an AI system to learn patterns from data and make accurate predictions or decisions. The
training process involves feeding large amounts of data into the AI system and adjusting its internal parameters
to optimize performance.

Supervised learning AI training technique that uses annotated data, i.e., each data point is associated with a known target value. Goal
is to learn a mapping between inputs and outputs such that trained AI can make accurate predictions on new,
unlabeled data. If learning involves lesser labeled data compared to unlabeled samples, it is weakly-supervised
learning.

Self-supervised learning This technique of training AI does not require explicit data annotations. The AI learns to solve the given task
using the inherent structure in the data as the supervisory signal.

Unsupervised learning A learning technique for finding patterns, relationships, or structure in the data, such as clusters or groups of
similar data points, without any knowledge of the ground truth. Unlike self-supervised learning, which uses a
supervisory signal implicit in the data, unsupervised learning does not use any supervisory signal.

Computer vision A field of AI that enables computers and systems to derive meaningful information from digital images, videos,
and other visual data.

Natural language process-
ing

An area of AI that deals with a wide range of computational methods and techniques for analyzing, understanding,
and generating natural language text.

Multimodal AI Multimodal AI refers to AI models that involve multiple data modalities, such as vision (images) and language
(text), and require AI to integrate information across data modalities.

Convolutional neural net-
works (CNNs)

CNNs are types of artificial neural networks commonly used for image and video analysis. CNNs are designed
to automatically and adaptively learn spatial hierarchies of features from input images by using multiple convo-
lutional layers, followed by pooling layers and fully connected layers.

Recurrent neural networks
(RNNs)

RNNs are specialized for processing sequential data, such as text, speech, or time series. RNNs are designed to
capture context and dependencies between the elements of a sequence.

Graph neural networks
(GNNs)

GNNs are neural networks that process data with a graph structure. GNNs analyze relationships between objects
(nodes) and their mutual relationships (edges) by iteratively using message-passing algorithms to update the
features, allowing the network to capture the relationships between nodes in the graph.

Transformers Transformers are neural networks that use a self-attention mechanism (or equivalently scaled dot-product) to
capture relationships between input elements, especially in long sequences. They can process and learn from all
data types, including images, text, speech, etc.

Foundation models Foundation models are an emerging class of AI trained on a vast quantity of unannotated data at scale resulting
in a model that can be adapted to a wide range of downstream tasks with only a handful of annotated examples.
They use Transformer architecture and are the workhorse of generative AI models.

Generative AI models These are models specialized in generating new data similar to the training data, such as images or text. Examples
include Bayesian networks, GANs, and foundation models such as ChatGPT, GPT-4, Stable Diffusion, and Dall-E
2.

speed, making the process of disease diagnosis faster and more precise [686, 78, 686, 26, 148]. AI

has made it easier to identify patterns and biomarkers that were previously challenging to detect,

leading to more personalized and targeted treatments [7].

85



4.3.1 Digital Pathology

Digital pathology involves digitizing tissue specimens, allowing them to be analyzed and shared

electronically. Digital pathology uses complex imaging systems to capture high-resolution images

of tissue specimens, which can then be viewed and analyzed on a computer screen [169]. Digital

pathology improves the accuracy and efficiency of pathology diagnoses by allowing pathologists

to access and share images remotely, collaborate with other experts, and integrate computer-aided

analysis tools. With the advent of digital pathology, the amount of data generated has increased

exponentially, enabling the automation of time-consuming processes such as segmentation and

mitotic counting [536]. Public data archives, such as The Cancer Genome Atlas (TCGA) [687],

Clinical Proteomic Tumor Analysis Consortium (CPTAC) [206], and The Cancer Imaging Archive

(TCIA) [149], host pathology image data for multiple cancer sites. This is possible only because

of digital pathology and other advancements.

Whole Slide Imaging (WSI) is the technology that allows high-resolution digital images of entire

microscope slides to be created and viewed on a computer screen. This process involves scanning

glass slides containing tissue samples or other specimens using specialized digital scanners. WSIs

can capture the entire slide at very high magnification, allowing users to zoom in and examine

specific regions of interest in great detail [2]. WSIs are usually too large for contemporary

computers to analyze directly, so they are tessellated into smaller tiles or patches, which serve as

input for pathology AI workflows [2].

4.3.2 Computational Pathology

Computational pathology combines digital pathology with AI, machine learning, and other

computational techniques to extract meaningful information [2]. Often interchangeably called

“histomics," “pathomics," or “tissue phenomics," computational pathology aims to develop algo-

rithms that can automatically detect and classify pathology images, predict disease outcomes, and

identify new biomarkers for disease [370]. Computational pathology involves extracting many

features from histopathology slides (called histomics) or pathology slides (called pathomics) and
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Figure 4.2 A schematic layout of various ML algorithms and AI models in digital pathology.

analyzing these features to relate to biological and clinical endpoints. Computational pathology also

aims to standardize pathology diagnoses and reduce variability between pathologists [2]. Notwith-

standing quality issues in digital pathology [59], computational pathology methods can perform

well on tasks such as classification, segmentation, and analysis of digital pathology images, at times

surpassing human-level performance [147, 200]. The definitions of pathology, digital pathology,
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and computational pathology are illustrated in Fig. 4.1A, and their key tasks are illustrated in Fig.

4.1B.

4.3.3 Classical Machine Learning in Digital Pathology

Classical machine learning consists of manually selecting informative features from the data

by domain experts and then using these features for prediction, classification, or regression. The

manual extraction and selection of features is also referred to as feature engineering using computer

vision techniques based on morphology and texture, for instance. Classical machine learning has

been extensively used in digital pathology for image segmentation and classification [667] using

Support Vector Machines (SVMs), Random Forests, k-Nearest Neighbor (k-NN), Decision Trees,

and others [667, 164]. A detailed review of the classical machine learning techniques in digital

pathology is presented in [266] and [315]. Owing to the manual selection of usable and informative

features, the applicability of classical machine learning methods is limited [266, 315].

4.3.4 Task-specific AI in Digital Pathology

More recently, task-specific AI models based on artificial neural networks have been gaining

popularity [734, 175, 735, 12]. Artificial neural networks use stacked layers of artificial neurons to

process large amounts of data and identify underlying patterns. The model selects a set of useful

and informative features based on the assigned task without any human intervention. These models

include Convolutional Neural Networks (CNNs), variants of Recurrent Neural Networks (RNNs),

Graph Neural Networks (GNNs), and Transformers, as illustrated in Fig. 4.2 [667]. We refer to

these approaches as task-specific or narrow AI because of their limited scope. Also known as

weak AI, they are incapable of general intelligence or human-like reasoning [22]. Developing a

task-specific AI starts with selecting a particular task, followed by data collection and annotation.

Finally, AI is supervised to learn patterns in the data by minimizing its prediction error. With the

availability of digital slides and large computational power fueled by graphical processing units

(GPUs; electronic circuits responsible for graphics manipulation and output) and tensor processing
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units (TPUs; Google’s custom integrated circuits used to accelerate machine learning workloads),

artificial neural networks-based task-specific AI models have found a strong foothold in digital

pathology [686, 200, 630]. In the following discussion, we briefly introduce task-specific AI

models and their essential components. In Table 4.2, we present a non-exhaustive list of various

categories of task-specific AI models used in digital pathology. Interested readers are encouraged

to explore the relevant works of interest.

4.3.4.1 Convolutional Neural Networks (CNNs)

CNNs are specialized artificial neural networks for processing image data. CNNs are designed

to automatically learn and extract features from images, such as lines, edges, corners, and textures,

through the convolution operation. Convolution involves sliding a filter over an input image and

computing dot products between the filter and the image pixels. The resulting features are used

to classify or detect objects in the image. Based on the filter type, shape, size, and arrangement,

various architectures of CNNs have been proposed.

4.3.4.2 Recurrent Neural Networks (RNNs)

RNNs process sequential data like speech, text, or time series. RNNs are designed to capture

temporal dependencies in the data by maintaining a hidden state that is updated at each time step.

The hidden state encodes information from previous time steps and provides context for the current

time step. Long Short-Term Memory networks (LSTMs) and Gated Recurrent Units (GRUs) are

RNNs that help the model better capture long-term dependencies and avoid the vanishing gradient

problem of RNNs using sequential data processing.

4.3.4.3 Graph Neural Networks (GNNs)

GNNs process graph-structured data, such as social networks, molecular data, and knowledge

graphs [739]. GNNs are designed to capture local and global graph structures by aggregating

information from neighboring nodes and edges. GNNs typically operate on a fixed-size local
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neighborhood around each node, allowing them to scale to large graphs. GNNs have shown

promising results in various applications, including node classification, link prediction, and graph

generation. GNNs have been used to analyze complex biological networks, drug discovery models,

cell classification, tumor structures, and protein structures [8, 724, 135].

4.3.4.4 Transformers

Transformers were initially introduced for language translation [705]. However, they have

performed remarkably in various AI tasks, including computer vision and time series analysis

[92, 14]. Unlike RNNs, Transformers do not require that the sequential data be processed in order.

Instead, they are designed to process variable-length input sequences (such as words in a sentence)

without recurrent connections. Transformers use a self-attention mechanism that allows each piece

of input (or token) to attend to other tokens in the sequence, capturing long-range dependencies

[705]. Transformers have achieved state-of-the-art results in various natural language processing,

computer vision, and graph processing tasks [705, 14].

4.3.5 AI-based Algorithms Used in Pathology

Interest in AI/ML-enabled medical devices has increased in recent years. The US Food and

Drug Administration (FDA) has cleared more than 500 healthcare-related AI algorithms, four of

which are for pathology [225]. Among them, two were introduced earlier, and the other two more

recently. “PAPNET Testing System" was approved in 1995, and it was designed for rescreening

negative Pap tests or as a primary screener [215]. “Pathwork Tissue of Origin Test" was approved

in 2008, and it is a molecular diagnostic test developed to assist in diagnosing metastatic, poorly

differentiated, and undifferentiated cancer [215]. “Tissue of Origin Test Kit FFPE" was approved in

2012, and it is an in vitro diagnostic to measure the degree of similarity between the RNA expression

patterns in a patient’s formalin-fixed, paraffin-embedded (FFPE) tumor and the RNA expression

patterns in a database of fifteen tumor types [215]. “Paige Prostate" was recently approved in 2021,
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Table 4.2 Summary of AI models used in digital pathology.

DP Task AI Model Details Ref

Diagnosis

CNN

MIDOG: Mitosis domain generalization challenge. [54]
Gleason grading and diagnosis of prostate cancer. [104]
Feature extraction to classify brain tumor grade. [463]
Mitosis detection in breast cancer. [710]
Segment nuclei in histology images using weakly-supervised training [264]

GAN Nuclei segmentation on histopathology images. [469]
LSTM 4D medical image segmentation. [239]

GNN

Learn micro- and macro-structural features in H&E slides of breast cancer. [42]
Grading colorectal cancer in histology images. [816]
Classify healthy tissue from dysplastic gland areas in the colorectal cancer
histology slides.

[661]

Classify infiltrating ductal carcinoma (IDC) and ductal carcinoma in situ
(DCIS) breast cancer and grade Gleason 3 and 4 prostate cancer.

[665]

Prediction

CNN Disease outcome prediction in colorectal cancer. [106]

LSTM Predicting sentiment, text categorization in records. [201]
Medical event prediction using a multi-channel fusion of EHR data. [438]

GNN Stratify prostate cancer using tissue microarrays. [724]

Transformers Predicting RNAseq expressions from kidney WSIs using multiple instance
learning.

[26]

Predicting biomarkers from histopathology slides in colorectal cancer. [504]
Prognostics CNN Prediction of OS using Glioma multimodal data. [97]

Misc

CNN Correlations between true hypoxia fraction in histological and the approxi-
mated fraction in MRI scans.

[325]

GAN Similarity between virtually stained images (generated by AI model) &
histochemically stained images.

[325]

LSTM Medical image denoising. [573]
De-identification of medical text. [398]

Transformers WSI representations using unsupervised learning. [715]

Review
CNN Deep learning in digital pathology for breast cancer. [307]
GNN GNN-based methods in cancer pathology. [739, 15]
Transformers Transformers in Medical field. [739, 299, 55, 753]

and it is a software device to assist pathologists in the detection of foci that are suspicious for cancer

during the review of scanned WSI from prostate needle biopsies prepared from H&E stained FFPE

tissue [215, 533]. The PaigeAI prostate algorithm and the Pathwork digital and AI platform are the

pioneering algorithms that have significantly impacted pathology practices by aiding in diagnosing

and characterizing various diseases.

Pathology has a branch of anatomic pathology (AP) and clinical pathology (CP). The four

algorithms mentioned above exclusively pertain to AP, where the focus lies on examining tissue

samples for diagnosing diseases such as cancer. It is worth mentioning that listing AI/ML-related

algorithms in CP, which concentrates on the analysis of bodily fluids and laboratory tests, is beyond

the purview of this specific review. Moreover, despite the noteworthy progress in pathology AI, to
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the best of our knowledge, there has not yet been a generative AI algorithm developed for pathology,

AP, or CP. Generative algorithms have the capability to create new data or images, potentially aiding

in generating synthetic samples for training and research purposes. While such algorithms have

seen success in other domains, their application in pathology, encompassing both anatomic and

clinical aspects, has yet to be realized. The absence of generative AI in pathology presents a

promising avenue for future research and exploration to unlock new possibilities and enhance the

field’s diagnostic and prognostic capabilities.

4.3.6 Limitations of Task-Specific AI

Task-specific AI models have many limitations restricting their widespread use in digital pathol-

ogy.

1. Task specificity refers to the fact that the trained AI performs well on a single task only, e.g.,

grading cancer sub-types in an organ using H&E slides. A change in the number of grades,

organ type, or cancer type (same organ) will render the model useless (significantly reducing

its accuracy with low reliability) and will require model retraining [175, 176].

2. Distribution of the input data should be the same. These AI models require the input data

to have similar characteristics and follow the same probability distribution function of the

input data (the mean and standard deviation and range of the pixel values of WSI pixels)

[175, 113]. Adding natural or adversarial noise may significantly reduce AI’s performance

[241]. AI models are known to be fragile in the presence of noisy inputs, subtle changes

in the data, or adversarial attacks [735, 175, 241]. These AI models cannot generalize to

changes in data resulting from various common reasons, e.g., hardware, software, firmware

upgrades in scanners, changes in the staining quality or the protocol, shifts in population

demographics (e.g., a different geographical region), and changes in data patterns due to new

diseases such as COVID [12, 176]. New representative data must be collected and annotated

for each changing scenario to retrain (fine-tune) the AI models to be current and accurate.
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3. Requirement of large annotated task-specific datasets for training. The success of these

models depends mainly on the availability of large, task-specific annotated datasets. This

requirement stems from the data-driven nature of these models, which learn to identify

informative features from data without needing domain experts to engineer data features

[28]. By leveraging vast amounts of annotated, independent, and identically distributed (i.i.d)

data, models can uncover hidden patterns and sub-visual features that may be difficult for

humans to detect. However, obtaining a large annotated dataset remains a critical challenge

for AI models in digital pathology. These AI models cannot directly benefit from large

amounts of unannotated datasets, e.g., WSIs, pathology reports, clinical notes, etc., and

may require techniques such as weakly supervised learning, unsupervised learning, self-

supervised learning, transfer learning, and continual learning [358, 16].

4. The task-specific AI models are generally restricted to processing one data modality only. In-

corporating information from other modalities, e.g., the patient’s medical data from medical

records, omics data, or radiographs, into the AI decision-making is generally not straight-

forward [739]. Recently, some research efforts have focused on creating AI models that

can process multimodal data to improve their predictive accuracy with moderate success

[135, 90, 703].

5. Knowledge accumulation is important. The recent success of ChatGPT has shown that

creating an internal general-purpose knowledge base is essential for successful and robust

AI models [523, 101]. ChatGPT has a central repository of information created during

model training using 570GB of data from books, web-based text, Wikipedia, articles, and

other online writings [524, 523, 568]. There is no precedence for creating such models in

digital pathology, medical imaging, or any area of medical data processing. Task-specific,

narrow versions of AI models are built by individual academic labs or industries that do not

contribute to reusable knowledge accumulation [739].

93



6. Transparency and reproducibility of AI models are a challenge that undermines the enor-

mous potential of applying such methods to complex tasks. The lack of sufficient details

regarding Methods and the unavailability of algorithm/code in a published work by the

Google Health team on breast cancer screening [478] was recently raised [270, 477]. The

research community is gradually transitioning to open-access, reproducible, and transparent

methodologies.

7. Explainability of AI refers to the challenge of understanding how and why an AI makes a

particular decision or prediction [505]. While AI can make accurate predictions or decisions,

they often do so in ways that are opaque or difficult to understand for human beings. This

lack of transparency can be problematic in scenarios where decisions made by AI have

significant real-world consequences. Interpretable or explainable narrow AI models with

attribution maps produce results humans can easily understand and interpret. However, these

approaches come at the cost of reduced accuracy or increased model complexity [506].
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Figure 4.3 The evolution of machine learning models used in digital pathology.

4.4 Foundation Models and Generative AI

The 2020s are witnessing the rise of foundation models - large AI models pre-trained using

unannotated multimodal datasets (please refer to Figs. 4.2 and 4.3) [92]. A trained foundation

model can be adapted (or fine-tuned) to perform different tasks using limited annotated examples,

much less than required to train tasks-specific AI. In the following, we present our perspective on
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how foundation models and generative AI that use these models can transform the digital pathology

laboratory workflow. The pathology-specific foundation models can be created and fine-tuned to

serve as a pathologist’s expert assistant by performing quantitative image analysis for diagnosis,

prognosis, disease grading, and prediction. It can then generate pathology reports based on the

presented imaging data and converse with the pathologist to justify the findings presented in the

generated reports.

4.4.1 Foundation Models

The term “foundation models" was initially coined by Bommasani et al. to describe recently

proposed models that have led to a paradigm shift in AI model design, development, and deploy-

ment processes [92]. Foundation models are huge models trained at scale using comprehensive

unannotated data (possibly multimodal). Two relevant attributes of foundation models are their

size, which refers to the number of learnable parameters or weights, and the number of compute

operations quantified using Floating Point Operations (FLOPs) at the model testing or inference

stage. Foundation models generally have billions or trillions of learnable parameters and billions

of FLOPs [523, 101, 570, 617, 236, 179, 442]. The unannotated datasets may consist of billions

of words (or tokens) and images from the internet without any labels assigned by human operators

[236]. Foundation models leverage the existing concepts of pre-training, transfer learning, and

unsupervised and self-supervised learning. However, their essence lies in scaling because of the

following three factors: (i) the introduction of Transformer architecture [705] that supports training

models with the number of learnable parameters in billions or trillions, (ii) the availability of

thousands of GPUs, and (iii) availability of massive training datasets that can reach billions of

tokens for natural language processing and hundreds of millions of images for computer vision

tasks [92, 705].

Recently, a host of foundation models have been trained for language, vision, and joint language-

vision (multimodal) tasks and shared via GitHub1 and Hugging Face2. Some of the remarkable

1https://github.com/trending
2https://huggingface.co
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works include BERT and RoBERTa in language processing [179, 442], Vision Transformers for

image processing tasks [193], Mask2Former, OneFormer, and ClipSeg for image segmentation [140,

323, 457], Perceiver IO for multimodal (text, images, audio, and video) problems [319], ViperGPT

for answering visual queries using code generation [666], LLaVA for visual instruction tuning

[434], and BLIP-2 for image captioning, visual question-answering, and chat-based prompting

[409].

4.4.2 Characteristics of Foundation Models

Some distinguishing characteristics of foundation models are summarized as follows:

• Expressivity is the ability of foundation models to learn, capture, and represent the relevant

information from data [92]. Foundation models are more expressive than their task-specific

AI models as they exclusively use the Transformers architecture, which learns long-range

relationships and higher-order interactions in the data using a self-attention mechanism [705].

There exists a trade-off between the model’s expressivity and its efficiency. Increasing the

model size may increase its expressivity at the cost of reduced efficiency [92]. Recently

proposed foundation models such as Perceiver IO and GANformer attempt to offer a balance

between efficiency and expressivity [319, 305].

• Scalability refers to the ability of a foundation model to efficiently consume large amounts

of data [92]. With the ever-growing availability of data from diverse sources, the foundation

model needs to be capable of further scaling while overcoming the challenges of failure and

catastrophic forgetting [12, 358].

• Multimodality is the ability of the foundation model to learn relations among various modal-

ities of the data [92]. Humans perceive knowledge through processing multimodal data.

GPT-4 is a multimodal foundation model [524]. Other multimodal models include CLIP

[565], ALIGN [328], SimVLM [732], Flamingo [21], CoCa [781], and CONCH [452].
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• Compositionality is the ability of a foundation model to generalize to new tasks and contexts

[92]. Compositionality helps foundation models achieve out-of-distribution generalization

and perform in-context learning [92, 402].

• Emergence is the characteristic introduced by scaling the Transformer architecture with large

datasets and computational resources [705, 92]. Emergence means that the behavior of the

trained AI model is implicitly induced rather than explicitly constructed [92, 402]. In-context

learning is an example of emergence in foundation models [402, 744].

• Homogenization is also introduced by scaling and refers to the consolidation of methodologies

for building AI models across a wide range of applications [92]. For example, almost all

language processing tasks can be performed by a single large language model, e.g., BERT

[179], GPT [524, 101, 568, 566], T5 [570], or many others [811].

• Transfer learning, adaptation, and fine-tuning are the defining characteristics of foundation

models [92, 749, 744]. These characteristics imply that the skills that AI may learn from

one task will often transfer to new tasks. A foundation model may adapt to the new tasks

without the need for any annotated examples, referred to as zero-shot learning. When a

few examples are used to fine-tune the AI, we call this few-shot learning [92]. Generally,

all foundational models are pre-trained using unannotated datasets and later adapted using

small annotated datasets for specific downstream tasks. A recent survey reviews the various

pre-training methods used in deep learning and foundation models on medical data [561].

• In-context learning is the ability of a trained foundation model to learn a new task or correct

itself using demonstration and without updating the model’s parameters which is usually

done via gradient descent algorithm [101, 744, 437]. In-context learning is a scale-enabled

emergent ability that allows foundation models to generalize to new tasks without having to

re-train the AI model again. GPT-2, a relatively small model having 1.5 billion parameters,

did not permit in-context learning [568]. It was GPT-3 with its 175 billion parameters that

exhibited in-context learning [101]. However, in-context learning introduces the necessity
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for prompt engineering, i.e., finding the most appropriate prompt to allow AI to solve the

task at hand [437, 744]. A prompt is a piece of text, image, or symbols inserted in the input

of AI so that the given task can be re-formulated as the original task for which the model was

trained [101, 402, 744].

4.4.3 Types of Foundation Models

Foundation models are an emerging area of AI that has shown great promise, e.g., ChatGPT,

GPT-4, DALL-E 2, and Stable Diffusion are foundation models that can generate impressive text and

images, provide concise summaries of large datasets, and help analyze unstructured data efficiently

[523, 524, 590, 575]. These models can be further divided into large language models that tackle

natural language processing tasks and vision-language models that handle multimodal learning

jointly from images, text, and other data sources.

4.4.3.1 Large Language AI Models

Large language models can handle various natural language processing tasks, including text

generation, natural language understating, sentiment analysis, question answering, information re-

trieval, reading comprehension, commonsense reasoning, natural language inferences, word sense

disambiguation, and others [92]. With the introduction of word embeddings, where each word

in a sentence was associated with a context-independent vector of real numbers [698], the nat-

ural language processing field has seen considerable progress [179]. Following the success of

word embeddings, autoregressive language models were proposed to employ self-supervised or

weakly-supervised learning to predict the next word in a sentence given the previous words [179].

Autoregressive models such as GPT, ELMo, and ULMFiT use the context of the words in rep-

resentation embeddings [566, 555, 294]. The Transformer architecture enabled self-supervised

learning at scale resulting in models like BERT, GPT, GPT-2, GPT-3, GPT-4, LLaMA, T5, and

BART [179, 566, 568, 101, 524, 442, 570, 690, 405]. Most of these industry-sponsored models

are not open-source for researchers [524, 523]. Recently, BLOOM, a 176B-parameter open-access
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language model, was developed with the collaboration of hundreds of researchers [617]. BLOOM

is a decoder-only Transformer language model trained on the ROOTS corpus, a dataset comprising

hundreds of sources in 46 natural and 13 programming languages (59 in total) [617]. A compre-

hensive review of large language models is out of the scope of this article. For a comprehensive

review of the large language models, please refer to review papers and blogs [811].

4.4.3.2 Vision-Language AI Models

Vision-language AI can learn to perform various tasks involving images (or videos) and cor-

responding natural language text [236, 811]. The vision-language models are one step closer to

how humans perceive the world, learn about it, and execute various tasks in it [236, 448]. In

the following, we describe two types of imaging analysis tasks that vision-language models can

perform:

• These tasks reside at the intersection of natural language processing and computer vision

fields and consist of extracting information from images and natural language text and find-

ing the relationships and patterns to link text and images [236, 184]. Image captioning,

visual question answering, visual dialog, image or text retrieval given text or image, visual

grounding, and image generation are a few image-text tasks undertaken by these foundation

AI models [236, 304]. Visual question-answering tasks typically require a more detailed

understanding of the image and complex reasoning than a system producing image captions

[304]. The recent foundation models in image-text tasks include Contrastive Language-

Image Pre-Training (CLIP), A Large-scale ImaGe and Noisy-Text Embedding (ALIGN),

SimVLM, Florence, Flamingo, CoCa, Clinical-BERT, and Contrastive learning from Cap-

tions for Histopathology (CONCH) [565, 328, 781, 732, 21, 766, 452].

• Image classification, object detection, and segmentation are the core visual recognition tasks

in the field of computer vision. Traditionally, these tasks were considered pure vision prob-

lems without needing to include language information while learning these tasks. However,
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CLIP and ALIGN models showed that language supervision could play an essential role

in pre-training vision-language that can do various visual recognition tasks with zero-shot

learning [565, 328]. CLIP and ALIGN use noisy image-text data from the internet to enable

large-scale pre-training of vision encoders. The state-of-the-art foundation models include:

(1) image classification - UniCL, CLIP, and ALIGN [767, 565, 328], (2) object detection

in a given image - ViLD, RegionCLIP, GLIP, Detic, PromptDet, OWL-ViT, OV-DETR,

and X-DERT [262, 809, 411, 815, 487, 787, 108], and (3) segmentation of different ob-

jects in a given image - LSeg, OpenSeg, CLIPSeg, MaskCLIP, DenseCLIP, and GroupViT

[406, 242, 457, 812, 578, 760].

4.4.4 Training Foundation Models and Generative AI

Foundation models employ two key techniques in training: self-supervised learning and gener-

ative training. The true potential of the enormous quantity of unannotated data is only possible with

supervised learning, without the need to create annotations or labels using human effort. Examples

of such data include (1) text, images, and videos available online or (2) medical records, diagnostic

imaging, molecular data, and histopathology WSIs available in hospital databases. During the

training of foundation models, the supervision signal is determined by the context of the input data,

e.g., the BERT language model is trained to predict randomly removed words from sentences or

fill in the blank [179]. Sometimes, the models are shown plausible and implausible pairs of images

and corresponding texts. Thus, the model learns to associate image features with their correct text

description [565]. This perspective generalizes the traditional close-set classification AI models

to recognize unseen concepts in real-world applications, such as open-vocabulary object detection

[236].

The generative training methods help foundation models learn the joint or conditional probability

distributions over training input data [92]. That is, the trained foundation model will be able to

accurately generate the input data pattern similar to the ones used for training it. Generative training

is performed using one of two techniques, (1) de-noising or (2) auto-regressive. During the training
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of the de-noising models, the input is corrupted with noise, and the model is expected to produce

noise-free input patterns [570]. The auto-regressive models, after training, can generate the input

data piece by piece, iteratively predicting the next element in a sequence given the previous elements

[576].

4.4.5 Challenges and Limitations of Foundation Models

Developing foundation models require massive datasets, computational resources, and technical

expertise [92]. Owing to their massive size, it may not be possible to fit the parameters of a

foundation model in the memory of the largest GPU or a single computer. For example, a recent

large language model shared by Meta AI, LLaMA, has 65 Billion parameters and was trained using

1.4 trillion tokens [690]. The enormous computational operations inside foundation models can

result in unrealistically long training and inference times. Foundation models require specialized

software, hardware, and inference algorithms to train and use [646].

“Hallucination” is a known limitation of generative AI, which refers to mistakes in the generated

text or images that are semantically, syntactically, or visually plausible but are, in fact, incorrect,

nonsensical, and do not refer to any real-world concepts [397, 25, 524]. The accuracy and integrity

of the generated text and images may be challenging to establish using factual data from verified

sources [25]. One possible solution is to use an engineered system like Bing Chat that also generates

links to the actual websites, articles, and reference material1. In some cases, the generative AI

models can identify their own mistakes [397]. Furthermore, the generative models are sensitive to

the form and choice of words, referred to as the “prompt.” A prompt may consist of text, image(s),

or symbol(s) inserted in the input of generative AI so that the given task can be re-formulated as

the original task for which the model was trained [437, 397]. The future generative AI models may

be less sensitive to the precise prompt. However, the current models need “prompt engineering”

to produce the best results [437, 397]. Therefore, effectively using a generative AI may require

engineering an appropriate prompt by the human user. Foundation models and generative AI also

1https://www.bing.com/
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face other challenges similar to tasks-specific AI models, including explainability, robustness, and

trustworthiness [505, 337, 92, 113, 114, 175, 241, 12, 25].

4.5 Transformers, Foundation Models, and Digital Pathology

This section presents recent work from the literature focused on using Transformers (the core

component of foundation models) in digital pathology. We focus on the work where a single AI

model based on Transformer architecture is trained using large, diverse datasets to perform multiple

tasks. Later, we present our perspective on the potentially transformative role of foundation model-

based AI in digital pathology. Because of foundation models’ strong adaptation and scalability

properties, they can be effectively trained once and modified infinite times to suit various digital

pathology tasks. We also present our perspective on the trustworthiness and acceptability of

generative AI and foundation models by pathologists. Figure 4.4 presents a prospective framework

for utilizing foundation models and generative AI for various pathology tasks.

Transformers architecture has recently been modified to consume high-resolution gigapixel WSI

data [133]. The authors used a self-supervised hierarchical learning mechanism on 33 cancer site

data having approximately 105 million pathology images to predict nine slide-level tasks, includ-

ing cancer subtyping, survival, and unique morphological phenotypes [133]. Although molecular

procedures and analysis have led to remarkable discoveries, they are usually time-consuming,

expensive, and require multiple tissue samples. Transformer-based foundation models can ad-

dress these challenges by predicting the bulk RNA-seq directly from the whole slide images [26].

Transformers-based foundation model, CONCH, has shown state-of-the-art performance on mul-

tiple tasks including histology image classification, segmentation, captioning, text-to-image and

image-to-text retrieval using task-agnostic pretraining on 1.17 million image-caption pairs [452].

Similarly, attention-based multiple-instance learning has accurately predicted biomarkers from

cancer pathology slides in a self-supervised learning setting [504]. The authors showed the per-

formance of an attention-based multiple-instance learning framework for predicting microsatellite

instability and mutations in BRAF, KRAS, NRAS, and PIK3CA in colorectal cancer pathology
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slides [504]. To address the interpretability challenge of the AI model’s decisions, a probabilistic

perspective on attention-based multiple-instance learning on WSI data has outperformed previous

methods in matching the pathologists’ annotations [165]. Such pre-foundation models can be

scaled to predict biomarkers directly from the histopathology slides belonging to pan-cancer sites

[634]. The Transformer model pre-trained on a large publicly available pathology dataset can be

fine-tuned under a weakly-supervised contrastive learning scheme on smaller datasets. Wang et al.

have shown that such a training framework can outperform the state-of-the-art WSI classification

on three different tasks [729]. For the multimodal medical data analysis, modality co-attention

Transformers have been shown to outperform other methods in survival predictions by fused learn-

ing on WSI data and genomic sequences [136]. Moreover, Transformers are far more robust to

adversarial attacks and perturbations in digital pathology than CNNs because of the more robust

latent representation of clinically relevant information [241]. The performance and robustness

of Transformers-based models in various tasks and modality settings have shown the prospective

utilization of a single foundation model for large-scale rollout involving multiple tasks.

Given the strong support for compositionality and multimodality and the modular nature of the

foundation models, image and language models can be combined to share their learned representa-

tions as a larger foundation model. Thus, a Transformer trained to interpret WSIs can be combined

with a trained language generation model (e.g., GPT) to create a vision-language model. Such a

model will interpret and analyze WSIs and generate text reports based on the analysis. The same

model can be augmented to annotate relevant areas on the input image to support its finding in the

generated report. Finally, a conversational component can be added to allow the model to interact

with the pathologist to answer their question about the model’s output.

The authors believe that a multimodal pathology foundation model capable of processing WSIs

and natural language can be created using data available in the public domain, such as the National

Cancer Institute’s The Cancer Genome Atlas (TCGA) for genetic data, Clinical Proteomic Tumor

Analysis Consortium (CPTAC) for proteomics data, and The Cancer Imaging Archive (TCIA) for

imaging data [687, 206, 149]. The base model can be trained with pan-cancer datasets and later
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fine-tuned for various organs, cancer types, and use cases with only a few task-specific annotated

examples. The base pathology foundation model can be shared with the community, eliminating

the need to collect data, annotate, and train AI models from scratch for each use case. A recent

synopsis explores AI techniques for multimodal data fusion and disease association discovery in

oncology data [430]. Quantifying patterns across 17,355 H&E stained slides from 28 cancer

types through deep learning accurately classified cancer types and correlated learned features with

numerous recurrent genetic aberrations across considered cancer types [230]. In the following, we

build on the idea of training and sharing a base pathology foundation model that can be adapted for

research, clinical, laboratory, and educational use cases in digital pathology.

4.5.1 Qualitative Image Analysis

A trained foundation AI model can be adapted for various pathology image analysis tasks. The

adaptation may not require any annotated data (zero-shot learning) or may require only a handful

of samples (few-shot learning). Examples include (1) separating the different types of cells in an

image and identifying the regions of interest, (2) identifying and counting the number of cells in a

given image, (3) categorizing cells into different types based on their appearance and features, (4)

identifying the presence and extent of cancerous tissue in an image, (5) assessing the severity and

extent of a disease by grading and staging tissue samples, (6) measuring the number of specific

proteins or molecules in a tissue sample to determine their potential as biomarkers for disease, (7)

predicting the likelihood of disease progression or patient outcome based on the analysis of tissue

samples, or (8) immunohistochemistry scoring.

Apart from adapting the base pathology foundation model to various imaging tasks, we can

use the same model for analyzing different types of stains, images from different scanners, and

noisy slides containing different artifacts. Foundation models can leverage the multi-site cytology

data (cervix, kidney, breast, lung, thyroid, bladder, bone marrow, skin, etc.) to perform various

downstream tasks such as malignant cells classification, slide-level stratification, cells location in

cytological smears, and cell components identification [331].
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Figure 4.4 A prospective schematic layout of using foundation models and generative AI.

Going one step further, the image analysis performed by the AI can be internally fed to the

generative AI, allowing pathology report generation directly from the image [461, 644]. Some

sample pathology reports generated using ChatGPT (March 14 update) are presented in Fig. 4.5A,

B, and C. These reports were generated by text prompt only without providing any image to

ChatGPT as it cannot process image data.

AI supported by large models can reduce pathologists’ workload and inter-rater variability while

improving the quality and consistency of pathology reports [634]. The image analysis and report

generation pipeline can serve as the “first pair of eyes” and potentially help pathology labs with

workload and staffing shortages. AI model adaptation and fine-tuning allow it to learn from its

mistakes and update itself under the guidance of the pathologist(s). Thus promoting the AI from
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just a data processing pipeline to an assistant who will, over time, learn to help the users perform

their tasks efficiently.

4.5.2 Image Synthesis, De-noising, and Virtual Staining

Publicly available Generative AI has yet to show plausible pathology image generation capa-

bilities. It has been recently shown that, despite being state-of-the-art at the time of assessment,

the text-guided diffusion model (GUIDE) lacked a good depiction of the style and contents of

medical images [348]. However, we argue that there are enough pathology image data in the public

domain to train pathology image generation models using GUIDE, Stable Diffusion, or Dall-E 2,

as the starting point. A well-trained pathology image generation AI can address various research

and clinical challenges including (1) de-noising digitized slides to remove noise and artifacts and

normalize the image to a standard color and tone, effectively making the task of image analysis

pipeline easy and less prone to error (2) virtual staining - generating images with different staining

techniques without requiring additional physical samples, helping pathologists compare and con-

trast the effects of various stains and facilitate more accurate diagnoses [59], (3) super-resolution

imaging - using AI synthesis techniques to generate super-resolution images from low-quality and

noisy digital slides, aiding pathologists in examining fine details and structures that may not be

visible in the original images due to noisy or erroneous digitization process [210], (4) simulating

disease progression - generating images simulating the progression or regression of pathological

conditions, thus providing pathologists with a better understanding of disease evolution and en-

abling more informed treatment planning, (5) education and training - create diverse and realistic

examples for educational purposes, thus help trainee pathologists gain experience in diagnosing

a wide range of conditions and improve their diagnostic skills without relying on actual patient

samples [279], and (6) synthesizing images to study the effects of various factors on disease pre-

sentation, such as genetic mutations, environmental factors, or treatment options, thus contribute

to a better understanding of disease mechanisms and the development of more effective therapies.
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Figure 4.5 Surgery and biopsy reports generated by ChatGPT.
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4.5.3 Detecting Zebras (New Disease Identification)

Foundation models can be adapted to identify deviations from the norm, which may indicate

potential anomalies, such as abnormal cell structures, lesions, or other abnormalities. Anomaly

detection of finding zebras goes beyond regular tasks of identifying disease sub-type or grading.

This use case aims to identify and report patterns never seen in the training data to improve the

accuracy and efficiency of identifying unusual or unexpected events. Transformer-based models

can learn to directly predict the bulk RNA-seq from WSI and simultaneously output the WSI

representation [26]. Such models can augment pathologists’ expertise and provide more accurate

and timely diagnoses.

4.5.4 Patient Engagement

Generative AI can help pathologists, who are the “doctor’s doctor,” engage directly with the

patients by bringing them to the front line without additional time or resource commitment.

Language models can generate more approachable and accurate descriptions and explanations

of the pathologist’s findings for the patients. Image generation models can create annotated images

to depict the disease visually. In Fig. 4.5D, we present the description of a biopsy report generated

by GPT-4. The text is aimed to explain the pathology biopsy report (presented in Fig. 4.5C)

to a non-medical person. In addition, they can educate the patient about the disease entity just

diagnosed by the pathologist and possible treatment options.

4.5.5 Education and Training

Pathology education is currently powered and driven by virtual and digital transformations

and is swiftly adapting to the advancements offered by AI [279]. Generative AI can retrieve and

integrate knowledge from various sources, such as textbooks, and scientific articles, providing

a comprehensive view of the state of knowledge. Pathology-focused ChatGPT-like models can

answer pedagogical questions quickly, such as the definition of terms or recent advancements

reported in the literature.
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Conversational AI, such as ChatGPT and its variants, can solve higher-order reasoning questions.

ChatGPT has the comparative relational level of accuracy in pathology, as noted by the responses

shown in Figure 4.5. Hence, students and academicians have the opportunity to adapt to this

emerging technology and use it for solving reasoning-type questions. Further evolution of such

conversational tools needs to be critically analyzed by the specialists, such as pathologists, for their

efficacy and acceptability.

4.5.6 AI-Driven Standardization in Digital Pathology Workflow

Foundation models and generative AI can help standardize digital pathology by addressing

various aspects of the diagnostic process, such as image acquisition, analysis, interpretation, and

reporting.

1. AI models can correct for inconsistencies in image acquisition, such as variations in lighting,

staining, and scanning parameters. By automatically adjusting for these factors, AI can

ensure that images are more consistent and comparable across laboratories and scanners.

2. AI-based tools can extract and quantify relevant features in images in a standardized and

reproducible manner. This can include cell counting, morphological measurements, and

biomarker quantification, reducing the variability that may arise from manual or semi-

automated methods. A human operator will need to approve AI-generated features.

3. AI-driven algorithms can provide a second reader opinion or decision support for pathologists,

reducing diagnostic variability and errors. By learning from large datasets and incorporating

best practices, AI can help standardize the diagnostic process and improve the overall quality

of diagnoses.

4. AI can help identify inconsistencies in staining techniques, equipment, and reporting proto-

cols, enabling better standardization and quality assurance across laboratories. By monitor-

ing and benchmarking these factors, AI can improve the overall quality of digital pathology

services.
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5. AI models can process and summarize the patient visits and interventions spread over multiple

time points in the form of patient timeline and EMR summary of care. These models may

also generate synoptic reports culled from the non-structured data in the pathology reports.

6. AI-driven language models can assist in the standardized extraction of information from

pathology reports and facilitate the integration of this information with other clinical and

research data. The AI model can also provide a degree of certainty to the diagnostic informa-

tion extracted from pathology reports [243]. This can help improve the consistency, certainty,

and comprehensiveness of data available for decision-making and research purposes.

7. AI can create standardized training materials and assessment tools for pathologists, ensuring

that they are educated and evaluated based on best practices and the latest advancements in

the field.

8. AI can facilitate better communication and collaboration among laboratories and healthcare

providers by providing a common platform for data analysis, visualization, and decision

support. The AI language models can provide the translation of a pathology report between

English and other languages for communication and collaboration among pathologists in

different regions of the world. This can contribute to standardizing workflows and practices

across the digital pathology ecosystem.

4.5.7 Trustworthiness and Acceptability of AI by Pathologists

AI will not replace Pathologists but will help them in augmenting their tasks. Pathologists’

trust in AI-based technologies is pivotal for successfully incorporating these tools into laboratory

practice. The main ingredients for developing such trust are the validation of AI models before

deployment in pathology laboratory workflow, performance monitoring after deployment, and con-

tinuous interaction between pathologists and the developers of the AI systems. The question of

whether pathologists should trust AI is complex. We have demonstrated AI’s potential to revolu-

tionize pathology in the near future through innovative tools for helping in diagnosis, prognosis,
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and making accurate predictions swiftly. Nevertheless, concerns persist about the reliability and

trustworthiness of AI, in part owing to the biases and missingness in training datasets and the

inability of algorithms to tackle such limitations.

Additionally, AI models are vulnerable to adversarial examples that can deceive the AI model

to drastically change its output with only a subtle change in the input [241, 222]. Groups such as

Trustworthy Software Foundation (TSFdn) [313] in the UK and Coalition for Health AI (CHAI)

[79] in the US are addressing trust issues by advocating for credible, fair, and transparent AI

systems in healthcare. TSFdn defined five facets of software trustworthiness: safety, reliability,

availability, resilience, and security [313]. CHAI has recently published a blueprint for trustworthy

AI implementation in healthcare and defined seven key elements of trustworthy AI in healthcare:

useful, safe, accountable and transparent, explainable and interpretable, fair, secure and resilient,

and privacy-enhanced [151]. Furthermore, Dorr et al. proposed to create a “Code of Conduct for

AI in Health Care" that aims to harmonize standards and ensure responsible AI usage [190]. The

potential benefits, limitations, and risks of generative AI systems and foundation models, such as

GPT-4, have recently been highlighted, emphasizing their cautious use in clinical settings [397].

Rajpurkar et al. presented the generalization checks for AI systems as transparency, clinician-

AI collaboration, and post-deployment monitoring [574]. Nakagawa et al. introduced various

challenges in digitizing medical workflows, including data biases, privacy concerns, and algorithm

fragility, while emphasizing the need to carefully consider AI’s impact on pathologists [499]. AI

model cards are an important documentation framework for understanding, sharing, and improving

machine learning models [491, 532]. We summarize the strategies that may contribute to building

the trust of pathologists in AI systems as follows:

1. Users, such as practicing pathologists, should understand the basic functionality of AI models

and their reasoning or logic for a certain decision, just like radiologists understand the core

principles that are used by CT scanners, MRI machines or X-rays to generate a certain type

of images. Therefore, AI developers need to prioritize the use of transparent and explainable

models that provide insights into their functionality and decision-making process.
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2. Equally important is the engagement of pathologists in AI model development and validation

processes, encouraging valuable feedback from both pathology and AI domain experts in

AI development and deployment. Collaborative efforts and continuous feedback allow for

performance improvement, ensuring the long-term utility of the models.

3. There is value in educating and training medical professionals (practicing pathologists in

this case) on the topics related to AI model development and the potential use of these

technologies for solving various problems in healthcare. We have developed a hands-on

machine learning course for medical professionals that aims to provide the specialists such

as pathologists with a practical acquaintance of AI concepts [580].

4. Before deploying AI models in a clinical workflow, it is essential to perform rigorous eval-

uation and validation in the clinical settings where the model is intended to be used in a

sandbox environment. This rigorous assessment will help identify and fix modeling issues,

software bugs, and data and algorithm interoperability challenges. Such validation and eval-

uation processes will instill users’ trust in AI models, assuring their suitability for real-world

implementation and sustained use.

5. During AI model development, validation, and deployment, it is crucial to address ethical

considerations to ensure fairness and reduce bias in the models’ decisions. Validating and

reporting the model’s output for various groups based on age, race, and sex should be

considered an essential part of model development and deployment [491].

4.6 Conclusion

Foundation models and generative AI have the potential to transform digital pathology, leading

to faster and more accurate diagnoses, improved patient outcomes, and a better understanding of

disease mechanisms, along with reducing workload for pathologists, helping standardize lab work-

flow, and contributing to the education and training. These powerful technologies will not replace

pathologists but augment and streamline their skill sets. This review presented an overview of
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generative AI and foundation models and their potential role in digital pathology. We demonstrated

how AI as a field has grown from a narrow problem-solving technique to a comprehensive tool for

language understanding, image analysis, data generation, question-answering, and conversation.

Finally, we present our perspective on the future role of generative AI and foundation models

in digital pathology and future use cases where generative and conversational AI and foundation

models can have a transformative impact in digital pathology. Adapting and integrating genera-

tive foundation models in traditional diagnostic methods can provide a more comprehensive and

accurate assessment of pathology specimens while enabling the development of personalized treat-

ments for patients. However, generative AI and foundation models have associated challenges and

limitations. Further research and development efforts are needed to fully realize the current AI

wave’s potential to ensure their safe and effective implementation in clinical practice.
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Chapter 5: Digital Pathology and Multimodal Learning on Oncology Data

5.1 Note to Reader

This chapter is under review at BJR AI, and is being reproduced with permission from BJR AI.

5.2 Introduction

The examination of tissue samples under a microscope by pathologists is the standard procedure

for disease diagnosis in clinical settings. However, technological advancements in the last couple

of decades have ushered in a new era in the field of pathology called digital pathology (DP). Some

of the key factors that have enabled the transformation from traditional pathology to DP include:

(1) Whole Slide Imaging (WSI), which scans entire tissue sections on glass slides at high resolution

and stores them as digital slides that can be analyzed computationally [788], (2) Image analysis

algorithms from the fields of computer vision and machine learning that can detect, segment,

classify, and quantify morphological features, cells, tissues, biomarkers from digitized images [9],

(3) Advanced imaging techniques such as computational staining and multiplexed imaging [59], (4)

Molecular assays that generate quantitative molecular data from tissues using techniques such as

polymerase chain reaction, microarrays, and next-generation sequencing [105], and (5) Enterprise

imaging that includes pathology informatics [150].

As the field of pathology evolves, so too does our understanding of cancer. Cancer is a

complex disease that can manifest in different forms, each with its distinct characteristics and

implications for screening, diagnosis, prognosis, and treatment. Over time, our understanding

of cancer has evolved. Initially thought to be primarily a result of genetic mutations, it is now

recognized as a complex interplay of genetic, environmental, and lifestyle factors. Advances in
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genomics, proteomics, bioinformatics, and imaging have led to a deeper understanding of cancer,

revealing that even cancers originating in the same organ can have vastly different characteristics

and responses to treatment. This complexity underscores the necessity for personalized medicine

approaches tailored to the unique genetic makeup of each cancer and each patient.

Transitioning from the complexity of cancer biology to the use of advanced technologies, the

success of artificial intelligence (AI) and machine learning (ML) in different domains of science,

especially those focused on quantitative imaging analysis, has attracted anatomical pathology re-

searchers and practitioners. As a result, computational pathology (CPATH) emerged when AI and

ML models were introduced for various types of quantitative analysis in DP [2]. CPATH uses

AI and ML models to extract information from digital images that may extend beyond immediate

human capabilities. By offering AI/ML-powered analytical tools, CPATH has the potential to en-

hance the roles of pathologists in clinical settings by making their work more efficient, accurate, and

reproducible. This enhancement spans various aspects, including improving the precision, repro-

ducibility, and scalability of tasks related to disease diagnosis and the quantification of biomarkers

for prognosis and prediction.

However, while the integration of AI and ML into DP clinical workflow promises significant

advances, it also presents several challenges. These challenges include a shortage of staff trained

in both AI and DP that may temporarily lead to increased workloads. Nevertheless, over time,

the increased use of AI and its incorporation into the training curriculum will gradually improve

the number of AI-qualified individuals in the DP/CPATH field. The growing complexity of

diagnostics due to evolving protocols and new biomarkers, as well as variations in rare diseases

and morphological similarities, also pose challenges. Additionally, quality issues arising from

tissue artifacts and staining/imaging inconsistencies, along with a lack of standardized practices

and protocols, may impede interoperability and pose reproducibility challenges.
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Table 5.1 Key pathology terminologies

Term Definition
Pathology Stems from the Greek word pathología, meaning the study of suffering, it is a medical specialty investigating the

origin, progression, and alterations in the structure, function, and natural course of diseases [232]. There are two
main branches of pathology: anatomical pathology (AP) focuses on studying tissue samples to diagnose diseases
such as cancer, and clinical pathology (CP) analyzes bodily fluids and conducts laboratory tests [733]. Molecular
pathology is an emerging branch that studies diseases at the molecular level by examining tissue or body fluids.

Histology Microscopic examination of tissues and organs by sectioning, applying stains, and observing the prepared sections
under a microscope. This process enables the visualization of tissue structures and any distinctive alterations the
tissue might have undergone. Hematoxylin (a basic dye that stains cell nuclei in a purplish blue color) and Eosin
(an acidic dye that stains cytoplasm in a pinkish red color), referred to as H&E, are commonly used together to
stain structures of the cells to define intracellular organelles and proteins [267].

Histopathology It extends the utility of histological analysis by focusing on the study of disease indicators through the microscopic
examination of processed and fixed glass slides containing sections from biopsies or surgical specimens. To
visualize various tissue components under a microscope, these specimens are dyed with one or more stains
depending on the investigational question being asked [267, 266].

Immunohistochemistry
(IHC)

A valuable tool extensively employed in pathology for cell classification and diagnosis. Commonly performed
on formalin-fixed paraffin-embedded (FFPE) tissue, IHC targets specific antigens in tissues and cells using
antibodies to determine cell type and organ of origin. IHC usage has lately expanded to study predictive and
prognostic biomarkers in oncological settings, making it a useful technique in modern pathology practice [467].

Whole slide imaging
(WSI)

The process of digitizing glass slides at multiple magnifications and focal levels to create digital images for
observation and image analysis. WSI aims to replicate the experience of traditional light microscopy through
digital means and is often known as virtual microscopy [538].

Cytology slides These refer to glass slides that contain specimens of individual cells or cell clusters obtained from various
bodily fluids, tissues, or fine needle aspiration (FNA) biopsy. Unlike histology, which focuses on the function of
tissues, cytology slides are prepared for microscopic examination to analyze cellular morphology, structure, and
characteristics [372].

Digital pathology (DP) DP includes converting histopathology, IHC, or cytology slides into digital formats through whole-slide scanners,
followed by applying computer-aided analytical tools for objective analysis. DP has improved pathology diagnoses
through multiple techniques as discussed in this review.

Computational pathology
(CPATH)

CPATH is the sub-branch of DP that involves computational analysis of digital slides. CPATH aims to analyze
patient specimens by extracting information from digitized pathology images in combination with their associated
meta-data, typically using AI methods to gain valuable insights into disease processes [733, 2, 229].

Radiomics Radiomics is a sub-field of radiology, where radiological images are converted into high-dimensional mine-able
data for AI-based analysis to uncover biomarkers for diagnosis, prognosis, and treatment response prediction
[495].

Pathomics Pathomics is a sub-field of pathology, that covers a wide variety of data captured from image analyses in the
form of features that describe multiple phenotypic features of tissues in WSIs. Using AI, pathomics provides a
quantitative assessment of identified structures and features to complement traditional histopathologic evaluation
by pathologists [265].

Amid these challenges, multimodal learning in oncology represents a cutting-edge approach to

cancer research and treatment, leveraging the integration of various data types to gain a compre-

hensive understanding of cancer’s complexities [87, 136, 740]. This approach combines diverse

datasets, including genomic, proteomic, imaging, clinical, and demographic data, to develop a

holistic view of cancer biology. By harnessing advanced computational techniques offered by

AI/ML, multimodal learning enables analyzing these disparate data types jointly in a unified frame-

work [740, 733]. This integration is paramount for identifying novel biomarkers, elucidating tumor

heterogeneity, predicting treatment responses, and ultimately facilitating the development of more

effective, personalized therapies [204].
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Building upon these developments, DP and CPATH have paved the way for exploring novel

methods for cancer diagnosis, prognosis, treatment planning, and also for research into a deeper

understanding of cancer biology [74, 748, 634, 82]. The innovative algorithms within CPATH,

especially those employing differential privacy and federated learning, enable the development

of robust analytical models. These models are crucial for safeguarding patient privacy, fostering

collaboration among institutions, and paving the way for the adoption of clinical-grade systems

[454]. Such advancements underscore the critical role of AI and ML in transforming cancer care,

making it more precise, personalized, and effective.

Figure 5.1 A template of the future road map for DP and CPATH.

5.3 From Conventional to Digital Pathology (DP)

Conventionally, pathologists observe tissue samples on the glass slides under a microscope

[733]. Such a traditional approach involves physical preparation and storage of glass slides and

local consultations only, limiting the efficiency, reproducibility, scalability, and accessibility of the
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technique. These limitations, along with the advent of modern computers, imaging systems, and

quantitative image processing techniques, have prompted a shift towards DP [376]. The journey

of digitization in pathology began with the development of the first virtual microscope during

1996-1998, where high-resolution images replicating the glass slides were produced using imaging

scanners [537]. The system was later advanced to support data caching and pre-computed image

pyramids [537]. In the last two and half decades, the emergence and commercialization of WSI and

glass slide scanners have revolutionized clinical pathology practices [537, 615]. Presently, many

commercial WSI scanners are available (Philips, Leica, and Hamamatsu, etc.), and many open-

source WSI systems (caMicroscope, Digital Slide Archive, Sedeen viewer, QuPath) are supported

actively [268, 471, 603, 65]. The advent of DP, powered by WSI, has revolutionized medical

diagnostics [376, 746]. Improvements in technology by turning glass slides into digital formats and

decreasing storage costs have increased the use of WSIs [601]. The adoption of DP by pathologists

has seen significant growth, increasing from 30% in 2013 to 64% in 2021, according to a report

by the College of American Pathologists [376]. In Fig. 5.1, we have presented a template for

the future roadmap for DP and CPATH that may have the necessary components and methods

in a unified framework. With a multitude of advantages, DP has brought a revolution in high-

resolution magnification analysis, electronic storage, automation of processes, quality assurance

and control, telepathology and enhanced diagnostic efficiency, streamlined diagnostic workflow,

accessible measurements and quantification, cancer pre-screening, intra-operative consultation,

histopathological second opinion, and education and training.

5.4 Computational Pathology (CPATH) - AI in DP

More recently, the advancements in AI and ML have started revolutionizing DP, which has been a

helpful tool in histopathology image analysis in the last decade [376]. Digital Pathology Association

(DPA) defines CPATH as, “the big-data approach to pathology," where patient’s pathology images

and associated meta-data are combined to extract patterns and analyze image features through AI

techniques [2]. Based on the recent advances in CPATH, the College of American Pathologists

118



Table 5.2 Key AI terminologies

Term Definition
Artificial Intelligence (AI) Initially started as a simple theory of human intelligence being exhibited by machines, AI aims to simulate

human intelligence in machines by developing computers that can engage in learning, reasoning, self-correction,
problem-solving, and decision making [381].

Machine Learning (ML) ML is a subset of AI that programs computers to process natural data and solve an optimization problem using
data samples or past experience. It is an engineering discipline that is closely related to mathematical statistics
to build learning models [144].

Deep Learning (DL) DL is a subfield of ML and refers to models developed using multiple layers of artificial neural networks.
The deep neural networks focus on compositional learning using multiple (hence the word “deep”) layers of
representations, where each layer is built using multiple artificial neurons [144, 734, 735, 12, 357]. Various
types of DL models have been developed, including Convolutional Neural networks (CNNs), Recurrent Neural
networks (RNNs), Graph Neural Networks (GNNs), Transformers, and many others.

Convolutional Neural Net-
works (CNNs)

CNNs are specialized DL models for analyzing image or grid data [144, 252, 653]. CNNs use convolution
operations and can learn spatial correlations, features, and relationships from the input data [252, 177].

Recurrent Neural Net-
works (RNNs)

RNNs are a family of DL models used for processing sequential data like speech, text, or time-series data (e.g.,
patient vital signs recorded over time) [252, 174, 13]. RNNs are used to model time/space-based relationships
between sequences of input data and to learn patterns based on the order (in time or space) [252]. Sub-categories
of RNNs called Long short-term memory network (LSTM) and gated recurrent unit (GRU) models are better
at learning long-term dependencies, making them great for real-world use cases, e.g., predicting medical events
and detecting anomalies in time series data [174].

Graph Neural Networks
(GNNs)

GNNs are DL models designed for analyzing graph data, like social relationships or biological pathways [735].
GNNs pass messages between neighboring nodes to aggregate local and global information. By modeling these
relationships, GNNs can make predictions about nodes, edges, and sub-graphs in the network, where each entity
may represent patients, drugs, proteins, etc. GNNs enable new insights in fields like precision medicine and drug
discovery [8, 665, 724].

Transformers Transformers are DL models that have shown promising results on language translation and image recognition
tasks [706, 191]. Their key innovation is a technique called self-attention. Unlike RNNs, which process data
sequentially, self-attention allows Transformers to learn relationships between any parts of the input, regardless of
their position in the sequence. For example, a Transformer can learn that the symptoms “cough" and “fever" are
strongly related even if they are distant in the patient’s medical history. The model learns which connections are
important by assigning an “attention" score between input sequences (also referred to as tokens) [13, 706, 191].

Foundation Models (FMs) FMs are a new class of DL models characterized by their large scale and ability to adapt to new tasks [92]. FMs
are trained on extensive datasets, allowing them to develop a broad understanding of various topics [733, 450].
The key characteristics of FMs include scalability in learning from diverse data sources, multimodal learning,
compositionally in terms of generalization, and the emergence of implicit learning. Transfer learning, adaptation,
in-context learning, and fine-tuning make FMs exceptionally useful across numerous fields, including the medical
domain [453]. A recent review paper covers existing FMs and their prospective use in DP [733].

Multimodal Learning Multimodal Learning involves integrating data from multiple modalities for an ML task, e.g., prediction, clas-
sification, or regression. A modality refers to specific data input or source types, such as text, images, audio,
video, or other data. The core idea is to leverage the complementary information from different modalities to
improve the performance and accuracy of learning algorithms. Multimodal learning aims to achieve a more
comprehensive understanding of the problem, leading to better decision-making than using a single modality
[740, 481].

announced the inclusion of 30 new current procedural terminologies (CPTs) related to DP for use

by pathologists, effective from January 1, 2024 [514]. The integration of AI in DP has facilitated

precise diagnosis by processing information that may not be perceived by the human eye at times

[733, 537]. The cardinal tasks of AI in DP include the development and validation of models and

algorithms that can detect different patterns and features from data presented in the form of WSIs.

The AI models can identify regions of interest (ROIs) from WSIs, extract and classify patches,

classify entire WSIs, generate labels, and identify various objects of interest [537]. Examples

of how various AI and ML models have been proposed to advance various DP tasks include,
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diagnosis support, enhanced image analysis, improving prognostics and biomarkers predictions,

post-treatment analysis and disease surveillance, and cross-modality learning [2, 376, 733, 558,

740].

5.5 DP, CPATH, and Multimodal AI

Advancements such as the digitization of patient health records, the development of new

diagnostic technologies, innovative laboratory tests, and the establishment of robust information

technology infrastructure in hospitals have led to an exponential increase in the volume of medical

data collected for each patient [740]. Recent progress in multimodal learning, driven by deep

neural networks, has demonstrated a remarkable ability to learn from varied data modalities, such

as computer vision and natural language processing [740, 92]. Multimodal foundation models

such as OpenAI’s Contrastive Language-Image Pretraining (CLIP) and Generative Pretraining

Transformer (GPT-4) have established new standards in the field, while the Foundational Language

And Vision Alignment Model (FLAVA) marks a notable advancement by integrating vision and

language representation learning to enable multimodal reasoning [5, 563, 641]. The success of

multimodal AI models in other domains has inspired cancer researchers to explore the potential

of multimodal AI in healthcare [599]. The multimodal AI models being developed in the medical

domain can integrate diverse modalities, including radiological images, genetic profiles, and clinical

information, within the DP workflow, enhancing diagnostic precision and enabling personalized

treatments [276, 736]. Multimodal AI models are poised to empower healthcare teams by offering

them a holistic view of the patient’s disease state and paving the way for truly personalized cancer

care [740, 481, 276].

In our context, “modality” refers to a specific data source or type. For example, EHR text

descriptions of surgical procedures or post-visit reports represent one modality. Lab test values,

vital measurements, and demographic information form another. Histopathology slides (stored as

WSI), radiological scans (X-ray, MRI, PET, CT), and molecular data (genomics, proteomics) are
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separate modalities [315, 734, 736]. Some modalities have sub-categories, such as MRI scans with

FLAIR, T1, T2, and CT scans with various views and contrast protocols.

In multimodal learning, researchers use various modality-specific data processing methods and

data fusion mechanisms. The generally defined five main stages are: (1) preprocessing, (2) feature

extraction, (3) data fusion, (4) primary learner, and (5) final classifier [740]. Data fusion from

different modalities can occur at various levels. Early fusion combines features before feeding data

into ML models [736, 693]. Intermediate fusion occurs at the model level, while late fusion merges

processed data at the decision level [740]. Explainability in deep learning involves techniques to

make models’ decisions, behaviors, and outputs transparent and understandable [505, 680]. This

includes building interpretable models or generating post hoc explanations [733, 505]. In DP, which

uses high-resolution WSIs, explainability is crucial. Techniques include heatmaps showing areas

of significance, case-based explanations comparing with established predictions, and layer-wise

relevance propagation to trace outputs back to inputs [269].

In the following, we provide a chronological overview of various applications of multimodal

AI/ML techniques with a focus on histopathology data as the essential ingredient integrated with

one or more other modalities (e.g., radiology, genomics, or clinical data). A schematic layout of the

multimodal AI in DP and CPATH is provided in Fig. 5.2. We also provide a summary of references

for each category of multimodal learning in Table 5.3, along with the explainability method of

these works where applicable.

5.5.1 2019

Cheerla et al. developed a multimodal model to predict the survival of patients for 20 different

cancer types by fusing three different data modalities that included clinical data, mRNA and

microRNA expressions, and WSIs [126]. The proposed multimodal AI model was able to predict

the overall survival (OS) with the concordance index (C-index) of 0.78 [126].

121



Figure 5.2 A schematic layout of multimodal learning in cancer care.

5.5.2 2020

Chen et al. proposed an end-to-end multimodal framework called “Pathomic Fusion” that

predicted survival outcomes from WSIs and genomic (mutations, CNV, RNA-Seq) features of

glioma and clear cell renal cell carcinoma (CCRCC) [135]. For the glioma patients, Pathomic

Fusion outperformed the WHO paradigm and previous state-of-the-art with 6.31% and 5.76%

improvements, respectively, and reaching a C-index of 0.826 [135]. For the CCRCC, similar

results were observed, with tri-modal Pathomic Fusion achieving a C-index of 0.720 [135].

Microsatellite Instability (MSI) is an approved pan-cancer biomarker for immune checkpoint

blockade (ICB) therapy. A multiple-instance AI model, called Ensembled Patch Likelihood Aggre-
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gation (EPLA), was proposed to integrate pathological, genomic, and transcriptomic phenotypes

and predict MSI [111]. The model also provided an interpretation of its results for effective use in

ICB therapy. The proposed EPLA model got an AUC of 0.8848 and 0.8504 in the TCGA-COAD

and Asian-CRC external validation, respectively [111]. EPLA was also able to capture correlation

between poor differentiation and MSI [111]. The model was also able to identify imaging signatures

associated with mutations burden, DNA damage, and antitumor immunity [111].

Rathore et al. used support vector machine (SVM) model to distinguish high-grade gliomas

(HGG) from low-grade gliomas (LGG) by combining textual features with conventional imaging and

clinical markers [582]. Their model identified the microvascular proliferation level, mitotic activity,

presence of necrosis, and nuclear atypia in WSIs [582]. The texture features were successfully

validated on the glioma patients in 10-fold cross-validation (accuracy = 75.12%, AUC = 0.652).

Adding texture features to clinical and conventional imaging features significantly improved grade

prediction compared to the models trained on clinical and conventional imaging features alone

[582].

Classical ML models have been shown to capture the multi-scale association between H&E

and CT images, which was used to classify lung adenocarcinoma from squamous cell carcinoma

in NSCLC [27]. Alvarez et al. identified discriminant pathomic patterns for cancer classification

and established correlations between multimodal features of 171 patients, depicting significant

cross-scale associations between cell density statistics and CT intensity [27].

5.5.3 2021

The Multimodal Co-Attention Transformer (MCAT), an AI model leveraging the Transformer

architecture and cross-modality attention, has outperformed all unimodal models and the more

commonly used late fusion methods in survival prediction for five distinct types of cancers, including

Bladder Urothelial Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Glioblastoma & Lower

Grade Glioma (GBMLGG), Lung Adenocarcinoma (LUAD), and Uterine Corpus Endometrial

Carcinoma (UCEC) [136]. MCAT outperformed state-of-the-art methods on all benchmarks, with
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a C-index increase of 6.35% and 12.4% compared to Attention Multi-Instance Learning (MIL) and

Deep Attention Multiple Instance Survival Learning (DeepAttn-MISL) methods, respectively. The

success of the MCAT model indicated that multimodal learning could be used in general for any

survival outcome prediction task [136].

Khosravi et al. proposed AI-biopsy, an AI model based on the Inception-V1 architecture,

which was pre-trained on a non-medical ImageNet dataset and transfer learned on MRI scans

labeled with pathology assessments like Gleason scores and grade groups [369]. The proposed

early data-fusion technique exhibited a higher agreement with biopsy results when compared to the

Prostate Imaging Reporting and Data System (PI-RADS) score, indicating promising advancements

in diagnostic precision [369]. AI-biopsy achieved AUCs of 0.78 (95% CI: [0.74–0.82]) and 0.89

(95% CI:[0.86–0.92]) in 400 patients on the tasks of distinguishing high-risk from low-risk cancers

and cancerous vs. benign prostate disease, respectively.

WSI, demographic, genomic, and clinical data collected from three data sources, The Cancer

Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and Brigham

and Women’s Hospital, were used to develop an AI model for various tasks related to renal cell

carcinoma [470]. The trained models were able to detect malignancy (AUC = 0.964–0.985),

diagnose renal cancer subtypes (AUCs = 0.953–0.993), and predict survival outcomes [470]. The

model also identified histopathology image features that were indicative of biomarkers such as

copy-number alterations (CNAs) and tumor mutation burden (TMB) [470].

In general, single-omics data modality may not be able to provide a comprehensive view of

tumor-related molecular alterations. In such cases, integrating multiple data modalities even within

the -omics regime can help improve diagnosis, personalized treatments, and predict outcomes more

accurately [688]. Tong et al. developed an encoder-decoder AI model for cancer classification

among four cancer types (lung adenocarcinoma (LUAD), Kidney Renal Clear Cell Carcinoma

(KIRC), Lung Squamous Cell Carcinoma (LUSC), and pancreatic adenocarcinoma (PAAD)) and

patient survival prediction in two cancer types (Breast Invasive Carcinoma (BRCA), Ovarian

Carcinoma (OV)) [688]. Two data integration methods were evaluated for four types of -omics data
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that include gene expression, DNA methylation, miRNA expression, and copy number variations

[688]. The multimodal AI models outperformed single-omics models for both tasks, cancer

classification and survival prediction. Within the two data fusion methods, divergence-based

consensus networks performed better than concatenation-based integration networks [688].

Multimodal learning using clinical data, H&E images, genomics, and transcriptomic features

were shown to predict pathological complete response to treatment and improve outcomes in 168

breast cancer patients treated with chemotherapy with or without HER2-targeted therapy before

surgery [604]. The multi-omic AI model predicted pathological complete response in an external

validation cohort of 75 patients with an AUC of 0.87. The final AI model consisted of an ensemble

of traditional ML models, including logistic regression, support vector machine, and random forest

[604].

Chelebian et al. developed an ensemble CNN to provide interpretations that matched pathol-

ogists’ manual assessments [127]. The resulting interpretations were more informative when the

underlying genes were considered [127]. The framework paired H&E slides with spatially resolved

gene expressions from the spatial transcriptomics technique, predicting the spatial variation of

individual genes [127].

Braman et al. [97] proposed a Deep Orthogonal Fusion (DOF) model to learn from multi-

parametric MRI scans, H&E slides, DNA sequencing, and clinical features into a multimodal risk

score [97]. The embeddings (or representations) from individual data modalities were learned and

fused through attention-gated tensor fusion. The authors introduced multimodal orthogonalization

(MMO) learning loss that incentivized each embedding to be more complementary [97]. DOF

predicted OS in 176 glioma patients with a median C-index of 0.788 ± 0.067, compared to the best

performing unimodal model (C-index of 0.718 ± 0.064) [97].

5.5.4 2022

Compared with unimodal data, combining H&E WSIs with the molecular assay improved

survival prediction reliability in multiple cancers, including BRCA, COADREAD, LUAD, PAAD,
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and others [138]. Chen et al. proposed a deep learning framework, multimodal fusion (MMF),

which achieved an overall C-index of 0.644 across the 14 cancer types, whereas the MIL model

using WSI and SNN on molecular data had overall C-Indices of 0.578 and 0.606, respectively.

On survival AUC, a similar improvement for the multimodal model was reported with an overall

performance of 0.662 compared with unimodal models [138].

Often referred to as a “virtual biopsy," radiomics features enhance conventional diagnostic

radiologic workflows when combined with the pathomic features from H&E slides [98]. Brancato

et al. employed different feature generation techniques to extract 91 radiomics features from

MRI scans and 156 pathomic features from H&E images for 48 Glioblastoma multiforme (GBM)

patients from the CPTAC data portal. The proposed radiomics-pathomics fusion technique showed

significant cross-scale associations of features among the GBM patients [98].

Multimodal integration of radiology, pathology, and genomics data modalities improved insights

into response to immunotherapy PD-L1 blockade in patients with NSCLC [703]. Vanguri et al.

explored the multimodal integration of CT images, digitized programmed death ligand-1 IHC slides,

genomics data including somatic mutations, copy number alterations and gene fusions, and known

outcomes to immunotherapy to predict immunotherapy response among 247 patients with advanced

NSCLC. The multimodal model called DyAM showed an AUC of 0.80, 95% CI [0.74–0.86] on

immunotherapy response prediction task, that outperformed unimodal methods, including TMB

(AUC = 0.61, 95% CI [0.52–0.70]) and programmed death ligand-1 IHC score (AUC = 0.73, 95%

CI [0.65–0.81]) [703].

Ensemble of a range of ML regression models, including support vector regression, AdaBoost,

gradient boost, and random forest, were shown to provide better survival outcomes prediction

for 171 Glioma patients using integrated features from MRI (T1-GD, T1, T2, and T2-FLAIR) and

H&E images [581]. The proposed ensemble fusion approach outperformed several other techniques

based solely on radiology features, gene expression data, or pathology images [581].

Combining pretreatment MRI (T2, T1-CE, DWI) and H&E-stained biopsy slides using AI mod-

els can predict pathological complete response in patients with locally advanced rectal cancer [219].
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The proposed framework, RAdioPathomics Integrated preDiction System (RAPIDS), showed a sig-

nificant improvement in the prediction of pathological complete response with a combined AUC

of 0.812 compared to the unimodal models for prospective validation study [219]. RAPIDS also

performed better in the retrospective study training cohort (AUC 0.868 [95% CI 0.825–0.912]),

validation cohort 1 (0.860 CI [0.828–0.892]) and validation cohort 2 (0.872 CI [0.810–0.934])

[219].

Harnessing AI-driven insights with radiomics-pathomics has led to personalized treatment

plans, optimizing therapies while minimizing adverse effects [726]. An innovative fusion of

pathomics, radiomics, and immunoscore data identified high-risk patients with colorectal cancer

(CRC) lung metastasis. The combined nomogram model predicted the OS with an AUC of 0.860

and disease-free survival (DFS) with an AUC of 0.875. This integration offers insights about

aggressive treatment strategies and tailored follow-up plans for high-risk patients [726].

Wan et al. developed a multiscale framework that harnessed the power of radiomics features

extracted from MRI (T2WI, DWI) data, pathomics features derived from H&E images, and clinical

variables to predict pathological good responses (pGR) in 153 patients with locally advanced

rectal cancer who underwent neoadjuvant chemoradiotherapy (nCRT) [718]. This macroscopic-

microscopic scale fusion identified the patients with down-staging to stage ypT0-1N0 after nCRT, a

critical factor in guiding organ-preserving strategies to minimize invasion and uphold the quality of

life. By integrating these diverse modalities, the multiscale AI model outperformed the traditional

clinical-radiological model with an AUC of 0.90 (95% CI: [0.78–1.00]) compared to 0.68 (95%

CI: [0.46–0.91]) in the validation group. These results highlight the complementary nature of

information present in radiomics and pathomics features for assessing treatment response [718].

Boehm et al. used a multimodal dataset of 444 patients with ovarian cancer and integrated

radiological data (CT scans), histopathological images (H&E), clinical, and genomic modalities

to stratify patients based on risk [88]. The multimodal AI model stratified patients in the training

and the test cohorts with the C-indices of 0.55 (95% CI: [0.549–0.554]) and 0.53 (95% CI:
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[0.517–0.547]), respectively. The authors also discovered quantitative features, such as tumor

nuclear size on H&E and omental texture on CT, associated with prognosis [88].

5.5.5 2023

Palmal et al. employed a graph convolutional network (GCN) and Choquet fuzzy ensemble

consisting of classical ML models (Logistic Regression, Random Forest, and SVM) to fuse the

multi-omics and clinical data [534]. 1980 samples of breast cancer patients were classified as short-

term or long-term survivors using different combinations of gene expression (24,000 features), copy

number alteration (26,000 features), and clinical data (27 features) [534]. The performance metrics

of accuracy, Matthews correlation coefficient, precision, sensitivity, specificity, balanced accuracy,

and F1-measure showed significant result scores as 0.820, 0.528, 0.630, 0.666, 0.871, 0.769, and

0.647, respectively [534].

Tsai et al. developed a Multi-omics Multi-cohort Assessment (MOMA) framework to fuse

WSIs with genomics, proteomics, and molecular data to predict OS, progression-free survival,

and other variables for colorectal cancer patients [697]. MOMA was able to identify cross-scale

relationships among histologic patterns, multi-omics, and clinical profiles in 1888 patients. MOMA

predicted OS, progression-free survival, and MSI in held-out test datasets of stage I, II, and III

colorectal cancer patients better than other state-of-the-art methods [697].

An AI model that fuses CT images with WSIs was shown to accurately predict lymph node

metastasis stage (LNMs) in patients with gastric cancer [807]. Features extracted from CT images

using a CNN (ResNet-50) and from WSI using the Vision Transformer model (ViT) were fused

to learn the prediction task of five LNM stages [807]. The proposed radio-pathologic integrated

method achieved 84.0% accuracy and significantly improved AUCs in predicting five LNM stages

compared to single-modality models [807]. The integrated model also achieved an AUC of 0.978

(95% CI: [0.912–1.0]) in metastasis prediction task [807].

An AI model called Deep Learning Radio-Pathomics Model (DLRPM) seamlessly integrated

radiomics, pathomics, clinical, and pathological features using ResNet-50 and SVM on 211 breast
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cancer patients who underwent neoadjuvant chemotherapy [794]. DLRPM demonstrated remark-

able capabilities for predicting pathological complete response in the validation dataset with an

AUC of 0.927 (95% CI: [0.858–0.996]), significantly outperforming models that used individual

data modalities and features, such as radiomics and pathomics [794].

The fusion of radiomics features with pathomics features and molecular data may provide a

more comprehensive view of the intricate tumor microenvironment (TME), enabling a deeper un-

derstanding of its composition and tumor heterogeneity [345]. Fusing radiological and pathomics

data may offer precise spatial mapping of histological features, facilitating detailed TME exami-

nation. This holistic approach may unravel the complex interactions between tumor cells and the

surrounding microenvironment, advancing our understanding of cancer biology [345].

Recently, Tang et al. designed a new fusion method to combine dermatological images and

patient clinical metadata for skin cancer classification using three public skin lesion datasets with

more than 3,300 patients [677]. The proposed AI model, called joint-individual fusion with

multimodal mutual fusion attention (JIF-MMFA), learns the shared features of multimodal data by

employing a fusion attention module to enhance the relevant features from both data modalities

[677]. JIF-MMFA showed the effectiveness of using patients’ clinical data in improving the

classification of skin cancer [677].

5.6 Discussion

The global market for AI-based DP solutions is projected to grow at a compound annual

growth rate of 8.59% from 2024 to 2031, with North America leading due to advanced healthcare

infrastructure, higher income levels, and research facilities [3]. AI patent filings in DP have

sharply increased in major patent offices, indicating growing innovation [18]. There is a significant

push towards open-source and reproducible AI, with initiatives like Allen AI contributing through

platforms like Hugging Face [620]. AI is increasingly used to predict patient responses to IO

by analyzing histopathological and molecular data [550]. The integration of AI in DP promotes
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Table 5.3 Summary of multimodal AI models for DP in this review

Modalities Ref Data type Metrics # patients Task

Pathology,
Molecular

[138] H&E, Multiomics (mutation status,
CNV, RNAseq expr)

5-fold cv, C-
index, AUC

5,720 Survival outcome prediction and
prognostic features correlations.

[135] H&E, Multiomics (mutation status,
CNV, RNAseq expr)

15-fold cv, C-
index

1186 Survival outcome prediction.

[136] WSIs, genomic features 5-fold cv, C-index 3,523 Overall Survival
[111] WSIs, Multiomics (DNA mutation,

mRNA expr)
AUC 1,214 Microsatellite status prediction

[127] H&E slides, spatially resolved gene
expression

Accuracy 7 Cancer detection, predict spatial
variation of individual genes

[697] WSI, Multiomics (genomics, pro-
teomics, and molecular subtyping)

C-index 1,888 Survival prediction, MSI predic-
tion

Pathology,
Clinical

[582] WSIs, Pathomic features, Clinical 10-fold cv, Acc,
AUC

735 Tumor grade prediction

[677] Dermatology images, Clinical Balanced accu-
racy, AUC

>3,300 Cancer classification

Pathology,
Radiology

[369] WSI, MRI NPV, PPV, accu-
racy, AUC, Co-
hen’s kappa

400 Tumor classification 1) benign/
cancerous, 2) high-risk/ low-risk
tumor

[98] Radiomics (from MRI), Pathomic
features (from H&E)

Spearman’s cor-
relation

48 Association among radiomics
and pathomics features

[581] MRI (T1-GD, T1, T2, and T2-
FLAIR), H&E images

5-fold cv, Regres-
sion

171 Survival prediction

[219] MRI (T2, T1-CE, DWI), H&E im-
ages

AUC, PPV, NPV 1033 Predict pathological complete
response

[718] MRI (T2WI, DWI), H&E images AUC 153 Predict pathological good re-
sponses

[27] CT, H&E images AUC, accuracy 171 Cancer classification
[807] CT, WSIs AUC, accuracy 252 Prediction of LNM stage

Pathology, Radi-
ology, Molecular

[703] Radiology (CT), pathology (IHC),
Multiomics (somatic mutations,
CNAs, gene fusions)

10-fold cv, AUC 247 Immunotherapy response (IHC
score, TMB)

Pathology,
Radiol-
ogy,
Clinical

[726] Pathomics, Radiomics features, Im-
munoscore, Clinical factors

AUC 103 Survival prediction

[794] Pathomics, Radiomics, Clinico-
pathological features

AUC 211 Predicting pathological com-
plete response

Pathology,
Molecu-
lar,
Clinical

[126] WSIs, Multiomics (mRNA, miRNA
expr), Clinical

C-index 11,160 Overall Survival

[470] WSIs, Multiomics (CNA, somatic
genetic mutations), Clinical

AUC 1,281 Detect malignancy, Diagnose
cancer subtypes, Predict survival
outcomes

[604] H&E, Multiomics, Clinical AUC 168 Response to treatment

Path,Rad,
Molec,
Clin

[88] H&E, CT, Multiomics, Clinical C-index 444 Overall survival
[97] H&E, MRI, Multiomics (DNA seq),

Clinical
15-fold Monte
Carlo, C-index

176 Overall survival
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collaboration among pathologists, oncologists, radiologists, and bioinformaticians, leading to a

holistic approach to patient care [247].

Large language models (LLMs) like ChatGPT enhance pathology reports by ensuring consis-

tency and translating complex medical data for clinicians and patients. LLMs assist pathologists by

providing quick access to relevant literature and summarizing research findings [258, 733]. While

most multimodal works focus on 2D WSIs, incorporating 3D data from techniques like microscopy

or medical imaging could provide additional spatial context, improving model performance [373].

Combining WSIs with text reports, genomic data, or medical videos in multimodal learning is

emerging as a way to enhance diagnostic capabilities [476]. Models like CLIP, which integrate

text and image data, can be adapted for DP tasks [451]. Integrating histopathological, radiomic,

genomic, and clinical data using a late-fusion approach has been shown to improve cancer patient

risk stratification [88]. Multimodal AI is used across various domains, including biomedicine for

disease diagnosis and treatment planning, autonomous vehicles for real-time decision-making, and

augmented generative AI for content creation and multimodal translation [648, 161, 525, 257, 295].

Below we discuss some of the opportunities and challenges of multimodal learning in DP.

5.7 Opportunities

5.7.1 Multimodal Patient Stratification

Integrating various data types, including genomics, transcriptomics, epigenomics, proteomics,

histopathology, and radiology, allows more precise patient stratification [87]. AI models can identify

distinct patient subgroups with different phenotypes and treatment responses. This stratification

can lead to more personalized and effective treatment strategies, enhancing patient care.

5.7.2 Non-Invasive Alternatives, Personalized Medicine

AI models enable the prediction of histology subtypes or grades from radiomics features [430].

This capability will open many opportunities for developing non-invasive surrogates for existing
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biomarkers, reducing the need for invasive procedures in the future. Additionally, AI models

demonstrate promise in predicting clinical outcomes, including survival, treatment response, and

recurrence, enabling personalized medicine approaches and better patient management.

5.7.3 Patient Empowerment

Integrating different modalities can create user-friendly digital solutions that empower patients

to become active partners in managing their health [481]. Patients can access their own health

records, diagnostic reports, and integrated biomarker information, allowing them to make informed

decisions about their care. This level of patient engagement and access to integrated health

information can enhance the patient experience, improve communication with healthcare providers,

and improve health outcomes.

5.7.4 Improving Outcomes

Multimodal data integration, especially fusing histopathology and genomics data, has shown

promise in improving the accuracy of outcome predictions for cancer patients [87]. Researchers

and clinicians can improve overall/progression-free survival analysis by leveraging multimodal AI

techniques, enabling more precise prognostication beyond traditional clinical factors. This can

facilitate the development of more effective treatment regimens for high-risk patients and improve

treatment outcomes.

5.7.5 Morphological Associations, Biomarker Discovery

Multimodal AI models can potentially discover morphological associations spread across data

modalities, including the relationship between genetic mutations and tissue morphology [430].

Such findings can help exploratory studies and reduce the search space for potential biomarker

candidates. By identifying morphological associates, AI can support cost-efficient biomarker

discovery and aid in cancer screening and therapeutic target discovery.
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5.7.6 Integrative Diagnostics

ID is defined to be the convergence of radiology and pathology imaging, clinical laboratory

medicine, and advanced computational methods [75]. ID, especially with a focus on radiology and

pathology data fusion, offers many benefits and untapped potential in oncology. Yet, despite the

anticipation of numerous benefits, a noticeable scarcity of comprehensive literature surrounds this

emerging field. ID can potentially identify appropriate therapies and suggest treatment changes

when needed, decreasing morbidity and costs and improving patient outcomes [75].

5.7.7 Correlational Studies

Multimodal learning may hold enormous potential for conducting correlational studies and

improving oncology patient diagnoses. Using histopathological and molecular data, AI models

have already been shown to identify novel biomarkers and underlying tuberculosis mechanisms in

susceptible individuals [49].

5.7.8 Medical Report Integration

Despite recent advancements related to digitizing medical data in EHR and radiological and

laboratory imaging systems, there are apparently no efforts focused on correlating the imaging data

(histopathology and radiology) with the textual reports (e.g., radiology reports, pathology reports,

and other clinical notes) at the data storage level. One obvious reason is related to the siloed storage

and data management systems. Modern AI systems based on vector databases can provide the

necessary building blocks for data integration at the storage level [80].

5.8 Challenges

5.8.1 Data Availability, Integration, Missingness

Obtaining and integrating diverse medical data types, such as images and clinical records, is an

extremely challenging task [691]. Data security and governance issues, data scarcity, unstructured

133



formats, and varying data identifiers pose significant hurdles in this process [345, 87]. Moreover,

the issue of missing or incomplete data within each data modality further complicates the training

of AI models [691, 430]. Strategies like synthetic data generation, dropout-based methods, and

embedding models are being explored to address this challenge, but concerns about the accuracy

and representativeness of synthetic data still remain [736, 693]

5.8.2 Interoperability

Ensuring that different medical devices, systems, and data formats can seamlessly communicate

and exchange information is a considerable challenge [481, 345]. Data standards, protocols, and

technologies differ across vendors, providers, and sometimes healthcare institutions and systems.

Efforts such as Fast Healthcare Interoperability Resources (FHIR) for the EHR to overcome this

challenge are essential for integrating diverse modalities and facilitating comprehensive patient

care.

5.8.3 Data Modeling and Analysis

This challenge arises when integrating data from different sources or institutions because of

institution-specific biases stemming from variations in data acquisition methods, clinical data

standards, and the catchment area demographics [87]. Ensuring model generalizability in the

presence of heterogeneous data modalities is another aspect of this challenge [87].

5.8.4 Transparency and Clinical Adoption

While multimodal AI models hold great promise in oncology, their adoption in clinical practice

faces several hurdles. Ensuring transparency and interpretability of these models is challenging,

as they often use abstract feature representations [430]. Prospective clinical trials and rigorous

validation studies will be needed to demonstrate the added value of AI models in real-world clinical

settings. Regulatory guidelines and addressing issues like fairness and dataset shifts are equally

important for clinical adoption [430].

134



5.8.5 Personnel Training

The primary users of AI systems in DP are clinicians and pathologists. Training the adminis-

trative, technical, and professional personnel on AI systems is a secondary but essential challenge

that needs to be addressed for the success of AI systems [274].

5.8.6 Explainability, Trust, and Reproducibility

AI models are known to be complex; this impacts the ability of pathologists and clinicians

to understand the internal workings of these models [505]. Similarly, the reproducibility of

model output and performance is another challenge that makes their adoption difficult. Having

an interactive graphical user interface is essential in AI systems, but such interfaces are either not

available entirely or do not provide output visualizations for the intermediate layers of the model.

All these challenges reduce users’ trust in AI systems, especially in the case of DP, where decisions

directly impact diagnosis and clinical outcomes [274].

5.9 Conclusion

The integration of multimodal oncology data using advanced computational methods represents

a pivotal advancement in the realm of DP and CPATH. The advancements in AI and ML models

have enabled a more nuanced understanding of cancer’s multifaceted nature. By synergistically

combining clinical, radiological, pathology, and molecular data, researchers and clinicians can gain

unprecedented insights into the complex dynamics of cancer, leading to more effective and per-

sonalized therapeutic strategies. However, there are multiple associated challenges to multimodal

learning. Looking forward, DP stands on the brink of a new era where continuous innovation and

interdisciplinary collaboration are key to harnessing the full potential of multimodal data integra-

tion. This will undoubtedly be crucial in advancing our understanding of cancer and opening new

avenues for patient care and research.
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Chapter 6: Multimodal Data Integration for Oncology in the Era of Deep Neural Networks:

A Review

6.1 Note to Reader

This chapter is under review at Frontiers in AI, and is being reproduced with permission from

Frontiers.

6.2 Introduction

Cancer represents a significant global health challenge, characterized by the uncontrolled growth

of abnormal cells, leading to millions of deaths annually. In 2023, the United States had around 1.9

million new cancer diagnoses, with cancer being the second leading cause of death and anticipated

to result in approximately 1670 deaths daily [637]. However, advancements in oncology research

hold the promise of preventing nearly 42% of these cases through early detection and lifestyle

modifications. The complexity of cancer, involving intricate changes at both the microscopic and

macroscopic levels, requires innovative approaches to its understanding and management. In recent

years, the application of machine learning (ML) techniques, especially deep learning (DL), has

emerged as a transformative force in oncology. DL employs deep neural networks to analyze vast

datasets, offering unprecedented insights into cancer’s development and progression [109, 128,

636, 497, 674]. This approach has led to the development of computer-aided diagnostic systems

capable of detecting and classifying cancerous tissues in medical images, such as mammograms

and MRI scans, with increasing accuracy. Beyond imaging, DL also plays a crucial role in

analyzing molecular data, aiding in the prediction of treatment responses, and the identification of

new biomarkers [704, 367, 496, 175, 176, 734, 68]. As the volume of oncology data continues to
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grow, DL stands at the forefront of this field, enhancing our understanding of cancer, improving

diagnostic precision, predicting clinical outcomes, and paving the way for innovative treatments.

This review explores the latest advancements in DL applications within oncology, highlighting its

potential to revolutionize cancer care [240, 122, 692, 306].
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Multimodal Learning (MML) enhances task accuracy and reliability by leveraging information

from various data sources or modalities [301]. This approach has witnessed a surge in popularity,

as indicated by the growing body of MML-related publications (see Figure 6.1). By facilitating

the fusion of multimodal data, such as radiological images, digitized pathology slides, molecular

data, and electronic health records (EHR), MML offers a richer understanding of complex prob-

lems [694]. It enables the extraction and integration of relevant features that might be overlooked

when analyzing data modalities separately. Recent advancements in MML, powered by Deep

Neural Networks (DNNs), have shown remarkable capability in learning from diverse data sources,
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including computer vision (CV) and natural language processing (NLP) [524, 91]. Prominent mul-

timodal foundation models such as Contrastive Language-Image Pretraining (CLIP) and Generative

Pretraining Transformer (GPT-4) by OpenAI have set new benchmarks in the field [564, 524]. Ad-

ditionally, the Foundational Language And Vision Alignment Model (FLAVA) represents another

significant stride, merging vision and language representation learning to facilitate multimodal

reasoning [642]. Within the realm of oncology, innovative applications of MML are emerging.

The RadGenNets model, for instance, integrates clinical and genomics data with Positron Emis-

sion Tomography (PET) scans and gene mutation data, employing a combination of Convolutional

Neural Networks (CNNs) and Dense Neural Networks to predict gene mutations in Non-small cell

lung cancer (NSCLC) patients [695]. Moreover, GNNs and Transformers are being explored for

a variety of oncology-related tasks, such as tumor classification [365], prognosis prediction [621],

and assessing treatment response [338].

Recent literature has seen an influx of survey and review articles exploring MML [90, 762,

64, 203, 276]. These works have provided valuable insights into the evolving landscape of MML,

charting key trends and challenges within the field. Despite this growing body of knowledge,

there remains a notable gap in the literature regarding the application of advanced multimodal DL

models, such as Graph Neural Networks (GNNs) and Transformers, in the domain of oncology.

Our article aims to fill this gap by offering the following contributions:

1. Identifying large-scale MML approaches in oncology. We provide an overview of the state-

of-the-art MML with a special focus on GNNs and Transformers for multimodal data fusion

in oncology.

2. Highlighting the challenges and limitations of MML in oncology data fusion. We discuss

the challenges and limitations of implementing multimodal data-fusion models in oncology,

including the need for large datasets, the complexity of integrating diverse data types, data

alignment, and missing data modalities and samples.
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3. Providing a taxonomy for describing multimodal architectures. We present a comprehensive

taxonomy for describing MML architectures, including both traditional ML and DL, to

facilitate future research in this area.

4. Identifying future directions for multimodal data fusion in oncology. We identify GNNs and

Transformers as potential solutions for comprehensive multimodal integration and present

the associated challenges.

By addressing these aspects, our article seeks to advance the understanding of MML’s potential

in oncology, paving the way for innovative solutions that could revolutionize cancer diagnosis

and treatment through comprehensive data integration. Section 6.3 covers the fundamentals of

MML, including data modalities, taxonomy, data fusion stages, and neural network architectures.

Section 6.4 focuses on GNNs in MML, explaining graph data, learning on graphs, architectures, and

applications to unimodal and multimodal oncology datasets. Section 6.5 discusses Transformers

in MML, including architecture, multimodal Transformers, applications to oncology datasets, and

methods of fusing data modalities. Section 6.6 highlights challenges in MML, such as data

availability, alignment, generalization, missing data, explainability, and others, followed by the

multimodal data sources.

Figure 6.2 An overview of data collected from population to a tissue.
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Figure 6.3 Detailed look into data modalities acquired for cancer care.

6.3 Fundamentals of Multimodal Learning (MML)

6.3.1 Data Modalities in Oncology

A data modality represents the expression of an entity or a particular form of sensory perception,

such as the characters’ visual actions, sounds of spoken dialogues, or the background music [645].

A collective notion of these modalities is called multi-modality [64]. Traditional data analysis and

ML methods to study cancer data use single data modalities (e.g., EHR [489], radiology [734],

pathology [432], or molecular, including genomics [46], transcriptomics [779], proteomics [727],

etc.). However, the data is inherently multimodal, as it includes information from multiple sources

or modalities that are related in many ways. Figure 6.2 provides a view of multiple modalities

of cancer at various scales, from the population level to single-cell analysis. Oncology data can

be broadly classified into 3 categories: clinical, molecular, and imaging, where each category

provides complementary information about the patient’s disease. Figure 6.3 highlights different

clinical, molecular, and imaging modalities. Multimodal analysis endeavors to gain holistic insights

into the disease process using multimodal data.
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6.3.1.1 Molecular Data

Molecular data modalities provide information about the underlying genetic changes and alter-

ations in the cancer cells [435]. Efforts toward integrating molecular data resulted in the multi-omics

research field [737]. Two principal areas of molecular analysis in oncology are proteomics and

genomics. Proteomics is the study of proteins and their changes in response to cancer, and it

provides information about the biological processes taking place in cancer cells. Genomics is the

study of the entire genome of cancer cells, including changes in DNA sequence, gene expression,

and structural variations [90]. Other molecular modalities include transcriptomics, pathomics,

radiomics and their combinations, radiogenomics, and proteogenomics. Many publicly available

datasets provide access to molecular data, including the Proteomics Data Commons for proteomics

data and the Genome Data Commons for genetic data [682, 259].

6.3.1.2 Imaging Data

Imaging modalities play a crucial role in diagnosing and monitoring cancer. The imaging cate-

gory can be divided into 2 main categories: (1) radiological imaging and (2) digitized histopathol-

ogy slides, referred to as Whole Slide Imaging (WSI). Radiological imaging encompasses various

techniques such as X-rays, CT scans, MRI, PET, and others, which provide information about the

location and extent of cancer within the body. These images can be used to determine the size and

shape of a tumor, monitor its growth, and assess the effectiveness of treatments. Histopathologi-

cal imaging is the examination of tissue samples obtained through biopsy or surgery [595, 733].

Digitized slides, saved as WSIs, provide detailed information about the micro-structural changes in

cancer cells and can be used to diagnose cancer and determine its subtype.

6.3.1.3 Clinical Data

Clinical data provides information about the patient’s medical history, physical examination,

and laboratory results, saved in the patient’s electronic health records (EHR) at the clinic. EHR

consists of digital records of a patient’s health information stored in a centralized database. These
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records provide a comprehensive view of a patient’s medical history, past diagnoses, treatments,

laboratory test results, and other information, which helps clinicians understand the disease [51].

Within EHR, time-series data may refer to the clinical data recorded over time, such as repeated

blood tests, lab values, or physical attributes. Such data informs the changes in the patient’s

condition and monitors the disease progression [562].

6.3.2 Taxonomy of MML

We follow the taxonomy proposed by William et al. [645] (see Figure 6.4), which defines 5

main stages of multimodal classification: preprocessing, feature extraction, data fusion, primary

learner, and final classifier, as given below:

6.3.2.1 Pre-processing

Pre-processing involves modifying the input data to a suitable format before feeding it into the

model for training. It includes data cleaning, normalization, class balancing, and augmentation.

Data cleaning removes unwanted noise or bias, errors, and missing data points [19]. Normalization

scales the input data within a specific range to ensure that each modality contributes equally to

the training [251]. Class balancing is done in cases where one class may have a significantly

larger number of samples than another, resulting in a model bias toward the dominant class. Data

augmentation artificially increases the size of the dataset by generating new samples based on the

existing data to improve the model’s robustness and generalizability [19].

6.3.2.2 Feature Extraction

Different data modalities may have different features, and extracting relevant features may

improve model learning. Several manual and automated feature engineering techniques generate

representations (or embeddings) for each data modality. Feature engineering involves designing

features relevant to the task and extracting them from the input data. This can be time-consuming but

may allow the model to incorporate prior knowledge about the problem. Text encoding techniques,
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such as bag-of-words, word embeddings, and topic models [180, 819], transform textual data into

a numerical representation, which can be used as input to an ML model [720]. In DL, feature

extraction is learned automatically during model training[166].

6.3.2.3 Data Fusion

Data fusion combines raw features, extracted features, or class prediction vectors from multiple

modalities to create a single data representation. Fusion enables the model to use the complementary

information provided by each modality and improve its learning. Data fusion can be done using

early, late, or intermediate fusion. Section 6.3.3 discusses these fusion stages. The choice of fusion

technique depends on the characteristics of the data and the specific problem being addressed [332].

6.3.2.4 Primary Learner

The primary learner stage is training the model on the pre-processed data or extracted features.

Depending on the problem and data, the primary learner can be implemented using various ML

techniques. DNNs are a popular choice for primary learners in MML because they can automat-

ically learn high-level representations from the input data and have demonstrated state-of-the-art

performance in many applications. CNNs are often used for image and video data, while recurrent

neural networks (RNNs) and Transformers are commonly used for text and sequential data. The

primary learner can be implemented independently for each modality or shared between modalities,

depending on the problem and data.

6.3.2.5 Final Classifier

The final stage of MML is the classifier, which produces category labels or class scores and

can be trained on the output of the primary learner or the fused data. The final classifier can

be implemented using a shallow neural network, a decision tree, or an ensemble model [645].

Ensemble methods, such as stacking or boosting, are often used to improve and robustify the

performance of the final classifier. Stacking involves training multiple models and then combining
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their predictions at the output stage, while boosting involves repeatedly training weak learners and

adjusting their weights based on the errors made by previous learners [94].

6.3.3 Data Fusion Strategies

Fusion in MML can be performed at different levels, including early (feature level), intermediate

(model level), or late (decision level) stages, as illustrated in figure 6.4. Each fusion stage has its

advantages and challenges, and the choice of fusion stage depends on the characteristics of the data

and the task.

6.3.3.1 Early Fusion

The early fusion involves merging features extracted from different data modalities into a single

feature vector before model training. The feature vectors of the different modalities are combined

into a single vector, which is used as the input to the ML model [645]. This approach can be

used when the modalities have complementary information and can be easily aligned, such as

combining visual and audio features in a video analysis application. The main challenge with early

fusion is ensuring that the features extracted from different modalities are compatible and provide

complementary information.

6.3.3.2 Intermediate Fusion

Intermediate fusion involves training separate models for each data modality and then combining

the outputs of these models for inference/prediction [645]. This approach is suitable when the data

modalities are independent of each other and cannot be easily combined at the feature level using

average, weighted average, or other methods. The main challenge with intermediate fusion is

selecting an appropriate method for combining the output of different models.
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Figure 6.4 Taxonomy, stages, and techniques of multimodal data fusion.

6.3.3.3 Late Fusion

In late fusion, the output of each modality-specific model is used to make a decision inde-

pendently. All decisions are later combined to make a final decision. This approach is suitable

when the modalities provide complementary information but are not necessarily independent of

each other. The main challenge with late fusion is selecting an appropriate method for combining

individual predictions. This can be done using majority voting, weighted voting, or employing

other ML models.

6.3.4 MML for Oncology Datasets

Syed et al. [668] used a Random Forest classifier to fuse radiology image representations

learned from the singular value decomposition method with the textual annotation representation

learned from the fastText algorithm for prostate and lung cancer patients. Liu et al. [439]
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proposed a hybrid DL framework for combining breast cancer patients’ genomic and pathology

data using fully-connected (FC) network for genomic data, CNN for radiology data and a Simulated

Annealing algorithm for late fusion. Multiview multimodal network (MVMM-Net) [649] combined

2 different modalities (low-energy and dual-energy subtracted) from contrast-enhanced spectral

mammography images, each learned through CNN and late-fusion through FC network in breast

cancer detection task. Yap et al. [774] used a late-fusion method to fuse image representations from

ResNet50 and clinical representations from a random forest model for a multimodal skin lesion

classification task. An award-winning work [463] on brain tumor grade classification adopted the

late-fusion method (concatenation) for fusing outputs from two CNNs (radiology and pathology

images).

The single-cell unimodal data alignment is one technique in MML. Jansen et al. devised an

approach (SOMatic) to combine ATAC-seq regions with RNA-seq genes using self-organizing

maps [324]. Single-Cell data Integration via Matching (SCIM) [658] matched cells in multiple

datasets in low-dimensional latent space using autoencoder (AEs). Graph-linked unified embedding

(GLUE) [112] model learned regulatory interactions across omics layers and aligned the cells using

variational AEs. These aforementioned methods cannot incorporate high-order interactions among

cells or different modalities. Single-cell data integration using multiple modalities is mostly

based on AEs (scDART [800], Cross-modal Autoencoders [768], Mutual Information Learning for

Integration of Single Cell Omics Data (SMILE) [765]).

6.4 Graph Neural Networks (GNNs) in Multimodal Learning

Graphs are commonly used to represent the relational connectivity of any system that has

interacting entities [412]. Graphs have been used in various fields, such as to study brain net-

works [211], analyze driving maps [178], and explore the structure of DNNs themselves [735].

GNNs are specifically designed to process data represented as a graph [717], which makes them

well-suited for analyzing multimodal oncology data as each data modality (or sub-modality) can
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be considered as a single node and the structures/patterns that exist between data modalities can be

modeled as edges [203].

6.4.1 The Graph Data

A graph is represented as G=(V ,E ) having node-set V={v1, v2, ..., vn}, where node v has

feature vector xv , and edge set E={(vi , vj) | vi , vj 2 V }. The neighborhood of node v is defined as

N(v)={u | (u, v) 2 E}.

6.4.1.1 Graph Types

As illustrated in figure 6.5(a), the common types of graphs include undirected, directed, homo-

geneous, heterogeneous, static, dynamic, unattributed, and attributed.Undirected graphs comprise

undirected edges, i.e., the direction of relation is not important between any ordered pair of nodes.

In the directed graphs, the nodes have a directional relationship(s). Homogeneous graphs have the

same type of nodes, whereas heterogeneous graphs have different types of nodes within a single

graph [771]. Static graphs do not change over time with respect to the existence of edges and nodes.

In contrast, dynamic graphs change over time, resulting in changes in structure, attributes, and node

relationships. Unattributed graphs have unweighted edges, indicating that the weighted value for

all edges in a graph is the same, i.e., 1 if present, 0 if absent. Attributed graphs have different edge

weights that capture the strength of relational importance [717].

6.4.1.2 Tasks for Graph Data

In figure 6.5(b), we present 3 major types of tasks defined on graphs, including (1) node-level

tasks - these may include node classification, regression, clustering, attributions, and generation,

(2) edge-level task - edge classification and prediction (presence or absence) are 2 common edge-

level tasks, (3) graph-level tasks - these tasks involve predictions on the graph level, such as graph

classification and generation.
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Figure 6.5 Common graphs, graph learning tasks, and types of representation learning.

6.4.2 ML for Graph Data

Representing data as graphs can enable capturing and encoding the relationships among entities

of the samples [752]. Based on the way the nodes are encoded, representation learning on graphs
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can be categorized into the traditional (or shallow) and DNN-based methods, as illustrated in

Figure 6.5(c) [334, 752].

6.4.2.1 Traditional (Shallow) Methods

These methods usually employ classical ML methods, and their two categories commonly

found in the literature are graph embedding and probabilistic methods. Graph embedding methods

represent a graph with low-dimensional vectors (graph embedding and node embedding), preserving

the structural properties of the graph. The learning tasks in graph embedding usually involve

dimensionality reduction through linear (principal component or discriminant analysis), kernel

(nonlinear mapping), or tensor (higher-order structures) methods [334]. Probabilistic graphical

methods use graph data to represent probability distribution, where nodes are considered random

variables, and edges depict the probability relations among nodes [334]. Bayesian networks,

Markov’s networks, variational inference, variable elimination, and others are used in probabilistic

methods [334].

6.4.2.2 DNN-based Methods - GNNs

GNNs are gaining popularity in the ML community, as evident from figure 6.1. In GNNs, the

information aggregation from the neighborhood is fused into a node’s representation. Traditional

DL methods such as CNNs and their variants have shown remarkable success in processing the

data in Euclidean space; however, they fail to perform well when faced with non-Euclidean or

relational datasets. Compared to CNNs, where the locality of the nodes in the input is fixed, GNNs

have no canonical ordering of the neighborhood of a node. They can learn the given task for any

permutation of the input data, as depicted in figure 6.6. GNNs often employ a message-passing

mechanism in which a node’s representation is derived from its neighbors’ representations via a
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recursive computation. The message passing for a GNN is given as follows:

h(l+1)
v =�

0

@Wl

X

u2N(v)

h(l)
u

|N(v)| + Blh
(l)
v

1

A (6.1)

where h(l+1)
v is the updated embedding of node v after l+1 layer, � is the non-linear function (e.g.,

rectified linear unit or ReLU), h(l)u and h(l)v represent the embeddings of nodes u and v at layer l .

Wl and Bl are the trainable weight matrices for neighborhood aggregation and (self)hidden vector

transformation, respectively. The message passing can encode high-order structural information in

node embedding through multiple aggregation layers. GNNs smooth the features by aggregating

neighbors’ embedding and filter eigenvalues of graph Laplacian, which provides an extra denoising

mechanism [464]. GNNs comprise multiple permutation equivariant and invariant functions, and

they can handle heterogeneous data [335]. As described earlier, traditional ML models deal with

Euclidean data. In oncology data, the correlations may not exist in Euclidean space; instead, its

features may be highly correlated in the non-Euclidean space [775]. Based on the information

fusion and aggregation methodology, GNNs-based deep methods are classified into the following:

Recurrent GNNs (RecGNNs) are built on top of the standard Recurrent Neural Network (RNN)

by combining with GNN. RecGNNs can operate on graphs with variable sizes and topologies. The

recurrent component of the RecGNN captures temporal dependencies and learns latent states over

time, whereas the GNN component captures the local structure. The information fusion process

is repeated a fixed number of times until an equilibrium or the desired state is achieved [271].

RecGNNs employ the model given by:

h(l+1)
v = RecNN

⇣
h(l)
u ,Msg(l)

N(v)

⌘
, (6.2)

where, RecNN is any RNN, and Msg (l)
N(v) is the neighborhood message-passing at layer l .
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Figure 6.6 Convolution operation for graphs vs. image data.

Convolutional GNNs (ConvGNNs) undertake the convolution operation on graphs by aggre-

gating neighboring nodes’ embeddings through a stack of multiple layers. ConvGNNs use the

symmetric and normalized summation of the neighborhood and self-loops for updating the node

embeddings given by:

h(l+1)
v = �

0

@Wl

X

u2N(v)[v

hvp
|N(v)||N(u)|

1

A . (6.3)

The ConvGNN can be spatial or spectral, depending on the type of convolution they implement.

Convolution in spatial ConvGNNs involves taking a weighted average of the neighboring vertices.

Examples of spatial ConvGNNs include GraphSAGE[271], Message Passing Neural Network

(MPNN)[244], and Graph Attention Network (GAT) [708]. The spectral ConvGNNs operate in the

spectral domain by using the eigendecomposition of the graph Laplacian matrix. The convolution
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operation is performed on the eigenvalues, which can be high-dimensional. Popular spectral

ConvGNNs are ChebNet [168] and Graph Convolutional Network (GCN)[375]. An interesting

aspect of these approaches is representational containment, which is defined as: convolution ✓

attention ✓ message passing.

Graph Auto-Encoder Networks (GAEs) are unsupervised graph learning networks for dimen-

sionality reduction, anomaly detection, and graph generation. They are built on top of the standard

AEs to work with graph data. The encoder component of the GAE maps the input graph to a

low-dimensional latent space, while the decoder component maps the latent space back to the

original graph [540].

Graph Adversarial Networks (GraphANs) are based on Generative Adversarial Networks and

designed to work with graph-structured data and can learn to generate new graphs with similar

properties to the input data. The generator component of the GraphAN maps a random noise vector

to a new graph, while the discriminator component tries to distinguish between the generated vs.

the actual input. The generator generates graphs to fool the discriminator, while the discriminator

tries to classify the given graph as real or generated.

Other GNNs may include scalable GNNs [460], dynamic GNNs [609], hypergraph GNNs [60],

heterogeneous GNNs [745], and many others [465].
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Figure 6.7 Data processing pipeline for medical images using GNNs.
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6.4.3 GNNs and ML Using Unimodal Oncology Datasets

6.4.3.1 Pathology Datasets

Traditionally, CNN-based models are used to learn features from digital pathology data. How-

ever, unlike GNNs, CNNs fail to capture the global contextual information important in the tissue

phenotypical and structural micro and macro environment [15]. For using histology images in

GNNs, the cells, tissue regions, or image patches are depicted as nodes. The relations and inter-

actions among these nodes are represented as (un)weighted edges. Usually, a graph of the patient

histology slide is used along with a patient-level label for training a GNN, as illustrated in Fig-

ure 6.7(a). Here, we review a few GNN-based pathology publications representative of a trove of

works in this field. Histographs [42] used breast cancer histology data to distinguish cancerous

and non-cancerous images. Pre-trained VGG-UNet was used for nuclei detection, micro-features

of the nuclei were used as node features, and Euclidean distance among nuclei was incorporated

as edge features. The resulting cell graphs were used to train the GCN-based robust spatial filter-

ing (RSF) model, which performed superior to the CNN-based classification. Wang et al. [724]

analyzed grade classification in tissue micro-arrays of prostate cancer using the weakly-supervised

technique on a variant of GraphSAGE with self-attention pooling (SAGPool). Cell-Graph Signa-

ture (CGsignature) [730] predicted patient survival in gastric cancer using cell-graphs of multiplexed

immunohistochemistry images processed through two types of GNNs (GCNs and GINs) with two

types of pooling (SAGPool, TopKPool). Besides the above-mentioned cell graphs, there is an

elaborate review of GNN-based tissue graphs or patch-graphs methods implemented on unimodal

pathology cancer data given in [15]. Instead of individual cell- and tissue-graphs, a combination

of the multilevel information in histology slides can help understand the intrinsic features of the

disease.
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6.4.3.2 Radiology Datasets

GNNs have been used in radiology-based cancer data for segmentation, classification, and

prediction tasks, especially on X-rays, mammograms, MRI, PET, and CT scans. Figure 6.7(b)

illustrates a general pipeline of using radiology-based data to train GNNs. Here we give a non-

exhaustive review of GNNs-based works on radiological oncology data as a single modality input.

Mo et al. [492] proposed a framework that improved the liver cancer lesion segmentation in the MRI-

T1WI scans through guided learning of MRI-T2WI modality priors. Learned embeddings from

fully convolutional networks on separate MRI modalities are projected into the graph domain for

learning by GCNs through the co-attention mechanism and finally to get the refined segmentation

by re-projection. Radiologists usually review radiology images by zooming into the region of

interest (ROIs) on high-resolution monitors. Du et al. [196] used a hierarchical GNN framework to

automatically zoom into the abnormal lesion region of the mammograms and classify breast cancer.

The pre-trained CNN model extracts image features, whereas a GAT model is used to classify the

nodes for deciding whether to zoom in or not based on whether it is benign or malignant. Based

on the established knowledge that lymph nodes (LNs) have connected lymphatic system and LNs

cancer cells spread on certain pathways, Chao et al. [123] proposed a lymph node gross tumor

volume learning framework. The framework was able to delineate the LN appearance as well as

the inter-LN relationship. The end-to-end learning framework was superior to the state-of-the-art

on esophageal cancer radiotherapy dataset. Tian et al. [685] suggested interactive segmentation

of MRI scans of prostate cancer patients through a combination of CNN and two GCNs. CNN

model outputs a segmentation feature map of MRI, and the GCNs predict the prostate contour from

this feature map. Saueressig et al. [613] used GNNs to segment brain tumors in 3D MRI images,

formed by stacking different modalities of MRI (T1, T2, T1-CE, FLAIR) and representing them

as supervoxel graph. The authors reported that GraphSAGE-pool was best for segmenting brain

tumors. Besides radiology, a parallel field of radiomics has recently gained attraction. Radiomics

is the automated extraction of quantitative features from radiology scans. A survey of radiomics

and radiogenomic analysis on brain tumors is presented in[643].
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6.4.3.3 Molecular Datasets

Graphs are a natural choice for representing molecular data such as omic-centric (DNA, RNA,

or proteins) or single-cell centric. Individual modalities are processed separately to generate graph

representations that are then processed through GNNs followed by the classifier to predict the

downstream task, as illustrated in Figure 6.8. One method of representing proteins as graphs is

to depict the amino acid residue in the protein as the node and the relationship between residues

denoted by edge [226]. The residue information is depicted as node embedding, whereas the

relational information between two residues is represented as the edge feature vector. Fout et al.

[226] used spatial ConvGNNs to predict interfaces between proteins which is important in drug

discovery problems. Deep predictor of drug-drug interactions (DPDDI) predicted the drug-drug

interactions using GCN followed by a 5-layer classical neural network [220]. Molecular pre-

training graph net (MPG) [415] is a powerful framework based on GNN and Bidirectional Encoder

Representations from Transformers (BERT) to learn drug-drug and drug-target interactions. Graph-

based Attention Model (GRAM) [142] handled the data inefficiency by supplementing EHRs with

hierarchical knowledge in the medical ontology. A few recent works have applied GNNs to single-

cell data. scGCN [652] is a knowledge transfer framework in single-cell omics data such as mRNA

or DNA. scGNN [725] processed cell-cell relations through GNNs for the task of missing-data

imputation and cell clustering on single-cell RNA sequencing (scRNA-seq) data.

6.4.4 MML - Data Fusion at Pre-Learning Stage

The first and most primitive form of MML is the pre-learning fusion (see Figure 6.4), where

features extracted from individual modalities of data are merged, and the fused representations are

then used for training the multimodal primary learner model. In the context of GNNs being the

primary learning model, the extraction step of individual modality representations can be hand-

engineered (e.g., dimensionality reduction) or learned by DL models (e.g., CNNs, Transformers).

Cui et al. [163] proposed a GNN-based early fusion framework to learn latent representations from

radiological and clinical modalities for Lymph node metastasis (LNM) prediction in esophageal
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squamous cell carcinoma (ESCC). The extracted features from the two modalities using UNet and

CNN-based encoders were fused together with category-wise attention as node representation. The

message passing from conventional GAT and correlation-based GAT learned the neighborhood

weights. The attention attributes were used to update the final node features before classification by

a 3-layer fully connected network. For Autism spectrum disorder, Alzheimer’s disease, and ocular

diseases, a multimodal learning framework called Edge-Variational GCN (EV-GCN) [300] fuses

the radiology features extracted from fMRI images with clinical feature vectors for each patient. An

MLP-based pairwise association encoder is used to fuse the input feature vectors and to generate

the edge weights of the population graph. The partially labeled population graph is then processed

through GCN layers to generate the diagnostic graph of patients.

Figure 6.8 Graph data processing pipeline for molecular and textual data.

6.4.5 MML - Data Fusion Using Cross-Modality Learning

Cross-MML involves intermediate fusion and/or cross-links among the models being trained

on individual modalities (see Figure 6.4). For this survey, we consider the GNN-based hierarchical
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learning mechanisms as the cross-MML methods. Hierarchical frameworks involve learning for one

modality and using the learned latent embeddings in tandem with other data modalities sequentially

to get the final desired low-dimensional representations. Lian et al. [423] used a sequential learning

framework where tumor features learned from CT images using the ViT model were used as node

features of the patient population graph for subsequent processing by the GraphSAGE model. The

hierarchical learning from radiological and clinical data using Transformer-GNN outperformed the

ResNet-Graph framework in survival prediction of early-stage NSCLC. scMoGNN [747] is the first

method to apply GNNs in multimodal single-cell data integration using a cross-learning fusion-

based GNN framework. Officially winning first place in modality prediction task at the NeurIPS

2021 competition, scMoGNN showed superior performance on various tasks by using paired data

to generate cell-feature graphs. Hierarchical cell-to-tissue-graph network (HACT-Net) combined

the low-level cell-graph features with the high-level tissue-graph features through two hierarchical

GINs on breast cancer multi-class prediction [543]. Data imputation, a method of populating

the missing values or false zero counts in single-cell data mostly done using DL autoencoders

(AE) architecture, has recently been accomplished using GNNs. scGNN [725] used imputation

AE and graph AE in an iterative manner for imputation, and GraphSCI [577] used GCN with

AE to impute the single-cell RNA-seq data using the cross-learning fusion between the GCN and

the AE networks. Clustering is a method of characterizing cell types within a tissue sample.

Graph-SCC [790] clustered cells based on scRNA-seq data through self-supervised cross-learning

between GCN and a denoising AE network. Recently, a multilayer GNN framework, Explainable

Multilayer GNN (EMGNN), has been proposed for cancer gene prediction tasks using multi-omics

data from 16 different cancer types [125].

6.4.6 MML - Data Fusion in Post-Learning Regime

Post-learning fusion methods include processing individual data modalities and later fusing

them for the downstream predictive task [689]. In the post-learning fusion paradigm, the hand-

crafted features perform better than the deep features when the dimensionality of input data is
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low, and vice versa [689]. Many interesting GNN-based works involving the post-learning fusion

mechanism have recently been published. Decagon [820] used a multimodal approach on GCNs

using proteins and drug interactions to predict exact side effects as a multi-relational link prediction

task. Drug–target affinity (DTA) [503] experimented with four different flavors of GNNs (GCN,

GAT, GIN, GAT-GCN) along with a CNN to fuse together molecular embeddings and protein

sequences for predicting drug-target affinity. PathomicFusion [135] combined the morphological

features extracted from image patches (using CNNs), cell-graph features from cell-graphs of his-

tology images (GraphSAGE-based GCNs), and genomic features (using a feed-forward network)

for survival prediction on glioma and clear cell renal cell carcinoma. Shi et al. [631] proposed

a late-fusion technique to study screening of cervical cancer at early stages by using CNNs to

extract features from histology images, followed by K-means clustering to generate graphs which

are processed through two-layer GCN. BDR-CNN-GCN (batch normalized, dropout, rank-based

pooling) [798] used the same mammographic images to extract image-level features using CNN

and relation-aware features using GCN. The two feature sets are fused using a dot product fol-

lowed by a trainable linear projection for breast cancer classification. Under the umbrella of

multi-omics data, many GNN-based frameworks have been proposed recently. Molecular omics

network(MOOMIN)[596], a multi-modal heterogeneous GNN to predict oncology drug combina-

tions, processed molecular structure, protein features, and cell lines through GCN-based encoders,

followed by late-fusion using a bipartite drug-protein interaction graph. Multi-omics graph convo-

lutional networks (MOGONET) [728] used a GCN-GAN late fusion technique for the classification

of four different diseases, including three cancer types: breast, kidney, and glioma. Leng et al. [401]

extended MOGONET to benchmark three multi-omics datasets on two different tasks using sixteen

DL networks and concluded that GAT-based GNN had the best classification performance. Multi-

Omics Graph Contrastive Learner(MOGCL) [572] used graph structure and contrastive learning

information to generate representations for improved downstream classification tasks on the breast

cancer multi-omics dataset using late-fusion. Similar to MOGCL, Park et al. [541] developed a

158



GNN-based multi-omics model that integrated mRNA expression, DNA methylation, and DNA

sequencing data for NSCLC diagnosis.

6.5 Transformers in MML

Transformers are attention-based DNN models originally proposed for NLP [706]. Transform-

ers implement scaled dot-product of the input with itself and can process various types of data in

parallel [706]. Transformers can handle sequential data and learn long-range dependencies, making

them well-suited for tasks such as language translation, language modeling, question answering,

and many more [529]. Unlike Recurrent Neural Networks (RNNs) and CNNs, Transformers use

self-attention operations to weigh the importance of different input tokens (or embeddings) at each

time step. This allows them to handle sequences of arbitrary length and to capture dependencies

between input tokens that are far apart in the sequence [706]. Transformers can be viewed as a

type of GNN [762]. Transformers are used to process other data types, such as images [192],

audio [795], and time-series analysis [14], resulting in a new wave of multi-modal applications.

Transformers can handle input sequences of different modalities in a unified way, using the same

self-attention mechanism, which processes the inputs as a fully connected graph [762]. This allows

Transformers to capture complex dependencies between different modalities, such as visual and

textual information in visual question-answering (VQA) tasks [459].

Pre-training Transformers on large amounts of data, using unsupervised or self-supervised

learning, and then fine-tuning for specific downstream tasks, has led to the development of founda-

tion models [90], such as BERT [180], GPT [567], RoBERTa [819], CLIP [564], T5 [571], BART

[404], BLOOM [618], ALIGN [329], CoCa [782] and more. Multimodal Transformers are a recent

development in the field of MML, which extends the capabilities of traditional Transformers to han-

dle multiple data modalities. The inter-modality dependencies are captured by the cross-attention

mechanism in multimodal Transformers, allowing the model to jointly reason and extract rich data

representations. There are various types of multimodal Transformers, such as Unified Transformer
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(UniT) [296], Multi-way Multimodal Transformer (MMT) [676], CLIP [564], Flamingo [20], CoCa

[782], Perceiver IO [318], and GPT-4[524].

6.5.1 Model Architecture

The original Transformer (Figure 6.9) was composed of multiple encoder and decoder blocks,

each made up of several layers of self-attention and feed-forward neural networks. The encoder

takes the input sequence and generates hidden representations, which are then fed to the decoder.

The decoder generates the output sequence by attending to the encoder’s hidden representations

and the previous tokens (i.e., auto-regressive). The self-attention operation (or scaled dot-product)

is a crucial component of the Transformer. It determines the significance of each element in the

input sequence with respect to the whole input. Self-attention operates by computing a weighted

sum of the input sequence’s hidden representations, where the weights are determined by the dot

product between the query vector and the key vector, followed by a scaling operation to stabilize

the gradients. The resulting weighted sum is multiplied by a value vector to obtain the output of

the self-attention operation. There has been a tremendous amount of work on various facets of

Transformer architecture. The readers are referred to relevant review papers [529, 762, 272, 235].

6.5.2 Multimodal Transformers

Self-attention allows a Transformer model to process each input as a fully connected graph

and attend to (or equivalently learn from) the global patterns present in the input. This makes

Transformers compatible with various data modalities by treating each token (or its embedding)

as a node in the graph. To use Transformers for a data modality, we need to tokenize the input

and select an embedding space for the tokens. Tokenization and embedding selections are flexible

and can be done at multiple granularity levels, such as using raw features, ML-extracted features,

patches from the input image, or graph nodes. Table 6.1 summarizes some common practices

used for various data types in oncology datasets. Handling inter-modality interactions is the main

challenge in developing multimodal Transformer models. Usually, it is done through one of these
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Table 6.1 Oncology data tokenization and embeddings selection techniques

Data Modalities Tokenization Level Token Embeddings Model
Pathology images Patch CNNs [137]
Radiology images Patch CNNs [759]

EHR data ICD code GNNs [626],
ML models [579]

-Omics Graphs
K-mers

GNNs [340]
ML model [327]

Clinical notes Word
BERT [180],
RoBERTa [819],
BioBERT [396]

fusion methods: early fusion of data modalities, cross-attention, hierarchical attention, and late

fusion, as illustrated in Figure 6.10. In the following, we present and compare data processing steps

for these four methods using two data modalities as an example. The same analysis can be extended

to multiple modalities.

Figure 6.9 The original Transformer architecture is presented.
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6.5.2.1 Early Fusion

Early fusion is the simplest way to combine data from multiple modalities. The data from

different modalities are concatenated to a single input before being fed to the Transformer model,

which processes the input as a single entity. Mathematically, the concatenation operation is

represented as xcat=[x1, x2], where x1 and x2 are the inputs from two data modalities, and xcat is the

concatenated input to the model. Early fusion is simple and efficient. However, it assumes that all

modalities are equally important and relevant for the task at hand [342], which may not always be

practically true [810].

6.5.2.2 Cross-Attention Fusion

Cross-attention is a relatively more flexible approach to modeling the interactions between data

modalities and learning their joint representations. The self-attention layers attend to different

modalities at different stages of data processing. Cross-attention allows the model to selectively

attend to different modalities based on their relevance to the task [414] and capture complex

interactions between the modalities [591].

6.5.2.3 Hierarchical Fusion

Hierarchical fusion is a complex approach to combining multiple modalities. For instance, the

Depth-supervised Fusion Transformer for Salient Object Detection (DFTR) employs hierarchical

feature extraction to improve salient object detection performance by fusing low-level spatial

features and high-level semantic features from different scales [817]. Yang et al.[769] introduced

a hierarchical approach to fine-grained classification using a fusion Transformer. Furthermore,

the Hierarchical Multimodal Transformer (HMT) for video summarization can capture global

dependencies and multi-hop relationships among video frames [801].
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6.5.2.4 Late Fusion

In late fusion, each data modality is processed independently by its own Transformer model,

the branch outputs are concatenated and passed through the final classifier. Late fusion allows the

model to capture the unique features of each modality while still learning their joint representation.

Sun et al. proposed a multi-modal adaptive late fusion Transformer network for estimating the

levels of depression [663]. Their model extracts long-term temporal information from audio and

visual data independently and then fuses weights at the end to learn a joint representation of data.

Figure 6.10 Four different fusion strategies using multimodal Transformers.
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6.5.3 Transformers for Processing Oncology Datasets

Transformers have been successfully applied to various tasks in oncology, including cancer

screening, diagnosis, prognosis, treatment selection, and prediction of clinical variables [90, 628,

424, 423, 137]. For instance, a Transformer-based model was used to predict the presence and

grade of breast cancer using a combination of imaging and genomics data [90]. TransMIL [628],

a Transformer model, was proposed to process histopathology images using self-attention to learn

and classify histopathology slides by overcoming the challenges faced by multi-instance learning

(MIL). Recently, a Transformer and convolution parallel network, TransConv [424], was proposed

for automatic brain tumor segmentation using MRI data. Transformers and GNNs have also

been combined in MML for early-stage NSCLC prognostic prediction using the patient’s clinical

and pathological features and by modeling the patient’s physiological network [423]. Similarly, a

multimodal co-attention Transformer was proposed for survival prediction using WSIs and genomic

sequences [137]. The authors used a co-attention mechanism to learn the interactions between the

two data modalities.

6.6 MML - Challenges and Opportunities

Learning from multimodal oncology data is a complex and rapidly growing field that presents

both challenges and opportunities. While MML has shown significant promise, there are many

challenges owing to the inductive biases of the ML models [202]. In this context, we present major

challenges of MML in oncology settings that, if addressed, could unlock the full potential of this

emerging field.

6.6.1 Large Amounts of High-quality Data

DL models are traditionally trained on large datasets with enough samples for training, valida-

tion, and testing, such as JFT-300M [662] and YFCC100M [683], which are not available in the

cancer domain. For example, the largest genomics data repository, the Gene Expression Omnibus
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(GEO) database, has approximately 1.1 million samples with the keyword ‘cancer’ compared to

3 billion images in JFT-300M [333]. Annotating medical and oncology data is a time-consuming

and manual process that requires significant expertise in many different areas of medical sciences.

Factors like heterogeneity of the disease, noise in data recording, background, and training of

medical professionals leading to inter- and intra-operator variability cause lack of reproducibility

and inconsistent clinical outcomes [431].

6.6.2 Data Registration and Alignment

Data alignment and registration refer to the process of combining and aligning data from

different modalities in a useful manner [803]. In multimodal oncology data, this process involves

aligning data from multiple modalities such as CT, MRI, PET, and WSIs, as well as genomics,

transcriptomics, and clinical records. Data registration involves aligning the data modalities to

a common reference frame and may involve identifying common landmarks or fiducial markers.

If the data is not registered or aligned correctly, it may be difficult to fuse the information from

different modalities accurately [425].

6.6.3 Pan-Cancer Generalization and Transference

Transference in MML aims to transfer knowledge between modalities and their representations

to improve the performance of a model trained on a primary modality [425]. Because of the unique

characteristics of each cancer type and site, it is challenging to develop models that can generalize

across different cancer sites. Furthermore, the models trained on a specific modality, such as

radiology images, will not perform well with other imaging modalities, such as histopathology

slides. Fine-tuning the model on a secondary modality, multimodal co-learning, and model induc-

tion are techniques to achieve transference and generalization [743]. To overcome this challenge,

mechanisms for improved universality of ML models need to be devised.
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6.6.4 Missing Data Samples and Modalities

The unavailability of one or more modalities or the absence of samples in a modality affects

the model learning, as most of the existing DL models cannot process the “missing information”.

This requirement, in turn, constrains the already insufficient size of datasets in oncology. Almost

all publicly available oncology datasets have missing data for a large number of samples [333].

Various approaches for handling missing data samples and modalities are gradually gaining traction.

However, this is still an open challenge [490].

6.6.5 Imbalanced Data

Class imbalance refers to the phenomenon when one class (e.g., cancer negative/positive)

is represented significantly more in the data than another class. Class imbalance is common

in oncology data [490]. DL models struggle to classify underrepresented classes accurately.

Techniques such as data augmentation, ensemble, continual learning, and transfer learning are used

to counter the class imbalance challenge [490].

6.6.6 Explainability and Trustworthiness

The explainability in DL, e.g., how GNNs and Transformers make a specific decision, is still an

area of active research [413, 505]. GNNExplainer [777], PGM-Explainer [714], and SubgraphX

[783] are some attempts to explain the decision-making process of GNNs. The explainability meth-

ods for Transformers have been analyzed in [587]. Existing efforts and a roadmap to improve the

trustworthiness of GNNs have been presented in the latest survey [792]. However, the explainability

and trustworthiness of multimodal GNNs and Transformers is an open challenge.

6.6.7 Over-smoothing in GNNs

One particular challenge in using GNNs is over-smoothing, which occurs when the GNN

is trained for too long, causing the node representations to become almost similar [752]. This

leads to a loss of information, a decrease in the model’s performance, and a lack of generalization
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[702]. Regularization techniques such as dropout, weight decay, skip-connection, and incorporating

higher-order structures, such as motifs and graphlets, have been proposed. However, building deep

architectures that can scale and adapt to varying structural patterns of graphs is still an open

challenge.

6.6.8 Modality Collapse

Modality collapse is a phenomenon that occurs in MML, where a model trained on multiple

modalities may become over-reliant on a single modality, to the point where it ignores or neglects

the other modalities [326]. Recent work explored the reasons and theoretical understanding of

modality collapse [302]. However, the counter-actions needed to balance model dependence on

data modalities require active investigation by the ML community.

6.6.9 Dynamic and Temporal Data

Dynamic and temporal data refers to the data that changes over time [752]. Tumor surveillance

is a well-known technique to study longitudinal cancer growth over multiple data modalities [734].

Spatio-temporal methods such as multiple instance learning, GNNs, and hybrid of multiple models

can capture complex change in the data relationships over time; however, learning from multimodal

dynamic data is very challenging and an active area of research [228].

6.6.10 Data Privacy and Federated Learning

With the increased concern for the privacy of data, especially in medical settings, MML

techniques need to adapt to local data processing and remote federation. Federated learning can

help train large multimodal models across various sites without sharing data [544].

6.6.11 Other Challenges

MML requires extensive computational resources to train models on a variety of datasets and

tasks. Robustness and failure detection [12] are critical aspects of MML, particularly in applications
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such as oncology. Uncertainty quantification techniques, such as Bayesian neural networks [175],

are still under-explored avenues in the MML. By addressing these challenges, it is possible to

develop MML models that are able to surpass the performance offered by single-modality models.

6.7 Conclusion

Existing research into the integration of data across various modalities has already yielded

promising outcomes, highlighting the potential for significant advancements in cancer research.

However, the lack of a comprehensive framework capable of encompassing the full spectrum of

cancer dataset modalities presents a notable challenge. The synergy between diverse methodologies

and data across different scales could unlock deeper insights into cancer, potentially leading to more

accurate prognostic and predictive models than what is possible through single data modalities

alone. In our survey, we have explored the landscape of multimodal learning applied to oncology

datasets and the specific tasks they can address. Looking ahead, the key to advancing this field

lies in the development of robust, deployment-ready MML frameworks. These frameworks must

not only scale efficiently across all modalities of cancer data but also incorporate capabilities

for uncertainty quantification, interpretability, and generalizability. Such advancements will be

critical for effectively integrating oncology data across multiple scales, modalities, and resolutions.

The journey towards achieving these goals is complex, yet essential for the next leaps in cancer

research. By focusing on these areas, future research has the potential to significantly enhance our

understanding of cancer, leading to improved outcomes for patients through more informed and

personalized treatment strategies.

168



Chapter 7: Building Flexible, Scalable, and Machine Learning-Ready Multimodal Oncology

Datasets

7.1 Note to Reader

This chapter has been previously published in MDPI Sensors as: Tripathi A, Waqas A, Venkate-

san K, Yilmaz Y, Rasool G. Building Flexible, Scalable, and Machine Learning-Ready Multimodal

Oncology Datasets. Sensors. 2024; 24(5):1634, and has been reproduced with permission from

MDPI [691].

7.2 Introduction

Clinicians routinely gather data from multiple sources to gain a deeper insight into patients’

health and provide tailored medical care. The reliance on multiple data sources for clinical

decision-making makes medicine inherently multimodal, where the data modality refers to the

form of data [87, 734, 203]. Each modality in such multimodal data may have a different resolution

and scale due to its own data collection, recording, or generation process [430, 739]. The data

modalities may include (i) -omics information from genome, proteome, transcriptome, epigenome,

and microbiome, (ii) radiological images from computed tomography (CT), positron emission

tomography (PET), magnetic resonance imaging (MRI), ultrasound scanners or X-ray machines,

(iii) digitized histopathology slides created using tissue samples and stored as gigapixel whole

slide images (WSI), and (iv) electronic health record (EHR) that houses structured information

consisting of demographic data, age, ethnicity, sex, race, smoking history, etc. and unstructured

data such as discharge notes or medical reports [87, 430, 203].
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Integrating data from heterogeneous modalities can create a unified, richer view of cancer,

potentially more informational and complete than the individual modalities [204, 87]. The multi-

modal medical data holds great potential to advance our understanding of complex diseases and help

develop effective and tailored treatments [45, 739]. The advent of high-throughput multi-omics

technologies like next-generation sequencing (NGS), high-resolution radiological and histopathol-

ogy imaging, and the rapid digitization of medical records has led to an explosion of diverse,

multimodal data [221]. This data deluge has been a boon for machine learning, where abundant

training data has directly enabled significant breakthroughs [763, 733]. For example, the rise of

large general-purpose datasets like Common Crawl for natural language processing (NLP) has

fueled advances in language models and Artificial Intelligence (AI) assistants [153]. One may

hope that extensive, standardized, and representative multimodal datasets in the medical domain

would provide a fertile ground for developing advanced translational machine learning models.

Machine learning thrives on massive, high-quality datasets; however, assembling such resources in

healthcare poses unique challenges [95, 366]. First, multimodal medical data is inherently heteroge-

neous and noisy, spanning structured (demographics, medications, billing codes), semi-structured

(physician notes), and unstructured data (medical images). Aggregating such heterogeneous data

requires extensive harmonization and manual processing. Second, reliability, robustness, and ac-

curacy are critical for all medical applications [12, 174, 735]. However, real-world clinical data

is often incomplete, sparse, and contains errors, which makes building robust and reliable models

more challenging. Meticulous quality control and manual curation of these datasets are essential

to train machine learning models [76, 653]. Finally, strict data privacy and security considerations

arise in healthcare, where data containd protected health information (PHI) that must be redacted,

de-identified, and access controlled per the Health Insurance Portability and Accountability Act

(HIPAA) [157, 517].

Traditionally, vast amounts of multimodal data are generated during clinical trials and research

studies where raw data undergoes initial processing and quality control by researchers. The data is

then transmitted to standardization pipelines such as the National Cancer Institute’s (NCI) Center for
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Cancer Genomics (CCG) Genome Characterization pipeline [501], where the data is systematically

annotated, formatted, and quality-controlled before being deposited into centralized biobanks. For

example, NGS data from cancer genomic studies is standardized by CCG and deposited into the

NCI’s Genomic Data Commons (GDC) [259]. However, imaging data from the same studies,

consisting of CT, MRI, and PET scans, follow a different path and may end up in imaging archive

like The Cancer Imaging Archive (TCIA) [149]. This leads to fragmentation of data across multiple

disconnected databases. To address this, integrated data commons like the NCI Cancer Research

Data Commons (CRDC) have been proposed [288]. The CRDC aims to link datasets from diverse

sources using Findable, Accessible, Interoperable, and Reusable (FAIR) principles to enhance

interoperability [709].

However, significant challenges remain in unifying multimodal data dispersed across reposito-

ries with heterogeneous interfaces, formats, and query systems. For example, a researcher studying

lung cancer requires integrating clinical, imaging, and genomic data for their cohort across the

GDC, TCIA, and other databases. But each has different application programming interfaces

(APIs), schemas, and querying methods. Piecing together data manually across these silos is

painstakingly difficult. There is a lack of unified interfaces and analytical tools that can work

seamlessly across multiple cancer data repositories. This leads to isolated data silos and hampers

easy access for multimodal data analysis. To address the limitations and fragmentation of current

oncology data systems, we propose a novel solution called the “Multimodal Integration of Oncology

Data System”, abbreviated as MINDS. MINDS is a scalable, cost-effective data lakehouse archi-

tecture that can consolidate dispersed multimodal datasets into a unified platform for streamlined

analysis. To illustrate this, let’s consider the process of developing a machine-learning model using

a limited dataset with and without the use of MINDS in Figure 7.1.

7.2.1 Contributions of MINDS

MINDS makes several key objective contributions toward effectively managing and analyzing

multimodal oncology data:
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1. Integrating siloed multimodal data into a unified access point. By consolidating dispersed

datasets across repositories and modalities, MINDS delivers a single unified interface for

accessing integrated data. This overcomes fragmentation across disconnected silos.

2. Implementing robust data security and access control while supporting reproducibility. Strict

access policies and controls safeguard sensitive data while enabling reproducibility via dataset

versioning tied to cohort definitions.

3. An automated system to accommodate new data continually. Automated pipelines ingest

updates and additions, ensuring analysts always have access to the latest data.

4. Enabling efficient, scalable multimodal machine learning. Cloud-based storage and compute

scale elastically to handle growing data volumes while optimized warehousing delivers high-

performance model training.

Figure 7.1 Comparison of developing ML model using dataset with/ without using MINDS.

Apart from the above-mentioned achievements, MINDS has several novel aspects. The un-

precedented scale of heterogeneous data consolidation enables new analysis paradigms. The cohort
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diversity in MINDS also surpasses existing systems. Tight integration between cohort definition

and on-demand multimodal data assembly, not offered in current platforms. An industrial-strength

cloud-native architecture delivers advanced translational informatics over a browser. Support for

reproducibility via dataset versioning based on user cohort queries. This allows regenerating the

same data even with newer updates. Option to build vector databases capturing data embeddings

instead of actual data. This eliminates storage needs while ensuring patient privacy.

In this paper, Section 7.3 provides necessary background of the existing landscape of the

multimodal heterogeneous datasets in oncology, from collection and processing to distribution.

Section 7.4 delves into the methodology used to build the proposed data lakehouse architecture and

discusses the project’s technical aspects in detail. In Section 7.5, we discuss the implementation

results and the study’s potential implications on cancer research and clinics. Finally, Section 7.6

concludes with recommendations for future research.

7.3 Background and Literature Review

The rapid growth of biomedical data has created immense opportunities for translational re-

search and significant data management challenges. Pioneering efforts have paved the way within

this crucial domain by establishing needed infrastructure and principles over the past decades.

These include caBIG [388] in 2004, interconnecting cancer researchers via an ambitious grid archi-

tecture, tranSMART [619] enabling customized cohort investigation, and i2b2 [498] spearheading

flexible clinical data warehousing with temporal abstractions. However, as data scales intensify,

core capabilities around scalability, provenance tracking, standardized metadata assimilation, and

customizable cohort building, have created substantive yet addressable headroom for enhancements.

Emerging techniques like high-dimensional multimodal assay fusion [481, 353, 363, 430] and

multimodal data warehouses [610] have created new demands for consolidation platforms. By

striving to synthesize the strengths of the seminal prior work while enhancing key dimensions

like flexibility, replicability, and scalability, MINDS aims to stand on the shoulders of giants in

pushing meaningful progress in addressing the constraints hampering reliable integrative modeling.
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Such demands motivate the development of new solutions to effectively consolidate, integrate, and

analyze exponentially growing heterogeneous data types while accounting for the crucial lineage of

achievements that collectively established the foundation. Below we discuss the existing methods

of oncology data integration.

Figure 7.2 Genome Characterization Pipeline as an example of data characterization.

7.3.1 Data Characterization Pipeline

Standardized data characterization pipelines are vital in transforming raw biological samples

into usable multimodal datasets. A sample data pipeline for gathering genomic modality from

CCG for the GDC [259] is illustrated in Figure 7.2. The presented pipeline involves several stages,

including tissue collection and processing, genome characterization, genomic data analysis, and

data sharing and discovery. The NCI has adopted similar pipelines for medical images, referred to

as the Imaging Data Commons [217] or IDC and Proteomics Data Commons or PDC [682].
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• Tissue collection and processing include clinical trials and community oncology groups, col-

lect tumor tissue samples and normal tissue from participating patients. These samples are

either formalin-fixed paraffin-embedded (FFPE) tissues or frozen tissue. In CCG, Biospec-

imen Core Resource (BCR) is responsible for collecting and processing these samples and

collecting, harmonizing, and curating clinical data [501].

• Genome characterization stage involves generating data from the collected samples. At

CCG, the Genome Characterization Centers (GCCs) generate data from the samples received

from the BCR. Each GCC supports distinct genomic or epigenomic pipelines, including

whole genome sequencing, total RNA and microRNA sequencing, methylation arrays, and

single-cell sequencing [501].

• Genomic data analysis is the stage where raw data from the previous stage is transformed

into meaningful biological information at this stage. In CCG, the Genomic Data Analysis

Network (GDAN) transforms the raw data output from the GCCs into biological insights. The

GDAN has a wide range of expertise, from identifying genomic abnormalities to integrating

and visualizing multi-omics data [501].

• Data sharing and discovery stage involves insightful genomic data processing, sharing, and

unification at a central location. The NCI’s Genomic Data Commons (GDC) harmonizes

genomic data by applying a standardized set of data processing protocols and bioinformatic

pipelines. The data generated by the Genome Characterization Pipeline are made available

to the public via the GDC [501, 259].

7.3.2 Traditional Data Management - BioBanks

Traditionally, medical data modalities are stored and managed separately in biobanks. These

biobanks are the repositories that store biological samples for use in research and by clinicians for

reference. Today, such biobanks have become an essential resource in medical and oncological

facilities [53]. They provide researchers access to various medical samples and associated clinical
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and demographic data, which is used to study disease progression, identify biomarkers, and develop

personalized and new treatments. However, traditional data management using biobanks has several

limitations, enumerated below:

• One of the main issues is that data from different sources are often stored in separate

biobanks, leading to fragmentation of information [10]. This makes integrating and analyzing

data across different modalities difficult, limiting the potential for comprehensive, multi-

dimensional analysis of patient data [53].

• How data is stored, formatted, and organized often varies significantly across biobanks, even

for the same patient. For example, clinical data may be encoded differently, imaging data

may use proprietary formats, and terminology can differ across systems. This heterogeneity

and lack of unified standards make aggregating and analyzing data across multiple biobanks

challenging [53].

• Over time, patient data stored in separate biobanks tends to go out of sync as patients undergo

new tests and treatments, adding new data to different silos uncoordinatedly [53]. Piecing

together a patient’s history timeline requires extensive manual effort to sync disparate records

across systems [53].

• The increasing prevalence of bio-banking has sparked an extensive discussion regarding the

ethical, legal, and social implications (ELSI) of utilizing vast quantities of human biological

samples and their associated personal data [392]. Ensuring and safeguarding the fundamental

ethical and legal principles concerning research involving human data in Biobanks becomes

significantly more intricate and challenging than conducting ethical reviews for specific

research projects [392].

7.3.3 Data Commons

The concept of data commons has emerged to address the challenges faced by biobanks. A data

commons is a shared virtual space where researchers can work with and use data from multiple
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sources. The NCI has developed the CRDC, which integrates different data types, including

genomic, proteomic, imaging, and clinical data, into a unified, accessible platform [288]. The

CRDC provides researchers access to various data repositories, including the GDC, PDC, and

IDC. Each of these repositories hosts a specific data type, and together, they form a comprehensive

platform for multimodal data analysis. While the CRDC has made significant strides in integrating

diverse data types, it still faces challenges. One of the main issues is the difficulty in harmonizing

data from different sources. Due to the differences in data formats, standards, and quality control

measures across data sites and modalities, it takes significant effort by the researchers to conform

the data to uniform quality standards. The Cancer Data Aggregator (CDA) was developed to

address this issue and facilitate data integration across different data commons. CDA provides an

aggregated search interface across major NCI repositories, including the PDC, GDC, and IDC.

It allows unified querying of core entities like subjects, research participants, specimens, files,

mutations, diagnoses, and treatments, facilitating access across different data types [508]. CDA

has limitations, like static outdated mapping and the inability to incorporate external repositories.

This motivates the need for more robust integrative platforms. The proposed MINDS system aims

to overcome these challenges in several key ways:

• CDA’s mapping of the CRDC data is not real-time. For example, as of September of 2023,

when querying patients with the primary diagnosis site being lung, only 4870 cases are

present, despite there being 12,267 cases present in the GDC data portal. MINDS pulls

source data directly from repositories like GDC to ensure real-time, up-to-date mapping of

all cases.

• MINDS is designed as an end-to-end platform for users to build integrated multimodal

datasets themselves rather than a fixed service. The open methodology enables full replication

of huge multi-source datasets. To this end, anyone can replicate our method to generate the

exact copy of over 40,000 public case data on their infrastructure.
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• MINDS is flexible and incorporates diverse repositories and data sources, not just CRDC

resources. Our proposed architecture can integrate new repositories as needed, unlike CDA,

which is constrained to CRDC-managed data. For example, the cBioPortal for Cancer

Genomics, a widely used platform for exploring, visualizing, and analyzing cancer genomics

data, has its own data management and storage system separate from the CDA [121, 237].

The data stored in cBioPortal cannot be directly queried or accessed through CDA, limiting

the potential for integrated data analysis across platforms.

7.3.4 The Big Data Approach

We have used the Big Data approach in our work [95, 366]. Among the recent advancements in

healthcare data management, the big-data approach is the most prominent and feasible solution [45,

221, 750]. The rapid technological progress has led to an unparalleled utilization of computer

networks, multimedia, internet of things, social media, and cloud computing, resulting in an

overwhelming generation of “big data” [500]. Effectively collecting, managing, and analyzing

vast amount of healthcare data through big data processing has become crucial. The big data

processing involves various techniques, such as data mining, leveraging data management, machine

learning, high-performance computing, statistics, and pattern recognition to extract knowledge

from extensive datasets. These datasets possess distinctive characteristics, often called the seven

Vs of big data, as shown in Figure 7.3. The Big Data approach guides data handling strategies.

By considering each of these aspects, we can effectively manage oncology data and, in turn, build

better, effective models. We use two primary data management systems to facilitate our big data

approach: Data Warehouses and Data Lakes.

Data warehouses represent a foundational pillar of the big data paradigm. A data warehouse

integrates heterogeneous data from diverse sources into a centralized, well-organized repository

to enable analysis. This repository provides a highly structured environment explicitly optimized

for analytics, reporting, and deriving insights across vast information [500]. By fulfilling this

role, data warehouses deliver immense value in informed decision-making. The process of as-
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sembling data into warehouses is called data warehousing. “Schema-on-write” is the core concept

employed, where the warehouse schema is predefined to meet specific analytical needs before data

is loaded. This upfront structural optimization makes warehouses ideal for handling structured

data. Supervised machine learning thrives in warehouses, as structured, consistent data facilitates

training algorithmic models. Moreover, the innate high degree of organization enables fast, efficient

querying to uncover trends and patterns through predictive analytics [500]. Overall, by structuring

varied data sources into a unified environment purpose-built for analytics, data warehouses provide

the backbone for deriving value from big data across many domains.

Figure 7.3 The 7 Vs of Big Data.

Data lakes complement the warehouses by providing centralized but low-structure storage

to accumulate expansive, heterogeneous data in raw form. In contrast to “schema-on-write”,

data lakes employ “schema-on-read”, which only defines structure when data is queried. This

provides flexibility to modify analytics on-demand [500]. With their innate tolerance for storing

original, unprocessed data, lakes accommodate structured, semi-structured, and unstructured data

types. The lack of enforced structure enables rapid scaling to meet growing analytics demands.

The dual architectures of data warehouses and data lakes provide structured refinement and raw
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accommodating capabilities to put big data into action. Lakes aggregate heterogeneous datasets,

while warehouses prepare refined data for analysis. This symbiotic combination ultimately enables

MINDS to derive maximal value from oncology’s multidimensional data landscape.

7.3.5 Summary of Gaps in Existing Methods

While prior work has laid crucial foundations, several persistent constraints around consoli-

dation, interoperability, scalability, provenance, and security have encumbered reliable integrative

modeling on multimodal data. Biobanks carry siloed modalities with heterogeneous formats, cre-

ating barriers to unification and requiring extensive manual synchronization effort. Data commons

combined various data types into unified platforms but lack harmonization of diverse data sources.

Static mappings fail to reflect repositories’ real-time state, while disjoint querying systems limit

holistic analysis across databases. Fundamentally, past efforts centered on aggregating principally

structured sources, lacking the breadth to effectively harness the heterogeneity spanning images,

assays, text, and sensors. With data volumes intensifying across these manifold streams, inflexible

on-premises systems strain to provide needed scalability. Reproducibility suffers from dynamic

dataset derivation as model provenance linkages fade. Finally, while ethical rigor grows in impor-

tance with scale, most architectures offer worryingly coarse-grained control over access policies.

By tackling this multiplicity of the persistent challenges through enhancements leveraging the prior

seminal achievements, MINDS aims to advance reliable, responsible multimodal modeling on big

oncology data. The key limitations that constrain multimodal integrative modeling through existing

approaches are summarized below:

• Prior consolidation is limited to structured data. Most prior efforts, like CDA, focused on

consolidating structured clinical records. Support for aggregating unstructured imaging,

-omics, and pathology data is lacking.

• Query interfaces have limited standardization. Different repositories have proprietary APIs

and schemas. Unified interfaces for federated querying are needed.
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• Scalability is constrained for large data. On-premises systems restrict scaling storage and

compute for exponentially growing heterogeneous data.

• Minimal reproducibility without versioning. Dynamic dataset extracts make precise tracking

of model data versions difficult, hampering reproducibility.

• Coarse-grained access controls. Most systems have limited options for fine-grained data

access policies tailored to users.

Addressing these gaps is pivotal to unlocking translational applications of multimodal oncol-

ogy data through enhanced consolidation, standardization, scalability, provenance, and security.

By tackling each limitation, MINDS aims to overcome persistent bottlenecks that have hitherto

encumbered reliable integrative modeling on heterogeneous big data.

7.4 Methodology

This section details the technical implementation of the proposed MINDS architecture. We

begin by presenting the high-level requirements that informed key architectural decisions. We then

dive into the three-stage architecture of MINDS, describing each component and its role in enabling

scalable and secure management of multimodal oncology data. Next, we provide deployment

options for MINDS, including details on implementing the system in the cloud across diverse

platforms and on-premise infrastructure. Finally, we outline key use cases and user interactions

with MINDS.

7.4.1 Requirements of Data Management System

To handle the complexities, scales, and heterogeneity in the structure and function of oncology

data, the data management system design has to be comprehensive, scalable, and interoperable. The

primary goal of this system is to cater to the needs of machine learning engineering, which requires

a robust and efficient data management infrastructure to build accurate and reliable models. We set
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off with the aim to design and build a data management system with the following requirements in

mind:

• Requirement 1 is to minimize large-scale unstructured data storage whenever possible. This

requirement ensures the efficient use of storage resources and allows the user to access the

data directly from the data provider.

• Requirement 2 is that system should be horizontally and vertically scalable. Satisfying this

requirement is crucial to handle the increasing volume of oncology data and ensure the system

can accommodate data size and complexity growth.

• Requirement 3 is that system should be interoperable, allowing for the easy integration of new

data sources. This is important in oncology, where data is often distributed across various

databases and systems.

• Requirement 4 is that the system should track data from the point of ingestion to the point of

training. This ensures reproducibility, a key requirement in scientific research and machine

learning.

• Requirement 5 is to incorporate audit checkpoints in the data collection, pre-processing,

storage, processing, and analysis stages of the data pipeline. This ensures data integrity, the

prime consideration in delivering reliable machine learning outcomes.

7.4.2 MINDS Architecture

Considering the above-mentioned requirements, we have built a Multimodal Integration of

the Oncology Data System (MINDS). The MINDS system design adopts a common two-tier data

architecture, a data lake, and a data warehouse [500] to process data and derive meaningful insights

efficiently. Figure 7.4 illustrates the architecture of MINDS, which is divided into three primary

stages: (1) Data Acquisition, (2) Data Processing, and (3) Data Serving. Key goals include

scalability of individual components, interoperability via standardized APIs and schemas, security
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leveraging authentication and encryption, and usability across interactive and programmatic access

patterns. To meet this requirement MINDS is built using the cloud-based technology of Amazon

Web Services (AWS), the cloud-based architecture allows us to scale up or down easily based on

the data volume requirements and the required computational resources. It also provides a wide

range of tools and services that can be leveraged to build, deploy, and manage a data management

system. While the current MINDS implementation leverages AWS, the architecture is designed to

enable deployment across different cloud platforms, not just AWS. The core methodology centers on

interfacing with managed cloud services, abstracting the underlying infrastructure through common

programmatic interfaces. This service-oriented approach enhances portability and avoids extensive

customization tied to a single provider. For example, the S3 storage layer could be replaced with

Google Cloud Storage buckets, AWS Glue with Azure Data Factory, RDS and Redshift with

Snowflake’s data platform, and Lambda with Cloud Functions. The overall system architecture

would remain consistent while swapping the provider services. When migrating platforms, trade-

offs exist around performance, access controls, and other factors. But by using managed services

with standard APIs, MINDS aims for platform-independent portability. Figure 7.5 provides a

detailed layout of technical components at each stage using AWS cloud infrastructure and the tools

utilized to actualize the system. Definitions of these technical components are summarized in Box

7.1.

Figure 7.4 MINDS architecture implements a 3-stage pipeline.
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Table 7.1 Definitions of key cloud components

Component Definition
Amazon S3 Ingest
Bucket

Object storage bucket for staging raw data before loading into a data lake.

Amazon Web Ser-
vices (AWS)

A cloud platform that provides scalable computing, storage, analytics, and machine learn-
ing services.

AWS Athena Serverless interactive query service to analyze data in Amazon S3 using standard SQL.
AWS Big Data Ana-
lytics

Suite of services for processing and analyzing big data across storage, compute, and
databases.

AWS Data Lake For-
mation

Service to set up and manage data lakes with indexing, security, and data governance.

AWS Data Ware-
house

Fully-managed data warehousing service for analytics using standard SQL.

AWS Glue Crawler Discovers data via classifiers and populates the AWS Glue Data Catalog.
AWS Glue Data Cat-
alog

Central metadata store on AWS for datasets, schemas, and mappings.

AWS Lambda Serverless compute to run code without managing infrastructure.
AWS QuickSight Business intelligence service for easy visualizations and dashboards.
AWS RDS Amazon Relational Database Service is a managed relational database service that han-

dles database administration tasks like backup, patching, failure detection, and recovery.
Including RDS MySQL, a managed relational database optimized for online transaction
processing.

AWS Redshift Petabyte-scale data warehouse for analytics and business intelligence.
JDBC JDBC (Java Database Connectivity) is a standard API for connecting to traditional rela-

tional databases from Java. The JDBC was released as part of the Java Development Kit
(JDK) in version 1.1 in 1997 and has since been part of every Java edition.

7.4.2.1 Stage-1: Data Acquisition

Data acquisition is the first and crucial step in building the MINDS platform. This process

involves gathering all publicly available structured and semi-structured data from the data sources.

As mentioned earlier, the CRDC and other oncology data management initiatives host vast amounts

of patient information, and we use them as the primary data sources for our system. These sources

primarily include the three data commons portals, GDC, IDC, and PDC. Additionally, we use the

CRDC’s Cancer Data Aggregator (CDA) tool to map all the patient information across the commons

into one cohesive database. This database then expands to accommodate the patient data stored

across other portals, such as the cBioPortal, Xena, and other relevant data sources [121, 237, 249].

It is pertinent to mention that we do not store any unstructured data in MINDS, such as whole
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slide images or radiology scans. MINDS instead pulls the unstructured data from their respective

data commons based on the cohort the users want to build and the modalities they require for

processing through the portal APIs. Hence, we are not required to store large unstructured data

such as gigabyte pathology images in our database.

Figure 7.5 Overview of the MINDS architecture implemented on AWS.

For the initial version of MINDS, we leverage the GDC as the primary data source due to its

comprehensive collection of up-to-date, publicly available oncology data. The GDC portal contains

clinical, biospecimen, and molecular data across diverse cancer studies, representing over 86,000

cases spanning 78 projects. The GDC has the most extensive public data holdings out of the three

NCI data commons. As of 2023, it hosts over 3 petabytes of genomic and clinical data from the

NCI programs like The Cancer Genome Atlas (TCGA) and Therapeutically Applicable Research

to Generate Effective Treatments (TARGET). The GDC also has a well-designed and detailed data

model that structures and connects the clinical, biospecimen, and molecular data domains. The

availability of this robust data dictionary and schema metadata makes the ingestion and integration

185



of new GDC datasets simpler and more consistent. Leveraging thousands of richly annotated

multi-omic cancer profiles, we can develop integrative and predictive models by utilizing all the

public cases in the GDC for MINDS initial deployment. The breadth of tumor types enables the

building of generalized models applicable across different cancers. As the MINDS data repository

expands to incorporate more primary sources beyond GDC, the experience of integrating the GDC

data provides a solid foundation to build upon. The tooling ETL workflows developed to ingest

and harmonize GDC data can be extended to transform and connect new oncology datasets into the

MINDS knowledge system.

7.4.2.2 Stage 2: Data Processing

A foundation of the MINDS architecture is ingesting petabytes of structured clinical, biospeci-

men, and molecular data from cancer genomic repositories like the GDC. This raw metadata arrives

in heterogeneous formats including JSON documents, CSV exports, and XML messages conveying

case details, lab assays, pathology reports, and tissue sample attributes. While information-rich,

effectively using this disjointed data to drive integrative insights requires significant wrangling.

We leverage the GDC common data model as an integration schema to streamline aggregation and

analysis. This model structures entities like cases, files, and read groups into a normalized graph

representation, with nodes denoting key objects and edges linking related records. For example, a

case entity may reference constituent pathology reports, sequencing files, or tissue aliquots to pro-

vide a unified view spanning this network of connected data. The GDC data dictionary rigorously

defines properties and relationships to provide semantic consistency. Aligning raw data to this

canonical representation enables unified storage, queries, and computational pipelines. However,

the raw downloads natively arrive in varied shapes. JSON clinical documents describe patient

characteristics differently than TSV biospecimen exports. Our first challenge is flexible parsing

and mapping.

The need to integrate data from multiple sources is further pronounced in complex diseases

such as cancer when considering efforts such as precision medicine and personalized treatments.
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However, interoperability remains a major challenge in practice despite extensive standards de-

velopment. Many clinical, genomic, imaging, and literature databases use disjoint interfaces,

formats, and terminologies, thus hampering unified analytics. Several domain-agnostic standards

have emerged to promote harmonization:

• Health Level 7 (HL7) defines structures and semantics for messaging healthcare data be-

tween computer systems, including Clinical Document Architecture and Fast Healthcare

Interoperability Resources (FHIR) specifications [187, 289].

• Fast Healthcare Interoperability Resources (FHIR) specifies RESTful APIs, schemas, profiles,

and formats for exchanging clinical, genomic, imaging, and other healthcare data. Offers

platform-agnostic interconnection [289].

• Clinical Data Interchange Standards Consortium (CDISC) develops data models, terminolo-

gies, and protocols focused specifically on clinical research and FDA submissions, including

the Study Data Tabulation Model (SDTM) and the Clinical Data Acquisition Standards

Harmonization (CDASH) [119].

However, adopting these standards remains inconsistent, and significant translator development

is required to bridge entities [57]. The tight coupling of databases to proprietary representations

threatens interoperability. Furthermore, medical ontologies and terminologies such as those given

below play a crucial role in promoting both human and machine-readable shared understanding:

• Systematized Nomenclature of MEDicine Clinical Terms (SNOMED CT) provides consistent

clinical terminology and codes for electronic health records. Enables semantic interoperabil-

ity [510].

• National Cancer Institute (NCI) Thesaurus models cancer research domain semantics with

33 distinct hierarchies and 54,000 classes/properties. Binds related concepts for knowledge

discovery [502].
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The GDC data model and dictionary enhance interoperability by structuring and defining

entities, properties, and relationships standardized. When ingesting data, the AWS Glue crawler

leverages these common semantics to map input elements into the unified representation. This

semantic alignment enables integrated analysis despite originating heterogeneity.

GDC structures clinical, biospecimen, and molecular data using a consolidated data model

that interconnects related entities into a directed acyclic graph (DAG) representation. This data

model underpins the organization and semantics of the petabyte-scale GDC dataset. The model

comprises a network of nodes representing key data objects (cases, samples, reads, etc.) linked

through edges denoting relationships. Nodes have properties like type, age, and tumor_stage, while

edges characterize affiliations like a sample derived_from a case. Robust semantic definitions

specify permitted nodes, their properties, associated data types, and linkage rules. This ontology

ensures consistency critical for downstream interoperability. Technically, the data model utilizes a

mix of JSON and YAML schemas coupled with Python 3 and SQL codebases to architect domain

representations. Schemas define valid elements and constraints serialized into JSON documents.

Codebases ingest and query documents while preserving compliance. The GDC dictionary elab-

orates on metadata driving consistency. For example, the sample entity has documented required

fields like sample_type and permissible values like Solid Tissue. The authentication service verifies

submitted entities to satisfy specs. At the infrastructure layer, dictionaries transform into SQLite

representations. Indexed tables track datasets while optimized queries fetch connections. Although

decentralized, federated services coalesce distributed systems into an integrated data collaboration.

The presentation tier visualizes linkages via an entity-relationship diagram highlighting cardinality

rules (one-to-many mappings, etc.). Users traverse graphs accessing constituent records through

REST APIs. By providing rigorous blueprints governing content packaging, exchange, and in-

terpretation, GDC data models power external consistency unlocking unified workflows spanning

partners—enabling interconnected explorations.
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7.4.2.3 Stage 3: Data Serving

We provide two core methods for researchers to consume processed oncology data based on

workflows. We built interactive dashboards for interactive visualization and cohort analysis that

use the data stored in the warehouse. Additionally, for developers and computational researchers

needing to ingest data into pipelines, we provide an open-source Python toolkit as part of MINDS

that programmatically downloads the unstructured multimodal data from disparate databases.

MINDS provides a dashboard. At data consumption stage, structured data in the data warehouse

is utilized for various purposes. The data consumption process is designed to provide users with

an interactive and intuitive interface for exploring, visualizing, and analyzing the data. This

is achieved through a dashboard built on Amazon QuickSight [32], a fully managed business

intelligence service that enables data visualization and interactive analysis. Users can interact with

the dashboard to explore various aspects of the data and identify trends, patterns, or correlations

using QuickSight’s machine learning-powered insights.

Figure 7.6 presents sample visualizations enabled by the MINDS analytics dashboard, allowing

researchers to explore different data attributes like the cause of death and tumor subtype distri-

butions. For example, the death date graph reveals a peculiar underreporting anomaly between

2014–2017 that may warrant investigation into potential data quality issues. Meanwhile, tumor

classification breakdown identifies pancreatic cancer as the most represented diagnosis, informing

potential studies targeting prevalent categories.

Beyond distributions, the interactive dashboards may also catalyze discoveries by empowering

explorations into relationships between clinical factors, assays, and outcomes. As illustrated,

researchers could assess survival trends across cancer subtypes to uncover prognostic biases.

Recurrence patterns may be analyzed with modalities like genetic mutations and treatment regimens

to reveal predictive biomarkers or personalized medicine insights. Apart from the analytical

categories depicted in Figure 7.6, the MINDS analytics dashboard allows the researchers to filter

data based on any clinical or biological fields such as age, gender, ethnicity, tumor grade, treatment

type, year of diagnosis, survival, etc.
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MINDS enables users to build focused, multimodal datasets for targeted analysis by combining

warehouse-driven cohort queries with automated unstructured data collection. Patient cohorts are

defined by querying the database directly through SQL. The case IDs can be extracted from the

cohort, and the resulting list of case IDs is used to retrieve all related unstructured data from

the GDC, IDC, and PDC portals using their respective API interfaces. As part of the MINDS

toolkit, we provide a Python utility that accepts the case ID list as input and programmatically

calls the APIs to bulk download images, pathology, -omics, and other files for those specific cases.

The downloaded data is organized into a folder structure with a top-level “/raw” folder containing

subfolders for each case ID. Each case folder contains the unstructured data objects from GDC,

IDC, and PDC for that case. JSON manifest files are also generated to capture metadata like file

IDs, types, and sources. This enables easy indexing and querying of the unstructured data extracts.

7.4.3 Cloud Deployment

This section outlines the AWS cloud implementation of MINDS, leveraging core infrastruc-

ture services to enable scalable data aggregation, processing, and unified access. Our approach

incorporated several key big data techniques essential to the MINDS architecture. We utilized

Amazon S3 for distributed storage, creating a data lake environment capable of handling petabytes

of heterogeneous data. AWS Redshift and EMR were employed for large-scale data warehousing

and distributed SQL and Spark processing, respectively. These services enabled the building of

high-performance SQL query engines and the efficient processing of large data volumes. AWS

Glue played a critical role in machine learning-powered ETL, allowing for the transformation and

structuring of data for analysis. Serverless computing using AWS Lambda was instrumental in

managing scalable workloads, preventing server overflow, and ensuring system responsiveness.

Together, these components formed a robust foundation essential for addressing the challenges of

volume, variety, and velocity inherent in the multimodal oncology data within MINDS. While the

current system deployment utilizes Amazon Web Services, the underlying architecture is designed

for portability across cloud platforms. By interfacing with common storage, database, analytics, and
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Figure 7.6 Quicksight analytics and visualization generated using clinical data from MINDS.
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machine learning modules rather than low-level servers or virtual machines, much of the MINDS

technology stack can be replicated on alternate providers.

7.4.3.1 MINDS Infrastructure on AWS

We pull all semi-structured and structured data from the GDC data portal for all public cases,

including TSV and JSON files containing various clinical (clinical, exposure, family history, follow-

up, and pathology detail) and metadata of biospecimen (aliquot, analyte, portion, sample, and slide)

information. This data is then uploaded into an Amazon S3 Ingest Bucket [35]. This bucket acts

as the staging storage for the data before it is uploaded to the data lake. To orchestrate the full data

lake setup, we utilize the AWS Data Lake Formation tool [37], which automates the transformation

of the semi-structured data stored in the S3 bucket into a queryable data lake using AWS Glue

crawlers to catalog the data and store it in data tables [38].

The data acquisition is not a one-time event but a continuous process that must be updated

regularly to ensure the data lake is always up-to-date with the latest data. The new data is not

uploaded arbitrarily but rather arrives through scheduled ETL routines that run every 12 h to poll

source repositories like GDC using their APIs. For example, scripts leverage the GDC REST API

to query for newly added cases, files or metadata since the last update based on a timestamp. The

incremental changes are downloaded via the API and uploaded to the S3 bucket on a Linux-based

cron schedule, such as daily at 9 AM UTC. This polling pattern is tailored for each integrated data

source and its API capabilities. Explicitly tracking data provenance through structured ingestion

and ETL ensures the S3 bucket receives only authorized data uploads, avoiding random additions.

We use AWS Lambda serverless compute [41] to trigger Glue crawlers automatically whenever

new data lands in the S3 bucket. This ensures our data lake is always up-to-date with the latest data

without explicit manual synchronization. This also helps reduce the data transfer rates because

the system updates the data lake only with the delta between the bucket and the data lake. The

data acquisition process is designed to be robust and scalable, capable of handling the increasing
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volume of oncology data. It also ensures the safety and integrity of the data by establishing secure

connections to the databases from which data needs to be extracted.

Once the data is acquired, the next step is to clean, process, and aggregate this data. At this

stage, the data is extracted from the data lake, transformed into a more structured format, and

loaded into the data warehouse. This is done using Amazon AWS Glue 4.0 [36], which ensures

consistency and compatibility across data types and sources. AWS Glue performs the ETL actions

using the AWS Glue crawler [38]. The crawler works in a series of steps to ensure the data is

appropriately cataloged and ready for analysis. Figure 7.7 shows the internal workings of the AWS

crawler that ensure the data is properly processed and ready for analysis, making it easier for users

to extract valuable insights from the data. The steps involved in the AWS crawler workflow are as

follows:

1. Establish access-controlled database connections. The crawler first establishes secure con-

nections to the databases from which data needs to be extracted. This ensures the safety and

integrity of the data in transit.

2. Use custom classifiers. If any custom classifiers are defined, they catalog the data lake and

generate the necessary metadata. These classifiers help in identifying the type and structure

of the data.

3. Use built-in classifiers for ETL. AWS’s built-in classifiers perform ETL tasks for the rest of

the data. This process involves extracting data from the source, transforming it into a more

suitable format, and loading it into the data warehouse.

4. Merge catalog tables into a database. The catalog tables created from the previous steps are

merged into a single database. During this process, any conflicts in the data are resolved to

ensure consistency and deduplication.

5. Upload catalog to a data store. Finally, the catalog is uploaded to a data store to be accessed

and utilized for analytics. This data store is a central repository where all the processed and

cataloged data is stored.
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When ingesting data, the AWS Glue crawler parses source elements into this consolidated model

by mapping input fields into the GDC dictionary. For instance, a Read Group JSON would have

its metadata properties (like ID, library name, etc.) inserted as columns into the standardized Read

Group table definition used across MINDS while retaining references to the parent Case/File IDs

to recreate linkages. The unified representation enables joining and analysis across interconnected

data domains related to biospecimen, sequencing, diagnoses, etc., even if originating formats

vary. This ensures interoperability among diverse data sources through a common but fast health

interoperable resource. To incorporate emerging repositories into this existing data model, we

extract salient clinical and experimental metadata based on publication schemas and use the flexible

AWS Glue schema evolution tools to extend existing definitions or spawn new tables aligned with

import sources if needed. Templatized mapping configurations adjust for input heterogeneity while

producing consistent MINDS representations to power integrated SQL queries across past and

future data partners - avoiding isolated silos or reengineering efforts when onboarding additional

cohorts. Hence, MINDS has built-in scalability supported by interoperable functions. The crawler

uses the GDC node schema definitions in YAML files to parse the JSON documents and infer the

schema. The GDC case entity is defined with properties like case_id, disease_type, demographic,

diagnoses, etc. When the crawler processes a case JSON document from the GDC portal, it maps

the JSON properties to columns in a Glue table definition based on the GDC data model. This

way, the GDC model’s underlying graph structure transforms relationships into a relational view.

The Glue crawler output is a table definition in the AWS Glue Data Catalog. Users can directly

query and join with other clinical, biospecimen, and genomic tables ingested from GDC. The

dictionaries also provide metadata like each property’s data types and code lists. When creating

data definition language (DDL) for the tables, the crawler leverages this to assign appropriate

column types, formats, and validations. This helps maintain data integrity and consistency during

the transformation process.
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Figure 7.7 The AWS Glue crawler automates ETL in MINDS through a 5-step workflow.

The normalized clinical, biospecimen, and molecular data cataloged by the AWS Glue crawler

undergoes loading into Amazon Redshift, which serves as the primary data warehouse for enabling

high-performance analytics. With this structured data, we also populate an Amazon RDS MySQL

cluster to support efficient inserts and updates as new data arrives from source systems. However,

given its optimization for such read-heavy workloads, analytical queries are routed directly to

Redshift [34]. As a petabyte-scale massively parallel processing (MPP) data warehouse service,

Amazon Redshift employs advanced query processing, adaptive machine learning optimizers,

and columnar storage layouts purpose-built for complex aggregations, filters, and joins across

huge datasets. By leveraging separate data warehouse and transactional database environments,

MINDS supports fluid exploration without impacting critical path operations that rely on consistent

low-latency database performance unaffected by ad hoc analysis. We incrementally load the Glue-
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cataloged data into Redshift using high-throughput COPY commands to enable fast bulk data

movement from S3 object storage. Redshift Spectrum interfaces create external tables pointing

directly at structured datasets in S3 buckets, providing direct access without loading the data into

local warehouse storage. This allows interactive SQL analytics directly on raw JSON, CSV, and

TSV objects with automatic inferencing of schema and transformations to perform as data is read

at query runtime. The centralized AWS Glue Data Catalog manages table definitions, schemas,

partitions, and mappings across these disparate storage and processing environments - serving as

the primary metadata store and enabling unified access to explore and visualize data across tools

like Amazon QuickSight, Amazon Athena [30], and Amazon SageMaker. We leverage Athena’s

serverless SQL query engine to enable users to analyze the consolidated data using standard ANSI

SQL without needing to connect to the underlying data stores, enhancing accessibility directly.

7.4.3.2 Benefits of Cloud as a PaaS Platform

In Platform as a Service (PaaS), the cloud’s intrinsic security features are not just an add-on;

they form the bedrock of a comprehensive data protection strategy. MINDS utilizes the built-in

security of cloud platforms to protect data. We implement several security services from AWS to

ensure our data storage and processing are safe and private. This includes security, management,

and backup mechanisms.

Security and management are critical aspects of any data management system, especially when

dealing with sensitive medical data. In MINDS, we employ several AWS security services and

best practices to ensure the highest data security and privacy level. Amazon S3, where our data

lake resides, provides robust security capabilities. We have enhanced these with network traffic

encryption using TLS 1.2 and enforcing data integrity with HTTPS. All data in S3 is encrypted at rest

using 256-bit Advanced Encryption Standard (AES) keys managed through AWS Key Management

Service (KMS). Additionally, we use Identity and Access Management (IAM) policies to precisely

manage access at both the resource and action levels, utilizing temporary credential chains to avoid
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exposure to raw secrets. Our setup includes Virtual Private Cloud (VPC) endpoints to prevent

public exposure of the data.

Our data warehouse, Amazon Redshift [34], incorporates multiple layers of security to protect

sensitive oncology data. It integrates with AWS IAM, allowing fine-grained access control to

resources. Data in transit to and from Redshift is protected using SSL connections. For data at

rest, Redshift employs encryption using Key Management Service (KMS) and Hardware Security

Module (HSM) encryption for large volumes exceeding terabytes. Redshift also enforces strict

SQL-based authorization to ensure secure data access [39]. Furthermore, we utilize features like

Virtual Private Cloud (VPC) for network isolation and comprehensive audit logging and compliance

certifications for enhanced security and accountability.

We adhere to stringent security practices in the context of data processing and ETL with AWS

Glue. AWS Glue is integrated with AWS Lake Formation, which allows for fine-grained, column-

level access control, ensuring that only authorized personnel can access sensitive data. AWS Glue

ETL jobs run in a secure and isolated environment, with all necessary resources provided by AWS

Glue [40]. This is complemented by regular updates to server security groups, operating system

patches, and adherence to the Center for Internet Security (CIS) hardening guidelines. For data

consumption, Amazon QuickSight employs AWS IAM and AWS Lake Formation for robust access

control, supporting both encryption at rest via AWS KMS and encryption in transit using SSL.

Additionally, AWS CloudTrail provides detailed audit logs, enabling effective incident investigation

and response.

In addition to the above-mentioned security measures, we also employ monitoring and logging

using AWS CloudTrail and Amazon CloudWatch [31]. These services provide visibility into user

activity and API usage, allowing us to detect unusual or unauthorized activities. This helps build

audit trails and trigger security events in case of an undesired action. We also use Amazon RDS

Multi-AZ deployments for redundancy, high availability, and failover support for database instances.

Multi-AZ creates a primary RDS instance with a synchronous secondary standby instance in another

Availability Zone (AZ) for enhanced redundancy and faster failover.
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MINDS leverages AWS services’ robust backup, redundancy, and disaster recovery capabilities

to maximize system availability and protect against data loss. Amazon S3 buckets are versioned,

with all object modifications saved as new versions. This allows restoring to any previous version.

Cross-region replication sends object replicas to geographically distant regions to mitigate region-

level failures. S3 object lock prevents accidental deletions during a specified retention period. RDS

clusters run as Multi-AZ deployments with a standby replica in a secondary AZ for high availability,

automatic failover, and fast recovery. Point-in-time restore rolls back to previous database states

using retained backups. Database snapshots are stored in S3 for long-term durability. Redshift

distributes replicas across nodes for local redundancy. It replicates snapshots and transaction logs to

S3 to protect against node failures. Snapshots can restore clusters to any point in time. Combining

versioning, redundancy, failover capabilities, and recovery automation, MINDS provides resilience

against failures and minimizes disruption. Robust security protects against data loss from malicious

events.

7.4.3.3 Scalability Across Different Platforms

While the current MINDS implementation leverages AWS, the architecture is designed to

enable deployment across different cloud platforms, not just AWS. The core methodology centers

on interfacing with managed cloud services, abstracting the underlying infrastructure through

common programmatic interfaces. This service-oriented approach enhances portability and avoids

extensive customization tied to a single provider. For example, as shown in Figure 7.8, the S3

storage layer could be replaced with Google Cloud Storage buckets, AWS Glue with Azure Data

Factory, RDS and Redshift with Snowflake’s data platform, and Lambda with Cloud Functions. The

overall system architecture would remain consistent while swapping the provider services. When

migrating platforms, trade-offs exist around performance, access controls, and other factors. But

by using managed services with standard APIs, MINDS aims for platform-independent portability.

The MINDS architecture can be replicated to the Google Cloud Platform to demonstrate feasibility

through the following replacement and compatibilities.
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• Employing Cloud Data Fusion for data integration in place of AWS Glue

• Leveraging BigQuery for data warehousing rather than Redshift

• Using Cloud SQL over RDS for relational data

• Adopting Cloud Functions and Cloud Run for serverless compute instead of Lambda.

• Visualizing with Looker as an alternative to QuickSight

• Applying Cloud Data Loss Prevention for security rather than AWS options

Figure 7.8 Demonstrating the feasibility of deploying MINDS across cloud platforms.
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7.4.4 On-Premise Deployment

While the cloud delivery model provides advantages like elastic scalability, hands-off manage-

ment, and usage-based costing, some organizations may prefer on-premise deployment of MINDS

due to data sovereignty, customization, or latency constraints. Despite extensive security protec-

tions, regulated data may mandate localized processing. Custom modules like augmented analytics

dashboards may also require internal hosting. We provide an open-source Python toolkit for config-

urable local installations to address these needs while retaining MINDS’ consistent methodology.

The MINDS library abstracts the orchestration of storage, databases, and web services into

simple commands. A Docker container runs the setup scripts to bootstrap a production-ready

environment. This generates a MySQL database pre-populated with the consolidated clinical data

schema. The library emulates S3’s file layout to organize unstructured dataset downloads. A

lightweight Flask web application replaces interactive dashboards for cohort queries and drilling

into associated multimodal records. Python notebooks connect natively to the local database for

flexible ad-hoc analysis.

While foregoing autoscaling capabilities, on-premise deployment grants organizations direct

control to modify pipelines, incorporate sensitive data, and reduce external network dependencies.

The toolkit ensures feature parity while unlocking customizations. The same MySQL structure

retains compatibility with predictive models trained in the cloud. Consistent metadata schemas,

entity definitions, and configurability guard against lock-in across deployments. By supporting

flexible topologies, MINDS balances sovereign data management with scalable cloud analytics.

7.4.5 User Application

The MINDS platform aims to support users across academia, industry, and clinical settings

by enabling scalable and secure access to integrated multimodal oncology data. Researchers can

leverage MINDS to store, organize, search, and analyze large volumes of heterogeneous data

spanning modalities like imaging, sequencing, pathology, and EHRs. For example, a lung cancer

researcher may want to analyze treatment response biomarkers across a substantial cohort of lung
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adenocarcinoma patients. However, gathering sufficient cases poses barriers, as relevant data

resides in siloed repositories and trial databases. Each data source may only have a few hundred

labeled lung adenocarcinoma cases that meet the desired criteria. Using MINDS, the researcher

can easily construct an expansive harmonized analysis cohort. They can perform an SQL query

against the aggregated clinical data warehouse to select all lung adenocarcinoma cases across the

95,000+ aggregated case database. This unified view allows for the efficient building of a cohort

of over 7000 consolidated lung adenocarcinoma cases—a scale far beyond what any individual

source provides. MINDS data processing pipelines will have mapped the clinical data from diverse

sources like TCGA, TARGET, GENIE, and clinical trials into a standardized representation aligned

with the GDC data model. This harmonizes heterogeneity and structures cohorts for analysis. The

researcher can feed this harmonized case ID list into the unstructured data download clients. The

tool will automatically retrieve all raw sequencing, imaging, and pathology data objects associated

with each case from connected GDC, IDC, and PDC repositories. The researcher now has a turnkey

dataset with thousands of consistently structured lung cancer cases annotated with multimodal data.

This fuels large-scale integrative experiments to uncover treatment response biomarkers that drive

outcomes. By aggregating and standardizing dispersed data into a centralized warehouse, MINDS

created an augmented lung cancer cohort at a far larger scale and faster pace than otherwise feasible.

This accelerates the discovery process through transformational access to interconnected big data.

7.5 Results and Discussion

This section presents the results of implementing the proposed MINDS architecture for inte-

grated multimodal oncology data management. We demonstrate MINDS’ cohort building and data

tracking capabilities and present its advantages over current solutions.

7.5.1 Multimodal Data Consolidation

A fundamental challenge in developing integrated multimodal learning models is assembling the

highly heterogeneous and fragmented data from myriad sources into unified datasets at sufficient
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Table 7.2 Comparison of the storage size

Data Source Storage Size # of Cases

MINDS 25.85 MB 41,499
PDC 36 TB 3,081
GDC 3.78 PB (17.68 TB public) 86,962
IDC 40.96 TB 63,788

scale. As shown in Table 7.2, MINDS directly addresses this by consolidating over 41,000

open-access cancer case profiles spanning diverse research programs into a structured 25.85 MB

extract. This aggregated dataset encompasses clinical, molecular, and pathological data elements,

providing a multifaceted view of each patient. Compared to petabyte-scale source systems, the

extreme compression enables single-node processing and complex SQL analytics that are infeasible

on individual repositories. The storage sizes reported for the GDC, PDC, and IDC refer to the total

data contained in each repository. However, only a subset of cases in these repositories are open-

access and available for research without access restrictions. For example, the GDC contains over

3 petabytes of genomic, imaging, and clinical data overall, but only 17.68 terabytes are associated

with open-access cases that can be freely downloaded and analyzed. The 41,499 cases consolidated

in MINDS are derived from these open repositories for unencumbered research use.

As shown in Table 7.3, the consolidated cases represent a comprehensive amalgamation of

historical and contemporary research initiatives, vital for maintaining the relevance and accuracy

of downstream analytical models in the face of evolving technologies. For example, the 11,315

cases from The Cancer Genome Atlas (TCGA) provide invaluable high-throughput molecular

profiling using earlier genomic microarray platforms. In contrast, the 18,004 cases from Foun-

dation Medicine incorporate the latest in contemporary genomic assays, such as next-generation

sequencing (NGS) techniques. This strategic blending of data spanning different technological

eras—from classic projects like TARGET to modern Foundation Medicine NGS panels—is crit-

ical for mitigating chronological biases and batch effects. By integrating this temporally diverse

data through MINDS’ heterogeneous integration framework, we proactively inoculate our models

against chronological distortions. This approach ensures that the algorithms focus on learning
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durable, biological patterns that are generalizable across technological shifts rather than transient,

platform-specific technical artifacts. Consequently, this temporal synthesis strategy enhances the

generalizability of the machine learning models and future-proofs them against inevitable progress

in profiling techniques. Access to such a rich and varied dataset is indispensable for training ma-

chine learning models, as it provides the large sample sizes necessary for deep learning and helps

avoid statistical biases and spurious correlations that often arise from analyzing isolated datasets.

Table 7.3 Number of cases by programs from GDC open cases present in MINDS.

Program # of Cases

Foundation Medicine (FM) 18,004
The Cancer Genome Atlas (TCGA) 11,315
Therapeutically Applicable Research to Generate Effective Treatments
(TARGET)

6542

Clinical Proteomic Tumor Analysis Consortium (CPTAC) 1526
Multiple Myeloma Research Foundation (MMRF) 995
BEATAML1.0 756
NCI Center for Cancer Research (NCICCR) 481
REBC 440
Cancer Genome Characterization Initiatives (CGCI) 371
Count Me In (CMI) 296
Human Cancer Model Initiative (HCMI) 228
West Coast Prostrate Cancer Dream Team (WCDT) 99
Applied Proteogenomics OrganizationaL Learning and Outcomes (APOLLO) 87
EXCEPTIONAL RESPONDERS 84
Oregon Health and Science University (OHSU) 80
The Molecular Profiling to Predict Response to Treatment (MP2PRT) 52
Environment And Genetics in Lung Cancer Etiology (EAGLE) 50
ORGANOID 49
Clinical Trials Sequencing Project (CTSP) 44

7.5.2 Storage Optimization

By selectively assimilating solely essential clinical, biospecimen, and assay metadata instead

of complete image pixel repositories, the MINDS structured ingestion approach reduces storage

footprints from original petabyte scales down to a consolidated 25.85 MB extract. This approximate
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1000⇥ storage optimization maintains versatile multivariate cohort filtering capabilities across the

41,499 case corpus. Concretely, archiving TCGA, TARGET, and Foundation Medicine oncology

profiles requires only MBs—facilitating responsive analytics from single commodity hardware,

otherwise impossible at native TB+ scales. MINDS shifts the storage complexity curve through

this strategic assimilation to unlock unified exploration. Deferring transfers of raw pixels and

nucleic acid sequences until specifically requested for focused analysis prevents excessive upstream

overheads. By directly handling initial cohort filtering on structured metadata upstream, MINDS

right-sizes infrastructure economics to enable cloud-scale interactivity. Only specifically tailored

subsets subsequently retrieve associated imagery. This optimized 2-stage architecture minimizes

waste for targeted investigation. We further dissected storage contributions across warehoused

clinical, biospecimen, and molecular categories, with cases consuming 10.24MB, followed by

genomic variant calls and read groups. This proportional breakdown spotlights metadata cate-

gories benefiting from the greatest compression—guiding potential raw assimilation. Measurable

storage optimization unlocks interactive analysis otherwise hampered by extreme technical costs,

demonstrating quantifiable efficiencies.

7.5.3 Horizontal Scalability

Given that cohort queries constitute read-only analytical workloads, MINDS can scale under-

lying AWS Redshift compute capacity horizontally by adding managed nodes to meet surging

analysis demands transparently. We empirically demonstrate corresponding latency reductions

by doubling the cluster nodes, which directly halved runtimes for intensive 8-table cohort inves-

tigative queries, proving straightforward scaling. As increasingly complex algorithmic analysis

workloads like multimodal federated learning and neural network training expand against MINDS

unified corpus, decoupled storage from flexible computing facilitates economic growth, avoid-

ing over-provisioning. This configurable capacity directly fulfills emerging surge requirements

without architectural redesign. By empirically plotting reductions in query latencies resulting

from MINDS-scaled infrastructure, we substantiate real-world horizontal scalability vital for cloud
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viability. Similar economical scaling approaches apply when running MINDS datasets through

downstream machine learning toolchains. Distributed training frameworks like XGBoost or Py-

Torch natively support decentralized parallel and vectorized execution pipelines across GPU grids.

Maintaining unified data formats ensures interoperability with leading computational platforms.

By harmonizing dispersed data silos into a unified resource, MINDS effectively addresses the

primary bottleneck in large-scale multimodal healthcare machine learning model development—a

sufficiently large, heterogeneous, and representative dataset for training and validation of models.

7.5.4 Cohort Building

Once aggregated data has been consolidated, tailored cohort extraction is needed to develop

optimal machine learning training and test sets. Simple random sampling often fails to provide ade-

quate cohort stratification along key variables. MINDS enables researchers to construct customized

cohorts flexibly by querying the unified clinical data using performant SQL.

MINDS implements a flexible end-to-end workflow that allows users to submit analytical

cohort queries and receive customized structured or unstructured data extracts. Figure 7.9 provides

an overview of the MINDS system and all the data and query interactions with the user. The

process begins with users formulating SQL-based queries that specify criteria to define a cohort

of interest. These parameterized queries filter over patient attributes and allow the inclusion

of any desired clinical, molecular, or demographic factors. For structured data, the submitted

SQL query executes against MINDS’ consolidated EHR database containing harmonized patient

profiles. This filtered extraction returns a Pandas data frame containing detailed clinical records

for all patients matching the cohort criteria. Alternatively, users can request unstructured data for

their defined cohort. In this case, MINDS first extracts a list of unique patient case IDs for those

meeting the criteria based on the SQL query parameters. These case IDs are then used to retrieve

all associated unstructured medical objects related to those patients from connected repositories.

This includes digital pathology slides, medical images like CT/MRI scans, -omics assay files, and

other multimodal data assets. This flexible yet automated workflow allows researchers to obtain
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structured medical records from the EHR or full multimodal datasets matching customized cohorts

simply by submitting analytical SQL queries. The tight integration between cohort definition and

data extraction enables the on-demand assembly of tailored data corpora for various biomedical

applications.

Figure 7.9 Overview of the workflow in MINDS.

Preliminary experiments demonstrate interactive cohort construction, with simple queries on

a single clinical factor completed on average in 3–5 s. Even multidimensional queries joining

clinical, molecular, and outcome data across tables are completed within 15 s. This enables rapid,

iterative refinement of cohort criteria during model development.

7.5.5 Query Responsiveness

To quantify system performance, we extensively measured SQL query latencies over diverse cri-

teria ranging from simple filters to multidimensional predicates across interconnected data domains.

These complex joins emulate realistic exploratory analysis patterns that investigators conduct to

uncover relationships within and across data types. Rigorously quantified wall-clock timings over
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24,000+ SQL invocations reveal consistent sub-5 s average response times for typical single table

queries. More complex multidimensional queries encompassing 8+ tables are completed within

15 s despite traversing metadata for thousands of cases. Minor fluctuations arise based on query

types, but critically, sub-15-s overheads enable practically interactive cohort investigation work-

flows, allowing analysts to rapidly iterate without experiencing disruptions commonplace in legacy

repositories. By maximizing fluidity, MINDS facilitates discovering underlying correlations that

otherwise remain obscured in fragmented systems.

Researchers have full flexibility to extract customized sets for training algorithms by simply

adjusting Boolean logic combining clinical, molecular, or biospecimen factors in the SQL queries.

No system constraints are imposed. The ability to interactively construct bespoke cohorts by piping

SQL queries directly on consolidated records has several key advantages for multimodal machine

learning:

• MINDS allows researchers to build cohorts tailored to the problem. This prevents sampling

biases linked to the availability of pre-defined cohorts.

• SQL combines and consolidates disparate clinical, molecular, and outcomes data from the

entire period of medical treatment. This provides a complete view of each patient.

• Version IDs uniquely label dataset variants to enable precise tracking of changes during

iterative model development. Researchers can pinpoint the exact dataset used to generate

each model version.

• JSON manifests comprehensively log the dataset composition, including the originating

queries, data sources, and extraction workflows. This provides full documentation of the data

provenance.

Aligning emerging systems like the Multimodal Integration of Oncology Data System (MINDS)

with such technologies is vital to avoid isolated silos and enable integrated analytics over clinical and

research data. This demands extensive use of their common formats, unique identifiers, controlled

vocabularies plus considerable translator development.
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7.5.6 Data Tracking and Reproducibility

MINDS further simplifies multimodal analysis by automating the rebuild of full datasets tailored

to each cohort. APIs and utilities extract images, -omics, and other unstructured data linked to

cohort cases from connected repositories like GDC. Consistent organization and JSON manifest

document datasets ready for consumption by machine learning models. To ensure reproducibility,

MINDS assigns unique version IDs to cohort datasets. Any changes trigger new versions, enabling

precise data tracking to develop different model variants. Comprehensive data provenance from

EHR queries to unstructured set regeneration enhances reproducibility in machine learning training

pipelines.

7.5.7 Integrated Analytics

Once unified datasets have been constructed, interactive analytics and visualizations are needed

to explore cohort characteristics, correlations, and model outputs. MINDS delivers rapid analysis

over aggregated multimodal data through integrated dashboards powered by Amazon QuickSight.

Optimized cloud data warehousing components like Amazon Redshift enable ad-hoc exploration

across thousands of variables without performance lags. QuickSight’s advanced machine learning-

driven insights uncover subtle trends and patterns. User-defined charts visualize model performance

metrics across various cohorts. Key advantages of integrated analytics include:

• Rapid hypothesis testing during exploratory analysis to refine cohorts and features.

• Understanding model performance across cohorts reveals generalization capabilities.

• Uncovering correlations between clinical factors, assays, and predictions guides feature

engineering.

• Visualizations build trust by providing direct views into model behaviors.
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7.5.8 Limitations and Future Improvements

While MINDS has demonstrated significant benefits, there are several areas where the system

could be improved. Including controlled data, a local deployment option, and enhanced analytics

and visualization capabilities represent exciting directions for future work on MINDS. These

improvements would increase the amount of data available in MINDS and enhance its utility for

oncology research. Another future extension to this work could be to replicate MINDS on the

Google Cloud Platform or Microsoft Azure platform. While there would be specific technical

differences across providers, the high-level design focused on abstracted services ensures the

seamless prevention of vendor lock-in. Multi-cloud deployments ensure MINDS provides flexible,

portable data management capabilities spanning diverse infrastructures. To track the addition,

deletions, and modifications to data, webhooks and event notifications can be implemented to

achieve more real-time incremental updates. For example, an event trigger could invoke our ingest

handler when new data is added to the remote platform. This event-driven approach avoids excessive

API polling. Webhooks allow registering listeners to be notified immediately of data changes.

Additionally, though initially focused on cancer data, MINDS’s flexible and modular design

makes it well-suited for application across medical specialties. For example, the infrastructure

could readily incorporate COVID-19 data types such as clinical outcomes, chest CT scans, and

immunological biomarkers from initiatives like the Medical Imaging and Data Resource Center

(MIDRC) [482] to accelerate insights. By ingesting such assets via extensions to the automated

ETL pipelines and data model while reusing the security, governance, and analytics foundations,

MINDS could integrate emerging COVID-19 knowledge. More broadly, maintaining interoperable

components enables consolidating distributed data silos across domains to advance data-driven

medicine beyond just oncology through unified analytics.

While MINDS demonstrates significant benefits in enabling integrated analytics, some core

limitations provide fruitful directions for further enhancement. Given infrastructure barriers, a pri-

mary constraint centers on directly ingesting raw clinical imagery and video. However, introducing

dimension reduction through learned embeddings holds promise for overcoming such hurdles while
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preserving semantic representation. Exploring privacy-preserving approaches would also facilitate

assimilating regulated data assets beyond public corpora. Additionally, absorbing unstructured

physician notes poses non-trivial natural language understanding challenges needing advancement

through pre-trained clinical language models. If these addressable constraints are tackled, the po-

tential significance would be immense. MINDS could profoundly transform integrated biomedical

investigation paradigms by synergizing heterogeneity and multiplicity across exponentially growing

streams. New modalities, data types, and controlled datasets could continually expand the scope.

Assimilating free text notes could uncover novel linguistic biomarkers. Exciting enhancements

we have highlighted include, incorporating regulated data through privacy-preserving methods,

migrating imagery via compact embeddings, absorbing unstructured notes through advanced NLP,

expanding across diseases by reusing consolidation components, and scaling across cloud platforms

to prevent vendor lock-in.

7.6 Conclusions

The MINDS was designed to address the challenges of integrating and managing large volumes

of oncology data from diverse sources. MINDS provides a cost-effective and scalable solution for

storing and managing oncology data through its innovative cloud technologies and data mapping

techniques. It leverages public datasets to ensure reproducibility and enhance machine learning

capabilities while providing a clear pathway for including controlled data in the future. Our

results demonstrate that MINDS significantly reduces storage size and associated costs compared

to traditional data storage methods. MINDS’ compatibility with public datasets ensures no leaks

of controlled data while allowing for reproducibility of results. The system also enhances machine

learning capabilities by updating patient information as new data is released from clinical trials,

providing transparency and reproducibility.

The data integrated into MINDS is sourced from publicly available datasets in the Genomic

Data Commons (https://gdc.cancer.gov, accessed on 12 January 2024), Proteomics Data Commons

(https://proteomics.cancer.gov, accessed on 12 January 2024), Imaging Data Commons (https:
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//imaging.cancer.gov, accessed on 12 January 2024) and cBioPortal for Cancer Genomics (https:

//www.cbioportal.org, accessed on 12 January 2024). Only metadata and identifiers are ingested

into MINDS—the datasets remain hosted in their respective repositories. Analyses are performed

by querying these sources through their public APIs and computational workbenches. The code

implementation for the MINDS platform is available at https://github.com/lab-rasool/MINDS,

accessed on 11 January 2024.
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Chapter 8: SeNMo: A Self-Normalizing Deep Learning Model for Enhanced Multi-Omics

Data Analysis in Oncology

8.1 Introduction

Cancer data has multiple modalities, each offering distinct but complementary views of the

disease [333]. Radiological images reveal structural and functional anomalies, histopathology

slides provide cellular and tissue-level detail, clinical and Electronic Health Records (EHR) data

encapsulate patient history and treatment outcomes, and molecular data such as genomics, tran-

scriptomics, proteomics, and metabolomics uncover the underlying biological mechanisms driving

cancer progression and response to therapy [77, 383, 494, 124]. Studying cancer through a mul-

timodal perspective is critical for comprehensive understanding and effective treatment strategies

[273]. Additionally, multimodal approaches facilitate personalized medicine, enhance our ability

to predict disease-related outcomes, and advance our understanding and treatment of cancer [6].

8.1.1 Multimodal and Multiomics Data

The growth of molecular data has greatly advanced cancer research [124]. The emergence of

high-throughput sequencing technologies supported by the development of sophisticated bioinfor-

matics tools and computational algorithms has ushered in an era of “omics" [559]. Multi-omics

is a subset of multimodal data that specifically refers to the integrated analysis of various molec-

ular data modalities including genomics, transcriptomics, proteomics, and metabolomics [739].

Multi-omics provides a comprehensive view of the biological processes and molecular mecha-

nisms underlying cancer [808]. By combining these different layers of molecular data, multi-omics

transcends the limitations of single-omic studies, which might only provide a partial view of the
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disease, by illustrating how various molecular components (DNA mutations, protein expression,

and RNA expression, etc) interact within the complex biological network of cancer [278].

8.1.2 Pan-cancer Perspective

Researchers have studied individual cancers as well as pan-cancer data. Although studying

individual cancers has shown significant benefits in understanding specific pathways and therapeutic

responses, the pan-cancer approach offers a broader, more systemic view that can accelerate

breakthroughs applicable across multiple types of cancer. Pan-cancer studies have enabled the

identification of commonalities and differences across various cancer types, leading to insights that

may not be as evident when focusing on a single cancer type [700]. The pan-cancer setting has

identified universal cancer vulnerabilities, detailed pathway alterations for cross-cancer diagnostics

and treatments, and revealed shared oncogenic pathways and mutation patterns, uncovering new

clinically useful features [297, 605, 290, 700]. Similarly, pan-cancer studies have identified key

molecular signatures that can predict response to immunotherapy across different tumor types,

demonstrating the clinical relevance of pan-cancer approach [684, 421].

8.1.3 Existing Landscape of Pan-cancer Multi-omics Analysis

Traditionally, multimodal, multi-omics, and pan-cancer studies are conducted through a variety

of techniques and methods that leverage advanced computational tools, bioinformatics, statistical

methods, machine learning, and deep learning models to integrate and interpret complex oncology

datasets. The data integration techniques in multi-omics are generally categorized into supervised,

weakly supervised, and unsupervised methods, which can be further sub-categorized into (1)

feature extraction (selection, extraction, and dimensionality reduction), (2) feature engineering

(transformation, reducing dimensionality, normalizing and simplifying data, reducing noise, and

alignment), (3) network-based methods (patient similarity networks, patient-drug networks, drug-

drug networks, etc.), (4) clustering (grouping similar samples, stratification, feature selection, and

grouping biological modules), (5) factorization (decompose or factorize features, multiple kernel
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learning, Bayesian consensus, similarity network fusion, NMF), and (6) Deep Learning (CNNs,

MLPs, RNNs, Transformers, GNNs, etc.) [4, 739, 13, 734]. Deep learning, a subset of machine

learning characterized by the use of neural networks with many layers, has dramatically transformed

the study of high-width (many features), low-length (fewer samples) molecular data [12, 735]. With

its inherent capacity to model complex, non-linear relationships and to handle vast datasets, deep

learning has proven adept at uncovering patterns that traditional analysis may overlook. There are

elaborate reviews in the existing literature that analyze different pan-cancer, multimodal, multi-

omics works [430, 87, 285, 660, 739, 738, 694, 691]. Using multi-omics data to enhance cancer

diagnosis, prognosis, and treatment planning offers a transformative opportunity. Recent literature

underscores the shift towards computational integration of heterogeneous biological data, revealing

critical insights into cancer’s multifaceted nature. Here we examine seminal works that encapsulate

the paradigm shift in multi-omics cancer studies.

A notable advancement is the utilization of Self-Normalizing Neural Networks (SNNs) for pan-

cancer classification, which, as demonstrated by the study on copy number variation (CNV) data

from The Cancer Genome Atlas (TCGA) lung adenocarcinoma (LUAD), ovarian (OV), liver hep-

atocellular carcinoma (LIHC), and breast (BRCA) cancers, underscores the importance of feature

selection in managing high-dimensional data for effective disease categorization [410]. The SNN

model trained to perform pan-cancer classification yielded superior accuracy and macro F1 scores

over traditional algorithms like Random Forest [410]. Complementing the pan-cancer approach,

an integrative analysis combining histology-genomic data via multimodal deep learning offered a

broad-spectrum understanding of cancer biology [138]. With an extensive dataset from TCGA

encompassing 14 cancer types, a deep learning multimodal fusion (MMF) model outperformed

attention-based multiple-instance learning (AMIL) model and self-normalizing network (SNN),

showcasing the benefits of integrative analytics over singular data type analyses [138]. Further

emphasizing multi-omics data integration, DeepProg, an ensemble framework combined deep

learning and machine learning for prognosis prediction [557]. By processing RNA-Seq, miRNA
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sequencing, and DNA methylation for 32 cancer types from TCGA, DeepProg excelled in survival

subtype prediction and risk stratification [557].

Khadirnaikar et al. identified novel subgroups with similar molecular characteristics by com-

bining different models of machine learning and deep learning [352]. By reducing dimensions of

multi-omics features (mRNA, miRNA, DNA methylation, protein expression) and applying various

classifiers, this approach identified subgroups across 33 tumor types. The authors argued that the

number of samples should be commensurate with the number of dimensions for better prediction

power of a learning model [352]. Another study used four types of -omics data (gene expression,

miRNA expression, protein expression, and DNA methylation) for two datasets (TCGA-BLCA,

TCGA-LGG) to predict Progression-Free Interval (PFI) and Overall Survival (OS) through Mul-

tiview Factorization AutoEncoder [462]. The identification of pan-cancer prognostic biomarkers

through integrated multi-omics data (DNA methylation, gene expression, somatic copy number

alteration (CNA), and miRNA expression) across 13 cancers showed the performance of statistical

and bioinformatic methods in survival-related gene discovery [804]. The predictive capability of

multi-omics data is further evidenced in non-small cell lung cancer (NSCLC) survival prediction,

where the combination of five modalities, miRNA, mRNA, DNA methylation, long non-coding

RNA (lncRNA) and clinical data, showed superior C-indices compared to individual modalities

[205].

The advantage of multimodal data fusion for survival prediction is quantified across various

cancer stages and types, with FUSED models exhibiting better average C-index compared to various

machine learning and bioinformatics methods [511]. This approach combined clinical features

with genomic, transcriptomic, and proteomic data in oncological prognostics across 33 cancer

types [511]. Deep learning-based clustering method called MCluster-VAEs predicted subtype

discovery using multi-omics data (mRNA, miRNA, DNA methylation, CNA) across 32 cancer

types, outperforming traditional methods [592]. Decoupled contrastive learning model, DEDUCE,

used multi-head attention decoupled contrastive learning approach for subtype clustering through

multi-omics data consisting of gene expression, DNA methylation, and miRNA expression, across
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five cancer types (BRCA, GBM, SARC, LUAD, STAD) [535]. The authors of DEDUCE used

multi-head attention encoder network for cancer subtype discovery [535].

8.1.4 Challenges and Opportunities

Although good for the task at hand, the above-mentioned methods often struggle to fully cap-

ture the complexity and heterogeneity of cancer due to their inherent limitations in handling and

interpreting vast, multidimensional datasets. Dimensionality reduction methods such as principal

component analysis (PCA) or t-distributed stochastic neighbor embedding (t-SNE) can inadver-

tently discard subtle yet crucial biological nuances that might be pivotal for understanding disease

mechanisms [330]. Learning-based dimensionality reduction methods, such as using deep learning

models, lack the discriminating and interpreting ability of extracted features, lack consensus in the

balance between the number of deep network layers vs. the number of layer neurons, and cannot

handle or recover the missing data [330].

Similarly, feature selection and learning-based feature engineering, despite their effectiveness in

identifying key predictors within datasets, can introduce biases and result in models that are suited

to specific features of the data used for training [382, 770]. This compromises such methods’ ability

to perform well across different datasets or in real-world clinical settings [382, 770]. Furthermore,

these methods frequently face challenges in terms of generalizability, as they may not perform

consistently across diverse patient populations or varying biological conditions, limiting their

utility in broader clinical practice. Thus, while these techniques are instrumental in advancing

cancer research, their limitations highlight the need for more robust and generalizable framework

that can more accurately predict end-points across different cancer types and data modalities.

Recently, a new class of deep learning models called foundation models that comprise LLMs

(Large Language Models) and VLMs (Vision-Language Models) have been introduced by training

on large multimodal data [733, 276]. These models have demonstrated a strong ability to generalize

well across different tasks when provided with ample and diverse training data [733]. Due to

their extensive and varied datasets, these models capture a broad range of patterns and nuances,
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enabling them to apply learned knowledge flexibly and effectively across different contexts. The

key conclusions from the success story of foundation models relevant to this study are as follows.

1. Foundation models are trained on massive datasets that encompass a wide spectrum of

information across different domains and modalities. This extensive training helps the

models develop a robust understanding of complex patterns and relationships within the data.

For instance, models like GPT (from OpenAI) [102] and BERT (developed by Google) [179]

have been shown to perform exceptionally well on a variety of natural language processing

tasks, from translation to sentiment analysis, precisely because they have been exposed to

large amounts of diverse textual data during training [276, 733].

2. VLMs integrate information from both visual and textual sources, allowing them to develop

a more comprehensive understanding of the world. For example, models like CLIP (from

OpenAI) [563] and ViLBERT (Vision-and-Language BERT) [449] learn to correlate images

with text, enabling them to perform tasks such as image captioning or visual question

answering with high accuracy. This ability to process and synthesize information across

different modalities enhances their flexibility and adaptability to new tasks that may not

strictly resemble those they were originally trained on [276].

3. The capability of these models to generalize is further evidenced by their performance

across a range of tasks with minimal task-specific tuning [733]. For example, once trained,

these models can often switch between tasks such as text classification, summarization, and

even complex reasoning without extensive retraining. This adaptability is largely due to

their training datasets’ comprehensive and diverse nature, which provides a rich background

against which the models can evaluate new problems [733, 739, 276].

The establishment of large-scale biological databases and data repositories, such as National

Cancer Institute’s (NCI) The Cancer Genome Atlas (TCGA) [687] and Clinical Proteomic Tumor

Analysis Consortium (CPTAC) [206], hold vast amounts of cancer data, especially multi-omics

data, that can be readily used for disease analysis. Despite many efforts in building a foundation
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model for the omics data, the existing literature has no foundation model that has been trained on

multi-omics pan-cancer data. scGPT is the foundation model trained for the single-cell sequencing

data of 33 million cells [162]. SAMMS model has been trained on two cancer types (TCGA’s LGG

and KIRC) using clinical (age, gender), gene expression, CNV, and miRNA, and WSI data [818].

RNA Foundation Model (RNA-FM) was trained on 23 million non-coding RNA sequences [130].

PATH-GPTOMIC used CNV, genomic mutations, bulk RNA Seq, and WSI data to predict survival

outcomes for two datasets (TCGA-GBMLGG, TCGA-KIRC) [723]. The absence of a pan-cancer,

multi-omics foundation model can be attributed to the complexity and heterogeneity of such data,

lack of comprehensive datasets, specificity of current analytical methods, and large computational

and resource constraints. To address these challenges, we consider a multi-omics, pan-cancer

framework that involves only essential pre-processing steps. We propose a mini-foundation model

called SeNMo (Self-Normalizing Deep Learning Model for Multi-Omics). SeNMo has been trained

on six data modalities including clinical, gene expression, miRNA expression, DNA Methylation,

DNA Mutations, and reverse-phase protein array (RPPA) expression data across 33 cancer types.

We call it a mini-foundation model because the latent representations generated by SeNMo have

not been evaluated for properties such as generalization, emergence, expressivity, scalability, and

compositionally, which are essential traits for a model to be named as “foundation model” [24, 733].

We evaluated SeNMo’s generalization capability to tasks such as OS prediction and primary cancer

classification. The rest of the evaluation is beyond the scope of this work and shall be pursued in

future endeavors.

Predicting overall survival and accurately classifying cancer types are pivotal endpoints in

cancer research and patient care. For patients, these predictions can inform treatment options,

influence monitoring strategies, and guide clinical decision-making, thus impacting quality of life

and survival prospects. For healthcare systems and researchers, the ability to predict outcomes

enhances understanding of the disease, improves the design of clinical trials, and drives the de-

velopment of new therapeutics. In essence, enhancing the accuracy of survival predictions and

cancer classification through advanced computational methods not only stands to revolutionize the
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clinical approach to oncology but also embodies the patient-centered ethos that is central to modern

medicine. SeNMo offers the following contributions:

1. We provide oncology data analysis using molecular correlates of patient prognosis across 33

cancer types, addressing both disease-wide and individual patient levels.

2. We created a multi-omics, pan-cancer framework with minimal and essential pre-processing

steps, eliminating the need for complex, custom-engineered methods. This allows researchers

to concentrate on the learning aspect.

3. We developed a mini-foundation model capable of generalizing to different tasks and unseen

data through fine-tuning.

4. Our findings indicate that MLP-based networks are highly susceptible to catastrophic forget-

ting. We show that fine-tuning should involve a fraction of the epochs ( 30) while adjusting

the learning rate, weight decay, and dropout to fractionally update all layers of the trained

model.

5. The SeNMo framework represents the first initiative to analyze 33 cancer types using six

molecular data modalities: clinical data, gene expression, miRNA expression, DNA methy-

lation, DNA mutations, and protein expression.

6. We present the latent feature vectors learned by SeNMo as an open-access vector database

system, HoneyBee. This resource enables researchers to explore further, discover biomarkers,

and assess features.

7. The codebase and resultant embeddings are made available as open-source through GitHub

and HuggingFace for the research community to use.
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Figure 8.1 Overview of the SeNMo framework.

8.2 Materials and Methods

8.2.1 Data Acquisition

TCGA houses one of the largest collections of high-dimensional multi-omics datasets for

more than 33 different types of cancer for around 20,500 individual tumor samples [687]. The

multi-omics data contains high-throughput RNA-Seq, DNA-Seq, miRNA-Seq, single-nucleotide

variant (SNV), CNV, DNA methylation, and RPPA data [687]. Building cohorts for patient data

lying across different data formats, modalities, and systems is not a trivial task. To curate the

data and build the patient cohorts, we used our previously developed Multimodal Integration of

Oncology Data System (MINDS) which is a metadata framework for fusing data from publicly

available sources such as the TCGA-GDC and UCSC Xena portal into a machine-learning ready

format [687, 248, 691]. MINDS is available as open-source for the cancer research community

and we have integrated MINDS into the SeNMo framework for enhanced outreach and benefit of

researchers. For training, validation, and testing our model, we used pan-cancer data from TCGA

and Xena comprising 33 cancer types, as shown in Table 8.1. We also fine-tuned the model on the
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CPTAC-LSCC [612] and Moffitts’ LSCC [659] data to evaluate the model’s generalizability and

transfer learning capabilities.

8.2.2 Data Modalities

Out of the 13 multi-omic modalities contained across each cancer dataset, the ones we chose

were gene expression (RNAseq), DNA methylation, miRNA stem-loop expression, RPPA data,

DNA mutation, and clinical data. The rationale behind selecting these specific modalities was

that these modalities have been frequently preferred over the other data types in studying cancer

primarily due to their direct relevance in the fundamental processes of cancer progression, their

diagnostic and prognostic capabilities, and their established technologies [611, 421]. These modal-

ities directly influence and reflect key biological processes fundamental to cancer progression,

making them extremely valuable for uncovering the molecular mechanisms driving the disease

[611]. Moreover, the set of these modalities provides robust predictive and prognostic information,

and their integration provides a holistic view of a tumor’s multi-omic profile [129, 611, 421]. Lastly,

the selected modalities contained a static feature number across each cancer type that helped us

in developing the standard data pre-processing pipeline for pan-cancer studies. Below we briefly

describe each of the data modalities considered in this study, followed by the preprocessing steps

undertaken to select the features used in training the SeNMo model.

1. DNA Methylation is a key epigenetic modification where methyl groups are added to the DNA

molecule, typically at cytosine bases adjacent to guanine, known as CpG sites [447]. This

process plays a crucial role in regulating gene expression without altering the DNA sequence

itself [447]. In the context of cancer, DNA methylation patterns are immensely valuable as a

data modality. Aberrant methylation of certain genes can lead to their silencing or activation,

contributing to oncogenesis and tumor progression [390]. By analyzing methylation profiles

across different cancer types, researchers can identify diagnostic markers, predict disease

progression, and tailor personalized treatment strategies [390]. Thus, DNA methylation

serves as a critical biomarker in oncology, offering insights into the molecular mechanisms
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of cancer and enhancing the precision of therapeutic interventions [390]. DNA methylation

is quantified through beta values, which range from 0 to 1, with higher values indicating

increased methylation [197]. The beta values for DNA methylation data in TCGA-GDC

were measured using the Illumina Human Methylation 450 platform, a sophisticated method

for detailed methylation profiling [731]. The data consists of 485,576 unique cg and rs

methylation sites across several tumor types [731].

2. Gene Expression (RNAseq) analysis via RNA sequencing (RNAseq) is a powerful data

modality in cancer research, providing deep insights into the transcriptomic landscape of

tumors [158]. This technique quantifies the presence and quantity of RNA in a biological

sample at a given moment, allowing for a detailed view of transcriptional activity in a cell

[158]. RNAseq helps to identify genes that are upregulated or downregulated in cancer cells

compared to normal cells, offering clues about oncogenic pathways and potential therapeutic

targets [286]. The TCGA-GDC gene expression data is derived from RNAseq, utilizing High-

throughput sequence Fragments Per Kilobase of transcript per Million mapped reads (HTseq-

FPKM) as a measure for normalization [250]. This approach normalizes raw read counts by

gene length and the number of mapped reads. Further processing includes incrementing the

FPKM value by one and then applying a log transformation to stabilize variance and enhance

statistical analysis [584]. The data spans 60,483 genes, with FPKM values indicating gene

expression level. Values over 1000 signify high expression, whereas values between 0.5 and

10 indicate low expression [250, 681].

3. miRNA Stem Loop Expression is a pivotal aspect in understanding the intricate regulatory

mechanisms that miRNAs, or microRNAs, play in gene expression [551]. These small, non-

coding RNA molecules typically function by binding to complementary sequences on target

messenger RNA (mRNA) transcripts, leading to their silencing [551]. The expression of

miRNAs involves a multi-step process, that ensures specific targeting and effective modulation

of gene expression, crucial for both normal cellular function and pathological conditions,
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such as cancer [551]. The miRNA expression values for TCGA-GDC were measured using

stem-loop expression through Illumina, and values were transformed by adding one and

being log transformed [145, 428]. These were mapped across 1880 features representing

hsa-miRNA sites, where expressions varied between high and low values.

4. Protein Expression is an effective methodology that is similar to western blotting, and is

used to quantify protein expression in tissue slides [186]. The technique involves transferring

antibodies to a nitrocellulose-coated slide to bind specific proteins, forming quantifiable spots

through a DAB calorimetric reaction and tyramide dye deposition, analyzed using "Super-

Curve Fitting" software [186, 43]. This process allows for effective comparison of protein

expression levels in tumor samples against benign samples, highlighting aberrant protein

levels that drive the molecular phenotypes of cancer [186, 132]. Through the quantification

of protein expression, RPPA uncovers the functional status of several signaling molecules,

phosphorylation molecules, and metabolic molecules [43]. RPPA data has been generated

from the profiling of nearly 500 antibody-proteins for a given patient and deposited in The

Cancer Proteome Atlas (TCPA) portal [408]. Each data file contains 487 antigen ID (AGID),

the peptide target ID, the gene identifier that codes for the protein, various other identifiers,

and the antigen’s corresponding expression level. Protein expression levels were normalized

through log transformation and median centering after being calculated by the SuperCurve

fitting software [339].

5. DNA Mutation from analysis of DNA sequence identify mutated regions compared to a

reference genome, resulting in a variant calling format (VCF) file that details these differences

[156, 155]. Aggregating VCF files to exclude low-quality variants and include only somatic

mutations produces mutation annotation format (MAF) files [154]. Unlike VCF files, which

consider all reference transcripts, MAF files focus on the most affected reference and include

detailed characteristics and quantifiable scores that assess the mutation’s translational impact

and clinical significance[154]. This information is crucial because clinically significant
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mutations often cause major defects in protein structure, severely impacting downstream

functions. This dysregulation ultimately drives the development of various cancers [479].

SIFT and PolyPhen are features within MAF files that quantify a mutation’s effect on its

encoded protein and can be further analyzed. MAF files from TCGA-GDC contain 18,090

mutational characteristics [154].

6. Clinical data plays a crucial role in cancer research, serving as the foundation for correlating

biological data with patient outcomes and demographics [494]. The clinical data encom-

passes detailed patient information, which is instrumental in understanding the epidemiology

of cancer, evaluating treatment responses, and improving prognostic assessments [494]. Inte-

grating clinical data with genomic and proteomic analyses can uncover relationships between

molecular profiles and clinical manifestations of cancer [739]. Among the many clinical

features and phenotypes, age, gender, race, and cancer stage are particularly emphasized

in cancer research due to their significant impact on disease presentation, progression, and

treatment efficacy [403, 446, 789, 773]. Age is a critical factor as the incidence and type of

cancer often vary significantly with age, influencing both the biological behavior of tumors

and the overall prognosis of patients [403]. Gender is another key determinant, as certain

cancers are gender-specific, while others may show differences in occurrence and outcome

between genders, likely due to biological, hormonal, and social factors [446]. Race has been

linked to differences in cancer susceptibility, mortality rates, and treatment outcomes, re-

flecting underlying genetic, environmental, and socioeconomic factors [789]. Finally, cancer

stage at diagnosis is paramount for determining the extent of disease and guiding treatment

decisions, directly correlating with survival rates [773].

8.2.3 Pre-processing

Multiomics data integrates diverse biological data modalities such as genomics, transcriptomics,

proteomics, and metabolomics, to understand the complex mechanisms of diseases like cancer.

However, before integration, this data requires multiple preprocessing steps to overcome the big P,
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small n problem and other associated challenges of high-throughput molecular data. The big P, small

n problem refers to a large number of features (P) and a small number of samples (n) in the data [426].

The pan-cancer multi-omics data comes with intra- and inter-dataset correlations, heterogeneous

measurement scales, missing values, technical variability, and other background noise. Some of

the most significant challenges include, (i) data heterogeneity, where each type of data encompasses

unique properties and scales, (ii) volume and complexity, where overwhelming volume of data (often

in terabytes), managing, storing, and processing requires substantial computational resources and

advanced data management strategies, (iii) quality and variability incurred because of the different

platforms resulting in batch effects, differing levels of sensitivity, noise, missingness, and varying

error rates, and (iv) lack of standardization in how data is collected and processed across different

laboratories and studies. These challenges are further pronounced when selecting the preprocessing

steps to make the data machine learning-ready. Some of the tasks to consider while dealing with

multi-omic data include:

1. Because of the diverse nature, each type of omics data requires specific normalization

techniques to adjust for factors. (i.e. gene length in RNA-seq data or protein abundance in

proteomics). Choosing the right normalization method based on the type of data is crucial

to ensure that data is comparable [806, 350, 440].

2. Multiomics datasets often contain missing values due to detection limits or experimental

errors. At times, as in our case, an entire data modality for a patient is missing. Selecting

the robust imputation method for missing data is critical to avoid biased interpretations.

Typical imputation methods suggest using mean, median, KNN, Gaussian mixture clustering,

Bayesian, and deep learning-based (autoencoders) techniques to handle imputations [650].

3. The high dimensionality of multi-omics data often exceeds the number of samples available,

leading to the risk of overfitting. Techniques like PCA, t-SNE, features selection, features en-

gineering, and others are used to reduce dimensionality while preserving the most informative

features of the data [48].
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4. Proper annotation and comprehensive metadata are essential for the effective preprocessing

of multiomics data. Metadata must capture details about sample collection, processing

protocols, and experimental conditions, which are crucial for accurate data interpretation and

reproducibility [623].

5. Integrating diverse datasets involves sophisticated statistical and computational methods.

Techniques such as concatenation, transformation, and advanced modeling (ML/ DL algo-

rithms) are usually used to merge these datasets coherently [399].

Addressing these challenges requires interdisciplinary expertise, including bioinformatics,

statistics, and domain-specific knowledge. Here, we describe the preprocessing steps used across

molecular data modalities.

• First, we removed the features that had NaNs across all the samples. This reduced the

dimension, removed noise, and ensured continuous-numbered features to work with.

• Next, constant/quasi-constant features with a threshold of 0.998 were filtered out using

Feature-engine, a Python library for feature engineering and selection [216]. This eliminated

features with no expression at all across every sample along with features that were noise,

since the expression value was the same across every sample.

• Next, duplicate features between genes were identified that contained the same values across

two seperate genes, and one of the genes was kept. This may reveal gene-gene relationships

between the two genes stemming from an up-regulation pathway or could simply reflect

noise.

• Next, we filtered the features having low variance (⇡0.25) because the features having

high variance hold the maximum amount of information [93]. We used VarianceThreshold

feature selector of scikit learn library that removes low-variance features based on the defined

threshold [548]. We chose a threshold for each data modality so that the resulting features

have matching dimensions, as shown in Figure 8.2.
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• The gene expression data originally contained 60,483 features, with FPKM transformed

numbers ranging from 0 to 12. Roughly 30,000 genes remained after the above-mentioned

preprocessing steps, which was still a very high number of features. High expression values

reveal important biological insights due to an indication that a certain gene product is

transcribed in large quantities, revealing that gene features with large expression values

within the dataset are highly relevant. Genes containing an expression value greater than 7

(127 FPKM value) were kept, while the rest were discarded. Around 3,000 genes remained

after this process, all of which ranged from values between 7 and 12.

• We handled missing features at two levels of data integration. First, for the features within

each modality and cancer type, the missing values were imputed with the mean of the

samples for that feature. This resulted in the full-length feature vector for each sample.

Second, across different cancers and modalities, we padded the missing features with zeros.

One may opine that this is equivalent to zero-padding prevalent in the bio-statistics, but we

argue that padding zeros across cancers and modalities is not an imputation when integrating

very high dimensional, and high-sample-sized data. In deep learning, the zero imputation

technique shows the best performance compared to other imputation techniques and deficient

data removal techniques [47, 699]. Moreover, there is a line of work that simply used zero

padding to minimize the noise in data and achieved state-of-the-art performance on respective

datasets [675, 776].

8.2.4 Features Integration

After carrying out the preprocessing steps mentioned above, we integrate the data across cancers

and across modalities. We generate two views of the data by combining the features across cancers

and across modalities. First view is created by taking the union of features across all cancer patients

for each of the six modalities (DNA methylation, gene expression, miRNA expression, protein

expression, DNA mutation, and clinical). As a result of the preprocessing explained earlier, the

DNA methylation data features were reduced from 485,576 features to ⇡ 4,500 features for all
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cancers. The union of these features from individual cancers resulted in a feature dimension of

52,396. The gene expression data originally had 60,483 features across all cancers, which was

reduced to ⇡ 3000 features. Union of these features resulted in the feature dimension of 8,794.

The miRNA expression data originally had 1,880 features across all cancers, which was reduced

to ⇡ 1,400 features. Union of these features resulted in the feature dimension of 1,730. The

protein expression data originally had 487 features across all cancers, which was reduced to 472

features unionized to 472 dimensions. The DNA mutation data had 18,090 features across all

cancers, pre-processed and unionized to 17,253 features. Lastly, we convert the categorical clinical

features to numerical values such as gender, race, and cancer stages. The details of these clinical

characteristics are given in Table 8.2. Mathematically, the preprocessing is given below.

Let v represent the initial feature having fixed dimension for each cancer. The dimension of

each feature set is reduced through a preprocessing step, resulting in the feature vector ṽ, which

is calculated by a function of v, noted as f (v), where f is the dimension reduction function such

as those presented in the previous section, ṽ = f (v). For n = 33 cancer types, the reduced

dimensional feature vector ṽ from each cancer type are then combined through a union operation

to generate a feature vector Vm for each modality m and M = 6 are the total number of modalities.

The feature vector for each modality, Vm, is defined as:

Vm =

8
>><

>>:

Sn
i=1 ṽi if ṽi varies by cancer type or modality,

ṽ otherwise.
(8.1)

Finally, the union of allVm across different modalities results in the total pan-cancer, multimodal

feature vector Vc 2 R80,697. The total pan-cancer, multimodal feature vector Vc can then be

expressed as:

Vc =
M[

m=1

Vm (8.2)
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Table 8.1 Feature reduction summary of pan-cancer data.

Data Cases miRNA Exprn DNA Methyl Gene Exprn Protein Exprn DNA Mut

Before After Before After Before After Before After Before After

TCGA-DLBC 51 1880 1060 485576 4396 60483 850 487 472 18090 17253
TCGA-UCS 61 1880 1101 485576 4632 60483 1231 487 472 18090 17253
TCGA-CHOL 62 1880 967 485576 4479 60483 1261 487 472 18090 17253
TCGA-UVM 80 1880 1162 485576 4019 60483 772 487 472 18090 17253
TCGA-MESO 86 1880 1158 485576 4372 60483 1278 487 472 18090 17253
TCGA-ACC 95 1880 1110 485576 4454 60483 1304 487 472 18090 17253
TCGA-THYM 138 1880 1245 485576 4609 60483 1337 487 472 18090 17253
TCGA-TGCT 139 1880 1290 485576 4762 60483 1343 487 472 18090 17253
TCGA-READ 178 1880 1314 485576 4077 60483 1547 487 472 18090 17253
TCGA-KICH 182 1880 1089 485576 4333 60483 1107 487 472 18090 17253
TCGA-PCPG 189 1880 1251 485576 4550 60483 1216 487 472 18090 17253
TCGA-PAAD 222 1880 1308 485576 4518 60483 1567 487 472 18090 17253
TCGA-ESCA 249 1880 1300 485576 4192 60483 1684 487 472 18090 17253
TCGA-SARC 287 1880 1235 485576 4467 60483 2490 487 472 18090 17253
TCGA-CESC 304 1880 1405 485576 4167 60483 2017 487 472 18090 17253
TCGA-KIRP 376 1880 1297 485576 4078 60483 1798 487 472 18090 17253
TCGA-SKCM 436 1880 1426 485576 4427 60483 2488 487 472 18090 17253
TCGA-BLCA 447 1880 1361 485576 4483 60483 2751 487 472 18090 17253
TCGA-LIHC 463 1880 1336 485576 4023 60483 2017 487 472 18090 17253
TCGA-STAD 499 1880 1397 485576 4196 60483 2354 487 472 18090 17253
TCGA-LGG 533 1880 1287 485576 4193 60483 1560 487 472 18090 17253
TCGA-COAD 539 1880 1460 485576 4671 60483 1931 487 472 18090 17253
TCGA-UCEC 588 1880 1414 485576 4424 60483 2849 487 472 18090 17253
TCGA-HNSC 611 1880 1428 485576 4358 60483 2059 487 472 18090 17253
TCGA-THCA 614 1880 1369 485576 4160 60483 1432 487 472 18090 17253
TCGA-PRAD 623 1880 1334 485576 4006 60483 1635 487 472 18090 17253
TCGA-LAML 626 1880 1140 485576 4415 60483 1032 487 472 18090 17253
TCGA-GBM 649 1880 1023 485576 4076 60483 1206 487 472 18090 17253
TCGA-LUAD 728 1880 1360 485576 4480 60483 2562 487 472 18090 17253
TCGA-OV 731 1880 1430 485576 4254 60483 2116 487 472 18090 17253
TCGA-LUSC 752 1880 1375 485576 4302 60483 2610 487 472 18090 17253
TCGA-KIRC 979 1880 1333 485576 4399 60483 2274 487 472 18090 17253
TCGA-BRCA 1260 1880 1418 485576 4195 60483 3671 487 472 18090 17253

Figure 8.2 Features processing pipeline for pan-cancer data.

8.2.5 Clinical End-points

To assess the performance of the SeNMo framework, we chose two end-points that belong to

two different categories of machine learning tasks. First is the clinically relevant prediction of
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Table 8.2 Summary of patient characteristics for pan-cancer data in this study

Cancer Type Age (Mean ±
SD)

Gender
(M/F)

Race
(White/Asian/Black/NA/
American Indian/Alaska)

Stage
(0/I/IA/IB/IC/II/IIA/IIB/IIC/III/

IIIA/IIIB/IIIC/IV/IVA/IVB/IVC/NA)

TCGA-ACC 47.46 ± 16.20 33/62 79/3/1/12/0 0/9/0/0/0/46/0/0/0/20/0/0/0/17/0/0/0/3
TCGA-BLCA 67.92 ± 10.39 326/121 363/43/23/18/0 0/3/0/0/0/136/0/0/0/159/0/0/0/148/0/0/0/1
TCGA-BRCA 57.94 ± 13.11 13/1247 915/59/198/87/1 0/114/94/7/0/6/404/307/0/2/176/30/74/22/0/0/0/24
TCGA-CESC 48.04 ± 13.70 0/304 211/19/32/30/9 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/304
TCGA-CHOL 64.37 ± 12.21 30/32 55/3/3/1/0 0/30/0/0/0/16/0/0/0/5/0/0/0/2/3/6/0/0
TCGA-COAD 66.93 ± 12.67 288/251 261/11/67/198/2 0/87/1/0/0/46/150/13/2/26/9/69/47/56/18/3/0/12
TCGA-DLBC 56.76 ± 13.68 24/27 32/18/1/0/0 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/51
TCGA-ESCA 64.22 ± 12.11 208/41 162/46/6/35/0 0/14/9/7/0/1/56/43/0/41/16/10/9/7/6/0/0/30
TCGA-GBM 57.74 ± 14.32 399/250 547/13/53/36/0 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/649
TCGA-HNSC 61.02 ± 11.92 443/168 522/12/58/17/2 0/29/0/0/0/93/0/0/0/97/0/0/0/0/302/13/1/76
TCGA-KICH 51.61 ± 14.12 99/83 154/6/19/3/0 0/75/0/0/0/59/0/0/0/34/0/0/0/14/0/0/0/0
TCGA-KIRC 60.67 ± 11.95 641/338 876/16/73/14/0 0/475/0/0/0/102/0/0/0/237/0/0/0/161/0/0/0/4
TCGA-KIRP 61.98 ± 12.20 278/98 275/6/75/16/4 0/219/0/0/0/25/0/0/0/77/0/0/0/21/0/0/0/34
TCGA-LAML 54.82 ± 15.87 345/281 564/8/49/5/0 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/626
TCGA-LGG 42.71 ± 13.32 293/240 492/8/22/10/1 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/533
TCGA-LIHC 60.44 ± 13.71 305/158 255/168/25/14/1 0/211/0/0/0/105/0/0/0/6/78/12/11/2/1/3/0/34
TCGA-LUAD 65.20 ± 10.08 329/399 580/14/84/48/2 0/7/194/195/0/2/67/103/0/0/101/12/0/37/0/0/0/10
TCGA-LUSC 67.28 ± 8.62 548/204 530/12/47/163/0 0/4/127/243/0/4/87/138/0/3/94/33/0/12/0/0/0/7
TCGA-MESO 63.01 ± 9.78 70/16 84/1/1/0/0 0/7/2/1/0/15/0/0/0/45/0/0/0/16/0/0/0/0
TCGA-OV 59.60 ± 11.44 0/731 626/25/43/33/3 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/731
TCGA-PAAD 64.87 ± 11.36 123/99 195/13/8/6/0 0/1/6/15/0/0/36/148/0/6/0/0/0/7/0/0/0/3
TCGA-PCPG 47.02 ± 15.15 84/105 157/7/20/4/1 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/189
TCGA-PRAD 60.93 ± 6.80 623/0 510/13/81/18/1 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/623
TCGA-READ 63.83 ± 11.85 98/80 90/1/7/80/0 0/37/0/0/0/7/40/2/1/6/7/25/14/21/7/0/0/11
TCGA-SARC 60.70 ± 14.38 129/158 253/5/20/9/0 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/287
TCGA-SKCM 57.84 ± 15.41 289/174 441/12/1/9/0 6/30/18/30/0/39/18/28/61/44/16/46/68/23/0/0/0/36
TCGA-STAD 65.44 ± 10.53 320/179 311/108/15/64/0 0/1/21/46/0/37/54/71/0/4/88/67/39/47/0/0/0/24
TCGA-TGCT 31.87 ± 9.19 139/0 124/4/6/5/0 0/69/26/11/0/4/6/1/1/2/1/6/5/0/0/0/0/7
TCGA-THCA 47.17 ± 15.83 166/448 413/59/35/106/1 0/350/0/0/0/64/0/0/0/134/0/0/0/4/52/0/8/2
TCGA-THYM 58.12 ± 13.00 72/66 115/13/8/2/0 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/138
TCGA-UCEC 63.74 ± 11.06 0/588 402/21/120/32/4 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/588
TCGA-UCS 70.07 ± 9.24 0/61 50/1/9/1/0 0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/61
TCGA-UVM 61.65 ± 13.95 45/35 55/0/0/25/0 0/0/0/0/0/0/12/27/0/0/25/10/1/4/0/0/0/1
Moffitt-LSCC 69.14 ± 8.34 72/36 105/0/3/0/0 0/0/24/25/0/0/31/15/0/0/12/1/0/0/0/0/0/0

overall survival (OS), which is a regression task. The second is the prediction of the primary cancer

type, which is a 33-class classification task.

8.2.5.1 Overall Survival (OS)

Cancer prognosis via survival outcome prediction is a standard method used for biomarker dis-

covery, stratification of patients into distinct treatment groups, and therapeutic response prediction

[135]. Statistical survival models and a shift towards incorporating deep learning into survival
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analysis have improved the task of OS prediction. Previous works have used combinations of

molecular data types and employed different statistical and learning-based methods to predict OS

in different datasets [545, 462, 205, 511]. The journey towards comprehensive survival analysis

continues, aiming to combine different data types to better understand the relationship between

molecular features and patient outcomes, ultimately leading to more precise prognostic assess-

ments and tailored treatment approaches. In this study, we utilize clinical, demographic, genomic,

and other molecular data types to investigate potential risk factors for cancer patients, specifically

examining their correlations with the patients’ time-to-event, which in this case is OS. We have

implemented prediction of OS as a regression task, i.e., prediction of OS in days. Time-to-event or

survival data not only records the occurrence of events like death but also tracks the time from the

study’s outset to when the event occurs, concludes, or when a patient is no longer followed (known

as right censoring). Survival or right-censored times since cancer diagnosis for our pan-cancer

data is depicted in Figure 8.3A. Due to censoring, the exact survival time for some patients remains

unknown. In such instances, each patient’s outcome is defined by two main variables: a censoring

indicator, also called the vital status, and the observed time T = min(Ts ,T�), where Ts represents

the exact survival time and T� is the censoring time, {Ts  T�} [808]. Survival function to

describe the likelihood of a patient surviving beyond a specified time t is given as:

F (t) = P{T > t} (8.3)

Additionally, the hazard function offers insights into the risk of the event occurring at a given

time, assuming survival up to that point. The hazard function represents the instantaneous rate

at which events (such as death) occur at a specific time, given that the individual has survived

up to that time. It provides insights into the risk of experiencing the event at any given moment,

conditional on having survived up to that point in time. Mathematically, the hazard function h(t)

is defined as the ratio of the probability of the event occurring in a short time interval around t to

the probability of surviving beyond t:
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h(t) = lim
�t!0

P(t  T < t +�t |T � t)

�t
(8.4)

where, h(t) is the hazard function at time t, T is the survival time, P(t  T < t +�t |T � t) is

the conditional probability that the event occurs in the time interval [t, t +�t) given that survival

time is greater than or equal to t, and �t represents an infinitesimally small time interval.

Based on survival data, the hazard function describes the instantaneous risk of experiencing

the event of interest at any given time. In our pan-cancer data, the (right) censoring was defined as

censor � = 1 in case of an event (e.g., death), and 0 otherwise.

8.2.5.2 Primary Cancer Type

The primary cancer type prediction task involves classifying a cancer sample into one of

the 33 possible types based on various biological and clinical features. This task is fundamentally

important and clinically relevant because accurate identification of the primary cancer type is critical

for choosing the most effective treatment strategy, improving patient outcomes, and personalizing

therapy approaches [484]. Cancer treatments and prognostics can vary dramatically between

different cancer types, often requiring specific interventions that are tailored to the unique biological

characteristics of each type. Correctly predicting the primary cancer type helps in planning

follow-up care and surveillance, enhancing the likelihood of early detection of recurrence. Thus,

achieving high accuracy in this classification not only supports better clinical decision-making but

also significantly impacts patient survival and quality of life. The pan-cancer data comprising 33

cancers and the distribution of patients (cases) across these datasets are depicted in Figure 8.3B.

8.2.6 SeNMo Deep Learning Model

In learning scenarios with hundreds to thousands of features and relatively few training samples,

feedforward networks are susceptible to overfitting [135]. Unlike Convolutional Neural Networks

(CNNs), the weights in feedforward networks are shared, making them more prone to training

instabilities caused by perturbations and regularization techniques like stochastic gradient descent
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Figure 8.3 Summary of the number of cases in the pan-cancer data.
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and dropout. CNNs do not perform as well on high-dimensional, low-sample data for several

reasons, including the spatial invariance assumption, fixed input size, and parameter efficiency

viz-a-viz multi-omics data sparsity. Transformers-based models are also not inherently optimized

for high-dimensional, low-sample data, such as in genomics or other multi-omics datasets, because

these models use attention mechanism to predict the next token in case of language tasks and

meaningful patterns in non-language tasks, which fails in case of highly sparse molecular data. To

address overfitting in high-dimensional, low-sample-size multi-omics data and employ more robust

regularization techniques during training, we draw inspiration from Self-Normalizing Networks

(SNN) introduced by Klambauer et al. [377]. SNNs have been extensively used for their ability to

effectively handle high-dimensional data with limited samples, making them particularly relevant

in multi-omics data analysis. Our learning framework is based on the stacked layers of SNNs, as

described below.

As shown in Figure 8.4, SeNMo comprises of stacked blocks of SNN layers, where each block

is composed of a linear unit, SELU activation, followed by Alpha-dropout. Combined, these blocks

enable high-level abstract representations by keeping neuron activations converged towards zero

mean and unit variance [377]. Linear unit is essentially equivalent to what is commonly referred

to as a “fully connected” (FC) or a “multilayer perceptron” (MLP) layer in traditional neural

network architectures. SELU activations are an alternative to the traditional rectified linear unit

(ReLU) activations commonly used in neural networks. Klambauer et al. demonstrated through the

Banach fixed-point theorem that activations with close proximity to zero mean and unit variance,

propagating through numerous network layers, will ultimately converge to zero mean and unit

variance [377]. SELU activations have the unique property of self-normalization, meaning that the

activations tend to converge to a mean of zero and a standard deviation of one, regardless of the

input distribution. The mathematical equation for the SELU activation function is:

SELU(x) = �

8
>><

>>:

x if x > 0

↵(ex � 1) if x  0

(8.5)
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where, � is a scaling factor (typically set to 1.05071) and ↵ is the negative scale factor (typically

set to 1.6733).

Dropout is a regularization technique that randomly sets a fraction of input units to zero

during training to prevent overfitting. Alpha-dropout is a modified version of traditional dropout

regularization, specifically designed to preserve the self-normalizing property of SELU activations.

Alpha-dropout applies a dropout mask to the activations during training, scaled by a factor that

ensures the mean and variance of the activations remain unchanged. This scaling factor is computed

based on the dropout rate and the SELU parameters (� and ↵). Mathematically,

Alpha-dropout(x) =
x � µ(x)

std(x)
⇥mask + µ(x) (8.6)

where, x is the input activation, µ(x), std(x) are mean and standard deviation of the input activation,

respectively, and mask is a binary mask generated with the specified dropout rate.

Together, SELU activations and Alpha-dropout enable SeNMo blocks to maintain a stable

mean and variance of activations throughout the network layers, facilitating more stable training

and better generalization performance. Similarly, SELU activation and Alpha-dropout help mitigate

training instabilities caused by vanishing or exploding gradients in the feedforward networks. Our

network architecture consists of seven fully connected hidden layers followed by SELU activation

and Alpha-dropout, where the number of neurons in each block is shown in the inset of Figure 8.4.

The final fully connected layer is utilized to learn a latent representation of the sample, which we

call the patient embedding x 2 48.

8.2.7 Training and Evaluation

We evaluate SeNMo’s performance with the quantitative and statistical metrics common for

survival outcome prediction and grade classification. For survival analysis, we evaluated the model

using the Concordance Index (C-Index). For the primary cancer type classification, we generate the

classification report comprising average accuracy, average precision, recall, F1-score, confusion
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matrix, and scatter plot. For testing the statistical significance of the predictions, we use the

LogRank Test. Below, we explain the loss, evaluation metrics, and statistical tests in detail.

Figure 8.4 Architecture of the SeNMo encoder network.

8.2.7.1 Loss Function

The loss being used for backpropagation in the model is a combination of three components:

Cox loss, cross-entropy loss, and regularization loss. This combined loss function aims to simul-

taneously optimize the model’s ability to predict survival outcomes (Cox loss), encourage model-

simplicity or sparsity (regularization loss), and model the likelihood of cancer types (cross-entropy

loss). The overall loss is a weighted sum of these three components, where each component is mul-

tiplied by a corresponding regularization hyperparameter (�c , �ce , �r ). This weighted sum allows

for balancing the influence of each loss component on the optimization process. Mathematically,

the overall loss can be expressed as:

L = �cLcox + �ceLce + �rLreg (8.7)
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• Cox proportional hazards loss (Lcox ) is a measure of dissimilarity between the predicted

hazard scores and the true event times in survival analysis. It is calculated using the Cox

proportional hazards model and penalizes deviations between predicted and observed survival

outcomes of all individuals who are at risk at time ti , weighted by the censoring indicator

[141]. The function takes a vector of survival times for each individual in the batch, censoring

status for each individual (1 if the event occurred, 0 if censored), and the predicted log hazard

ratio for each individual from the neural network, and returns the Cox loss for the batch, which

is used to train the neural network via backpropagation. This backpropagation encourages

the model to assign higher hazards to high-risk individuals and lower predicted hazards to

censored individuals or those who experience the event later. Mathematically, the Cox loss

is expressed as:

Lcox = �
1

N

NX

i=1

 
✓i � log

NX

j=1

e✓j · Rij

!
· �i (8.8)

where, N is the batch size (number of samples), ✓i is the predicted hazard for sample i , Rij is

the indicator function that equals 1 if the survival time of sample j is greater than or equal to

the survival time of sample i , and 0 otherwise, and �i is the censoring indicator for sample i ,

which equals 1 if the event is observed for sample i and 0 otherwise.

• Cross-entropy loss (Lce) is a common loss function used for multi-class classification prob-

lems, particularly when each sample belongs to one of the C classes. When combined with

a LogSoftmax layer, the function measures how well a model’s predicted log probabilities

match the true distribution across various classes. For a multi-class classification problem

having C classes, the model’s outputs (raw class scores or logits) are transformed into log

probabilities using a LogSoftmax layer. The cross-entropy loss compares these log proba-

bilities to the true distribution, which is usually represented in a one-hot encoded format.

The loss is calculated by negating the log probability of the true class across all samples in

a batch and then averaging these values. For the given output of LogSoftmax, log(pn,c) for
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each class c in each sample n, the cross-entropy loss for a multi-class problem can be defined

as:

Lce = �
1

N

NX

n=1

CX

c=1

yn,c log(pn,c) (8.9)

where, N is the total number of samples, C are the total classes, and yn,c is the target label

for sample n and class c , typically 1 for the true class and 0 otherwise.

• Regularization loss (Lreg ) encourages the model’s weights to remain small or sparse, thus pre-

venting overfitting and improving generalization. We used L1 regularization to the SeNMo’s

parameters, which penalizes the absolute values of the weights.

8.2.7.2 Concordance Index (C-Index)

The C-Index is a frequently used evaluation metric in survival analysis to assess the predictive

accuracy of a model for the time-to-event outcomes [808]. It measures the degree to which the

model’s predictions correlate with the actual survival times observed in the data. It quantifies the

model’s ability to correctly rank pairs of subjects based on their predicted survival times. The

C-Index evaluates the probability that, in a randomly selected pair of individuals, the one who

experienced the event (like death or failure) first also had a higher risk score predicted by the

model. Risk score is the output of the survival model and represents the expected order of the

events; the higher the score, the higher the risk of experiencing the event sooner [808]. We used

the concordance_index Lifelines function to calculate the C-Index [167]. This function takes the

predicted hazard scores for each individual, the true event indicator (e.g., 1 if an event occurred, 0 if

censored) for each individual, and the survival times (time to event or censoring) for each individual.

The C-Index function computes the fraction of all pairs of subjects whose predicted event times

are correctly ordered among all pairs where one subject experienced an event and the other did not.

C-Index ranges between 0 and 1 where 0.5 is the expected result from random predictions, 1.0 is a

perfect concordance, and 0.0 is perfect anti-concordance [808]. Mathematically,

238



C-Index =
(Number of concordant pairs + 0.5⇥ tied pairs)

Total number of evaluable pairs
,

C-Index = Pr(Ŝi < Ŝj |Ti < Tj , �i = 1)

(8.10)

where, concordant pairs are pairs of individuals where the predicted survival times are correctly

ordered relative to the observed survival times. Tied pairs are number of pairs where the predictions

are equal or survival times are the same. Total number of evaluable pairs are the total pairs

considered, excluding pairs with censoring issues or other exclusions. Ŝi and Ŝj represent the

predicted risks or survival probabilities for individuals i and j , respectively. Ti < Tj implies that

individual i experienced the event before individual j . �i = 1 indicates that the event for individual

i was observed (not censored).

8.2.7.3 Cox Log-rank Function

The Cox Log-rank function calculates the p-value using the log-rank test based on predicted

hazard scores, censor values, and the true overall survival times. The log-rank test is a statistical

method to compare the survival distributions of two groups, where the null hypothesis is that there is

no difference between the groups. It is commonly used in survival analysis to compare the observed

number of events in each group to the number of events expected under the null hypothesis. For

the hazard ratio hi(t) of group i at time t, the hypotheses are given by,

H0 : h1(t) = h2(t)

HA : h1(t) = �h2(t), � 6= 1
(8.11)

The test statistic for the log-rank test is calculated as the sum of the differences between the

observed and expected number of events squared, divided by the expected number of events,

summed over all observed time points. The p-value obtained from the log-rank test indicates the
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significance of the difference in survival distributions between the two groups. The test statistic is

chi-squared under the null hypothesis [167].

�2 =
NX

i=1

(Oi � Ei)2

Ei
(8.12)

where, Oi is the observed number of events at time point i in the sample, Ei is the expected number

of events at time point i under the null hypothesis, and N is the total number of observed time

points.

Table 8.3 Hyperparameters for training and finetuning.

Hyperparams Training (range) Finetuning
(range)

Learning Rate [1e-6, 1e-1] [1e-8, 1e-3]
Weight Decay [1e-6, 1e-1] [1e-4, 1e-2]
Dropout [0.1, 0.65] [0.05, 0.45]
Batch Size [64, 128, 256, 512] [8, 16, 32, 48]
Epochs [50, 100] [8, 10, 15, 20, 30]
Hidden Layers [1, 2, 3, 4, 5, 6, 7, 8, 9] -
Hidden Neurons [2048, 1024, 512, 256, 128,

48, 32]
-

Optimizer [adam, sgd, rmsprop, adamw] [adam, adamw]
Learning Rate
Policy

[linear, exp, step, plateau,
cosine]

[linear, exp,
plateau]

Frozen Layers - [7, 6, 5, 4, 3, 2]
Additional Layers - [1, 2, 3]

8.2.7.4 Hyperparameters Search

Hyperparameters are non-learnable parameters of a deep learning model and are crucial as

they govern the learning process and model architecture. Hyperparameter tuning involves selecting

the optimal combination of parameters that results in the best model performance. Common

hyperparameters include learning rate and policy, batch size, number of epochs, weight decay,

dropout type and probability, and architecture specifics such as the number of hidden layers and
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neurons in each layer. Methods for hyperparameter search range from grid search, where all possible

combinations of parameters are evaluated; to random search, which randomly samples parameter

combinations within predefined bounds. More sophisticated techniques like Bayesian optimization

or using automated machine learning (AutoML) tools can dynamically adjust parameters based

on previous results to find the best solutions more efficiently. We employed weights and biases

[81] utility to carry out random and Bayesian methods of hyperparameters search. The list of

hyperparameters we searched for training and fine-tuning is given in Table 8.3. For model training,

we conducted around 400 simulations to find the current hyperparameters. For fine-tuning the

SeNMo model on CPTAC-LUSC and Moffitt’s Lung SCC data, we ran around 1000 and 450

simulations, respectively. The plots for these simulations are given in the appendix figures 8.9,

8.10, and 8.11.

8.2.7.5 Frameworks, Compute Resources, Wall-clock Times

We trained SeNMo model using the Moffitt Cancer Center’s HPC machine using one Tesla

V100 32GB GPU running Ubuntu 22.04.4 and CUDA 12.2. The entire code was developed in

Python and PyTorch frameworks. The software frameworks and corresponding packages used in

our codebase are given in Table 8.4. Training time for our current 83.33 Million parameter SeNMo

encoder is approximately 11 hours. We conducted the hyperparameters search of the pan-cancer

model for approximately 20 days using multiple GPUs in parallel. Finetuning the trained model on

a given data having around 150 patients approximately takes 15 minutes. It took us one week to

find the fine-tuning hyperparameters for the CPTAC-LSCC data.
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Table 8.4 Frameworks and packages used in our codebase.

Package name Version

Operating systems Ubuntu 20.04.4
Programming languages Python 3.10.13
Deep learning framework Pytorch 2.2.0

torchvision 0.17.0
feature-engine 1.6.2
imbalanced-learn 0.12.0

Miscellaneous scipy 1.12.0
scikit-learn 1.4.0
numpy 1.26.3
PyYaml 6.0.1
jupyter 1.0.0
pandas 2.2.0
pickle5 0.0.11
protobuf 4.25.2
wandb 0.16.3

8.3 Results

8.3.1 Pan-Cancer Multimodal Analysis - Overall Survival

For the overall survival (OS) task, the pan-cancer data was randomly divided into the training-

validation set (80%) and the held-out test set (20%) for each cancer type. The pan-cancer training

was carried out by combining the training-validation cohort of all 33 cancer types and adopting

the 10-fold cross-validation with the 80� 20% division of samples. The training-validation cohort

has 11, 050 patients, each having R80,697 features, comprising the six multi-omics modalities, gene

expression, DNA methylation, miRNA expression, protein expression, DNA mutation, and the

four clinical features (age, gender, race, stage). The SeNMo encoder model was trained on the

training-validation cohort for the regression task of predicting the OS. C-Index was used as the

evaluation metric of the hazard score predicted by the model. We used weights and biases to

find the optimal set of hyperparameters for our deep learning model [81]. Figure 8.9 shows the

visualization of the parallel sweeps across all hyperparameters, resulting in training around 400

unique models. The optimal model had a learning rate of 0.00058, a weight decay of 0.00598,
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Figure 8.5 Pan-cancer C-Index results for OS prediction.

0.1058 dropout, 256 batch size, 100 epochs, and seven hidden layers with neurons in these layers as

[1024, 512, 256, 128, 48, 48, 48]. The trained model contained 83.33 million trainable parameters.

Checkpoints were saved for this model for each of the 10 folds. The model’s training resulted in

the average training C-Index of 0.78 and average validation C-Index of 0.76 across the 10 folds.

For the evaluation/testing of the trained model, the inference data was created by combining the

held-out test set from all 33 cancer types, resulting in 2, 754 patients, each having R80,697 features.

The inference on the test set showed the C-Index of 0.757, the average of the C-Indices from the

10 checkpoints. To further validate our findings, we created an ensemble of the 10 checkpoints

by averaging the prediction vectors from all the models and then evaluating the final averaged

prediction vector for C-Index. For the pan-cancer, multi-omics SeNMo model, an ensemble C-
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Index of 0.758 was achieved on the held-out test set. The significance level in all these analyses

is 95%, i.e., p < 0.05, indicating statistically significant values. These results are depicted in the

Figure 8.5.

We further tested the optimal hyperparameters of our trained model to train different combina-

tions of the pan-cancer data modalities. We call these 1-modal, 3-modal (gene expression, DNA

methylation, miRNA expression), 4-modal (3+protein expression), 5-modal (4+DNA mutation),

and 6-modal (all modalities) cohorts. Although our initial model was trained on all 6 modalities,

these experiments aim to see how the model performs on each of these pan-cancer cohorts where

one or more of the data modalities is missing. As depicted in Figure 8.5, the SeNMo model trained

on the pan-cancer 1-modal (Gene expression) cohort showed a C-Index for training, validation,

testing, and ensemble inference as 0.729, 0.702, 0.718, and 0.728, respectively. For the pan-cancer

1-modal (DNA methylation) cohort, the model’s training, validation, testing, and ensemble infer-

ence C-indices are 0.636, 0.629, 0.644, and 0.65, respectively. For the pan-cancer 1-modal (miRNA

expression) cohort, the model’s training, validation, testing, and ensemble inference C-indices are

0.744, 0.68, 0.686, and 0.702, respectively. We did not analyze the model individually on the rest

of the three modalities because clinical and protein expression features are too small for an 83

million-parameter model, whereas the DNA mutation data comprised the binarized features of mu-

tations. Evaluating the model on the 3-modal cohort showed the training, validation, testing, and

ensemble inference C-indices of 0.783, 0.727, 0.725, and 0.726, respectively. Further adding the

protein expression to the 3-modal data, we trained and evaluated the model on the 4-modal cohort

and got the C-Indices of 0.88, 0.742, 0.746, and 0.751 for training, validation, testing, and ensemble

inference, respectively. Lastly, the model’s performance on the 5-modal cohort showed the training,

validation, testing, and ensemble inference C-indices of 0.885, 0.741, 0.746, and 0.749, respectively.

Next, we analyze how the model trained on pan-cancer, 6-modal data fared on individual cancer

patients’ data.
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Figure 8.6 Cancer-wise C-Index results for OS prediction.

8.3.2 Cancer-wise Multimodal Analysis - Overall Survival

We evaluated the model trained on the 6-modal pan-cancer cohort on the held-out individual

cancer data from an individual cancer-wise perspective. The number of patients in these cancer

cohorts was a randomly selected subset of the cases shown in Figure 8.3 and Tables 8.1, 8.2, which

accounts for the 20% of the total samples. The trained model was evaluated on each of the 33

individual cancer data using simple inference and the ensemble of the 10-fold checkpoints. Figure

8.6 shows the evaluation performance of the model on 33 cancer types. The model showed the best

predictive performance on TCGA-PCPG data with an average C-Index on the test set of 0.9 and

ensemble inference of 0.929. SeNMo’s performance on the other cancer types in format {Test Infer-
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ence, Ensemble Inference} is shown in Table 8.5, where 29 cancer types have significant C-Indices.

We noticed that the results for TCGA-GBM, TCGA-LAML, TCGA-PRAD, and TCGA-TGCT

were not statistically significant, i.e., p > 0.05. So, we fine-tuned the model for these datasets by

reducing the learning rate, increasing the weight decay and dropout, and letting the model fine-tune

for 10 epochs. Resultantly, the model’s performance increased for TCGA-GBM= {0.642, 0.650},

TCGA-LAML= {0.627, 0.626}, and TCGA-PRAD= {0.541, 0.542}. These improvements are

depicted with the green arrows and green boxes in Figure 8.6. However, the model failed to con-

verge for TCGA-TGCT data and consistently gave predictions that were not significant, p > 0.05.

Table 8.5 C-Index for test and ensemble inference across cancer types

Cancer Type C-Index
{Test, Ensemble} Cancer Type C-Index

{Test, Ensemble}

TCGA-PCPG {0.900, 0.929} TCGA-BLCA {0.609, 0.609}
TCGA-ACC {0.866, 0.861} TCGA-MESO {0.599, 0.615}
TCGA-UVM {0.822, 0.829} TCGA-LUSC {0.588, 0.592}
TCGA-LGG {0.821, 0.823} TCGA-PAAD {0.597, 0.598}
TCGA-KICH {0.801, 0.807} TCGA-HNSC {0.583, 0.583}
TCGA-KIRC {0.777, 0.776} TCGA-CHOL {0.574, 0.574}
TCGA-KIRP {0.775, 0.778} TCGA-COAD {0.546, 0.542}
TCGA-UCEC {0.708, 0.713} TCGA-THYM {0.555, 0.571}
TCGA-THCA {0.696, 0.698} TCGA-UCS {0.514, 0.541}
TCGA-SKCM {0.691, 0.689} TCGA-OV {0.518, 0.509}
TCGA-BRCA {0.687, 0.692} TCGA-GBM {0.495, 0.493}
TCGA-CESC {0.676, 0.682} TCGA-LAML {0.482, 0.485}
TCGA-ESCA {0.650, 0.648} TCGA-DLBC {0.714, 0.619}
TCGA-LUAD {0.647, 0.653} TCGA-READ {0.550, 0.551}
TCGA-SARC {0.650, 0.658} TCGA-PRAD {0.304, 0.300}
TCGA-STAD {0.631, 0.628} TCGA-TGCT {0.123, 0.091}
TCGA-LIHC {0.627, 0.629}
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8.3.3 Out-of-distribution Evaluation and Fine-tuning

To further verify the performance of our model, we evaluated the model with the off-the-

shelf datasets CPTAC-LSCC [612] and Moffitt’s LSCC [659]. Since these datasets were not

part of the training data, using these datasets represented out-of-distribution evaluation for the

model. Evaluating the model without fine-tuning showed the {Test Inference, Ensemble Inference}

of CPTAC-LSCC= {0.48, 0.50}, and Moffit-LSCC= {0.581, 0.59}. Fine-tuning the model for

10 epochs, with reduced learning rate, and increased weight decay and dropout resulted in the

improvement of C-Indices as CPTAC-LSCC= {0.677, 0.73}, and Moffit-LSCC= {0.647, 0.656}.

These fine-tuning results are depicted in Figure 8.6 as the green box plots.

8.3.4 Patient Stratification

Risk stratification of patients allows clinicians and researchers to identify patients who might

need more intensive care or monitoring and those who may have a better prognosis, facilitating

more personalized treatment approaches. We further investigated the SeNMo’s ability to stratify the

patients based on low, intermediate, and high risk conditions. We plot Kaplan-Meier (KM) curves

of our model on the pan-cancer, multi-omics held-out test set, as shown in Figure 8.7. We select

the low/ intermediate/ high risk stratification distribution as the 33-66-100 percentile of hazard

predictions [135, 422]. The hazard scores predicted by SeNMo are used to evaluate the model’s

stratification ability. The KM comparative analysis shows that SeNMo distinguished the patients

across the three groups. The low-risk group (green) exhibited the highest survival probability,

maintaining close to 100% survival up to approximately 5 years, and gradually declining to about

60% by the 25-year mark. The intermediate-risk group (blue) showed a significantly lower survival

probability, starting to diverge from the low-risk group early on and reaching around 40% by the 15-

year mark of the study period. The high-risk group (orange) displayed the most pronounced decline

in survival probability, with a steep drop to approximately 20% survival within the first 10 years,

and further reducing to below 10% after 10 years. The logrank test to evaluate the significance of

this stratification shows that the p-value of low vs. intermediate curves is 1.66e � 05, low vs. high
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is 1.156e � 46, and intermediate vs. high is 1.92e � 22, showing significant results, i.e., p < 0.05.

The 95% confidence intervals around each curve show the reliability of these estimates.

Figure 8.7 KM comparative analysis of using SeNMo in stratifying patient outcomes.

8.3.5 Primary Cancer Type Prediction

To test the generalizability of SeNMo across different tasks, we carried out the prediction of

primary cancer type from pan-cancer, multi-omics data. We set the problem as a classification

problem, where the multi-omics data is used to predict the type of cancer for the given patient data
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among the 33 classes. It is imperative to mention here that the four clinical features in the initial

data contained the cancer stage, as shown in Figure 8.2 and Table 8.2. When considering a cancer

type classification problem, the stage adds a bias in the data because of the staging distribution

among different cancers. Therefore, for the cancer classification simulations, we excluded the

“stage” feature in the clinical data. As shown in Figure 8.8, the model achieves near-perfect

accuracy levels, with 99.9% average accuracy in training, 99.8% in validation, and consistent

performance in both simple and ensemble inference approaches. The confusion matrix depicts a

clear concentration of values along the diagonal, indicating a high rate of correct predictions across

all cancer types. The scatter plot shows an alignment of predicted labels with true labels along

the diagonal line, highlighting the model’s robust predictive accuracy. The classification report

across various cancer types reveals that the model consistently maintains high precision, recall, and

F1-scores, approaching a value of 1 for almost all categories. The robust predictive power of our

model emphasizes the fact that each cancer has a unique molecular landscape, highlighted through

differences in gene, protein, and miRNA expression, DNA methylation, and types of somatic

mutations seen in our data.

8.4 Discussion and Conclusion

We analyzed pan-cancer dataset of 33 cancer types comprising five molecular data modalities

(with varying amount of features) and four clinical data features using our SeNMo encoder-based

framework. Public databases such as CPTAC and TCGA contain common identifiers within

their data that connect data from the same patient. Therefore, molecular data, such as gene

expression, miRNA expression, DNA methylation, somatic mutations, and protein expression can

be consolidated to represent a singular patient. However, such high-dimensional data has intra- and

inter-dataset correlations, heterogeneous measurement scales, missing values, technical variations,

and other forms of noise [808]. This necessitates the need for a variety of preprocessing techniques

such as the removal of low variance features and the imputing of missing features among others

prior to training. Training such a large dataset having high-dimensional heterogeneous data required
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proper computational resources and a precise pipeline for training, testing, and validation. After

extensive training-evaluation runs, we found, through optimal parameters searching, a model that

performs very well across the different data types and tasks (refer to Figures 8.5 and 8.9). The

model has been shown to outperform the existing works in OS prediction when considering the six

data modalities included in our data [511]. Moreover, we observed that adding more data and types

of modalities increased the model’s performance.

Figure 8.8 Pan-cancer primary cancer type prediction.

The model’s performance was evaluated on individual cancers at test-time through simple

inference and ensembling methods. We observed that the model’s predictive power improved when

an ensemble of the checkpoints was employed, (refer to Figure 8.6). However, for four cancer types,

TCGA-GBM, TCGA-LAML, TCGA-PRAD, and TCGA-TGCT, the model did not show significant

predictive power. During the investigation, we observed that these datasets had non-admissible

pairs in some of the data folds, i.e., all samples had censor value � = 0 in Equation 8.10. In the case
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of TCGA-PRAD and TCGA-TGCT, the number of samples having � = 1 in the training/validation

cohort was 12 and 3, respectively. To address the lack of predictive power, we fine-tuned the model

for these datasets by using the stratified k-folds to offset the class-representation problem in the data

folds. After searching for the optimal hyperparameters for fine-tuning, the model’s performance

became significant (p < 0.05) for three out of four datasets, (refer to green box plots in Figure 8.6).

The model failed to converge for the TCGA-TGCT data despite numerous efforts at fine-tuning.

A possible rationale behind this is that because of the more pronounced class imbalance in this

particular dataset, i.e., 3 out of 111 samples in the training cohort have censor value � = 1, the

model cannot learn to distinguish the samples based on the OS.

It is imperative to mention here that MLPs-based networks are very sensitive to catastrophic

forgetting when presented with out-of-distribution data or when subjected to a different task [443].

We fine-tuned the SeNMo encoder for one public data (CPTAC-LSCC) and one internal data

(Moffitt’s LSCC) [612, 659]. In our simulations to fine-tune the model, we encountered the

catastrophic forgetting phenomenon in SeNMo, where the model would fail to converge on both

new datasets. This was more pronounced when a certain number of hidden layers were frozen, and

the rest were trained with lower learning rates, as shown in Figures 8.10 and 8.11. We resorted to

the option of unfreezing all the layers of the encoder and fine-tuning the model with a very small

learning rate (4e � 5), high weight decay and dropout (0.35), and just 10 epochs. This method

worked and the model showed significant performance on the out-of-distribution datasets.

The KM survival curves depicted in Figure 8.7 demonstrate a clear stratification of survival

probabilities among three risk-defined patient groups. These results underscore the effectiveness

of the risk stratification model in predicting long-term outcomes and highlight the critical need

for targeted therapeutic strategies based on individual risk assessments. This stratification allows

for more personalized patient management and could potentially guide clinical decision-making

toward improving OS rates across diverse patient populations.

The classification results in Figure 8.8 illustrate the superior generalizability of the model’s

predictive power to classify primary cancer types through the SeNMo encoder, despite it being
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primarily trained for predicting OS. Additionally, the detailed classification report across various

cancer types reveals that the model consistently maintains high precision, recall, and F1-scores

for almost all cancer types. Such metrics not only confirm the model’s effectiveness in accurately

identifying the correct cancer class but also its reliability in replicating these results across different

samples. This level of performance suggests the capability of the model to successfully learn

high level representations from heterogenous, high-dimension, mutlivariate data stemming from

complex molecular modalities such as gene expression, miRNA expression, somatic mutations,

DNA methylation, and protein expression.

We made the entire codebase of SeNMo publicly available on GitHub (https://github.com/

lab-rasool/SeNMo). We have made the latent representations of patient data generated from SeNMo

available to the research community through our HoneyBee system [693]. HoneyBee stores these

representations, also known as patient embeddings, in a structured format using Hugging Face

datasets, effectively creating a vector database. HoneyBee has demonstrated the effectiveness of

using patient embeddings, offering a significant advantage over the traditional approach of using

raw data and extensive pre-processing [693]. The molecular data, overall survival information, and

other phenotypes from the TCGA and corresponding labels are available from NIH Genomic Data

Commons (https://portal.gdc.cancer.gov/). The gene expression, miRNA expression, and DNA

Methylation data was obtained from UCSC XENA (https://xena.ucsc.edu/). The CPTAC-LSCC

and Moffitt LSCC data are available at [248, 659]. The codebase for the project are available at

https://github.com/lab-rasool/SeNMo.
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8.5 Hyperparameters Search - Pan-cancer Training

Figure 8.9 Hyperparameters search for training on Pan-cancer multiomics data.

8.6 Hyperparameters Search - Finetuning CPTAC-LSCC

Figure 8.10 Hyperparameters search for finetuning on CPTAC-LSCC multiomics data.
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8.7 Hyperparameters Search - Finetuning Moffitt-SCC

Figure 8.11 Hyperparameters search for fine-tuning on Moffitt’s Lung SCC multiomics data.
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Chapter 9: Embedding-based Multimodal Learning on Pan-Squamous Cell Carcinomas for

Improved Survival Outcomes

9.1 Introduction

Clinical information about cancerous tumors is routinely recorded at different scales and reso-

lutions throughout the progression of the disease, treatment, and survivorship [136, 703, 90]. The

resulting data may include multiple diverse modalities [740], including (1) molecular and -omics

information recorded from genome, proteome, transcriptome, epigenome, and microbiome, (2)

diagnostic radiological imaging, e.g., ultrasound, computed tomography (CT), magnetic resonance

imaging (MRI), or positron emission tomography (PET) [213], (3) histopathology, immunohisto-

chemistry (IHC), and immunofluorescence (IF) images and data, e.g., whole slide images (WSI)

recorded from stained tumor tissue samples [268, 468], and (4) Clinical data including Electronic

Health Records (EHR) that consist of structured and unstructured data about the patient, their

disease, clinical notes from routine visits, labs tests and vitals, and clinical reports from radiology,

pathology or biopsy [52, 756]. Jointly learning from such multimodal, multiscale, heterogeneous

information with the possibility of out-of-distribution (OOD) inputs (e.g., unknown disease or

cancer type), incomplete, noisy, and missing data is challenging but crucial for tackling complex

diseases such as cancer. The state-of-the-art multimodal artificial intelligence/machine learning

(AI/ML) techniques use data fusion methods and various flavors of deep neural networks, in-

cluding Transformers, convolutions neural networks (CNNs), multilayer perceptions (MLPs), etc.

[703, 135, 89, 458, 138, 430, 448, 763, 238]. None of these models are intrinsically designed to

handle heterogeneous multimodal datasets with noisy, incomplete, and missing data during training

and after deployment. Given the enormous growth in the volume and variety of medical data and

the inherent noise in the data recording procedures/instruments, there is a need to develop robust
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AI/ML models that can learn simultaneously from multimodal heterogeneous datasets to answer

clinical questions.

9.1.1 Multiscale, Heterogeneous Data in Cancer

The challenge of understanding cancer exists at different scales, including (1) genetic and

molecular aspects of cancer and its micro-environment, (2) pathological information about tissue,

(3) radiological information about the organ, (4) physiology and health of the patient, and (5)

their lifestyle. We must also understand the dynamic changes happening over time during the

development and progression of the disease [703, 6]. The advanced MedTech hardware/software

allows us to take snapshots of cancer development from a normal cell to a pre-malignant lesion to

a malignant tumor in many different ways and at different scales and resolutions. The challenge is

to coherently ingest, process, denoise, and learn from these datasets [204, 660]. Integrating data

from heterogeneous modalities is vital for creating a unified view of cancer, which can be more

insightful and predictive than a view created by a single data modality.

Cancer patients undergo various diagnostic imaging scans, lab tests, medical procedures, biop-

sies, and treatment regimens, including surgical resection, chemotherapy, radiation therapy, im-

munotherapy, or targeted therapies. During these activities, healthcare facilities collect and store

various forms or modalities of data, which are later analyzed by medical professionals for treatment

planning, disease monitoring, surveillance, and post-treatment survivorship. In this work, we focus

on three types of data modalities: (1) digitized histopathology slides saved in the WSI file format,

(3) -omics data that includes genomics, proteomics, and transcriptomics, (4) clinical data, which

consists of patients’ demographic information, clinical notes (including pathology reports), and

lab results/vitals. Evidently, we are confronted with diverse data types that capture different yet

complementary views of the underlying disease at different scales. That is, from molecular scale

(captured using -omics data) to tissue (quantified with histopathology data) to demographic data

(from EHR) and finally, a mixture of everything in semi-structured or unstructured text format (in

the form of clinical notes and medical reports captured in the EHR).
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9.1.2 Squamous Cell Carcinoma

Squamous cell carcinoma (SCC) is a type of cancer that can arise in various organs and tissues

beyond the skin, including the lungs, bladder, cervix, esophagus, and head and neck region. It arises

from squamous cells, which are flat cells that line many surfaces in the body. Lung SCC accounts

for approximately 15-20% of all lung cancers, and head and neck SCC is the seventh most common

cancer worldwide [600, 69]. These cancers can be aggressive and have significant mortality rates,

highlighting the need for better understanding and treatment strategies. SCCs, particularly in the

head and neck, can severely impact the quality of life due to their effects on essential functions

like breathing, eating, and speaking. The survival rate for SCC is very high when detected early,

with a 5-year survival rate of 99% [120]. The management of advanced SCCs often involves a

multidisciplinary approach combining surgery, radiation therapy, chemotherapy, and targeted or

immunotherapies. Ongoing research aims to optimize these multimodal treatment strategies and

identify the most effective combinations for different SCC types and stages. Researchers are actively

exploring potential biomarkers for early detection, prognosis, and treatment response prediction

in various SCCs [110, 651]. In this work, we studied pan-squamous cell carcinoma (PanSCC)

comprising lung, bladder, cervix, esophagus, and head and neck subtypes.

9.1.3 Multimodal Learning (MML)

MML techniques combine information from various modalities to improve the accuracy and

reliability of a given ML task [6, 378, 430, 696, 647, 660, 549]. We can define five stages of

multimodal learning, including preprocessing, feature extraction, data fusion, primary learning,

and final classification [645]. The “data fusion” combines raw/extracted features or class prediction

vectors from multiple modalities to create a single data representation. Data fusion can be performed

in different ways: (1) early fusion involves merging the modality-specific features (or embeddings)

into a single feature vector before training AI/ML model, (2) intermediate fusion involves training

separate models for each data modality and combining model outputs for prediction, and (3) in late

fusion, the output of each model is used to produce a separate decision, which are then combined
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to make a final decision. The choice of fusion technique depends on the characteristics of the data

and the specific problem being addressed [6, 332, 378].

9.1.4 State-of-the-Art and Challenges in Oncology MML

Modern and classical AI/ML models have been used to fuse various modalities of oncology data

[439, 277, 703, 89, 458, 138, 430, 448, 763, 740, 736]. However, these techniques are generally

ad-hoc and limit their analysis to a selected set of modalities instead of using all available data.

The state-of-the-art MML models use Transformer-based architectures to fuse and jointly learn

from image and text data. Using these models out-of-the-box or their variants for fusing medical

data that includes various types of radiology images, gigapixel histopathology/IHC/IF images, a

variety of -omics data, and semi-structured EHR data is neither straightforward nor optimal.

Most MML models targeted for oncology applications are ad-hoc by design, use various

types of AI/ML models and fusion methods subjectively, and involve a significant amount of

manual feature/model engineering focused on a specific cancer type (or sub-type) and an organ

[439, 277, 703, 89].

Oncology MML models generally target a limited number of data modalities. For example,

radiology and genomics are fused for radio-genomics analysis, pathology and -omics are mixed

and referred to as pathomics, or any one modality (e.g., radiology or pathology imaging) is fused

with demographic data (e.g., age or smoking status) from the EHR [703, 416, 98, 799].

The current state-of-the-art models use varying methods to address the challenges of missing

and noisy data, which is pervasive in medical datasets. These models are not designed and trained

to be robust to routine changes in the data in medical settings, e.g., changes in the data recording

protocols, machine hardware/software/firmware updates, changes in patients’ demographics owing

to changes in the algorithm deployment site or a new mutation or disease variant.

Answering cancer-related clinical questions using multimodal oncology datasets has its unique

challenges, nuances, and subtleties and therefore warrants its own unified data integration frame-
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work that can (1) handle data heterogeneity, missingness, and noise, (2) learn relations between

different modalities of a patient and between patients, and (3) make accurate predictions.

Our proposed framework has six distinct components. First, we introduce an embedding-based

flexible and robust approach to tackle multi-modality cancer data. Second, we introduce graphs

on the generated embeddings and perform graph structure learning to identify intra-/inter-cancer

relationships/patterns using GNNs. Third, graph-based and learning-based methods with super-

vised techniques are introduced to fuse embeddings and handle missing/incomplete data. Fourth,

the proposed graph structure enables multiscale learning across modalities. Fifth, we introduce a

fusion mechanism that keeps the maximum amount of information intact while capturing relational

patterns about the disease across different views of data. Sixth, we use the self-normalizing weights

initialization on graph convolutional layers as well as use exponential linear unit (ELU) activation

that ensures the self-normalizing property of GNNs. The evaluation metric for our framework is

predicting accuracy for the given tasks of predicting OS quantified using the concordance index

(C-index) [701]. Our work will potentially play a transformative role in the area of learning from

multimodal, heterogeneous data in general and oncology data. The overview of our multimodal

embeddings-based learning framework is illustrated in Figure 9.1.

9.2 Methods

We propose PARADIGM (Pan-Squamous Cell Carcinoma Representation using Advanced

Multimodal learning with Graph-based Modeling). Our proposed framework benefits from the

state-of-the-art AI/ML models for learning modality-specific embeddings and combine these em-

beddings hierarchically using GNNs for learning inter- and intra-cancer patterns.

9.2.1 PARADIGM Architecture

We use standard mathematical notations, i.e., lowercase letters (e) for scalar values, lowercase

bold (e) for column vectors, and uppercase letters (E ) for matrices. The graphs are depicted

by Gsub=(V ,C ) having node-set V={v1, v2, ..., vn}, where node v has feature vector xv, edge set
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C={(vi , vj) | vi , vj 2 V }, and subscript sub represents the purpose or task associated with the

graph G . Fig. 9.1 presents the main components of PARADIGM, (a) modality-specific sample

embeddings, (b) aggregation and fusion into patient embeddings, (c) patient-specific graphs, and

(d) joint graph learning. We describe these components in detail in the following:

Figure 9.1 The schematic layout of the multi-modal data integration framework.
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9.2.1.1 Modality-Specific Embeddings

The first component of the PARADIGM architecture consists of a set of pre-trained, locally

fine-tuned modality-specific AI/ML models, e.g., various types of Transformers, CNNs, SNNs,

ViTs, etc. [193, 705, 772, 736]. Our motivation is to leverage the state-of-the-art AI/ML pre-

trained modality-specific models to find the most representative embeddings for all four data

modalities. We prefer the models that have been pre-trained using related medical datasets [772,

56, 134, 733, 741, 560, 751]. After the first data processing step of modality-specific operations,

we get: EPath = [e(1)p , e(2)p , ... , e(Tp)
p ], EOmics = [e(1)o , e(2)o , ... , e(To)

o ], EEHR = [e(1)e , e(2)e , ... , e(Te)
e ],

and EPRep = [e(1)pr , e
(2)
pr , ... , e

(Tpr )
pr ] for WSI patches, -omics, EHR, and pathology report datasets,

respectively. We have EPath 2 RDp⇥Tp , EOmics 2 RDo⇥To , EEHR 2 RDe⇥Te , and EPRep 2 RDpr⇥Tpr ,

which gives ep 2 RDp , eo 2 RDo , ee 2 RDe , and epr 2 RDpr . Here, Tp,To ,Te , andTpr represent the

total number of patients, and Dp,Do ,De , and Dpr represent the size of embedding vector for the

WSI patches, -omics, EHR, and pathology reports datasets, respectively. Dp,Do ,De , and Dpr can

have different values based on the complexity of the data modality. The EHR data is considered

the baseline and is always available for all patients. Other data modalities may be missing, i.e., Tp,

To , Tpr  Te .

9.2.1.2 Concatenation and Aggregation

We used a two-step process (1) aggregate the sample embeddings into patient-level embeddings

and (2) concatenate resulting embeddings across all modalities. In the first step, we aggregate

the different samples’ embedding vectors for the same patient into a single patient embedding for

each modality. We use a learning-based aggregation function to combine all available WSI sample

embeddings for each patient to produce EM = AGGavail(E 1
M,E

2
M,E

3
M, ...,E

u
M), where AGGavail repre-

sents an aggregator function implemented with a multiple-instance learning network for modality

M having total samples u for each patient. AGGavail is trained using the ground-truth data of

’age at index’ and MSE loss function. For the -omics and pathology reports data modalities, we

simply aggregate the sample embeddings by mean pooling to generate patient embeddings for the
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respective modalities. As the result of this aggregation stage, we get aggregated modality embed-

dings eo 2 R48, ep 2 R1024, ee 2 R1024, and epr 2 R1024 for -omics, WSIs, EHR, and pathology

reports, respectively. The second step involves concatenating the embedding vectors from different

modalities into a single latent representation for each patient. The aggregated and concatenated

patient embedding is represented by Epat = cat(E u
Omics,E

u
PRep,E

u
EHR,E

u
Path), where cat represents

the concatenation operation such that Epat 2 R3120⇥Te . Thus, the new embedding vector for each

patient now has information from the initial modality embeddings, EM.

9.2.1.3 Patient-Specific Graphs

We construct patient graph GF where each node of GF represents a patient and the node

embeddings are given by Ef = [x(1)f , x(2)f , ... , x(Te)
f ]. The (weighted) adjacency matrix for the patient

graph is calculated using the Euclidean distance between embedding vectors [656]. For the patient

graph GF , the adjacency matrix can be found using: Apat = Eucij(EM) =
qPDe

k=1

�
EMki � EMkj

�2.

The patient graph has the number of nodes equal to the number of patients in the clinical (EHR)

data |Vpat| = Te . We also generated the adjacency matrix using cosine distance between patient

embeddings for comparing the effect of selecting different distance metrics on the downstream

analysis.

9.2.1.4 Joint Graph Learning

Finally, the joint patient graph is used to train GNN using supervised learning and the MSE loss

function. As the result of the graph learning, the node feature vector for each patient is updated

from its neighbors in the message passing mechanism.

9.2.2 Learning Strategy

Having presented the architecture of the PARADIGM framework, we now present the learning

strategy of our framework as follows.
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9.2.2.1 Modality-Specific Learning

The modality-specific learning involves three tasks, (1) dataset development, (2) evaluating and

selecting the modality-specific publicly available (foundation) models, and (3) transfer learning and

fine-tuning of modality-specific models, as enumerated below.

1. Training multimodal models requires multimodal cancer datasets with EHR data as the base

modality and one or more of the following: radiology, pathology, or -omics. We used public

databases developed and shared by the National Institute of Health (NIH) and National

Cancer Institute (NCI) and Moffitt’s local datasets to train and validate our framework.

Generally, the publicly available datasets may have only one or two data modalities. In

case multiple modalities are present, they are scattered across different databases, and it

is difficult to identify and link patients across databases. We use the already developed

multimodal database, MINDS, to curate and build patient cohorts across five squamous cell

carcinoma dataset (TCGA-LUSC, TCGA-HNSC, TCGA-CESC, TCGA-ESCA, and TCGA-

BLCA) [691]. We acquired four different types of data modalities. The multi-omics data

includes protein expression, DNA mutation, miRNA expression, gene expression, and DNA

methylation, along with clinical data We used the preprocessing steps for multiomics data

adopted by SeNMo [736]. Pathology reports are processed through text extraction and

text splitting techniques to obtain meaningful segments of text data. Clinical/EHR, which

includes structured clinical records, and histopathology data comprising WSIs have been

curated from the MINDS system [691]. We also evaluated the framework by training on the

data collected at Moffitt (T = 103) and consisted of EHR data (including age at diagnosis,

gender, ethnicity, race, smoking status, year of diagnosis, vital status (alive/dead), and tumor

cellularity), pathology images, and -omics data (included RNA-Seq expression and protein

expression) [546].

2. We leverage pre-trained models for initial modality-specific data processing. Based on

our analysis, we have selected pre-trained models for obtaining initial embeddings after
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supervised and self-supervised fine-tuning of these models individually and jointly [772, 736].

For the WSIs, we evaluated various models and selected UNI for generating embeddings

[134]. For the clinical data such as EHR and pathology reports, we evaluated GatorTron

and ClinicalT5 models [772, 455]. Based on our experiments, we selected GatorTron as our

embedding model because of its superior performance on medical language tasks and text

interpretation from pathology reports [772]. For the multi-omics model, we selected the only

model that has been trained on the five molecular data types across 33 cancer sites and is

publicly available, SeNMo [736]. All of these embeddings are publicly available through

HoneyBee framework and hosted on Hugging Face [693].

3. The preprocessed data was then used to fine-tune the modality-specific models on different

tasks such as OS, or self-supervised contrastive loss. After fine-tuning, we generated the

embeddings for each modality model for each data sample. It is pertinent to mention here

that these are sample-level vectors in the case of molecular and pathology report data and

patch-level embeddings in the case of WSIs.

9.2.2.2 Concatenation and Aggregation of Embeddings

As a result of the processing presented above, we get the initial embeddings for each data sample

in each category of modality. Next, we combine these for each modality to build a single feature

vector for each patient, referred to as patient-level embedding EM = AGGavail(E 1
M,E

2
M,E

3
M, ...,E

u
M).

In the case of patch-level embeddings for WSIs generated from the GatorTron model, we em-

ployed multiple-instance learning (MIL) where a neural network is trained in a weakly-supervised

fashion to generate the slide-level embeddings [234]. We experimented with attention-based MIL

(ABMIL), mean-pooling, and max-pooling learning strategies and selected ABMIL for its supe-

rior performance in predicting the patient’s age at diagnosis [309]. The molecular and pathology

reports embeddings had only a few patients with more than one sample, so we employed a sim-

ple pooling using the mean of the sample vectors. As the result of aggregation, we get the

uniform-dimensional embedding vectors for each patient in each modality type. After aggregation,
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we concatenated the patient’s modality embeddings into a single embedding vector per patient,

Epat = cat(E u
Omics,E

u
PRep,E

u
EHR,E

u
Path). It is important to note here that the concatenation operation

caters for the missing modalities by padding zeros to the missing feature vectors. This way, the

framework takes the union of patients across different modalities to ensure that patients with missing

data modalities, as in the real-world scenario, are not excluded from the analysis. The concatenation

approach allows the retention of all the available information for the given patient. The embedding

aggregation and concatenation operations are needed for three reasons, (1) to reduce the size of

modality-specific embeddings to represent patient-level embeddings, (2) to combine embeddings

from different data modalities in a joint space for pathology, -omics, and EHR data, and (3) to

produce a joint embedding of the same size despite the possibility of missing some data modalities

for some patients.

9.2.2.3 Patient Graphs and Joint Graph Learning

The final set of embeddings are used as nodal features in the joint graph, which are trained to

predict the selected endpoints of OS. It is important to highlight that the choice of the endpoint (i.e.,

OS) does not limit the PARADIGM framework. Based on the datasets, cancer type, and organ/site,

our framework can support various other endpoints: tumor response rate, tumor shrinkage, disease-

free survival, time to treatment discontinuation, toxicity, and time to next treatment. We use joint

embedding for each patient to build a graph that represents one disease, i.e., one graph for each of

the five cancer types. We then combine these subgraphs into a joint PanSCC graph data and use it to

train the GNN. We used various measures to quantify the change in the embeddings, e.g., Euclidean

or cosine distance. For the prediction of OS, we used convolution-based GNNs as they aggregate

neighboring nodes’ embeddings through a stack of multiple layers [758]. We tested commonly

used spatial and spectral convolutional GNNs such as GraphSAGE [271], Graph Attention Network

(GAT) [708], Graph Convolutional Network (GCN) [375], and Graph Isomorphism Network (GIN)

[761]. Based on our preliminary experiments, we selected the GCN model as our downstream model

[375].
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9.2.3 Model Evaluation

We have five trained models based on our selection of five cancers (cervical, bladder, head

and neck, lung, and esophageal) and one model for PanSCC. We also compare the performance

of PARADIGM models with the single-modality, two-modality, and three-modality models to

highlight the benefits of using the multimodal approach. We also compare the performance of our

models with the state-of-the-art multimodal models. We evaluate the models’ performance using

the C-Index [427], which compares the predicted outcome probabilities from the model with the

ground-truth data. C-Index ranges from 0 to 1, where a value of 1 indicates the model can perfectly

distinguish between individuals who experience an event earlier and those who experience it later.

A value of 0.5 suggests that the model performs no better than random chance, while a value below

0.5 indicates that the model’s predictions are inversely related to the observed outcomes. We use

logrank statistical test to quantify the performance of the models to establish statistical significance.

9.3 Results

9.3.1 Multimodal Integration of Oncology Database System

Accessing, storing, pre-processing, harmonizing, clearing, and feeding multimodal data, con-

sisting of various images, text, real numbers, and categories, to our models for training is a

significant challenge. Given that no such system existed in oncology, we developed an in-house

database system called MINDS and presented it in Fig. 9.2 [691]. MINDS can handle all types of

data, including -omics (e.g., genomics, transcriptomics, and proteomics), diagnostic radiological

imaging, histopathology/IHC/IF imaging, and EHR. MINDS employs data harmonization tech-

niques to integrate all data types seamlessly and enables training PARADIGM models with up to

petabytes of data. MINDS allows building cohorts for various cancer sites and types/sub-types.

We followed the following scheme to build MINDS:
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1. We collected (semi-)structured data from Genetic Data Commons (GDC), Imaging Data

Commons (IDC), and Proteomic Data Commons (PDC) [217, 259, 682]. AWS Glue was

used to pre-process and aggregate data [36, 38].

2. The pre-processed semi-structured data were uploaded to an Amazon S3 ingest buckets [35].

The structured data was stored in an AWS RDS instance [33].

3. We used AWS Data Lake Formation tool [37], which automated transforming the semi-

structured data stored in the S3 bucket into a query-able data lake using AWS Glue crawlers

and AWS Athena [30].

4. The structured data stored in AWS RDS was integrated into a data warehouse using Amazon

Redshift [34].

5. We used AWS step functions to coordinate and manage the data export process for the selected

cohort. We also provide manifest files to interact with GDC, IDC, and PDC and download

all the unstructured data using their APIs.
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Figure 9.2 A schematic layout of MINDS multimodal data for PARADIGM models training.
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9.3.2 Modality-Specific Models, Fine-tuning, and Transfer Learning

We investigated various modality-specific models for our data modalities, pathology, -omics,

pathology reports, and EHR. Our criterion for evaluating the representativeness or optimality

of these modality-specific models includes their predictive performance against the ground-truth

data of OS. As a result of preliminary analysis, we used: (1) UNI for histopathology images

[134]. UNI is a vision transformer model pre-trained on whole slide images using the DINOv2

self-supervised framework [134]. We selected UNI for its ability to capture intricate details and

patterns in histopathology images through self-supervised pre-training [134]. (2) GatorTron for

the EHR data (including clinical notes and pathology reports) [772]. GatorTron is a large language

model specifically designed for clinical NLP. It was trained on a massive corpus of 277 billion

words, including 82 billion words from de-identified clinical notes and 195 billion words from

various English texts. (3) Self-Normalizing Networks (SeNMo) for -omics data [736], which is

a mini-foundation model that has been trained on five molecular data types for more than 13,000

patients across 33 cancer types. Our experiments showed that UNI and GatorTron worked well

with fine-tuning using small datasets [772, 56, 546]; however, SeNMo always required transfer

learning with larger datasets, potentially linked to the complexity and variability of the -omics

datasets [736, 740].

9.3.3 Prediction of OS in PanSCC Cohort

We predicted OS for pan-squamous cell carcinoma (PanSCC) patients using our framework,

and a host of multimodal and uni-modal MLPs, Transformers, and classical ML algorithms such

as eXtreme Gradient Boosting (XGBoost), and Support Vector Regression (SVR).
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Figure 9.3 C-Index on training on clinical, pathology reports, WSIs, and molecular data.

9.3.3.1 Four-modality Analysis

Figure 9.3 shows the performance of different ML and DL models trained on multimodal datasets

for SCC comprising four modalities; clinical, pathology reports, whole slide images (WSIs), and

molecular data. The models include Multilayer Perceptrons (MLPs), Transformers, XGBoost,

Support Vector Machines (SVMs), and GNNs. Each model was tested across various types of

squamous cell carcinoma, lung squamous cell carcinoma (LUSC), head and neck squamous cell

carcinoma (HNSC), esophageal carcinoma (ESCA), bladder carcinoma (BLCA), and pan-squamous

cell carcinoma (PanSCC) comprising all five cancer types. The performance metric used is the

C-Index for OS predictions, shown on the vertical axis. The MLP models, represented in blue,

exhibit moderate performance with C-Index values around 0.5 to 0.6, with the best performance

on the panSCC cohort. Transformer models, shown in beige, demonstrate similar performance to
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MLPs. The XGBoost models, depicted in red, generally outperform the MLP and Transformer

models, achieving higher C-Index values, indicating better prediction accuracy. The SVM models,

represented in gray, show consistent but slightly lower performance compared to XGBoost models.

The GNN models, shown in green, achieve the highest C-Index values across all cancer types,

suggesting that GNNs are particularly effective in leveraging multimodal data for accurate survival

predictions. The error bars indicate the variability in the performance across different folds,

providing insight into the reliability of the predictions.

Figure 9.4 C-Index for OS predictions on clinical, pathology reports, and WSIs SCC data.

9.3.3.2 Three-modality Analysis

Figure 9.4 illustrates the performance of different ML and DL models on multimodal datasets

for SCC, encompassing clinical data, pathology reports, and WSIs. The MLP models, show mod-

erate performance with C-Index values around 0.5, indicating the random predictions. Transformer
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models, depicted in beige, demonstrate similar performance to MLPs, with C-Index values cluster-

ing around the same range. The XGBoost models outperform both MLP and Transformer models,

achieving higher C-Index values, which suggests better survival prediction accuracy. The SVM

models, represented in gray, exhibit comparable performance to MLPs and Transformers. The GNN

models achieve the highest C-Index values across all cancer types, significantly outperforming the

other models.

Figure 9.5 C-Index for OS predictions on clinical, molecular, and WSIs SCC data.

Figure 9.5 illustrates the performance of MLPs, Transformers, XGBoost, SVMs, and GNNs

SCC data incorporating clinical data, molecular data, and WSIs. The MLP models show random

performance for LUSC, HNSC, and ESCA with C-Index values<0.5, while a gradual improvement

as we move from CESC, BLCA to panSCC data cohorts with C-Index <0.6. Transformer models

do not perform well with all cohorts having C-Index <0.5. The XGBoost models consistently

outperform the MLPs, Transformers, and SVM models. GNNs achieved the highest C-Index

values across all cancer types, significantly outperforming the other models.
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Figure 9.6 shows the MLPs, Transformers, XGBoost, SVMs, and GNNs trained on SCC data

incorporating clinical data, pathology reports, and molecular data. The MLP models performed

better than all previous three-modality cohorts having C-Index >0.5 in five out of six datasets.

Transformer models have similar ranges in C-Indices as before. The XGBoost models generally

outperform the MLP and Transformer models, achieving higher C-Index values. The SVM models

have shown better performance in this cohort with comparable performance to the XGBoost models.

The GNN models achieved the highest C-Indices across all cancer types, significantly outperforming

the other models.

Figure 9.6 C-Index for OS predictions on clinical, pathology reports, and molecular data.

9.3.3.3 Two-modality Analysis

Figure 9.7 shows the performance of MLPs, Transformers, XGBoost, SVMs, and GNNs applied

to multimodal datasets for SCC, integrating clinical data and WSIs. The MLPs, Transformers, and
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SVM models exhibit random performance with C-Index<0.5 for most of the cohorts. The XGBoost

models outperform the MLPs, Transformers, and SVMs, achieving C-Index values from 0.5 to 0.6.

GNNs achieve the highest C-Index values across all cancer types, ranging from 0.65 to 0.72.

Figure 9.7 Performance comparison of OS prediction on clinical and WSIs SCC data.

Figure 9.8 illustrates that MLPs achieved the predictive performance for C-Index between 0.5

and 0.59, while XGBoost achieved values between 0.49 for ESCA to 0.63 for LUSC. Transformers

fail to perform well, while SVMs have moderate performance range of 0.49-0.56. GNN models,

illustrated in green, achieve the highest C-Index values across all cancer types, with all values

around 0.7.

Figure 9.9 presents the performance of various models applied to SCC data with clinical and

molecular data types. As with the previous results, the order of performance is Transformers,

SVMs, MLPs, XGBoost, and GNNs, in increasing C-Index on predicting OS.
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9.3.3.4 Internal Data Analysis

Figure 9.10 shows the results from analyzing Lung SCC data collected at Moffitt Cancer

Center [659]. The data consists of four modalities, including pathology images, clinical data,

and two subtypes of molecular data, RNA-Seq expression, and protein expressions [659]. We

generated pathology embeddings using REMEDIS [56] and EHR embeddings using GatorTron

[772], without fine-tuning the models. We trained SeNMo for -omics data to generate RNA-Seq

expression and protein expression embeddings. Model evaluation was done using C-index and

10-fold cross-validation, as shown in Figure 9.10. The models selected for evaluation are MLP,

Transformer, self-normalizing network (SNN), and GNN. For two-modality combinations, MLP

models show varying performance, with C-Index values ranging from approximately 0.5 to 0.7.

Transformer models with two modalities exhibit poor performance compared to MLPs. For the

three-modality combinations, the models generally show improved performance, especially the

Transformers models exhibit better performance compared to two modalities. The four-modality

combinations exhibit the highest performance. The MLP model trained on EHR, RNA, Protein, and

WSIs achieves a C-Index of around 0.65, indicating strong predictive accuracy. The Transformer

model with the same four modalities achieves a high C-Index, 0.91. The GNN model further

improves the C-Index to 0.93, demonstrating the benefit of integrating all four data modalities.

9.4 Discussion

Disease-related information for oncology resides at varying scales and resolutions of data.

Clinicians routinely fuse such diverse information mentally for decision-making, but there are lim-

its to human processing capabilities. On the other hand, AI/ML models struggle when ingesting

such heterogeneous, multiscale information for critical decision-making. Graphs and GNNs have

been shown to perform well in contextual learning as well as represent the robust architectures of

deep neural networks [735, 740]. Jointly learning from such multimodal, multiscale, heteroge-

neous information with the possibility of incomplete and missing data modalities is challenging

but crucial for understanding and tackling complex diseases like cancer. Our proposed framework
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for multimodal learning from multiscale, heterogeneous oncology datasets, has been trained and

validated for accurately and robustly predicting overall survival (OS) for different tumor types (e.g.,

head and neck, lung, esophageal, cervical, and bladder cancers). We have also evaluated the frame-

work on the Moffitt Cancer Center & Research Institute’s internal lung squamous cell carcinoma

cohort comprising 103 patients. Our framework is built on pre-trained AI/ML models, Graph

Neural Networks (GNNs), and self-surprised and supervised techniques to learn from multimodal,

heterogeneous datasets. Our multimodal framework’s potential applications go beyond cancer and

healthcare settings, such as the deployment of AI/ML in many mission-critical application areas,

including aviation safety, autonomous control of vehicles, automated decision-making in human-

machine integrative environments, data fusion applications, and financial systems. Overall, the

results indicate that models trained with more modalities tend to achieve higher C-Index values,

reflecting better predictive accuracy for OS panSCC data. The highest performance is observed

with the four-modality combinations, particularly for the GNNs-based PARADIGM model. All

models and processed data have been made available via Hugging Face and GitHub.

Figure 9.8 Performance comparison of OS prediction on clinical and pathology reports.
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Figure 9.9 Performance comparison of OS prediction on clinical and molecular SCC data.

Figure 9.10 C-indices from different models trained on combinations of modalities.
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9.4.1 Embedding-based Approach

The proposed framework introduced an embedding-based flexible and robust approach for

multimodal learning. It benefits from the open-source models, pre-trained with histopathology,

-omics, and EHR data [56, 772, 736, 134], later fine-tuning these models to use them as the

feature (or embeddings) extractors. This helped with rich feature extraction from all modalities at

a significantly reduced computational cost.

9.4.2 Graph Structure and Contextual Learning

Our framework introduced graph structure and GNNs on these embeddings to perform intra-

/inter-cancer learning from heterogeneous datasets. The GNN-based approach enabled the rep-

resentation of patient embeddings in the form of graph-structured data, where nodes represented

patients and weighted edges between nodes represented inter-patient similarities. The process of

updating the features of the current node based on its neighbors and the strength of the edges

between these nodes helped in intra-/inter-cancer learning even though neighboring nodes may

represent different cancers.

9.4.3 Effect of Graph Sparsity

In analyzing the graph structures and their effects on the model’s performance, we varied

the sparsity of the input graphs. Sparsity is controlled by thresholding the weights on the edges

quantified by the distance metrics, such as Euclidean or cosine distance. Figure 9.11 illustrates the

effect of changing the graph sparsity on the prediction of OS by the same GNN model. Across all

combinations of modalities and cancer data types, the dense graph configuration generally achieves

significant C-Index values. When we increase the graph sparsity, there is a notable increase in the

model’s performance, with C-Index values increasing to>0.8 in almost all the cases. This indicates

that sparse graphs carry high signal-to-noise ratio and better predictive power for the GNN models,

compared to dense graphs. Moreover, the inclusion of more data modalities generally enhances

predictive accuracy, but the benefit is maximized when the graph is sparsely connected.
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Figure 9.11 Impact of input graph sparsity on the predictive performance of GNNs.

9.4.4 Handling Missing Modalities

The challenge of missing modalities is handled in our framework. Some patients may not have

all the modalities; however, our framework allows learning with the available data and updating

nodal features.

9.4.5 Hierarchical Learning

The framework’s hierarchical nature enables it to handle sub-modalities seamlessly. We can

add another data modality to fuse with the existing data types. For example, radiological scans

such as MRI, CT, PET scans can be processed through REMEDIS foundation model to generate

sample embeddings, or different stains of histopathology images such as IHC or IF slides can be

added to the existing pipeline seamlessly. This innovative methodology of hierarchically fusing
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heterogeneous information based on the data modalities and sub-modalities is vital for learning

from multiscale datasets that capture various aspects of underlying phenomena in space and time.

Our proposed framework, PARADIGM, demonstrates a significant advancement in the field

of multimodal, heterogeneous data integration for cancer outcome prediction. By leveraging

graph neural networks and modality-specific foundation models, we successfully generated com-

prehensive patient-level representations that capture the intricate relationships across various data

modalities, including EHR, whole slide images, pathology reports, and molecular data. Our

approach not only improved the predictive accuracy for survival analysis in pan-Squamous Cell

Carcinomas (SCC) across multiple cancer types but also showcased the robustness and scalability

of GNNs in handling complex, multimodal datasets. The superior performance of PARADIGM

compared to traditional machine learning models underscores the importance of integrating diverse

data sources to achieve a holistic understanding of cancer progression. Our findings suggest that

the convergence of genetic, physiological, and psychosocial data into a unified framework can

provide deeper insights and more accurate predictions, ultimately contributing to personalized and

precision oncology. This research paves the way for future studies to explore the full potential

of GNNs and multimodal data integration in various clinical applications, offering a promising

direction for improving patient outcomes in cancer and beyond.
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Chapter 10: Conclusion and Future Work

This potential of integrating graph-theoretic measures, advanced AI/ML models, and mul-

timodal data fusion techniques in enhancing the robustness and predictive capabilities of deep

artificial neural networks is significant. We present the domain of graphs, graph learning, and their

relation with the robust deep neural networks and multimodal learning in oncology. We demon-

strated that graph structural properties such as topological entropy and Olivier-Ricci curvature can

predict the robustness of DANNs before training, providing valuable insights for designing resilient

neural network architectures. The exploration of brain tumor segmentation using advanced DNN

architectures like U-Net highlighted the transformative impact of machine learning on medical

imaging, improving the precision and efficiency of treatment planning and tumor surveillance.

The rise of foundation models and generative AI offers a promising avenue for overcoming the

limitations of task-specific AI/ML models. By leveraging large-scale training data and fine-tuning

capabilities, these models provide robust performance across diverse applications, including digital

pathology. In cancer research, the integration of multimodal data through advanced models like

Graph Neural Networks (GNNs) and Transformers has shown remarkable potential in enhancing

the accuracy of diagnostic and prognostic models. Systems like MINDS exemplify the future of

oncology data integration, enabling comprehensive analysis and personalized cancer care.

There are many open questions related to the presented topics that are of interest for the

research community. In future we will focus on expanding the scope of these models to encompass

a wider range of cancer types, data modalities, and clinical applications. Efforts will be directed

towards refining the integration frameworks to handle the ever-growing volume of biomedical data,

ensuring scalability, security, and efficiency. Additionally, the development of new algorithms

and techniques for improving the interpretability and transparency of AI/ML models will be a
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critical area of research, aiming to foster greater trust and adoption in clinical practice. We

will also focus on implementing these frameworks in the clinical setting with specialist-in-the-

loop evaluation and assistance. The convergence of deep learning, graph theory, and multimodal

data integration holds immense promise for revolutionizing cancer research and clinical practice.

Continued innovation and collaboration across these fields will be essential in realizing the full

potential of these technologies, ultimately leading to more effective, efficient, and personalized

approaches to cancer care.
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