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ABSTRACT

This report discusses the development of RET Proteolysis targeting chimera PROTAC
molecules based on Selpercatinib (LOX0-292) and Sulfono-y-AApeptide PROTAC. A PROTAC
molecule is a bifunctional molecule composed of two active domains and a linker. It works by
inducing selective protein intracellular degradation. This technology was first discussed by
Kathleen Sakamoto, Ray Deshaies and Craig Crews in 2001. Using various E3 Ligase, such
as CRBN, pVHL, beta-TrCP1, Mdm2, DCAF15, DCAF16, RNF114, and c-IAP1, the PROTAC
technology has been applied to several novel drug development,. Yale University licensed the
PROTAC technology to Arvinas in 2013—14. For my research, Chapter one summarizes our
development of RET PROTAC in detail. Using Selpercatinib as warhead binding to RET protein,
different methylene, PEG and heterocycle linkers, various E3 ligases are also tried to develop RET
proteac molecues. Chapter two discusses our novel design of covalent inhibitors that targets RET
G810C mutation using different Michael receptors. Chapter three concludes our design of
unnatural y-AApeptide to overcome antibiotic resistance due to the abuse of current antibiotics.
Chapter four starts with the basic knowledge of solid phase synthesis. After the brief review, our
research on the SPPS of BCL-9 sulfono-y-A Apeptide PROTAC linked with VHL and PG E3 ligase
is discussed. Details of sulfono-y-amino acid building block synthesis, procedure of SPPS, peptide
cleavage and purification are also summarized in detail. Chapter five starts with the background
unnatural amino acids and foldamers. Then our design based on natural peptide S597 with our

sulfono-y-amino acid to mimic the sequence of site 1 or replacing natural amino acids with our
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sulfono-y-amino acid are discussed. At the end of each chapter, NMR, Q-TOF, ESI-MS, and LC-

MS data are attached.
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CHAPTER ONE: FIRST RET DEGRADER WITH IN VIVO ACTIVITY
1.1 Introduction

The rearranged-during-transfection (RET) gene encodes the RET receptor protein tyrosine
kinase (PTK)!. Aberrantly activated RET kinase caused by germline or somatic RET mutations
is one of the major oncogenic drivers frequently found in medullary thyroid cancer (MTC)? 3.
Chromosomal rearrangements that result in aberrant expression and constitutive activation of the
fusion RET kinases are associated with ~10% papillary thyroid cancer (PTC) and ~2% non-small
cell lung cancer (NSCLC) and are proven driver oncogenes' *. Furthermore, RET alterations were
observed at a low rate in diverse cancer types that contribute to tumorigenesis and maintenance of
these RET-positive cancers, which are approved targets for cancer therapy®”. Although more than
100 different RET fusion genes have been detected?, the most frequently observed RET fusions
are CCDC6-RET and KIF5B-RET fusions in PTC and NSCLC.

Two RET-selective protein tyrosine kinase inhibitors (TKIs), selpercatinib (LOX0-292)%
and pralsetinib (BLU-667)°, have been approved for treating RET-positive cancers':>. These are
ATP competitive RET inhibitors that inhibit the RET kinase activity'’. Inhibition of RET kinase
activity by these inhibitors does not reduce the RET protein level. Instead, inhibition of the RET
kinase activity by selpercatinib or pralsetinib consistently increased the CCDC6-RET fusion
protein level in human cancer cells'! (see also Results below). A higher level of RET fusion
oncogene expression has been implicated in the reduced effectiveness of RET kinase inhibitors,
such as in the case of RET inhibitor RXDX-105" 2, While the effectiveness of selpercatinib and

pralsetinib at their full prescription strength may not be impacted by a higher level of oncogenic

1



RET expression, dose reduction is required in patients who have treatment-related adverse events.
In fact, 30% of thyroid cancer patients and 41% of NSCLC patients treated with selpercatinib had
dose reduction'® 4. Conceivably, the efficiency of these occupancy-based drugs may be reduced
at a lower drug dose. This may contribute to the persistence of residual tumors that exist in over
90% of patients in selpercatinib- or pralsetinib treatment®. Thus, depletion of oncogenic RET
protein is likely to have an added benefit in addition to inhibition of the oncogenic RET kinase
activity in RET-targeted cancer therapy.

Proteolysis targeting chimera (PROTAC) is a developing modality to achieve targeted
protein degradation with heterobifunctional small chemical molecules'* . A PROTAC brings an
E3 ligase into close proximity to the target protein of interest to form a ternary complex, resulting
in ubiquitination and proteasomal degradation of the target protein. A PROTAC typically consists
of three moieties: a ligand that engages the target protein of interest, a ligand of an E3 ubiquitin
ligase that recruits a ubiquitin ligase, and a linker that tethers these two ligands'>. For protein
kinases, a kinase inhibitor may be used as the basis for the design of the target-binding ligand'”- '8,
A ligand to the von Hippel-Lindau tumor suppressor (VHL) protein and immunomodulatory imide
drugs (IMiDs) that bind cereblon (CRBN) are the most commonly used ligands for E3 ubiquitin
ligases in PROTAC design. The VHL ligand recruits the CUL2-RBXI1-ElongB/C-VHL
(CRL2VHL) ubiquitin ligase'®. IMiDs, including thalidomide, lenalidomide, and pomalidomide,
recruit the ubiquitously expressed cullin ring ligase 4 (CUL4)-RBX1-DDB1-CRBN (CRL4REN)
E3 ligase'® 2°. More recently, phenyl glutarimide (PG) analogues of CRBN binders were used to
improve the chemical stability of CRBN ligands?!. In addition to high-affinity ligands for binding
the target protein and the E3 ligase, an appropriate linker that connects the two ligands is critical

for the formation of a productive ternary complex to allow efficient degradation of the target



protein. An optimal linker is determined by its composition, length, and the position of coupling
to the ligands®* %>,

In this study, we designed, synthesized, and evaluated in cell cultures in vitro and in an
animal model in vivo RET PROTACSs based on selpercatinib (LOX0-292) as the RET ligand,
IMiDs-Lenalidomide, and PG as the E3 ligase ligand, and various flexible and rigid linkers of
different compositions and lengths coupling to different positions of the IMiDs or PG. Our
investigation identified Y W-N-7 as a RET PROTAC that could fully degrade RET in the cell lines
tested and demonstrated potent in vivo activity in inhibiting oncogenic RET-driven tumor growth

1n animals.

1.2 Results
1.2.1 Design of PROTAC
Our design was based on LOX0-292 (selpercatinib), an FDA-approved RET kinase inhibitor to

treat lung or thyroid cancer (Figure 1A). We recently published the co-crystal structure of
LOXO0-292/RET (PDB: 7JU6),'° which reveals that the terminal hydroxypropyl group of LOXO-
292 has minimal impact on its binding to RET (Figure 1B and 1C). Unlike the rest of the
structure buried in the RET hydrophobic cleft, this hydroxypropyl group (shaded in light blue) is
outside the protein and exposed to the solvent. No interactions are identified between this group
and the protein based on the crystal structure. We thereby postulated that this group could be
replaced with certain linkers to link an ubiquitin E3 ligase binding ligand to make PROTAC
compounds for degrading RET. We decided to choose lenalidomide which is known to target the
E3 ligase cereblon (CRBN) (Figure 1C). In parallel, we also attempted to select phenyl

glutarimide (PG) moiety as PG is also a CRBN ligand but is believed to have enhanced chemical
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Figure 1.1. Design of PROTAC. A. The structure of LOX0-292. B. The co-crystal structure of LOXO-292/RET
complex (PDB: 7JU6) shown in cartoon and surface representation, respectively. C. The synthetic routes of
lenalidomine and phenyl glutarimide (PG) based PROTAC derivatives of LOX0-292.

stability (Figure 1C). To this end, a variety of PROTAC compounds bearing various flexible and
rigid linkers of different compositions and lengths were synthesized and studied for their ability to

inhibit RET activity and degrade RET protein (Table 1).



1.2.2 SAR study

Table 1.1. PROTAC compounds and their ability to degrade RET at S0 nM; The three most potent lead
compounds are shown in red.
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1.2.3 LOXO0-292 and BLU-667 treatment

To assess the impact of RET kinase inhibitors on the RET protein, we first examined the
RET protein level in the presence of two FDA-approved drugs Selpercatinib (LOX0-292) and
Pralsetinib (BLU-667). Surprisingly, upon treatment of both compounds, the level of RET protein
dramatically increased (Figure 2A and Figure 2B), in contrast to the intuition that LOX0-292 and
BLU-667 should change the phosphorylation level but not alter the total RET protein level. This
may be owing to the ability of cancer cells to express more RET protein due to the decreased level
of RET kinase activity upon the inhibition of LOXO0-292 and BLU-667, respectively. This

phenomenon has been implicated in the reduced effectiveness of RET kinase inhibitors.
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Figure 1.2. Evaluation of RET PROTACS. A, B: Degradation of the RET protein. C: RET kinase inhibition, RET and
EGFR protein degradation by YW-L-2 and Blu 667 D: Concentration-dependent inhibition and degradation of RET
by YW-N-7 and YW-N-11. E: cell cytotoxicity of YW-L-13, YW-N-7 and YW-N-11 F: Bortezumeb’s effect on
YW-N-7-induced CCDC6-RET degradation.

1.2.4 Lenalidomide-based PROTAC degradation result

To assess whether our design strategy could lead to RET protein degradation, we first
synthesized a series of conjugates of lenalidomide and LOX0O-292 bearing different linkers (Table
1 and Figure 2A). Our first attempt, YW-L-1, showed no capability to degrade RET. Instead, it
seemed that the compound boosted the RET expression, similar to the effect of LOXO-292 (Figure

2A and 2B) and BLU-667 (Figure 2B). However, elongation of the linkers led to compounds YW-



L-2 and YW-L-3 which started to exhibit activity to degrade RET. This initial success
demonstrated the strategy of linking LOXO-29 and lenalidomide for targeted degradation of RET
is possible. The distance between RET and the E3 ligase is crucial, as longer linkers seem to have
stronger activity in degrading RET. However, none of the compounds were able to completely
degrade RET at higher concentrations (Figure 2C). The western blot is consistent with the
screening (Figure 2A) that BLU-667 treatment led to elevated expression level of RET (Figure
2C). We next examined whether a hydrophobic or hydrophilic linker was ideal for the degradation
of RET. Interestingly, the replacement of hydrophobic linkers with hydrophilic linkers only gave
promiscuous SAR. Except for YW-L-5, the other three compounds YW-L-4, YW-L-6, and YW-
L-7 did not exhibit any activity for RET degradation. Since longer hydrophobic linkers were
favored, we speculated a rigid hydrophobic linker may lead to more potent RET degraders, as the
distance between RET and CRBN would be more defined with the rigid spacer. Indeed, all the
compounds from YW-L-8 to YW-L-12 showed good activity in degrading RET. In particular,
YW-L-12 could degrade 84% RET at 50 nM. Lastly, we also investigated the impact of the linkage
position on the aromatic ring of the lenalidomide. Intriguingly, with the same linker used for YW-
L-11 in which the linkage point is at position 4, the linkage at position 5 led to an even more potent
compound YW-L-13 that could degrade 96% RET protein at 50 nM.
1.2.5 Phenyl glutarimide-based PROTAC for RET protein degradation

Since phenyl glutarimide (PG) is currently recognized as the alternative ligand to target
CRBN E3 ligase but with enhanced stability in comparison to lenalidomide, we next studied the
conjugates of PG and LOX0-292 for their potential as PROTAC compounds to degrade RET.
Similar to lenalidomide-based PROTAC compounds, with shorter linkers YW-N-1, YW-N-2 and

YW-N-3 did not show any inhibitory activity (Table 1), whereas YW-N-4 bearing a longer linker



revealed 40% RET degradation at 50 nM. As anticipated, compounds from YW-N-5 to YW-N-11
all show significant degradation of RET protein due to the rigid linkers employed between PG and
the parent compound LOXO-292, a trend already observed for lenalidomide PROTAC
development. Among them, both YW-N-7 and YW-N-11 demonstrated the most potent activity
in RET degradation (Table 1) on a dose-dependent manner (Figure 2D). As shown in Figure 2D,
both YW-N-7 and YW-N-11 virtually completely degraded RET protein at 100 nM.
1.2.6 The cytotoxicity of YW-L-13, YW-N-7 and YW-N-11

Since RET is crucial for cancer cell growth, the inhibition of RET kinase activity or the
eradication of RET protein itself are expected to induce cancer cell death. As shown in Figure 2E,
the most potent compounds from both lenalidomide- and PG-based PROTACs YW-L-13, YW-
N-7 and YW-N-11 all revealed potent anti-cancer activity by killing cancer cells effectively. The
ECso ranged between 50-100 nMs, which are in good agreement with their ability to degrade RET
protein.
1.2.7 YW-N-7 RET degradation with proteasome inhibitor

To ensure that our PROTAC compounds exerted their activity through proteasome-
mediated protein degradation, we next chose to test the ability of YW-N-7 to degrade RET in the
presence of Bortezomib, an FDA-approved proteasome inhibitor. As shown in Figure 2, in the
absence of Bortezomib, YW-N-7 could completely inhibit RET phosphorylation and eradicate
RET protein as low as 50 nM. In the presence of Bortezomib, YW-N-7 could still function as a
kinase inhibitor as LOXO-292 to block the phosphorylation of RET. However, since Bortezomib
blocked the proteasomal enzymatic activity, the ability of YW-N-7 to degrade RET was inhibited

on a dose-dependent manner. Overall, this experiment demonstrated that our PROTAC compounds
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exerted dual functional roles to inhibit RET by suppressing RET kinase activity and degrading
RET protein.
1.2.8 Pharmacokinetics (PK) Test

To assess the potential of our PROTAC compounds as a research tool or potential RET-
targeted therapy, we set out to carry out in vivo studies. We first evaluated the PK profile of the
aforementioned lead compounds. As shown in Figure 3, among three compounds, YW-L-13,
which exhibited the most potent in vitro activity, revealed a poor PK profile with a short half-life
and ultrafast clearance. This is somehow in alignment with the reports that some CRBN-targeting
ligands including lenalidomide are not stable. YW-N-11 showed improved PK properties, whereas
YW-N-7 demonstrated the best PK profile with a half-life time of ~16 h. As such, we decided to
study the efficacy of YW-N-7 on a B/KR cell-derived xenografted mouse tumor model.
1.2.9 YW-N-7 inhibits B/KR CDX tumor growth in mice

After the pharmacokinetics (PK) test, we did a further in vivo cell viability test with the
best PK data, YW-N-7. From Figure 4A, it was clear that the B/KR cell viability decreased notably
after being treated with YW-N-7 for three days. The ICso of YW-N-7 was 105.2 nM. After being
treated with 500 nM for three days, the cell viability dropped to less than 20%. It suggested that
YW-N-7 could effectively inhibit B/KR cell growth by degrading RET protein level and inhibiting
RET kinase activity. This could be further confirmed by immunoblotting data. After cells were
treated with YW-N-7 at different concentrations for 15 h, it showed both pRET (Y905) and

KIF5B-RET could be degraded at as low as 50 nM (Figure 4B) To determine if the
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Figure 1.3. YW-N-7 inhibits cell-derived xenograft (CDX) tumors in animals. A: Cells treated with various
concentrations of YW-N-7. B: Cells treated with indicated concentrations of YW-N-7. (C-D): CDX tumors were
treated with YW-N-7 or mock-treated with vehicle. C: Body weights were measured with a scale. D, E: Images of
tumors collected at the endpoint. F: Immunoblots of tumor tissue samples.
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RET PROTAC YW-N-7 could inhibit RET oncogene-driven tumors in animals, we tested the
effect of YW-N-7 on tumor growth of B/KR CDXs. After measurable s.c. tumors were established,
mice bearing a similar size of tumors were treated with YW-N-7 (100 mg/kg/day) or the solvent
(control) by intraperitoneal injection starting on Day 9. Tumors grew rapidly in the solvent-treated
group. The YW-N-7 treatment significantly inhibited tumor growth (Figure 4C). Because the YW-
N-7 treatment did not reduce the animal body weight (Figure 4D), the drug dose was increased to
150 mg/kg/day on Day 17, which remained tolerated by the animals (Figure 4D). Figure 4E
showed that tumors from YW-N-7 -treated animals were significantly smaller than tumors from
the solvent-treated animals. Immunoblotting analysis of tumor samples showed that the phospho-
RET and KIF5B-RET protein were decreased in samples from the YW-N-7-treated group (Figure
4F).
1.3 Discussion

The rearranged-during-transfection (RET) protein is an attractive target for cancer therapy.
Aberrantly activated RET kinase caused by germline or somatic RET mutations is one of the major
oncogenic drivers frequently found in medullary thyroid cancer (MTC). However, the current
drugs selpercatinib (LOX0O-292) and pralsetinib (BLU-667) as RET kinase inhibitors do not
reduce RET protein level. Instead, consistently increased the RET fusion protein level in human
cancer cells. The overexpression of RET could reduce the effectiveness of the kinase inhibitors
and contribute to protein mutation and drug resistance. Thus, depletion of oncogenic RET protein
is likely to have an added benefit in addition to inhibition of the oncogenic RET kinase activity.

Proteolysis targeting chimera (PROTAC) is a developing modality to achieve targeted
protein degradation with heterobifunctional small chemical molecules. A PROTAC, bearing an E3

binding ligand, a linker and a ligand that engages the target protein of interest, brings an E;3 ligase
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into close proximity to the target protein of interest to form a ternary complex, resulting in
ubiquitination and proteasomal degradation of the target protein. Immunomodulatory imide drugs
(IMiDs), including thalidomide, lenalidomide, and pomalidomide, bind ubiquitously expressed
cereblon (CRBN) E3 ligase, are commonly used ligands for E3 ubiquitin ligases in PROTAC
design. More recently, phenyl glutarimide (PG) analogues of CRBN binders were used to improve
the chemical stability of CRBN ligands.

To deplete RET protein, we decided to design PROTAC compounds using LOX0-292
(selpercatinib) as the RET-targeting ligand. This is because the co-crystal structure of LOXO-
292/RET (PDB: 7JU6), suggested that the terminal hydroxypropyl group of LOXO0-292 has
minimal impact on its binding to RET (Figure 1B and 1C). We postulated that this group could
be replaced with certain linkers to link an ubiquitin E3 ligase binding ligand to degrade RET. For
targeting E3, we chose lenalidomide, a common ligand of the E3 ligase cereblon (CRBN). We also
made bifunctional molecules containing LOX0-292 scaffold and PG as a comparison.

Our subsequent SAR studies suggested that a rigid and hydrophobic linker is preferable to
join the LOX0-292 moiety and the CRBN binding ligand to make PROTAC compounds that could
degrade RET effectively. Indeed, both lenalidomide- and PG-based PROTAC compounds could
lead to the depletion of RET. The three lead compounds, lenalidomide-based YW-L-13, and PG-
based YW-N-7 and YW-N-11, demonstrated remarkable activity that completely depleted RET in
cancer cells at a concentration of 100 nM or below. Consistent with their ability to degrade RET,
they exhibited potent cytotoxicity toward cancer cells with EC50s less than 100 nM. In contrast,
we observed treatment of either selpercatinib (LOX0O-292) or pralsetinib (BLU-667) increased
RET protein level dramatically, which is consistent with the previous research findings. Also, in

the presence of high concentration of the proteosome inhibitor Bortezomib, the ability of YW-N-
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7 to degrade RET was impaired, however, it still exhibited potent inhibitory activity for RET
phosphorylation, suggesting that YW-N-7 has synergistic dual roles in inhibiting RET function:
acting as RET kinase inhibitor as well as RET protein degrader.

To select the lead compound for in vivo animal study, the lead compounds were first
evaluated by PK studies. Consistent with the previous reports, lenalidomide-based YW-L-13
revealed a poor PK profile, whereas YW-N-7 showed a good half-life time of 15.6 h. Therefore
YW-N-7 was selected for further investigation. Next, we demonstrated that YW-N-7 could
potently kill RET-positive B/KR cancer cells, by depleting RET protein and inhibiting RET kinase
activity (Figure 4A and 4B). To determine if the YW-N-7 could inhibit RET oncogene-driven
tumor growth in animals, we tested the effect of YW-N-7 on tumor growth on a B/KR cell-derived
xenograft mouse model. The treatment of YW-N-7 led to significant tumor regression in mice.
Immunoblotting analysis of tumor samples showed that the phospho-RET and KIF5B-RET protein
were decreased in samples from the YW-N-7-treated group, demonstrating the consistent
mechanism of in vitro and in vivo. As YW-N-7 revealed synergistic dual roles of RET inhibition
by inhibiting RET kinase activity and degrading RET, it could be used as a powerful research tool
to gain insight into RET functional mechanism by selectively depleting RET protein. Its potent
activity also enables it a lead compound for development of RET-targeted cancer therapy.

1.4 Conclusion

In summary, we have developed a series of bifunctional molecules as novel PROTAC
compounds for the targeted degradation of RET. These molecules are based on a LOX0O-292
scaffold, a CRBN E3 ligand using either lenalidomide or phenyl glutarimide (PG), and a linker of
varied lengths, flexibility, and hydrophobicity. Among them, YW-N-7 as our lead tool compound

exhibited synergistic dual functional roles by selectively depleting RET while inhibiting the kinase
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activity of RET simultaneously in vitro and in vivo. The compound demonstrates significant
antitumor efficacy on a B/KR cell-derived xenografted mouse model. This study exemplifies the
feasibility of YW-N-7 as both a powerful tool compound to study RET biomechanism and a
promising lead compound for RET-targeted cancer therapy.

1.5 Synthesis and biological test
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Figure 1.4. Synthesis route of L-1-1, L-2-2, L-3-2.

1.5.1 Synthesis of L-1-3

Step 1: Tert-butyl 4-(Tosyloxy) piperidine-1-carboxylate and 4-ethynylpiperidine HCI salt were
dissolved in ACN, then 10eq of K»CO3 and 0.2eq of KI were added. The reaction solution was
stirred for 48h. The reaction was diluted with water and extracted with EA 3 times. Combine the
EA phase, the organic phase was washed with brine, dried with anhydrous Na;SOs, then
evaporated under reduced pressure. The left residue was purified by column chromatography to
get L-1-1, using EA to get product. [M+H"]:293.2
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Step 2: Methyl 4-iodobenzoate(leq) and tert-butyl 4-ethynyl-[1,4'-bipiperidine]-1'-
carboxylate(1eq) were dissolved in anhydrous DMF, then 0.2eq of Cul and Pd (PPh3).Cl, were
added. The mixture was purged under N for Smin. Then 3eq of TEA was added under N>
environment. The mixture was stirred under 100°C for 4h. Then the reaction was cooled down to
R.T., DMF was evaporated under reduced pressure. The left residue was purified by column
chromatography, using EA: MeOH=30:1 to get product, L-1-2. [M+H"]:427.6

Step 3: Tert-butyl 4-((4-(methoxycarbonyl) phenyl) ethynyl)-[1,4'-bipiperidine]-1'-carboxylate
was dissolved in MeOH, 2eq of 2M NaOH was added. The reaction solution was stirred under
100°C for 2h. Next, MeOH was evaporated under reduced pressure, the left residue was diluted
with H>O and acidified to pH around 4 using 1M HCI. The H>O solution was extracted by DCM
for two times, combine the organic layer, washed by Brine and dried by anhydrous Na>SOs. EA
was removed under reduced pressure, the left residue was purified by column chromatography,
using DCM: MeOH=20:1 to get product, L-1-3. [M+H']:412.5

1.5.2 Synthesis of L-2-2:

Step 1: Methyl 4-bromobenzoate, tert-butyl piperazine-1-carboxylate, Pd2(dba)s, and X-phos were
dissolved in toluene. The reaction solution was purged with nitrogen and sealed. The mixture was
refluxED 8 hours. Next, toluene was evaporated under reduced pressure, water was added and
extracted with 300ml EA three times. EA was evaporated and the left oil was purified by column
to get product tert-butyl 4-(4-(methoxycarbonyl) phenyl) piperazine-1-carboxylate.

Step 2: tert-butyl 4-(4-(methoxycarbonyl) phenyl) piperazine-1-carboxylate was dissolved in
MeOH, then 2M NaOH 3eq was added. The resulting mixture was refluxed under 70°C for 8 hours.
After the reaction was done, cool down to R.T., followed by evaporating MeOH and acidifying

the solution to pH around 4, then extracted by EA 3 times. Combine the EA phase and washed by
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Brine, then dried by Na>SOa4, EA was evaporated under reduced pressure and purified by column
to get product 4-(4-(tert-butoxycarbonyl) piperazin-1-yl) benzoic acid, using Hex: EA=3:1 to get
product. 'H NMR (600 MHz, DMSO-de) & 12.42 (s, 1H), 7.77 (s, 2H), 6.96 (s, 2H), 3.45 (s, 4H),
3.29 (s, 4H), 1.42 (s, 9H). 3C NMR (600 MHz, DMSO-ds) & 167.69, 157.20, 153.58, 130.92,
121.56, 115.62, 81.28, 48.87, 29.38.

1.5.3 Synthesis of L-3-2:

Methyl 4-bromobenzoate, tert-butyl piperazine-1-carboxylate, Pd(dba);, and X-phos were
dissolved in toluene. The reaction solution was purged with nitrogen and sealed. The mixture was
refluxed for 8 hours. Next, toluene was evaporated under reduced pressure, water was added and
extracted with 300ml EA three times. EA was evaporated and the left oil was purified by column
to get product L-3-1.

Tert-butyl 4-(4-(methoxycarbonyl) phenyl) piperazine-1-carboxylate was dissolved in MeOH,
then 2M NaOH 3eq was added. The resulting mixture was refluxed under 70°C for 8 hours. After
the reaction was done, cool down to R.T., followed by evaporating MeOH and acidifying the
solution to pH around 4, then extracted by DCM 3 times. Combine the DCM phase and washed
by Brine, then dried by Na;SOs4, DCM was evaporated under reduced pressure and purified by
column to get product L-3-2. '"H NMR (600 MHz, DMSO-ds) § 12.42 (s, 1H), 7.77 (s, 2H), 6.96
(s, 2H), 3.45 (s, 4H), 3.29 (s, 4H), 1.42 (s, 9H). *C NMR (151 MHz, DMSO-ds) & 167.69, 157.20,
153.58, 130.92, 121.56, 115.62, 81.28, 48.87, 29.38.

1.5.4 Synthesis of W-1-4

Step 1: 5-bromo-2-fluoropyridine and tert-butyl 3,6-diazabicyclo[3.1.1]heptane-6-carboxylate
were mixed dissolved in DMSO, then 10 eq K2CO3 was added. The solution was stirred under

100°C overnight. On the second day, the reaction solution was diluted water and extracted with
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EA, then organic phase was washed with Brine and dried with Na>SOs, followed by concentrated
under reduced pressure. The residue was purified by chromatography to get W-1-1.
(Hexane:EA=1:1, get product).

Step 2: W-1-1 was dissolved in 4 M HCI in dioxane and stirred for 2. Then, the solvent was
evaporated under reduced pressure. The left residue, W-1-2, was used for the next step without

any further purification.

Warhead synthesis
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Figure 1.5. Synthesis of different methylene linkers of W-2-3.

Step 3: W-1-2 was mixed with 6-methoxynicotinaldehyde in 1,2-Dichloroethane (DCE), then 3 eq
of Sodium triacetoxyborohydride [NaBH(AcO)3] and 3 eq of Triethylamine (TEA) were added.

The resulting solution was stirred under room temperature (RT) overnight. The second day, the
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reaction solution was diluted with water and extracted with EA. The organic phase was washed
with Brine and dried by Na>SOs, then evaporated under reduced pressure. The left residue was
purified by chromatography (pure EA get product W-1-3 with 1% TEA). 'H NMR (600 MHz,
Chloroform-d) 6 8.25 (d, J = 2.5 Hz, 1H), 8.09 — 8.00 (m, 1H), 7.59 (ddd, J = 10.1, 8.7, 2.5 Hz,
2H), 6.71 (d, J= 8.5 Hz, 1H), 6.45 (d, /=9.0 Hz, 1H), 3.91 (s, 3H), 3.76 — 3.68 (m, 4H), 3.51 (s,
2H), 3.46 (d, J=11.9 Hz, 2H), 2.66 (q, J = 6.8 Hz, 1H), 1.60 (d, J = 8.6 Hz, 1H).

Step 4: The 3-(5-bromopyridin-2-yl)-6-((6-methoxypyridin-3-yl)methyl)-3,6-
diazabicyclo[3.1.1]heptane (leq), Bis(pinacolato) diboron (2eq), Acetic potassium(3eq) and
PdClx(dppf)-CH2Cl2(0.1eq) were mixed together in dioxane and sparged under N> for 10min, the
reaction solution was sealed and stirred under 90°C overnight. The second day, the reaction
solution was filtered through filter paper and evaporated under reduced pressure. The left residue
was purified by chromatography (EA:MeOH=10:1, get product).

[M+H]":341.2 in form of boron acid in LC-MS.

1.5.5 Synthesis of W-2-3

Step 1: 4-bromo-6-hydroxypyrazolo[1,5-a] pyridine-3-carbonitrile (1.0 eq) was stirred with tert-
butyl 4-bromobutanoate (1.1eq) in DMF under 70°C for 3h. Three hours later, the reaction solution
was diluted with H>O and extracted with EA, then washed with Brine and concentrated under
reduced pressure. The left residue was purified by chromatography to get product W-2-1.
(Hexane:EA=3:1 get product), [M+H]":366.0

Step 2: tert-butyl 4-((4-bromo-3-cyanopyrazolo[1,5-a]pyridin-6-yl)oxy)butanoate (1.0 eq), 6-((6-
methoxypyridin-3-yl)methyl)-3-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)-
3,6-diazabicyclo[3.1.1]heptane (1.5 eq), X-phos (0.2 eq), Pd2(dba); (0.05eq) and 2M K3PO4 were

mixed together in dioxane and sparged under N> for 10min. The resulting mixture was stirred
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overnight. Next, the dioxane was evaporated under reduced pressure and the residue was directly

purified by column chromatography using EA:MeOH=10:1, product W-2-2. [M+H]":596.6

Step 3: The previous step product was dissolved in DCM:TFA=1:1 to react for 2h. Then, the

solution was evaporated under reduced pressure and co-evaporated with hex and DCM to totally

remove TFA. The residue was purified by column chromatography, using DCM:MeOH=10:1 to

get W-2-3. [M+H]":540.1

The rest of warheads with different length of linkers were synthesized using the same procedure.

Heterocyclic linker connected to Ej:
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Figure 1.6. Synthesis of various E; ligands with different heterocycle linkers.

1.5.6 Synthesis of H-1-1 to H-1-3

Compound E-2-3 was dissolved in TFA:DCM=1:1 solution and stirred for 2 hours. Then, solvent

was removed under reduced pressure, and the left residue was co-evaporated with hexane for 5

times to totally remove TFA. The left oil residue was dissolved with L-1-3 in DMF, 1.2 eq of

HATU and 3 eq of DIPEA were added. The reaction solution was stirred under R.T. overnight.

Next, DMF was removed under reduced pressure, the left solid was purified by column
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chromatography to get product, using EA:MeOH=10:1 to get product H-1-1. [M+H]": 691.8 With
the same strategy, H-1-1 to H-3-1 were prepared.

1.6 Cell and animal test material

1.6.1 Antibodies

Antibodies to phospho-RET (Y905) (#3221), RET (#14698), and EGFR (#2232) were from Cell
Signaling Technology (Danvers, MA,USA). anti-B-actin antibody (#A5316) was from Sigma
Aldrich (St. Louis, MO, USA).

1.6.2 Cell lines and cell culture

The CCDC6-RET fusion-positive human TPC1 thyroid carcinoma cells were from the European
Collection of Authenticated Cells Culture (ECACC). Mouse BaF3 cells expressing KIFSB-RET
(B/KR) were generated using a lentiviral vector as described previously*. Cells

were free of mycoplasma. TPC1 cells were cultured in RPMI-1640/5% fetal bovine serum (FBS)
plus penicillin-streptomycin (100 U/ml) at 37 °C/5% CO;. B/KR cells were cultured in RPMI-
1640/10% FBS plus penicillin-streptomycin (100 U/ml) at 37 °C/5% COs..

1.6.3 Cell-based assays and Immunoblotting analysis

Cell viability assay was performed using CellTiter-glo reagent (Promega, Madison, WI, USA) in
96-well plates as described previously. For experiments with TPC1 cells, cell viability was
determined after 5 days of drug treatment® 2*2°. For experiments with B/KR cells, cell viability
was determined after 3 days of drug treatment. For immunoblotting analysis of CCDC6-RET
protein degradation, TPC1 cells cultured in 60-mm plates (50% confluent) were either treated with
the test compound for 24 h or for the length of time indicated in the Figure x legend. For
immunoblotting analysis of KIFSB-RET protein degradation in B/KR cells, 2x10° cells in 6-well

plate were treated with the test compound for 15 h.
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Cell lysates were prepared by lysis in cold Lysis Buffer A (50 mM Tris-HCI, pH7.5, 150 mM
NaCl, | mM EDTA, 1 mM EGTA, 25 mM NaF, 5 mM sodium pyrophosphate, 1 mM Na3;VOQOs, 2
pg/ml aprotinin, 2 pg/ml leupeptin, 1 mM dithiothreitol, 20 mM p-nitrophenyl phosphate, 1%
Triton X-100). Cell lysate supernatants were obtained by microcentrifugation twice at 16000 rpm
for 10 min at 4 °C. Equal amounts of soluble cell lysate proteins were separated on 10% SDS-
polyacrylamide gels, transferred to nitrocellulose filters and analyzed by immunoblotting.

1.6.4 PK study

In two separate experiments, the compound YW-N-7 was administered either p.o. or i.p. to mice
at the dose of 50 mg/kg (1 mg/20g, volume 150 uL). After administration, 75 uL blood samples
are collected at 10 min, 20 min, 30 min, 1h, 2h, 4h, 8h, 16h, 24h, 36h, 48h (n=3 per time point,
and each mouse was used for three time points, thus 12 mice were used for either p.o. or i.p. to
make a total of 24 mice) after drug administration. Blood samples were collected into 1.5-mL
Eppendorf tubes containing 30 uL disodium EDTA (0.5 M, pH 8.0), kept on ice, then centrifuged
at 4000 rpm/min for 10 min under 4 °C. The supernatants (serum) were collected and stored under
—80 °C for future analysis. 100 uL of the serum samples are added to 9:1 ration of acetonitrile and
glacial acetic acid. The samples are cooled in ice for 10 min, followed by centrifuging at 10,000
rpm and 4 °C for 10 min. The clear supernatants are transferred to vials and analyzed by
LC/MS/MS.

1.6.5 Cell-derived xenograft (CDX) tumor study

The CDX tumor growth experiment in animals was approved by the IACUC of the University of
Oklahoma Health Sciences Center. B/KR cells used for the animal experiment were verified for
free of mouse pathogens by IDEXX BioAnalytics. Cells were prepared in serum-free RPMI-1640

medium and inoculated s.c. (5x10° cells/0.1 ml/each) into the right flanks of 6-week old female
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SHO mice (Charles River). After measurable tumors were established, mice were treated either
with YW-N-7 at the dose specific in the figure legend or with the same volume of vehicle by i.p.
injection. Each group had 8 mice bearing tumors of the similar size. The compound was dissolved
in a vehicle that contained 5% 1-methyl-2-pyrrolidinone, 40% polyethylene glycol 400, 5% solutol
HS-15, and 49.5% saline. Tumor sizes and animal body weights were measured similar to that
described?*. Statistical analysis was performed using unpaired t-test with Welch’s correction. p <
0.05 was considered statistically significant.

1.7. Additional Compounds

In addition, we also synthesize VHL, pomalidomide, and thalidomide as E3 ligands PROTAC
molecules with different length of methylene linkers (Figure 1.7.). However, none of them have
comparable degradation rate compared with lenalidomide or PG E3 ligands. We didn’t continue to

do further research about these three ligands.

Table 1.2. HRMS data

Compound Degradation rates at 50 nM (%)
YW-V-1 -120.7
YW-V-2 54.4
YW-V-3 15
YW-V-4 -7.8

YW-T-1 4.1
YW-T-2 1.9
YW-T-3 ND
YW-T-4 ND
YW-T-5 25.3
YW-T-6 435
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CHAPTER TWO: COVALENT INHIBITOR TO TARGET RET G810C MUTATION

2.1. Introduction

RET receptor tyrosine kinase is encoded by RET proto-oncogene, and RET tumors are
usually caused by chromosome rearrangements or point mutations. About 1%-2% NSCLC
originated from RET chimeric proteins, including fusions with KIF5B, CCDC6, NCOA4, and
TRIM33. Aberrant RET signaling also can result in thyroid cancer. For example, MTC either arise
sporadically (75% ) or as a consequence of RET germline mutation.?” In addition, RET
chromosomal rearrangements, such as, CCDC6-RET, PRKARIA-RET, and TRIM24-RET, are
related to PTC.

Previously, first generation inhibitors are multi-kinase inhibitors, Cabozantinib,
Vandetanib, and Lenvatinib, which were used to treat RET malignancy. >’ Vandetanib showed a
potency with 100nM ICsy. It can effectively inhibit the phosphorylation and signaling transduction
of RET/PTC3, RET/MEN2B, and EGF/RET chimeric receptor. 28 In clinical trial, it revealed an
11-month prolongation of median progression-free survival (from 19.3 months to an estimated
30.5 months).? For Cabozantinib, it inhibited TT cell RET phosphorylation bearing C634W
mutation, which is usually related to familial MTC (FMTC) and MEN2A .3 However, the overall
survival (OS) has no big difference between Cabozantinib and Placebo (26.6 months and 21.1
months). In selective phase 3 III trial of Lenvatinib, it showed significantly improved median PFS
and ORR, reaching 18.3 months/64.8% compared to 3.6 months/1.5% in 392 patients with
differentiated thyroid carcinoma (DTC). 3! Moreover, in a phase II trial against 25 NSCLC patients,

it revealed promising clinical activity with an ORR of 16% and a median PFS of 7.3 months.*
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In 2020, the US Food and Drug administration granted two RET selective inhibitors,
Selpercatinib and Pralsetinib. It demonstrated good potency in vitro and in vivo towards cells
harboring RET alternations, especially gatekeeper V804M/L mutants. The crystal structures unveil
that they bind to RET kinase domain very different from multi-kinase inhibitors (MKI). They
occupy both the front and back pockets of the catalytic cleft, in contrast to MKI, they don’t pass
through the channel formed by V804 and K758. Instead, they wrap around the lysine, thus avoiding
steric hinderance with V804M/L gatekeeper mutations. Especially, Selpercatinib displays
exceptional efficacy towards RET wild type (WT) and RET gatekeeper V804M/L mutations with
impressive ICso value of 0.4 nM and 0.8/0.4 nM.** Among 105 participants clinical trial who has
been treated with platinum-based chemotherapy, it achieved 64% ORR with a median PFS of 16.5
months. In the previously untreated 39 patients, the ORR was 85%, with 90% of the response last
for 6 months.>* However, in recent research, solvent front mutations, particularly G810S/C/R, have
been identified as the main drivers to long-term administration of acquired resistance to selective
RET inhibitors, such as Selpercatinib and Pralsetinib. The first case of solvent front mutations
patients was observed in a patient with KIFSB-RET fusion NSCLC which had good clinical result
at first, but later developed acquired drug resistance. In circular tumor DNA sequencing test, it
turned out to correlate with G810S/C/R mutations. The potency of selpercatinib towards these
three mutations decrease several folds compared with WT.*> Among G810S/C/R mutations, the
G810C is the main solvent front mutation. Now, it is urgent to develop next generation RET
inhibitor to solve the problem of G810C mutation.

Targeted covalent inhibitors are rationally designed inhibitors that bind to protein first, then
react rapidly to a proximate nucleophile, usually cysteine, to form a bond. Compared with

conventional inhibitors, it offers several advantages, such as improved potency, selectivity,
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pharmacodynamics, and efficacy.’® At the same time, due to its very reactive warheads, it has
shortcomings of indiscriminate reactivity that could form covalent adduct with unexpected targets
and idiosyncratic toxicities. Even though most pharmaceutical companies don’t put that much
resource on covalent drug pipelines, still there are several examples of covalent drug that have
been approved for therapeutics or at late-stage clinical trials. For example, Afatinib, Mobocertinib,
Dacomitinib are approved for EGFR driven lung cancer; Neratinib is used for HR2 positive breast
cancer; Ibrutinib is a BTK inhibitor for leukemia, lymphoma; Penicillin has been used as broad-

spectrum antibiotics since last century.
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Figure 2.1. Examples of Covalent Inhibitor.
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2.2. Design of RET Covalent inhibitors

G810C RET in complex with Selpercatinib
PDB:7JU6

Figure 2.2. Design of RET Covalent inhibitor.

Based on the crystal structure (Figure 2.2.) of Selpercatinib binding with RET tyrosine kinase
domain (PDB:7JU6), G810C mutation causes steric clash with the solvent front quaternary
hydroxy group resulting in resistance to Selpercatinib. In our design, we replace the solvent front
hydroxy group with different Michael receptors. We expect mutated cysteine to form a bond with
the active Michael warheads, thus deactivate G810C RET mutant.

2.3. Result

First, we synthesized six different RET covalent inhibitors using different Michael receptors. Y W-
D-50-2, YW-D-50-6, and YW-D-50-7 showed acceptable ICso against B/KR(G810C). From WB
(Figure 2.3.), it showed that YW-D-50-2, YW-D-50-6 can effectively inhibit the phosphorylation
of RET(Y905), but it didn’t show a good potency towards WT RET. This represented YW-D-50-
2, YW-D-50-6 had good selectivity between WT and G810C RET. Still, we need more

characterizations to confirm the binding mechanism and PK/PD data of these two lead compounds.
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Table 2.1. SAR of different Michael Receptors.

Compound R 1Cso B/KR(G810C)
YW-D-50-2 26.10
YW-D-50-3 360.5
YW-D-50-4 81.19
YW-D-50-5 93.85
YW-D-50-6 14.19
YW-D-50-7 11.53

Compound LOX0292 YWD502 Compound LOX0292 YWD506
010 20 0 10 20 0 10 20 0 10 20 (nM) 010 20 0 10 20 0 10 20 0 10 20 (nM)
PRET(YO05) wmw —  euwemw e e ww e — — _{2 PRET(YO05) P == == i an @i o0 oo e — —120
RET e e e oo oo e e e e a» GO -120 RET = a» am a» e o WD G G o e oo —120
ACTIN S esereaaresus -40 ACTIN o ererare w e e erererey _
B/KR SF site G810 GB810C G810 G810C B/KR SF site G810 GB10C G810 _ G810C
Cell line Cell line

Figure 2.3. WB data of YW-D-50-2, YW-D-50-6.
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2.4. Chemistry Synthesis

Synthesis route:
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Figure 2.4. Covalent Inhibitor Synthesis Route.

C-1

6-bromo-4-(6-fluoropyridin-3-yl) pyrazolo[1,5-a] pyridine-3-carbonitrile(1eq) and tert-butyl 3,6-
diazabicyclo [3.1.1] heptane-6-carboxylate (1.1eq) were dissolved in DMSO with 5eq of K>CO:s.
The reaction solution was stirred for 3 days under 110°C. After, the reaction solution was cooled
down to R.T, extracted with EA for 3 times. Combine the organic layers, washed with Brine, dried

by anhydrous Na;SO4. Then, EA was removed under reduced pressure, the left oil run column

chromatography using Hex:EA=1:1 to get product, Rf=0.54.
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C-2

C-1 was dissolved in a mixture of DCM:TFA=1:1 for 2h, then acid was removed under reduced
pressure. The left oil was purified by column chromatography, using DCM:MEOH=10:1 to get
product, Rf=0.4.

C-3

Compound C-2 (1eq) was dissolved in DCM under R.T.. Then, 2eq of 6-methoxynicotinaldehyde
was added, followed by 1.5eq of sodium triacetoxyhydride and 1eq of AcOH. The reaction mixture
was stirred overnight. Next day, reaction was quenched with NaHCO3 and extracted with DCM
for two times. Combine the organic layers, washed with Brine, and dried with anhydrous Na>SOa.
DCM was removed under reduced pressure, the left residue was purified by column
chromatography, using DCM:MeOH=10:1 to get product, Rf=0.2

C-4

A mixture of compound C-3 (1eq) and tert-butyl carbamate (1.1eq) were dissolved in toluene, then
0.05 eq of Pdx(dba)s, 4eq of Cs2COs3, and 0.05 eq of Xantphos were added. This Hartwig-Buchwald
reaction runs under microwave at 110°C for 2h. Then, the solvent was removed under reduced
pressure. The left residue was dissolved in acetonitrile and water, filtered, and purified by HPLC.
C-6

Compound C-4 was dissolved in TFA: DCM=1:1 and stirred for 2 h. After, solvent was removed
under reduced pressure, the left oil was co-evaporated with hex for 5 times to totally removed TFA
to get C-5. C-5 was used for the next step without any further purification. C-5 was dissolved in
DCM in ice bath, then 2 eq of TEA was added, followed by 2 eq of different Michael receptor
warheads. The reaction solution was stirred overnight. Next, DCM was removed, the left residue

was dissolved in ACN and water, filtered, purified by HPLC at last.
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CHAPTER THREE: DENDRIMERIC PEPTIDOMIMETIC AS ANTIMICROBIAL

3.1. Introduction

It is estimated that 700,000 to several million deaths result from bacterial infections per
year, and 2.8 million people are infected by bacteria resistant to current antibiotics in the USA,
with at least 35,000 people dying from that. Due to the scarcity of new antibiotics to combat
antibacterial resistance (AMR), over 50 million people could die by 2050, with the yearly death
toll being 10 million under the current predicted model.’” As a result, it is extremely urgent to
develop new antibacterial agents that can mitigate emerging antibiotic resistance.

Host defense peptides (HDP), which are produced by organisms as the first-line agents to
defend against a wide range of bacteria, have gained much attention from scientists.*® Usually,
HDPs share two common features: one is the cationic charges, and the other one is a proper ratio
of hydrophobic residues, which enable HDPs to adopt amphipathic structures and exhibit
significant selectivity toward bacteria over mammalian cells. This is because the outer leaflet of
the mammalian cell membrane is composed of zwitterionic lipids, while the outer leaflet of the
bacteria membrane mainly consists of negatively charged phospholipids. As a result, the
negatively charged bacterial membrane tends to interact with cationic HDPs preferentially, leading
to bacterial cell death while maintaining low hemolysis risks and cytotoxicity.* In human, the two
main classes of HDP are defensin and cathelicidin. Defensins usually have a -sheet core and it
can be subdivided into a, B, and 0 defensins.*’ Cathelicidins are produced as prepropeptides that
commonly have cathelin-like domain before cleavage by serine proteases. A majority of

cathelicidins have secondary helical structure. One side of the helix is hydrophilic cationic charged
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amino acids, the other side is hydrophobic. Thus, cathelicidins can interact and perturb with
anionic surface of bacteria.*® Nevertheless, there are still drawbacks associated with HDPs, such
as proteolytic degradation susceptibility, poor selectivity, and moderate activity. To address these
problems, several classes of peptidomimetics have been developed to overcome the drawbacks of
HDP, including peptoids,*' B-peptides,*? y-AApeptides,** and oligourea (Figure 3.1.).* These new
unnatural peptidomimetic sequences can mimic HDP function against pathogens and retain
resistance to proteolytic hydrolysis (Figure 3.2.).4°

Lipidated peptides have been presented as antibiotics for years. For instance, polymyxin
B* and daptomycin*’ are two FDA-approved lipo-cyclic peptides. While daptomycin only
displays activity against Gram-positive bacteria, polymyxin B is only active for Gram-negative
bacteria. Despite distinct antibacterial mechanisms, it has been shown that lipid tails are critical
for their activity, which facilitate bacterial membrane interaction.*® Recently, our group designed
a new class of antimicrobial peptidomimetic compounds composed of y-AA amino acid (Figure

1) .To further explore the antimicrobial potential of y-A Apeptides, we herein report a new class of

short, lipidated dendrimeric y-AApeptides as potential antibacterial agents.
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Figure 3.1. Structure of a-peptides, y-AA peptides, and dendrimeric y-AA peptides.
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Figure 3.2. Examples of HDPS

3.2. Examples of HDP and mimics

In recent years, our group developed several y-AA peptides and lipidated y-AA
peptides,such as compounds, 26, 29, and 31, based on the structure of HDP. For the lipidated vy-
AA peptides, the lipidated tail would be inserted into bacterial membrane, while the positive
lysine’s function as positive charged group to attach to the surface of the bacterial membrane.
However, lipidated peptides don’t guarantee good selectivity. The cytotoxicity and in vivo activity
were not evaluated.

To achieve the goal of developing small-molecule antimicrobial peptide derivatives with
drug-like properties, a new series of compounds with admantaneacetyl groups was developed, they
showed broad-spectrum activities.Moreover, the lead compound 28 didn’t show significant

activity loss even under Na*, K*, and Ca?" cations. But we didn’t run extensive structure activity
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relationships research about compound 28. In the future, more research can be done with 28 to

explore more enhanced activities and therapeutic index (Figure 3.3). %
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Figure 3.3. Examples of recently developed y-AA peptides and lipidated y-AA peptides to mimic HDPs in our group.

3.3. Results and Discussion

In our current design, a positively charged y-AApeptide building block was attached to the
secondary amine of another y-AApeptide building block, to which different lengths of lipid tails
were introduced to make a series of miniature lipo-dendrimeric y-AApeptides (Figure 1). As such,

these amphipathic structures were expected to mimic the antibacterial function of HDPs. The
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positively charged side chains would form electrostatic attraction with bacterial membranes,
whereas the lipid tail would facilitate the insertion of the compounds into bacterial membranes,
leading to membrane disruption. To this end, the compounds were tested for the ability to kill a
panel of Gram-positive and Gram-negative bacteria (Table 1). For the building blocks conjugating
to the C16 lipid tail, such as Leu (YW-1), Phe (YW-2), Ala (YW-3), Tyr (YW-4), Ser (YW-5),
Lys (YW-6), and Arg (YW-7), different y-AA amino acids were synthesized and solid phase was
used to do final synthesis, the structure of newly synthesized compounds listed in Scheme 1. It
shows these compounds generally exhibited effective antimicrobial activity and did not show
hemolytic activity up to 125 pg/mL. While YW-1 displayed the most broad-spectrum
antimicrobial activity against a panel of Gram-positive and Gram-negative bacteria, certain
compounds, such as YW-3, 4, 6, and 7, demonstrated highly selective activity toward MRSA
(MIC: 0.75—1.5 pg/mL) (Table 3.1.). The findings suggested that functional groups on the building
blocks conjugated to the C16 lipid tail could play an important role in antibacterial activity and
selectivity, which could direct the future design and optimization of this class of compounds

(Figure 3.4).
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Table 3.1. Antibacterial activity, hemolytic activity, and selectivity of dendrimeric y-Aapeptides. “---” means
not tested.

MIC (pg/mL) HC
Gram-Positive (+) Gram-Negative (-) (ugS/O Selectivity Index
MRSA | EF. MII;S P.A. K.P. |E.coli | mL) (HCs/MICMRSA)
YW-1 1.5-3 1.5-3 1.5-3 | 6-12.5 | 12.5-25 3-6 >125 >41.7
YW-2 1.5-3 1.5-3 1.5-3 13'55_ 6-12.5 3-6 >125 >41.7
YW-3 | 0.75-1.5 3-6 6-12.5 | 6-12.5 >25 3-6 >125 >83.3
YW-4 | 0.75-1.5 3-6 3-6 >25 >25 3-6 >125 >83.3
YW-5 1.5-3 6-12.5 | >125 >41.7
YW-6 1.5-3 6-12.5 | >125 >83.3
YW-7 | 0.75-1.5 3-6 3-6 122'557 >25 3-6 | >125 >83.3
YW-8 | 12.5-25 >25
YW-9 >25 >25
YW-10 >25 >25
YW-11 >25 >25

3.4. Materials and Methods
3.4.1. Membrane Depolarization Study

To probe the mechanism of antibacterial activity, we first carried out a membrane
depolarization study with the membrane potential-sensitive dye 3,3'-dipropylthiadicarbocyanine
iodide (diSC35) (Figure 2A,B).>° DiSC35 usually accumulates in living bacterial membranes, and
due to self-quenching, it shows low fluorescence intensity. However, if the membrane is disrupted,
and the fluorophore is released from the membrane, fluorescence will improve dramatically. As
shown in Figure 2, when the bacteria were treated with different concentrations of the lead
compound YW-1, both E. coli and MRSA exhibited dose-dependent increases in fluorescence
intensity. It was intriguing that YW-1, at a two-fold of MIC or above, caused even more intensive
fluorescence than the positive control Triton, which is well known for causing membrane damage.
This experiment result demonstrated that the bacterial membranes were disrupted by YW-1,

indicating a potential mechanism similar to that of HDPs (Figure 3.5.).
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Figure 3.5. Membrane depolarization study of YW-1 against Gram-negative bacteria E. coli (A) and Gram-positive
bacteria MRSA (B). Triton x-100 as a positive control.
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3.4.2 Outer Membrane (OM) Permeabilization

Next, using E. coli as a microorganism, we evaluated the OM permeabilization of YW-1.
In aqueous conditions, 1-N-Phenylnaphthylamine (NPN) is blocked by the cell wall. However, if
the OM is permeabilized, and NPN is taken up as a result, the fluorescence intensity will increase,
compared to non-treated OM.>! As shown in Figure 3A, with 1% Triton as a control, the
permeabilization capability of the OM was determined by the absorbance of NPN in a

concentration-dependent manner. YW-1 exhibited a good potency
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permeability with 1 x MIC of 98%, compared with that of 1% Triton (Figure 3.6.).
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Figure 3.6. Outer membrane (OM) permeabilization (A) and inner membrane permeabilization (B) against E. coli.
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3.4.3. Inner Membrane (IM) Permeabilization

We next used the o-nitrophenyl-p-d-galactopyranoside (ONPG) hydrolysis assay to test the
ability of the lead compound YW-1 to permeabilize the inner membrane of Gram-negative bacteria
(Figure 3B). If the lead compound YW-1 compromised the bacterial inner membrane, ONPG
would interact with the cytoplasmic enzyme B-galactosidase to form o-nitrophenol, which can be
measured under OD 420 nm.>?> As shown in Figure 3B, when E. coli were treated with YW-1 with
8 x MIC, 4 x MIC, 2 x MIC, and 1 x MIC, the OD 420 nm intensity was enhanced to a great
extent.
3.4.4. Fluorescence Microscopy

To further assess that the bacteria were killed with YW-1 by comprising the cell membrane,
we conducted a fluorescence microscopy experiment (Figure 3.7). Two dyes, 4',6-diamidino-2-
phenylindole (DAPI) and propidium iodide (PI), were employed in this experiment. PI can only
stain dead or injured cells since it does not have cell membrane permeability. Instead, DAPI can
be used to stain both dead and live cells because it is cell permeable. After MRSA and E. coli were
treated with YW-1, red fluorescence was observed under the PI channel (Figure 3.7.), suggesting

that bacterial membranes were compromised by YW-1.
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Figure 3.7. Fluorescence microscopy of the bacteria MRSA and E. coli treated with 2 x MIC of YW-1, scale bar 10
pm.

3.4.5. Transmission Electron Microscopy (TEM)

TEM microscopy offers convenient access to check the intactness of cell membranes. The
cell membranes of MRSA and E. coli were intact. However, after treatment with YW-1, the
membranes clearly demonstrated damages, and bacterial cells lost their spherical (MRSA) or rod

(E. coli) shapes (Figure 5), indicating that the membranes of these bacteria were disrupted (Figure

3.8).



Untreated Treatment

Figure 3.8. TEM graphs of MRSA and E. coli in the presence and absence of YW-1 at 2 x MIC, scale bar 2 um.

MRSA

E. Coli

3.4.6. Bacterial Killing Efficiency
3.4.6.1. Time-Kill Kinetics Study

To evaluate how rapidly bacteria could be eradicated (Figure 3.9), the lead compound YW-
1 was examined for its ability to eradicate MRSA and E. coli by studying the time-kill kinetics. As
shown in Figure 6, YW-1 could remove MRSA and E. coli thoroughly with 4 x MIC and 8 x MIC
within 2 h.

A Time Kill Plot for MRSA B Time Kill lot for E. Coli
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Figure 3.9. Time-kill kinetics of YW-1 toward MRSA (A) and E. coli (B).
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3.4.6.2. Drug Resistance Test

Since the abuse of antibiotics, antibacterial drug resistance has become an increasingly
serious threat. Thus, it is of great importance to assess the drug resistance of newly developed lead
compounds. As shown in figure 3.10, the control, ciprofloxacin, developed drug resistance after
14 generations, since the MIC increased about 100-fold. In comparison, YW-1 did not have an
obvious change in MIC, which suggests that YW-1 has a low probability of developing antibiotic

resistance. Our compound had a lower probability of developing drug resistance.
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Figure 3.10. Drug resistance study of YW-1 toward MRSA.

3.5. Experiment Procedure
3.5.1. General Experiment Methods

Chemical reagents and solvents were bought from Sigma Aldrich, Oakwood, TCI, and
Chem-Impex. Final products were purified with Waters Breeze 2 HPLC and lyophilized using
Labconco lyophilizer. HPLC traces of the final product were collected using 5-95% acetonitrile
in water with 0.1% HPLC-grade TFA for at least 40 min. The nuclear magnetic resonance (NMR)
data were collected using the Agilent 600 MHz NEO instrument. High-resolution mass spectra of
compounds (Table S1) were collected using an Agilent Technologies 6540 UHD accurate-mass
Q-TOF LC/MS spectrometer. Antibacterial assays and mechanism of action studies were

performed using a Biotec multimode microplate reader synergy H4. Six different species of
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bacteria were used for bacteria assay tests, such as MRSA (ATCC 33591), MRSE (RP62A), VREF
(ATCC 700802),E. coli (ATCC 25922),K. pneumoniae (ATCC 13383), andP.
aeruginosa (ATCC 27853).

3.5.2. MIC (Minimum Inhibitory Concentration)

Concisely, E. coli, K. pneumoniae, P. aeruginosa, MRSA, MRSE, and VREF were
cultivated in 37 °C TSB medium for 16 h. Subsequently, 4 ml of new TSB medium was added to
100 pL of cultivated bacterial solution and incubated for another 6 h to reach the mid-log phase.
Next, 96-well plates were injected with 50 puL of bacterial solution that reached mid-log phase and
50 pL of compounds with different concentrations, which ranged from 0.75-25 pg/mL. Then, the
96-wells plates were incubated for another 16 h at 37 °C. After 16 h, MICs were determined by a
multimode microplate reader.

3.5.3. Hemolytic Activity

Human red blood cells were washed with 1 x PBS buffer, then centrifuged at 700 g for 10
min. After discarding the top clear solution, the bottom cells were diluted to obtain 5% solution
using 1 x PBS buffer.

Then, 50 pL of cell solution was injected into 96-well plates. Following this, 50 puL of
synthesized compounds with different concentrations from 250 to 1.95 ug/mL were added into 96-
well plates. Then, the mixture was incubated for 1 h at 37 °C. After centrifuging at 3500% g rpm
for 10 min, 30 puL of the supernatant was transferred into a new 96-well plate with 100 pL of 1 x
PBS buffer. With the same microplate reader, the data of absorbance at 540 nm were compared.
Positive control: 2% Triton-100. Calculation formula: percentage of hemolysis = [(Absorbance of

sample-Absorbance of PBS)/(Absorbance of Triton-Absorbance of PBS)] % 100.

45



3.5.4. Drug Resistance Study

The first generation of MIC data of YW-1 against MRSA and E. coli was already obtained
in an MIC study. Then, the MRSA of the first generation in the well next to the last clear well was
diluted to the mid-log phase, and MICs were tested at 37 °C. This step was repeated for 14 passages.
The data of drug resistance for E. coli were obtained using the same method with bacterial E. coli.
3.5.5. TEM

An amount of 30 uL of mid-log phase MRSA and E. coli was diluted to 3 mL in TSB
medium with 2 x MIC of YW-1, and the mixture was incubated for 2 h. The bacterial pellets were
centrifuged at 3000x g rpm for 10 min. For the next step, PBS buffer was used to wash three times.
Then, the suspended bacterial samples were dropped on grids and dried in a vacuum oven at 45 °C.
TEM images were obtained using a FEI Morgagni 268D TEM, with an Olympus MegaView III
CAMERA on the microscope, at 60 kV.
3.5.6. Inner Membrane Permeability

Mid-log phase E. coli was obtained in Mueller Hinton Broth with 2% lactose at 37 °C; then,
it was centrifuged at 3000x g rpm for 10 min at 4 °C and washed with 20 mM glucose and 1.5 mM
ONPG in 5 nM HEPES buffer one time. Next, the bacterial solution was diluted until OD600 =
0.1 using the same buffer. Following this, 50 puL of diluted bacterial solution was injected into a
96-well plate, and 50 pL of YW-1 in different concentrations and melittin were injected into the
bacterial solution, respectively. The OD420 was read at 37 °C every 6 min until the fluorescence
reached the highest plateau.
3.5.7. Fluorescence Microscopy

A total of 30 pL. of mid-log phase bacterial solution was diluted to 3 mL in TSB medium

with 2 x MIC of YW-1. The mixture was incubated for 2 h at 37 °C. Following this, the bacterial
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solution was centrifuged at 3000 rpm for 10 min. The top solution was thrown away, the bottom
bacterial pellets were washed with PBS buffer, and PI (5 pg/mL) and DAPI (10 ug/mL) were
added sequentially on ice under a dark environment. After dyeing with PI and DAPI, the bacterial
cells were washed with PBS buffer. Immediately after 100 uL. of PBS was added to suspend the
bacterial cell, 10 uL of the suspended solution was dropped onto the slide, and data were obtained
using a Zeiss Axiovert 200 inverted microscope.
3.5.8. Time-Kill Kinetics Study

Different concentrations of YW-1 and ciprofloxacin were mixed with 300 puL of mid-log
phase bacterial solution in TSB medium. The mixture was incubated for 0, 10, and 30 min and 1
and 2 h, respectively. At the time, E. coli were diluted 100-fold, and the MRSA was diluted 100-
fold. A total of 100 uL of each was transferred on TSB agar plates. After 16 h at 37 °C, CFUs were
read using the Biotec multimode microplate reader.
3.6. Conclusions

In summary, we developed a new series of antibacterial compounds. The lead
compound, YW-1, showed potency towards both Gram-positive and Gram-negative bacteria.
Further, YW-1 killed bacteria by disrupting cell membranes, confirmed with TEM, OM
permeabilization, and membrane depolarization though without apparent drug-developed
resistance. Meanwhile, it displayed good selectivity with low hemolytic toxicity. Taken
together, YW-1 showed good therapeutic potential, and it could be a candidate to solve the
problem of AMR.
3.7. General Synthesis of Compound

The Fmoc protected amino acids were bought from Chemimpex, reagents used in reaction

are bought from Fisher Scientific and Sigma Aldrich. The building blocks were synthesized
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following previously published paper from our group. Next, the building block was loaded on
Rink-Amide beads with DIC and HOBt in DMF reacting for 4 hours. After deprotecting Fmoc
protecting, palmitic acid was coupled DIC and HOBt. The Alloc protecting group of the secondary
amine was removed with  Dimethylamine @~ Boron  ((CH3)2NH.BH3) and
Tetrakis(triphenylphosphine) Palladium, the second building was coupled like the first building
block. Deprotect the alloc protecting group again, then couple Fmoc protected beta alaine.
Subsequently, the Fmoc was removed, and the beads were cleaved with 50% TFA in DCM. The
solvent was removed and solid was precipitated with cold ether. Finally, the oil was purified by

HPLC and got the last product.

Table 3.2. HRMS data

. HRMS (ESI) [Exact Mass+H*] | HRMS (ESI) [Exact Mass+H"]
Peptide
calculated found

YW-1 667.5742 668.5747
YW-2 701.5568 702.5604
YW-3 625.5255 626.5286
YW-4 717.5517 718.5532
YW-5 641.5204 642.5214
YW-6 682.5833 683.5852
YW-7 724.6051 725.6050
YW-8 673.5255 674.5298
YW-9 645.4942 646.4979
YW-10 617.4629 618.4668
YW-11 589.4316 590.4355
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CHAPTER FOUR: BCL-9 P-PROTAC TO DEGRADE B-CATENIN
4.1. Fmoc SPPS
4.1.1. Background of Fmoc SPPS

Pioneered by Robert Bruce Merrifield, the well-established peptide synthesis in lab is

known as solid phase peptide synthesis. On a solid-support resin, it allows scientists to
synthesize peptide chain via successive coupling AA.3 In contrast to solution phase synthesis
that time-consuming isolation of product from reaction solution, the nascent peptide chain
attached covalently to the solid supportive resin that functionalized with different reactive
groups, such as hydroxy or amine groups. Usually, vessels for SPPS have silica pads that help
researchers remove excessive starting material and side products easily. Depending on the side
chain and protecting strategy, nowadays, the most often used two SPPS are Fmoc-SPPS and
Boc-SPPS. The general procedure of Fmoc-SPPS is to repeat several cycles of coupling N-
terminal Fmoc protected AA. This cycle is repeated until the desired peptide sequence is done.
During coupling steps, capping methods, such as a mixture of pyridine and acetic anhydride, are
often used to block the unreacted amine to reduce side products. Compared with Boc/Bzl SPPS
using HF as N-terminal deprotecting strategy, Fmoc-SPPS deprotection method is much more
milder using 20-50% piperidine in DMF (Figure 4.1).>* Moreover, the new free amine is neutral,
not like Boc SPPS that free amine is pronated under strong acidic condition, that is directly used
for next step coupling reaction without any neutralization. It is also easy to confirm whether the

deprotection is done since chromophores are produced. Because chromophores show strong
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color under UV, it is very convenient to check the reaction. Usually, after two times deprotection

with 20% piperidine for 10 min, the deprotection is done.

O /Z(Z 20% piperidine in DMF O. + Co, + R NH,
6]

N-R »>
) " W

Figure 4.1. Deprotection Mechanism of Fmoc-SPPS.

On Fmoc SPPS, the side chains of AA are usually acid sensitive protecting groups, such as
Boc used for Lys, tBu used for Glu and Asp, Trt used for GIn and Asn. The cleavage cocktails can
remove all the acid sensitive protecting groups at cleavage step. Scavengers including
tritsopropylsilane (TIPS) and water are most added with a small ratio during cleavage step to
prevent side reactions. Nevertheless, some other scavenger reagents could also be use.’> >
4.1.2. Coupling Reagents and Limitations for Fmoc SPPS

For the coupling reagent, diisopropylcarbodiimide (DIC) is frequently used SPPS since it
is liquid, and the urea byproduct is easily washed away by DMF. Another carbodiimide coupling
reagent, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), is usually used for solution
phase coupling as it has a tertiary amine, as a result, the byproduct is easily washed away during
aqueous work-up. To circumvent racemization problem, different “racemization suppressing”
chemicals are added to reaction, such as the triazoles 1-hydroxy-benzotriazole (HOBt), and 1-
hydroxy-7-aza-benzotriazole (HOALt). After carboxylic acid forms O-acylisourea intermediate
with carbodiimide, these two chemicals will attack O-acylisourea to form an active ester, which
will react with a free amine to form an amide bond.>’

The other two often used coupling reagents are aminium/uronium and phosphonium salts

(Figure 4.2). This type coupling reagent completely omit carbodiimide. Instead, it incorporates
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HOAt/HOBt moiety as an amimium/uronium or phosphonium as an anion (tetrafluoroborate or
hexafluorophosphate). Aminium/uronium coupling reagents include HATU (HOAY),
HBTU/TBTU (HOBt), HCTU (6-Cl HOBt). The only difference between HBTU and TBTU is the
choice of anion. Phosphonium coupling reagents include PyBOP (HOBt) and PyAOP (HOAY) .8

However, this step-by-step coupling SPPS has limitations. Even though it is ideal for small
peptides containing AA from 2 to 100, it is difficult to synthesize even longer peptide sequence.
For longer peptide sequences, the methods developed are chemical ligations, such as native
chemical ligation (NCL), Ser/Thr ligation (STL), a-Ketoacid-Hydroxylamine (KAHA) Amide-
Forming Ligation. In solution phase, unprotected peptide chain reacts chemo selectively with each
other. For example, in NCL, a peptide thioester would selectively react with an N-terminal cysteine

peptide sequence.
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A Carbodiimide Coupling Reagent:
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Figure 4.2. Coupling reagents and mechanism. A: Different Types of Coupling Reagents. B: Carbodiimide Reagent
Coupling Mechanism.
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Bases for SPPS:
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Figure 4.3. Base and additives for coupling.
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4.1.3. Resins in Fmoc-SPPS

Resin Core: Polystyrene is most often used resin core in SPPS, but other core matrices are
also used in special synthesis, including polyacrylate, polyacrylamide, polyethylene glycol.*
These other core resins are utilized in some special peptide synthesis, such as preparing some
peptides that are prone to aggregate.

Linear polystyrene tends to dissolve in hydrophobic solvents, but precipitate in protic
solvents. Usually, polystyrene supports used in SPPS contain 1-2% DVB as crosslinking agent.
Crosslinked polystyrene is insoluble in common solvents; thus, it is normally prepared and used

as small, spherical beads.

Polystyrene

Figure 4.4. Structure of Polystyrene

Amino Core Resins: Aminomethyl (AM) has long been used as core resin in SPPS.%° At
first, 4-Methylbenzhydryl amine resins (MBHA) were developed for the formation of peptide bond
in Boc-N protection/TFA deprotection. Generally, carboxylic acids and electrophilic alkyl
substrates would form very stable amide or amine bonds. To cleave product, strong acid is
required, such as high concentration of TFA. At the same time, it can also be used as base resin to
anchor acid labile linkers such as Rink Amide linker.®! These resins are generated via electrophilic
aromatic substitution (EAS), and the efficiency of EAS is hard to control. Consequently, despite

optimized protocols, the qualities of AM resins vary in different batches.
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Figure 4.5. Structure of AM resin

Merrifield Resin: Merrifield resin was named after the Noble Laureate who first used it in
peptide synthesis, the structure is chloromethyl polystyrene.> Linkers are attached to Merrifield
Resin by nucleophilic attack replacing the original chloride. The resulting new bond is usually acid
stable and requires strong acid for cleavage. However, carboxylic acid is not easily freed from
Merrifield resin using acid cleavage cocktail. Instead, other cleavage methods including
saponification, transesterification, and cyclization-release have proven effective.®?% Merrifield
resin is usually generated by two methods: direct incorporation via EAS or substituted monomer
co-polymerized with styrene. Overall, substituted resins are generated by substrate direct
incorporation which leads to isomers. For instance, 70% of Merrifield resin are para-chloromethyl
substituted, the other 30% resin are meta-substituted. Conversely, by using pure monomer, co-
polymerization can prepare 98% para substituted resin. In addition, it can control the degree of

resin substitution by changing the ratio of styrene and substituted monomer (Figure 4.6).
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Figure 4.6. Different kinds of Merrifield resin

Swelling Factor of Resin: Even though resins are insoluble in organic solvents, they can be
swollen by aprotic solvents such as toluene, dimethylformamide (DMF), and dichloromethane
(DCM) (Table 4.1.). For example, one gram of 1% of divinylbenzene (DVB) cross-linked resin
swells 4-6 times as its original volume in DCM. In comparison, one gram of 2% DVB cross-linked
resin swells 2-4 times in DCM. Since the reaction kinetics depends on diffusion, the swelling factor
matters in SPPS. Consequently, well-swollen beads have a shorter reaction time and better product

conversion since it has a higher rate of reagents diffusing into the core part of matrix.

Table 4.1. Swelling factor of 1% cross-linked polystyrene resins in different solvents.

THF 5.5 Acetonitrile 3.5
Toluene 5.3 Et,O 3.2

DCM 5.2 EtOH 2.0
Dioxane 4.9 MeOH 1.8

DMF 4.7 H>O 1.0 (no swelling)

4.1.4. Cleavage Cocktails
The linker is where the C-terminal amino acid attaches, and there is a wide range of
commercially available linkers for different polymeric supports. Actually, the selected cleavage

cocktail depends on the linker.
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Low concentrations of TFA: With a XAL (“Seiber”) or HAL linkers, synthesized peptides
are cleaved in low concentration of TFA to get fully protected peptide amides or peptide acid
respectively.

High concentration of TFA: With a PAC (“Wang”), PAL, AM (“Rink Amide”), or BAL
linker, synthesized peptides are cleaved in high concentration of TFA to get fully-deprotected

product (Table 4.2.).

Table 4.2. High Concentration of TFA Fmoc-SPPS Cleavage Cocktail.

Recipe Time (h) Comments
B TFA/water/phenol/TIPS (88/5/5/2) 1-4 All peptides
TFA/phenol/water/thioanisole/EDC .
K (82.5/5/5/5/2.5) 14 All peptides
, TFA/phenol/water/thioanisole/ .
K 1-dodecanethiol (82.5/5/5/5/2.5) 14 All peptides
L TFA/DTT/Water/TIPS (88/5/5/2) 1-4 All peptides
tBu group. Do not
P TFA/phenol (95/5) 1-4 use with Trp, Met
or Cys.
, TFA/phenol/Methanesulfonic acis . .
P (95/2.5/2.5) 15 min All peptides
TFA/thioanisole/EDT/Anisole .
R (90/5/3/2) 1-8 All peptides
TFA/TES Boc, tBu, Trt. Do
T 1-4 not used with Arg
(95/5)
or Trp
Boc, tBu, Trt, Pbf.
TFA/water (95/5) 1-4 Do not used with
Trp, Met or Cys
TFA/DCM/indole (70/28/2) 1-4 bo " e with

Both cleavage cocktails should be prepared fresh before using. Scavengers should also be

fresh. Try to buy TFA, and scavengers in small quantities, and discard any long unused scavengers.
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4.1.5. HPLC Analysis and Purification

HPLC is the most powerful and convenient tool to analyze and purify peptides. Following is

the suggested guidelines:

1.

With an unknown peptide, usually, a C-18 reversed phase column is recommended for
medium-sized peptides that are moderately hydrophilic.

Use the following protocol for a standard analytical column:

Buffer A: 0.1% TFA in H20.

Buffer B: 0.1% TFA in ACN.

Flow rate: 1-1.5ml/min

Gradient: 0-90% B in 90min.

For peptides with 20-40 amino acids, medium-sized peptides, C-8, C-4 or a polymeric
reversed phase column are recommended. These peptides are expected to elute at a high
percentage of CAN, and it is safe to start with a high percentage of 10-20% B.

Long peptides, or those having many similarly charged groups, may best be purified by
either polymeric reversed phase or aqueous ion exchange columns.

Peptides containing aromatic side chain, such as Tyr, Phe, or Trp, can be monitored at 240-
260 nm, due to characteristic absorbance of aromatic ring. Otherwise, monitor at 210-214
nm, this is close to the wavelength of peptide bond.

If DMF is used to help dissolve the peptide, you will see a large peak at the beginning. If

peptide is small and eluted early, use low percentage of B to separate peptide from DMF.
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4.2. Introduction

With Wnt ligand, the canonical Wnt pathway causes accumulation of B-catenin in cell
cytoplasm, next, it is translocated to nucleus and form a complex with BCL 9, PYGO, TCF/LEF
to activate Wnt target gene transcription. Previous research demonstrated that BCL 9 amplification
was related to several human cancers and other diseases, such as breast cancer, prostate cancer,
type 2 diabetes and others.®® It is also associated with tumor progression, low survival rate and not
ideal clinical outcomes. Furthermore, an enhanced level of B catenin can increase cell proliferation,
migration invasion, and tumor metastasis.®” Without Wnt ligand binding, adenomatous polyposis
coli (APC) and glycogen synthase kinase 3 (GSK3p) bind to B-catenin, after several cycles of
phosphorylation and ubiquitination, it is degraded by proteasome.®®

Proteolysis Targeting Chimera is a strong modality tool to degrade intracellular or nuclear
protein of interest. It provides a new way to solve the drug resistance problem of small molecular
inhibitors. The PROTAC molecules consists of three parts: E3 ligand, linker, and targeting protein
bind ligand. After recruiting E3 ligase to targeting protein, they form a tertiary complex and Es
ligase ubiquitinates the target protein several times, then recognized and degraded by
proteosome.®” PROTAC molecules can be used to target undruggable protein, as only a tight binder
is required for the target protein.”® Furthermore, PROTAC molecules is also a great tool to validate
the targets and gather more information about protein functions and signaling pathways. Compared
with nucleotide-based methods like oligonucleotides, RNAi or genome editing methods that have
limited applications due to their stability in vivo and in vitro. Most PROTAC molecules are
developed from small molecule bind ligand, usually their molecular weights are not more than
1500 Da. As a result, they possess the advantages of small molecules, such as, good membrane

permeability, in vivo stability, target specific and economic synthesis.”! These make PROTAC
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molecules can enter cell and rapidly delete target proteins efficiently. It has been 20 years since
the first research paper about PROTAC molecule been published. Now, this technology is
translocated from academic to industry. As a new area of drug discovery, PROTAC strategies are
successfully applied to degrade different proteins in vitro and in vivo, including estrogen receptor
(ER),”> androgen receptor (AR), Kirsten ratsarcoma virus (KRAS) G12C mutation,”
Bromodomain-containing protein 9 (BRD 9),7* Signal transducer and activator of transcription 5
(STATS5),” Cyclin-dependent kinase 9 (CDK 9)7°, etc. Many biotech startups and companies build
their own PROTAC pipelines and several PROTAC molecules have entered clinical trials. For
example, ARV-110 and ARV-471 entered clinical trials in 2019, they provided the first clinical
proof-of-concept for well-established tumor modality with PROTAC molecules. ’7 In contrast to
small molecule PROTAC, there are not so researches about peptidyl PROTAC (p-PROTAC)
(Table 4.3.). The main challenges p-PROTAC face are poor cell permeability and low stability.
However, p-PROTAC also has several advantages. First, it can be used to target some undruggable
proteins with large shallow surfaces. Second, it has fewer side effects and is safer. ’® For instance,
previously published protein binding ligand and E3 recruiting ligand were endogenous peptides
with high specificity and affinity. Those endogenous ligands compared with exogenous small

molecular inhibitors and antibodies are ideal choices for drug development.’®
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Table 4.3. Comparison of p-PROTAC and small molecule PROTAC.
Peptide-PROTAC

Small molecule PROTAC

Targeting warhead Peptides Small molecules
Advantages Specific targeting “undruggable” POI with Higher cellular permeability
specificity Better stability

Resistance to target mutation
Not labor intensive
Low toxicity and high safety in vivo

Cost effective

Disadvantages Poor cell membrane permeability
Lower stability
Few research on their efficacy

Limitation of degradation of
“undruggable” protein

Inability to target “undruggable” shallow
surface protein

Toxic side effects

Clinical trials NA

ARV-110, ARV-471, NX-2127

In 2019, Dr. Cai’s lab reported several sulfonyl y-A A peptides that could effectively inhibit
the protein-protein interaction (PPI) between BCL 9 and B-catenin.”” Sulfonyl y-AA peptides can
mimic the secondary structure of natural helix. Owing to its unnatural amino acids and secondary

helix structure, it shows better cell permeability and is resistant to enzyme degradation. We had a

question: Can we degrade B-catenin using our sulfonyl y-AA peptides?
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4.3. Design
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Figure 4.7. Design of Sulfono-y-AApeptide PROTAC.

For our sulfonyl y-AA p-PROTAC design, at one end, we put our sulfonyl y-AA peptide
helix and at the other end, put E3 ligand linked by click reaction. At first, we chose sequence 2
from the paper since it showed a good binding affinity. For E3 ligands, we tried VHL and phenyl

glutarimide (PG).
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4.4. Synthesis
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Figure 4.8. Building preparation.
4.4.1. Building Preparation
BB, Preparation:
N.__COOH
FmocHN S
0=S=0
Step 1:
-
Q
N
FmocHN ~
O
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10g Fmoc-Leu-OH (28.3 mmol, leq), EDC (34.0 mmol, 1.2eq), HOBt (34.0 mmol, 1.2eq) and N,
N-diisopropylethylamine (DIPEA, 62.3 mmol, 2.2eq) were dissolved in DCM under 0°C. After 5
min, 3.3g of N, O-dimethlyhydroxyamine (34.0 mmol, 1.2eq) was added. The reaction solution
was stirred for 2 h.

Work-up: After 2 h, DCM was removed under reduced pressure. Then 1M HCIl solution was added
to remove unreacted starting material and excessive EDC. The aqueous was extracted with EA
two times, combined organic layers and washed with Brine, dried with Na>SOs4. Then, EA was
filtered with cotton, and removed under reduced pressure. The left oil is used for the next step
without any further purification.

Step 2:

FmocHN™ "CHO

The first step product was dissolved in THF under sodium chloride and ice mixture (temperature
between -15°C - -10°C). After cooling down for 10 min, 1.3g of Lithiumaluminumhydride (34
mmol, 1.2eq) was added in three portions. Then, the reaction was stirred for 30 min.

Work-up: Excessive 1M HCl was poured to quench reaction. Next, the aqueous layer was extracted
with EA times. Combine organic layer and washed with Brine, then dried by Na>SO4. Then, EA

was evaporated under reduced pressure. The left residue is used for the next step without any

further purification.
Step 3:

H COOtB
FmocHN ~ u

The previous step product was dissolved in MeOH under 0°C, then 5.1g of tert-butyl glycinate
(28.3 mmol, leq) was added, followed by 2.8g of TEA (28.3 mmol, leq). The reaction mixture

64



was stirred for 10 min. Next, 3.5g of NaBH3CN (56.3 mmol, 2eq) and 1.7g of AcOH (28.3 mmol,
leq) were added. The reaction was stirred for 2 h.

Work-up: MeOH was evaporated under reduced pressure, then saturated NaHCO3 was poured into
the left solid to quench the reaction. The aqueous layer was extracted with EA times, combine
organic layer and washed with brine, dried with Na>SO4. The EA layer was filtered through cotton
to remove Na;SO4, then EA was removed under reduced pressure. The left residue was purified by
column chromatography, using HEX: EA=2:1 to get final product.

Step 4:

N._-COOtBu
0=S=0

FmocHN
The step 3 product was dissolved in DCM under 0°C, then 1.2eq of 2-methylpropanesulfonyl
chloride and 10 eq of pyridine were added. The reaction mixture was stirred overnight.

Work-up: DCM was evaporated under reduced pressure, followed by adding excessive 1M HCL.
The aqueous layer was extracted with EA two times, combine EA, washed by Brine, and dried by
anhydrous Na;SOa4. The EA was filtered through cotton, then evaporated under reduced pressure.

The left oil was purified by column chromatography, using HEX: EA=4:1 to get product.

FmocHN I

The step 4 product was dissolved in DCM: TFA=1:1 and stirred for 2h under R.T..
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Work-up: The reaction solvent was evaporated under reduced pressure, then co-evaporated with
hex 4 times to totally remove TFA. The left oil was purified by column chromatography, using

HEX: EA=1:1 to get final product.

BB, Preparation:

Taurine (1eq) was dissolved in a mixture of dioxane and H>O, followed by 1 eq of CbzCl and 2 eq
of NaOH. The reaction mixture was stirred overnight.

Work-up: Dioxane was evaporated under reduced pressure, then the aqueous layer was extracted
with EA two times to remove unreacted CbzCl. Keep the aqueous layer, and co-evaporated with
toluene to remove water several times. When the white solid precipitated, it can be used for the
next step without any further purification, sodium 2-((benzyloxy)carbonyl) amino) ethane-1-

sulfonate.

The previous step product, sodium 2-(benzyloxy)carbonyl) amino) ethane-1-sulfonate, was added
with SO2Clz slowly. Then the reaction mixture was refluxed under 85°C for 4 h.
Work-up: The reaction mixture was cooled down to R.T., then SO2Cl» was removed under reduced

pressure. The left residue was co-evaporated with DCM for 4 time to totally remove SO2Cl,, then
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purified by column chromatography, using HEX: EA=2:1 to get product, benzyl (2-

(chlorosulfonyl)ethyl) carbamate.

N._-COOBn

FmocHN 0=8=0

NHCbz

Benzyl (S)-(2-((((9H-fluoren-9-yl) methoxy) carbonyl) amino)-4-methylpentyl) glycinate was
prepared using the same method as BB, then it was dissolved in DCM and cooled down to 0°C.
Next, 10 eq of pyridine and 1.2 eq of benzyl (2-(chlorosulfonyl)ethyl) carbamate to reaction
solution. The reaction mixture was stirred under R.T. overnight.

Work-up: DCM was removed under reduced pressure, then EA and 1M HCIl were added. Then,
the aqueous layer was extracted with EA for another time. Combine EA, washed with Brine and
dried with Na;SO4. Next, EA was removed under reduced pressure. The left residue was purified
by column chromatography, using HEX: EA=4:1 to get product, benzyl (S)-N-(2-((((9H-fluoren-
9-yl) methoxy) carbonyl)amino)-4-methylpentyl)-N-((2-

(((benzyloxy)carbonyl)amino)ethyl)sulfonyl)glycinate.

NH,
The previous step product was dissolved in a mixture of EA: MeOH=1:1, then catalytic amount
(5%-10%) of Pd/C was added. The reaction ran under H> environment overnight. Next, the reaction

was monitored by TCL. Usually, it takes three times for the reaction to be completely done.
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Work-up: The reaction solution was filtered through celite, evaporated under reduced pressure.
The left oil is used for the next step without any further purification, (S)-N-(2-(((9H-fluoren-9-yl)

methoxy) carbonyl) amino)-4-methylpentyl)-N-((2-aminoethyl) sulfonyl) glycine.

N._COOH
FmocHN e
mocCi 0=S=0

NHBoc

The previous step product, (S)-N-(2-((9H-fluoren-9-yl) methoxy) carbonyl) amino)-4-
methylpentyl)-N-((2-aminoethyl) sulfonyl) glycine, was dissolved in THF and H>O. Then, 3 eq of
NaHCOs was added to adjust pH to basic, checked by pH paper around 9, followed by adding 1.5

eq of (Boc)20. The reaction mixture was stirred under 0°C overnight. Next day, the reaction was
monitored by TLC, if the reaction is not done, add another 1 eq of (Boc)20 and 1 eq of NaHCO:s.

Work-up: THF was removed under reduced pressure, then 1M HCI was added to turn the pH of
the aqueous to acidic. Then, the aqueous was extracted with EA for two times. Combine the EA,
washed with Brine, and dried with Na>SOs. Next, EA was removed under reduced pressure. The
left residue was purified by column chromatography, using HEX: EA=1:1 to get final BBo.

BB; Preparation:

HNQT/NHbe
HN
N._ COOH
FmocHN |
mocC 0=5=0

The preparation of BB3 uses the same strategy as previous BB; and BB preparation.

However, we need to pay attention to the second step. For other natural AA, it is fine under LiAlH4,
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arginine was easy to be reduced under this strong reducing reagent. In arginine BB preparation,
the LiAlH4 reduction step should be less than 12min, if exceeding 20min, the final yield is very

low.

4.4.2. Fmoc-SPPS synthesis

The Rink amide beads were sink in DCM to swell for 10 min. Then, 20% percent of
piperidine in DMF was used to deprotect Fmoc protecting group. Next, the first building block
was coupled with HOBt (4eq), DIC (2eq) in DMF for 4 h. Check reaction by ninhydrin test. When
the reaction is done, continue coupling the next one building block until the sequence is finished.
Lastly, couple the azidoacetic acid for a later click reaction or put a different length of linkers, then
couple the PG Es ligand. After finishing all the coupling reaction, a cleavage cocktail containing
88% TFA, 5% phenol, 5% water, and 2% TIPS was used to cleave the product. Precipitated by

cold ether, centrifuged, then purified by HPLC (Figure 4.9).
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Sulfonyl p-PROTAC Synthesis
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Figure 4.9. Synthesis procedure of Sulfono-y-AApeptide PROTAC
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Figure 4.10. Synthesis design. A: Solution phase click reaction. B: Synthesis of different lengths of p-PROTAC.

71



Until now, five VHL sulfonyl p-PROTAC sequences are synthesized, our collaborator Dr.
Chen at Moffit Cancer Center test their abilities to degrade -catenin against U20S and SW480

cells (Figure 4.11.).

0 1 2 4 8 16 pM 10 20 30 40 50 60 pM

. --
B-catenin -— e G . -
Actin — ————

YW-D-103-2 XStAx-VHLL

Figure 4.11. WB data of YW-D-103-2 and previously reported xStAx-VHLL

At the first western blot experiment, we found that YW-D-103-2 could effectively degrade
B-catenin at 8§ uM (Figure). However, the repeat experiment was not consistent with the first time.
Moreover, we found that p-PROTAC with VHL ligand showed cell toxicity, it not only degraded
B-catenin but also degraded actin. As a result, we are trying to replace VHL with PG E3 ligand
since they recruit different E; Ligase.”” By changing the E3 ligand, we want to know whether the
cell toxicity would disappear. The p-PROTAC with PG plan is undergoing, we finished the

synthesis, and are waiting for our collaborator to test.
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Figure 4.12. Structure of PG Sulfono-y-AApeptide PROTAC.
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CHAPTER FIVE: S597 PEPTIDOMIMETIC TO ACTIVATE INSULIN RECEPTOR

5.1. Background

Peptides are short sequences of amino acids linked by peptide bond. A polypeptide is a
longer, continuous, unbranched peptide chain. Peptide sequences of not more than twenty amino
acids are called oligopeptides, such as dipeptides, tripeptides, and tetrapeptides.®® If the molecular
weight of polypeptides exceeds 10000, they are called proteins. Proteins consist of one or more
polypeptides, in biological functional pathway, they are bound to ligands such as coenzymes or
cofactors. For example, proteins bind to DNA, RNA or another protein to form complex functional

macromolecular assemblies.

Figure 5.1. A tripeptide consists of Val, Ala, and Leu AA

Among proteins, an alpha helix is a sequence of amino acid in protein that twists into a
helix. It is the most common secondary structure in proteins. It is also the most often appeared
secondary structure in proteins that can be easily predicted with a sequence of amino acids.
Naturally, the alpha helix has a right-handed conformation in which the N-H group of one amino
acid in backbone forms a hydrogen bond to the C=0 group that is four residues earlier, (i+4-i).
Amino-acid propensities:Different amino acids have different propensities to form an a-helical
structure. Alanine, leucine, methionine, lysine, and glutamic acid all have especially high helix-

forming propensities; however, proline and glycine have poor helix-forming propensities. Proline
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either breaks or kinks a helix since it has tertiary amine instead of the N-H bond as a hydrogen
bond acceptor. Furthermore, its side chain interfere sterically with the preceding backbone-inside
a helix, this forces a 30° bend of the backbone. ®! For glycine, it has high conformation flexibility

that entropy cost would be expensive to form a-helix structure.

Table 5.1. Table of L amino acids propensities to form o-helix: Difference in free energy change each amino
acid.®?

. . Helical penalty
Amino acid 1-letter Kealmol J/mol
Alanine A 0.00 0.00
Arginine R 0.21 0.88
Asparagine N 0.65 2.72
Aspartate D 0.69 2.89
Cysteine C 0.68 2.85
Glutamate E 0.40 1.67
Glutamine Q 0.39 1.63
Glycine G 1.00 4.18
Histidine H 0.61 2.55
Isoleucine | 0.41 1.72
Leucine L 0.21 0.88
Lysine K 0.26 1.09
Methionine M 0.24 1.00
Phenylalanine F 0.54 2.26
Proline P 3.16 13.22
Serine S 0.50 2.09
Threonine T 0.66 2.76
Tryptophan \\% 0.49 2.05
Tyrosine Y 0.53 2.22
Valine \Y 0.61 2.55

Estimated free energy change in kcal/mol within an a helical conformation. Relative to
alanine set as zero. More positive numbers are not favored, it means more free energy changes.
Depending on the detailed chemical environment, significant deviations from these standard

numbers may happen.
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5.2. Functional roles of a-helix
5.2.1. DNA binding

a-helices have particular importance in DNA binding motifs, including zinc-finger, leucine
zipper, and helix-turn-helix motifs. Since the conventional structure diameter of an a-helix is about
12 A (1.2nm), including the average length of AA side chains, about the same width of the major
in B-form DNA. Furthermore, the coil-coil dimers of helices can position internation surfaces to
the symmetrical repeat double-helical DNA.® For example, the double-helical DNA of
transcription factor Max use a helical coil-coil to dimerize, position both helices to interact with

two successive turns of DNA grove, (PDB: 1HLO).

Figure 5.2. Transcriptional factor Max DNA binding with leucine zipper coil-coil(PDB:1HLO).

5.2.2. Membrane spanning
For transmembrane proteins, o-helices are the most common structures. Researchers
presume that the helical structure can hide all hydrogen bonds internally, leaving no polar groups

to membrane if the side chains of AA are nonpolar. Proteins are anchored to membrane by single
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transmembrane helix, sometimes by coil-coil helices, or by a helix bundle, in most occasions

containing seven helices arranged in a ring, such as rhodopsins, (PDB: 1GZM).*?

Figure 5.3. Structure of Bovine Rhodopsin in a Trigonal Crystal Form.

5.3. Unnatural helical peptide foldamers

Compared with unconventional peptide helical foldamers, conventional peptide helical
foldamers have the disadvantages of easy loss of secondary helical structure, susceptibility to
proteolytic degradation, and cell membrane penetration problem.®!: 32 8 Since Seebach and
Gellman independently reported helical structure of B-peptides, several classes of foldamers have
been developed.3#3¢ The advantages of unnatural peptide helical foldamers are that it can mimic
the functions of natural peptide helices at same time overcome its limitations.

Recently, researchers developed several new types of helical peptide foldamers, such as -

88, 89 oligourea, peptoids,®® a-aminoxy-peptides,”® y-peptides,’! and

peptides,’” azapeptides,
sulfono-y-AApeptides.®* Since the unnatural peptide helical foldamers are composed of unnatural
AA, thus, they have unique advantages over natural a-peptide helices, such as good in-vivo

stability and bioavailability, improved selectivity and diversity.
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Figure 5.4. structure of a-peptide helical foldamer residues and unnatural helical foldamer residues.

5.4. Sulfono-y-AApeptide

In 2015, our group developed a new type of helix using sulfono-y-AA.5* Sulfono-y-AA are

derivatives of natural AA, it is comparable to two natural AA in length, and have two side chains

as dipeptide, one is from the side chain of canonical twenty natural amino acids, another is from

the introduced natural or unnatural side chain of sulfonyl chloride. As a result, it provides great

diversities of side chain since different sulfonyl chlorides are commercially available. Recently,

we solved the crystal structure of homogeneous L-sulfono-y-AApeptide foldamers (Figure 5.5.),

it turned to be an unexpected left-handed 14-helix hydrogen bond pattern; furthermore, it has a

helical pitch of 5.1 A (versus 5.4 A of a-helix), and the side chain aligned perfectly from top to

bottom along the helical backbone. It showed both the intramolecular hydrogen bond and the

curvature of sulfono-y-AA helped stabilize the helical backbone.
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14-hydrogen-bonding pattern
16 15 16
Figure: 5.5. Chemical structure of 13, 14, 15, 16. B: Crystal structure of 13, 14, 15, 16.

5.5. S597 insulin peptidomimetic

In 2007, Maja Jensen reported that S597 peptide leads to comparable level activation of
protein kinase B (PKB) and glycogen synthesis to activation by insulin, even though the
phosphorylation level in lower. However, Src homology 2/a collagen-related (Shc) and
extracellular signal-regulated kinase (ERK) 2 were absent from activation by S597. It resulted in
cell proliferation is only slightly stimulated by S597. It is the first time to possible design insulin
receptor binding mimetics with metabolic equipotency but low mitogenicity.”? In 2022, Junhee
solved the crystal structure of S597 binding with insulin receptor.”®> Even though S597 activate
insulin receptor (IR) and has comparable potency on glycemic control,, however, the binding
mechanisms are different. IR is fully activated by four insulins to two distinct sites forming a
compact T-shape, in contrast, two S597 molecules bind and form an extended T-shaped IR by

simultaneously binding to both the L1 domain of one protomer and the FnllIl-1 domain of another.
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Moreover, S597 could activate IR mutants that were resistant to insulin and elicit insulin-like
signaling.

S597 Peptide sequence:

H—S—L—E—E—E-W-A-Q—I—E——C—E—~V-Y-G—R-G—C—P—S——E—S—F—Y—D-W-F—E—R-Q——L—NH,
Figure 5.6. Sequence of S597.

In the future, researchers are going to evaluate whether insulin in combination with S597
could lower the insulin requirements in diabetes patients.
5.5.1. Design of S597 Sulfono-y-AApeptide

In our first design (Figure 5.8.), we tried to replace the two helices of S597 with our
sulfono-y-AA peptide. Our sulfono-y-AA are unnatural AA while main the same length of
dipeptides, it is resistant to proteolytic degradation at same time show better cell permeability. By
introducing a part of unnatural helix or replacing natural AA with unnatural AA, we guessed that
it would improve analogues’ stability and cell permeability, thus, might improve its potency and

pharmacokinetics.
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Figure 5.7. Crystal structure of S597 bind with IR (A), (PDB:8DTL), site 1(B) binding and site 2(C) binding.
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Figure 5.8. Structure of Site 1 sulfono-y-AApeptide mimic, monomer and dimer.

First, we prepare several S597 sufono-y-AApeptides. Y W-C-89-1 and YW-C-94-1 are the
site 1 mimetic of S597 peptide, Y W-C-95-1 is the dimer of site 1 mimetic. Our collaborator tested
whether it could activate insulin receptor, and the result was negative. Then, we proposed another
strategy. Now, we are trying to replace several AA of S597 that don’t show apparent interaction

with insulin receptor. Using this strategy (Figure 5.9.), we got YW-D-109-1 and YW-D-109-2.
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APPENDICES
Appendix A: S1 '"H-NMR, *C-NMR, and HRMS

YW-L-1

HNC
ooxj ND-cN
N LN 0
\ O .TFA
SONH

'H NMR (400 MHz, DMSO-de) § 11.05 (s, 1H), 9.39 (q, J = 5.6 Hz, 1H), 8.73 — 8.69 (m, 1H),
8.68 (d, J=2.1 Hz, 1H), 8.59 (d, J= 0.9 Hz, 1H), 8.42 (t, J= 2.7 Hz, 1H), 8.41 — 8.36 (m, 2H),
7.93 — 7.86 (m, 2H), 7.84 (dd, J = 8.6, 2.5 Hz, 1H), 7.76 — 7.62 (m, 2H), 7.53 (t, J= 7.6 Hz, 1H),
7.28 (dd, J=3.2, 2.1 Hz, 1H), 7.26 (d, J= 2.1 Hz, 1H), 6.94 (d, J= 8.6 Hz, 2H), 6.82 (dd, J=9.0,
1.6 Hz, 1H), 5.16 (ddd, J = 13.3, 5.1, 1.9 Hz, 3H), 4.63 (t, J = 6.3 Hz, 5H), 4.47 (d, J = 6.1 Hz,
4H), 4.16 (d, J = 5.4 Hz, 3H), 4.13 — 4.01 (m, 8H), 3.88 (d, J = 6.6 Hz, 8H), 3.52 (dt, J= 11.9, 6.5
Hz, 2H), 2.97 — 2.88 (m, 1H), 2.88 — 2.83 (m, 1H), 2.61 (d, J= 1.7 Hz, 1H), 2.41 — 2.36 (m, 2H),
2.21(td, J=17.3,2.2 Hz, 2H), 2.13 (td, J = 7.4, 2.1 Hz, 3H), 2.10 — 1.98 (m, 4H), 1.75 (tq, J = 13.7,
6.7 Hz, 4H), 1.52 (ttd, J = 14.6, 7.6, 2.7 Hz, 4H), 1.42 (h, J = 7.1 Hz, 4H), 1.37 — 1.22 (m, 8H).

13C NMR (400 MHz, DMSO-ds) 8 173.69, 172.51, 171.37, 168.22, 167.80, 158.17, 157.72, 150.06,
149.15, 147.67, 146.41, 141.87, 141.55, 138.59, 136.04 129.50, 123.68, 123.03, 115.37, 111.24,
105.23, 93.08, 81.33, 69.58, 62.74, 53.89, 52.03, 49.99, 48.70, 47.30, 43.70, 35.52, 34.09, 31.64,

29.06, 28.87, 26.58, 25.77, 25.55, 24.89, 22.92.
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O N CN
OsN 0 PP TFA

5\\\\\AKN\/\/\/\O l /NN _ .O\

= T K

'"H NMR (400 MHz, DMSO-ds) 6 10.40 (s, 1H), 9.31 (q, J=5.9, 5.4 Hz, 1H), 8.61 (dd, J = 6.3,
2.1 Hz, 1H), 8.51 (s, 1H), 8.33 (dd, /= 13.6, 2.4 Hz, 1H), 8.28 (t, /= 5.5 Hz, 1H), 7.93 — 7.72 (m,
2H), 7.67 (d, J= 7.5 Hz, 1H), 7.58 (d, J= 7.6 Hz, 1H), 7.47 (t, J= 7.6 Hz, 1H), 7.19 (d, /= 2.0
Hz, 1H), 6.86 (d, /= 8.3 Hz, 1H), 6.74 (d, J= 8.8 Hz, 1H), 5.09 (dd, J = 13.3, 5.1 Hz, 1H), 4.57
(d, J=5.7 Hz, 4H), 4.40 (t, J= 3.7 Hz, 3H), 4.36 (s, 1H), 4.26 (s, 1H), 4.22 (s, 1H), 4.14 (s, 1H),
4.08 (d, /J=5.3 Hz, 2H), 4.06 — 3.94 (m, 5H), 3.84 (s, 1H), 3.80 (s, 1H), 3.45 (dt, J=12.1, 6.5 Hz,
1H), 2.85 (ddd, J=18.2, 13.6, 5.4 Hz, 1H), 2.55 (s, 2H), 2.04 (t, J= 7.4 Hz, 2H), 2.00 — 1.90 (m,
2H), 1.66 (p, J = 6.6 Hz, 2H), 1.44 (q, J = 7.0 Hz, 2H), 1.33 (t, /= 7.5 Hz, 2H), 1.18 (s, 10H).
BCNMR (400 MHz, DMSO-ds) 6 173.29, 172.52, 171.44, 150.06, 149.76, 147.99, 147.04, 144.44,
141.84,138.76,134.60,129.16, 123.68, 123.01, 113.13,111.23,105.22,93.18, 81.34, 77.75, 69.62,
62.79, 53.89, 52.06, 50.03, 48.71, 47.34, 43.70, 35.57, 31.66, 29.37, 29.16, 29.06, 26.60, 25.88,

25.63,22.93.
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HN N™-CN O-
O NE N JCN
/ =" .TFA
O4N RAY N (N
- OM/\/\/J

'H NMR (400 MHz, DMSO-ds) & 9.37 (q, J= 5.5 Hz, 1H), 8.68 (d, J= 6.2 Hz, 1H), 8.59 (d, J =

Ir=

10.6 Hz, 1H), 8.52 — 8.24 (m, 2H), 7.88 (dd, J = 8.6, 2.4 Hz, 1H), 7.81 (q, J = 5.7, 4.3 Hz, 1H),
7.73 (dd, J=21.0, 7.6 Hz, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.31 — 7.22 (m, 1H), 6.93 (d, J = 8.2 Hz,
1H), 6.81 (d, J= 8.8 Hz, 1H), 5.15 (dd, J = 13.3, 5.0 Hz, 1H), 4.63 (d, J = 5.9 Hz, 3H), 4.46 (d, J
= 4.7 Hz, 5H), 4.37 (s, 2H), 4.32 (s, 1H), 3.91 (s, 1H), 3.88 (d, J=4.1 Hz, 4H), 3.65 (t, J=4.5 Hz,
3H), 3.54 (dt, J = 19.3, 5.0 Hz, 3H), 3.41 (t, J= 5.9 Hz, 2H), 3.18 (q, J = 5.9 Hz, 2H), 2.91 (ddd,
J=18.1,13.6, 5.5 Hz, 2H), 2.04 (h, J= 8.0, 6.7 Hz, 4H), 1.74 (p, J = 6.8, 6.1 Hz, 2H), 1.43 (dp, J
= 15.3, 7.2 Hz, 4H), 1.35 — 1.10 (m, 11H).

13C NMR (101 MHz, DMSO-ds) 8 173.31, 172.69, 171.42, 167.95, 164.62, 157.75, 150.06, 149.75,
147.15, 144.43, 141.84, 141.35, 138.76, 136.21, 134.85, 132.57, 129.51, 129.18, 123.97, 123.00,
120.59, 120.37, 117.97, 114.93, 113.12, 111.23, 105.22, 91.79, 81.78, 81.34, 69.83, 69.63, 69.20,
62.79, 58.59, 53.89, 52.12, 50.04, 48.71, 47.40, 38.89, 35.78, 31.66, 29.70 — 28.60 (m), 25.90,

25.72,22.83.
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YW-L-4

O\ N= TFA
o L“ﬁgj

N O /NN\? /Oo\

N_~N
'H NMR (400 MHz, DMSO-d) & 9.37 (q, J = 5.5, 5.0 Hz, 1H), 8.68 (t, J = 3.7 Hz, 1H), 8.59 (d,
J=10.5 Hz, 1H), 8.40 (dd, J = 13.1, 2.4 Hz, 1H), 7.88 (dd, J = 8.8, 2.4 Hz, 1H), 7.77 (t, J= 5.7
Hz, 1H), 7.70 (d, J = 7.5 Hz, 1H), 7.61 (d, J = 7.5 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.27 (t, J =
43 Hz, 1H), 6.92 (t,J=7.2 Hz, 1H), 6.81 (d,J= 8.8 Hz, 1H), 5.14 (dd, J= 13.2, 5.1 Hz, 1H), 4.63
(d,J=5.7 Hz, 2H), 4.47 (d, J = 5.7 Hz, 2H), 4.42 (s, 1H), 4.33 (s, 1H), 4.28 (s, 1H), 4.21 (s, 1H),
4.10 (d, J = 5.8 Hz, 4H), 4.07 (d, J = 5.6 Hz, 4H), 4.04 (s, 3H), 3.52 (dt, J = 12.1, 6.6 Hz, 1H),
3.07 (q, J = 6.2 Hz, 2H), 2.91 (ddd, J = 17.9, 13.4, 5.5 Hz, 2H), 2.61 (s, 2H), 2.03 (h, J= 6.1 Hz,
4H), 1.73 (p, J = 6.8, 6.4 Hz, 2H), 1.56 (q, J = 3.4 Hz, 4H), 1.43 (dp, J = 21.3, 7.4 Hz, 4H), 1.24
(d,J=13.0 Hz, 11H).
B¢ NMR (101 MHz, DMSO-ds) 6 173.30, 172.46, 171.44, 168.13, 164.62, 157.77, 149.76, 148.01,
147.04, 144.20, 141.84, 141.35, 138.74, 136.21, 134.51, 132.45, 129.28, 120.38, 119.28, 113.12,
111.23,105.20, 96.61, 81.34, 76.98, 69.62, 62.80, 53.89, 52.11, 50.04, 48.71, 43.69, 38.27, 35.92,

31.69, 29.38, 28.87, 25.94, 25.90, 22.80, 18.92.
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'H NMR (400 MHz, DMSO-ds) § 9.38 (q, J = 5.7, 4.7 Hz, 1H), 8.71 (d, J = 6.5 Hz, 1H), 8.58 (s,
1H), 8.40 (dd, J = 12.7, 2.4 Hz, 1H), 7.97 (q, J = 5.7 Hz, 1H), 7.92 — 7.86 (m, 1H), 7.72 (dd, J =
26.5,7.6 Hz, 2H), 7.54 (t, J = 7.6 Hz, 1H), 7.31 (d, J= 7.5 Hz, 1H), 6.93 (t, J= 7.4 Hz, 1H), 6.81
(d, J=8.8 Hz, 1H), 5.15 (dd, J= 13.3, 5.1 Hz, 1H), 4.64 (d, J= 5.8 Hz, 3H), 4.52 — 4.42 (m, 8H),
4.36 (s, 2H), 4.23 (q, J = 4.9, 3.9 Hz, 4H), 4.14 — 4.01 (m, 3H), 3.94 — 3.84 (m, 4H), 3.77 (q, J =
4.3 Hz, 2H), 3.57 (dt, J = 16.3, 6.4 Hz, 6H), 3.52 — 3.45 (m, 2H), 3.26 (q, J = 5.7 Hz, 2H), 2.94 —
2.84 (m, 1H), 2.31 (d, J = 6.4 Hz, 2H), 2.05 (ddd, J=21.8, 11.2, 4.9 Hz, 2H).

13C NMR (101 MHz, DMSO-ds) § 173.33, 171.42, 170.70, 167.94, 164.62, 158.44, 149.90, 149.75,
147.98, 147.08, 144.44, 141.84, 138.75, 134.76, 132.56, 129.53, 129.16, 123.95, 122.96, 120.37,
117.92, 114.91, 113.28, 111.22, 105.22, 91.72, 81.89, 69.99, 69.12, 68.62, 62.78, 58.42, 53.88,

52.11, 50.03, 48.71, 47.39, 43.69, 38.86, 36.49, 31.67, 26.59, 22.79.
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YW-L-6

“TFA

'"H NMR (400 MHz, DMSO-ds) 8 9.43 (s, 1H), 8.73 (d, J = 6.6 Hz, 1H), 8.64 — 8.55 (m, 1H), 8.41
(d, J=12.8 Hz, 1H), 7.97 (t, J = 5.5 Hz, 1H), 7.88 (t, J= 12.0 Hz, 2H), 7.74 (dd, J=24.9, 7.6 Hz,
2H), 7.56 (t, J = 7.8 Hz, 1H), 7.32 (d, J= 7.5 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 6.83 (d, J = 8.7
Hz, 1H), 5.16 (dd, J = 13.4, 5.0 Hz, 1H), 4.65 (d, J = 5.6 Hz, 4H), 4.47 (d, J = 8.9 Hz, 5H), 4.25
(d, J=5.8 Hz, 3H), 4.15 — 4.01 (m, 3H), 3.97 — 3.85 (m, 4H), 3.80 (t, J = 4.3 Hz, 2H), 3.65 — 3.39
(m, 15H), 3.27 (d, J = 6.4 Hz, 2H), 2.93 (td, J = 16.1, 14.6, 5.2 Hz, 1H), 2.61 (d, J= 17.3 Hz, 1H),
231 (t, J = 6.4 Hz, 2H), 2.14 — 1.94 (m, 2H).

13C NMR (101 MHz, DMSO-ds) 8 173.33, 171.43, 170.71, 167.96, 164.63, 157.76, 149.77, 147.97,
149.06, 147.10, 144.46, 141.86, 141.37, 138.77, 136.29, 134.79, 132.58, 129.54, 123.98, 122.99,
120.57, 120.39, 117.95, 114.92, 113.35, 111.23, 105.71, 105.25, 91.75, 81.90, 81.40, 70.37, 70.26,
70.12, 69.97, 69.29, 69.16, 68.63, 67.25, 62.78, 58.43, 53.89, 52.13, 50.03, 48.71, 47.40, 43.71,

38.86, 36.50, 31.68, 26.61, 22.81.
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YW-L-7

'H NMR (400 MHz, DMSO-ds) § 9.37 (q, J= 5.4 Hz, 1H), 8.72 (dd, J= 6.2, 2.1 Hz, 1H), 8.60 (d,
J=10.4 Hz, 1H), 8.53 — 8.24 (m, 2H), 8.00 — 7.80 (m, 3H), 7.74 (dd, J = 21.5, 7.6 Hz, 2H), 7.56
(t,J=7.6 Hz, 1H), 7.31 (dd, J="7.5, 2.1 Hz, 1H), 6.93 (dd, J = 10.2, 4.2 Hz, 1H), 6.82 (d, J=8.8
Hz, 1H), 5.15 (dd, J = 13.3, 5.1 Hz, 1H), 4.64 (d, J = 5.6 Hz, 2H), 4.29 — 4.18 (m, 3H), 4.16 — 3.99
(m, 3H), 3.88 (d, J=4.3 Hz, 3H), 3.79 (dd, J = 5.6, 3.3 Hz, 4H), 3.49 (p, J=2.7, 2.3 Hz, 5H), 3.46
(q,J=3.7,3.1 Hz, 4H), 3.41 (t, J= 5.9 Hz, 3H), 3.20 (q, J = 5.8 Hz, 3H), 2.90 (dtd, J= 16.3, 12.2,
10.9, 5.7 Hz, 2H), 2.60 (dt, J = 15.1, 3.0 Hz, 2H), 2.42 (dd, J = 13.3, 4.5 Hz, 1H), 2.30 (t, J = 6.4
Hz, 2H), 2.16 — 1.91 (m, 2H).

13C NMR (101 MHz, DMSO-de) & 173.32, 171.42, 170.61, 167.94, 164.62, 157.79, 149.91, 149.75,
148.03, 147.09, 144.43, 141.84, 141.33, 138.71, 134.86, 132.56, 129.19, 123.97, 122.97, 120.56,
120.37, 117.95, 114.91, 113.33, 111.22, 105.19, 91.79, 81.78, 81.39, 70.36, 70.26, 70.12, 69.97,
69.84, 69.58, 69.20, 67.24, 62.79, 58.58, 53.88, 52.12, 50.03, 48.71, 47.39, 38.97, 36.48, 31.66,

26.60, 22.82.
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YW-L-8

TFA

'H NMR (400 MHz, DMSO-ds) & 9.37 (q, J = 5.4 Hz, 1H), 8.77 (t, J = 5.5 Hz, 1H), 8.69 (dd, J =
6.4,2.1 Hz, 1H), 8.59 (d, J = 10.6 Hz, 1H), 8.40 (dd, J = 14.4, 2.5 Hz, 1H), 7.88 (dt, J=18.7, 2.1
Hz, 1H), 7.81 — 7.71 (m, 3H), 7.67 (d, J= 7.6 Hz, 1H), 7.54 (t, J= 7.6 Hz, 1H), 7.28 (dd, J= 7.3,
2.1 Hz, 1H), 6.94 (ddd, J=17.1, 9.0, 4.2 Hz, 3H), 6.81 (d, J= 8.8 Hz, 1H), 5.14 (dd, J=13.3, 5.1
Hz, 1H), 4.63 (d, J = 5.8 Hz, 3H), 4.47 (d, J = 6.6 Hz, 2H), 4.36 — 4.31 (m, 2H), 4.11 (d, J= 5.3
Hz, 2H), 3.89 (d, J = 15.2 Hz, 5H), 3.59 (t, J = 5.1 Hz, 3H), 3.27 (dt, J = 21.3, 5.1 Hz, 3H), 2.34
(q,J=12.9, 10.1 Hz, 4H), 2.11 — 1.92 (m, 4H), 1.76 (h, J= 6.1 Hz, 2H), 1.61 — 1.11 (m, 12H).

13C NMR (101 MHz, DMSO-ds) § 173.30, 171.45, 171.24, 168.03, 168.03, 166.14, 164.62, 157.77,
150.07, 149.76, 149.05, 148.01, 147.05, 144.57, 141.85, 141.36, 138.76, 134.47, 132.49, 131.34,
129.54, 129.17, 123.63, 120.33, 118.49, 114.94, 114.17, 113.13, 111.23, 105.21, 93.75, 77.71,
69.62, 62.79, 53.89, 52.03, 50.03, 48.71, 47.75, 47.32, 44.89, 43.69, 41.04, 32.66, 31.65, 29.73,

29.49,29.17, 28.99, 28.84, 25.79, 25.14, 22.89.
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YW-L-9

'"H NMR (400 MHz, DMSO-ds) 8 9.39 (q, J = 5.4 Hz, 1H), 8.77 (t, J= 5.4 Hz, 1H), 8.69 (dd, J =
6.6, 2.1 Hz, 1H), 8.59 (d, J= 10.7 Hz, 1H), 8.40 (dd, J = 14.6, 2.4 Hz, 2H), 7.89 (dt, J = 8.6, 2.8
Hz, 2H), 7.79 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 7.5 Hz, 1H), 7.67 (d, J = 7.6 Hz, 1H), 7.54 (t, J =
7.6 Hz, 1H), 7.28 (dd, J= 7.5, 2.1 Hz, 1H), 7.03 — 6.87 (m, 4H), 6.82 (d, J= 8.8 Hz, 1H), 5.15 (dd,
J=13.3,5.1 Hz, 1H), 4.64 (d, J= 5.6 Hz, 3H), 4.42 (s, 1H), 4.35 (s, 1H), 4.33 (d, J= 3.1 Hz, 1H),
425 (d, J=26.4 Hz, 1H), 4.11 (d, J = 5.2 Hz, 3H), 4.08 (d, J = 4.3 Hz, 1H), 4.04 (s, 1H), 3.96
3.82 (m, SH), 3.59 (t, J=4.9 Hz, 4H), 3.51 (q, J = 6.6, 6.2 Hz, 1H), 3.27 (dt, J=21.9, 5.2 Hz, 4H),
2.93 —2.82 (m, 1H), 2.63 — 2.54 (m, 1H), 2.42 — 2.26 (m, 3H), 2.11 — 2.04 (m, 1H), 2.04 — 1.94
(m, 1H), 1.76 (dq, J= 10.9, 6.5, 5.5 Hz, 2H), 1.62 — 1.19 (m, 10H).

13C NMR (101 MHz, DMSO-de) & 173.30, 171.44, 171.24, 168.03, 166.14, 164.62, 158.88, 158.52,
157.71, 153.07, 150.07, 149.75, 149.04, 147.91, 147.04, 144.57, 141.84, 141.34, 138.81, 136.21,
134.46, 132.48, 129.16, 123.62, 123.02, 120.59, 120.37, 118.49, 114.17, 113.14, 111.22, 105.26,
93.75, 81.35, 77.71, 69.62, 62.78, 53.88, 52.03, 50.03, 48.72, 47.76, 47.32, 44.90, 43.72, 32.66,

31.65,29.73,29.17, 28.99, 26.60, 25.79, 25.14, 22.89.
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'H NMR (400 MHz, DMSO-ds) & 9.62 (s, 1H), 9.42 (s, 1H), 9.15 (q, J = 5.4 Hz, 1H), 8.79 — 8.67
(m, 1H), 8.60 (dd, J= 10.6, 3.4 Hz, 1H), 8.40 (dd, J= 15.0, 2.4 Hz, 1H), 7.89 (dd, J= 8.4, 6.2 Hz,
3H), 7.75 (d, J = 7.5 Hz, 1H), 7.68 (dd, J = 7.5, 2.3 Hz, 1H), 7.54 (dt, J = 22.9, 8.3 Hz, 3H), 7.28
(d, J=2.0 Hz, 1H), 6.93 (dd, J = 9.2, 3.0 Hz, 1H), 6.82 (dd, J = 8.9, 2.7 Hz, 1H), 5.16 (dd, J =
13.3, 5.1 Hz, 2H), 4.63 (t, J= 5.3 Hz, 2H), 4.57 (d, J= 12.9 Hz, 1H), 4.47 (d, J = 5.9 Hz, 2H), 4.38
(td, J=19.5, 18.8, 5.9 Hz, 4H), 4.21 (s, 1H), 4.18 — 3.99 (m, 6H), 3.96 — 3.81 (m, 4H), 3.63 — 3.36
(m, 4H), 3.35 — 3.14 (m, 1H), 3.04 (t, J= 11.0 Hz, 2H), 2.91 (tq, J = 14.4, 8.7, 7.0 Hz, 2H), 2.64
—2.53 (m, 4H), 2.43 — 2.25 (m, 1H), 2.20 (d, J = 13.6 Hz, 1H), 2.16 — 2.10 (m, 1H), 2.10 — 1.93
(m, 7H), 1.86 (q, J = 12.5 Hz, 1H), 1.73 — 1.36 (m, 2H), 1.24 (d, J= 3.3 Hz, 1H).

13C NMR (101 MHz, DMSO-de) & 173.30, 171.46, 170.39, 168.00, 165.73, 158.83, 158349,
157.79, 149.75, 149.02, 147.99, 147.09, 144.56, 141.84, 141.32, 138.74, 136.26, 134.59, 133.67,
132.50, 132.01, 131.84, 129.59, 129.20, 128.10, 125.98, 123.74, 122.99, 120.71, 120.56, 120.38,
118.35, 114.91, 113.24, 111.22, 105.65, 105.21, 94.25, 93.01, 83.19, 81.41, 77.96, 69.10, 62.78,
53.89, 52.04, 50.03, 48.70, 47.34, 46.15, 43.72, 31.64, 29.95, 29.60, 28.79, 27.81, 26.82, 26.61,

26.00, 24.55, 24.11, 22.91.
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'H NMR (400 MHz, DMSO-de) § 9.91 — 9.58 (m, 1H), 9.44 (q, J = 5.9, 4.6 Hz, 1H), 9.16 (q, J =
5.8 Hz, 1H), 8.70 (dt, J=5.1, 2.5 Hz, 1H), 8.59 (d, J= 2.0 Hz, 1H), 8.43 (d, J= 2.3 Hz, 1H), 8.39
(d, J=2.4 Hz, 1H), 8.01 — 7.80 (m, 4H), 7.75 (d, J = 7.5 Hz, 1H), 7.68 (dd, J= 7.5, 2.7 Hz, 1H),
7.61 —7.54 (m, 2H), 7.54 — 7.47 (m, 1H), 7.28 (dt, J= 8.3, 2.2 Hz, 1H), 6.92 (t, J= 7.9 Hz, 2H),
6.82 (d,J=9.0 Hz, 1H), 5.16 (dd, J=13.3, 5.1 Hz, 1H), 4.64 (t, J= 5.4 Hz, 2H), 4.55 (d, J= 12.8
Hz, 1H), 4.48 (d, J = 6.0 Hz, 2H), 4.38 (td, J= 19.5, 18.9, 6.5 Hz, 3H), 4.22 (s, 1H), 4.17 — 3.98
(m, 6H), 3.96 — 3.84 (m, 4H), 3.50 (dd, J = 23.9, 8.7 Hz, 4H), 3.34 — 3.14 (m, 1H), 3.03 (dt, J =
17.2, 8.0 Hz, 2H), 2.91 (dp, J = 20.4, 6.8, 6.1 Hz, 2H), 2.61 (d, J = 3.6 Hz, 1H), 2.44 — 2.28 (m,
3H), 2.25 - 2.16 (m, 1H), 2.16 — 1.94 (m, 6H), 1.88 (t, J= 13.4 Hz, 1H), 1.80 (q, /= 7.1, 6.5 Hz,
2H), 1.54 (ddt, J = 40.0, 15.6, 9.6 Hz, 6H).

13C NMR (101 MHz, DMSO-ds) § 173.30, 171.46, 170.94, 168.01, 165.74, 164.37, 158.93, 157.75,
157.49, 150.05, 149.75, 149.02, 147.94, 147.06, 144.56, 141.84, 141.32, 138.78, 136.22, 134.60,
133.66, 132.50, 132.01, 131.84, 129.54, 129.19, 128.10, 125.99, 123.73, 122.96, 120.57, 120.38,
118.36, 117.94, 115.03, 114.92, 113.17, 111.22, 105.24, 94.27, 93.01, 92.83, 81.38, 81.06, 77.95,
69.61, 62.87, 62.77, 53.88, 52.05, 50.03, 48.70, 48.49, 48.31, 47.34, 46.13, 44.61, 43.82, 43.72,

32.56, 31.64, 29.95, 29.58, 28.79, 27.80, 26.94, 26.60, 26.14, 26.01, 25.72, 24.93, 24.11, 22.91.
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YW-N-1

O
NH

'"H NMR (400 MHz, DMSO-ds) § 10.79 (s, 1H), 9.39 (s, 1H), 8.67 (d, J = 7.3 Hz, 1H), 8.59 (d, J
= 10.4 Hz, 1H), 8.41 (d, J= 12.4 Hz, 1H), 8.07 (q, J = 8.7, 7.4 Hz, 1H), 7.89 (d, J = 8.7 Hz, 1H),
7.28 (d, J= 7.7 Hz, 1H), 7.11 (d, J = 8.5 Hz, 2H), 6.97 — 6.86 (m, 3H), 6.83 (d, J= 9.0 Hz, 1H),
4.64 (d, J= 6.0 Hz, 2H), 4.48 (d, J = 6.3 Hz, 1H), 4.08 (dd, J = 15.9, 10.4 Hz, 4H), 3.97 (s, 2H),
3.89 (s, 4H), 3.41 (s, 4H), 2.70 (s, 1H), 2.23 — 1.93 (m, 5H), 1.76 (t, J = 7.2 Hz, 2H), 1.59 (t, J =
7.7 Hz, 2H), 1.43 (q, J = 7.7 Hz, 2H), 1.24 (dd, J = 17.0, 8.1 Hz, 1H).

13C NMR (101 MHz, DMSO-ds) § 174.93, 173.96, 172.95, 164.63, 158.56, 157.80, 150.05, 149.74,
147.86, 147.04, 141.85, 138.82, 136.21, 131.66, 130.03, 123.01, 120.58, 120.34, 114.78, 113.14,
111.23, 105.31, 81.34, 69.57, 66.78, 62.79, 53.90, 50.04, 48.71, 46.95, 43.72, 38.63, 35.63, 31.81,

28.65,26.45, 25.52, 25.38.
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O
NH

'H NMR (600 MHz, DMSO-ds) 8 10.32 (s, 1H), 9.30 (d, /= 5.1 Hz, 1H), 8.63 (d, /= 2.1 Hz, 1H),
8.53 (s, 1H), 8.33 (dd, J = 18.0, 2.5 Hz, 2H), 8.16 — 8.05 (m, 1H), 7.81 (dd, J = 8.6, 2.5 Hz, 1H),
7.20 (d, J=2.1 Hz, 1H), 7.03 (d, J = 8.5 Hz, 2H), 6.86 (dd, J = 8.7, 2.9 Hz, 1H), 6.83 — 6.78 (m,
2H), 6.75 (d, J = 8.8 Hz, 1H), 4.56 (t, J = 6.4 Hz, 3H), 4.40 (d, J = 6.5 Hz, 2H), 4.15 (d, J = 3.7
Hz, 1H), 4.08 — 4.00 (m, 3H), 3.98 (d, J = 12.7 Hz, 2H), 3.90 (td, J = 5.7, 2.8 Hz, 2H), 3.70 (dd, J
= 11.5,4.9 Hz, 1H), 3.45 (dt, J= 12.3, 6.6 Hz, 1H), 3.40 — 3.30 (m, 2H), 2.61 —2.56 (m, 1H), 2.33
(s, 1H), 2.24 (td, J = 7.4, 4.6 Hz, 2H), 2.07 (dtd, J = 13.0, 11.7, 4.4 Hz, 1H), 2.02 — 1.96 (m, 1H),
1.96 — 1.87 (m, 3H).

13C NMR (151 MHz, DMSO-ds) 5 178.31, 174.95, 173.98, 172.04, 164.66, 158.76, 158.51, 157.57,
149.96, 147.05, 141.90, 138.92, 136.01, 132.06, 130.06, 129.51, 123.03, 117.14, 114.74, 111.24,
105.23, 81.64, 69.09, 66.77, 62.75, 53.90, 50.06, 49.99, 48.71, 46.94, 43.74, 38.70, 31.83, 26.43,

24.92.
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@)
NH

'H NMR (600 MHz, DMSO-ds) & 9.32 (q, J = 5.4 Hz, 1H), 8.63 (dd, J = 10.2, 2.1 Hz, 1H), 8.53
(d,J=16.4 Hz, 1H), 8.33 (dd, J=20.3, 2.5 Hz, 1H), 7.99 (dd, J= 6.5, 4.8 Hz, 1H), 7.82 (ddd, J =
8.7,4.9,2.5 Hz, 1H), 7.21 (dd, J=11.0, 2.1 Hz, 1H), 7.09 — 7.01 (m, 2H), 6.87 (d, J= 8.5 Hz, 1H),
6.83 — 6.79 (m, 2H), 6.75 (d, J = 8.8 Hz, 1H), 4.56 (t, J = 6.6 Hz, 3H), 4.40 (d, J = 6.5 Hz, 2H),
4.15 (s, 1H), 4.08 — 3.94 (m, 5H), 3.88 (t, /= 5.7 Hz, 2H), 3.81 (d, J = 6.4 Hz, 4H), 3.70 (dd, J =
11.5, 4.9 Hz, 1H), 3.45 (dt, J= 12.1, 6.7 Hz, 1H), 3.33 (q, J = 5.7 Hz, 2H), 2.61 — 2.53 (m, 2H),
2.42 —2.29 (m, 1H), 2.12 — 1.96 (m, 4H), 1.91 (dq, J = 13.6, 4.8 Hz, 1H), 1.72 — 1.62 (m, 2H),
1.48 — 1.40 (m, 2H), 1.34 (qd, J= 9.2, 7.9, 4.6 Hz, 2H), 1.26 (dtt, J= 13.9, 9.7, 5.5 Hz, 2H), 1.22
~ 1.14 (m, 2H).

13C NMR (151 MHz, DMSO-ds) § 174.94, 173.93, 172.93, 164.60, 158.77, 158.53, 157.80, 148.87,
147.76, 141.87, 138.80, 136.19, 131.68, 130.05, 129.50, 123.02, 117.27, 115.33, 114.74, 113.16,
111.24, 105.23, 81.33, 69.60, 67.26, 62.74, 53.89, 49.67, 48.71, 46.95, 38.59, 35.68, 31.83, 28.98,

28.88, 28.82, 26.45, 25.77, 25.63.
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YW-N-4

'H NMR (400 MHz, DMSO-ds)  9.37 (s, 1H), 8.69 (d, J= 7.3 Hz, 1H), 8.60 (d, /= 10.2 Hz, 1H),
8.41 (d,J=13.8 Hz, 1H), 8.02 (d, J = 5.8 Hz, 1H), 7.89 (d, J= 8.7 Hz, 1H), 7.28 (d, J=8.2 Hz,
1H), 7.13 (d, J = 8.1 Hz, 1H), 6.97 — 6.86 (m, 2H), 6.83 (d, J = 8.9 Hz, 1H), 4.64 (d, J = 6.0 Hz,
1H), 4.47 (s, 1H), 4.12 (s, 3H), 3.89 (s, 2H), 3.77 (s, 2H), 2.95 (s, 1H), 2.80 (s, 1H), 2.69 (s, 1H),
2.35 (s, 1H), 2.08 (t, J= 7.5 Hz, 3H), 1.76 (t, J= 6.8 Hz, 1H), 1.46 (dt, J=22.3, 7.5 Hz, 3H), 1.38
—1.08 (m, 8H).

13C NMR (101 MHz, DMSO-ds) 5 174.94, 173.96, 173.05, 164.79, 157.81, 150.08, 149.39, 147.99,
147.04, 141.86, 138.73, 131.67, 130.04, 114.79, 111.23, 81.33, 69.65, 66.80, 62.81, 53.90, 46.95,
38.62, 35.75, 31.80, 29.40, 29.23, 29.14, 29.07, 28.89, 26.47, 25.89, 25.69.

YW-N-5

- “TFA
N)-CN

O-"N /\N N

\ N< O~
)
0 H LN~ *N NJN)\\;

HN o

o

'H NMR (400 MHz, DMSO-ds) & 9.44 (q, J = 5.2 Hz, 1H), 8.75 (dd, J = 7.8, 2.0 Hz, 1H), 8.68 —
8.54 (m, 3H), 8.50 (d, J = 2.4 Hz, 1H), 8.41 (dd, J = 14.6, 2.4 Hz, 2H), 8.29 (d, J = 2.4 Hz, 1H),
8.04 (dd, J=9.0, 2.4 Hz, 1H), 7.98 (dd, J = 8.7, 2.5 Hz, 1H), 7.90 (ddd, J = 8.0, 4.8, 2.5 Hz, 2H),
7.85 (dd, J = 8.6, 2.5 Hz, 1H), 7.32 (dd, J = 8.0, 2.0 Hz, 1H), 7.13 (d, J = 8.3 Hz, 2H), 6.93 (dd, J
= 8.6, 4.4 Hz, 4H), 6.83 (d, J= 8.9 Hz, 1H), 4.64 (t, J = 5.4 Hz, 2H), 4.48 (d, J= 6.4 Hz, 1H), 4.23

(s, 1H), 4.11 (ddd, J=27.3, 14.7, 8.9 Hz, 7H), 3.92 (s, 1H), 3.88 (d, J= 4.6 Hz, 4H), 3.79 (dd, J =
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11.5, 4.9 Hz, 1H), 3.73 — 3.65 (m, 2H), 3.55 — 3.46 (m, 1H), 2.71 — 2.60 (m, 1H), 2.57 (t, J= 6.9
Hz, 2H), 2.45 (t, J = 4.2 Hz, 1H), 2.16 (qd, J = 12.1, 4.3 Hz, 1H), 2.02 (tp, /= 13.6, 5.1, 4.1 Hz,
4H).

13C NMR (101 MHz, DMSO-ds) § 175.00, 173.99, 170.74, 165.35, 159.24, 157.78, 149.91, 149.76,
147.80, 147.36, 147.10, 141.89, 138.89, 137.48, 131.73, 130.11, 129.46, 123.06, 120.55, 120.40,
119.02, 114.75, 113.22, 111.24, 106.77, 105.33, 81.34, 69.06, 66.52, 62.68, 53.89, 49.97, 48.72,
46.96, 44.64, 41.02, 31.86, 28.90, 26.47, 24.46.

YW-N-6

N_
o ON Y N N.~CN *TFA
H >
N™ |

v
v N % /@JO\

'H NMR (400 MHz, DMSO-de) § 10.83 (s, 1H), 9.40 (q, J = 5.2 Hz, 1H), 8.77 — 8.67 (m, 2H),
8.66 — 8.53 (m, 4H), 8.49 (d, J = 2.3 Hz, 1H), 8.46 — 8.36 (m, 3H), 8.29 (d, J = 2.4 Hz, 1H), 8.02
(dd, J=9.0, 2.5 Hz, 1H), 7.97 (dt, J = 8.8, 3.1 Hz, 1H), 7.89 (dt, J = 8.7, 3.0 Hz, 3H), 7.84 (dd, J
= 8.6, 2.5 Hz, 1H), 7.28 (dt, J = 7.1, 2.5 Hz, 2H), 7.13 (d, J = 8.4 Hz, 3H), 6.93 (dd, J = 8.5, 5.0
Hz, 5H), 6.82 (dd, J = 8.9, 2.8 Hz, 2H), 4.63 (t, J = 5.4 Hz, 4H), 4.47 (d, J = 6.4 Hz, 3H), 4.22 (s,
1H), 4.18 — 4.00 (m, 11H), 3.87 (s, 8H), 3.78 (dd, J = 11.5, 4.9 Hz, 1H), 3.72 — 3.46 (m, 11H),
2.69 (s, 1H), 2.63 (dd, J=11.7, 5.3 Hz, 1H), 2.25 (td, J= 7.2, 2.2 Hz, 2H), 2.16 (dd, J = 12.7, 4.2
Hz, 1H), 2.12 — 2.03 (m, 2H), 2.03 — 1.93 (m, 2H), 1.78 (q, J = 8.4 Hz, 4H), 1.58 (p, J = 7.7 Hz,

4H), 1.53 — 1.38 (m, 4H), 1.36 — 1.15 (m, 4H).
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'H NMR (400 MHz, DMSO-ds) 8 9.35 (q, J = 5.4 Hz, 1H), 8.62 (t, J = 4.0 Hz, 1H), 8.57 — 8.45
(m, 2H), 8.34 (dd, J= 14.5, 2.4 Hz, 1H), 7.97 (dd, /= 9.0, 2.4 Hz, 1H), 7.82 (ddd, J= 7.8, 4.5, 2.3
Hz, 1H), 7.77 (dd, J = 8.6, 2.4 Hz, 1H), 7.22 (d, J = 7.9 Hz, 2H), 7.06 (d, J = 8.2 Hz, 2H), 6.86 (d,
J=82Hz, 3H), 6.76 (d, J = 8.8 Hz, 1H), 4.57 (d, J= 5.5 Hz, 2H), 4.41 (d, J = 6.3 Hz, 1H), 4.15
(s, 1H), 4.10 — 3.91 (m, 5H), 3.85 (s, 1H), 3.82 (s, 2H), 3.80 (s, 1H), 3.71 (dd, J=11.3, 4.9 Hz,
1H), 3.65 — 3.35 (m, 8H), 2.65 — 2.51 (m, 1H), 2.38 (s, 1H), 2.29 (t, J = 7.5 Hz, 2H), 2.15 — 1.87
(m, 3H), 170 (p, J = 6.2 Hz, 2H), 1.46 (p, J= 7.3 Hz, 2H), 1.38 (d, J = 9.2 Hz, 2H), 1.26 (dd, J =
10.3, 4.9 Hz, 2H).

3CNMR (101 MHz, DMSO-ds) § 174.92, 173.91, 171.39, 165.33, 164.62, 157.81, 150.06, 149.75,
147.76, 147.15, 141.84, 138.90, 137.55, 131.71, 130.07, 123.03, 119.08, 114.81, 111.22, 111.22,
106.87, 81.34, 69.62, 66.57, 62.76, 53.87, 50.03, 48.73, 46.96, 44.95, 44.71, 43.75, 32.69, 31.81,

29.16, 28.99, 28.84, 26.47, 25.79, 25.10.
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YW-N-8

'H NMR (400 MHz, DMSO-ds) § 9.43 (q, J= 5.1 Hz, 1H), 8.73 (dd, J= 7.5, 2.1 Hz, 1H), 8.59 (d,
J=10.8 Hz, 1H), 8.47 — 8.34 (m, 3H), 8.29 (d, J = 2.5 Hz, 1H), 7.89 (dd, J = 8.7, 2.5 Hz, 1H),
7.77 (d, J = 8.6 Hz, 2H), 7.31 (dd, J = 8.4, 2.1 Hz, 1H), 7.13 (d, J = 8.4 Hz, 2H), 7.04 — 6.87 (m,
5H), 6.83 (d, J=8.9 Hz, 1H), 4.64 (t,J= 5.1 Hz, 2H), 4.48 (d, J= 6.4 Hz, 1H), 4.23 (s, 1H), 4.11
(ddd, J = 26.8, 13.2, 7.1 Hz, 6H), 3.90 (d, J = 19.9 Hz, 4H), 3.79 (dd, J = 11.3, 4.9 Hz, 1H), 3.61
(q,J = 6.0 Hz, 6H), 3.52 (q, J = 6.4, 6.0 Hz, 1H), 3.28 (dt, J = 20.3, 5.0 Hz, 4H), 2.71 — 2.54 (m,
3H), 2.24 — 1.91 (m, SH).

13C NMR (101 MHz, DMSO-ds) § 174.92, 173.91, 170.60, 166.61, 164.62, 158.97, 158.61, 157.83,
152.90, 149.92, 149.75, 149.03, 147.79, 147.06, 141.84, 138.86, 136.25, 131.67, 130.06, 129.47,
129.02, 124.27, 123.05, 120.58, 120.37, 119.82, 114.79, 114.24, 113.30, 111.22, 105.86, 105.34,
81.37, 69.13, 66.59, 62.76, 53.87, 50.03, 48.72, 47.79, 47.50, 46.96, 44.83, 43.75, 31.81, 28.84,

26.47,24.52.
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YW-N-9

'H NMR (400 MHz, DMSO-ds) § 9.42 (q, J = 5.7, 4.7 Hz, 1H), 8.70 (dd, J = 6.1, 2.1 Hz, 1H),
8.59 (d, J=10.5 Hz, 1H), 8.51 — 8.24 (m, 3H), 8.00 — 7.81 (m, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.27
(dd, J=6.9, 2.0 Hz, 1H), 7.13 (d, J= 8.3 Hz, 2H), 7.01 — 6.87 (m, 5H), 6.81 (d, J = 8.9 Hz, 1H),
4.64 (d, J= 5.8 Hz, 2H), 4.47 (d, J = 6.3 Hz, 2H), 4.26 — 3.99 (m, 7H), 3.90 (d, J = 17.5 Hz, 4H),
3.78 (dd, J=11.3, 4.9 Hz, 1H), 3.69 — 3.45 (m, 6H), 3.26 (dt, J = 22.3, 5.2 Hz, 4H), 2.65 (ddd, J
=17.0, 11.5, 5.4 Hz, 1H), 2.39 (t, J = 7.2 Hz, 2H), 2.08 (dddd, J = 43.0, 18.0, 9.2, 6.0 Hz, 3H),
1.79 (p, J = 6.2 Hz, 2H), 1.60 (p, J = 7.4 Hz, 2H), 1.48 (tt, J= 9.0, 5.8 Hz, 2H), 1.24 (d, J = 3.5
Hz, 1H).

13C NMR (101 MHz, DMSO-ds) § 174.92, 173.91, 171.13, 166.60, 164.61, 158.79, 157.83, 152.92,
150.05, 149.75, 149.03, 147.97, 147.05, 141.84, 141.32, 138.75, 136.21, 131.67, 130.06, 129.53,
129.00, 124.26, 122.98, 120.57, 120.38, 114.79, 114.24, 113.18, 111.22, 105.67, 105.22, 81.36,
69.60, 66.59, 62.78, 53.88, 50.03, 48.70, 47.91, 47.55, 46.96, 44.93, 43.70, 32.61, 31.81, 28.76,

26.47,25.71, 24.88.
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YW-N-10

'H NMR (400 MHz, DMSO-de) § 9.37 (g, J = 5.3 Hz, 1H), 8.69 (dd, J= 6.2, 2.1 Hz, 1H), 8.58 (s,
1H), 8.46 — 8.33 (m, 2H), 7.88 (dd, J = 8.7, 2.5 Hz, 1H), 7.76 (d, J = 8.5 Hz, 2H), 7.28 (dd, J =
7.2,2.1 Hz, 1H), 7.12 (d, J = 8.4 Hz, 2H), 6.99 — 6.87 (m, 5H), 6.81 (d, J= 8.8 Hz, 1H), 4.62 (t, J
= 6.2 Hz, 2H), 4.47 (d, J = 6.3 Hz, 2H), 4.21 (s, 1H), 4.07 (dd, J = 15.4, 9.6 Hz, 6H), 3.88 (d, J =
4.4 Hz, 4H), 3.78 (dd, J = 11.3, 4.9 Hz, 2H), 3.25 (dt, J = 22.2, 5.2 Hz, 4H), 2.92 — 2.80 (m, 1H),
2.72 -2.58 (m, 1H), 2.35 (t, J= 7.4 Hz, 2H), 2.23 — 2.10 (m, 1H), 2.03 (ddt, J=22.3, 8.7, 4.2 Hz,
2H), 1.76 (p, J = 6.5 Hz, 2H), 1.53 (p, J = 7.4 Hz, 2H), 1.48 — 1.40 (m, 2H), 1.40 — 1.28 (m, 4H),
1.25 (d, J = 9.4 Hz, 1H).

13C NMR (101 MHz, DMSO-de) & 174.92, 173.92, 171.22, 166.60, 157.83, 152.93, 150.07, 149.75,
148.04, 147.04, 141.84, 138.73, 131.67, 130.07, 129.01, 124.25, 123.00, 120.58, 114.79, 114.25,
111.23, 105.18, 81.35, 69.62, 66.60, 62.79, 53.89, 50.03, 48.70, 47.91, 47.54, 46.96, 44.92, 32.65,

31.82,29.16, 28.98, 28.84, 26.47, 25.79, 25.14.
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YW-N-11

NH

'H NMR (400 MHz, DMSO-de) § 9.38 (q, J = 5.3 Hz, 1H), 8.71 (dd, J= 6.8, 2.1 Hz, 1H), 8.60 (d,
J=10.9 Hz, 1H), 8.52 — 8.24 (m, 3H), 8.12 (dd, J=7.7, 2.9 Hz, 1H), 8.01 — 7.79 (m, 2H), 7.73 (d,
J=28.5Hz, 2H), 7.27 (dd, J=9.4, 2.1 Hz, 1H), 7.19 - 7.11 (m, 2H), 6.93 (td, J= 7.1, 3.7 Hz, 5H),
6.81 (d, J = 8.8 Hz, 1H), 4.63 (d, J= 5.8 Hz, 2H), 4.46 (d, J = 6.3 Hz, 2H), 4.22 (h, J = 7.7 Hz,
2H), 4.16 — 3.96 (m, 6H), 3.88 (d, J = 4.4 Hz, 4H), 3.78 (dd, J= 11.3, 4.9 Hz, 1H), 3.54 (dq, J =
34.8, 6.1 Hz, 3H), 3.19 (dt, J = 39.5, 5.3 Hz, 4H), 2.62 (dd, J = 11.6, 5.4 Hz, 1H), 2.45 (t, J= 4.3
Hz, 1H), 2.30 — 2.21 (m, 2H), 2.20 — 2.09 (m, 3H), 2.01 (ddt, J = 14.9, 11.9, 8.0 Hz, 4H), 1.69 —
1.57 (m, 4H), 1.57 — 1.47 (m, 2H), 1.34 — 1.06 (m, 1H).

13C NMR (101 MHz, DMSO-ds) § 174.92, 173.91, 170.94, 166.65, 157.83, 152.98, 149.75, 149.04,
147.93, 147.08, 141.84, 138.76, 136.25, 131.66, 130.06, 129.02, 114.78, 114.29, 111.22, 105.25,

81.37,69.24, 66.61, 62.77, 53.89, 50.03, 48.70, 46.96, 45.05, 43.70, 35.35, 31.82, 26.47, 24.89.
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S1.2. HRMS data

Table 1.2. HRMS data

Compound name Exact Mass HRMS
YW-L-1 874.3915 875.4016
YW-L-2 916.4384 917.4439
YW-L-3 958.4854 959.4893
YW-L-4 1004.4909 1005.4914
YW-L-5 936.3919 937.3947
YW-L-6 980.4181 981.4232
YW-L-7 1024.4443 1025.4492
YW-L-8 1034.4551 1035.4603
YW-L-9 1062.4864 1063.4966
YW-L-10 1088.5021 1089.5102
YW-L-11 1112.5021 1113.5224
YW-L-12 1140.5334 1141.4944
YW-N-1 769.3336 770.3434
YW-N-2 797.3649 798.3754
YW-N-3 825.3962 826.4066
YW-N-4 867.4432 868.4533
YW-N-5 058.4238 959.4336
YW-N-6 986.4551 987.4647
YW-N-7 1014.4864 1015.4968
YW-N-8 957.4286 958.4385
YW-N-9 985.4599 986.4700
YW-N-10 1013.4912 1014.5008
YW-N-11 1011.4755 1012.4851
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YW-T-1

'H NMR (400 MHz, DMSO-ds) & 9.41 (s, 1H), 8.64 (s, 1H), 8.56 (s, 1H), 8.40 (d, J = 7.5 Hz, 1H),
8.13 (s, 1H), 7.88 (t, J=7.5 Hz, 2H), 7.77 (t, J = 7.9 Hz, 1H), 7.52 (d, J = 8.5 Hz, 1H), 7.42 (d, J
=7.2 Hz, 1H), 7.26 (s, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.81 (d, J= 8.8 Hz, 1H), 5.08 (d, J=7.5 Hz,
2H), 4.63 (s, 3H), 4.48 (d, J = 6.1 Hz, 2H), 4.24 (d, J = 12.6 Hz, 3H), 4.07 (d, J = 23.7 Hz, SH),
3.92 (s, 1H), 3.88 (d, J = 4.3 Hz, 4H), 3.49 (s, 3H), 2.88 (d, J = 7.3 Hz, 2H), 2.60 (s, 2H), 2.30 (s,
2H), 2.00 (s, 4H).

13C NMR (101 MHz, DMSO-ds) § 173.25, 172.40, 170.39, 167.23, 165.71, 164.62, 157.73, 156.16,
149.90, 149.75, 149.03, 147.90, 147.03, 141.84, 138.76, 137.43, 136.20, 136.10, 133.69, 129.48,
122.98, 120.49, 116.91, 115.93, 113.24, 111.22, 105.25, 81.36, 69.06, 67.95, 62.77, 53.88, 50.46,

50.03,49.21, 48.71, 38.44, 31.88, 31.41, 26.60, 24.89, 22.47.

YW-T-2

'H NMR (400 MHz, Chloroform-d) & 10.50 (s, 1H), 9.39 (s, 1H), 8.67 (s, 1H), 8.57 (s, 1H), 8.40
(d, J=14.9 Hz, 1H), 8.00 (t, J= 5.3 Hz, 1H), 7.88 (d, J = 8.6 Hz, 1H), 7.83 — 7.75 (m, 1H), 7.54
(d, J= 8.5 Hz, 1H), 7.45 (d, J = 7.2 Hz, 1H), 7.26 (s, 1H), 6.93 (d, J = 8.3 Hz, 1H), 6.81 (d, J =
8.8 Hz, 1H), 5.07 (d, J= 12.8 Hz, 1H), 4.63 (s, 4H), 4.46 (s, 3H), 4.26 — 4.18 (m, 3H), 4.15 — 4.00
(m, 5H), 3.91 (s, 1H), 3.87 (d, J= 4.4 Hz, 3H), 3.43 (d, J = 5.6 Hz, 2H), 2.89 (s, 1H), 2.58 (d, J =
17.6 Hz, 1H), 2.06 (t, J= 7.3 Hz, 3H), 1.74 (s, 2H), 1.44 (d, J=23.5 Hz, 4H), 1.35 — 1.27 (m, 2H),
1.22 (s, 7H).

13C NMR (101 MHz, Chloroform-d) & 177.99, 177.89, 175.12, 172.01, 169.37, 162.48, 160.98,

154.81, 154.50, 153.79, 152.68, 151.78, 146.59, 143.54, 142.23, 138.49, 134.25, 127.76, 125.48,
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125.33, 121.70, 120.74, 117.88, 115.97, 110.00, 86.09, 74.38, 72.69, 67.67, 58.63, 54.78, 53.97,
53.46, 48.46, 43.14, 40.47, 36.16, 34.16, 34.07, 33.90, 33.83, 33.64, 31.35, 30.63, 30.39, 27.24.
YW-T-3

'H NMR (400 MHz, DMSO-ds) & 9.38 (s, 1H), 8.66 (d, J= 5.2 Hz, 1H), 8.59 (d, /= 10.6 Hz, 1H),
8.40 (d, J= 11.6 Hz, 1H), 8.07 (t, J= 5.0 Hz, 1H), 7.88 (d, J = 8.6 Hz, 1H), 7.56 (t, J = 7.8 Hz,
1H), 7.26 (d, J = 8.2 Hz, 1H), 7.16 (d, J = 8.6 Hz, 1H), 7.00 (d, J= 7.0 Hz, 1H), 6.93 (d, J = 8.5
Hz, 1H), 6.81 (d, J = 8.8 Hz, 1H), 6.71 (s, 1H), 5.04 (dd, J = 12.8, 5.3 Hz, 1H), 4.64 (d, J= 5.2
Hz, 3H), 4.47 (d, J = 6.1 Hz, 2H), 4.08 (dd, J = 15.9, 10.2 Hz, 6H), 3.60 — 3.46 (m, 1H), 3.45 —
3.32 (m, 2H), 3.25 (d, J = 5.6 Hz, 2H), 2.87 (t, J = 12.9 Hz, 2H), 2.58 (s, 1H), 2.53 (s, 1H), 2.15
(s, 2H), 2.04 (dd, J = 28.2, 9.6 Hz, 2H), 1.70 (d, J = 8.8 Hz, 5H).

13C NMR (101 MHz, DMSO-de) § 173.26, 173.12 (d, J=29.5 Hz), 170.55, 169.19, 167.75, 164.62,
157.77, 150.00, 149.88 (d, J = 24.9 Hz), 149.05, 147.99, 147.05, 146.94 (d, J = 22.5 Hz), 138.74,
136.64, 136.21, 132.66, 129.52, 122.99, 117.61, 113.09, 111.11 (d, J = 23.6 Hz), 105.21, 81.36,
69.33, 62.95, 62.79, 53.89, 50.03, 48.85 (d, J=28.5 Hz), 41.96, 38.47, 35.25, 31.44, 28.34, 26.60,
22.40 (d, J = 45.6 Hz).

YW-T-4

'H NMR (400 MHz, DMSO-ds) & 9.39 (s, 1H), 8.66 (s, 1H), 8.57 (s, 1H), 8.40 (d, J = 10.0 Hz,
1H), 7.88 (d, J= 8.6 Hz, 1H), 7.78 (t, J = 4.9 Hz, 1H), 7.56 (t, J= 7.8 Hz, 1H), 7.26 (s, 1H), 7.03
(dd, J = 25.5, 7.8 Hz, 2H), 6.93 (d, J = 8.3 Hz, 1H), 6.81 (d, J = 8.8 Hz, 1H), 6.51 (s, 1H), 5.04
(dd, J=12.8, 5.3 Hz, 1H), 4.63 (s, 2H), 4.47 (d, J= 6.1 Hz, 2H), 4.07 (d, J = 24.0 Hz, 4H), 3.97 —
3.81 (m, 4H), 3.58 — 3.45 (m, 1H), 3.27 (s, 2H), 3.03 (d, J = 6.0 Hz, 2H), 2.88 (t, /= 12.9 Hz, 1H),
2.58 (d, J=17.6 Hz, 1H), 2.21 — 1.94 (m, 4H), 1.80 — 1.61 (m, 4H), 1.60 — 1.49 (m, 2H), 1.45 —

1.19 (m, SH).
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13C NMR (101 MHz, DMSO-ds) § 173.29, 172.11, 170.57, 169.42, 164.62, 157.75, 150.01, 149.75,
147.96, 146.86, 141.84, 138.74, 136.73, 136.20, 132.65, 129.52, 122.99, 120.37, 117.59, 114.92,
113.12, 111.22, 110.84, 109.47, 105.22, 81.36, 69.36, 62.78, 53.88, 50.03, 49.01, 48.70, 42.24,
35.34, 31.45,29.58, 29.09, 28.40, 26.60, 26.49, 22.62, 22.33.

YW-T-6

'H NMR (400 MHz, DMSO-ds) & 9.37 (s, 1H), 8.71 (d, J = 4.4 Hz, 1H), 8.59 (d, J= 10.4 Hz, 1H),
8.40 (d, J= 13.9 Hz, 1H), 8.07 (t, J= 5.2 Hz, 1H), 7.88 (dd, J= 8.7, 2.2 Hz, 1H), 7.63 — 7.5 (m,
1H), 7.31 (d, J= 7.3 Hz, 1H), 7.15 (d, J = 8.6 Hz, 1H), 7.02 (d, J= 7.0 Hz, 1H), 6.93 (d, J = 8.4
Hz, 1H), 6.81 (d, J= 8.8 Hz, 1H), 6.71 (s, 1H), 5.05 (dd, J= 12.8, 5.2 Hz, 1H), 4.63 (s, 2H), 4.47
(d, J= 6.0 Hz, 2H), 4.25 (s, 3H), 4.15 — 4.01 (m, 5H), 3.88 (d, J = 4.5 Hz, 5H), 3.79 (s, 4H), 3.61
—3.40 (m, 16H), 3.40 — 3.30 (m, 2H), 3.23 (d, J = 5.7 Hz, 2H), 2.88 (t, J = 13.0 Hz, 2H), 2.69 —
2.55 (m, 2H), 2.29 (t, J = 6.4 Hz, 2H), 2.04 (dt, J = 13.1, 6.2 Hz, 2H).

13C NMR (101 MHz, DMSO-ds) § 173.28, 171.12, 170.55, 169.18, 167.76, 164.62, 157.79, 149.75,
149.05, 148.04, 147.09, 146.94 (d, J = 29.7 Hz), 141.84, 138.72, 136.67, 129.55, 122.97, 120.56,
117.61, 114.91, 113.32, 111.12 (d, J = 20.5 Hz), 81.39, 70.70 — 69.72 (m), 69.15, 67.18, 62.79,
53.89, 50.03, 48.85 (d, J = 28.9 Hz), 41.89, 38.50, 36.57, 31.45, 26.60, 22.63.

YW-V-1

'H NMR (400 MHz, DMSO-ds) § 10.48 (s, 1H), 9.39 (s, 1H), 9.00 (s, 1H), 8.69 (s, 1H), 8.64 —
8.47 (m, 2H), 8.42 (d, J= 14.7 Hz, 1H), 8.02 — 7.81 (m, 3H), 7.41 (d, J = 8.2 Hz, 4H), 7.29 (s, 1H),
6.94 (d, J=8.2 Hz, 1H), 6.83 (d, J = 8.8 Hz, 1H), 4.65 (s, 4H), 4.58 (d, J = 8.8 Hz, 3H), 4.37 (s,
2H), 4.23 (s, 3H), 4.18 — 3.99 (m, 6H), 3.91 (d, J = 11.5 Hz, 5H), 3.67 (s, 2H), 3.53 (s, 1H), 2.46
(s, 3H), 2.41 — 2.31 (m, 1H), 2.25 (s, 1H), 2.06 (d, J= 9.9 Hz, 2H), 1.92 (s, 1H), 1.73 (d, /= 22.0

Hz, 4H), 0.95 (s, 9H). *C NMR (101 MHz, DMSO-ds) § 172.41, 170.15, 164.63, 157.76, 151.95,

147



149.90 (d, J = 28.3 Hz), 147.99, 147.06, 141.85, 139.99, 129.53, 129.11, 127.89, 123.05, 113.17,
111.23, 105.23, 81.36, 69.34, 62.79, 59.17, 56.86, 53.89, 48.72, 42.12, 38.45, 35.28 (d, J = 90.0
Hz), 28.41, 26.86, 22.47, 16.41.

YW-V-2

'H NMR (400 MHz, DMSO-ds) § 10.33 (s, 1H), 9.30 (s, 1H), 8.91 (s, 1H), 8.61 (s, 1H), 8.53 (s,
2H), 8.33 (d, J = 13.5 Hz, 2H), 8.21 (s, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.76 (d, J = 9.2 Hz, 1H),
7.33 (q, J = 8.0 Hz, 4H), 7.19 (s, 1H), 6.86 (d, J = 8.5 Hz, 1H), 6.74 (d, J = 8.8 Hz, 1H), 4.61 —
4.52 (m, 3H), 4.47 (d, J= 9.3 Hz, 2H), 4.39 (s, 5H), 4.35 (s, 3H), 4.28 (s, 5H), 4.16 (s, 7H), 4.06
—3.98 (m, 7H), 3.97 (s, 2H), 3.84 (s, 1H), 3.81 (d, J = 3.8 Hz, 4H), 3.57 (s, 2H), 3.50 — 3.38 (m,
1H), 2.60 (s, 1H), 2.37 (s, 3H), 2.26 (s, 1H), 2.21 (s, 1H), 1.9 (s, 4H), 1.83 (s, 1H), 1.69 (s, 3H),
1.36 (s, SH), 1.19 (s, 11H), 0.86 (s, 9H).

13C NMR (101 MHz, DMSO-ds) § 172.55, 172.41, 170.17, 165.01, 158.77, 158.42, 157.75, 151.94,
150.07, 149.75, 147.98, 147.04, 141.84, 141.36, 139.99, 138.76, 136.21, 131.64, 130.09, 129.52,
129.10, 127.89, 123.01, 113.13, 111.23, 105.22, 81.34, 69.63, 69.32, 62.95, 62.79, 59.16, 56.81,
56.73, 53.88, 50.03, 48.71, 43.70, 42.11, 38.43, 35.69, 35.32, 29.40, 29.21, 29.16, 29.12, 28.90,
26.84, 25.90, 16.40.

YW-V-3

'H NMR (400 MHz, DMSO-de) 5 10.65 (s, 1H), 9.46 (s, 1H), 9.00 (d, J=2.9 Hz, 1H), 8.74 (d, J
=7.1 Hz, 1H), 8.42 (d, J = 13.4 Hz, 1H), 7.91 (d, J = 9.0 Hz, 3H), 7.41 (q, J = 7.9 Hz, 4H), 7.33
(d, J=8.1 Hz, 1H), 6.94 (q, J = 7.8 Hz, 1H), 6.84 (d, J = 8.8 Hz, 1H), 4.65 (d, J = 6.4 Hz, 2H),
4.56 (d, J= 9.0 Hz, 1H), 4.52 — 4.39 (m, 3H), 4.36 (s, 1H), 4.32 — 4.18 (m, 4H), 4.17 — 4.01 (m,

3H), 3.94 (s, 1H), 3.89 (d, J = 3.9 Hz, 3H), 3.81 (t, J= 4.3 Hz, 2H), 3.73 — 3.39 (m, 16H), 2.90 (q,
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J=17.,6.5 Hz, 1H), 2.45 (d, J= 3.1 Hz, 3H), 2.41 — 2.27 (m, 1H), 2.06 (q, J= 9.5 Hz, 2H), 1.91
(ddt, J=12.7, 8.1, 3.8 Hz, 1H), 0.94 (s, 9H).

13C NMR (101 MHz, DMSO-ds) § 172.40, 170.42, 170.00, 164.62, 157.86, 151.97, 149.93, 149.76,
148.12, 147.83, 147.09, 141.86, 141.36, 140.00, 138.86, 131.67, 130.08, 129.49, 129.11, 127.90,
123.02, 120.38, 117.45, 114.92, 113.37, 111.22, 105.34, 81.40, 70.37, 70.26, 70.17, 69.94, 69.33,
69.17, 67.41, 62.76, 59.19, 56.77, 53.88, 50.03, 48.72, 43.74, 42.12, 38.42, 36.12, 35.83, 26.79,
16.38.

YW-V-4

'H NMR (400 MHz, DMSO-ds) & 9.40 (s, 1H), 8.99 (d, J = 2.5 Hz, 1H), 8.73 (d, /= 6.9 Hz, 1H),
8.59 (d, J= 7.4 Hz, 1H), 8.41 (d, J= 14.6 Hz, 1H), 8.00 — 7.80 (m, 3H), 7.41 (q, J = 8.0 Hz, 4H),
7.32 (d, J = 8.3 Hz, 1H), 6.94 (d, J= 8.5 Hz, 1H), 6.83 (d, J = 8.8 Hz, 1H), 4.65 (d, J = 5.5 Hz,
2H), 4.56 (d, J=9.0 Hz, 1H), 4.47 (t, J= 7.1 Hz, 2H), 4.43 (d, J= 7.6 Hz, 1H), 4.36 (s, 1H), 4.24
(d, J= 6.0 Hz, 4H), 4.16 — 4.01 (m, 3H), 3.89 (d, J= 3.5 Hz, 3H), 3.79 (t, J = 4.4 Hz, 2H), 3.72 —
3.42 (m, 9H), 2.45 (d, J= 2.7 Hz, 3H), 2.38 (dd, J = 14.1, 7.0 Hz, 1H), 2.06 (q, J = 10.4, 9.4 Hz,
2H), 1.91 (tt, J= 9.7, 4.2 Hz, 1H), 0.93 (s, 9H).

13C NMR (101 MHz, DMSO-ds) § 172.40, 170.41, 170.00, 164.62, 158.88, 157.72, 151.95, 149.93,
149.76, 149.05, 148.14, 147.92, 147.08, 141.84, 141.35, 139.98, 138.79, 136.29, 131.65, 130.09,
129.51, 129.10, 127.89, 123.00, 120.57, 120.38, 114.92, 113.31, 111.22, 105.28, 81.40, 70.34,
69.98, 69.33, 69.17, 67.45, 62.92, 62.78, 59.19, 56.85, 56.75, 53.88, 50.03, 48.72, 43.72, 42.12,

38.42,36.12, 35.84, 26.79, 16.39.
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W-2-3 C4

"H NMR (400 MHz, DMSO-de) & 12.24 (s, 1H), 9.49 (s, 1H), 8.70 (s, 1H), 8.59 (s, 1H), 8.43 (t, J
=17.2 Hz, 2H), 7.89 (d, J= 7.9 Hz, 2H), 7.29 (s, 1H), 6.91 (s, 1H), 6.82 (d, J= 8.4 Hz, 1H), 4.56
(d, J = 68.6 Hz, 3H), 4.20 — 4.10 (m, 2H), 4.06 (d, J = 11.5 Hz, 2H), 3.90 (d, J = 16.5 Hz, 4H),
3.45 (d, J=56.9 Hz, 6H), 3.17 (s, 1H), 2.43 (t, J= 7.1 Hz, 2H), 2.12 — 2.04 (m, 1H), 2.04 — 1.94
(m, 2H).

BCNMR (101 MHz, DMSO-ds) 5 174.48, 164.61, 157.82, 149.90, 147.58 (d, J=96.9 Hz), 141.83,
136.25,129.61, 122.95, 120.55, 114.95, 113.26, 111.19, 105.17, 81.38, 68.83, 62.77, 53.86, 50.01,
48.67,43.75, 30.46, 26.60, 24.41.

W-2-3 Cs

"H NMR (400 MHz, DMSO-ds) & 12.04 (s, 1H), 9.45 (s, 1H), 8.69 (s, 1H), 8.59 (s, 1H), 8.41 (d, J
= 18.8 Hz, 2H), 8.19 (s, 1H), 7.89 (d, /= 8.8 Hz, 2H), 7.81 (d, /= 10.7 Hz, 1H), 7.28 (s, 1H), 6.98
—6.76 (m, 2H), 4.56 (d, J = 68.0 Hz, 3H), 4.10 (t, /= 6.4 Hz, 3H), 3.92 (s, 2H), 3.87 (s, SH), 3.52
(s, 1H), 2.25 (t, J= 7.3 Hz, 2H), 2.07 (d, J = 10.3 Hz, 1H), 1.77 (p, J = 6.9 Hz, 2H), 1.59 (p, J =
7.3 Hz, 2H), 1.45 (p, J = 7.8 Hz, 3H).

3C NMR (101 MHz, DMSO-ds) § 174.90, 157.87, 153.16 — 146.68 (m), 138.66, 136.21, 129.59,
122.91,121.74 (d,J=236.3 Hz), 114.99, 113.16, 111.16, 105.17, 81.35, 69.55,62.77, 53.81, 50.08,
48.68, 34.08, 28.64, 25.52, 24.66.

W-2-3 Cs

"H NMR (400 MHz, DMSO-ds) & 12.03 (s, 1H), 9.50 (s, 1H), 8.68 (s, 1H), 8.59 (s, 1H), 8.41 (q, J
=13.4,11.7 Hz, 2H), 7.89 (d, /= 8.7 Hz, 2H), 7.28 (s, 1H), 6.99 — 6.76 (m, 2H), 4.56 (d, J = 69.1
Hz, 3H), 4.18 — 3.98 (m, 5H), 3.97 — 3.78 (m, 6H), 3.53 (s, 1H), 2.21 (t, J= 7.3 Hz, 2H), 1.76 (p,

J=6.7Hz, 2H), 1.51 (p, J=7.5 Hz, 2H), 1.43 (q, J= 7.2 Hz, 2H), 1.39 — 1.23 (m, J = 6.9 Hz, 5H).
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13C NMR (101 MHz, DMSO-ds) § 174.96, 164.60, 157.83, 150.08, 148.06, 147.07, 141.84, 138.68,
129.60, 122.94, 120.53, 14.99, 113.09 (t, J= 191.9 Hz), 105.18, 81.35, 69.61, 62.77, 53.83, 50.01,
48.65,34.11,28.90 (d, J=9.7 Hz), 25.76, 24.90.

L-2-2

'H NMR (400 MHz, DMSO-de) 5 12.54 (s, 1H), 8.64 (s, 1H), 7.95 (d, J = 8.9 Hz, 1H), 6.86 (d, J
=9.0 Hz, 1H), 3.71 — 3.54 (m, 4H), 3.51 — 3.37 (m, 4H), 1.43 (s, 9H).

13C NMR (101 MHz, DMSO-ds) & 167.03, 160.60, 154.37, 150.79, 138.82, 115.44, 106.22,

79.58, 44.33, 28.53.
L-3-2

'H NMR (400 MHz, DMSO-ds) & 12.44 (s, 1H), 7.78 (d, J= 8.4 Hz, 2H), 6.96 (d, J = 8.6 Hz, 2H),
3.45 (t, J= 5.2 Hz, 4H), 1.42 (s, 9H).

13C NMR (101 MHz, DMSO-de) 5 167.70, 154.33, 153.98, 131.33, 120.22, 114.10, 79.54, 47.11,

28.53.
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Appendix B: '"H-NMR and B3C-NMR

YW-D-50-2

'H NMR (400 MHz, DMSO-ds) § 9.55 (s, 1H), 9.42 (s, 1H), 8.64 (s, 1H), 8.54 — 8.25 (m, 2H),
8.02 —7.80 (m, 2H), 7.49 (d, J = 17.2 Hz, 1H), 6.90 (dd, ] =29.6, 8.6 Hz, 3H), 6.47 (d, ] = 6.7 Hz,
1H), 6.39 — 6.30 (m, 1H), 5.87 (d, J = 9.9 Hz, 1H), 4.64 (s, 2H), 4.48 (d, ] = 6.1 Hz, 1H), 4.23 (s,
1H), 4.17 — 4.02 (m, 2H), 3.98 — 3.83 (m, 4H), 3.53 (s, 1H), 2.08 (s, 1H).

13C NMR (101 MHz, DMSO-ds) & 164.62, 164.30, 158.56, 157.82, 149.76, 149.05, 147.79,
147.58, 141.85, 141.34, 138.67, 137.24, 131.27, 129.43, 129.19, 128.73, 123.28, 120.68, 120.39,
118.97, 114.77, 111.22, 105.93, 105.43, 81.74, 62.77, 53.88, 50.03, 48.74, 44.60, 43.74.

YW-D-50-6

'H NMR (400 MHz, DMSO-de) 5 9.40 (s, 1H), 8.66 (s, 1H), 8.41 (d, J=15.1 Hz, 1H), 7.89 (d, J
=9.1 Hz, 1H), 7.48 (d, J= 16.9 Hz, 1H), 6.93 (q, J = 7.2, 6.6 Hz, 1H), 6.85 (d, J = 8.8 Hz, 1H),
4.64 (s, 2H), 4.48 (d, J= 6.1 Hz, 1H), 4.38 (d, J = 5.2 Hz, 2H), 4.23 (s, 1H), 4.12 (s, 1H), 4.07 (d,
J=12.7 Hz, 1H), 3.93 (s, 1H), 3.89 (s, 2H), 3.88 (s, 1H), 3.59 — 3.46 (m, 1H), 2.08 (s, 1H).

13C NMR (101 MHz, DMSO-ds) § 166.00, 164.62, 157.85, 149.75, 149.04, 147.67, 141.85, 141.34,
138.64, 137.44, 129.56, 128.70, 123.24, 120.61, 120.39, 119.22, 114.70, 111.22, 105.89, 105.41,

81.86, 62.77, 53.88, 50.03, 48.73, 44.60, 43.63.
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Appendix C: HPLC data , 'THNMR, and 3C NMR spectrum
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YW-1:

'H NMR (600 MHz, DMSO-d6) & 8.09 (s, 1H), 7.96 — 7.71 (m, 9H), 7.57 (d, J = 8.9 Hz, 1H), 7.37
(d, ] =22.1 Hz, 1H), 7.17 (d, ] = 12.8 Hz, 1H), 6.99 (d, J = 14.9 Hz, 1H), 4.10 — 3.88 (m, 3H),
3.74 (d, ] = 16.5 Hz, 1H), 3.50 (ddd, J = 33.1, 14.7, 7.5 Hz, 4H), 3.26 — 3.16 (m, 1H), 3.02 (qd, J
= 6.4, 3.2 Hz, 2H), 2.75 (dddd, J = 28.1, 13.9, 6.9, 3.1 Hz, 5H), 2.11 — 1.95 (m, 2H), 1.64 — 1.30
(m, 10H), 1.24 (s, 26H), 0.89 — 0.83 (m, 6H), 0.80 (dd, J = 10.4, 6.5 Hz, 3H).

13C NMR (151 MHz, DMSO-d6) & 172.72, 172.49, 170.78, 158.82, 158.61, 38.94, 36.02, 35.73,
31.74, 30.46, 29.50, 29.15, 28.97, 27.14, 24.78, 23.80, 22.55, 22.01, 21.72, 14.41.

YW-2:

'H NMR (600 MHz, DMSO-d6) & 8.20 — 7.96 (m, 1H), 7.94 —7.71 (m, 9H), 7.30 — 7.10 (m, 6H),
4.27 —4.09 (m, 1H), 4.08 — 3.94 (m, 1H), 3.93 — 3.75 (m, 1H), 3.56 (ddd, ] = 87.1, 13.0, 5.8 Hz,
4H), 3.02 (p, ] = 6.4 Hz, 2H), 2.94 (dd, J = 13.4, 7.4 Hz, 1H), 2.85 — 2.53 (m, 7H), 2.45 (q, J = 7.0
Hz, 1H), 1.93 (td, = 7.3, 4.0 Hz, 2H), 1.53 (dtt, J = 17.2, 10.4, 5.2 Hz, 4H), 1.45 — 1.10 (m, 27H),
1.09 — 0.94 (m, 2H), 0.85 (t, ] = 6.9 Hz, 3H).

13C NMR (151 MHz, DMSO-d6) & 171.27, 170.78, 158.54, 129.45, 128.50, 128.39, 118.54,
116.71,49.99, 47.31, 44.32, 38.95, 31.75, 29.52, 29.38, 29.16, 27.17, 25.67, 22.55, 22.02, 14.42.
YW-3:

'H NMR (600 MHz, DMSO-d6) & 7.95 — 7.69 (m, 9H), 4.07 — 3.76 (m, 3H), 3.50 (dd, J = 17.8,
10.9 Hz, 4H), 3.24 (dd, J = 7.3, 3.6 Hz, 1H), 3.01 (h, J = 6.2 Hz, 2H), 2.85 — 2.63 (m, 5H), 2.02
(dq, J = 12.1, 7.0 Hz, 2H), 1.62 — 1.49 (m, J = 6.5 Hz, 4H), 1.49 — 1.35 (m, 4H), 1.24 (s, 24H),

1.05 (d, ] = 6.7 Hz, 1H), 0.97 (d, J = 6.7 Hz, 1H), 0.85 (t, J = 6.9 Hz, 3H).
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13C NMR (151 MHz, DMSO-d6) § 172.19, 171.93, 158.82, 158.62, 117.72, 116.43, 49.91, 47.31,
43.58, 38.95, 35.74, 31.75, 30.39, 29.51, 29.47, 29.16, 27.16, 25.70, 22.55, 22.01, 18.70, 18.46,
14.42.

YW-4

'H NMR (600 MHz, DMSO-d6) & 8.11 (d, J = 7.8 Hz, 1H), 7.98 — 7.68 (m, 9H), 7.03 — 6.91 (m,
3H), 6.67 — 6.58 (m, 2H), 4.17 — 3.75 (m, 3H), 3.57 (td, J = 13.7, 6.2 Hz, 2H), 3.41 — 3.28 (m, 3H),
3.25 (dd, J = 15.1, 9.2 Hz, 1H), 3.01 (h, J = 6.2 Hz, 2H), 2.92 (dd, J = 13.4, 7.7 Hz, 1H), 2.83 —
2.56 (m, 6H), 2.43 (dd, J = 13.5, 9.3 Hz, 1H), 1.95 (tt, ] = 7.6, 3.1 Hz, 2H), 1.55 (tt, J = 14.0, 5.2
Hz, 4H), 1.46 — 1.30 (m, 4H), 1.30 — 1.13 (m, 22H), 1.09 (h, J = 7.0 Hz, 2H), 0.85 (t, J = 7.0 Hz,
3H).

13C NMR (151 MHz, DMSO-d6) § 172.62, 171.79, 170.95, 158.97, 158.76, 156.14, 130.27, 128.92,
118.51, 116.53, 115.34, 115.23, 49.92, 47.40, 38.93, 37.31, 36.07, 35.72, 31.75, 29.47, 29.17,
27.16, 25.68, 22.55, 22.02, 14.41.

YW-5

'H NMR (600 MHz, DMSO-d6) & 8.03 (s, 1H), 7.89 — 7.63 (m, 9H), 4.08 — 3.76 (m, 4H), 3.57 —
3.38 (m, 6H), 3.03 (dp, J = 17.3, 6.8, 6.0 Hz, 3H), 2.84 — 2.63 (m, 6H), 2.10 — 1.99 (m, 2H), 1.53
(h,J = 6.4, 5.4 Hz, 4H), 1.43 (dt, J = 30.3, 7.3 Hz, 4H), 1.24 (s, 24H), 0.86 (t, ] = 6.9 Hz, 3H).
13C NMR (151 MHz, DMSO-d6) & 172.75, 171.00, 159.29, 158.54, 50.10,49.42, 38.97, 35.75,
31.75, 30.40, 29.53, 29.31, 29.17, 27.18, 25.72, 22.56, 14.42.

YW-6:

'H NMR (600 MHz, DMSO-d6) & 8.06 (s, 1H), 7.78 (d, ] = 31.6 Hz, 13H), 3.95 (dd, J = 20.6, 4.1

Hz, 2H), 3.88 (d, ] = 14.1 Hz, 1H), 3.72 (d, ] = 16.5 Hz, 1H), 3.58 — 3.40 (m, 4H), 3.01 (s, 2H),
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2.95 (dd, J = 13.7, 8.3 Hz, 1H), 2.76 (dtd, J = 31.4, 17.3, 14.7, 7.3 Hz, 8H), 2.45 — 2.35 (m, 1H),
2.03 (dq, =9.5, 7.0, 6.6 Hz, 2H), 1.62 — 1.36 (m, 13H), 1.24 (s, 31H), 0.86 (t, J = 6.9 Hz, 3H).
13C NMR (151 MHz, DMSO-d6) § 171.75, 169.58, 159.06, 158.32, 47.62, 45.31, 43.94, 39.03,
31.75, 29.54,29.17, 22.55, 14.42.

YW-7:

'H NMR (600 MHz, DMSO-d6) & 8.05 (s, 1H), 7.95 — 7.53 (m, 11H), 4.09 — 3.84 (m, 3H), 3.73
(d, J = 16.5 Hz, 1H), 3.51 (s, 6H), 3.25 (s, 2H), 3.10 — 2.88 (m, 4H), 2.85 — 2.63 (m, 5H), 2.46 —
2.35 (m, 1H), 2.02 (dg, J = 10.1, 6.9 Hz, 2H), 1.60 — 1.05 (m, 38H), 0.85 (t, ] = 6.9 Hz, 3H).

13C NMR (151 MHz, DMSO-d6) § 172.04, 171.95, 158.82, 158.66, 157.24, 118.85, 117.36, 50.22,

47.53, 44.10, 39.00, 36.22, 36.07, 35.73, 31.75, 29.54, 29.17, 22.55, 14.42.
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Appendix D: ESI-MS Data

YW-D-75-1 14 (0.256) TOF MS ES+

1738.1000 1.28e4
100+

17386110
1737 6073
1739.1038
= 1737.1147
1739.6150
1740.1079
1740.6011
17451148 1745 6084
1744.6210 i
1741.0041 HALEI
0 T T T : T T T T T T T T T T T T T miz
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

YW-D-75-1 (E.M.+2)/2)
Chemical Formula: C141H258N40038S11
Exact Mass: 3471.6414
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YW-D-75-2 14 (0.256) TOF MS ES+
17100741 4.50e4
100+
1710.5800
1709.5854
1711.0879
-
1709.0787
17115769
1712.0840
1712.5730 Prrrpars
R 1716.0708
0 T T T T T T T ; 7 T T miz
1706 1707 1708 1709 1710 171 1712 1713 174 1715 1716 17
YW-D-75-2 (E.M.42)/2)
Chemical Formula: C137H250N40038S11
Exact Mass: 3415.5788
P 1180.3888 15465
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YW-D-103-1 (E.M.+2)/2)

Chemical Formula: C41H258N40042S11
Exact Mass: 3535.6210

Molecular Weight: 3538.5130

100- 1792.1288 1.13e4
YW-D-103-2
17926292
1791.6285
1793.1295
2
1791.1283 1793.6300
1794.1307
/
1794.6498
/
1799.6228
0. L, T LN o & sy EORPIIRE W RN P U J s st gl Las b Y ey oy Al i et it A it e N Shiambit i diatdli m;
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

YW-D-103-2 ((E.M.+2)/2)

Chemical Formula: C143H262N40043S11
Exact Mass: 3579.6472

Molecular Weight: 3582.5660
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1726.0765

1001
YW-D-103-3
1726.5858
1725.5856
1727.0769
ag.
1725.0765
17275863
1728.0776
/
17325750 17335771
11283690 \ 17340876
320048 17345798
0 JMUJLJ\J A AN K A AANANN A
o | T 1 T 1 T Ll T I T 1 T 1 T 1 T 1 T 1 T 1 T 1 T T T J T T T T T T
1716 1718 1720 1722 1724 1726 1728 1730 1732 1734 1736 1738 1740 1742 1744 1746 1741

YW-D-103-3 ((E.M.+2)/2)

Chemical Formula: C137H250N40040S11
Exact Mass: 3447.5686

Molecular Weight: 3450.4070
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YW-D-117-1 P1 23 (0.409)
1004

1586.4630

1586.9512

1587.4395

1587.1952

1587.9452

1588.4510

1588.9570

1589.4457

1587.701

YW-D-117-1 ((EM.+2)/2)

Chemical Formula: C124H231N40040S10

Exact Mass: 3170.4325
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YW-D-117-2 P3 15 (0.273)
100

1608.4890

1609 4899

1608.9982 1609 9816

1610 4734

16109828

1611.4824

1609.7357

1609.2439

1612.0
1610.7369

0 T T
1607 1608

1609 1810 1811 161;

YW-D-117-2 (EM.+2)2)

Chemical Formula: Ci26H235N35041S10

Exact Mass: 3214.4587
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Appendix E: LC-MS and ESI-MS data

B WSSpedrum [=T=i=
‘ *MSD1 SPC, time=0.181 of E75392-YW-C-83-10  ES-API, Pos, Scan, Frag: 50
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*MSD1 SPC, time=0.131 of E\T5393-YW-C-34-1.0 ES-API, Pos, Scan, Frag: 50
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*MSD1 SPC, time=0.161 of E:\75394-YW-C-95-1.0  ES-API, Pos, Scan, Frag: 50
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YW-D-119-1 5-21-24 18 (0.324)

100+
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YW-D-119-2
(EM.+2)
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