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Temporal and Spatial Patterns in Optical Properties of Colored Dissolved Organic Matter 

on Florida’s Gulf Coast:  Shelf to Stream to Aquifer 

 

Robyn Nicole Conmy 

 

ABSTRACT 

 

Characterization of Colored Dissolved Organic Matter (CDOM) in surface and ground 

waters in South Florida was conducted using fluorescence and absorption spectroscopy.  

Waters of the West Florida Shelf are heavily influenced by many river systems on 

Florida’s Gulf Coast that, to the first order control CDOM distributions on the shelf. 

Seasonal surveys revealed that changes in the underwater light field as a result of major 

hurricanes and resuspension events are linked closely with a number of factors prior to a 

storm’s passing such as the presence of persistant blooms, rainfall and discharge.  

Additionally, storm track and wind direction were found to play a significant role in 

CDOM signatures.  

 

A study of ten riversheds located between the Mississippi / Atchafalya River system and 

the Shark River in the Everglades revealed a wide range in CDOM seasonality.   A 

regional dependence of CDOM was also found, where highest aromaticity and 

concentration of organic material was found for the southernmost watersheds.  Basin 

characteristics, vegetation differences, land use and climatic patterns are implicated in the 

cause for regional differences.  In addition to surface flow, organic material in 

groundwater was measured in deep and shallow aquifers surrounding the Tampa Bay 

Estuary. As a result of strong hydrologic links between shallow aquifers and the 

overlying surface waters, CDOM in both reservoirs were found to be quite similar.  Deep 



 xi

aquifers (> 150 ft) however are less concentrated and have CDOM signatures more 

similar to marine waters.   This suggests similar biogeochemical pathways of the 

material, including the influence of the aquatic microbial community.  Furthermore, 

multi-spectral CDOM fluorescence measurements were shown to be a potential indicator 

of groundwater presence in Tampa Bay during times of low surficial discharge to the bay, 

and when some rivers are almost entirely spring-fed.   

 

Investigating CDOM distribution and signatures is vital to carbon budget and cycling 

questions. The amount and quality of organic material has significant implications for 

ecosystems, thereby affecting organisms that use CDOM as a food source, light 

availability for photosynthesis, UV shading provided to biota, satellite estimates of 

chlorophyll a, metal binding, materials transport and overall water quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xii

 

 

 

 

PREFACE 

 

I am forever indebted to a great many people who helped make this dissertation possible.  

Completion of this work would not have occurred if it weren’t for the financial support of 

the USGS-USF Cooperative Agreement and NASA Earth Systems Science Fellowships.  

I would like to thank the crew of R/V Suncoaster and F.G. Walton Smith, staff of Keys 

Marine Lab, HAB researchers at FWCC, and the lab group of Peter Ortner at NOAA / 

AOML for the complementary ship time, assistance with sample collection and the 

wonderful times at sea.  I owe a great deal of gratitude to SWFWMD for not only access 

to ground water wells, but who also provided an amazing field technician, Bob Brady, to 

go sampling and lift equipment for a very pregnant student. I am especially grateful to 

Roxanne Hastings for being there every step of the way: road trips, sample collection, 

sample analysis, data processing, being a sounding board and a wonderful labmate. 

 

For providing data and/or images that supported the findings of this work, I would like to 

thank Jennifer Cannizzaro, Barnali Dixon, Inia Soto, Chuanmin Hu and Steve Meyers.  I 

am grateful to Eric Steimle, Andy Casper, Mike Hall and Tim Elliott for the opportunity 

to use the GSV in the Hillsborough River.  Greta Klungness, I can’t thank you enough for 

making GIS maps, substituting on cruise and being a trusted colleague and friend.  

Thanks to Jim Krest, Donny Smoak, Charlotte Clayton, and Erik Oij for analyses, use of 

facilities, insightful conversations and answering so many questions regarding 

radionuclides.  To the College of Marine Science administrative staff, thank you for 

keeping the science running smoothly. Thank you, St. Francis of Assisi for a quiet library 

to prepare for my comprehensive exams.   

 



 xiii  

To my advisor, Paula Coble, you have made my journey through graduate school better 

than any of my expectations.  Your endless support, your confidence and your trust in me 

means a great deal.  Special gratitude is extended to my graduate committee, Ken Carder, 

Cindy Heil, Mark Luther and Ashanti Pyrtle for their insight and guidance. And to my 

chair, David Hastings, thank you for agreeing to last minute requests. To my friends and 

family at the College of Marine Science, you were always there to discuss science and 

life –you have made me and this project all that more complete. 

 

To my family and friends, thank you for believing in me and helping me to achieve my 

goals.  Especially to my father who even came out on the boat in the Everglades and 

helped with groundwater sampling.  As always, thank you Maddy and Ebby for resting at 

my feet during the writing of this dissertation.  Thank you to my daughters, Sage Macy 

and Aris Sofia for tolerating all the field sampling (in or out of the womb) and for 

keeping me company while analyzing samples.  My dearest Drew, I can’t begin to thank 

you for all that you do for me.  Your love and support means the world and I am so 

appreciative of the time we have had, and will have together.  It is to you that this work is 

dedicated. 

 

Finally, thank you Arth Guinness for your beautiful creation and your inspiring 

philanthropic ways. 

 

 



 1 

 

 

 

 

GENERAL INTRODUCTION 

 

Dissolved Organic Matter (DOM) is the largest fraction of organic carbon in oceanic and 

estuarine waters (Williams and Druffel, 1988), therefore an important reservoir and an 

integral component of the global carbon cycle.  Much of the DOM in the coastal 

environment originates from the breakdown of terrestrial plants, which is transported to 

the ocean via rivers (Duursma, 1974; Laane, 1981; Berger et al., 1984; Hayase et al., 

1987).  Due to the chemical complexity of this material, this pool even today is 

approximately 80% uncharacterized at the molecular level (Hilf and Tuszynski, 1990).   

 

Many studies have been dedicated to deciphering the sources and biogeochemical 

pathways of organic carbon in aquatic environments (Chen and Gardner, 2004; Del 

Castillo, 2005 and refs. therein).  The quality and quantity of the material reflects 

information about its sources, affect on water quality and clarity, and ability to transport 

other dissolved materials through watersheds.  Of particular interest is the study of 

Colored Dissolved Organic Matter (CDOM).  This is the portion of the DOM pool that is 

chromophoric, absorbing radiation in the ultraviolet and visible portions of the spectrum.  

A significant fraction of DOM is photoreactive, and therefore can be easily measured 

with optical techniques, as compared to the remainder of the DOM pool, which requires 

labor intensive practices. 

 

There have been many names used to describe CDOM.  Kalle (1966) first coined the 

phrase ‘gelbstoff’ to describe the organic matter that gave waters a yellow-brown color. 

Other names used in the literature include yellow matter, humics, fulvics or gilvin (Kirk, 

1994).  The abundance of terms to describe the material is an indication of the complex 

mixture of compounds that comprise the pool.  CDOM also has distinctive optical 
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properties, a multitude of sources and undergoes a variety of chemical, biological and 

physical processes in estuaries and ocean waters (Cabaniss and Shuman, 1987; Donard et 

al., 1989; Cauwet et al., 1990; Coble et al., 1990; Blough et al., 1993; Coble, 1996).   

 

These optical properties may be used to distinguish possible sources, as well as to 

determine the composition of the material. The major source to coastal waters is from 

river runoff of humic substances from soils, such as humic acids and fulvic acids.  This 

allochthonous gelbstoff dominates DOM composition in nearshore waters (Duursma, 

1974; Laane, 1981; Berger et al., 1984; Hayase et al., 1987). Away from the coast, 

however, CDOM is of marine origin from biological processes such as autotrophic 

productivity, zooplankton feeding and bacterial interactions. Biological productivity is an 

autochthonous source of CDOM, a crucial component of new dissolved material in the 

oceans (Yentsch and Reichert, 1961; Traganza, 1969; Carlson and Mayer, 1983; Chen, 

1992; Coble, 1996). Changes in the spectral properties have also been observed during 

the transition of early to late phytoplankton bloom periods (Carder et al., 1989), where 

protein signatures are found in the water column and underlying sediments in regions of 

recent biological production.   

 

The major destructive pathway for gelbstoff has been shown to be degradation by 

sunlight (Kieber et al., 1990; Mopper et al., 1991), which is also known to cause 

alteration of Dissolved Organic Carbon (DOC) composition.  Several studies have 

demonstrated that exposure to sunlight degrades larger molecules into smaller 

photoproducts that are removed from the DOM pool.  The removal is via two routes; 

through direct volatilization of carbon gases, such as CO and CO2, and through rapid 

microbial consumption of labile photoproducts (Kieber et al., 1990; Mopper et al., 1991; 

Valentine and Zepp, 1993; Miller and Zepp, 1995, Miller and Moran, 1997).  

Photodegradation has been shown to alter the optical properties of CDOM by reducing 

color, resulting in new spectral signatures.   
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In the coastal environments, CDOM measurements are used for many purposes.  It is 

conservative with respect to salinity (Cabaniss and Shuman, 1987) and can be used to 

track water masses (Del Castillo et al., 1999,2001; Kowalczuk et al.,2003; Stedmon et 

al., 2003; Chen et al., 2004; Conmy et al., 2004b;  Nelson et al., 2007).  Color is 

routinely measured by monitoring and management agencies as it is a measure of 

ecosystem health and CDOM fluorescence intensity has been shown to be a reliable 

proxy for Dissolved Organic Carbon (DOC) in some regions (Ferrari et al., 1996; 

Vodacek et al., 1997; Del Castillo et al.,1999,  Baker and Spencer, 2004, Del Castillo 

2005). Furthermore, CDOM can be measured remotely, and its presence interferes with 

remotely sensed determinations of chlorophyll a in the surface ocean (Carder et al., 1989; 

Muller-Karger et al., 1989). CDOM spectra have been shown to vary widely by region 

due to differences in chemical composition (Blough et al., 1993) and a better 

understanding of its optical properties and chemical characteristics is needed for the 

improvement of bio-optical algorithms, especially in coastal waters. 

 

Presented in this dissertation are the results of a study examining CDOM characterization 

and distribution on the WFS, in coastal riversheds, the Tampa Bay Estuary and the 

Florida Aquifer system.  The optical properties of CDOM, such as absorption 

coefficients, fluorescence intensities and ratios (Del Castillo et al., 2001), position of the 

emission maxima at varying excitation wavelengths (Coble, 1996), spectral slopes 

(Blough et al., 1993), and apparent fluorescence efficiencies were used to distinguish 

sources, establish seasonality and infer composition of the organic material in these 

aquatic environments.   Findings were subsequently compared to discharge patterns and 

specific watershed basin characteristics to explain patterns. 
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PART I: 

 

Spatial distribution of CDOM on the southern West Florida Shelf. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

INTRODUCTION 

Dissolved Organic Matter (DOM) in seawater is the largest reactive reservoir of carbon 

on earth (Hedges, 1992).  Contained within it is the photochemically active fraction, 

CDOM, which mediates the sunlit-induced reactions of non-living systems.  This 

material plays important roles in the marine environment, affecting primary productivity 

by determining the quality and quantity of sunlight available for photosynthesis. CDOM 

also provides UV shading and nutrients to marine biota, and scavenges pollutants and 

metals, all of which influence biological production (Aiken, 2002; Hansell, 2002 and the 

refs. therein).  Additionally, interference by CDOM with remotely sensed ocean color 

measurements, make it challenging to retrieve accurate chlorophyll a (CHL) 

concentrations in the world’s oceans (Carder et al., 1989; Muller-Karger et al., 1989; Hu 

et al., 2003; Del Castillo, 2005). 

 

In addition to being an important factor controlling light penetration in coastal waters, 

CDOM is also important for the study of global ocean carbon budgets because it is the 

only component of DOM that can be measured with in situ and remote sensors.  This has 

significant implications, because establishing regional relationships between DOC and 

CDOM allows for making estimates of the larger organic carbon pool, based on a 

smaller, easier to measure component. Furthermore, because CDOM appears to have 

longer residence times than time scales of most estuarine and coastal mixing processes, it 

represents a significant portion of DOM that is exported to the open ocean.   

 

Longer time scales also mean that CDOM is an ideal water mass tracer and can be used 

to examine circulation in coastal and open ocean environments (Del Castillo et al., 

1999,2001; Kowalczuk et al.,2003; Stedmon et al., 2003; Chen et al., 2004; Conmy et 

al., 2004b;  Nelson et al., 2007).  In particular, this is important in regions with complex 

mixing of marine and terrestrial organic material, where strong gradients exist in 

chemical and optical properties of CDOM (Del Castillo, 2005). This is the case on the 

West Florida Shelf (WFS), where the dominant source is terrestrial in nature, which 

originates from the many rivers on the eastern margin of the Gulf of Mexico, but ever 
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present is also the organic material of a marine source.  There is a critical need not only 

to identify the source of CDOM in the coastal ocean, but also, to understand how its 

optical properties are changing as mixing occurs on the shelf. Linking the primary factors 

that determine the distribution of CDOM on river-dominated margins (seasonal currents, 

precipitation, river discharge, winds, storms, etc.) with the properties themselves will 

allow for untangling the ambiguities regarding the cycling and fate of organic material in 

the ocean.  This in turn could make possible predictive capabilities of DOM 

concentrations in coastal environments.   

 

Investigated in this chapter are the spatial distributions of CDOM in the southern portion 

of the West Florida Shelf (WFS) between Tampa Bay and Florida Bay over a three year 

period.  Seasonal differences were observed using discrete and in situ sampling 

techniques (a WetLabs’ SAFIre-Spectral Absorption and Fluorescence Instrument for 

underway mapping) to generate spatial maps.  Differences in the optical properties of 

CDOM were used to infer differences in the composition of organic material.  

 

Results from this project advance the study of CDOM in coastal environments by (1) 

providing valuable in field measurements of spectral slopes and fluorescence to 

absorption relationships for ocean color bio-optical algorithms. This information helps to 

retrieve more accurate regional estimates of seasonal primary productivity. (2)  Assessing 

variability in the relationship between CDOM and DOC in shelf environments during 

periods of high and low river discharge. (3) Demonstrating the manner in which CDOM 

is affected by local forcing of winds, currents, storms, discharge. 

 

Geographic Setting 

The West Florida Shelf (Figure 1.1) is located in the eastern portion of the Gulf of 

Mexico.  It is marked by a large shelf width as a result of the gentle sloping of the inner 

shelf.  The WFS is a river-dominated environment, where freshwater enters from various 

river sources along the northern and eastern margins of the Gulf.  Seasonality of riverine 

discharge, where northern rivers peak in spring and the southern Everglades rivers peak  
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Figure 1.1.  Map of West Florida Shelf in the Gulf of Mexico.  The black square 
highlights the study location between Tampa Bay and the Florida Keys. 
 

in summer, gives rise to temporal and spatial differences in the contribution of freshwater 

and materials (ie. metals, nutrients, organic matter, suspended sediments) throughout the 

year on the shelf.  In addition, unique environments of the head waters result in 

compositional differences amongst rivers, including rivers that are controlled by dams or 

gates (Mississippi, Hillsborough, Calooshatchee) or ones that are swamp-fed 

(Atchafalaya, Suwannee, Shark) or ones that traverse agricultural lands (Peace).  These 

are just some of the factors that influence the amount and type of freshwater making it to 

the WFS. 

 

Once on the shelf, materials originating from freshwater environments are mixed with 

those from marine waters. Seasonal patterns in winds and currents then impact the 

distribution of said material in these coastal waters, where dominant forcing is to the 

south from October-April and to the north in summer months (Weisberg et al., 2005).   

Additionally, intermittent weather phenomena, such as hurricanes, tropical storms and 
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winter storm events also influence substances in shelf waters, and can result in the 

resuspension of sediments and dissolved material into the water column.  Distributions of 

productivity-critical substances such as nutrients, metals, organics and particles are also 

affected by weather phenomena.  It is these distributions that are key in determining if, 

what type, and where phytoplankton blooms occur on the shelf.  This is particularly 

important on the WFS, where Karenia brevis, a toxic dinoflagellate, blooms nearly 

annually (late fall to winter) causing red tides that affect the coastal ecosystem.  Two of 

the field experiments (December 2004 and November 2005) presented in Part I of this 

dissertation were conducted during times of Harmful Algal Blooms (HABs) of K. brevis.  

The active 2004 hurricane season has been proposed as a contributing factor to the 

persistent blooms that initiated in Fall 2004 (Hu et al., 2006).  The bloom moved south 

from the Charlotte Harbor region in October to the Florida Bay and Keys region, where 

high cell concentrations were observed in November 2004.  In January 2005, high counts 

were also observed 30 mi offshore of Florida’s west coast.  In April-May 2005, field 

measurements showed diminished cell concentrations, satellite imagery using a K. brevis-

classification criteria (Cannizzaro et al., 2008) showed the bloom moved north and was 

never sampled.   The bloom reappeared between Tampa Bay and Charlotte Harbor in 

July-August 2005 and cell concentrations continued to increase through November 2005. 

The bloom finally diminished in December 2005. 
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METHODOLOGY 

Sample Collection 

Discrete water samples were collected during seasonal field experiments on the West 

Florida Shelf as part of the Florida Bay Circulation and Exchange Study (NOAA/AOML) 

and the Florida Red Tide Program (Florida Fish and Wildlife Conservation Commission) 

on board the R/V F.G. Walton Smith and the R/V Suncoaster, respectively (Figure 1.1).  

The months sampled are as follows:  December 2003, August 2004, December 2004, 

April 2005, August 2005 and November 2005.  Surface and subsurface samples were 

collected via Niskin bottles for all field experiments.  During the Florida Bay Circulation 

and Exchange Study, whole water was collected in amber glass bottles and filtered 

through pre-combusted GF/F filters (up to 24 hours at 450oC) on board using glass 

filtration apparatus and a pump.  During the Florida Red Tide Program cruises, water was 

gravity filtered through pre-combusted GF/F filters mounted in stainless steel in-line 

filtration apparatus.  All filtered water was then stored frozen in pre-combusted, amber 

glass bottles until slowly thawed for absorption, fluorescence and Dissolved Organic 

Carbon (DOC) analysis.  To verify that the freezing process did not result in any loss of 

chromophores, absorption spectra were collected prior-to and after freezing (Figure 1.2). 

 

Absorbance Spectroscopy 

Absorbance spectra were obtained using a Hitachi U-3300 double-beam 

spectrophotometer with matching one and ten centimeter quartz cells.  Measurements 

were made at 1 nm intervals between 200 and 750 nm with Milli-Q deionized water in 

the reference cell.  Samples were scanned three times and then averaged to reduce noise 

and yield a more robust spectrum.   Data were corrected for scattering and baseline 

fluctuations by subtraction from each wavelength, the measured absorption at 700 nm 

(Bricaud et al., 1981).  Absorbance values were converted to absorption coefficients 

using the following equation, 

  a(λ ) = 2.303A(λ )/r, 
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where A is the absorbance (Log Io/I) and r is the pathlength in meters.  Spectral slopes 

were then calculated for a variety of wavelength ranges between 250 and 440 nm using 

linear least squares regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.  Results of freezing experiment to determine if a loss of chromophores were 
apparent in absorption spectra.  The findings show no significant change was observed 
using this method. 
 

 

Fluorescence Spectroscopy 

High-resolution fluorescence spectroscopy was performed on the discrete samples 

according to the method of Coble (1996) using a Horiba Jobin Yvon Inc. Fluoromax II 

spectrofluorometer with a 450 Watt xenon lamp and single excitation and emission 

monochromators.  Samples with absorbance values above 0.02 at 300 nm using a 1 cm 
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cell were diluted prior to fluorescence analysis to avoid self-shading of the material 

(Green and Blough, 1994).  Samples were analyzed in ratio mode with 5 nm bandwidths 

for excitation and emission.  Forty-eight emission scans were collected at excitation 

wavelengths five nanometers apart between 220 and 455 nm.  Emission wavelengths 

spanned between 250 and 700 nm, with data collected every 2 nm over an interval of 0.5 

seconds (Coble, 1996).  Three-dimensional excitation-emission matrices (EEMs) were 

generated by conjoining the individual spectra.  The EEMs were normalized to a fixed 

value for Raman scatter at Ex/Em = 275/303 nm based on a single emission scan from the 

Milli-Q water daily blank and then corrected for scatter at all wavelengths by subtracting 

a Milli-Q EEM (determined weekly).  This procedure has been found to improve removal 

of first and second-order Raman scattering peaks.  Blank-subtracted EEMs were 

corrected for instrument configuration using both emission and excitation correction 

factors (Coble et al., 1993).  Excitation correction factors were determined every two 

weeks using a fresh solution of saturated Rhodamine in ethylene glycol (0.8g / 100 mL).  

Emission correction factors were provided by the manufacturer.  Finally, corrected 

fluorescence intensities were converted to units of quinine sulfate equivalents (QSE) in 

ppb using the fluorescence of a dilution series of quinine sulfate dihydrate in 0.05M 

sulfuric acid at Ex/Em = 350/450 nm (Velapoldi and Mielenz, 1980), where 1 QSE = 1 

ppb quinine sulfate dehydrate. All processing was conducted using Galactic Industries’ 

Grams 32 software.   

 

Dissolved Organic Carbon 

Dissolved Organic Carbon concentrations were determined by thermal catalysis using a 

Shimadzu TOC 5000 equipped with an ASI-5000 autosampler.  Prior to analysis, 

approximately 20-40 ml of sample were transferred from amber glass bottles into pre-

ashed, foil wrapped glass vials.  For every milliliter of sample, 1 µl of concentrated 

hydrochloric acid (12.1N) was added to the vial and subsequently capped with foil.  

Samples were sparged for ten minutes with low-carbon air to remove inorganic carbon 

from the sample water (Del Castillo, 1998).  The injection volume was selected as 100 µl, 

where samples were injected up to ten times. The best three of ten peaks, with a standard 



 12 

deviation of 200 or less or a coefficient of variance of 2.0 % or less, were then averaged.  

DOC concentrations were calculated using a standard dilution of phthalic acid, where the 

range of the dilution series depended on the origin of the samples (up to 5ppm).  

Concentration of DOC in a MilliQ water blank was also determined and subtracted from 

the samples.  To assure instrument stability, standards were randomly run with samples 

and MilliQ water was injected between samples to verify baseline levels.  Standard 

curves were performed weekly, with daily one-point calibrations conducted. 

 

High-Resolution Spatial Mapping 

Continuous, underway mapping of organic matter fluorescence in surface waters was 

performed using a SAFIre (Spectral Absorption and Fluorescence Instrument 

manufactured by WET Labs).  Fluorescence output was stored with salinity and 

temperature (Seabird Electronics SBE-45 thermosalinograph) and GPS information 

(Garmin, Inc) using a WET Labs Data Handler (DH-4).  Data streams were merged and 

processed using the WAP (WET Labs Archive Processing) program which extracted 

time-stamped raw data from archived files and applied calibration coefficients for all 

instruments.  A Matlab binning routine was used on extracted data to yield data points 

every 0.3 km.  Spatial maps of underway data were generated by kriging and blanking 

methods in Surfer mapping software, version 8.1.  

 

Underway data were unfiltered and represent COM (Colored Organic Matter).  The 

SAFIre measures fluorescence at six excitation and sixteen emission wavelengths, 

configured for optimum organic matter detection (excitation range: 228-436 nm and 

emission range: 228-687 nm).  Discrete filtered seawater samples were used to 

intercalibrate the SAFIre to the benchtop fluorometer (Conmy et al., 2004a).   

 

Satellite Data 

Level-1A MODIS (Aqua) data were retrieved from the NASA Goddard Space Flight 

Center (GSFC) website (http://oceancolor.gsfc.nasa.gov) and processed to Level-2 using 

SeaDAS (version 5.0) software. CHL concentrations and CDOM absorption coefficients 
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at 443nm were estimated using the Carder et al. (1999) semi-analytical algorithm which 

can differentiate between phytoplankton and CDOM absorption. Fluorescence line height 

(FLH) data were calculated according to Abbott and Letelier (1999), where FLH is based 

on calibrated, normal water-leaving radiances.  This height is the intensity of upwelled 

radiance at 676.7 nm above the baseline created from 665.1 and 746.3 nm.  

Overestimations associated with FLH are attributed to the presence of suspended 

particles and differences in chlorophyll-a fluorescence efficiency of plankton.  Water-

leaving radiance data in three MODIS bands (551, 488 and 443 nm) were used to derive, 

composite enhanced RGB (ERGB) images.  All images were stretched to the same scale 

in accordance with code from Chuanmin Hu and the USF- Institute of Marine Remote 

Sensing.  Atmospheric affects have been removed from imagery.  All processing was 

conducted by the USF – Optical Oceanography Laboratory. 
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RESULTS & DISCUSSION 

The coastal waters of the West Florida Shelf are heavily influenced by the multiple rivers 

to the north and the east.  As a result, the CDOM pool on the shelf is mainly due to the 

mixing of fresh water and seawater.  For the field experiments on the shelf between 2003 

and 2005, this mixing line, essentially the relationship between CDOM fluorescence and 

salinity, was found to be relatively constant, with a slope of ~- 4 (Figure 1.3).  Separating 

data by the amount of river discharge, denoted here as high-flow and low-flow conditions 

(relates to classifications and values in Table 1.1 and Figure 1.4), showed no distinct 

difference in the mixing line, therefore the regression reported in the figure is for both 

conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.  CDOM fluorescence at Ex/Em 300/430 nm for seasonal cruises on the West 
Florida Shelf.  Both dry and wet seasons fall on the same mixing line, with the exception 
of hypersaline waters during August 2005. 
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Table 1.1 Date of WFS field experiments along with USGS and CHNEP discharge and 
flow classifications.  Flows represent monthly averages.  Data from www.chnep.org. 
 
 

Month and Year of Field 
Experiments

USGS Discharge in 
Peace River at Bartow 

Station (cfs)
Charlotte Harbor NEP Flow 

Classification

December 2003 45 Normal

August 2004 667.2 Low, then High after Hurricane

December 2004 186.5 Normal to High

April 2005 188 Normal to High

August 2005 756.5 High

November 2005 371.8 Normal  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.4. Peace River discharge data from the Bartow Station (Source: USGS). 
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This inverse relationship was found for all samples with salinities less than 36.  Above 

this salinity, however, the trend reverses and CDOM was found to vary proportionately 

with salinity for a subset of samples taken during August 2005.  This positive correlation 

has been previously observed on the southern portions of the shelf (Coble, 2004) during 

the rainy months of the summer season.  The productive, shallow sediments of this 

portion of the shelf produce large concentrations of CDOM, which enter the water 

column. Coincident evaporative processes result in high salinity water masses that in turn 

contain this newly produced organic matter (Coble, pers. commun.).  

 

Spatial Distribution of COM Fluorescence 

The fact that CDOM follows a quasi-conservative mixing line (de Souza Sierra et al., 

1997; Del Castillo et al., 2000), isn’t necessarily worthy of note in this region, but how 

the spatial distributions vary by season is.  Generally, during the South Florida rainy 

season (summer months) there is a higher concentration of CDOM on the shelf as a result 

of increased contribution of rivers.  Conversely, during times of little rainfall (winter 

months), lower concentrations would be expected in these coastal waters.  Although this 

is a reasonable generalization, the field experiments in this project show numerous 

exceptions.  Plotted in Figure 1.5 are the spatial distributions of COM for surface waters 

on the shelf for all months sampled between 2003 and 2006.  It is important to note that 

due to the shallow nature of the shelf and the close proximity to shore of the field 

experiments, there tended to be no vertical structure throughout the water column.  Of the 

approximately 200 samples collected, only 24 stations exhibited a two layer water mass.  

Given this low percentage, and that the waters in this region of the shelf are well mixed, 

it is reasonable supposition that when looking at the spatial maps, the patterns observed 

in the surface waters would be similar at the bottom of the water column as well.   

 

Of all the months sampled, December 2003 had the lowest flow conditions for the 

Bartow station, and concentrations over much of the shelf were below 12 QSE.   Higher 

concentrations were observed in the southernmost sections of the cruise track, near 
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Florida Bay, which also corresponded to a decrease in salinity (Figure 1.6).  Although dry 

conditions dominated the region, the Everglades experienced some isolated rain events  

during this month.  During April 2005, discharge was also very low (188 cfs) and the 

distribution of COM resembled that of December 2003.  Freshwater contribution from 

from the Everglades, however, was not observed during this month, therefore no elevated 

COM values were found.  

 

In contrast, August 2005 had the highest discharge of all the months sampled, and higher 

COM concentrations were observed on the shelf. This is also the experiment where the 

hypersaline CDOM signature was observed, just to the west of Florida Bay.  Due to the 

large amounts of rainfall that Florida experiences during the months of August, high 

organic matter concentrations would be expected over much of the shelf, however this 

was not the case for August 2004.  Two field experiments were conducted that month, 

and the spatial plots reveal patterns and concentrations more similar to dry season 

conditions.  This is due primarily to (1) a late start to the wet season that year, where 

discharge was low in the early parts of August 2004 (see Figure 1.4), and (2) the passing 

of Hurricane Charley five days before the first field experiment.  This major storm 

(category 4 at landfall in Punta Gorda on August 13, 2004) approached Florida from the 

southwest and forced offshore water, with lower CDOM concentrations, onto the shelf, 

mixing it with shelf water.  Winds and currents on the shelf from the day of the storm are 

shown in Figure 1.7 (left panel) and illustrate the direction of the currents.  During the 

two field experiments, the prevailing winds and currents were to the north (middle and 

right panels).  The distribution of low-COM waters (and also low-CHL) on the shelf 

during this time was also observed in satellite imagery from MODIS-Aqua. Dark waters 

in the enhanced RGB (ERGB) and the Fluorescence Line Height (FLH) imagery for pre 

and post-hurricane days are shown in Figure 1.8A.  The water-leaving radiance data of 

ERGB gives more information on detecting spatial features due to the use of three 

MODIS bands, as compared to using to only two bands in CHL imagery.  The images 

reveal that prior to the hurricane, dissolved organic material was present between 

Charlotte Harbor and the Florida Keys.  After the storm, however, dark color wasn’t as  
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Figure 1.5.  COM Spatial distributions on the West Florida Shelf collected with the WetLabs Inc SAFIre.  Measurements 
obtained using continuous flow-through system of unfiltered surface waters. 
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Figure 1.6.  Salinity spatial distributions for seasonal cruises on the West Florida Shelf.
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Figure 1.7. Maps of currents and wind data from buoys operated by USF - Ocean Circulation Group (http://ocg7.marine.usf.edu/~liu).   

Left panel is during the passage of Hurricane Charley, middle panel is 4 days after the storm, and right panel is 10 days after the storm 

in August 2004.  

LongitudeLongitude Longitude

La
tit

ud
e

LongitudeLongitude Longitude

La
tit

ud
e



 21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8A.  Enhanced RGB (R: 551,G: 488,B: 443nm) (top panels) for three days in August 2004 around the time of the passing of 

Hurricane Charley.  Bottom panels are the Fluorescence Line Height (mW / cm2 / µm /sr) for the same days.  Imagery supplied by 

USF-Optical Oceanography Laboratory. 

11Aug04 (pre-hurricane) 17Aug04 (4 days post-hurricane) 23Aug04 (10 days post-hurricane)11Aug04 (pre-hurricane) 17Aug04 (4 days post-hurricane) 23Aug04 (10 days post-hurricane)11Aug04 (pre-hurricane) 17Aug04 (4 days post-hurricane) 23Aug04 (10 days post-hurricane)



 22 

prevalent and the observed white colors indicate either suspended or bottom sediments. 

Given that the SAFIre measures COM, and not CDOM, the presence of suspended 

particle matter (SPM) can increase the fluorescence signal in these unfiltered instruments.   

 

The observed low-COM values suggest that the white colors in the ERGB imagery are 

most likely from the bottom and not SPM. Hence, if SPM, CDOM and CHL were all low, 

the water column may have been optically clearer and signal from the bottom sediments 

would be more apparent at this time.  Absorption due to gelbstoff and detritus at 443nm 

(adg443) and CHL estimates are shown in Figure 1.8B.  The imagery also shows that 

there was minimal biomass on the West Florida Shelf at this time and that low values of 

adg443 five days after the storm are in agreement with the in situ COM measurements.  

By the second field experiment, the contribution from terrestrial sources increased as a 

result of the large amounts of rainfall from the hurricane, subsequently, higher COM 

concentrations were observed compared to the experiment five days earlier, but still low 

compared to August 2005.   

 

Episodic storm events can also affect the underwater light field during dry season months 

as was observed during December 2004.  Again, there were two field experiments during 

this month and the distributions of COM fluorescence south of Charlotte Harbor are quite 

dissimilar.  The first cruise showed low concentrations over the shelf that correlates with 

salinity patterns. The second cruise, however, showed strong fluorescence signal over the 

entire southern portion of the field experiment, but with no corresponding change in 

salinity, indicating that freshwater was not the source of the increase.  At the time of the 

second field experiment, a storm event occurred (December 15, 2004), as evidenced by 

the current and wind vectors (Figure 1.9, right panel).  ERGB imagery in Figure 1.10A 

(right panel) shows a significant increase in the proportion of white colors, most likely 

the result of resuspended particles from the storm’s passing.  Such increases in non-algal 

particles can interfere and result in higher COM values, as well as any dissolved material 

released from the sediments at the time of resuspension (Boss et al., 2004). 
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Figure 1.8B.  Imagery of CHL with the removal of gelbstoff (top panels) and adg443 (bottom panels) for three days in August 2004 
around the time of the passing of Hurricane Charley.  Units are mg / m3 for CHL and m-1 for adg443.
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Figure 1.9. Maps of currents and wind data from buoys operated by USF - Ocean 
Circulation Group (http://ocg7.marine.usf.edu/~liu).  Left panel is during a winter storm 
event and right panel a week after the storm in December 2004. 
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Figure 1.10A.  Enhanced RGB (R: 551, G: 488, B: 443nm) (top panels) for two days in 
December 2004.  Bottom panels are the Fluorescence Line Height (mW / cm2 / µm /sr) 
for the same days.  Imagery supplied by USF-Optical Oceanography Laboratory. 
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The FLH images show a marked difference from before and during the storm, indicating 

an increase in CHL during the latter experiment.  This is also observed in the CHL 

images in Figure 1.10B (top right panel).  This increase during the second field 

experiment was most likely the result of an observed Karenia brevis bloom in the 

southern portions of the shelf. Cell concentrations from Florida Fish and Wildlife  

Conservation Commission – Florida Wildlife Research Institute (FWC-FWRI) are plotted 

over the COM spatial map in Figure 1.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10B.  Imagery of CHL with the removal of gelbstoff (top panels) and adg443 
(bottom panels) for two days in December 2004.  Units are mg / m3 for CHL and m-1 for 
agd443.  
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Figure 1.11.  Karenia brevis cell counts from FWC/FWRI plotted on top of the COM 
fluorescence spatial maps shown previously.  Left panel is for the second December 2004 
field experiment and the right panel is for November 2005. 
 

 

Regions with the highest cell counts (up to a million cells / L) coincide with high 

fluorescence intensity. Additionally, the observed increase in COM fluorescence during 

the second December 2004 field experiment concurs with an increase in adg443 in the 

satellite imagery.  A plausible explanation for the observed high-COM values is most 

likely a combination of factors including the (1) presence of suspended particles as the 

experiment occurred during the passing of the storm (2) dissolved materials released from 

red tide, (3) dissolved materials resuspended from the sediments and possibly even (4) 

benthic diatoms that may be put into suspension.  Given the data available it is difficult to 

assess which factor dominated. 

 

Above, it was shown that hurricanes can drastically alter IOP concentration and 

distribution on the shelf, but how they are changed and to what extent depends greatly on 

the characteristics of the storm (from strength, to direction, to storm surge, to wind 

patterns) and the ambient climate before the storm passes over a region.  During 
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November 2005, South Florida was impacted by another major storm, Hurricane Wilma 

(category 3 at landfall in Cape Romano on October 24, 2005), and the field experiment 

for this month occurred eight days after its passing.  Winds and currents on the shelf pre, 

during and post-hurricane are shown in Figure 1.12.  Highest concentrations of organic 

matter were observed during this experiment and were widespread over much of the 

shelf.  When reviewing the ERGB imagery (Figure 1.13A) it is apparent that unlike the 

August and December 2004 experiments, there exist extensive areas of dark colors prior 

to the passing of the hurricane.  This may have resulted from either the end of the wet 

season accumulation of CDOM on the shelf and / or the presence of the persistent HAB 

of K. brevis that blanketed the coast (Figure 1.11, right panel).  The FLH imagery shows 

widespread phytoplankton signal during this pre-Hurricane Wilma time period.  Imagery 

from eight days after the storm shows the presence of lighter colors (ERGB) at the 

southern portion of the WFS.  This is most likely due to bottom sediments, as this region 

is shallow and the imagery is from more than a week after the storm, thereby giving 

ample time for particles resuspended during the storm to settle out.  The FLH imagery 

shows a concentration effect of the phytoplankton between Tampa Bay and Charlotte 

Harbor, which is also seen in the CHL and adg443 imagery (Figure 1.13B).   It also 

shows high gelbstoff in the southern and inshore portions near Florida Bay.  In situ 

measurements found the highest COM fluorescence and lowest salinities near Florida 

Bay, but the imagery impedes comparison due to the presence of clouds in this region. 

 

If the high COM signal didn’t result from interference with suspended particles, then an 

explanation for the high intensities during the November 2005 includes the following 

components:  (1) The storm physically concentrating the bloom and any of the dissolved 

organic material produced by the prolonged K. brevis bloom. (2) Vigorous mixing of 

shelf waters and the HAB could have released additional dissolved organic material from 

the cells.  (3) Dissolved Organic Matter from the sediments becoming suspended in the  

water column and remaining in solution long after the particles settled out. 
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Figure 1.12. Maps of currents and wind data from buoys operated by USF - Ocean Circulation Group 
(http://ocg7.marine.usf.edu/~liu).  Left panel is before Hurricane Wilma, middle panel is during the storm and right panel after the 
hurricane in November 2005. 
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(4) The storm occurring at the end of the rainy season, when the shelf and the rivers had 

already accumulated high amounts of organic material.  The rain from the storm could 

have resulted in a flushing of easily transported terrestrial material resulting in higher 

color on the shelf.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13A.  Enhanced RGB (R: 551,G: 488,B: 443nm) (top panels) for two days pre 

and post-Hurricane Wilma.  Bottom panels are the Fluorescence Line Height (mW / cm2 / 

µm /sr) for the same days.  Imagery supplied by USF-Optical Oceanography Laboratory 
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Figure 1.13B.  Imagery of CHL with the removal of gelbstoff (top panels) and adg443 
(bottom panels) for two days pre and post-Hurricane Wilma. Units are mg / m3 for CHL 
and m-1 for adg443.  
 

 

Absorption Measurements 

The ability to derive CDOM absorption from fluorescence measurements is of great 

interest to coastal zone researchers, and given that this relationship varies by region, field 

observations are necessary for its determination on the West Florida Shelf. Fluorescence 

and absorption values of discrete samples from each of the field experiments are plotted 

in Figure 1.14.  Strong correlations, independent of depth, location, or season were found 

between fluorescence and absorption coefficients at 312 and 440 nm.  This demonstrates 

promise for deriving CDOM absorption values from fluorescence measurements, not 

only from discrete samples, but in situ measurements as well. 
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Figure 1.14.  Relationship of CDOM fluorescence to absorption at 312 and 440 nm for all 
cruises on the West Florida Shelf.  
 

 

The relationship of fluorescence and absorption from the shelf experiments holds true for 

a wide range of concentrations.  In addition to this concentration range, there is also a 

wide range in spectral shape of the absorption spectra.   Figure 1.15 shows examples of 

seven different waters observed during the field experiments.  Steeper slopes were 

expectedly found for low CDOM, high salinity waters and the lowest slopes were for 

high CDOM, low salinity waters between 280-312 nm (Table 1.2).  The large dashed 

lines show the differences between the absorption curves from waters affected by 

Hurricanes Charley and Wilma, where the former resulted in waters with increased 

clarity over much of the shelf and the latter, resulted in increased COM concentrations.   
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Figure 1.15.  Absorption spectra for different water types sampled during cruises to the 
West Florida Shelf. 
 

 

Spectra from before (gray small dashed line) and after (black small dashed line) the 

December 2004 storm event show little difference.  This supports the hypothesis that the 

higher signal observed in the spatial maps may have resulted in part from suspended 

particles. 

 

Spectral slopes can be calculated over different regions of the absorption spectrum.  Two 

spectral slope ranges are plotted in Figure 1.16 and show how the slope parameter 

changes with salinity, and the wavelength dependent differences in the parameter.  The 

spectral slope parameter for narrow, more blue-shifted (shorter) wavelength ranges (in  
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Table 1.2.  Absorption data for the water types shown in Figure 1.15. 

 

Designation Salinity
Ex/Em =            

300/430 nm
Spectral Slope 

280-312nm (m -1)
Spectral Slope 

350-412nm (m -1)
Spectral Slope 

350-440nm (m -1)

High CDOM- Low Salinity 24.75 54.61 0.01938 0.01763 0.01788

High CDOM-High Salinity 38.02 11.45 0.02507 0.01832 0.01799

Low CDOM-High Salinity 35.51 1.41 0.03225 0.01334 0.01294

Post Hurricane Charley 36.03 1.31 0.03074 0.01178 0.01072

Post Hurricane Wilma 34.02 19.72 0.02219 0.01160 0.01074

December 2004 Pre Event 34.57 10.85 0.02197 0.01824 0.01842

December 2004 Post Event 34.66 9.04 0.02189 0.01732 0.01698

Designation a(280) (m -1) a(312) (m-1) a(350) (m-1) a(440) (m-1) DOC (µM)

High CDOM- Low Salinity 33.88 18.47 9.54 1.95 411.15

High CDOM-High Salinity 8.15 3.73 1.74 0.34 193.56

Low CDOM-High Salinity 0.91 0.33 0.14 0.04 148.51

Post Hurricane Charley 1.29 0.50 0.24 0.09 82.85

Post Hurricane Wilma 12.94 6.55 3.48 1.41 207.74

December 2004 Pre Event 6.33 3.18 1.54 0.29 195.29

December 2004 Post Event 7.44 3.75 1.78 0.39 155.47  
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Figure 1.16.  Spectral slope values for seasonal cruises on the West Florida Shelf. Slopes 
calculated by linear least squares regression for two ranges: 280-312 and 350-440 nm. 
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the top panel) show clearer differences between the various water types, as indicated by 

the arrows in the plot.  However, parameters calculated out to 440 nm (bottom panel) are 

necessary for remote sensing algorithm applications, but have greater signal to noise 

ratios.  In general, higher slopes at lower wavelengths indicate more refractory, less 

aromatic organic material, similar to what is found in the open ocean.  Conversely, lower 

slopes point to more complex material.  The top panel in Figure 1.16 shows a progression 

from lower to higher slopes with salinity (a decrease in complexity) from waters taken 

after Hurricane Wilma, the December 2004 storm, Hurricane Charley, and for the 

hypersaline water of August 2005. 

 

Spectral Changes 

Related to the spectral slope parameter are differences in the fluorescence EEM 

fingerprint.  These matrices allow for determination of spectral shape and position of 

peaks, as well as how the humic peaks change relative to each other.  These parameters 

serve as proxies for compositional differences of organic matter within sample waters.  

The same examples shown in the absorption curves of Figure 1.15 are plotted as EEMS 

in Figures 1.17 A, B and C.  Refer to Table 1.3 for list of peak positions and fluorescence 

intensities. Similar fingerprints were found for the high CDOM - low salinity and high 

CDOM - high salinity waters.  Organic matter fluorescence after the passage of Hurricane 

Wilma also resembled these waters (Figure 1.17B, top panel).  Recall that the spatial 

maps during the November 2005 experiment showed widespread distributions of high 

COM concentrations.  Fluorescence matrices after the passage of Hurricane Charley, 

however, are most similar to that of the low CDOM - high salinity fingerprints.  Figure 

1.17C shows the EEMS from before (top) and after (bottom) the December 2004 event.  

The matrices look similar to each other in both concentration and peak positions, 

indicating some similarity of the dissolved organic pool.  Both EEMS also possess 

protein-like fluorescence peaks (Table 1.4 lists the wavelength range for protein-like 

peaks).  These matrices, however show differences in the spectral shape of the humic 

peaks, indicating that the organic material before and after the storm event differed in 

some way. 
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Figure 1.17A.  Excitation Emission Matrices (EMS) for three water types on the West 
Florida Shelf.  Top panel is a high CDOM, low salinity water.   Middle panel is for 
hypersaline waters with high concentrations of CDOM.   Bottom panel is high salinity, 
low CDOM water.  Humics Peaks A and M are demarked in the top right contour.  Scale 
of contour plots are set to the maximum fluorescence intensity in the corresponding 3-D 
plots on the left. 
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Figure 1.17B.  EEMS for water after the passage of Hurricanse Wilma (top) and Charley 
(bottom).  Both are high salinity waters, but possess differences in CDOM concentration.  
Scale of contour plots are set to the maximum fluorescence intensity in the corresponding 
3-D plots on the left. 
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Figure 1.17C.  EEMS for water before (top) and after (bottom) the passage of the 
December 2004 storm event. Scale of contour plots are set to the maximum fluorescence 
intensity in the corresponding 3-D plots on the left. 
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Table 1.3.  Peak positions and intensities for EEMs shown in Figure 1.17. 

EEM ID
Month-

Year Salinity
Ex Humic 

Peak A (nm)
Em Humic 

Peak A (nm)

Fluor. Intensity 
Humic Peak A 

(QSE)
Ex Humic 

Peak M (nm)
Em Humic 

Peak M (nm)

Fluor. Intensity 
Humic Peak M 

(QSE)

High CDOM-Low Salinty Aug-05 24.75 235 427.85 108.08 305 419.84 55.73

High CDOM-High Salinity Aug-05 38.02 235 419.52 23.90 305 407.30 12.09

Low CDOM-High Salinity Dec-03 35.51 235 403.40 3.48 300 401.64 1.63

Pre-storm event Dec-04 34.57 235 419.52 22.35 305 411.61 11.33

Post-storm event Dec-04 34.66 230 417.21 22.84 300 414.34 9.32

Hurricane Wilma Nov-05 33.90 235 416.07 19.04 305 403.58 10.44

Hurricane Charley Aug-04 36.03 235 395.30 2.73 295 382.67 1.45
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Table 1.4.  EEM peak positions previously found by Coble, 1996. 

 

 

 

Component Peak Name Ex/Em (nm)

tyrosine-like, protein-like B 275 / 305

tryptophan-like, protein-like T 275 / 340

unknown N 280 / 370

UVC humic-like A 260 / 400-460

UVA marine humic-like M 290-310 / 370-410

UVA humic-like C 320-360 / 420-460

pigment-like P 398 / 660  

 

 

 

One way to visualize these differences, is to plot the position of Humic Peak M emission 

maxima as a function of salinity (Figure 1.18).  As initially reported by Coble, 1996, 

Peak M has been previously identified at Ex/Em = 290-310 / 370-410 nm (Table 1.4).  

The position of Peak M showed the largest range during high flow conditions (379- 425 

nm), where the most red-shifted peaks, corresponded to lower salinities and higher 

concentrations of organic material.  Peaks at longer wavelengths during the wet season 

are explained by the occurrence of higher river discharge that carries with it CDOM of 

terrestrial origin to the shelf. This material has been shown to be more red-shifted, 

colored, labile and compositionally complex (McKnight et al., 2001; Aiken, 2002, 

Stedmon and Markager, 2005) as compared to marine organics (Shark River water was 

added to this plot for comparison). Conversely, the occurrence of peaks at shorter 

wavelengths during the wet season is the result of warmer temperatures and high sun 

exposure of these summer months.  These conditions are favorable for photodegradation 

of organic material, which produces, smaller, less colored organically resistant material 

that results in a blue-shifting of the fluorescence peaks (Zepp and Schlotzhauer, 1981).  

The most blue-shifted peaks were found after the passage of Hurricane Charley.  The 
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hypersaline waters also show peaks at shorter wavelengths.  Shelf waters after the 

passage of Hurricane Wilma possessed peaks between 400-415 nm, suggesting a strong 

terrestrial signature where salinities were low.  During November 2005 for higher salinity 

waters, these peak positions could have also arose from productivity in the sediments or 

water column.  Samples taken after the winter storm event were also more red-shifted, 

but had higher salinities, suggesting runoff was not the source, but from marine 

productivity (either within the water column or the sediments) instead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.18.  Position of fluorescence maxima for Humic Peak M for West Florida Shelf 
waters.  The range in position is greatest during high flow conditions. Peak C for Shark 
River water is added for reference.  Shark River data is included for reference. 
 

 

The position of peak maxima can also be demonstrated with spatial maps for each field 

experiment (Figure 1.19).  It is important to note that the contour maps shown previously 

in Figure 1.5 were generated with in situ, unfiltered water, whereas filtered, discrete 

samples were used in the plots of Figures 1.19 and 1.22.   Red colors in the spatial map 

represent more complex material and blue colors are indicative of more refractory marine 
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CDOM.  Bluest positions were found after the passage of Hurricane Charley and 

conversely, reddest positions were observed during August 2005, when discharge was 

highest. The hypersaline waters show positions close to 400 nm.  During November 

2005, post Hurricane Wilma, peak positions of longer wavelengths dominated the shelf 

(peaks > 400 nm) and are most likely related to the flux of organic material from the 

sediments, lysis of cells from the phytoplankton bloom and from terrestrial runoff due to 

increased rain brought by the storm.  For the case of December 2004, unfortunately, only 

a few samples were taken south of Charlotte Harbor, so the storm event cannot be 

documented spatially with discrete samples.  At the time of lowest flow (December 

2003), we also see patterns similar to August 2004, but with a smaller range in peak 

position.  This pattern would have been expected with April 2005, as well, but because 

samples were only taken at inshore stations, no offshore blue-shifted material was 

sampled. 

 

Another parameter to help describe the composition of organic material on the shelf is the 

ratio of humic peaks A (UVC region) to that of humic peaks C or M (UVA region) 

(Figure 1.20).  Many of these coastal samples have ratios of approximately 2 (Shark 

River samples were also found to be 2). Shelf waters after Hurricane Wilma tended to be 

between 1 and 2, where as Hurricane Charley samples were mostly above 2.  The winter 

storm event exhibited higher ratios as well.   
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Figure 1.19.  Spatial distributions of Humic Peak M position for seasonal cruises on the West Florida Shelf.  Contours generated using 
discrete samples, as compared to previous spatial maps of in situ data. 
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Figure 1.20.  Ratio of Humic Peaks A and C/M as a function of CDOM fluorescence 
intensity and salinity for all field experiments.  Shark River ratios are included for 
comparison. 
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CDOM and Dissolved Organic Carbon 

Measurement of DOC concentration is a labor intensive process, and there is a critical 

need for developing proxies for this material. In coastal regions, recent studies have 

found that DOC is highly correlated with CDOM (Ferrari et al., 1996; Vodacek et al., 

1997; Del Castillo et al., 1999, Del Castillo 2005). Using fluorescence measurements to 

estimate critical organic carbon concentrations can foster better estimates of terrestrial 

carbon export in coastal waters.  Plotted in Figure 1.21 is the relationship of carbon to 

fluorescence for the West Florida Shelf field experiments.  Separating data by flow 

conditions results in two regression lines, where higher color is observed per DOC unit 

during periods with increased discharge onto the shelf.  During December 2003 (time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.21.  The relationship between Dissolved Organic Carbon (DOC) and CDOM 
fluorescence on the West Florida Shelf.  Regressions calculated without samples from 
December 2003 or the high DOC- low CDOM values. 
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of smallest discharge), no relationship could be found between the two parameters on the 

shelf.  There are also a number of data points that show elevated organic carbon relative 

to fluorescence, that were not included in the regressions, as these were outliers 

compared to the remaining samples.  The spatial plot for December 2003 (Figure 1.22), 

when no correlation with CDOM could be found, shows higher values found in waters 

influenced by the Everglades and Florida Bay.  During the experiment with the highest 

discharge (August 2005), highest DOC was found near the mouth of the Caloosahatchee 

and the Everglades rivers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.22.  Spatial distributions of DOC on the West Florida Shelf.  Left panel is 
December 2003, right panel is August 2005. 
 
 

 



 48 

CONCLUSIONS 

Generally, waters on the West Florida Shelf exhibited a strong correlation between 

CDOM and salinity.  This suggests that although there are numerous sources of this 

material to the WFS, to the first order, mixing is the dominant factor controlling CDOM. 

An inversion in the CDOM-salinity relationship was observed for waters adjacent to 

Florida Bay, where a hypersaline, CDOM-rich water mass was found during the 2005 

summer season. Temporal variability in distribution patterns of CDOM concentrations, 

spectral properties and DOC was found.  This is attributed to seasonal differences in river 

discharge, the presence of HABs and the occurrence of episodic storm events.  The first 

of these events, the passage of Hurricane Charley in August 2004 resulted in low 

fluorescence intensities over the entire shelf.  Little terrestrial organic matter was 

detected as evidenced by high spectral slopes at low wavelengths and blue-shifted 

fluorescence peaks. 

 

A dry season storm event in December 2004 was shown to cause an increase in 

fluorescence intensity using in situ instruments as compared to the field experiment just 

prior to the storm’s passing.  Spectral slope and EEM data showed no significant change 

in the optical properties of discrete samples prior to and after the event, suggesting that 

the change measured by in situ sensors was due primarily to particles in the unfiltered 

seawater.  This was supported by satellite ERGB imagery.  Additionally, the presence of 

a red tide and DOM from the sediments may also have attributed to the higher signal. 

 

Highest fluorescence intensities were observed on the shelf during November 2005 after 

the passing of Hurricane Wilma eight days earlier.  Spectral slope values were low, 

fluorescence peaks were red-shifted, and both high and low-salinity waters were observed 

at this time.  This indicates that the organic material originated from rivers and marine 

sources.  The marine sources may have been DOM from the sediments and from the 

persistent phytoplankton bloom that blanketed the shelf.  
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The work presented here illustrates the dynamic nature of the West Florida Shelf and 

ways in which discharge patterns and physical forcings influence the distribution of 

CDOM.  Results of this project can be used to ground truth ocean color products for a 

variety of scenarios:  high versus low river discharge, hurricanes, resuspension events and 

bloom periods.  One component, river discharge of CDOM is the focus of the next 

section of this dissertation, where seasonal and spatial variability is examined. 
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Part II: 
 

CDOM optical properties in Florida’s Gulf Coast riversheds:  A regional 
comparison 
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INTRODUCTION 

Colored Dissolved Organic Matter (CDOM) is photoreactive, an important reservoir, and 

an integral component of the global carbon cycle. It plays crucial roles in biogeochemical 

processes such as metal binding capacity (Aiken, 2002), pollutant and material transport 

across reservoirs (Hansell, 2002), microbial loop dynamics, and nutrient cycling.  It also 

affects water clarity, dissolved organic carbon flux, drinking water quality, and UV 

shading of aquatic biota.  Its presence determines the coastal euphotic zone, serving as 

both a limitation for certain primary producers (ie. seagrasses) and at the same time as 

essential sunscreen for organisms (ie. corals) that require protection from harmful UV 

radiation.  Due to these reasons, CDOM serves as a measure of ecosystem health and an 

indicator of environmental change for restoration-critical species and resource managers.   

 

CDOM is chemically complex and its composition is source specific (Cauwet et al., 

1990; Coble, 1996; Boss et al., 2001; Stedmon et al., 2003; Chen et al., 2004 Baker, 

2001, 2002; Baker and Spencer, 2004).  Its optical properties vary for waters impacted by 

forests, wetlands, urbanization, sewage effluent, agricultural practices, local biology and 

groundwater discharge.  Due to the source specific nature of CDOM composition, the 

optical properties of this material can be used as a water tracer.  Parameters, such as 

absorption coefficients, fluorescence intensities and ratios (Del Castillo et al., 2001; 

McKnight et al., 2001; Conmy et al., 2004), positions of fluorescence maxima (Coble, 

1996), spectral slopes (Blough et al., 1993), and apparent fluorescence efficiencies all 

have been used to distinguish sources and observe CDOM transformations through 

ecosystems.   

 

The strong conservative behavior of CDOM and salinity in coastal waters gave rise to the 

notion that a true ‘endmember’ value at zero salinity in rivers must exist and that a 

universal endmember could be established for a watershed in order to account for the 

conservative mixing observed in shelf waters.  Findings of recent studies dedicated to 

examining CDOM spectral properties in river systems have countered that perception 

(Del Castillo et al., 1999; Baker, 2002; Kowalczuk, et al. 2003; Chen et al., 2004, 
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Conmy, et al., 2004; Coble, 2007 and ref. therein).  Locally, projects investigating the 

rivers supplying the West Florida Shelf (WFS) (Boehme, 2000; Stovall-Leonard, 2003), 

showed that Dissolved Organic Matter (DOM) in watersheds can possess distinguishing 

optical characteristics.  Although these studies shed much light on the differences 

between selected watersheds on the Gulf Coast, an assessment of temporal variability or a 

comprehensive comparison of rivers by region was outside the scope of those projects. 

 

There is a critical need to establish the spatial and temporal variability of CDOM and 

DOC in rivers and estuaries.   This is especially true for river-dominated margins, like the 

WFS, where freshwater originates from numerous rivers.  In such regions, the ability to 

understand regional carbon dynamics is necessitated by establishing CDOM variability in 

said rivers.  Additionally, an understanding of how CDOM distribution is influenced by 

watershed-basin characteristics (soil composition, land cover, soil permeability) and 

climatic patterns is also required to determine how CDOM is transferred through various 

environmental regimes. 

 

Investigated in this study is how optical properties (absorption coefficients, fluorescence 

efficiencies, intensity, ratios and peak position) and DOC vary spatially and temporally 

for watersheds between the Atchafalaya/Mississippi River system in Louisiana and the 

Shark River in the Everglades for a two year time period.  Implicated in the cause for 

differences among rivers are differences in basin characteristics of the watersheds.  
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METHODOLOGY 

Seasonal sampling of the Atchafalaya, Mississippi, Apalachicola, Suwannee, 

Hillsborough, Alafia, Manatee, Peace, Caloosahatchee, and Shark Rivers was conducted 

over a two year time period during 2003-2005 (Figure 2.1).  Water samples and in situ 

measurements were taken from the banks of rivers or from docks at various locations 

along the river, with the exception of the Shark River (Table 2.1).  For this river, a boat 

from the Keys Marine Lab was used to obtain river water. Up to four samples were taken 

from each stream to encompass a salinity range from the river mouth to zero-salinity 

waters.  In situ measurements of salinity, conductivity, temperature, and pH were taken 

via a Hydrolab Sonde.  Samples for DOC, fluorescence and absorption analyses were 

collected wearing polypropylene gloves into pre-combusted glass amber bottles (450oC 

for 24 hours) and stored on ice (1-5 hours) until returning to the lab or an alternate nearby 

facility.  Water was then filtered using the same protocols stated in Part I of this 

dissertation.  For DOC measurements, sample water was stored frozen for up to one year, 

until thawed for analysis.  Prior to absorption and fluorescence analyses, samples were 

either stored refrigerated for no more than two days or frozen and then slowly thawed 

depending on instrument availability. Using the protocols in Part I, absorption spectra 

were measured to determine if and to what extent dilution was needed following Green 

and Blough (1994).  Appropriate dilutions were made, and then water was reanalyzed for 

absorption and subsequently analyzed for excitation emission fluorescence spectroscopy.  

Again, stated in Part I are the procedures for sample processing for all analyses. 
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Figure 2.1.  Map showing locations of the rivers sampled in Florida (top) and in 
Louisiana & Mississippi (right). Rivers include the Atchafalaya, Mississippi, 
Apalachicola, Suwannee, Hillsborough, Alafia, Manatee, Peace, Caloosahatchee, and 
Shark River.  
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Table 2.1.  Locations (GPS positions and landmarks) of river samples. 
 
River Landmark Latitude Longitude
Alafia DeSoto Road 27.87669 -82.31293

Riverview Park 27.86606 -82.31868
US 41 Williams Park 27.86040 -82.38473

Apalachicola Breakaway boat ramp 29.75860 -85.02423
Water Street 29.72373 -84.98081
98 Causeway 29.95234 -84.46589
US 98 Bridge 29.73489 -84.90253
St. George Island 29.66946 -84.86631

Atchafalaya Berwick 29.69413 -91.21608
Caloosahatchee Port La Belle 26.93010 -82.27322

Franklin Rec. Area 26.72132 -81.69451
Ft. Myers 26.66008 -81.84961
Freemont St 26.66013 -81.84957
Riverside Drive 26.58992 -81.89789
Yacht Club Commun. Park 26.54260 -81.95205
Dennis Drive 26.52234 -81.96517

Hillsborough E. Pocohontas 28.00843 -82.41619
Sligh Ave 28.01058 -82.46420
W Indiana & N Ridge 28.06670 -82.45360
Riverfront Park 27.95200 -82.46604
Green St 27.95536 -82.46551
Blake Co River Park 28.06670 -82.45360

Manatee Rye Wilderness Park 27.51370 -82.36763
Colony Cove Marina 26.98125 -82.00112
Wellon Ranch Rd 27.52877 -82.48275
45th Ave E off 301 27.51834 -82.51874
41 and US 301 Bridge 27.50741 -82.56266

Mississippi Cypress Cove Marina 29.69412 -91.21607
Peace Navagator Marina 27.06089 -82.00137

Harbor Heights 26.98881 -81.99413
US41 Bridge 26.95172 -82.06118
SeaTow Dock 26.59078 -81.89753
Matlacha Park 26.95720 -82.06083

Shark No landmark 25.39775 -80.96960
No landmark 25.38892 -81.01080
No landmark 25.37440 -81.04466
No landmark 25.35644 -81.10743

Suwannee Bradford Road 29.32198 -83.14429
Shellmound 29.20650 -83.06982
Cedar Key 29.16381 -83.02714  
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RESULTS & DISCUSSION 

Riverine Fluorescent DOM Concentrations  

A scatter plot of riverine CDOM fluorescence intensity (Ex/Em = 300/430 nm) as a 

function of salinity is shown in Figure 2.2.  For reference, data for the West Florida Shelf 

(WFS) has also been included.  One result of this two year seasonal study is that two 

trends were established and are based on regional differences.  Generally, river systems 

in the northern portion of the field study (Atchafalaya to Alafia River) have less 

fluorescence per freshwater unit compared to rivers to the south (Manatee to Shark  

River). One exception to this is the Suwannee (represented by the black outlined gray 

squares), which is significantly more colored than the remaining northern rivers.  The 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 2.2. CDOM fluorescence at Ex/Em 300/430 nm for ten rivers that supply the 
Eastern Gulf of Mexico. Stream data are generally separated into two lines, based on 
latitude.  Open black diamonds around solid symbols represent 2004 hurricane season. 



 57 

Suwannee is a swamp-fed river, with similar landscape characteristics to rivers found in 

South Florida.  Seasonality in CDOM fluorescence was also observed, and is related to 

river discharge.  Highest intensities were found for samples taken during the active 

hurricane season of 2004.   This seasonality is also responsible for the low r-squared 

values within each watershed.  An example of this is shown in Figure 2.3.  Here, mixing 

lines for three of Tampa Bay’s rivers are shown. Tampa Bay was chosen as the example 

because it is geographically situated where the break in mixing lines occurs.  The 

Hillsborough and Alafia rivers plot along the Northern-river line and the Little Manatee 

and Manatee plot along the Southern-river line.  As evident from this figure, during low- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. CDOM fluorescence at Ex/Em 300/430 nm for Tampa Bay rivers.  Dry 
seasons (solid lines) exhibited less fluorescence, compared to wet seasons (dashed lines). 
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flow conditions (dry season), there is less color in each of the rivers, with little variability 

between years.  For the wet season, however, rivers were found to be more colored.  

Also, the response of each river to discharge patterns varies.  The Manatee River exhibits 

the same wet-season mixing line, regardless of year.  The Hillsborough and Alafia, 

however, show significantly higher color during 2004 compared to 2005, where values at 

the freshwater endmembers approach that of the Manatee River to the south.  Again, this 

is most likely attributed to the large amount of rainfall and discharge due to the active 

2004 hurricane season in South Florida.   

 

Regional and seasonal differences of each river are apparent in the top-panel histogram in 

Figure 2.4A, where dry seasons are represented by solid bars and wet seasons are 

represented by striped bars.  Tables of fluorescence, absorption and DOC data are located 

in Appendices I and II. 
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Figure 2.4A.  Histograms of fluorescence intensity, absorption coefficient and 
fluorescence efficiencies for all rivers.  Latitude of rivers decreases from left to right 
within plots.  Dry seasons are shown with solid bars, wet seasons are shown with striped 
bars, with increasing year from left to right. 
 



 60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4B.  Histograms of DOC concentration, position of humic peak C maximum and 
fluorescence ratios for all rivers.  Latitude of rivers decreases from left to right within 
plots.  Dry seasons are shown with solid bars, wet seasons are shown with striped bars, 
with increasing year from left to right. 
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Riverine Absorption Measurements 

Regional differences were less apparent in the relationship between fluorescence and the 

absorption coefficient at 312 nm (Figure 2.5).  However, fluorescence efficiencies did 

exhibit seasonality.  Shown here is the drastic increase in fluorescence intensity relative 

to absorption during the 2004 wet season.  To clearly see seasonal trends in this 

relationship, Figure 2.6 shows a subset of the data for the Caloosahatchee and Peace 

Rivers in Charlotte Harbor and the Manatee River in Tampa Bay.  Although the rivers  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. CDOM fluorescence at Ex/Em 300/430 nm as a function of absorption 
coefficient at 312 nm.  Outlined symbols are samples that were taken in the streams 
during the 2004 active hurricane season in Florida. 
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Figure 2.6. CDOM fluorescence at Ex/Em 300/430 nm as a function of absorption 
coefficient at 312 nm for Charlotte Harbor rivers and Manatee River in Tampa Bay. As 
shown here, seasonality is apparent for regional subsets. 
 
 

ultimately feed two different estuaries, they are affected by similar weather patterns and 

the streams traverse similar landscapes.  Source waters of the Manatee and Peace Rivers 

are similar, but the Caloosahatchee River originates at Lake Okechobee, which 

experiences controlled releases.  What is visible here is that during both dry seasons, a 

quasi-constant relationship exists between fluorescence and absorption.  In contrast, the 

wet seasons showed two different regressions for CDOM.  Implicated in the cause for the 

higher fluorescence efficiency in 2004 is the increase in discharge resulting from daily 

precipitation and frequency of hurricanes during that period.  Increase in discharge from 

landscape runoff generally yields organic material with more efficient fluorescence 
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properties, due to the presence of large organic macromolecules from soils and plant 

litter.  This is not the case, however in the wet season of 2005, where less fluorescence 

per unit absorption was observed.  This is in part due to the late start of the rainy season 

that year and because the rivers were sampled early in the season.  A possibility as to why 

the relationship was not only lower than the previous wet season, but also the dry seasons 

may be because of higher sunlight, increased water temperature, and age of terrestrial 

material in the stream.  At the cusp between the end of a dry season and start of the 

subsequent wet season, organic material in the stream has been in the water for longer 

periods of time with exposure to sunlight, higher water temperatures and microbiota that 

can degrade the material, thereby decreasing its efficiency (refer to Figure 2.4A middle 

and bottom panels for histogram representation).  Interestingly, this is also the same 

season where the hypersaline waters were found on the West Florida Shelf.  This 

illustrates the need to measure these parameters over more frequent temporal scales, for 

longer-durations and over wider ranging spatial scales to determine the variability and 

how it is affected by basin and climatic patterns.  This information is critical for 

understanding CDOM quantity and quality that supply the estuaries and ultimately the 

shelf.       

 

Riverine Dissolved Organic Carbon 

Of great importance in coastal environments is the establishment of CDOM as a proxy to 

derive DOC in coastal watersheds.  Recent work by McKnight et al. (2001, 2003), Baker 

and Spencer (2004) and others has shown good agreement between these parameters in 

certain regions.  Also, an excellent summary of the relationship can be found in Del 

Castillo (2005).   Figure 2.7 illustrates how fluorescence intensity varies with DOC for all 

the rivers sampled.  Again, scatter in this relationship is due, in part, to seasonality and 

also regional differences in watersheds (Figure 2.4B, top histogram).  Viewing only a 

subset of rivers (ones supplying Tampa Bay and Charlotte Harbor) allows for calculating 

better regressions, especially during high-flow conditions (Figure 2.8).  These 

relationships hold promise for estimating freshwater organic carbon export from  
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fluorescence intensity during limited time periods for these estuaries.  This, along with 

the histograms in Figure 2.4B, illustrates that although the water contribution of large 

rivers to the Gulf of Mexico may be greater (ie. The Mississippi River), the organic 

carbon delivery by the smaller, organic-rich rivers to the south can be quite significant 

because of higher DOC concentrations per liter of river water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. The relationship between CDOM fluorescence and DOC for river and West 
Florida Shelf waters for all seasons sampled. 
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Figure 2.8. The relationship between CDOM fluorescence and DOC for Tampa Bay 
(top), Charlotte Harbor and Shark Rivers (bottom). 
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Riverine Spectral Properties 

Multi-spectral fluorescence measurements produce Excitation-Emission Matrices 

(EEMs), which allow for determination of spectral shape, position of peaks and how the 

humic peaks change relative to each other.  Examples of EEMs from each of the rivers 

sampled during a dry season are in Figure 2.9A & B.  The contours have been scaled to 

the maximum fluorescence value in the Humic Peak A region (Ex ~ 240 / Em ~ 400-460 

nm), so as to compare not the intensity, but spectral differences.  These optical properties 

relate to the chemical composition of the organic material, where longer wavelengths are 

indicative of larger, more complex, highly aromatic compounds. Visually comparing the 

EEMs, it is possible to see positional and shape differences in Humic Peak C (Ex 320-

360 / Em 420/460 nm), which is also supported by the middle histogram in Figure 2.4B.  

Longest wavelengths were found for waters in the Suwannee River and shortest were for 

the Hillsborough River.  Looking at the position differences as a function of salinity 

(Figure 2.10) it is obvious that streams show much geographical and seasonal variability, 

not only at the endmember, but along the salinity gradient as well.  One important note is 

the effect of the 2004 hurricane season on the position of fluorescence maximum.  

Included in Figure 2.10 are the WFS data, where the most blue-shifted samples occurred 

right after the passage of Hurricane Charley, due to offshore ocean water being pushed 

inshore.  In the southern streams, however, the hurricane yielded the most red-shifted 

material as a result of the rapid accumulation of runoff in the stream beds.  

 

In addition to position, the spectral shape can also offer insight regarding the chemistry of 

organic material.  Plotting individual spectra from each EEM at excitation 300 nm, and 

normalizing to remove intensity differences allows for comparing the spectral shape.  

Figure 2.11 illustrates these differences, where colors of rivers correspond to the colors in 

the histogram plots previously shown.  One way to interpret this plot is that the steeper 

peaks, like the curves for the Atchafalaya, Mississippi, Apalachicola and Alafia Rivers, 

result from less complexity in the organic material.  The Suwannee has the lowest 

relative peak height and width and plots along with the Manatee and Peace Rivers, all of 

which are organic-rich river systems.  The bold-shaped curves found in the middle, are  
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Figure 2.9A.  EEMs contours for rivers taken at zero salinity during dry season.  River 
names are located in the top left corner of each panel.  Scale set to maximum value of 
Humic Peak A for comparison of spectral properties. 
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Figure 2.9B.  EEMs contours for rivers taken at zero salinity during dry season.  River 
names are located in the top left corner of each panel. Scale set to maximum value of 
Humic Peak A for comparison of spectral properties. 
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Figure 2.10.  Position of Humic Peak C/M maximum as a function of salinity for river 
and West Florida Shelf waters for all seasons sampled.  Shortest wavelengths at high 
salinities resulted from Hurricane Charley, as did the longest wavelengths in southern 
rivers. 
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Figure 2.11.  Normalized emission spectra at Ex = 300nm for all rivers.  Line colors 
correspond to river colors in previously shown histograms. 
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for the Hillsborough, Caloosahatchee and Shark, which incidentally are all controlled 

rivers in one form or another.  Calculating the ratio between the fluorescence peak 

maximum and the value at 500 nm for excitation 300 nm yields a quantitative description 

of differences between these watersheds (bottom histogram in Figure 2.4 B).  Northern 

rivers exhibit the highest ratios, which were followed by the controlled-flow rivers from 

both the southern and northern regions.  The southern, free flowing rivers had the lowest 

ratios of all rivers sampled.  Once again, the Suwannee River is the exception, showing 

more similarity to the southern streams. 

 

Implicated in the cause of regional differences in riverine organic matter are basin and 

land use characteristics, but to date have not been thoroughly investigated for this region.  

Work done by Dr. Barnali Dixon and others at the USF Geo-spatial Analysis Lab 

comparing Tampa Bay and Charlotte Harbor streams has shown that land use, land 

elevation, soil run off, soil organic carbon content, and land permeability have great 

influences on the materials within these rivers (unpublished data, pers. commun.).  It was 

established that the Manatee and Peace Rivers had a greater proportion of low-elevation 

lands compared to the Hillsborough and Alafia Rivers, significantly greater agricultural 

land use compared to the higher percentage of urbanization for northern watersheds, and 

a greater fraction of poorly drained soils.  As a first cut, these findings help to explain 

some of the geographical differences observed in the rivers sampled in this study. 

 

High-Resolution Sampling 

The results of this study illustrate the need for more effective sampling strategies.  

Seasonal collection of discrete samples at a few locations along a river is not adequate for 

truly resolving the spatial and temporal variability within a stream.  To accomplish this, 

both resolution scales need to be finer, which may be achieved with more frequent 

sampling, or ideally, with in situ sensors mounted on monitoring platforms.  One 

technique tested during the course of this project, was the mounting of an in situ multi-

spectral fluorometer (SAFire) on a Guided Surface Vehicle (GSV), that was deployed in 

the Hillsborough River to assess spatial variability of water quality parameters in natural 
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and urban locales (Casper et al., 2008).  Spatial distributions of CDOM fluorescence at 

the two locations are shown in Figure 2.12.  This figure is merely to show that changes in 

fluorescence were found to occur over small distances and that the current sampling 

strategies that are used to measure materials in many rivers are unable to detect these 

variations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12.  Spatial distribution of COM in an urban locale (left) and natural locale 
(right) in the Hillsborough River. High resolution, in situ measurements of multi-spectral 
COM allow for better spatial and temporal measurement scales. 
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Historical Color Measurements 

The color of water is routinely measured by many regional water management and 

monitoring agencies, as it is a visual measurement of water clarity and ecosystem health.  

Changes in the color of a water body can be used to infer alterations in land use practices, 

landscape changes and shifts in climatic patterns.  In Tampa Bay, a thirty year record 

exists for color as well as other water quality parameters for the estuary and rivers.  

Plotted in Figure 2.13 (top panel) is the color value in Platinum Cobalt Units for the 

mouth of the Alafia River for years 1973-2006 along with discharge data from the USGS 

(bottom panel).  During the most recent years, an increase in color corresponds to 

increases in discharge.  This was not necessarily the case in the 1970’s and 1980’s, when 

Tampa Bay had a lower proportion of urbanized lands.  A study done by Xian and Crane 

(2005) found that the transformation of landscape from natural to impervious urban land 

in Tampa Bay increased three-fold from 1991 to 2002, resulting in  a 27% coverage of 

these impervious lands in Tampa Bay.  Alterations like these to watershed landscapes are 

one possible explanation for changes in organic carbon content and color in coastal 

waters, which is demonstrated in Freeman (2001).  
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Figure 2.13.  Historical time series of color at the mouth of the Alafia River in Tampa 
Bay (top).  Records indicate an increase in color values during the past 30 years although 
the mean monthly discharge for the Alafia has been fairly constant (bottom).  Sources of 
data are the EPCHC (Environmental Protection Commission of Hillsborough County) 
and USGS. 
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CONCLUSIONS 

Examined here were differences in the optical properties of CDOM for ten rivers from 

the Atchafalaya/Mississippi River system to the Shark River.  Fluorescence and 

absorption techniques were used to distinguish both regional and seasonal variability in 

these watersheds.  It was found that CDOM in rivers that supply the shelf is regionally 

dependent, where southernmost rivers generally have higher fluorescence intensities 

compared to northern watersheds.  This was also true for DOC concentrations.  Spectral 

properties also were watershed-specific, where fluorescence ratios were lowest for 

southern rivers without controlled flow.  This is attributed to the presence of more 

complex, highly aromatic organic material from less urbanized settings. Comparisons 

between the basin characteristics (soil runoff, soil permeability and land use) of Tampa 

Bay and Charlotte Harbor were also made to help explain differences in the optical 

properties of streams. 

 

Seasonal differences were also found, where high-flow, summer seasons exhibited the 

largest fluorescence intensities.  The results of the efficiency of the material, however, 

demonstrated that differences in climatic and discharge patterns can have a strong 

influence on this parameter.  Intermittent weather phenomena (ie. hurricanes) were also 

shown to have a significant effect on the optical properties of CDOM in streams.  

Findings were also compared to historical color values from 1973 to 2006 from the 

mouth of the Alafia River in Tampa Bay.  Long-term trends show a tripling of color 

values that coincide with a three-fold increase in impervious urban lands and also no 

clear trend in discharge patterns. 

 

Recommendations for future studies of organic matter in rivers include (1) the need to 

thoroughly evaluate the variability of materials of interest with differences in landscape 

parameters and climate patterns, and (2) the need to implement advanced sampling 

strategies with in situ sensors.  Combined, these two approaches will yield improved 

resolution (temporal and spatial) and allow for making inferences about CDOM quantity 

and quality in river streams, and ultimately estuaries and shelf environs. 
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PART III: 

 

Characterization of subsurface terrestrial CDOM sources to Tampa Bay, Florida 
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INTRODUCTION 

Subsurface waters constitute 95% of all global, unfrozen freshwater reserves (National 

Ground Water Assoc. website www.ngwa.org).  Even though groundwater is the largest 

freshwater reservoir, there have been relatively few studies on its contribution to surface 

waters.  This is in part due to the difficulty in collecting measurements of water flow and 

the constituents therein (Burnett et al., 2002).  Hence, it can be challenging to determine 

the role of groundwater in budgets for materials such as nutrients, metals, pollutants, 

inorganic and organic carbon (Moore 2003).  Determining the amount and nature of the 

organic material in an aquifer is significant given its reactive nature which influences 

other materials of interest (Aiken, 2002), its ability to control a number of geochemical, 

microbial and environmental processes (Aiken, 2002; Kroeger et al., 2007), and its role in 

the global carbon budget. 

 

There are various ways in which groundwater is transferred to surface waters.  The first 

type of exchange is via localized springs that may supply water to streams, which in turn 

supply estuaries and the coastal ocean.  The second is via Submarine Groundwater 

Discharge (SGD) where water is more diffusely exchanged through sediments beneath a 

water body.  The latter is now acknowledged as an important flux of materials to the 

coastal ocean (Moore, 1999; Burnett et al., 2002; Kelly and Moran, 2002; Moore et al., 

2002; Moore, 2003).  The extent of importance of each route is dependent on regional 

geology, hydraulic head gradients between reservoirs, and thickness of the overburden 

deposits.   Added to these hydrogeologic characteristics are the effects of climate and 

society’s increasing demand on ground water reserves (Swarzenski et al., 2001), all of 

which serve to complicate our understanding of groundwater. 

 

In recent decades, new light has been shed on the importance of groundwater contribution 

to estuaries and the coastal ocean due to improvements in tracer techniques (Moore, 

1999; Krest et al., 1999; Burnett et al., 2001; Swarzenski et al., 2007).  The combined use 

of naturally occurring isotopes and other chemical tracers (O-18, H2, Rn-222, Ra-

223,224,226,228, Sr87/86, 13C, 15N, and major dissolved species) along with 
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geochemical modeling have been used to quantify interactions between surface and 

subsurface water reservoirs (Katz, 2002).  Although these techniques have advanced the 

understanding of the role of groundwater in surface environments, there still exist 

limitations of these techniques, such as speed of measurement and the lack of an ideal 

tracer for riverine, estuarine and oceanic environs. 

 

One technique not previously applied to groundwater detection, is Excitation Emission 

Matrix Spectroscopy (EEMS) of Colored Dissolved Organic Matter (CDOM).  This 

fluorescence tool has been routinely used as a tracer of surface waters due to the source 

dependent nature of CDOM.  Additionally, fluorescence measurements are less time 

consuming than alternate techniques and have the added benefit of real-time collection 

with in situ sensors.  There have been limited studies investigating CDOM fluorescence 

intensity and spectral properties in aquifers (Vodacek, 1992; Baker and Lamont-Black, 

2001; Khan et al., 2007), but none attempting to use fluorescence as a tool to discern 

groundwater contributions to surface waters. Therefore, investigating CDOM quantity 

and quality in groundwater is warranted (Aiken, 2002) and may offer a relatively 

inexpensive and rapid way to fingerprint subsurface waters.   

 

Previous work in Tampa Bay tended to focus solely on marine and fluvial input of 

CDOM but not on the contribution from groundwater, which is estimated as 50 million 

gallons per day, or 20% of the combined surface water runoff (Swarzenski et al., 2001).  

Given that South Florida is dominated by carbonates and sands (Figure 3.1, Brooks and 

Doyle, 1998), with a porosity that favors exchange of subsurface and surface waters, this 

groundwater input may likely be an underestimated source of CDOM to these coastal 

waters with distinct biogeochemical cycling.  

 
This work is a novel approach to (1) characterize CDOM in the groundwater 

endmembers in the aquifers in the Tampa Bay region and (2) determine optical proxies to 

detect groundwater presence in the surface waters.  The results of this type of approach 

serve to provide better techniques to determine groundwater sources with monitoring 
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networks and ultimately remotely sensed measurements from space with the advent of 

improved satellite technology. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 80 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.  Map of Tampa Bay showing calcium carbonate content (left), total organic carbon  content  (middle), and major sediment 
facies (right) in bottom sediments. Figure amended from Brooks and Doyle, 1998. 
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METHODOLOGY 

Regional Setting / Hydrogeologic Framework of Florida 

The aquifer system of Florida can be divided into three main zones (Miller, 1986) (Figure 

3.2).  The surficial aquifer system is the uppermost aquifer and is unconfined, relatively 

thin, and consists of unconsolidated sand, shell and limestone.  In the Tampa Bay region 

this aquifer is approximately 50 ft. thick (Wolansky et al., 1985). Below this, is the 

intermediate aquifer system, which is comprised of clastic sediments interbedded with 

carbonate rocks and is no more than 250 ft thick in Tampa Bay (Dehaven et al., 1991).  

Beneath the intermediate aquifer system lays the Upper Floridan aquifer, which consists 

of a thick vertically stratified sequence of limestone and dolomite.  This aquifer is greater 

than 1000 ft deep (Hutchinson, 1983), where waters in this system have been estimated at 

>10,000 year old (Meyer, 1989). Each of the aquifer systems and permeable zones are 

separated by layers of interbedded clays and fine-grained clastics (Torres et al., 2001).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.  Hydrogeologic framework of Florida depicting the three main zones of the 
Florida aquifer system.  Figure amended from Tihansky, 1999. 
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Tampa Bay Sample Collection 

Surface water samples were obtained from various sites within the Tampa Bay estuary 

system during March-April 2006 (Figure 3.3) aboard a 19’ Parker boat.  Collection was 

conducted wearing polypropylene gloves, filling large pre-ashed glass amber bottles with 

bay water from just below the surface to avoid contamination by the presence of any 

microlayer.  Whole water was filtered through pre-combusted GF/F filters (up to 24 hours 

at 450oC) on site using a portable glass filtration apparatus and hand pump.  Filtered 

water was transferred to pre-combusted, amber glass bottles and then stored on ice until 

returning to the laboratory.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.  Map of Tampa Bay denoting sampling locations within the estuary (closed 
circles) and well locations surrounding Tampa Bay (closed triangles are aquifers deeper 
than 130 ft, open triangles are aquifers shallower than130 ft).  
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In situ measurements of salinity, conductivity, temperature, and pH were also taken via a 

Hydrolab Sonde.  Samples for DOC analysis were stored frozen until all collection was 

complete, then thawed and measured using the protocol stated in Part I of this 

dissertation.  Samples for absorption and fluorescence analyses were stored refrigerated 

for no more than two days.  Absorption spectra were measured to determine if and to 

what extent dilution was needed following Green (1992).  Appropriate dilutions were 

made, and then water was stored frozen until reanalyzed for absorption and analyzed for 

excitation emission fluorescence spectroscopy.   

 

Aquifer Sample Collection 

Water samples from the surficial, intermediate and deep Floridan aquifers were obtained 

via wells maintained by the Southwest Florida Water Management District (SWFWMD) 

during March 2006.  Nine wells were chosen based on a range of aquifer depths, 

geographic proximity to the bay and to various rivers that supply water to the estuary 

(Figure 3.3 and Table 3.1).  In situ measurements of salinity, conductivity, temperature, 

pH and dissolved oxygen were also taken using a portable unit operated by SWFWMD.  

Water for CDOM and DOC analysis was collected using the methods described 

previously in Part I of this dissertation.  Since existing sampling protocols for 

spectroscopy have not been tested for groundwater samples, a freezing experiment was 

conducted for the Floridan aquifer at the Buckhorn Spring site.  Absorption and EEMs 

analysis were conducted on refrigerated and frozen sample water to determine if there 

was any significant change in chromophores or fluorophores.    Results from this 

experiment show that the percent decrease in fluorescence peak intensity varied between 

2.9 and 6.7% for various wavelength pairs in the humic peak regions where the 

percentage decreased with increasing excitation wavelength.  Peak position had minimal 

variation with no change in excitation, and 3.6% for Humic Peak C and 5.2% for Humic 

Peak A emission.    
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Table 3.1.  Location and environmental data for groundwater wells in the Tampa Bay region.  Sample measurements include 

temperature, salinity, pH, CDOM fluorescence and absorption, Dissolved Organic Carbon and Radium.  Superscripts 1,2, and 3 

represent the Floridan, Intermediate and Surficial aquifers, respectively. 

Well Name
Case 

depth (ft) Latitude Longitude
Temper. 

(degrees C) Salinity pH
Sample 

Date
Local 
Time DOC (µM)

Romp 51 Elapp1 365 27.67575 -82.42183 27.92 0.52 7.10 3/16/2006 14:15 104.69
Speedling Inc1 300 27.67778 -82.47944 24.62 0.52 7.32 3/20/2006 10:00 149.36
Buckhorn Main Spring1 Spring 27.88937 -82.30271 23.62 0.23 7.36 3/16/2006 12:00 30.47
CNB#31 128 28.01521 -82.35193 24.55 0.3 7.44 3/16/2006 7:30 71.82
Snead's Island 2291 200 27.53320 -82.62503 24.64 1.1 7.00 3/17/2006 10:30 80.10
Palma Sola W. Davis2 196 27.51510 -82.66284 25.35 1.66 7.18 3/17/2006 13:25 116.87
Romp TR 10-23 13 27.90043 -82.37309 20.21 0.82 6.91 3/16/2006 16:05 529.10
Eureka Springs 6823 4 28.01390 -82.34528 18.39 0.7 6.64 3/16/2006 8:30 670.64
Romp TR 8-13 17 27.58319 -82.54608 23.07 0.47 6.99 3/17/2006 8:00 501.46

Well Name

Ex Humic 
Peak A 
(nm)

Em Humic 
Peak A 
(nm)

Fluor. 
Intensity 

Humic Peak 
A (QSE)

Ex Humic 
Peak C (nm)

Em Humic 
Peak C 

(nm)

Fluor. 
Intensity 

Humic Peak 
C (QSE)

Ex/Em = 
300/400 

nm (QSE)

Ex/Em = 
300/430 

nm (QSE)

Fluor. ratio 
Em 430:400 

nm @ Ex 
300 nm

Romp 51 Elapp1 235 415 56.82 320 412 28.91 26.98 26.01 0.964
Speedling Inc1 235 418 69.47 320 412 36.48 33.88 32.65 0.964
Buckhorn Main Spring1 235 421 6.82 320 411 3.57 3.33 3.28 0.986
CNB#31 230 424 40.28 315 421 17.80 16.25 16.98 1.044
Snead's Island 2291 240 413 61.31 320 408 32.46 29.81 28.18 0.945
Palma Sola W. Davis2 240 419 62.50 320 410 31.82 29.35 27.98 0.953
Romp TR 10-23 235 425 212.36 320 419 105.40 95.12 99.57 1.047
Eureka Springs 6823 235 432 232.22 320 426 120.93 108.71 117.78 1.083
Romp TR 8-13 235 434 230.73 315 426 116.98 103.74 113.42 1.093  
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Table 3.1.  (cont.) 

 

Well Name

Spectral 
Slope 280-

312nm (m -1) a(312) (m-1) a(440) (m-1)

Fluor. @ 
300/430 nm / 

a312 (QSE*m)
Ra-223       

(dpm / 100L)
Ra-224        

(dpm / 100L)
Ra-228     

(dpm / 100L)
Ra-226      

(dpm / 100L)

Romp 51 Elapp1 0.01002 7.51 1.31 3.47 22.29 38.10 19.22 505.49
Speedling Inc1 0.01654 4.17 0.73 7.82 39.87 33.01 14.33 577.40
Buckhorn Main Spring1 0.01049 1.07 0.27 3.07 0.44 6.51 26.09 273.64
CNB#31 0.00443 13.61 4.84 1.25 23.18 41.62 9.51 670.02
Snead's Island 2291 0.02011 2.41 0.11 11.69 76.29 89.47 29.45 2181.98
Palma Sola W. Davis2 0.01230 6.25 2.31 4.47 40.79 53.19 32.82 2173.70
Romp TR 10-23 0.00898 32.12 8.79 3.10 20.00 202.31 91.62 968.34
Eureka Springs 6823 0.01267 40.55 8.93 2.90 25.60 98.81 35.17 167.98
Romp TR 8-13 0.01551 17.99 1.76 6.30 9.64 57.46 22.83 440.16
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Radium Sample Collection 

Water from the bay and from the aquifers was also collected for radium-223,224,226,228 

analyses (Figure 3.4).  Forty liters of water was collected into a plastic carboy and then 

subsequentially pumped through a custom made column of manganese-coated acrylic 

fiber to extract radium from the sample water (Moore, 1976; Dulaiova and Burnett, 

2004).  Flow rate was kept below 1.4 L m-1 to ensure adequate adsorption of radium onto 

fiber. The fiber was then removed from the columns and placed into plastic sealable bags 

and brought to the laboratory. 

 

Radium Quartet Analysis 

In preparation for Ra-223 and Ra-224 analysis, the Mn-fiber was partially dried and 

placed in an air circulation system (Moore and Arnold, 1996). Helium was circulated 

over the fiber and through a scintillation cell where alpha particles from the decay of 

radon and daughters were recorded with a PMT attached to the cell. Signals are routed to 

a delayed coincidence system designed by Giffin et al. (1963) and adapted by Moore and 

Arnold (1996).   The delayed coincidence system uses the difference in decay constants 

of the short lived Po daughters of Rn-219 and Rn-220 to identify alpha particles derived 

from Rn-219 and Rn-220 decay.  Because samples were not reanalyzed 6 weeks later, 

initial excess of Ra-224 could not equilibrate with Th-228 adsorbed onto the fiber.  

However, the thorium peaks in gamma results were used to correct for this. 

 

Upon completion of the short lived radium analysis, the Mn-fiber was leached with hot 6 

M HCl in a Soxhlet extraction column to release Ra-226 and Ra-228, which were then 

co-precipitated from the acid solution with BaSO4.  The supernatant was decanted or 

aspirated, and the precipitate was concentrated by centrifuging.  Activities were measured 

one year later using two low background, high purity germanium well detectors 

manufactured by Canberra.  An IAEAA Baltic sea standard (supplied by Dr. J.M. Smoak) 

was also analyzed in both detectors and served as a means to calibrate counts into 

activities for all samples.  
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Figure 3.4. Uranium-Thorium decay series.  Vertical arrows denote alpha decay, while diagonal arrows denote beta decay.  
Ammended from Swarzenski et al. 2000.
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RESULTS & DISCUSSION 

High correlation between fluorescence intensity and salinity was found for Tampa Bay 

estuary and river waters during March – April 2006 (Figure 3.5).  Riverine waters follow 

the same mixing lines that were established in Part II of this dissertation.  Gray squares 

represent the southern rivers (located down bay in the Tampa Bay Estuary) and Gray 

circles and triangles represent the northern rivers (located up bay in the Tampa Bay 

Estuary), two mixing lines were calculated based on geographic setting (northern-up bay 

and southern-down bay).  Results of the groundwater samples are also plotted in Figure 

3.5, where it was found that the surficial aquifer wells were similar in concentration to 

the rivers (dark circles).  This is not unexpected, as this shallow unconfined aquifer 

exchanges water and materials with the overlying surface waters.  The deeper aquifers, 

however, are quite low in fluorescence (dark squares) and more similar to the higher 

salinity samples.  Values are listed in Tables 3.1 and 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.  CDOM fluorescence intensity as a function of salinity for estuary, river, and 
groundwater samples in Tampa Bay during March-April 2006. 



 89 

 

Table 3.2. Location and environmental data for surface samples in the Tampa Bay Estuary.  Sample measurements include 

temperature, salinity, pH, CDOM fluorescence and absorption, Dissolved Organic Carbon and Radium. 

 

Station 
Number Latitude Longitude

Sample 
Depth (m)

Temperature 
(degrees C) Salinity pH

Sample 
Date

Local 
Time DOC (µM)

1 27.6001 -82.7368 0 20.83 36.03 8.38 4/1/2006 9:03 120.88
2 27.5303 -82.6538 0 21.29 33.22 8.4 4/1/2006 9:51 154.70
3 27.7245 -82.4898 0 21.97 29.41 8.54 3/31/2006 15:45 85.38
4 27.8471 -82.4087 0 22.43 26.14 8.53 3/30/2006 15:35 355.42
5 27.9206 -82.4747 0 21.71 26 8.41 3/30/2006 12:50 299.89
6 27.8791 -82.4577 0 26.88 26.9 8.47 3/30/2006 14:40 325.74
7 27.8244 -82.4446 0 21.45 27.63 8.52 3/30/2006 16:15 321.72
8 27.9187 -82.5897 0 20.08 25.67 8.4 3/30/2006 9:57 380.94
9 27.8697 -82.5746 0 26.57 26.58 8.49 3/30/2006 10:56 348.20
10 27.7943 -82.586 0 20.51 28.71 8.35 3/31/2006 8:50 208.40
11 27.7641 -82.6029 0 20.13 28.98 8.36 3/31/2006 9:30 214.16
12 27.7679 -82.5011 0 21.56 28.55 8.37 3/31/2006 13:40 233.17
13 27.7377 -82.5313 0 21.51 30.31 8.48 3/31/2006 15:10 269.08
14 27.7038 -82.5596 0 20.95 33.32 8.5 3/31/2006 16:24 171.42
15 27.717 -82.6161 0 21.05 30.77 8.44 3/31/2006 10:23 221.46
16 27.6736 -82.6067 0 22.12 32.56 8.43 4/1/2006 11:44 173.31
17 27.6359 -82.6444 0 20.93 34.95 8.4 4/1/2006 11:06 135.43
18 27.5755 -82.6651 0 21.26 33.75 8.36 4/1/2006 10:39 155.02  
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Table 3.2. (cont.) 

 

Station 
Number

Ex Humic 
Peak A (nm)

Em Humic 
Peak A (nm)

Fluor. 
Intensity 

Humic Peak 
A (QSE)

Ex Humic 
Peak C 

(nm)

Em Humic 
Peak C 

(nm)

Fluor. 
Intensity 

Humic Peak 
C (QSE)

Ex/Em = 
300/400 

nm (QSE)

Ex/Em = 
300/430 

nm (QSE)

Fluor. ratio 
Em 430:400 

nm @ Ex 
300 nm

1 235 415.25 10.48 300 404.35 5.33 5.25 4.97 0.947
2 240 418.82 22.95 300 409.98 11.37 11.25 11.01 0.979
3 235 420.13 38.68 300 413.51 19.19 18.73 18.71 0.999
4 235 417.01 51.82 300 409.98 26.18 25.83 25.07 0.970
5 235 417.61 56.24 300 413.76 27.54 26.89 26.72 0.994
6 240 418.22 47.96 300 414.38 23.71 23.25 23.01 0.990
7 235 418.82 47.12 300 412.49 23.71 23.32 22.71 0.974
8 235 417.01 52.54 300 409.43 25.48 25.04 24.46 0.977
9 240 418.90 49.76 300 409.69 25.08 24.75 24.00 0.970
10 240 417.61 40.37 300 413.76 20.32 20.03 19.63 0.980
11 235 418.82 38.52 300 411.26 19.07 18.77 18.44 0.982
12 235 419.98 41.07 300 415.00 20.87 20.43 20.16 0.987
13 235 419.52 33.76 300 410.99 16.72 16.39 16.09 0.982
14 235 422.39 21.55 300 413.15 10.80 10.60 10.44 0.985
15 235 415.85 32.01 300 413.15 15.87 15.57 15.32 0.984
16 240 419.98 23.69 300 411.87 11.73 11.59 11.30 0.975
17 240 419.98 15.47 300 409.98 7.61 7.55 7.41 0.981
18 240 421.78 19.27 300 412.49 9.61 9.36 9.34 0.998  
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Table 3.2. (cont.) 

 

Station 
Number

Spectral 
Slope 280-

312nm (m-1) a(312) (m -1) a(440) (m-1)

Fluor. 300/430 
nm / a312 
(QSE*m)

Ra-223       
(dpm / 100L)

Ra-224        
(dpm / 100L)

Ra-228     
(dpm / 100L)

Ra-226      
(dpm / 100L)

1 0.03288 1.19 -0.08 4.16 0.71 1.96 11.20 67.41
2 0.02758 2.87 -0.03 3.83 20.32 69.67 31.73 169.17
3 0.02479 5.19 0.37 3.60 23.54 55.30 49.51 292.86
4 0.02388 6.64 0.39 3.77 33.13 64.03 59.89 352.11
5 0.02579 6.15 0.18 4.35 31.13 44.55 55.15 354.96
6 0.02303 6.72 0.69 3.42 29.16 44.62 58.90 330.76
7 0.02532 5.40 0.19 4.21 21.34 50.29 64.77 335.48
8 0.02859 4.96 -0.06 4.93 22.77 43.95 93.59 395.77
9 0.02488 5.86 0.44 4.10 12.38 54.77 67.67 314.33
10 0.02585 4.75 0.24 4.14 11.20 38.93 47.72 248.62
11 0.02518 4.74 0.24 3.89 2.97 10.72 43.62 250.25
12 0.02589 4.73 0.17 4.26 10.69 28.63 50.75 281.77
13 0.02699 4.42 0.19 3.64 15.16 50.17 41.33 219.36
14 0.02801 2.61 0.01 4.00 11.85 35.86 26.58 151.00
15 0.02657 3.67 0.05 4.17 11.19 42.18 40.03 196.82
16 0.02748 2.83 0.04 3.99 10.94 38.11 30.00 161.31
17 0.02822 2.07 0.04 3.58 11.96 46.80 20.88 107.49
18 0.02861 2.40 0.02 3.89 13.45 47.13 27.79 147.59
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A spatial representation of salinity and CDOM fluorescence in Tampa Bay is shown in 

Figure 3.6 (left and middle panels).  The distributions of both parameters look identical, 

where highest fluorescence was coincident with lowest salinities.  Radium-226 

concentrations plotted spatially also follow the same distribution pattern (Figure 3.6, right 

panel).  Although samples were taken over a three day period, and therefore not synoptic, 

plotting the data in this way is justified based on estuarine model results from the USF - 

Ocean Monitoring and Prediction Lab under the direction of Dr. Mark Luther.  Their 

model suggests there is minimal change in the salinity over tidal stages during the dry 

season in Tampa Bay (Dr. Steve Meyers, per commun.).  Using only concentration of 

fluorescence or radium-226 does not offer much information about the location of 

groundwater contributions for this time period. 

 

DOC in Tampa Bay is highly correlated with CDOM fluorescence.  Figure 3.7 shows the 

regression line for the two parameters and suggest that it is possible to estimate DOC 

from fluorescence in the bay, in the rivers and in the aquifers.  The shallow aquifers plot 

along the same mixing line as the bay and rivers, but the deeper wells are more colored 

with respect to DOC.  Although there are differences between reservoirs, there is still a 

positive correlation that could be used for carbon estimates. 

 

Investigating CDOM and DOC concentrations fails to yield information about the type of 

organic material that is present in these waters.  To address this, spectral differences must 

be observed.  One such difference is the position of the Humic Peak C/M in an EEM 

matrix.  In Figure 3.8, the movement of this peak to longer wavelengths (red-shifting) as 

salinity decreases is apparent.  The aquifer EEMS reveal that the humic peak in shallow 

groundwater is also red shifted.  The deep aquifer, however, contains humic peak 

positions more similar to high salinity environments.  Plotting the propagation of the peak 

as a function of salinity (Figure 3.9) offers an easy way of looking at source specific 

differences in the peak position.  Here it is clear that the surficial aquifer is most similar 

to the rivers, and that the deeper aquifer is more similar to CDOM found in higher saline 

environments.  The position of peaks is important because it is related to the chemical  
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Figure 3.6.  Spatial distributions of salinity, CDOM, and Ra-226 in Tampa Bay. 
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Figure 3.7.  Relationship between Dissolved Organic Carbon concentration and CDOM 
fluorescence intensity.  Strong correlations indicate that DOC estimates can be derived 
from fluorescence values in this region. 
 

 

 

 

 

 



 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8.  EEMS of CDOM in the Manatee River, Tampa Bay estuary, Gulf of Mexico, 
surficial aquifer and deep Floridan aquifer.  The red dotted lines mark Em=400nm and 
assist in tracking the propagation of Humic Peak C/M. 
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Figure 3.9.  Position of Humic Peak C/M for groundwater, river water and estuary water.   

 

 

composition of the organic material (Coble, 1996; McKnight et al., 2001; Aiken, 2002, 

Stedmon and Markager, 2005).  Substances with shorter peak positions are believed to be 

microbially derived, which correspond to material that is less complex, have less amounts 

of aromatic carbon, less phenolic content, and more nitrogen compared to material that is 

recently derived from higher plants in the terrestrial environment (Aiken, 2002).  A study 

in 2007 by Mahara et al. using carbon isotopes, showed that the age of organic matter in 

deep aquifers was approximately 4000 years old and was originally derived from land 

plants.  Due to isolation for extended periods of time, it is possible that this material is 

then reworked by the microbial community (Aiken, 2002; McKnight et al., 2001).  This 

means that the processes controlling the organic material in the deep aquifer is most 

similar to those in the marine environment and not to those in the surficial terrestrial 
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environment.  PARAFAC (Parallel Factor Analysis) results in a study by Stedmon and 

Markager (2005) revealed similarities in fluorophores between marine environments and 

watersheds impacted by agricultural waste.  It was deduced that the spectral properties of 

the material in that study was bacterially derived.  Likewise, for the work presented here, 

similarities between marine and deep aquifer waters suggest similar microbe-derived 

sources that are unique from the organic sources of the surface terrestrial environment. 

 

In addition to peak position, spectral shape also offers information about the quality of 

organic material.  Emission spectra, at Ex = 300 nm, normalized at Em = 425 nm, allow 

for comparison of the shape of the peaks.  Figure 3.10 reveals similarities between deep  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10.  Normalized emission scans at Excitation = 300 nm.  Aquifers are 
represented with dotted lines and surface waters are solid lines.  
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aquifer and marine waters and between river waters and surficial aquifers.  Although a 

visual comparison is informative, it doesn’t allow for a quantitative assessment of 

differences.  For that, calculating a ratio of two wavelengths is necessary and if properly 

chosen, can be an indicator of peak steepness and shape (Mcknight et al., 2001).  Here, 

400 and 430 nm were used, and then plotted as a function of salinity (Figure 3.11).  

Again, the pattern looks similar to that of the peak position scatter plot.  But this 

parameter is possibly more useful because if only two wavelengths are needed, then 

expensive benchtop EEMS fluorometers wouldn’t be necessary, but the ratio could be 

calculated from in situ sensors configured to wavelengths of this ratio.  This has huge 

implications for the capability to measure groundwater via monitoring networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.  CDOM fluorescence ratio for groundwater, river water and estuary water.  
Differences in ratios suggest differences in the chemical composition of organic material. 
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Plotting this ratio spatially for Tampa Bay, reveals an interesting finding (Figure 3.12). 

Regions with red color contours (ratios closest to 1) are found where the Manatee and 

Little Manatee outflows occur.  This is expected based on the spectral shape for surface 

waters derived from higher terrestrial plants.  There are three main regions where blue 

contours were found, one down near the mouth of the bay and two up bay.  This signature 

down bay is also expected, given the spectral shape, shown in previous figures.  What is 

interesting is the low ratios far up bay.  Salinity contours shown earlier prove that this is 

not high salinity water that has been entrained up bay.   The low ratios found in Old 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12.  Fluorescence ratio as indicator of groundwater.  Red contours suggest 
CDOM derived from surface terrestrial environments.  Blue contours represent CDOM 
with marine or subsurface sources.  
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Tampa Bay to the west are coincident with locations where Submarine Groundwater 

Detection (SGD) has been previously detected using isotopic methods (Swarzenski et al., 

2007).  The low ratios found in the eastern portion are located adjacent to the mouth of 

the Alafia River and appear to have a riverine source.  A study by Brooks et al., 1993 

found that during periods of low flow in Tampa Bay, the stream flow is composed mainly 

of groundwater outflow from underlying aquifers.  Hence, there is little or no surface 

water contribution to Tampa Bay at the end of the dry season.  This also means that 

fluorescence ratios may be the tool that is sensitive enough to detect groundwater from 

deeper aquifers. 
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CONCLUSIONS 

To the author’s knowledge, there have been no other studies investigating CDOM optical 

properties in the Florida aquifer system.  In this work, it was found that organic material 

in the shallow aquifers was similar to the rivers supplying Tampa Bay.  Concentrations 

and spectral properties suggest similar sources, which was not unexpected given the 

strong hydrologic connections between surface and shallow sub surface environments in 

Florida.  Deep aquifers were found to be low in DOC and CDOM concentrations with 

spectral properties most analogous to higher salinity environments.  The source of 

dissolved organic material in the deep aquifer is believed to be of microbial origin, and 

tied to the reworking of aged plant material.  Strong correlations between DOC and 

CDOM fluorescence were found for all three aquifers. This indicates that fluorescence 

can be a reliable site and season-specific proxy of bulk organic carbon in groundwater 

and aide researchers and monitoring agencies in estimating organic carbon in 

groundwater reserves. 

 

A novel approach to identifying the presence of groundwater was tested in this study.  

Fluorescence ratios were shown to hold promise for detection of deep groundwater in 

surface waters of Tampa Bay.  Future investigations on the optical detection of 

groundwater are necessary and will undoubtedly provide essential information on the 

extent of discharge to the Tampa Bay Estuary.  Seasonality of subsurface discharge via 

springs may even help to explain seasonal differences in the CDOM optical properties 

within streams that were observed in Part II of this dissertation.  
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GENERAL CONCLUSIONS 

 

The work presented here examined CDOM characterization and distribution on the WFS, 

in coastal riversheds, the Tampa Bay Estuary and the Florida Aquifer system.  Shelf 

environments exhibited variability in spatial distribution of CDOM in surface waters.  

This was attributed to seasonal patterns in river discharge, the occurrence of episodic 

storms, resuspension events and the presence of hypersaline waters. 

 

CDOM on the WFS is influenced by the rivers that supply the shelf.  To better 

characterize terrestrial sources to the shelf, ten rivers from the Mississippi / Atchafalaya 

River System to the Shark River in the Everglades were sampled seasonally.  

Southernmost rivers were found to be highly colored, rich in DOC, and have spectral 

properties indicative of complex, highly aromatic organic material.  These differences 

between river systems were linked to watershed characteristics.  Strong seasonality was 

also observed and intermittent weather events had a significant effect on the distribution 

of CDOM optical properties.  River results also illustrated the need for improved 

sampling strategies to better assess the spatial and temporal variability within riversheds.  

 

Lastly, investigated here was a novel approach to groundwater detection using CDOM 

fluorescence properties.  Aquifers were sampled to fingerprint the source water in the 

Tampa Bay region.  Unique optical properties in deep aquifers were observed and 

indicate similar biogeochemical processes controlling organic matter in deep 

groundwater and high saline environments.  Fluorescence ratios were found to offer 

promise in detecting the presence of groundwater in the surface waters of Tampa Bay. 

Current detection methods use the presence of dissolved radium, which is problematic in 

freshwater environments and is unable to identify if groundwater originated in deep or 
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shallow aquifers.  This is not the case with CDOM fluorescence measurements and 

warrants further investigation.   A constant relationship between DOC and CDOM was 

also discovered in the aquifers, demonstrating that fluorescence intensity could also serve 

as a proxy for organic carbon in groundwater reserves. 

 

The findings of this dissertation provide insight on the source, fate and cycling of 

terrestrial CDOM in coastal environments.  With the advancement in sensor technology 

and the development of sophisticated sampling strategies, CDOM measurements can be a 

powerful tool to researchers and resource managers alike. A simple, non-destructive 

analysis reflects much information on the source of water, the quality of the water and the 

watershed through which it was transferred. 
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Appendix I.  Seasonal CDOM fluorescence measurements for river samples. 

River Salinity Season

Ex Humic 
Peak A (nm)

Em Humic 
Peak A (nm)

Fluor. 
Intensity 

Humic Peak A 
(QSE)

Ex Humic 
Peak C (nm)

Em Humic 
Peak C (nm)

Fluor. 
Intensity 

Humic Peak C 
(QSE)

Ex/Em = 
300/400 

nm (QSE)

Ex/Em = 
300/430 

nm (QSE)

Fluor. ratio 
Em 430:400 

nm @ Ex 
300 nm

Alafia 0 Summer 2004 240 445.79 420.36 320 442.18 221.42 210.62 168.71 1.248
Alafia 3.3 Summer 2004 240 440.94 324.81 320 439.09 175.45 170.45 142.82 1.193
Alafia 0.21 Summer 2005 235 441.17 241.00 320 439.93 137.55 128.58 108.83 1.182
Alafia 0.32 Summer 2005 235 443.06 285.00 320 438.04 161.44 150.76 127.65 1.181
Alafia 8.44 Summer 2005 235 437.79 149.66 315 432.66 85.26 80.14 67.50 1.187
Alafia 1.2 Winter 2004 235 435.45 105.77 320 431.85 55.00 55.12 48.27 1.142
Alafia 6.5 Winter 2004 235 434.01 94.74 320 433.29 47.96 48.61 43.39 1.120
Alafia 21.4 Winter 2004 235 426.81 62.88 320 426.09 31.25 32.33 31.54 1.025
Alafia 0 Winter 2005 235 430.65 152.51 305 423.68 74.69 74.96 68.74 1.091
Alafia 2 Winter 2005 235 432.54 154.14 300 427.48 76.21 76.10 69.22 1.099
Alafia 22 Winter 2005 235 426.92 65.39 300 421.10 30.96 30.44 29.58 1.029

Apalachicola 0 Summer 2004 235 438.57 122.82 320 434.96 65.68 63.02 55.91 1.127
Apalachicola 30.3 Summer 2004 240 435.40 41.62 320 433.56 19.88 21.00 19.32 1.087
Apalachicola 0.52 Summer 2005 230 429.38 88.19 315 430.01 44.93 43.79 39.20 1.117
Apalachicola 22.13 Summer 2005 235 438.56 50.87 310 430.80 26.82 26.44 23.13 1.143
Apalachicola 18.69 Summer 2005 235 436.98 65.81 305 430.65 34.59 34.26 30.14 1.137
Apalachicola 0 Winter 2004 235 437.61 104.38 320 435.03 53.76 54.23 47.14 1.150
Apalachicola 17.5 Winter 2004 235 436.17 54.84 315 431.13 28.78 28.58 25.33 1.128
Apalachicola 6.9 Winter 2004 235 432.68 17.10 315 428.97 10.74 10.77 10.07 1.070
Apalachicola 0 Winter 2005 235 430.81 105.18 300 425.00 52.07 50.10 45.24 1.107
Apalachicola 0.1 Winter 2005 235 430.81 114.22 300 428.87 50.56 52.07 47.49 1.096
Apalachicola 6.7 Winter 2005 235 435.32 65.78 300 427.58 32.43 32.48 29.56 1.099
Apalachicola 20.4 Winter 2005 235 434.03 48.42 300 420.49 24.36 23.78 22.54 1.055
Atchafalaya 0 Winter 2004 235 432.76 103.48 315 428.01 54.17 52.33 47.91 1.092

Caloosahatchee 0.1 Summer 2004 235 433.16 414.77 315 427.74 214.84 216.32 193.73 1.117
Caloosahatchee 1.2 Summer 2004 235 433.56 363.84 305 424.38 187.43 188.70 170.18 1.109
Caloosahatchee 6.3 Summer 2004 240 433.16 312.15 305 424.18 163.02 160.69 151.40 1.061
Caloosahatchee 0.21 Summer 2005 235 433.81 266.07 310 428.75 151.80 146.53 129.07 1.135
Caloosahatchee 0.88 Summer 2005 235 435.08 254.96 310 430.01 145.67 140.41 124.16 1.131
Caloosahatchee 1.22 Summer 2005 235 434.68 250.25 310 427.57 139.37 135.07 119.54 1.130  
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Appendix I. (cont.) 

River Salinity Season

Ex Humic 
Peak A (nm)

Em Humic 
Peak A (nm)

Fluor. Intensity 
Humic Peak A 

(QSE)
Ex Humic 

Peak C (nm)
Em Humic 

Peak C (nm)

Fluor. Intensity 
Humic Peak C 

(QSE)

Ex/Em = 
300/400 nm 

(QSE)

Ex/Em = 
300/430 nm 

(QSE)

Fluor. ratio 
Em 430:400 

nm @ Ex 
300 nm

Caloosahatchee 0 Winter 2004 235 434.01 358.32 315 430.41 176.52 177.05 152.48 1.161
Caloosahatchee 1.1 Winter 2004 235 431.85 297.35 315 425.37 148.98 149.11 134.23 1.111
Caloosahatchee 6.9 Winter 2004 235 432.57 243.91 315 428.25 120.87 121.99 110.12 1.108
Caloosahatchee 11.3 Winter 2004 235 433.29 196.10 315 427.53 95.26 96.88 86.32 1.122
Caloosahatchee 0 Winter 2005 235 434.03 364.07 300 426.29 175.55 174.21 157.11 1.109
Caloosahatchee 14.1 Winter 2005 235 432.10 304.57 300 428.87 147.02 145.24 130.91 1.109
Caloosahatchee 14.5 Winter 2005 235 430.16 222.63 300 424.36 108.73 107.51 99.79 1.077

Hillsborough 0 Summer 2004 235 442.18 460.18 320 443.98 232.90 227.55 189.03 1.204
Hillsborough 0 Summer 2004 235 445.79 451.76 320 442.18 224.91 224.25 187.55 1.196
Hillsborough 2.98 Summer 2005 235 440.55 195.07 315 432.41 106.37 101.71 89.32 1.139
Hillsborough 9.15 Summer 2005 235 438.04 103.17 315 429.90 65.96 62.11 54.63 1.137
Hillsborough 23.44 Summer 2005 235 431.35 64.92 305 423.71 33.43 32.41 30.98 1.046
Hillsborough 0 Winter 2004 235 428.97 380.66 300 417.45 232.49 223.28 215.97 1.034
Hillsborough 4.4 Winter 2004 235 435.45 138.07 305 425.37 72.22 71.70 64.54 1.111
Hillsborough 10.1 Winter 2004 235 435.45 117.13 305 426.81 59.69 58.96 53.28 1.107
Hillsborough 16 Winter 2004 235 429.97 89.36 305 424.21 46.62 46.18 42.45 1.088
Hillsborough 0 Winter 2005 235 437.90 230.72 300 425.65 115.69 114.79 103.29 1.111
Hillsborough 6 Winter 2005 235 434.03 106.71 300 425.65 52.78 52.37 48.25 1.085
Hillsborough 16 Winter 2005 235 430.23 84.54 300 425.62 41.48 40.84 38.63 1.057

Manatee 0 Summer 2004 240 454.81 420.35 320 451.20 227.13 215.74 166.59 1.295
Manatee 0.6 Summer 2004 235 447.59 427.26 320 443.98 222.58 217.55 175.77 1.238
Manatee 4.8 Summer 2004 235 443.89 399.89 320 445.79 204.73 202.41 163.15 1.241
Manatee 20.91 Summer 2005 235 433.29 101.45 305 426.90 53.62 52.87 48.72 1.085
Manatee 24.99 Summer 2005 235 434.55 90.08 305 427.53 47.59 47.09 43.40 1.085
Manatee 27.35 Summer 2005 235 427.53 65.70 305 424.97 35.34 34.40 32.73 1.051

Manatee 0 Winter 2004 235 443.37 158.70 320 437.03 84.49 81.66 70.19 1.163

Manatee 20.3 Winter 2004 235 431.85 117.44 305 426.09 59.57 59.83 54.74 1.093

Manatee 26.2 Winter 2004 240 430.41 63.46 305 423.93 32.02 32.33 30.07 1.075  
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Appendix I. (cont.) 

River Salinity Season

Ex Humic 
Peak A (nm)

Em Humic 
Peak A (nm)

Fluor. 
Intensity 

Humic Peak A 
(QSE)

Ex Humic 
Peak C (nm)

Em Humic 
Peak C (nm)

Fluor. 
Intensity 

Humic Peak C 
(QSE)

Ex/Em = 
300/400 nm 

(QSE)

Ex/Em = 
300/430 nm 

(QSE)

Fluor. ratio 
Em 430:400 

nm @ Ex 
300 nm

Manatee 0.12 Winter 2005 235 441.77 210.91 300 432.10 103.06 102.99 90.80 1.134
Manatee 17.73 Winter 2005 235 430.16 141.85 300 425.65 70.58 69.01 64.66 1.067
Manatee 20.74 Winter 2005 235 436.82 123.19 300 426.28 59.75 59.60 55.03 1.083
Manatee 25.08 Winter 2005 235 429.52 85.33 300 419.20 40.91 40.90 38.71 1.057

Mississippi 0 Winter 2004 235 431.85 48.42 315 422.13 24.71 24.21 23.08 1.049
Peace 0 Summer 2004 235 448.32 478.10 320 444.63 263.84 247.59 198.68 1.246
Peace 1.4 Summer 2004 235 440.94 378.54 320 435.40 201.69 195.12 166.58 1.171
Peace 14 Summer 2004 240 437.25 140.16 315 429.87 69.55 70.57 63.93 1.104
Peace 0.12 Summer 2005 235 445.84 322.34 310 437.61 184.62 175.41 141.97 1.236
Peace 0.14 Summer 2005 235 442.67 312.56 310 437.61 183.37 175.76 145.08 1.211
Peace 8.67 Summer 2005 235 438.56 221.58 310 434.04 129.42 125.90 106.14 1.186
Peace 0 Winter 2004 235 435.45 273.21 315 431.85 141.93 140.54 121.58 1.156
Peace 9.7 Winter 2004 235 436.89 224.01 310 428.25 113.80 113.09 100.47 1.126
Peace 16.8 Winter 2004 235 432.57 162.94 305 426.81 82.90 82.59 74.90 1.103
Peace 0 Winter 2005 235 442.41 415.83 300 437.90 193.28 191.67 164.16 1.168
Peace 2.9 Winter 2005 235 438.80 409.53 300 431.55 200.38 199.84 171.76 1.163
Peace 14.7 Winter 2005 235 437.25 249.47 300 429.52 120.47 119.85 105.56 1.135
Shark 0.9 Summer 2004 240 431.35 269.51 315 427.74 133.44 136.48 126.39 1.080
Shark 8.2 Summer 2004 240 434.08 255.37 310 428.67 128.60 127.65 116.87 1.092
Shark 16.6 Summer 2004 235 434.08 202.27 310 428.67 104.58 104.03 93.72 1.110
Shark 27.1 Summer 2004 240 436.35 96.59 305 427.12 51.43 50.86 46.73 1.089
Shark 0.5 Summer 2005 230 428.86 238.33 310 425.62 114.36 109.97 99.06 1.110
Shark 2.67 Summer 2005 235 435.71 202.98 315 431.00 106.93 106.17 93.63 1.134
Shark 12.53 Summer 2005 230 436.34 175.62 310 430.65 89.40 86.93 78.95 1.101
Shark 23.59 Summer 2005 235 429.46 101.70 310 426.90 52.97 51.75 47.33 1.093
Shark 9.01 Winter 2005 235 433.39 339.05 300 425.62 169.52 166.64 152.32 1.094
Shark 16.58 Winter 2005 235 437.27 289.66 300 426.92 145.83 144.83 132.21 1.095
Shark 22.79 Winter 2005 235 443.09 220.83 300 430.15 109.61 108.09 97.74 1.106
Shark 30.79 Winter 2005 235 432.74 110.68 300 425.62 54.71 53.54 49.72 1.077  
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Appendix I. (cont.) 

River Salinity Season

Ex Humic 
Peak A (nm)

Em Humic 
Peak A (nm)

Fluor. 
Intensity 

Humic Peak A 
(QSE)

Ex Humic 
Peak C (nm)

Em Humic 
Peak C (nm)

Fluor. 
Intensity 

Humic Peak C 
(QSE)

Ex/Em = 
300/400 nm 

(QSE)

Ex/Em = 
300/430 nm 

(QSE)

Fluor. ratio 
Em 430:400 

nm @ Ex 300 
nm

Suwannee 0 Summer 2004 235 450.28 717.81 320 450.28 391.01 354.87 280.07 1.267
Suwannee 22.4 Summer 2004 235 441.30 240.36 315 435.88 122.23 122.39 103.25 1.185
Suwannee 20.2 Summer 2004 240 443.73 252.95 315 436.35 126.98 129.37 108.33 1.194
Suwannee 0.13 Summer 2005 230 443.06 233.16 325 447.42 113.31 102.91 83.67 1.230
Suwannee 24.7 Summer 2005 235 435.85 77.21 305 428.79 38.12 37.62 33.67 1.117
Suwannee 22.78 Summer 2005 235 432.41 91.27 310 422.42 47.34 46.04 42.74 1.077
Suwannee 0 Winter 2004 235 443.37 314.49 320 442.65 174.86 161.46 129.30 1.249
Suwannee 13.2 Winter 2004 235 442.65 184.90 320 439.05 98.07 94.76 79.18 1.197
Suwannee 18.3 Winter 2004 235 441.21 129.76 320 438.33 65.92 65.53 55.95 1.171
Suwannee 0 Winter 2005 230 437.92 273.06 300 439.21 122.18 121.18 99.82 1.214
Suwannee 20.1 Winter 2005 235 434.44 144.09 300 431.28 69.40 68.40 59.94 1.141
Suwannee 25.6 Winter 2005 235 432.74 109.11 300 430.80 52.47 51.89 47.74 1.087  
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Appendix II.  Seasonal absorption and DOC measurements for river samples.  Missing data due to sample storage issues. 

River Salinity Season

Spectral Slope 
350-440nm (m -1)

Spectral Slope 
280-312nm (m -1) a(312) (m-1) a(350) (m-1) a(440) (m-1)

Fluor. 300/430 
nm / a312 
(QSE*m) DOC µM

Alafia 0 Summer 2004 0.01526 0.01247 11.32 6.50 1.96 107.67
Alafia 3.3 Summer 2004 0.01427 0.01317 7.82 4.40 1.31 129.92 1121.34
Alafia 0.21 Summer 2005 0.01652 0.01454 50.09 28.63 6.47 19.89 995.20
Alafia 0.32 Summer 2005 0.01584 0.01456 56.65 32.14 7.54 19.99 1060.77
Alafia 8.44 Summer 2005 0.01362 0.01433 41.79 23.47 6.98 11.48 845.90
Alafia 1.2 Winter 2004 0.02395 0.01819 17.50 8.50 1.15 48.02 556.81
Alafia 6.5 Winter 2004 0.02040 0.01771 16.54 8.06 1.73 28.04 513.26
Alafia 21.4 Winter 2004 0.01956 0.01911 10.94 5.50 1.04 31.08 409.87
Alafia 0 Winter 2005 0.02176 0.01790 21.25 11.01 2.13 35.16 555.51
Alafia 2 Winter 2005 0.01577 0.01663 24.93 13.35 3.75 20.30 445.50
Alafia 22 Winter 2005 0.02259 0.02179 8.83 4.06 0.71 42.74 272.49

Apalachicola 0 Summer 2004 0.01521 0.01408 2.98 1.75 0.44 144.62
Apalachicola 30.3 Summer 2004 0.01716 0.01696 0.98 0.52 0.12 171.08 266.23
Apalachicola 0.52 Summer 2005 0.01668 0.01336 23.85 13.89 3.72 11.76 377.38
Apalachicola 22.13 Summer 2005 0.01816 0.01639 12.81 6.76 1.60 16.50 325.78
Apalachicola 18.69 Summer 2005 0.01779 0.01502 16.09 8.69 2.23 15.39 365.16
Apalachicola 0 Winter 2004 0.01456 0.01344 25.77 15.95 4.76 11.40 488.73
Apalachicola 17.5 Winter 2004 0.01703 0.01564 14.88 8.03 1.89 15.10 393.11
Apalachicola 6.9 Winter 2004 0.01828 0.01656 13.46 7.21 1.56 6.92 478.41
Apalachicola 0 Winter 2005 0.01538 0.01411 20.05 11.39 2.95 16.97
Apalachicola 0.1 Winter 2005 0.01599 0.01369 20.78 12.37 2.83 18.37 341.10
Apalachicola 6.7 Winter 2005 0.01403 0.01559 11.59 6.18 1.74 18.64 220.13
Apalachicola 20.4 Winter 2005 0.01850 0.01813 9.02 4.58 0.96 24.88 252.46
Atchafalaya 0 Winter 2004 0.01553 0.01645 29.92 17.27 4.57 11.46 552.44

Caloosahatchee 0.1 Summer 2004 0.01956 0.01672 5.91 2.99 0.61 355.18 982.46
Caloosahatchee 1.2 Summer 2004 0.01953 0.01716 5.06 2.47 0.47 402.75 669.84
Caloosahatchee 6.3 Summer 2004 0.01857 0.01783 4.64 2.35 0.44 368.79 643.66
Caloosahatchee 0.21 Summer 2005 0.01585 0.01546 71.17 39.69 11.01 13.31 1319.43
Caloosahatchee 0.88 Summer 2005 0.01637 0.01547 68.55 37.58 10.17 13.81 1284.43
Caloosahatchee 1.22 Summer 2005 0.01854 0.01612 63.44 33.97 8.01 16.86 1258.68  
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Appendix II. (cont.) 

River Salinity Season

Spectral Slope 
350-440nm (m -1)

Spectral Slope 
280-312nm (m -1) a(312) (m-1) a(350) (m-1) a(440) (m-1)

Fluor. 
300/430 nm / 

a312 
(QSE*m) DOC µM

Caloosahatchee 0 Winter 2004 0.01858 0.01697 57.49 29.05 6.33 27.99 266.90
Caloosahatchee 1.1 Winter 2004 0.01868 0.01681 46.24 23.10 5.15 28.93 1298.31
Caloosahatchee 6.9 Winter 2004 0.01812 0.01712 41.47 20.24 4.92 24.80 1065.51
Caloosahatchee 11.3 Winter 2004 0.01863 0.01776 34.27 17.45 3.47 27.94 982.49
Caloosahatchee 0 Winter 2005 0.01382 0.01650 59.88 33.64 9.14 19.07
Caloosahatchee 14.1 Winter 2005 0.01293 0.01656 50.32 26.57 8.39 17.32 1056.01
Caloosahatchee 14.5 Winter 2005 0.01364 0.01736 37.60 19.44 5.65 19.04 597.84

Hillsborough 0 Summer 2004 0.01540 0.01508 10.35 6.52 1.53 148.29
Hillsborough 0 Summer 2004 0.01401 0.01362 11.31 7.10 2.05 109.40
Hillsborough 2.98 Summer 2005 0.01381 0.01401 53.65 31.39 9.42 10.80 853.46
Hillsborough 9.15 Summer 2005 0.01688 0.01611 33.66 18.53 4.09 15.19 682.24
Hillsborough 23.44 Summer 2005 0.01968 0.01678 15.48 8.97 1.69 19.21 444.92
Hillsborough 0 Winter 2004 0.01675 0.01524 72.11 38.37 9.28 24.07 1256.51
Hillsborough 4.4 Winter 2004 0.02135 0.01698 21.88 10.89 2.16 33.26 521.47
Hillsborough 10.1 Winter 2004 0.01827 0.01624 22.56 11.34 2.69 21.88 590.88
Hillsborough 16 Winter 2004 0.01836 0.01764 16.49 8.23 1.82 25.43 337.25
Hillsborough 0 Winter 2005 0.01975 0.01737 34.79 18.53 3.40 33.79 738.33
Hillsborough 6 Winter 2005 0.01771 0.01731 13.83 7.08 1.64 31.93 228.25
Hillsborough 16 Winter 2005 0.01939 0.01901 11.74 5.78 1.24 33.02 277.00

Manatee 0 Summer 2004 0.01579 0.01225 14.11 8.53 2.21 97.45
Manatee 0.6 Summer 2004 0.01402 0.01217 13.24 7.64 2.47 88.02 314.58
Manatee 4.8 Summer 2004 0.01559 0.01333 10.02 5.82 1.65 122.55 1206.57
Manatee 20.91 Summer 2005 0.01701 0.01738 24.78 12.49 3.26 16.23 612.63
Manatee 24.99 Summer 2005 0.01761 0.01773 19.40 9.35 2.32 20.30 521.82
Manatee 27.35 Summer 2005 0.01385 0.01733 16.45 8.81 3.14 10.96 436.22
Manatee 0 Winter 2004 0.01824 0.01445 31.98 17.36 3.96 20.63 615.85
Manatee 20.3 Winter 2004 0.02097 0.01816 21.79 11.07 2.18 27.46 648.32
Manatee 26.2 Winter 2004 0.02284 0.01987 11.50 5.39 0.85 37.92 403.36  
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Appendix II. (cont.) 

River Salinity Season

Spectral Slope 350-
440nm (m -1)

Spectral Slope 280-
312nm (m -1) a(312) (m-1) a(350) (m-1) a(440) (m-1)

Fluor. 
300/430 nm / 

a312 
(QSE*m) DOC µM

Manatee 0.12 Winter 2005 0.01744 0.01604 34.98 18.51 4.29 24.02 700.68
Manatee 17.73 Winter 2005 0.01855 0.01867 22.84 11.36 2.34 29.46 414.35
Manatee 20.74 Winter 2005 0.01977 0.01946 17.99 8.13 1.78 33.48 375.49
Manatee 25.08 Winter 2005 0.01943 0.02019 13.41 6.53 1.30 31.40 321.24

Mississippi 0 Winter 2004 0.01336 0.01546 13.30 7.93 2.34 10.33 250.89
Peace 0 Summer 2004 0.01995 0.01491 9.04 4.91 0.87 285.66
Peace 1.4 Summer 2004 0.01717 0.01610 6.58 3.44 0.81 241.43 1479.16
Peace 14 Summer 2004 0.01835 0.01978 2.01 1.00 0.19 362.97 487.41
Peace 0.12 Summer 2005 0.01777 0.01357 114.20 66.42 16.05 10.93 1529.21
Peace 0.14 Summer 2005 0.01623 0.01359 112.21 65.36 19.91 8.83 1514.32
Peace 8.67 Summer 2005 0.01729 0.01469 68.17 38.98 9.42 13.37 1113.51
Peace 0 Winter 2004 0.01944 0.01516 52.10 27.08 5.29 26.54 1091.44
Peace 9.7 Winter 2004 0.01967 0.01614 42.59 21.55 4.69 24.14 1063.99
Peace 16.8 Winter 2004 0.01832 0.01605 32.07 16.35 3.68 22.46 784.49
Peace 0 Winter 2005 0.01566 0.01506 75.25 41.75 9.75 19.67
Peace 2.9 Winter 2005 0.01487 0.01454 76.70 42.54 10.96 18.23 813.41
Peace 14.7 Winter 2005 0.01401 0.01486 46.48 25.35 7.54 15.89 862.86
Shark 0.9 Summer 2004 0.01188 0.01542 5.30 3.03 1.11 123.30 793.10
Shark 8.2 Summer 2004 0.01340 0.01564 5.36 2.92 1.01 126.71 898.15
Shark 16.6 Summer 2004 0.01278 0.01535 4.86 2.67 0.90 116.09 640.17
Shark 27.1 Summer 2004 0.01375 0.01694 2.41 1.22 0.41 122.66 428.45
Shark 0.5 Summer 2005 0.01530 0.01694 56.97 30.88 7.45 14.76
Shark 2.67 Summer 2005 0.01461 0.01603 64.19 35.28 9.51 11.16
Shark 12.53 Summer 2005 0.01290 0.01557 54.26 29.71 9.70 8.96
Shark 23.59 Summer 2005 0.01279 0.01653 31.72 17.64 5.74 9.02
Shark 9.01 Winter 2005 0.01855 0.01897 52.24 28.58 5.67 29.39 802.65
Shark 16.58 Winter 2005 0.01800 0.01885 46.85 23.71 5.43 26.65 753.95
Shark 22.79 Winter 2005 0.02102 0.02007 34.39 18.23 3.28 32.95 582.03
Shark 30.79 Winter 2005 0.01601 0.02028 19.77 10.05 2.67 20.05 443.85  
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Appendix II. (cont.) 

River Salinity Season

Spectral Slope 
350-440nm (m -1)

Spectral Slope 
280-312nm (m -1) a(312) (m-1) a(350) (m-1) a(440) (m-1)

Fluor. 
300/430 nm / 

a312 
(QSE*m) DOC µM

Suwannee 0 Summer 2004 0.01724 0.01189 24.69 15.09 3.42 103.76 581.93
Suwannee 22.4 Summer 2004 0.01684 0.01331 6.33 3.66 0.82 148.42 789.86
Suwannee 20.2 Summer 2004 0.01685 0.01420 5.77 3.15 0.77 168.36 723.78
Suwannee 0.13 Summer 2005 0.01745 0.01197 17.43 10.38 2.69 38.20 1149.82
Suwannee 24.7 Summer 2005 0.01889 0.01550 21.60 11.88 2.81 13.38 482.02
Suwannee 22.78 Summer 2005 0.02167 0.01796 21.93 11.36 2.37 19.46 608.76
Suwannee 0 Winter 2004 0.01633 0.01377 109.78 64.94 15.23 10.60 99.53
Suwannee 13.2 Winter 2004 0.01707 0.01419 52.10 28.77 7.12 13.31 1061.50
Suwannee 18.3 Winter 2004 0.01658 0.01520 37.76 21.27 4.76 13.78 880.66
Suwannee 0 Winter 2005 0.01522 0.01290 67.00 40.20 9.70 12.49
Suwannee 20.1 Winter 2005 0.01498 0.01459 32.75 17.45 4.71 14.53 351.50
Suwannee 25.6 Winter 2005 0.01701 0.01702 20.71 9.91 2.23 23.32  
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