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Abstract

As the engineering education system continuously evolves to meet the demands of

modern industry and society, there is a need for a methodology that would manage and

resolve the complexities inherent in engineering educational systems. Model-based Systems

Engineering (MBSE) is a structured approach to system design that utilizes models across all

stages of the system’s life cycle and supports requirements management, design, analysis, ver-

ification, and validation processes. While MBSE has been applied successfully in industries

like defense, aerospace, and automotive, its application in engineering educational systems

remains unexplored. This dissertation develops a dynamic model of the university-level engi-

neering education system using an MBSE framework, which is named “Engineering Learning

Analytic Systems (ELAS)”. ELAS is a human-centered entity involving students, educators,

administrators, and industry partners. It aims to improve student learning and performance

across all levels by focusing on enhancing professional competencies like communication and

teamwork. This is achieved through the development of a multi-criteria team formation

algorithm for grouping students in capstone projects and engineering courses. The research

also addresses challenges in model simulation and evaluation due to the lack of datasets

available for engineering education system research, which is addressed by developing a gen-

erative synthetic data model using Bayesian network and Gibb sampling. The research

concludes by highlighting the transformative potential of Model-Based Systems Engineering

(MBSE) in engineering education, illustrating the necessity of integrating 21st-century tools

such as MBSE, System Simulation, Artificial Intelligence, and Machine Learning to address

21st-century challenges. It demonstrates how systems engineering tools and frameworks can

facilitate a more adaptable, efficient, and student-centered approach to learning.

vi



Chapter 1: Introduction

Engineering education plays a crucial role in technological and industrial advance-

ment, operating as a dynamic system that adapts to the needs of societal demands. Within

this system, key players such as students, teachers, administrators, and industry partners

engage in interactions that form a complex network, significantly shaping the educational

framework. This intricate web of relationships supports the entire educational ecosystem,

driving its functionality and development.

The complexity of engineering education arises from nonlinear relationships among

its variables, necessitating multi-level analysis [26]. Classroom learning, often studied as a

complex system [46][45], involves various factors, from curriculum design and delivery to

students’ knowledge assimilation—all interacting in intricate ways. Figure 1.1 illustrates

the interconnected factors influencing engineering education. These factors include policy-

makers and society, subject matter experts, external interfaces, teaching and learning styles,

knowledge mapping, industry-university collaboration, and the development of 21st-century

skills.

Policymakers and society play a critical role in shaping the educational landscape

by establishing regulations, standards, and expectations to which institutions must adhere.

These policies can influence the availability of resources, the design of curricula, and the

overall direction of educational initiatives, thereby affecting the quality and accessibility of

engineering education.

Subject matter educational experts, including accrediting bodies like ABET, univer-

sities, state agencies, and federal agencies, contribute to the formulation and dissemination

of educational standards and best practices. Their expertise ensures that the engineering

1



curriculum remains relevant, rigorous, and aligned with industry needs. These experts also

support faculty development and promote the adoption of effective teaching methodologies.

External interfaces encompass a range of social, economic, financial, and health sup-

port resources that students require to succeed. These factors can significantly influence

students’ ability to focus on their studies, access necessary learning materials, and maintain

their overall well-being. Addressing these external factors is crucial for creating an equitable

and supportive learning environment.

Teaching and learning styles are fundamental to the educational process. The interac-

tion between human teachers and students, along with the pedagogical approaches employed,

can greatly impact student engagement and learning outcomes. Effective teaching strate-

gies, such as active learning and project-based learning, have been shown to enhance student

understanding and retention of complex engineering concepts [71].

Knowledge mapping involves the systematic tracking of student learning progress and

retention validation. This process helps educators identify areas where students may struggle

and adjust instructional methods accordingly [46], by continually assessing and validating

Figure 1.1 Engineering Education and its Complex Ecosystem
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student knowledge, educators can ensure that learning objectives are being met and that

students are prepared for professional challenges.

Industry-university collaboration is another critical component of the engineering

education ecosystem. Partnerships between educational institutions and industry provide

students with real-world experiences such as internships, co-ops, capstone projects, and

exposure to current industry practices [46]. These collaborations help bridge the gap between

theoretical knowledge and practical application, preparing students for successful careers in

engineering.

Lastly, the development of 21st-century skills, such as critical thinking, information

literacy, AI literacy, media literacy, socialization skills, leadership skills, innovation thinking,

civic responsibilities, and communication skills, is essential for engineering students. These

skills are necessary for navigating the complexities of the modern workforce and contributing

to societal advancement.

Given the multi-level nature of this complex system, an effective methodology is

required to navigate and understand it. This methodology must enable analysis at vari-

ous levels, comprehending the relationships and dependencies, and ultimately, formulating

strategies to enhance the effectiveness of Engineering Education. Therefore, the complexity

of engineering education should not be viewed as a challenge to be overcome, but rather as a

reality to be understood and leveraged for the betterment of all stakeholders involved, such

as educational institutions, state governments, and ABET accreditation agencies.

1.1 The Need for Evolving Engineering Educational Methodologies

Engineering education research has significantly evolved over time. Although the

American Society for Engineering Education (ASEE) was established over a century ago,

modern research in this field began to consolidate around 2003 [61]. This shift was marked

by the Journal of Engineering Education’s exclusive focus on research and the creation of new

engineering education departments and Ph.D. programs at various U.S. universities. These

3



changes were driven by accreditation standards introduced in 1997 that required clear learn-

ing goals and evidence of student learning [39]. This section discusses the emerging challenges

in engineering education, such as the need for integrating trans-disciplinary knowledge, the

importance of professional competencies, and the rapid technological advancements impact-

ing industry.

Currently, engineers face significant challenges due to rapid technological advances

and changing workplace dynamics. Industry, government, and professional societies urge

educators to equip engineering students with both technical and professional skills such as

communication, teamwork, creativity, lifelong learning, and problem-solving. Despite these

demands for reform, many engineering programs continue to follow an outdated model of

engineering practice, which does not align with the actual demands of the field [50][88].

A holistic, multidisciplinary approach is critical. It’s imperative that engineering

curricula not only convey theoretical knowledge but also integrate real-world projects and

collaborative efforts that reflect the current demands of the industry. This ensures that

students can effectively apply their knowledge in diverse and practical settings, preparing

them to tackle the different challenges they will face in their professional careers. Employers

and faculty have noticed a decline in the problem-solving abilities and technical skills of

engineering graduates compared to their predecessors [76]. Students themselves are often

uncertain about the nature of engineering work upon graduation. This disconnect between

education and practice leads to several consequences. Graduates struggle to remain rele-

vant in an industry that increasingly outsources and downsizes. Employers bear additional

training costs for new hires, and some graduates leave engineering for other fields due to

uncertainty about their roles or the allure of better pay elsewhere [63][59]. Providing stu-

dents with mentorship and internship opportunities enriches their educational experience,

offering them a glimpse into the day-to-day realities of engineering work. These experiences

are instrumental in cultivating the essential professional competencies, allowing students to

emerge as well-rounded professionals.
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The study conducted by Trevelyan in 2007 [84] suggests that improved engineering

practices are essential for guiding students in their career decisions and enhancing their

readiness for professional roles. This transformation involves a twofold strategy. Firstly,

academic institutions must infuse their curricula with real-world projects and collaborations

that mirror the current engineering landscape, ensuring that students can apply theoretical

knowledge in practical settings. Secondly, there must be a coordinated effort to maintain

an ongoing dialogue with industry leaders to keep educational objectives in sync with the

evolving needs of the engineering sector. Moreover, enhancing mentorship and internship

opportunities provides students with practical insights into engineering, clarifying the pro-

fession and equipping them with essential competencies like collaboration, communication,

and adaptability, in addition to technical expertise.

In addition to addressing these educational strategies, there is also a need to fos-

ter a culture of continuous learning within the engineering community. As technological

advancements outpace traditional learning cycles, the ability to learn and adapt becomes

as crucial as foundational knowledge. Hence, engineering programs should aim to instill a

mindset geared towards lifelong learning, encouraging graduates to view their education as

the beginning rather than the culmination of their professional development.

1.2 Research Objective

The primary objective of this research is to develop a comprehensive framework using

Model-Based Systems Engineering (MBSE) tools and methods in the design and execution

of university-level engineering education system. Figure 1.2 shows the top-down view of uni-

versity level engineering education system from a Model-Based System Engineering (MBSE)

perspective. It begins within the problem domain, identifying stakeholder needs captured by

government, industry, and accreditation agencies like ABET. These needs drive the solution

domain within various departments such as Electrical Engineering, Computer Engineering,

5



and Mechanical Engineering among others, where curriculum development is a central ac-

tivity, comprising multiple tracks and courses for each department.

Figure 1.2 Engineering Education System Top-down Framework from a Model-Based
System Engineering Perspective

This framework undertakes the complex nature of the engineering education sys-

tem, characterized by its twofold nature: the human-centered entities, such as the inter-

relationships among students, educators, administrators, and industry partners; and the

dynamics of 21st-century needs in engineering graduates, i.e., technical and professional

competencies. Furthermore, the framework is tailored to the diversity of stakeholders, their

needs, and the dynamic changes in the engineering education sector, it also integrates early

simulation-based verification and validation of use-case scenario models for effectiveness and

reliability.
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In order to successfully implement the proposed framework, two byproducts need to

be developed which are:

1. Development and utilization of the Generative Synthetic Data Model (GSDM) required

for the MBSE model verification.

2. Development of a team formation algorithm using multi-criteria integral programming

for implementation in use cases required for MBSE model validation and Graphical

User Interface (GUI) to automate the proposed team formation process.

These byproducts are also shown in Figure 1.3, which illustrates the workflow of the

framework from the context of Model-Based Systems Engineering (MBSE).

Figure 1.3 Workflow of Model-Based Systems Engineering (MBSE) Framework

The workflow process begins with system requirements, followed by the design of

the system architecture, which includes high-level components, interfaces, and interactions.

Subsequently, the system behavior is modeled, and system simulation data is generated

to simulate system behavior. After this modeling phase, system verification for specific use

7



case scenarios are performed and verified using requirement verification and validation. Upon

successful system verification, system validation is done through the implementation of use

case scenarios in real-world environments.

The expected results of the proposed research framework will allow for the execution

of various use case scenarios that will enhance educational methodologies and strategies in

engineering education systems following novel system engineering principles to engineering

education research. While accomplishing this research, three peer-reviewed articles have

been published in conference proceedings [78], and a journal transaction [77].

1.3 Contributions

This research explores the applications of Systems Engineering (SE) and Model-Based

Systems Engineering (MBSE) tools such as CAMEO System Modeler (CSM) to design an

Engineering Learning Analytic Systems (ELAS) model. ELAS represents a university-level

engineering education system aimed at enabling transparent communication among all stake-

holders, more effectively managing the complexity of the engineering education systems,

and assisting higher education administrators in making better decisions, with the aim for

preparing students for 21st-century engineering challenges by using 21st-century tools such as

MBSE. This includes enhancing essential skills like creativity, innovation, problem-solving,

collaboration, and communication through improved curriculum design and instructional

materials throughout engineering programs.

1.4 Dissertation Organization

The dissertation is structured into seven comprehensive chapters, each dedicated to

specific aspects of the research. Chapter 2 provides a comprehensive historical context of

engineering education, identifying gaps in the current educational system affecting student

performance and the evolving dynamics between educators and students. It also examines

factors affecting students performance and the applications of Model-Based Systems En-
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gineering (MBSE) in diverse fields. Chapter 3 outlines the research methodology which

includes, the development of a life cycle framework and system architecture for an engi-

neering education system, detailing MBSE system frameworks, system requirements, and

the interplay of system components. Chapter 4 focuses on byproduct 1 implementation de-

tails, particularly the development of a generative synthetic data model to support MBSE

simulation, and it presents an extensive section on synthetic data generation, including intro-

duction, methods, mathematical formulations, and algorithm implementation, culminating

in results, conclusions, and a discussion of the implications. Chapter 5 focuses on byproduct

2 implementation details, particularly the development of leveraging Multi-Criteria Integer

Programming Optimization algorithm for effective team formation. This chapter is divided

into several sub-sections, including an introduction, a detailed literature review, and an

elaborate explanation of the proposed Multi-Criteria Integer Programming Team Formation

Framework. The framework discussion covers various components, such as objectives, math-

ematical formulation, objective functions, constraints, a two-stage optimization strategy, and

data simulation and validation. The results are then discussed, which include data simulation

and visualization, validation of the MCIP model using simulated data, and comparative per-

formance analysis. Chapter 5 concludes with the GUI implementation of the MCIP model,

a discussion, and the conclusion. Chapter 6 is focused on MBSE Model System Verification

and Result Analysis. It covers system simulation, use case scenarios, and the development

and testing of the Team Formation Algorithm, with specific implementations based on di-

versity and project requirements. This chapter demonstrates that the proposed models and

algorithms are tested and validated against real-world scenarios. Chapter 7 finalizes the

dissertation with conclusions, limitations and future research. In addition, it highlights the

significance of modeling the engineering education system using MBSE tools.
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Chapter 2: Literature Review

This chapter explores the key components that underpin the framework introduced

in Chapter 1. These components include Engineering Education Research with an emphasis

on Factors Impacting Students’ Performance and Students’ Success, Model-Based Systems

Engineering (MBSE), and its applications across different fields.

2.1 Engineering Education Research

Engineering Education Research (EER) investigates various aspects of engineering

education, including teaching methodologies, curriculum design, assessment techniques, and

student learning experiences. It aims to enhance the quality of engineering education by

applying research findings to instructional practices. Research in engineering education is

divided into five categories:

1. Engineering Learning Approaches - research on learners’ knowledge and competencies

[40][75].

2. Engineering Teaching Strategies- research on instructional design and teaching methods

[70].

3. Engineering Assessment - research on assessment methods, instruments, and measure-

ments to inform engineering education practice [12].

4. Engineering Epistemologies- research on what constitutes engineering thinking and

knowledge within a particular context [21].

5. STEM Education Research- research on STEM education in the university [15].
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This research work contributes to two of the above areas: STEM Education Research

and Engineering Teaching Strategies. STEM Education Research focuses on improving ed-

ucational practices in science, technology, engineering, and mathematics, aiming to create

more effective and inclusive learning environments. This field investigates innovative teaching

methods, curriculum design, and educational technologies that can enhance students’ under-

standing and interest in STEM subjects. Furthermore, engineering teaching strategies delve

into the specific instructional methods and pedagogical approaches that can improve learn-

ing outcomes in engineering education. This includes exploring active learning techniques,

project-based learning, and other strategies that foster critical thinking and problem-solving

skills.

At the intersection of STEM Education Research and Engineering Teaching Strate-

gies lies the fundamental goal of helping students perform better and succeed. By inte-

grating insights from both fields, educators can develop comprehensive and evidence-based

frameworks that address the diverse needs of students. This holistic approach ensures that

teaching strategies are not only grounded in solid research but are also tailored to the unique

challenges of engineering education. In order to develop a comprehensive framework for the

engineering education systems with the aim of enhancing student performance, a thorough

literature review is necessary. This review identifies the factors that significantly impact stu-

dent performance and success. By understanding these factors, educators and policymakers

can implement targeted strategies to improve educational outcomes. Therefore, exploring the

factors impacting student performance and success is crucial to the development of effective

engineering education framework.

Student performance and success are influenced by various aspects/factors, such as the

environment, i.e., financial challenges, school location, community and pedagogical factors,

i.e., teaching methods, standardized tests, teacher-student relationship, and engagement with

industry partners. The next section presents research related to each of these aspects/factors.
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2.1.1 Environment Factors

• Financial: Financial resources available to the students, which play an important role

in determining the extent to which they can learn and practice. According to [32] the

allocation of financial resources affects student’s performance in educational groups

which is evidence that students respond to the availability of financial resources and

incentives, along with their current financial constraints to meet their educational

goals. The study suggests that policymakers and school governments should consider

financial resources as an effective tool for achieving good governance and improving

effectiveness in the educational system.

• School Location: Student learning is influenced by the location of their school, whether

in urban or rural areas [13]. Students from rural areas often exhibit lower perfor-

mance due to various factors including familial circumstances, parents’ educational

backgrounds, parental expectations, socioeconomic conditions, the level of qualifica-

tions of teachers, and the availability of facilities and resources. Additionally, these

conditions can vary significantly from one country to another, a situation that is in-

fluenced by the respective government and policymakers [91][20] [5]. It is important

to note that the learning experiences of students depend on numerous factors and are

not confined to those mentioned in surveys.

• Community: According to research by Anne T. Henderson and Karen L. Mapp student

success is impacted by school, family, and community. Studies suggest that there is

a significant positive correlation between community involvement and student success

[44]. Student education extends beyond school campuses to include experiences out-

side school premises, underscoring the importance of external community factors in

evaluating student success.

12



2.1.2 Pedagogical Factors

• Standardized Tests: In the past, standardized tests were often used to evaluate stu-

dents’ performance and help teachers identify students’ strengths and weaknesses based

on test results [65]. However, this method has its advantages and disadvantages re-

garding students’ personalities. For example, formative assessment helps authentic

learning in students, promoting future success [86], while standardized tests do not

assess behavioral aspects [14]. A substantial amount of research has measured aca-

demic performance, indicating that learning can improve communication skills and

that parental guidance plays a significant role [79]. The methods used in these studies

involve data sampling and statistical techniques. Students’ performance also corre-

lates with administrators’ decisions, as they are responsible for defining the school’s

academic structure. They address issues such as classroom overcrowding, school fund-

ing, and community building, and work to increase the number of qualified faculty

[24] [16]. These factors, although seemingly minor, significantly impact the student’s

experience at a university. Additionally, there are other factors that affect student

performance and success.

• Teaching Methodologies: According to past surveys [56] [64]. Teaching methods involv-

ing higher student participation, for example, in cooperative problem-solving during

class time and in-class assessments have a major impact on students’ ability to learn

compared with traditional lecture pedagogy. These methods include student group ac-

tivities, pre-tests, post-tests, homework problems, and in-class formative assessments.

Additionally, it is crucial to consider factors like student engagement and learning

strategies. [36] explores the relationship between perceived course value, student en-

gagement, and levels of learning. The study implies that students learning through

deep-learning strategies are more engaged with the learning process and has a higher

perceived value compared to the surface-learning strategies. The study suggests that
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deep learning has a greater impact in the perceived course value and student engage-

ment.

• Industries Collaboration: Recent studies [58] indicate that besides resource centers

and learning tools, schools and universities must focus on equipping students with the

specific skills needed for sustained success and rewarding careers. In today’s changing

landscape, skills are increasingly prioritized over credentials. If students lack the nec-

essary skills upon completing their degree programs, their education will have limited

practical value, regardless of their academic performance. Educational systems within

colleges and universities need to collaborate closely with industry to address gaps in

student achievements. It is crucial for educational institutions to partner with indus-

tries and employers. This collaboration will allow college faculties to develop curricula

tailored to industry needs, potentially reducing unemployment issues stemming from

a mismatch between developed skill sets and industry requirements [11].

• Teacher-Student Relationship: Teacher-Student relationship is yet another factor which

plays an important role in student academic performance improvement [90] [7] [87].

Studies demonstrate that teacher-student relationships correlate with student person-

ality traits. Teachers who exhibit empathy tend to manage student behavior and

academic engagement more effectively, resulting in improved student grades and at-

tendance [74].

Based on the above literature review it can be said that many studies have worked on

evaluating students’ performance and noting factors that affect students’ learning. However,

there are no studies that model engineering education systems as complex systems and that

uses complex system methodologies to analyze the challenges that engineering education

systems face. This research leverages the modeling of complex systems, i.e., engineering

education systems using Model-Based Systems Engineering (MBSE) methodology. MBSE

have been used in many fields such as aerospace, automotive, DoD, DoT, among many others.
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2.2 Model-Based Systems Engineering (MBSE)

Unlike traditional engineering approaches that rely on text-based documents and

manual processes, MBSE employs digital modeling and simulation techniques to design com-

plex systems [31]. These models provide a visual and interactive representation of system

components and their interconnections, making it especially valuable for intricate systems

and interfaces. By using digital models, MBSE enhances efficiency, reduces the risk of

errors, improves communication among engineering teams, and ensures information consis-

tency throughout the project’s life cycle. The benefits of MBSE include better stakeholder

understanding, reduced errors, early issue detection, cost and time savings, and adaptabil-

ity to various project sizes and complexities. It is a versatile approach applicable across

domains, supporting product development throughout the entire life cycle.

MBSE includes interactions such as analyzing user needs, specifying system require-

ments, creating models to represent different aspects of the system, conducting simulations

and tests for verification, implementing and maintaining the system. As a cost-effective ap-

proach, MBSE allows timely exploration and documentation of system characteristics. By

validating these characteristics early on, models facilitate rapid feedback on requirements

and design decisions, contributing to efficient system development. Whether in aerospace,

automotive, or other domains, MBSE plays a crucial role in achieving robust and reliable

systems by placing models at the center of system design.

There are four pillars in Model-Based Systems Engineering (MBSE): the modeling

systems language, the modeling tools, the methodology, and the Safety & Reliability [85]

which are describe below:

1. Modeling Language: the modeling systems language serves as the foundation for

MBSE. It provides a formal syntax and semantics for expressing system requirements,

architecture, behavior, and interactions. Common languages include SysML (Systems

Modeling Language) and UML (Unified Modeling Language). These languages enable
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consistent communication among stakeholders and facilitate precise system represen-

tation.

2. Methodology: the methodology guides how MBSE is applied throughout the system

life cycle. It encompasses processes, practices, and guidelines for model development,

analysis, and validation. A robust methodology ensures systematic and effective use

of models.

3. Modeling Tools: a modeling tool is essential for creating, visualizing, and managing

system models. These tools allow engineers to construct diagrams, define relationships,

and simulate system behavior. Examples include Enterprise Architect, MagicDraw,

and Papyrus.

4. Safety & Reliability (S&R): safety and reliability are critical aspects of MBSE. Engi-

neers must consider safety requirements, hazard analysis, and risk mitigation. Relia-

bility modeling assesses system performance, failure rates, and maintenance strategies.

Cameo Systems Modeler excels in simulating complex systems and analyzing real-

world scenarios [27]. It is a cross-platform tool, allowing engineers and stakeholders to

collaborate seamlessly across different operating systems. Cameo Systems Modeler strictly

adheres to the OMG SysML (Systems Modeling Language) standard. It provides a rich

set of modeling elements, diagrams, and notations for representing system requirements,

architecture, behavior, and interactions. The tool facilitates requirements management by

linking system requirements to specific model elements. Engineers can establish traceability

between requirements, design decisions, and system components. Cameo Systems Modeler

supports intermediate model-based simulation. Engineers can simulate system behavior,

test scenarios, and evaluate performance early in the design process. Engineers can perform

parametric studies to explore how system characteristics change based on varying parameters.

This capability helps in sensitivity analysis and optimization. In summary, Cameo Systems
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Modeler empowers engineers to create, analyze, and validate system models, ensuring robust

and efficient system development.

2.2.1 MBSE and its Application

Systems Engineering is an inter-disciplinary field that focuses on designing, integrat-

ing, and managing complex systems throughout their life cycles. It emphasizes a holistic

view, considering every aspect of a system, from its inception to its decommissioning. Sys-

tems engineering involves a range of activities like requirement analysis, system design,

implementation, and validation, often dealing with not just the technical aspects of a system

but also logistical, human factors, and other application-driven elements.

The conceptual model serves as a comprehensive and cohesive representation of a sys-

tem and its operating domain. Detailed below is the development process of the conceptual

modeling process from problem space to solution space following a four-step approach:

1. Domain Model: this artifact captures the high-level components of the system and its

environment. It establishes a general framework for diverse stakeholder organizations.

2. Use Case: describes what the system shall do, capturing its expected behaviors and

interactions with external actors and how it will be tested.

3. Functional Model: describes how the system will accomplish its goals, the functional

model breaks down use cases into greater detail. It shows activity flows and state

transitions among components.

4. Structural Model: captures the specification of system structure allocating attributes

and operations to system components, expanding and adding detail to the domain

model.

Model-Based Systems Engineering (MBSE) is a methodology that uses graphical

language to generate and record details related to system’s requirements, design, analysis,
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verification, and validation [72]. With the advancement in technology over the past decade,

computer applications have been developed to apply object-oriented software concepts to

systems engineering to support the development of high-level complex systems. MBSE im-

plies that the models are composed of an integrated set of representations. All leading MBSE

tools and methodologies assume that the representations of behavior and structure are inter-

connected in a central repository [60]. Each descriptive element can be represented in many

forms to create a variety of designs and architectural representations. Expanding upon the

INCOSE definition [42], MBSE is a methodology where models are central to the specifi-

cation, design, integration, verification, and validation of systems. The representations of

system behavior and structure are captured along with statements of needs and verification

methods. This approach makes it easier to evaluate complex descriptions as consistency is

enforced, reducing errors that might not be apparent until much later in the development

cycle.

Model-Based Systems Engineering (MBSE) is an evolution of classic systems engineer-

ing [43]. MBSE enhances traditional Systems Engineering processes by using models as the

primary means of information exchange, rather than relying on document-based approaches.

These models serve as a visual and analytical representation of the system, capturing its

components, relationships, behaviors, and constraints more dynamically and interactively.

MBSE allows for more efficient communication among stakeholders, facilitates better under-

standing and analysis of the system, and supports decision-making throughout the system’s

life cycle.

In different disciplines, MBSE has proven to be a valuable tool for solving complex

system problems, see Figure 2.1. In aerospace engineering, for instance, MBSE facilitates

the design and integration of intricate systems, such as aircraft or spacecraft, by capturing

requirements, managing interfaces, and coordinating subsystems [62] [89]. Similarly, in auto-

motive engineering, MBSE helps streamline the development of modern vehicles by modeling

their various components, including mechanical, electrical, and software systems [1] [25] [57].
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Moreover, MBSE finds applications in healthcare, where it aids in the design and optimiza-

tion of complex medical devices and systems [52] [53]. By employing MBSE techniques,

healthcare professionals can ensure that these systems meet safety regulations, accommo-

date different user needs, and effectively integrate with existing healthcare infrastructure

[47].

In the context of engineering education, MBSE offers promising solutions to enhance

the efficiency and effectiveness of educational systems. By employing modeling techniques,

educators can:

Figure 2.1 Systems Engineering Application in Various Industries
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• Improve collaboration: MBSE encourages collaboration among different stakeholders

in engineering education systemss, including educators, students, administrators, and

industry partners. By creating a shared model, stakeholders can have a common

understanding of the system and work together to improve it.

• Make data-driven decisions: by collecting and analyzing data on student performance

and engagement, MBSE can help educators make informed decisions about how to

improve the learning process and promote student learning and success. This can lead

to more effective teaching strategies and better student outcomes.

• Improve efficiency: MBSE can help identify areas of inefficiency in the engineering

education systemss, such as redundant or outdated course materials. By eliminating

these inefficiencies, educators can improve the overall effectiveness of the system.

• Modify/Adapt Model: MBSE is designed to be adaptable to change, which is crucial,

especially in fields like engineering education, where technology, requirements, and

environments evolve rapidly.

By applying MBSE in education, particularly in engineering education, it’s possible

to construct and analyze detailed models of educational processes and environments. This

approach enables educators and administrators to better understand and optimize learning

pathways, curriculum designs, and the integration of technology in classrooms. The sys-

tematic nature of MBSE, combined with its capacity for handling complex, multifaceted

systems, makes it an ideal tool for tackling the challenges of modern education systems. It

allows for a more dynamic, responsive, and student-centered approach to learning, aligning

educational outcomes more closely with industry requirements and student needs.
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Chapter 3: Research Methodology

This chapter presents the methodology of the research which include; Framework

Development Process, and MBSE for University Level Engineering Education System. Key

components include understanding stakeholder needs, defining requirements, designing sys-

tem architecture, analyzing system behavior, and system verification.

3.1 Framework Development Process

In the development process of the Model-Based Systems Engineering (MBSE) frame-

work for engineering education systems, the Vee model stands out a cycle development

methodology that integrates Verification throughout all phases of the Vee sequential method-

ology up to the Validation phase (V&V). This model originated from the need for a system-

atic approach to model development, in which each stage of the Vee model plays a crucial

role in ensuring the system mode accuracy, relevance, and adaptability. The different stages

of the Vee model are illustrated in Figure 3.1.

The V-Model emphasizes the importance of early and continuous consideration of

system requirements definitions, design, verification, and validation activities throughout

the development lifecycle.

At the top of the V-Model, the left side represents the initial stages of the development

process. This includes activities such as requirements analysis and system design. During

this phase, system requirements are gathered, analyzed, and documented. The system design

is then developed based on these requirements, selecting the architecture and components

necessary to fulfill them.
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Moving down the V-Model, the right side represents the subsequent stages of the

development process. This includes activities such as component design, implementation,

and testing. The design is broken down into individual components, and each component is

designed and implemented according to the system design architecture. Once implemented,

rigorous testing is conducted to ensure that each component functions as intended and meets

the system’s requirements.

At the bottom of the V-Model, the left side represents the stages focused on system

verification. This includes activities such as system integration and testing. Integration

involves combining all the individual components and ensuring their proper interaction and

functionality as a cohesive system. System testing is then performed to verify that the

system meets the defined requirements and functions as expected.

Moving up the right side of the V-Model, the stages represent validation activities.

This includes activities such as system validation and acceptance testing. Validation ensures

that the system meets the intended user needs and performs its intended functions within

its operational environment. Acceptance testing involves assessing the system’s readiness for

Figure 3.1 V-Model for the Development of the Engineering Learning Analytic System
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deployment and its compliance with the stakeholders’ expectations. The V-Model is a valu-

able tool in systems engineering as it emphasizes the importance of considering requirements,

design, verification, and validation activities throughout the entire development process. By

following this model, engineers can mitigate risks, identify issues early on, and ensure that

the final system meets the desired specifications and satisfies the needs of its users.

3.2 MBSE for University Level Engineering Education System

The framework shown in Figure 3.2 is a top-down view of a university level engineering

education system from a Model-Based System Engineering (MBSE) perspective. It begins by,

identifying stakeholder needs captured by government, industry, and accreditation agencies

such as ABET. These needs drive the university’s architecture, which consists of various

departments (EE, CE, ME), tracks, curricula and courses, and the students and faculty who

are engaged within it, utilizing different teaching methods, support systems, and resources.

Figure 3.2 Engineering Education System Top-down Framework from a Model-Based
Systems Engineering Perspective
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Student performance in a particular course is further subjected to controllable vari-

ables, like teaching methods and support systems, as well as uncontrollable variables such

as student family, finances, health, among others. To evaluate, student’s course perfor-

mance, skills must be continuously monitored, in order to be able to incorporate adaptive

learning/interventions. Finally, an overall report from the university is provided to the

stakeholders for feedback and support.

Figure 3.2 also represents the MBSE design framework, which is divided into two main

domains: problem and solution domains. Within the problem domain, the analysis starts

by collecting stakeholder needs, identifying users and external systems interacting with it,

and conducting a black box analysis to operationally examine the system in various contexts.

This is followed by a white-box analysis for a deeper understanding of the system [73]. Func-

tional analysis is then conducted to comprehend system functions and outline conceptual

subsystems, defining their quantifiable characteristics, known as Measures of Effectiveness

(MoEs). These needs are then integrated into the SysML model. In the solution domain,

which consists of system architecture, system implementation, and validation, system archi-

tecture represents various departments (EE, CE, ME), tracks, curricula and courses, and

system implementation representing the students and faculty engaged, utilizing different

teaching methods, support systems, and resources. System implementation consists of the

development of a synthetic data model for engineering education dataset generation and

Multi-criteria team formation algorithm development to be implemented as an intervention

in engineering courses to improve student professional skills. This process includes a precise,

cross-disciplinary logical architecture for the system that can address the problems identified

via stakeholder analysis and specifying the system’s requirements, structure, behavior, and

parameters.
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3.2.1 Stakeholder Needs

Identifying stakeholders is the initial step prior to gathering their needs. A stake-

holder is an individual, group, or entity with a vested interest in a project, organization,

or business [38]. These stakeholders can significantly impact or be impacted by the out-

comes and decisions related to the project or business. They often have diverse interests,

needs, and perspectives. The initial phase involves identifying the stakeholders associated

with the engineering education system, which serves as the System of Interest (SoI). Key

stakeholders in the context of engineering education systems are Educational Institutions,

Government, Industry and Accreditation Board for Engineering and Technology (ABET).

These stakeholders play a crucial role in the system’s development, implementation, and

ongoing operation. Their respective needs and concerns have been meticulously gathered

from literature review articles and reports [29] [49] [67].

The ELAS framework stakeholder requirements are outlined in the Table 3.1. Each

requirement is considered a building block for the system, ensuring the final product aligns

with the specific needs of each stakeholder group:

3.2.2 Stakeholder Requirements

1. Government Requirements (SHR1 − SHR2): for government stakeholders, the system

must adhere to performance-based funding models, ensure graduate earnings meet ex-

pected averages, maintain eligibility for financial aid, and achieve a certain job place-

ment rate. These requirements are translated into system specifications that track and

report on these metrics.

2. Educational Institution Requirements (SHR3−SHR4): the institution’s needs, including

maintaining ABET accreditation and demonstrating a progression in technical skill and

responsibility, are incorporated into the curriculum development process. This includes
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Table 3.1 Stakeholder Requirements

ID Stakeholder Stakeholder
Requirement Requirements Description

SHR1

GOVERNMENT
Florida State Univer-
sity System - Performance
Based Funding Model:

SHR1.0
-Bachelor’s Graduates
Earning

Average Bachelor’s Graduates Employed Earning -
Full-time must be >= $60000

SHR1.1
-Eligibility for financial as-
sistance

Students must maintain a completion rate of 67%
or higher to remain eligible for financial assistance

SHR1.2
-Pell-grant financial assis-
tance

Students must complete graduation in six-years for
receiving pell-grant

SHR1.3
-Job placement rate or con-
tinue education

Each year students job placements rate should be
> 50% or continue education [4]

SHR2 ABET accreditation

SHR2.0

Demonstrate a progression
in technical competence
and increasing responsi-
bility in the practice of
engineering

(1) An ability to identify, formulate, and solve com-
plex engineering problems by applying principles of
engineering, science, and mathematics.(2) An abil-
ity to apply engineering design to produce solutions
that meet specified needs

SHR3 Industry

SHR3.0
Essential 21st century soft
skills for engineer

1) Problem Solving:The ability to identify, ana-
lyze, and solve complex problems, 2) Communica-
tion: Effective exchange of information and ideas,
3) Collaboration: Work effectively with others to-
wards a common goal, 4) Leadership: Guide and
inspire others to achieve goals, 5) Critical Think-
ing: Objective analysis and evaluation of informa-
tion, 6) Teamwork: Collaboration within a group
to achieve objectives, 7) Adaptability Ability to ad-
just and thrive in changing environments [6].

SHR4 Society

SHR4.0 Student Wellness Support

The institution must provide comprehensive sup-
port and resources to promote the physical, men-
tal, and emotional well-being of students, fostering
a healthy and balanced campus environment

defining learning outcomes that map ABET criteria and creating assessment tools to

measure progression in the practice of engineering.

3. Industry Requirements (SHR5 − SHR6): industry requirements emphasize problem-

solving abilities and essential 21st-century soft skills for engineers. The framework
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must include mechanisms to evaluate and enhance these skills, with a particular focus

on collaboration, leadership, and adaptability.

4. Society Requirements (SHR7): the broader societal impact is addressed by ensuring the

ELAS framework supports the institution’s role in fostering a healthy and supportive

student environment. This might involve integrating wellness resources and support

structures within the system.

5. Translation into System Features: each requirement is translated into specific features

and functionalities within the ELAS framework, see Figure 3.3. For example, SHR1

might result in a feature that allows tracking of graduate employment outcomes, while

SHR2 could lead to the development of a financial aid eligibility tracking system within

the ELAS.

Figure 3.3 SysML Requirement Diagram Illustrating the Hierarchical Structure and
Interrelationships of System Requirements for the ELAS Model
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6. Requirements Verification: the defined system requirements are verified with stake-

holders to ensure accuracy and completeness. This step may involve reviewing the

requirements with government bodies, industry partners, faculty, and students to con-

firm that they reflect the stakeholders’ true needs and expectations.

After the construction of the requirements table, a requirement diagram is developed

using the SysML modeling language which contains both the primary and secondary needs

of the stakeholders, all of which can be traced back to their origins.

Figure 3.4 ELAS’s System Architecture
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3.2.3 ELAS’s System Architecture

Within the MBSE framework, the Engineering Learning Analytic Systems (ELAS)

structural architecture is created by assessing stakeholder needs and converting them into

system requirements. It is then modeled by analyzing and codifying stakeholder needs into

detailed system requirements. The model outlines the framing of the problem and provides

conceptual representations of the system’s interactions within its operational context, as

detailed in Figure 3.4. The system architecture is organized into several components:

1. Data Collection and Processing: this is the foundation where data on learner activi-

ties, assessments, time spent on specific modules or courses, interaction with learning

materials, and queries raised by students are collected from various sources, such as

LMS logs, student surveys, etc.

2. Descriptive Analytics: the collected data undergoes initial analytics to summarize and

visualize learner data, i.e., through dashboards, reports, identifying patterns, trends,

and behaviors.

3. Predictive Analytics: this is where historical and current data are analyzed for pre-

dictive models that can forecast future learner behavior and performance, pinpointing

potential areas for improvement.

4. Analytics Methods: this encompasses both predictive and descriptive analytics to feed

into the system’s feedback loops, enabling data-driven interventions and personalized

guidance to students, such as module-specific recommendations, alert instructions for

instructors, and identifying struggling learners.

5. Key Performance Indicators (KPIs): ELAS model defines specific KPIs for assessing

learning effectiveness, including retention rate, course completion rate, engagement

score, and improvement in knowledge/skills after training.
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6. Feedback Loop: a critical component, the feedback loop, allows the system to adapt and

provide interventions based on analytics. This loop informs continuous improvement

processes within the ELAS.

7. Continuous Improvement: the system utilizes analytics to enhance course design, con-

tent, and assessments, adapting learning experiences based on learner needs.

8. Requirements: the system ensures all activities satisfy specific educational require-

ments, such as Communication, Problem Solving, Collaboration, Leadership, Team-

work, Critical Thinking, and Adaptability. These are measured by their respective

scores, which are benchmarked against defined standards.

ELAS structure architecture model is a cohesive model that monitors, analyzes, and re-

ports on student performance, sending feedback to the educational process for continuous

development and alignment with industry requirements.

For the system behavior, a use case model is created shown in Figure 3.5. The use case

diagram for the ELAS system architecture captures the interactions between various users

such as students, research analysts, faculty/instructors, department chair and the system’s

functionalities. The system functionalities include data collection and integration, and data

pre-processed for Learning Analytics and Data Mining. Learning Analytics processes the

data to provide real-time analysis, while data mining focuses on feature selection using his-

torical educational data to identify patterns. The insights from Learning Analytics and Data

Mining feed into Dashboards and Reports, giving users actionable information. An Early

Warning System uses these insights to identify students who may need additional support,

facilitating Personalized Learning. Concurrently, Program/Course Assessment evaluates ed-

ucational outcomes. This holistic approach allows stakeholders to make informed decisions,

ensuring that the engineering course system meets educational objectives and effectively

supports student development.
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Figure 3.5 ELAS Engineering Course Use Case Model

3.2.4 System Implementation

The Implementation phase shown in Figure 3.2 is further expanded in Figure 3.6.

The implementation phase is divided into two sections: Simulation and Real-world. In the

Simulation section, synthetic data models are generated and tested for engineering education

datasets. This phase also involves the development and testing of algorithms for team

formation based on multiple criteria. Additionally, use case scenarios are developed using

Cameo SysML to model real-world scenario interactions, which are then verified through

SysML simulation.

31



Figure 3.6 ELAS Implementation Roadmap at Glance

The multi-criteria team formation algorithm developed during the simulation phase

was implemented in a real-time engineering course. Students were grouped into teams based

on either diversity-based criteria or project-based requirements. At the end of the course,

team performance was measured in terms of both soft skills and technical skills. The impact

of the team formation algorithm on student performance is measured.

To evaluate the use case model, data is required. Hence, Chapter 4, will elaborate

on the development of a generative synthetic data generation model, which will supply

the necessary simulated datasets for use case model testing. This will be followed by the

development of a team formation algorithm critical for the use case model implementation.

The team formation algorithm is presented in Chapter 5. This team formation intervention

is implemented in electrical engineering courses at the University of South Florida (USF).

3.2.5 System Verification

At the verification phase, SysML ELAS Use case model shown in Figure 3.5 is simu-

lated for two use case scenarios that are “Equipping Students with Advanced Semiconductor

Skills through Mechatronics, Robotics, and Control Laboratory tailored to Semiconductor

Industry Needs” and “Emphasizing student soft skills development through various assess-

ment methods”. The simulation is further executed for various scenarios at different instances
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with different parameters. Detailed verification is presented in Chapter 6. The validation

phase is outside the scope of this study.
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Chapter 4: Implementation - Synthetic Data Generation Model for

Engineering Education (Byproduct 1)

1The lack of relevant engineering education datasets for modeling in engineering edu-

cation systems is a well-acknowledged concern. Any verified model necessitates data for use

case simulation and analysis. This section presents a development of generative synthetic

data models that can address data scarcity for research development i.e., to create high-

quality, representative, and diverse datasets that can be used for system simulations. This

model uses a Bayesian approach to generate data that closely mimics real-world scenarios.

Synthetic data is used to enhance the accuracy of system simulations and system verification.

Engineering education research often requires large amounts of data that can be time-

consuming and costly to collect. In response to these challenges, synthetic data generation

has emerged as a pragmatic solution across various industries, allowing researchers to sidestep

the complexities associated with data collection and pre-processing, thereby streamlining the

focus on actual model implementation. Despite the widespread adoption of synthetic data

in diverse domains, its integration into engineering education research remains relatively un-

derexplored. Therefore, this section presents a method for generating synthetic educational

data using a Bayesian approach. The method capitalizes on a Bayesian network, a proba-

bilistic graphical model that depicts a set of variables and their conditional dependencies as

a Directed Acyclic Graph (DAG). Additionally, it utilizes Gibbs sampling, a Markov Chain

Monte Carlo (MCMC) algorithm that simplifies sampling from a multivariate probability

1The contribution of this chapter has already been published in the IEEE 3rd International Conference
on Advanced Learning Technologies on Education & Research (ICALTER) [78]. Therefore, the following
sections have been organized as a stand-alone chapter. The copyright permission is provided in Appendix
A.
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distribution. This is particularly useful when direct sampling from the joint distribution is

difficult, but sampling from the conditional distribution is feasible.

4.1 Introduction

Collecting data from engineering education students is difficult due to multiple com-

plex factors. Ethical and legal considerations demand strict compliance with privacy laws

and the need for informed consent, particularly when dealing with minors [28] [41] [55] [81].

Maintaining data confidentiality and data integrity is crucial; therefore, ensuring the data’s

accuracy and reliability is paramount for significant analysis. Moreover, the diverse sources

of student’s data from academic records to digital platforms require sophisticated integration

techniques to construct a cohesive dataset. Achieving a representative sample is also diffi-

cult, impacted by the voluntary nature of participation and the heterogeneity of the student

body. Logistically, coordinating large-scale data collection across various educational settings

demands considerable resources and careful planning. Additionally, the rapid evolution of

educational practices and technologies necessitates continuous updates to data collection

methodologies. An alternative to using real student data is employing synthetic data, which

replicates the characteristics of actual data without containing personal information. Syn-

thetic data is a valuable tool for researchers and educators, facilitating meaningful analysis

and controlled testing. Additionally, it enables testing and analysis without compromising

data privacy or quality, and it ensures representativeness, thus supporting both the integrity

and applicability of the data [10] [68].

Synthetic data is artificially generated to closely resemble real-world data and; serves

as a valuable resource across various domains, including machine learning, privacy protec-

tion, and software testing [30]. By creating synthetic datasets, researchers and practitioners

can overcome challenges such as data scarcity, privacy concerns, and bias mitigation. These

artificially generated data points enhance model training, augment existing datasets, and

enable robust system simulations. Although synthetic data has limitations, its strategic use
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effectively bridges gaps and fosters innovation in diverse fields. It is commonly used for

testing operational datasets and is widely employed in sectors such as healthcare [19], man-

ufacturing [66], agriculture [2], and eCommerce [69]. It is adapted when real data is either

unavailable or necessitates privacy preservation due to Personally Identifiable Information

(PII) or compliance risks.

Businesses find synthetic data advantageous as it addresses privacy concerns, expe-

diting product testing processes, and facilitates the training of machine learning algorithms

[30]. Although data privacy regulations impose restrictions on how businesses handle sensi-

tive information, the mitigation of privacy concerns remains a primary motive for investing

in synthetic data generation methods. In scenarios where data for entirely new products

is unavailable, obtaining human-annotated data has been proven to be a costly and time-

consuming endeavor, therefore synthetic data becomes a viable alternative.

However, generating synthetic educational data is challenging since it involves mul-

timodal, codependent variables. Educational datasets feature high-dimensional attributes

which are related to or depend on another variable. Therefore, when constructing a genera-

tive data model, it is crucial to capture the intricate relationships among variables that may

not be directly observable but significantly influence observed outcomes. These are referred

to as latent factors. Latent variables uncover the hidden underlying structures within the

data, potentially explaining the observed correlations among known variables. In real-world

datasets, variables often exhibit interdependencies. For instance, when applying generative

modeling principles to an educational dataset, the students attribute are interconnected

rather than isolated factors. For example, a student’s math performance may relate to their

reading ability, influenced by factors like resource access or prior educational experiences.

Latent variables impact multiple observed attributes within the dataset. They represent

unobserved factors, such as innate abilities, socio-economic status, or instructional quality.

Although not directly measured, these latent variables significantly influence observed out-

comes, such as grades or test scores. A Bayesian approach effectively incorporates latent
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factors into models by using probabilistic techniques that account for uncertainty and the

relationships between observed and unobserved variables. This method allows for the inte-

gration of prior knowledge through distributions and it uses hierarchical models to manage

complex interactions influenced by latent variables. Bayesian inference techniques, such as

Markov Chain Monte Carlo, estimate latent variables by calculating their posterior distri-

butions, considering both the observed data and prior beliefs. This approach is adaptable,

robust to missing data, and ideal for uncovering hidden structures within data, making

it particularly useful in fields like educational research where many variables may not be

directly observable [35].

In this section, the Bayesian approach is presented as a pioneering methodology for

synthetic data generation model for engineering education datasets. The remainder of this

section details the implementation of the proposed approach and provides a comprehensive

analysis that compares the features of the original and the synthetic datasets. The findings

highlight the Bayesian approach’s potential as a valuable tool for synthetic data generation

model in engineering education.

4.2 Method

This section introduces a framework for generating synthetic data model using a

Bayesian network and Gibbs sampling. The primary goal is to closely match the true joint

distribution of the original dataset with the synthetic dataset. A detailed block diagram of

the proposed framework is shown in Figure 4.1.

4.2.1 Mathematical Formulation and Objective Functions

A Bayesian network is a graphical model that represents probabilistic relationships

among a set of variables. Let P(X = X1,X2, ...Xn) be the set of variables representing the

features in the real dataset. The joint distribution of these variables is denoted as P(X ).
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The goal is to generate a synthetic dataset X̂ such that X̂ follows a distribution P ∗ (X ) that

is close to the true distribution P(X ).

A Bayesian network is defined as G = (V ,E ), where V is the set of nodes representing

the variables Xi , and E is the set of edges representing the conditional dependencies between

the variables. The joint distribution P(X ) can be factorized using the Bayesian network

structure:

P(X ) =
n∏

i=1

P(Xi |parents(Xi))

Next, the generative model involves using Gibbs sampling to iteratively sample from

the conditional distributions given the rest of the variables in the Bayesian network. The

Gibbs sampling update for variable Xi , is given by:

P(Xi |rest of variables) ∝ P(Xi |Parents(Xi))× P(Children(Xi)|Xi) (4.1)

Proceeding with the generation of synthetic datasets: First, initialization involves starting

with an initial guess for the dataset. Second, Gibbs sampling iterations followed by sampling

for each variable Xi from the conditional probability P(Xi |rest of variables), then updating the

dataset and repeating this process until convergence is reached. Subsequently, to evaluate

the quality of the synthetic dataset, metrics such as the Kullback-Leibler divergence are

Figure 4.1 Framework for Generating Synthetic Data
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used. This divergence measures the difference between the true distribution P(X ) and the

synthetic distribution P∗(X̂ ):

DKL(P(X ) ||P∗(X̂ )) =
∑
x

P(x) log

(
P(x)

P∗(x)

)
(4.2)

The mathematical objective function for generating synthetic datasets using Bayesian

Networks and Gibbs sampling is to minimize the difference between the true distribution of

the original dataset and the synthetic distribution of the synthetic dataset. This is achieved

by the Kullback-Leibler (KL) divergence.

4.3 Implementation - Bayesian Network

The methodology consists of two steps. The first step involves the construction of

a Bayesian model, which is built upon the domain knowledge base of engineering educa-

tional research. In the second step, relationships are established between key variables -

gender, major, study time, and grades. These relationships are defined using their respec-

tive Conditional Probability Tables (CPTs), which provide a statistical representation of the

dependencies between variables.

Following this, a Bayesian network structure is created. This structure visually repre-

sents the relationships between these variables, offering a clear and concise graphical repre-

sentation of the complex interdependencies, see Figure 4.2. The Bayesian network structure

is essentially a Directed Acyclic Graph (DAG). In this graph, a set of variables and their

conditional dependencies are represented. Each node in the DAG symbolizes a variable,

and each edge signifies a direct conditional dependency between the variables. This struc-

ture provides a comprehensive overview of the relationships and dependencies, aiding in the

understanding and interpretation of the data.
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Figure 4.2 Bayesian Network: Graphical Representation Illustrating Probabilistic
Dependencies and Relationships Among Variables in the Network

Synthetic data is generated using a Probabilistic Graphical Model (PGM) with Con-

ditional Probability Distributions (CPDs). The PGM is defined by three variables: ’Gender,’

’Major,’ ’StudyTime,’ and ’Grade.’ CPDs specify the probabilities of each variable given its

each respective parents. The Gender variable has a uniform distribution, i.e., 0.5 probability

for both Males and Females. The Major variable depends on Gender, and its CPD is defined

accordingly. Similarly, StudyTime depends on Major, and Grade depends on both Study-

Time and Major. After defining the PGM, the code initializes synthetic data with columns

for ’Gender,’ ’Age,’ and ’Grade.’ It then iteratively generates samples for these variables
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using Gibbs sampling, i.e., a Markov Chain Monte Carlo method used to approximate joint

distributions by iteratively sampling from the conditional distributions. The loop generates

random values for Gender, Age, and Grade and performs 10 Gibbs sampling iterations to

update the values based on the defined CPDs. Finally, the generated sample is appended to

the synthetic data.

4.4 Results

In this section, key findings from the analysis generating synthetic datasets that have

the same characteristics as the original dataset are presented. Tables 4.1 and 4.2 illustrat

side-by-side comparison of the dataset characteristics:

1. ’Grade’ given ’StudyTime’ and ’Major’: the analysis of the synthetic dataset, generated

based on ’Grade’ given ’StudyTime’ and ’Major,’ reveals patterns similar to those

observed in the original dataset. Notably, the distribution of grades across different

study times and majors appears to be preserved, although there are variations in the

frequency of occurrences. This suggests that the synthetic data successfully captures

the relationships between study time, major, and grades present in the original dataset.

2. ’Major’ given ’Gender’: examination of the synthetic dataset in the context of ’Major’

given ’Gender’ indicates a reasonable replication of the original dataset’s gender-major

distribution. The frequencies of female and male students in both engineering and

medicine majors are comparable between the original and synthetic datasets. This

suggests that the synthetic data preserves the gender-major relationships observed in

the original dataset.

3. ’StudyTime’ given ’Major’: the analysis of ’StudyTime’ given ’Major’ in the synthetic

dataset mirrors the patterns found in the original dataset. The distribution of study

times across different majors appears to be faithfully reproduced, with variations in

frequency reflective of the synthetic data generation process. This implies that the
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Table 4.1 Original Data Characteristics

’Grade’ given ’Study Time’ and ’Major’

Study Time Major Grade Frequency

0-2 hrs Engineering 60-79 61
0-2 hrs Engineering 80-100 2
0-2 hrs Engineering below 60 130
0-2 hrs Medicine 60-79 1
2-5 hrs Medicine below 60 2
2-5 hrs Engineering 60-79 157
2-5 hrs Engineering 80-100 18
2-5 hrs Engineering below 60 92
5-12 hrs Medicine 60-79 29
5-12 hrs Medicine 80-100 2
5-12 hrs Medicine below 60 9
0-2 hrs Engineering 60-79 14
0-2 hrs Engineering 80-100 43
5-12 hrs Engineering below 60 5
5-12 hrs Medicine 60-79 372
5-12 hrs Medicine 80-100 59
5-12 hrs Medicine below 60 4

Gender Major Frequency

’Major’ Female Engineering 184
given Female Medicine 339
’Gender’ Male Engineering 338

Male Medicine 139

Study Time Major Frequency

0-2 hrs Engineering 193
’Study Time’ 0-2 hrs Medicine 3
given 2-5 hrs Engineering 267
’Major’ 2-5 hrs Medicine 40

5-12 hrs Engineering 62
5-12 hrs Medicine 435

synthetic data successfully emulates the study time patterns within each major as

observed in the original dataset.

In summary, the synthetic dataset demonstrates an ability to replicate the essential character-

istics of the original dataset across multiple dimensions. While some variations in frequencies

exist, the synthetic data appear to maintain the underlying relationships and distributions

present in the original dataset. These results suggest that the synthetic data generation
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Table 4.2 Synthetic Data Characteristics

’Grade’ given ’Study Time’ and ’Major’

Study Time Major Grade Frequency

0-2 hrs Engineering 60-79 66
0-2 hrs Engineering below 60 158
2-5 hrs Engineering 60-79 162
2-5 hrs Engineering 80-100 22
2-5 hrs Engineering below 60 75
2-5 hrs Medicine 60-79 29
2-5 hrs Medicine 80-100 3
2-5 hrs Medicine below 60 11
5-12 hrs Engineering 60-79 13
5-12 hrs Engineering 80-100 32
5-12 hrs Engineering below 60 2
5-12 hrs Medicine 60-79 366
5-12 hrs Medicine 80-100 55
5-12 hrs Medicine below 60 6

Gender Major Frequency

’Major’ Female Engineering 188
given Female Medicine 317
’Gender’ Male Engineering 342

Male Medicine 153

Study Time Major Frequency

0-2 hrs Engineering 224
’Study Time’ 2-5 hrs Engineering 259
given 2-5 hrs Medicine 43
’Major’ 5-12 hrs Engineering 47

5-12 hrs Medicine 427

process effectively captures the key features of the original data, providing a valuable tool

for privacy-preserving data sharing and analysis.

4.5 Conclusion

In conclusion, a Kullback-Leibler (KL) Divergence of 0.002158 indicates a high simi-

larity between the original and synthetic datasets, affirming the effectiveness of the synthetic

data generation process in preserving the statistical integrity of the original data. This out-

come validates the use of synthetic data for privacy-sensitive tasks.
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Chapter 5: Implementation - Multi-Criteria Integer Programming

Optimization for Team Formation (Byproduct 2)

2This chapter introduces a novel application of Multi-Criteria Integer Programming

(MCIP) to address the intricate task of team formation. Unlike traditional single-objective

optimization methods, the study designs a comprehensive framework that models various

factors, including skill levels, backgrounds, and personality traits. The objective function

optimizes within-team diversity while minimizing conflict levels and variance in diversity

between teams. The approach involves a two-stage optimization process: first segmenting

the population into sub-groups using a weighted heterogeneous multivariate K-means al-

gorithm, followed by applying a surrogate optimization technique within these sub-groups.

The study considers explicit constraints, including potential interpersonal conflicts, an as-

pect often overlooked in previous research. Study results demonstrate the model’s robustness

across simulation scenarios with varying data heterogeneity levels. Additionally, the study

bridges critical gaps in existing literature by providing a theory-backed, empirically validated

framework for advanced team formation. Beyond the theoretical implications, it also offers

practical guidance for implementing conflict-aware, sophisticated team formation strategies

in real-world contexts. This advancement lays the groundwork for future research to explore

and enhance this model, ultimately leading to more advanced and efficient team formation

strategies.

2The contribution of this chapter has already been published in the IEEE Transactions on Learning
Technologies [77]. Therefore, the following sections have been organized as a stand-alone chapter. The
copyright permission is provided in Appendix A.
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5.1 Introduction

Team Formation Problem (TFP) is a widely recognized challenge in various fields

such as operation research, computer science, management, and education [51]. The central

task in TFP is to organize a group with diverse characteristics into interconnected and

effective teams. Team-based Learning (TBL) [17] is a pedagogical strategy that heavily

relies on the effective resolution of the TFP in educational and professional settings. In

educational settings, effective team formation can enhance students’ learning experiences by

fostering collaborative skills and increasing engagement. Furthermore, diverse and balanced

teams are known to enrich the learning experience, since members can benefit from different

perspectives and experiences [80]. In professional settings, the strategic assembly of teams

plays a vital role in the success of the organization. Teams are often formed to tackle specific

projects, solve complex problems, or innovate new ideas. The diversity of skills, expertise,

and perspectives within a teams significantly influences the quality and overall effectiveness

of the team’s outputs [3]. However, forming optimal teams is a complex task, which requires

the consideration of multiple factors, such as individual skills, compatibility, and workload

balance.

The increase in class sizes and task complexities in academic institutions and profes-

sional environments requires the development of automated and optimized methods for form-

ing balanced and diverse teams. A well-structured team ideally represents a combination of

various skills, backgrounds, and perspectives that can mutually enhance its problem-solving

capacity and productivity. Conventional practices of forming teams often rely on heuristic

and subjective approaches, which may be inadequate to handle the diversity and dynamics

of contemporary classrooms and workplaces [23]. Traditionally formed teams, often fail to

incorporate a comprehensive range of student attributes, like academic background, techni-

cal skills, and interpersonal skills, which profoundly influence the efficacy and satisfaction

levels of a team. Furthermore, arbitrarily formed teams may lead to skill gaps and workload

imbalances, hampering team performance and causing dissatisfaction and burnout [18].
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Therefore, the deployment of automated and optimized team formation strategies can

provide a solution to these challenges by considering a broad spectrum of factors and forming

teams that optimize specific objectives, such as skills diversity, equal workload distribution,

and interpersonal compatibility. Using optimization algorithms in TBL can enable educators

and managers to harness computational power and handle task complexities, thereby creating

teams that augment learning outcomes and enhance work productivity. This study aims to

develop an optimization method for team formation, accounting for multiple criteria that

impact team performance and satisfaction. The goals are to address the complexities inherent

in team formation, specifically the need for balance and diversity while minimizing team

conflict.

The approach aims to produce effective, balanced, and harmonious teams. The scope

of this study primarily lies within the academic setting, focusing on team formation for col-

laborative learning initiatives such as TBL. Therefore, there is a necessity for team diversity

in these settings, which spans skills, experiences, and perspectives, as it fosters creativity,

innovation, and improved problem-solving [83]. Hence, one of the primary objectives of the

optimization model is to maximize intra-group diversity, which encourages the formation of

heterogeneous teams.

A secondary objective is to minimize inter-group diversity, ensuring equity and fair-

ness across teams. It is crucial in an academic setting to avoid disparities that might lead to

uneven competition or exclusionary practices. Since diversity can lead to potential conflicts

arising from differences in personal values, attitudes, or cultural beliefs, the model also con-

siders minimizing the conflict level to maintain smooth teamwork and collective productivity.

5.2 Literature Review

Team formation within academic settings has its own unique challenges and require-

ments. The shift towards active learning methodologies, such as TBL, has amplified the

importance of proper team formation in educational contexts. Factors such as learner needs,

46



academic performance, interpersonal skills, time availability, and even cultural backgrounds

should carefully be considered [22]. Traditionally, instructors have often taken the reins in

forming teams in academic environments, relying on their knowledge and judgment about

the students’ behaviors, skills, personalities, and academic performance [8]. This instructor

guided approach, although personalized and adaptable, is qualitative, subjective, and tends

to be time-consuming in larger classes. Moreover, these methods may overlook some intricate

team dynamics, like the potential conflicts or synergies between students, or fail to balance

the team in terms of diverse skills and backgrounds [82]. Furthermore, the complexity of

the team formation process increases with the rise in class sizes and the diverse range of

student attributes that need to be considered, highlighting the need for more sophisticated

and scalable team formation methods in educational settings [37]. To enhance team forma-

tion for TBL, researchers have proposed various computational methods to overcome the

limitations of traditional approaches. Early investigations in this field focused on enhancing

team performance based on individual skills or expertise, utilizing models like linear and

integer programming with single objective [37]. In addition, matching algorithms like the

Stable Marriage, Gale-Shapley, and Hungarian algorithms have been employed, using math-

ematical models to balance team members’ compatibility based on preferences, skills, and

characteristics. Clustering algorithms like K-means clustering, hierarchical clustering, and

density-based clustering aim to create teams by grouping individuals based on similarities in

skills, interests, or other relevant criteria. Notably, more advanced methods such as Genetic

Algorithms (GAs) have been utilized to optimize multiple team attributes like skills, pref-

erences, and demographics [48]. Similarly, machine learning techniques have been used to

suggest optimal team configurations based on individual attributes, and expert systems [34]

have employed rules and heuristics based on domain knowledge to assist in team formation.

However, these methods still face challenges, especially in scalability, robustness, and ac-

commodating the complex nature of the problem, including factors like individual skillsets,

potential for collaboration, and various constraints.
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Following these computational strategies, a distinct approach known as the Maximum

Diversity Grouping Problem (MDGP) has been explored to further enhance team formation

in the context of TBL [33]. This method promotes team diversity by considering a multitude

of factors. Regarded as an extension of the MDGP, the MDGP’s objective is to distribute

students into non-overlapping groups, thereby maximizing the sum of differences between

each pair of individuals within the same group. As this problem has attracted significant

attention, there have been extensive research initiatives and algorithmic solutions proposed

to tackle the MDGP formulation [9]. However, the key limitations of the MDGP approach

include challenges in scalability as the computational complexity grows exponentially with

the number of objects and groups, and sensitivity to the quality of input data, which influ-

ences the quality of obtained solutions. Thus, while the MDGP presents a novel perspective

on team formation, its limitations necessitate a more robust and scalable method that can

comprehensively address the complex nature of TBL problem.

Therefore, this study proposes a novel methodology utilizing Multi-Criteria Integer

Programming (MCIP) to address these research gaps and overcome the limitations inherent

in current team formation studies. The innovative application of MCIP diverges from tradi-

tional and single-objective optimization methods by inherently considering multiple criteria

simultaneously, providing a comprehensive solution to the intricate task of team formation.

This study, presents several novel contributions to the field of TBL. First, the framework

models a broad set of diverse factors including skill levels, background, and personality

traits, addressing a significant research gap left by studies that only consider a few aspects

of diversity. In addition, the framework’s objective function is specifically designed to max-

imize within-team diversity while minimizing the conflict level and the variance in diversity

levels between teams, offering a sophisticated approach to team formation. The method-

ology also includes modeling explicit constraints such as potential interpersonal conflicts,

which previous studies have overlooked. Moreover, this study proposes a two-stage method-

ology that strategically divides the student population into sub-populations using a weighted
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heterogeneous multivariate K-means algorithm and optimizes team formation for these sub-

populations through a surrogate optimization approach. This handles the MCIP problem

effectively with large student populations, demonstrating an improvement over conventional

method. Lastly, the framework includes rigorous model validation, demonstrating its efficacy

with real-world scenarios with different levels of data heterogeneity, thus addressing the criti-

cal gap in the current literature that lacks robust validation. Hence, the proposed framework

offers a comprehensive, flexible, and empirically validated approach to team formation.

5.3 Proposed Multi-Criteria Integer Programming Team Formation Framework

The multi-criteria integer programming team formation framework is shown in Figure

5.1. The chapter presents introduction and examination of MCIP-based framework aimed

at addressing the complexities inherent to team formation.

Figure 5.1 Schematic Representation of the Proposed MCIP-Based Team Formation
Framework
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The primary aim of the approach is to maximize the levels of intra-group diversity

while minimizing the inter-group diversity and conflict levels within teams. The primary

objectives of the proposed MCIP-based model are:

1. Maximizing Intra-group Diversity: the primary objective is to enhance the diversity

within each team, which leads to more heterogeneous perspectives, skills, and ideas in

problem-solving.

2. Minimizing Inter-group Diversity: the model aims to ensure that the variance between

different groups is minimized, thus maintaining equity across teams.

3. Minimizing Conflict Level: recognizing that diversity can also give rise to potential

conflicts due to differences in personal values, attitudes, cultural beliefs, etc., the model

strives to minimize the level of conflict within each team.

5.3.1 Mathematical Formulation and Objective Functions

The study proposes a model based on Multi-Criteria Integer Programming (MCIP)

that optimizes the assignment of N individuals to K groups. This ensures that a set of

constraints are met to maintain the feasibility of team formation. Denoted are the binary

decision variables zig = 1, ∀i = 1, ...,N ; g = 1, ...,G ; if the individual i is assigned to the

group k , and zig = 0 otherwise. Therefore, the decision variables are represented by a binary

matrix Z ∈ {0, 1}N×G . Sg = {s1, ..., sng}, where ng is the total number of individuals in

group g and Sg ⊆ {1, ...,N}, as the set of the individuals that belong to group g . The

objective function of the proposed framework is formulated as a weighted sum of three key

components: intra-group diversity level, inter-group diversity level, and intra-group conflict

level. The objective function is mathematically defined as:

max
S1,...,SG

1

G

G∑
g=1

[λ1DL(Sg )− λ2CL(Sg )]− λ3
2

G (G − 1)

G∑
i=1

G∑
j=i+1

[DL(Si)− DL(Sj)]
2 (5.1)

50



where DL(Sg ) and CL(Sg ) denote the diversity and conflict levels of the group g respectively,

and λ1,λ2,λ3 are the normalized weights (λ1 + λ2 + λ3 = 1) associated with the intra-group

diversity level, the conflict level, and the inter-group diversity level. Notably, this MCIP-

based model can be applied to any team formation scenario that requires the balance of

these components. Although the chapter later provides a focused application in student team

formation as an illustrative example, the methods still hold potential for broader applications.

The intra-group diversity level DL(sg ) is formulated as:

DL(sg ) =
2

|sg |(|sg | − 1)

∑
i ,j∈sg ,i<j

Dij (5.2)

where |sg | is the cardinality of the set sk and Dij is the diversity level of the individual pair

i and j . This diversity level Dij is computed by considering the weighted Euclidean distance

E (xci , xcj ) for continuous variables xc normalized to the range [0, 1], the weighted Hamming

distance H(xdi , xdj ) for discrete variables xd , and the weighted Jaccard distance J(xmi
, xmj

) for

multi-valued variables xm. The notations xci , xcj , and xmi
represent the values of individual

i ’s continuous, discrete, and multi-valued attributes, respectively. Those distance functions

are:

E (xci , xcj ) =

√ ∑
xc∈Exc

wc(xci − xcj )
2 (5.3)

H(xdi , xdj ) =
∑

xd∈Exd

wd

∣∣xdi − xdj
∣∣ (5.4)

H(xdi , xdj ) =
∑

xd∈Exd

wd

∣∣xdi − xdj
∣∣ (5.5)

J(xmi
, xmj

) =
∑

xm∈Exm

wm

1− |xmi
∩ xmj

|
|xmi

∪ xmj
|

(5.6)
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Here, 1(xdi ̸= xdj ) is an indicator function that equals 1 if the discrete values of individuals

i and j differ, and 0 otherwise. Next, Dij is calculated as the average of these weighted

distances:

Dij =
1

3
[E (·) + H(·) + J(·)] (5.7)

The normalized weights wc , wd , and wm represent the importance of each variable in the

sets Xc , Xd , and Xm in which
∑

xc∈Xc
wc = 1,

∑
xd∈Xd

wd = 1, and
∑

xm∈Xm
wm = 1. The

conflict level of a group CL(sg ) represents the potential for disagreement or discord within a

group due to differences in attributes such as personal values, attitudes, and cultural beliefs.

Similar to DL(sg ), It is measured at a group level by aggregating pair-wise conflict levels

among the individuals, denoted by Cij , in the group:

CL(sg ) =
2

|sg |(|sg | − 1)

∑
i ,j∈sg ,i<j

Cij (5.8)

Cij =
1

3
[E (·) + H(·) + J(·)] (5.9)

where Yc , Yd , and Ym represent the sets of continuous, discrete, and multi-valued conflict

attributes respectively, wyc , wyd , and wym are the weights associated with each variable in

the sets Yc , Yd , and Ym reflecting the conflict potential of the respective variables. The

normalization constraints for weights are:

∑
c∈C

wcyc = 1,
∑
d∈D

wdyd = 1, and
∑
m∈M

wmym = 1. (5.10)

5.3.2 Constraints

The constraints of the proposed IP-based framework are intended to ensure the feasi-

bility of the team formation and to align the teams with specific requirements and preferences.

The constraints are as follows:
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1. Minimum intra-group diversity level: Each team should have a diversity level of at

least e intramin . Mathematically, this can be represented as:

DL(Sg ) > e intramin ,∀g = 1, ...,G . (5.11)

2. Maximum inter-group diversity level: The squared difference in diversity levels between

any two groups should be at most difference in diversity levels between any two groups

should be at most θmax . This maintains a balance in the diversity levels across all

teams, thus ensuring fairness and equality in team composition. This is expressed as:

DL(Si)− DL(Sj)]
2 ≤ θmax , ∀i , j ∈ {1, ...,G} (5.12)

3. Unique assignment constraint: Every student must be assigned to exactly one team.

This is represented as:

G∑
g=1

Zi ,g = 1,∀i ∈ {1, ...,N} (11) (5.13)

4. Team size constraints: The number of students in each team should be within a spec-

ified range. This ensures that no team is too large or too small, which allows for

effective collaboration and responsibility among team members. This is expressed as:

ωmin ≤
N∑
i=1

Zi ,g = 1 ≤ ωmax ,∀g ∈ {1, ...,G} (5.14)

5. Maximum conflict level: The conflict level within each team should not exceed ξmax ,

which is given as:

CL(Sg ) ≤ ξmax ,∀g ∈ {1, ...,G} (5.15)
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6. Integrality condition: The decision variables Zi ,g are binary variables, which implies:

Zi ,g ∈ {0, 1},∀i ∈ {1, ...,N},∀g ∈ {1, ...,G} (5.16)

5.3.3 Two-stage Optimization Strategy

The two-stage methodology strategically divides the student population into sub-

populations by using a weighted heterogeneous multivariate K-means algorithm and opti-

mizes the team formation for these sub-populations by a surrogate optimization method.

1. Student Sub-Population Division usingWeighted Multivariate Heterogeneous K-Means:

The first stage employs a division-and-conquer strategy to break down the large-

scale TFP into smaller, more tractable sub-problems, i.e., individual student sub-

populations. This approach respects the goal of maximizing intra-group diversity while

providing a more structured and less complex set of problems to solve. The basis of

this strategy is the ”weighted multivariate heterogeneous K-means (WMH K-means)”

algorithm, an advanced version of the traditional K-means algorithm. The algorithm

considers the weighted combination of different variable types, allowing us to appropri-

ately consider and incorporate the diverse attributes of the students in the clustering

process. Upon convergence, the algorithm forms K clusters of students, where each

student is assigned to the cluster that minimizes the diversity level of their attributes.

Upon convergence, round-robin sampling creates balanced Np sub-populations {Pk}Np

k=1

with sizes of Nsub. The resulting balanced sub-populations are optimal for the next

stage of team formation optimization.

2. Surrogate Optimization Method for Sub-Population Team Formation: Following the

division stage, each sub-population Pp, p ∈ {1, ...,Np} is ready for the subsequent op-

timization process. This stage is implemented using a Surrogate Optimization (SO)

method, which is effective when the objective function evaluation is time-consuming.
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The SO algorithm capitalizes on creating an approximation (surrogate) of the original

problem and minimizing the surrogate within predefined bounds. The algorithm re-

peatedly generates trial points, constructs a surrogate model, finds an adaptive point,

and updates the surrogate based on the obtained results, driving the search towards the

global minimum of the problem. This iterative process continues until all trial points

are within a specified minimum distance from the evaluated points, thereby providing

a solution that is both efficient and effective for the TFP. Therefore, applying this

method to the MCIP problem enables us to efficiently navigate the solution space and

optimize the formation of diverse and balanced student teams.

To solve the optimization problem, mathematical optimization solver is employed. The solver

takes the MCIP-based model and applies numerical techniques to identify the optimal or

near-optimal solution. There are several commercial and open-source solvers available such as

Gurobi, CPLEX, SCIP, and MATLAB. MATLAB’s Optimization Toolbox provides functions

for finding parameters that minimize objectives while satisfying constraints. The solver

selection would largely depend on the size and complexity of the problem, and the available

resources. However, surrogate optimization is just one approach in a wide array of potential

methods for solving this kind of problem. Alternative methodologies could be more suitable

depending on the specifics of the problem and the resources. Metaheuristic techniques such

as Genetic Algorithms (GA), Simulated Annealing (SA), or Particle Swarm Optimization

(PSO) could provide better solutions when dealing with different kinds of constraints or

objectives. These methods operate on different principles and may offer superior performance

in different problem contexts.

5.3.4 Data Simulation and Validation

The effectiveness of the surrogate optimization approach for the MCIP-based team

formation method is validated by running a thorough simulation and validation process.

Detailed below are steps for simulation setup and data simulation:

55



1. Simulation setup: The setup of the simulation involves creating variables that are

representative of a diverse set of scenarios, with each scenario having a unique het-

erogeneity level. Two key metrics are used to control these heterogeneity levels: the

Coefficient of Variation (CV) for continuous variables, and the Simpson’s Diversity

Index (SDI) for discrete and multi-valued variables. In this context, CVx measures the

relative variability in the continuous attributes, which is calculated as the ratio of the

standard deviation σx to the mean µx of the student attribute x :

CVx =
σx

µx
, ∀x ∈ Xc ∪ Yc (5.17)

Conversely, SDId quantifies the diversity in discrete and multi-valued variables d, which

is defined as:

SDId = 1−
C∑

c=1

p2d ,c , ∀d ∈ Xd ∪ Xm ∪ Yd ∪ Ym (5.18)

where pd ,c represents the proportion of students whose variables taking the value c , and

C is the number of variable categories. In the next sections, data generation process

is explained and it aligns with these metrics and how the simulated data is used for

validation.

2. Data simulation

To create a simulation scenario that closely mimics the reality of team formations,

data is generated that satisfies the pre-specified CV and SDI values. For continuous

variables x ∈ Xc ∪ Yc , presuppose non-negativity and follow a Gamma-distribution,

chosen for its ability to closely represent the distribution of attributes like skill levels

and experience in a team context. With a pre-specified CVx , it determines the mean

µx and standard deviation σx of this distribution. If µx is a chosen constant, then

the standard deviation σx can be computed as: σx = CVx · µx . To generate the
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Gamma-distributed random variable, the shape parameter kx and scale parameters θx

are derived from CVx as follows:

kx =
1

CV 2
x

, θx = µxCV
2
x (5.19)

Subsequently, calculated parameters can be used kx and θx to generate the Gamma-

distributed random variable, which ensures that the simulated data fits the prespecified

CVx and reflects the desired variability in team characteristics. For discrete and multi-

valued variables, such as the first language and technical skills of the students, a

modified stick-breaking process to simulate these attributes is employed. This method

involves binary encoding of the variables, thereby creating additional binary variables

for each possible value. Through M iterative simulations, it generates diverse sets of

discrete and multi-valued variables, each assessed for its alignment with the target

SDId . The simulation yielding an SDIopt closest to the target is selected for use in

the experiments. This process not only ensures data variability but also replicates

the complexity and diversity found in real team formations. Utilizing the simulated

data, the experiments will be meticulously designed to evaluate the effectiveness of

the MCIP-based optimization in forming teams. The framework is applied to the

generated data to closely examine the impact of various configurations and criteria on

team composition and performance. The experimental design is structured to highlight

the model’s capability to handle varying levels of diversity and complexity, reflecting

real-world team formation challenges. This direct application of simulated data enables

a comprehensive analysis of the model’s performance, offering insights into its practical

implications and scalability in diverse settings.

3. The proposed MCIP-based TFP methods are validated using datasets, which involves

applying these team formation methods to problem instances derived from simulated

datasets. These problem instances are designed to reflect a wide range of realistic
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scenarios, governed by three main control parameters: SDI for discrete and multi-

valued variables, CV for continuous variables, and the total number of students N. To

implement the methods, the simulated datasets are set as input into the MCIP-based

team formation model. The model’s constraints are set up to represent the unique

characteristics of each problem instance. Subsequently, the MCIP-based algorithm is

executed for each problem instance. The algorithm processes the defined attributes and

constraints of each instance, including aspects such as team size and diversity level,

and seeks to find an optimal solution. The output of this execution step is an optimal

or near-optimal solution for each problem instance. These solutions represent the most

effective distribution of students into teams, adhering to the constraints and objectives

outlined in the problem instance. Finally, an evaluation process is undertaken to

assess the performance of the MCIP-based method. This assessment focuses on the

quality of the solutions, i.e., team formation outcomes derived from the MCIP-based

approach, which examines the qualities of team compositions, how well the solutions

satisfy the team formation criteria, and the desired diversity levels. In addition, the

computational efficiency and robustness analysis are performed to investigate how well

the MCIP-based approach handles variations in the scenarios. The proposed method

is also benchmarked against other well-established team formation methods.

5.4 Results

This section presents the results in three distinct parts. First, it explored the data

simulation process that generates scenarios mimicking realistic team formations. Second,

it validated the MCIP-based team formation model using the simulated data by assessing

the model’s ability and the derived solution to facilitate the diverse skill sets and individ-

ual attributes while minimizing the potential conflicts. Third, the comparative performance

analysis was performed to benchmark the model against other well-established team forma-

tion methods.
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5.4.1 Data Simulation and Visualization

To ensure that the simulated data accurately reflects the complexity and diversity

of real-world scenarios, the model takes into account various student attributes, including

continuous, discrete, and multi-valued variables. In the simulation, two values of N, N = 52

and N = 104, are used to simulate small and large class scenarios. The detailed variables and

their parameter settings, are designed to closely mimic real-world distributions and diversity.

The simulated data for three representative variables: GPA (continuous), first language

(discrete), and technical skills (multi-valued), under varying degrees of heterogeneity and

N = 104 are visualized in Figure 5.2. By utilizing this simulated data, the subsequent

experiments are designed to assess the MCIP-based optimization’s efficacy in creating teams.

By applying the framework to the generated datasets, the study critically analyzes the

impact of various configurations and criteria on team composition and performance. The

experimental design, anchored in the simulated scenarios, illuminates the model’s capacity

to address real-world team formation challenges, showcasing its versatility and potential for

wide-ranging applications.

In Figure 5.2, as CV increased, GPA distribution widened, indicating greater hetero-

geneity. Language diversity rose from being predominantly single-language (SDI = 0.2) to

balanced (SDI = 0.5) and highly varied (SDI = 0.8). Technical skills also reflected a similar

trend, moving from low diversity to a diverse distribution at SDI = 0.8.

5.4.2 Validation of the MCIP Model Using Simulated Data

In the critical phase of validating the MCIP-based team formation model, the process

meticulously analyzes simulated data that was generated to reflect a range of real-world team

formation scenarios. Parameter settings for the MCIP model, tailored for both small (N = 52)

and larger (N = 104) simulated student populations. It first segmented the simulated student

populations into manageable sub-populations. This segmentation employed the WMH K-

means approach, which facilitated a nuanced division of the student population based on
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attribute heterogeneity, effectively creating clusters that mirror the diversity and complexity

found in real educational settings. Figure 5.3 illustrates the distribution of student data

points across various sub-populations at different levels of attribute heterogeneity for both

N = 52 and N = 104 scenarios.

Figure 5.2 Visualization of the Simulated Data for Three Representative Variables
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Figure 5.3 Visualization of Sub-Population Division Using WMH K-means for Different
Heterogeneity Levels

For N = 52, the Figure 5.3 visualizes the sub-population divided into three distinct

sub-populations, as shown in panels (a), (b), and (c). For the lower heterogeneity level of

CV = SDI = 0.2 (panel a), the sub-populations appears closely grouped, indicating less

diversity within sub-populations. As the heterogeneity level increases to 0.5 and then 0.8

(panels b and c), the sub-populations become increasingly scattered, illustrating a rise in

internal diversity. For a larger student population size of N = 104, it partitioned into five

distinct sub-populations, represented in panels (d), (e), and (f). The increasing spread of

the sub-populations in these panels, correlating with the rise in heterogeneity levels (CV =

SDI = 0.2, 0.5, and 0.8), confirms that the larger group has more diverse students, demand-

ing more nuanced and careful sub-population divisions. Here, the success of the division is

evident in the balanced and widespread distribution of sub-populations across various levels

of heterogeneity. This effective segmentation into diverse sub-populations demonstrates the
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efficiency of the Weighted Multivariate Heterogeneous (WMH) K-means approach in manag-

ing student data of different sizes and diverse characteristics. This sets the stage for applying

the MCIP-based team formation model effectively. With the student populations effectively

segregated into well-diversified sub-populations, the next step is to facilitate the formation

of effective teams within these sub-groups. This involves deploying a two-stage optimization

approach that combines the WMH K-means method and the surrogate optimization method,

shown in Figure 5.4.

Figure 5.4 Implementation of the Two-Stage Optimization Methods
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The two-stage optimization method results for three heterogeneity levels: CV = SDI

= 0.2, 0.5, and 0.8, are represented by panels (a)-(c), (d)-(f), and (g)-(i) respectively. In

panel (a) with the lowest heterogeneity level (CV = SDI = 0.2), the intra-group DLs ranged

from 0.07 to 0.28 with a mean of 0.1512, while the conflict level spanned from 0.06 to 0.27.

As the heterogeneity level increased to 0.5 (panel d), the intra-group DL values ranged from

0.144 to 0.358 with a mean of 0.2099, and the conflict level varied between 0.167 and 0.304.

At the highest heterogeneity level (CV = SDI = 0.8), panel (g) revealed an even wider spread

in the intra-group DL, from 0.199 to 0.362, and a mean DL of 0.2742, along with a conflict

level varying between 0.179 and 0.368. This increasing spread with higher heterogeneity

levels indicates that the optimization approach successfully ensures a high diversity within

groups, even under different diversity levels of the student population. Panels (b), (e), and

(h) highlighted the shift in group compositions as the heterogeneity levels changed from CV

= SDI = 0.2, 0.5, to 0.8. At the lower heterogeneity level of CV = SDI = 0.2 (panel b),

the grouping was relatively uniform, indicating that students with similar GPAs, language

proficiency, and conflict management styles are likely to be grouped together. However, as

it moved to higher heterogeneity levels, the solutions for these variables displayed a greater

degree of variation within groups, as shown in panels (e) and (h). Panels (c), (f), and

(i) provided a depiction of the solutions for the multi-valued variable of technical skills for

five representative groups. The distribution of technical skills within each group varied

significantly with the changes in heterogeneity level, a change clearly demonstrated as it

moves from panel (c) to (i). For the lower heterogeneity level of CV = SDI = 0.2 (panel

c), the distribution of technical skills within groups was more homogeneous, suggesting

that students with similar skillsets are likely to be in the same group. However, at higher

heterogeneity levels, the distribution of technical skills within each group was more diverse.

Following the results of the two-stage optimization method, the random search approach

was implemented for the same student population of N = 52. The comparisons between the

random search method and the optimization method across various heterogeneity levels (CV

63



= SDI = 0.2, 0.5, and 0.8) indicated a slightly superior performance of the random search

in terms of producing higher intra-group diversity and lower conflict levels, see Figure 5.4.

5.4.3 Comparative Performance Analysis

This section intends to evaluate the performance of the two-stage optimization method

against established team formation models. The assessment was carried out using key perfor-

mance indicators such as intra-group diversity level (DL), conflict level, inter-group diversity

level, computation time, and the optimality gap. The optimality gap indicates how closely

the benchmarking models approximate the best possible team formation solution. Partic-

ularly, the best-known solution derived from the most effective algorithm, i.e., the random

search was used to estimate the optimality gap, which is the percentage difference between

the best-known solution and the solution obtained from other algorithms. The performance

comparison included 2 student population sizes, N = 52 and N = 104 as presented in Table

5.1. Table 5.1, presents a performance comparison of the two-stage optimization method

(WHM K-means + SO) against the three well-established team formation algorithms (ran-

dom search, WHM K-means, WHM K-means + genetic algorithm (GA)) serving as the

benchmark to evaluate the efficacy of the proposed model. The third algorithm, WHM

K-means + GA, replaces the surrogate optimization with the genetic algorithm, which is

known for its capability in solving complex optimization problems, in the 2nd stage of the

two-stage optimization method.

According to Table 5.1, the random search method yielded the most optimal solutions

for both population sizes. However, this came at the cost of longer computation times,

specifically 5028.737 ± 226.862 (secs) and 7412.777 ± 4966.39 (secs) for N = 52 and N =

104 respectively, indicating a low computational efficiency as the student population sizes

increased.

Additionally, the random search approach resulted in intra-group DLs of 0.216 ±

0.065 for N = 52 and 0.204 ± 0.067 for N = 104, with corresponding conflict levels of
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Table 5.1 Comparative Performance Analysis of Three Team Formation Algorithms and
the Proposed Algorithm

Algorithm N
Intra-
group
DL

Conflict
Level

Inter-
group
DL

Elapsed
Time (sec)

Optimality
Gap (%)

Random
Search

5
2
1
04

0.216, ±
0.065,
0.204, ±
0.067

0.141,
± 0.063
,0.135, ±
0.064

0.007,
± 0.003
,0.004, ±
0.001

5028.737,
± 226.862,
7412.777, ±
4966.39

0, ± 0, 0 ,± 0

WHM K-
means

5
2
1
04

0.203, ±
0.062,
0.199, ±
0.071

0.203, ±
0.073,
0.198, ±
0.074

0.007, ±
0.003,
0.003, ±
0.001

0.801, ±
0.253, 5.083,
± 2.513

43.730, ±
3.626, 36.183,
± 5.36

WHM K-
means +
GA

5
2
1
04

0.204, ±
0.055,
0.194, ±
0.073

0.206, ±
0.069,
0.192, ±
0.069

0.007, ±
0.003,
0.004, ±
0.001

960.307,
± 314.207,
1376.06, ±
435.77

27.761, ±
2.97, 31.192,
± 5.079

WHM K-
means +
SO

5
2
1
04

0.203, ±
0.055,
0.192, ±
0.064

0.207, ±
0.057,
0.191, ±
0.062

0.007, ±
0.002,
0.004 ±
0.001

505.106,
± 66.749
,902.833, ±
29.532

29.671, ±
5.076, 29.619,
± 3.27

0.141 ± 0.063 and 0.135 ± 0.064, respectively. This method provided minimal inter-group

DLs (0.007 ± 0.003 for N = 52 and 0.004 ± 0.001 for N = 104), suggesting it can effectively

balance the team diversity across different groups. In contrast, the WHM K-means algorithm

reduced computation times to only 0.801 ± 0.253 (secs) for N = 52 and 5.083 ± 2.513 (secs)

for N = 104, indicating superior computational speed. However, this was at the expense of

an increased optimality gap — 43.730 ± 3.626% for N = 52 and 36.183 ± 5.36% for N =

104, implying a trade-off between computational speed and solution quality. This method

yielded intra-group DLs of 0.203 ± 0.062 for N = 52 and 0.199 ± 0.071 for N = 104, and

conflict levels of 0.203 ± 0.073 and 0.198 ± 0.074, respectively, indicating a slight increase

in conflicts compared to the Random Search approach. The inter-group DLs remained low

(0.007 ± 0.003 for N = 52 and 0.003 ± 0.001 for N = 104), demonstrating a robust capability

to ensure balanced team diversity across groups, which was similar to the random search

method.
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The hybrid model, WHM K-means + GA, yielded an encouraging balance between

computation time and solution quality. The optimality gap was significantly reduced com-

pared to WHM K-means (to 27.761 ± 2.97% for N = 52 and 31.192 ± 5.079% for N =

104), suggesting that the hybrid model achieved superior solution quality. However, the

algorithm did increase computation time compared to WHM K-means, but still maintained

significantly lower computation times than Random Search, with average times of 960.307 ±

314.207 (secs) for N = 52 and 1376.06 ± 435.77 (secs) for N = 104, reflecting a great balance

between solution quality and computational time. Interestingly, the intra-group DLs are

0.204 ± 0.055 for N = 52 and 0.194 ± 0.073 for N = 104, while the conflict levels are 0.206

± 0.06 for N = 52 and 0.192 ± 0.069 for N = 104, implying slight improvements in team

homogeneity and conflict management compared to the standalone WHM K-means. Similar

to previous models, the hybrid model maintained low inter-group DLs (0.007 ± 0.003 for N

= 52 and 0.004 ± 0.001 for N = 104), demonstrating its capability to foster balanced team

diversity across different groups.

Finally, the proposed model, WHM K-means + SO, delivered a strong performance.

It outperformed WHM K-means in terms of the optimality gap, reducing it to 29.671 ±

5.076% for N = 52 and 29.619 ± 3.27% for N = 104, thereby affirming the superior quality

of its solutions. It also had significantly lower computation times than random search and

WHM K-means + GA, clocking in at 505.106 ± 66.749 (secs) and 902.833 ± 29.532 (secs)

for N = 52 and N = 104, respectively, underscoring its computational efficiency. This model

reported intra-group DLs of 0.203 ± 0.055 for N = 52 and 0.192 ± 0.064 for N = 104, and

conflict levels of 0.207 ± 0.057 and 0.191 ± 0.062, respectively. It maintained low inter-group

DLs (0.007 ± 0.002 for N = 52 and 0.004 ± 0.001 for N = 104), supporting its capability

to guarantee balanced diversity across teams. The detailed evaluations of all scenarios with

different CV and SDI values for N = 52 and N = 104 are reported. An increased CV led to

a higher intra-group diversity level and conflict level. This implies that, as the variability

of continuous attributes within a team increases, the team becomes more diverse and tends
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to experience more internal conflicts. The impact of SDI was less consistent. Though an

increased SDI led to a rise in conflict level, indicating a higher disagreement level as the

diversity in variables increased, its influence on the intra-group DL was inconsistent, which

suggested a more complex interaction between these factors. With regards to algorithm

performance, the random search method, despite yielding optimal results, consistently had

the longest elapsed times across all CV and SDI values. The proposed methods, WHMKM

+ GA and WHMKM + SO, offered a more balanced performance in terms of time efficiency

and result optimality.

5.5 GUI Implementation of the MCIP Model

The Multi-Criteria Team Formation Model GUI is developed to offer a user-friendly

Graphical User Interface (GUI) that implements the Multi-Criteria Integer Programming

(MCIP) model, see Figure 5.5.

The development of the Multi-Criteria Integer Programming (MCIP) model GUI

represents an interface structure and functionality significant for educational team formation:

Figure 5.5 MATLAB GUI for Multi-Criteria Team Formation
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1. Functionality: the system facilitates data importation, allowing the user to load a

comprehensive dataset containing student profiles, including academic, geographic,

and departmental information, directly from a MATLAB Drive path.

2. Hyper-parameter Customization: the developer incorporated adjustable hyper-

parameters for team size constraints, enabling educators to tailor the range of team

sizes in alignment with pedagogical requirements.

3. Algorithmic Processing: the activation of the ’Start’ button, allows to sort and match

students into teams based on the inputted multi-criteria framework.

4. Visualization of Teams: in the interface’s display area, the resulting team configurations

are made visible, providing algorithm’s output and allowing for any necessary manual

adjustments.

5. Analytical Plot Generation: a key feature of the GUI is the ’Generate Plot’ function,

which outputs a graphical representation of the diversity level (denoted as ’DL Level’)

across teams, serving as an analytical tool for assessing the effectiveness of the team

formation process.

6. Usability and Educational Impact: the GUI is designed to eliminate bias and ensure

balanced team formation, thus enhancing the collaborative educational environment.

The tool represents a fusion of algorithmic precision and educational methodology,

offering a sophisticated and accessible solution for team formation.

MCIP model GUI marks a noteworthy contribution to educational resources, pro-

viding a robust tool for optimizing team composition and dynamics. The GUI’s balance of

complexity and ease of use exemplifies the potential for technology to transform educational

practices, offering a valuable resource for educators seeking data-driven solutions for team

formation.
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5.6 Discussion

This research utilized a novel two-stage optimization approach tailored for the intri-

cate process of forming teams within heterogeneous environments, demonstrating a remark-

able balance between computational efficiency and the quality of solutions. The model’s

effectiveness, validated across a spectrum of heterogeneity levels, showcases its ability to

cultivate teams marked by elevated intra-group diversity and minimized conflict levels. This

approach not only surpasses traditional methods such as random search, WHMK-means, and

the hybrid WHM K-means with GA in computational speed and the narrowness of the opti-

mality gap but also introduces a superior strategy for assembling teams. The model’s success

in achieving high diversity within teams while maintaining low conflict levels, especially in

contrast to existing team formation strategies, underscores its potential to significantly en-

hance team dynamics and effectiveness. By efficiently navigating the complexities associated

with diverse team compositions, this two-stage optimization method presents a groundbreak-

ing solution to the challenges of team formation, promising substantial improvements in both

educational and professional settings.

The study demonstrates the robustness, versatility, and computational efficiency of

the two-stage optimization model across varying heterogeneity levels. Despite the increased

problem complexity with rising heterogeneity, the model adeptly ensures diversity while

maintaining low conflict levels, thus optimizing team harmony. While the random search

method offers optimal results, it lacks computational speed, rendering it impractical for

real-time applications. The WHM K-means model, although efficient, struggled to balance

diversity and conflict. Its hybrid version, WHM K-means + GA, has demonstrated improve-

ments, however still underperformed relative to the WHM K-means model in solution quality

and computational efficiency. The study highlights the model’s unique ability to maintain

high diversity and low conflict levels within teams, even as the complexity of the prob-

lem escalates a testament to its advanced algorithmic design. This two-stage optimization

model thereby redefines the landscape of team formation strategies, promising to signifi-
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cantly improve collaborative dynamics and outcomes by leveraging its sophisticated balance

of diversity, conflict management, and operational efficiency.

The study has several limitations which, in turn, open avenues for future research in

TBL. Firstly, the MCIP-based algorithm’s effectiveness is heavily reliant on the quality and

comprehensiveness of input data. Although the model managed to utilize several diverse

data points, the inclusion of more detailed and varied information, such as cultural back-

grounds, language proficiency, or previous project experiences, could potentially enhance the

team formation process even further. Secondly, while the proposed framework has proven

successful under the conditions tested, its performance in real-world domains and applica-

tions, such as corporate environments, non-profit teams, or online collaboration platforms,

needs to be extensively evaluated. Thirdly, despite the model aiming to create balanced and

diverse teams, it does not consider the dynamics of team interactions after the team assign-

ment. Understanding how these teams function and adapt over time is a crucial aspect of the

team formation process. Lastly, the algorithm, while efficient, is computationally intensive,

especially for large-scale applications. This presents an interesting area for future research,

where efforts are directed toward improving computational efficiency while maintaining or

even enhancing the algorithm’s accuracy and robustness. This could involve the exploration

of parallel processing or the use of more efficient data structures and algorithms.

5.7 Conclusion

This study introduces a pioneering two-stage optimization strategy for team for-

mation, combining WHM K-means with surrogate optimization tailored for Team-Based

Learning (TBL). The approach effectively creates diverse teams with minimal conflict and

has proven superior to traditional methods in both team performance and satisfaction. Ex-

tensive numerical analysis validates this methodology, setting new standards for team for-

mation practices by successfully navigating the complexities of assembling balanced teams

that foster innovation and collaboration.
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While acknowledging limitations, the study suggests future research directions such

as data enrichment and real-world application testing. This research advocates for the on-

going evolution of team formation strategies across various fields, including education and

human resource management, to enhance productivity and job satisfaction in our digital,

interconnected world.
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Chapter 6: MBSE Model System Verification & Result Analysis

System verification involves system simulation to detect design flaws early and test

various scenarios, ensuring comprehensive analysis and risk reduction before real-world de-

ployment. This chapter includes System Simulation, Use Case Scenarios, and Team Forma-

tion Algorithm: Development and Testing for Engineering Courses.

6.1 System Simulation

System simulation involves creating computer models that mimic real-world systems.

These models enable the study and analysis of complex systems without directly interacting

with the physical system. Within the context of the MBSE framework for the ELAS model,

system simulation plays a crucial role by simulating two distinct use-case scenarios: first,

equipping students with advanced semiconductor skills through a Mechatronics, Robotics,

and Control Laboratory tailored to the needs of the semiconductor industry; second, devel-

oping professional skills in students through various course assignments aimed at assessing

soft skills.

Following Section 3.2, the system architecture of the ELAS model, two use case

models were created, which are:

1. Equipping Students with Advanced Semiconductor Skills through Mechatronics,

Robotics, and Control Laboratory tailored to Semiconductor Industry Needs.

2. Emphasizing student soft skills development through various assessment methods.

72



6.1.1 System Simulation - First Use Case Scenarios

The first scenario involves equipping students with advanced semiconductor skills

through courses in Mechatronics, Robotics, and Control Laboratory, tailored to meet the

needs of the semiconductor industry. This use case is motivated by recent initiatives and

workforce demands in the semiconductor sector [54]. Building on the technical skills iden-

tified by stakeholder needs, a stakeholder requirements diagram for the Agile Design of the

Mechatronics, Robotics, and Control (MRC) Lab was developed, as shown in Figure 6.1.

Figure 6.1 Use Case Scenario System Requirements

Based on the use case system requirements diagram, the system architecture was

constructed to map different requirements with their respective functional blocks for verifi-

cation, as depicted in Figure 6.2. Furthermore, to verify the use case system requirements,

requirements verification and validation for various scenarios were conducted.
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Figure 6.2 Use Case Scenario System Architecture

These simulations are based on the laboratory’s learning objectives and goals, which

align directly with stakeholder requirements. Figure 6.3 illustrates the results from the

requirement verification and validation of Use Case Scenario at Different Environmental

Variables.

6.1.2 System Simulation - Second Use Case Scenario

The second scenario focuses on enhancing student soft skills development through a

variety of course assignments. This use case stems from the need to improve professional

competencies among engineering students via strategic team formation. Following the team

formation model outlined in Chapter 4, this scenario was implemented in an electrical engi-

neering course, where various course assignments aimed at evaluating professional skills were

developed.
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Figure 6.3 Requirement Verification & Validation of Use Case Scenario at Different
Environmental Variables

These course assignments include group discussions, post-discussion, group projects,

presentations, and self-assessments, in addition to traditional exams, assignments, and

quizzes, see Figure 6.4. This scenario is used to analyze the scores of students’ profes-

sional competencies at the end of the course. The scenario executes different environmental

variables to determine which course assignments most effectively contribute to skill develop-

ment and which areas might require more focus for individual students, see Figure 6.5. This

scenario leverages the synthetic data model generated in Section 3.8, to run simulation for

’N’ students for different soft skill values. Enhanced visualization of these scenarios is shown

in Figure 6.6, and Figure 6.7.
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Figure 6.4 System Architecture for Activity and Sequence Diagram Representing the
Course Module ’Embedded System’ for ’Essential 21st Century Skills for Engineers’ Use
Case Model

Further, refined non-functional quantifiable needs, i.e., Measures of Effectiveness

(MoEs) were identified, and are listed in Table 6.1. In conclusion, random scores for each

skill, such as communication, teamwork, and adaptability, are generated. These scores vary,
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reflecting different levels of proficiency. This variation enables better visualization of the

final score based on diverse soft skill values. In each instance the system executes a set of

synthetic soft skill scores, it then calculates the overall score. This dynamic visualization

Figure 6.5 Activity and Sequence Diagram Representing the Course Module ’Embedded
System’

77



Figure 6.6 Requirement Verification of ’Essential 21st Century Skills for Engineers’ Use
Case Model

Figure 6.7 Model Test Instance of ’Essential 21st Century Skills for Engineers’ Use Case
Model

assists stakeholders in understanding how different skill levels impact the final outcome.

Use Case Scenarios and Requirement Verification: For each use case scenario, the system

was tested against specified requirements and verified to confirm that the system’s behavior

aligns with the intended functionality described in the use case.
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Table 6.1 MOEs for Stakeholder Requirements (SHR 3.0)

Soft Skill Evaluation Matrix
Target

Score

Problem Solv-

ing

- Ability to identify and define complex problems -

Analytical thinking and logical reasoning
> 85

Communication - Ability to communication among team mates > 78

Collaboration - Ability to work with other teammates > 92

Leadership
- Ability to show leadership quality in group as-

signment
> 70

Critical Think-

ing
- Ability to identify innovative solutions > 88

Teamwork
- Ability to understand team member personality

and work together
> 95

Adaptability - Ability to adapt to the problem needs > 80

6.2 Real-World Scenario - Team Formation Algorithm: Development and Test-

ing in Engineering Course

The research applies the Multi-Criteria Integral Programming (MCIP) algorithm,

developed in Chapter 4, for team formation in university-level engineering courses. This

method is compared with previous team formation approaches to assess its effectiveness. A

detailed report and statistics are presented in the next section, focusing on skill balance and

demographic diversity within teams.

6.2.1 Diversity-Based Implementation

The Team Formation intervention, implemented in the engineering courses of Spring

and Summer 2022, utilized the MCIP algorithm to maximize team diversity across GPA,

skills, language, and country of origin. Table 6.2 displays the statistical control variables for
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Table 6.2 Team Formation Intervention Control Variables - Embedded System

Course: Embedded Systems

Control variables Spring 2022 Summer 2022

Total no. of students 80 84
No. of Team 20 21
Team-size 3-4 students per team 3-4 students per team
Course Length 16 weeks 10 weeks
Course Type Electives Electives
Instructor Dr. Castellanos Dr. Castellanos
Gender Male = 75, Female = 5 Male = 81, Female = 4
Education Level Undergraduates Undergraduates
Department Electrical Engineering Electrical Engineering

the two groups, namely the engineering courses of Spring and Summer 2022. The results of

the intervention show improved team dynamics, effective communication skills, and enhanced

learning experiences, especially in problem-solving abilities, for the group selected through

multi-criteria team formation.

Figure 6.8 illustrates the comparative performance of student teams in the Embedded

System courses for Spring and Summer 2022. For Spring 2022, the student teams performed

higher in the first two assignments. However, a noticeable performance decline was observed

in Assignment 3 and the final project. This downturn is attributed to the struggles faced

by self-selected teams, primarily composed of friends, as the complexity of the assignments

escalated.

On the other hand, the Summer 2022 teams initially under performed in the first two

assignments. However, a significant improvement was observed in the subsequent assign-

ments and the final project. This progress was credited to the formation of diverse teams.

These teams, initially strangers, gradually developed effective collaboration and communica-

tion over time. It can be observed that the Summer 2022 teams initially faced challenges in

adapting to the new environment and understanding their team members. However, as they

became familiar with each other’s personalities, their problem-solving abilities improved.

This led to a higher performance in tackling the assignments, even those with increased dif-
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Table 6.3 Team Formation Intervention Control Variables - Applied Mechatronics

Course: Applied Mechatronics

Control variables Fall 2021 Fall 2021

Total no. of students 48 47
No. of Team 12 12
Team-size 3-4 students per team 3-4 students per team
Course length 16 weeks 16 weeks
Course Type Electives Electives
Instructor Dr. Castellanos Dr. Castellanos
Gender Male = 45, Female = 3 Male = 45, Female = 2
Education Level Undergraduates Undergraduates
Department Electrical Engineering Electrical Engineering

ficulty such as Assignment 3 and the final project, surpassing the performance of the Spring

2022 teams.

The same Team Formation intervention was implemented for Applied Mechatronics

courses in Fall 2021 and Fall 2022, resulting in consistent improvements in both team and

Figure 6.8 Team Formation in the Embedded System Courses – Spring vs. Summer 2022
Analysis
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individual performance in terms of grades and professional skills, as shown in Figure 6.9.

The control variable for this intervention is detailed in Table 6.3.

6.2.2 Project-Based Implementation

The Project-Based Team Formation (PBTF) method for Team Formation was im-

plemented in the two-semester senior capstone design courses I and II. Prior to this PBTF

intervention, teams were formed on a First-Come-First-Serve (FCFS) method, which had

several challenges such as lack of skill diversity, lack of motivation and engagement, team

dynamics issues, and work distribution inefficiency.

Since Fall 2022, teams have been formed based on PBTF methods which take into

account variables such as project preference, skillset compatibility, time availability, team

expertise, technical competencies, and demographic diversity. Each year, a survey was con-

Figure 6.9 Team Formation in the Applied Mechatronics Courses – Fall 2021 vs. Fall 2022
Analysis
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ducted to gather feedback from faculty members who advised the capstone design projects

and the industry partners who monitored the capstone design project’s life-cycle. The survey

feedback was analyzed and is represented in Figure 6.10 which illustrates the performance

of students selected via the First-Come-First-Serve (FCFS) method vs student selected via

Project-Based Team Formation (PBTF) method. It is observable that the First-Come,

First-Served (FCFS) method scores lower across various parameters such as presentation,

comprehensiveness, quality of work, team dynamics, and division of work, with the exception

of ethical standards. This highlights the effectiveness of the Project-Based Team Formation

intervention in enhancing students’ interpersonal skills and overall performance.

Figure 6.10 Comparative Analysis of Team Performance: Multi-Criteria vs.
First-Come-First-Serve Team Formation Methods
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Chapter 7: Conclusion and Future Work

7.1 Conclusion

This research has systematically demonstrated the efficacy of Model-Based Systems

Engineering (MBSE) within the context of university-level engineering education. By de-

ploying the Engineering Learning Analytic System (ELAS), this research not only bridges the

theoretical constructs of MBSE with practical applications but also showcases a significant

advance in addressing complex engineering educational challenges.

ELAS, designed as a human-centric model, involves key stakeholders, i.e., students,

educators, and industry professionals to ensure that the educational system is aligned with

actual educational needs. Through rigorous system simulations, the model effectively mirrors

real-world educational settings, thereby validating its applicability and relevance in modern

educational environments.

A pivotal contribution of this research is the development and implementation of inno-

vative tools, including synthetic data models and multi-criteria team formation algorithms.

These tools have been instrumental in refining the management of engineering educational

data and optimizing student team formations, thereby enhancing both individual and col-

lective educational outcomes.

In summary, the research illustrates that MBSE can be innovatively applied to engi-

neering education research, highlighting its potential to revolutionize traditional educational

methodologies by introducing precision, adaptability, and efficiency.
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7.2 Future Work

While the current research have marked significant advancements in integrating

Model-Based Systems Engineering (MBSE) methodology for engineering education systems,

it is not without its limitations which, in turn, make the way for future research opportuni-

ties. The diverse simulation scenarios employed did not encompass all variables present in

real-world settings. There are challenges with respect to model’s dependency on quantifiable

inputs such as student grades, internships, and income levels, which are significant but still

do not capture complete student attributes like cultural background and community support.

These elements are crucial for fully understanding and enhancing student experiences and

performance. Hence, future enhancements of the ELAS model should incorporate these at-

tributes, particularly focusing on the experiences of underrepresented students, this will give

a more inclusive and accurate representation of the student body. Furthermore, the team

formation algorithm, though effective, requires continuous refinement to adapt to evolving

educational demands. The generative synthetic data model, fundamental in overcoming the

lack of concrete datasets, demands ongoing validation to keep pace with the dynamic nature

of educational environments.

Moving forward, the future work of the research includes, advancing the Professional

Formation of Engineers (PFE) initiative through data-driven approaches. The Professional

Formation of Engineers (PFE) is a new comprehensive educational framework designed to

equip electrical engineering USF students with the necessary skills and competencies for

their professional careers. It encompasses a series of structured courses, talent development,

and goal-setting exercises that aim to the practice of engineering ethically, with impact on

both local and global communities. The future scope includes implementing Data-Driven

Pathways such as data analytics and machine learning algorithms to create early detection

systems models from data accumulated over the past six years since the PFE courses sequence

was introduced. The Team formation model shall leverage historical PFE data to create pre-

dictive analyses that function as early warning systems, identifying potential challenges and
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opportunities for students. A significant aspect of this development will demonstrate the role

of interdisciplinary skills, internships, hands-on workshops, and leadership roles, in student

career development, thereby customizing the learning experience. Additionally, future work

includes conducting longitudinal studies on the impact of Model-Based Systems Engineer-

ing (MBSE) on student learning and success, as well as exploring MBSE’s application in

diverse educational fields beyond its current use, focusing particularly on its potential for

cross-disciplinary integration. Moreover, refining and testing team formation algorithms to

enhance collaborative skills and project outcomes is essential.

This dissertation represents a significant step forward in the application of Model-

Based Systems Engineering to enhance the field of engineering education. While substantial

progress has been made, the journey towards fully realizing the potential of MBSE in engi-

neering education continues. The paths laid out by this research invite further exploration

and promise to yield innovative solutions to enduring challenges in educational systems de-

sign.
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[51] J. Juárez, C. Santos, and C. A. Brizuela. A comprehensive review and a taxonomy

proposal of team formation problems. ACM Computing Surveys (CSUR), 54(7):1–33,

2021.

[52] Kalpak Kalvit. Application of an innovative MBSE (SysML-1D) co-simulation in health-

care. Purdue University, 2018.

[53] Iakovos Katsipis. Health Care Management System for Diabetes Mellitus: A Model-based

Systems Engineering Framework. PhD thesis, 2015.

[54] William W Keller and Louis W Pauly. Innovation in the indian semiconductor industry:

The challenge of sectoral deepening. Business and Politics, 11(2):1–21, 2009.

[55] Mohammad Khalil and Martin Ebner. De-identification in learning analytics. Journal

of Learning Analytics, 3(1):129–138, 2016.

[56] Jennifer K Knight and William B Wood. Teaching more by lecturing less. Cell biology

education, 4(4):298–310, 2005.

[57] Robert Kraus, George Papaioannou, and Arun Sivan. Application of model based system

engineering (mbse) principles to an automotive driveline sub-system architecture.

[58] S Kuper. Industry relevance and its role in student success and corporate training.

Journal of Bew and Innovative Market Opportunities, 2018.

[59] Lisa R Lattuca, Patrick T Terenzini, and J Fredericks Volkwein. Panel session-

engineering change: Findings from a study of the impact of ec2000. In Proceedings.

Frontiers in Education. 36th Annual Conference, pages 1–2. IEEE, 2006.

93



[60] Brian London. A model-based systems engineering framework for concept development.

PhD thesis, Massachusetts Institute of Technology, 2012.

[61] Michael C Loui and Maura Borrego. 11 engineering education research. The Cambridge

handbook of computing education research, page 292, 2019.

[62] Azad M Madni, Dan Erwin, and Carla C Madni. Digital twin-enabled mbse testbed

for prototyping and evaluating aerospace systems: Lessons learned. In 2021 IEEE

Aerospace Conference (50100), pages 1–8. IEEE, 2021.

[63] Holly Matusovich, Ruth Streveler, and Ron Miller. We are teaching engineering stu-

dents what they need to know, aren’t we? In 2009 39th IEEE Frontiers in Education

Conference, pages 1–6. IEEE, 2009.

[64] Cheryl B McCarthy. Effects of thematic-based, hands-on science teaching versus a

textbook approach for students with disabilities. Journal of Research in Science Teach-

ing: The Official Journal of the National Association for Research in Science Teaching,

42(3):245–263, 2005.

[65] James H McMillan. Fundamental assessment principles for teachers and school admin-

istrators. Practical Assessment, Research, and Evaluation, 7(1):8, 2000.

[66] Steven Moonen, Bram Vanherle, Joris de Hoog, Taoufik Bourgana, Abdellatif Bey-

Temsamani, and Nick Michiels. Cad2render: A modular toolkit for gpu-accelerated

photorealistic synthetic data generation for the manufacturing industry. In Proceedings

of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 583–

592, 2023.

[67] Corina Pacher, Manuel Woschank, Bernd M Zunk, and Elke Gruber. Engineering edu-

cation 5.0: a systematic literature review on competence-based education in the indus-

trial engineering and management discipline. Production & Manufacturing Research,

12(1):2337224, 2024.

94



[68] Abelardo Pardo and George Siemens. Ethical and privacy principles for learning ana-

lytics. British journal of educational technology, 45(3):438–450, 2014.

[69] Marden Pasinato, Carlos Eduardo Mello, Marie-Aude Aufaure, and Geraldo Zimbrao.

Generating synthetic data for context-aware recommender systems. In 2013 BRICS

Congress on Computational Intelligence and 11th Brazilian Congress on Computational

Intelligence, pages 563–567. IEEE, 2013.

[70] Arun S Patil and Zenon J Pudlowski. Instructional design strategies for interactive web-

based tutorials and laboratory procedures in engineering education. World Transactions

on Engineering and Technology Education, 2(1):107–110, 2003.

[71] Helena JM Pennings and Tim Mainhard. Analyzing teacher–student interactions with

state space grids. Complex dynamical systems in education: Concepts, methods and

applications, pages 233–271, 2016.
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