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ABSTRACT 

 

The focus of this dissertation was simulating trophic dynamics in the pelagic Gulf of 

Mexico (GOM) with an emphasis on ecosystem-based fishery management (EBFM) strategies 

for large pelagic species. Fisheries management in the United States largely utilizes single-

species assessments, although managers are increasingly interested in EBFM approaches to 

better account for ecosystem effects on stocks such as predator/prey dynamics. Production in the 

surface layer of the pelagic zone is variable with environmental conditions and prey is often 

concentrated in patches by hydrodynamic features. Production is also transported vertically via 

diel vertical migration, during which deep-sea species provide potentially key forage resources 

for epipelagic predators. Locating prey in the pelagic zone can be a difficult task for visual 

predators, more so than in inshore habitats. Management of exploited pelagic predators could 

benefit from more investigation into how trophodynamics affect populations. The objectives of 

this work were to 1) explore spatial patterns and environmental drivers of pelagic feeding, 2) 

improve the estimation of pelagic diets in an ecosystem model of the GOM, and 3) evaluate 

ecosystem-based management strategies for a pelagic fish predator considering bottom-up 

trophic dynamics. I combined a hydrodynamically informed particle-tracking model with an 

Atlantis ecosystem model of the GOM to simulate feeding opportunities available to juvenile sea 

turtles depending on dispersal location. I found that food availability to juveniles was greatest 

offshore along the West Florida Shelf edge, and that hydrodynamic features including frontal 

zones facilitated retention in these areas. I then explored different statistical distributions to 

improve the representation of pelagic feeding dynamics in the GOM Atlantis model. To capture 
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the mechanism of locating patchy prey in the pelagic environment, I applied zero inflated-type 

beta distributions to diet data that separately model the binomial process of encounter probability 

and the continuous beta distribution for diet composition. I found the zero-inflated beta model to 

be an improvement over a traditional beta distribution for fitting offshore predator diets. These 

improved diet estimates were incorporated into the GOM Atlantis model. Fitted diets showed 

that large offshore fishes heavily utilized deep-sea prey species, which could result in increased 

vulnerability to deep water disasters such as oil spills. I then used the GOM Atlantis model to 

conduct a management strategy evaluation that examined whether it was beneficial to consider 

the availability of mesopelagic fish prey in control rules for a large pelagic predator. Biomass 

and catch of the example predator, Thunnus albacares, were higher under ecosystem-based 

harvest control rules than under single-species and constant F management strategies. The 

benefit of EBFM increased as mesopelagic fish abundance decreased, suggesting that proactive 

EBFM for large pelagic fishes may be particularly strategic in the case of future deep-sea 

disturbances. This project demonstrates the utility of statistical and numerical modeling to 

simulate pelagic trophic dynamics and evaluate potential EBFM approaches.  
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CHAPTER 1: INTRODUCTION 

Federal fisheries management in the United States has been moving toward the goal of an 

ecosystem-approach to addressing management questions, also referred to as ‘ecosystem-based 

fisheries management (EBFM)’ (NOAA 2016, Brodziak and Link 2002). Traditional single-

species stock assessments that do not explicitly account for ecosystem effects on managed 

populations can be uncertain in their predictions (Walters and Martell 2004). EBFM strategies 

can include a variety of ecosystem considerations, including abiotic drivers of production 

(Tommasi et al. 2017, PFMC 2023), environmental sources of mortality (SEDAR 2021, Vilas et 

al. 2023), and population impacts due to predator-prey dynamics (Deroba et al. 2019, Punt et al. 

2016). Trophic dynamics can be classified as exhibiting top-down (predation limiting prey 

populations), bottom-up (prey availability limiting predator populations), or wasp-waist 

(intermediate trophic levels affecting both predator and prey) control (McQueen et al. 1986, 

White 1978, Cury et al. 2000). Trophic modeling approaches are often applied to simulate these 

impacts, such as in ecosystem models like Ecopath with Ecosim, OSMOSE, and Atlantis 

(Christiansen and Walters 2004, Shin and Cury 2001, Fulton et al. 2011). Ecosystem models are 

therefore useful tools for investigating EBFM questions that include predator-prey 

considerations. 

The overall focus of this dissertation is modeling feeding in the pelagic zone, specifically 

investigating how prey availability influences pelagic predator populations (bottom-up control). 

The pelagic ecosystem is vertically structured by depth and resulting light intensity (Wyatt 

1976). In the epipelagic, or ‘sunlight’, zone (0-200 m depth), primary production is 
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spatiotemporally dynamic and driven by environmental conditions such as temperature and 

nutrient availability (Steele 1976). Lower trophic level organisms (e.g. phytoplankton, 

macroalgae, zooplankton) are concentrated in patches by physical oceanographic features such as 

frontal zones, currents, and eddies (Steele 1976, Zhang and Hu 2021). These frontal zones also 

influence the distribution and abundance of the larvae of top pelagic predators such as tunas 

(Cornic and Rooker 2018), and visual predators (e.g. mammals, large fishes) may target these 

aggregations for the shoals of planktivorous forage fishes that they attract (Suthers et al. 2023).  

While prey in the epipelagic zone is spatiotemporally dynamic across the horizontal 

plane, the pelagic food web also features vertical connectivity across depth layers via diel 

vertical migration (DVM). Zooplankton, crustaceans, cephalopods, and small fishes from the 

mesopelagic (200-1000 m depth) and upper bathypelagic (1000 – 4000 m depth) zones vertically 

migrate into surface waters at night to feed on planktonic prey (Sutton 2013).  This daily 

migration of deep-water species provides an important trophic link between the vertical habitat 

zones of the open ocean; large pelagic predators that consistently occupy the epipelagic zone 

feed upon these visiting mesopelagic migrators before they return to the deep at dawn. This 

massive vertical movement of production is a crucial component of carbon transport and 

sequestration in the open ocean (Hoagland et al. 2019). However, mesopelagic species are 

increasingly at risk with deep-sea drilling and mining activities. Many large pelagic predators are 

of either conservation (e.g. marine mammals, sea turtles, sea birds) or commercial (e.g. tunas, 

billfishes) importance; the dynamics of prey availability in the pelagic zone and resulting 

bottom-up impacts on predator populations are therefore important considerations for ecosystem-

based management. This study aimed to simulate pelagic food web dynamics in the Gulf of 

Mexico (GOM) using an Atlantis ecosystem model (Fulton et al. 2011), and to use Atlantis to 
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examine EBFM questions for the management of large pelagic predators considering pelagic 

predator/prey dynamics. 

The GOM Atlantis model was developed by Ainsworth et al (2015) and updated by 

Perryman et al. (in press). It is an end-to-end ecosystem model, linking low-level processes to 

higher trophic levels, and includes hydrodynamics, biogeochemical cycling, and fishing effort 

(Audzijonyte et al. 2017). The GOM Atlantis model contains 91 functional groups (Appendix 3) 

that are either single-species (e.g. managed species) or aggregated by similar life history traits. 

Vertebrate groups are age-structured with up to ten age classes. The polygon geometry of the 

GOM Atlantis model was defined to capture major bathymetric, jurisdictional, and estuarine 

features (Figure 4.1). Polygons have up to seven depth layers including a sediment layer. The 

GOM Atlantis model has been used to evaluate EBFM strategies (Masi et al. 2018), test the 

performance of ecological indicators (Masi et al. 2017), and study the ecosystem impacts of the 

2010 Deepwater Horizon (DWH) oil spill in the northern GOM (Ainsworth et al. 2018, 

Dornberger et al. 2020). A more detailed description of Atlantis and the GOM Atlantis model can 

be found in Chapter 2 of this dissertation. 

 In Chapter 2,  Modeling transport and feeding of juvenile Kemp’s ridley sea turtles on 

the West Florida shelf (Scott et al. 2024), I combined an ICHTHYOP particle-tracking model 

(Lett et al., 2009, Putman et al. 2020) with the GOM Atlantis model to simulate the dispersal of 

juvenile Kemp’s ridley sea turtles (Lepidochelys kempii) from nesting beaches in Mexico and 

onto the West Florida Shelf (WFS). The main goal of this work was to examine how physical 

oceanographic features effect the transport of pelagic-type juveniles to areas of adequate food 

availability. Dispersal patterns across the GOM were simulated using ICHTHYOP’s physical 

oceanographic model and the GOM Atlantis model was used to quantify feeding opportunities 
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available to juveniles (i.e. consumption) upon reaching the WFS. I then examined relationships 

between the spatial patterns of consumption, regional frontal features (Zhang and Hu 2021), and 

large-scale climatological indices to identify physical drivers and determine implications for 

feeding success under future climate change. The work for this chapter was funded by a Florida 

Restore Act Centers of Excellence Program grant awarded to Dr. Cameron Ainsworth.  

In Chapter 3, Inflated-type models for estimating fish diet composition, I presented an 

improved statistical method for estimating the diet of pelagic predators in the GOM Atlantis 

model. Diet estimates for ecosystem models are typically created by simply averaging across 

stomach content data, which can skew estimates and over-estimate rare feeding events (Masi et 

al. 2014). The current statistical method for estimating diet in the GOM Atlantis model uses the 

Dirichlet distribution, a multi-variate version of the beta distribution (Tarnecki et al. 2016). The 

beta distribution is bound by zero and one and is therefore appropriate for fitting proportional 

data such as diet composition. However, diet data is inherently zero-inflated as only a few 

potential prey items are typically found in a given stomach and may also be one-inflated if a 

stomach contains only one prey item. The classic beta distribution cannot fit true zeroes or ones 

and may skew diet estimates in an effort to fit to zero- and/or one-inflated data. Zero- and one-

inflation may be particularly prevalent in pelagic diets as prey is patchily distributed and 

opportunistic feeding occurs.  

In Chapter 3 I fit both zero-and zero-and-one-inflated beta distributions (Ospina and 

Ferrari 2010) to GOM diet data, which separately model the binomial process of encounter 

probability (i.e. zeroes and/or ones) with the continuous beta distribution of how much prey was 

consumed upon a successful encounter.  I analyzed results for a suite of example predators that 

represented various habitat associations and trophic levels. I assessed model performance using 



5 

 

measures of fit and parsimony. I hypothesized that the diet of offshore-pelagic predators would 

be best estimated by inflated-type models that include the binomial encounter rate process 

because prey in the pelagic zone is patchily distributed (such as in the frontal features examined 

in Chapter 2).  This work incorporated new stomach content data from GOM sampling efforts 

including large pelagic fish stomachs from offshore sampling.  The results from this work were 

used to parameterize the GOM Atlantis model for the work performed in Chapter 4. My results 

showed that offshore-pelagic predators (i.e. tuna species) consumed a large amount of deep-

water prey; this strong trophic linkage could indicate increased vulnerability of pelagic predators 

to environmental disturbances (e.g. oil spills) affecting deep-water species (Morzaria-Luna et al. 

2022). 

The DWH disaster released over 100 million gallons of crude oil into the meso-and 

bathypelagic zones of the GOM, resulting in mortality and long-term population declines of 

deep-water fish species (Sutton et al. 2022, Romero et al. 2018). This has implications for 

commercially important large pelagic predators that heavily utilize vertically migrating 

mesopelagic prey (Satoh et al. 2004, Iglesias et al. 2023). Recent sampling efforts in the GOM 

(Murawski, unpublished data) have found an abundance of mesopelagic fish prey in the 

stomachs of tuna species (Thunnus albacares, Thunnus atlanticus), more so than epipelagic 

forage fishes. Mesopelagic fishes could offer a reliable source of prey via diel vertical migration 

that makes epipelagic predators less vulnerable to variable environmental conditions and 

ephemeral overlaps with epipelagic prey.  Given the continued expansion of offshore oil rigs into 

deeper water, it is important to consider potential population impacts on large pelagic predators if 

this reliable mesopelagic prey pool were to experience another large-scale mortality event. In 

Chapter 4, Considering mesopelagic forage availability in management strategies for pelagic 
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predators, I used the GOM Atlantis model to conduct a management strategy evaluation for an 

example managed pelagic predator, Thunnus albacares. I tested five candidate harvest control 

rules (HCRs), including one single-species two-point HCR and four ecosystem-based HCRs that 

reduced fishing mortality on the example predator based on the available biomass of 

mesopelagic fish prey. I used mesopelagic fish abundance data collected by the DEEPEND 

Consortium (Sutton et al. in prep) to create three different mesopelagic abundance regimes and 

evaluated the performance of candidate HCRs under each. The overall goal of this chapter was to 

examine whether considering the availability of mesopelagic fish prey could be beneficial in the 

EBFM of large pelagic predators. 

Overall, this research demonstrates the importance of concentrating frontal features and 

vertical trophic connections in the pelagic food web, and the potential benefit of considering 

bottom-up dynamics in EBFM. While I conducted all analyses for this dissertation, each chapter 

benefited from the guidance of co-authors; the collective ‘we’ is used throughout the dissertation 

to reflect this and to prepare the work for journal submission. Dr. Cameron Ainsworth, Dr. 

Nathan Putman, R. Taylor Beyea, and Hallie Repeta were co-authors on Chapter 2. Dr. Cameron 

Ainsworth was my co-author for Chapter 3. Dr.’s Cameron Ainsworth, Holly Perryman, Tracey 

Sutton, and Rosanna Milligan were my co-authors for Chapter 4.  
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CHAPTER 2: MODELING TRANSPORT AND FEEDING OF JUVENILE KEMP’S 

RIDLEY SEA TURTLES ON THE WEST FLORIDA SHELF 

Note to Reader 

This work was published in the journal Ecological Modelling in April of 2024 with co-

authors Nathan F Putman, R. Taylor Beyea, Hallie C. Repeta, and Cameron H. Ainsworth. It is 

included in this dissertation with permission from Elsevier Publishers, which provides a release 

for authors to include published works in theses or dissertations. Reference, permissions, and 

access information for this work is provided in Appendix 1. The online supplement for this 

chapter is provided in this dissertation in Appendix 2.  

 

Abstract 

Survivorship during the juvenile oceanic phase likely acts as a bottleneck on the growth 

of sea turtle populations, and starvation mortality through this period is one potential factor 

influencing year class strength. We combined a simulation of juvenile Kemp’s ridley 

(Lepidochelys kempii) sea turtle dispersal based on an ocean circulation model with an Atlantis 

ecosystem model to examine the spatial overlap of young sea turtles with their prey resources. 

We were particularly interested in whether ocean currents facilitated the movement of juveniles 

from western Gulf nesting beaches to areas in the eastern Gulf along the West Florida Shelf 

(WFS) with adequate food availability. We found that strong frontal gradients on the WFS may 

increase the potential for juveniles to remain offshore in areas of high per capita prey 
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availability, allowing for more feeding opportunities during critical early life stages. 

Additionally, we found that multiple climatological indices are related to Gulf-wide patterns of 

juvenile dispersal, potentially via effects on the Loop Current. Findings from this study hold 

implications for continued population viability of protected sea turtle populations in the Gulf of 

Mexico, as well as other species with early life stages that disperse via ocean currents such as 

commercially important fishes.  

 

Introduction 

Organisms with a dispersive pelagic phase are advected by ocean currents which can 

have a major effect on prey encounter rates, feeding, and ultimately early life history 

survivorship. Several ecological hypotheses have been put forward to explain recruitment 

variability in terms of spatiotemporal overlap with prey resources. Cushing’s (1974, 1990) 

match/mismatch hypothesis posited that the survival of fish larvae is higher in years when 

hatching coincides with peaks in system production (e.g., the spring plankton bloom). If adults’ 

spawning occurs too early or late, less prey is available to newly hatched larvae during this 

essential period of growth and development. A temporal match between reproduction and peak 

availability of prey resources for offspring can be important in determining year class strength.  

The Aberrant Drift hypothesis suggests that larval survivorship depends on advection of larvae to 

favorable habitats via wind and ocean currents (Hjort 1914, 1926, Houde 2008). This is 

particularly critical to species with pelagic larvae that are strongly influenced by currents and can 

therefore be advected to unfavorable settlement sites such as those with limited refuge from 

predation or low prey density.  Juvenile carrying capacity, defined by feeding opportunities and 

available habitat, may be more influential on recruitment than the number of eggs produced 
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(Walters and Martell 2004). These impacts on survival may become more pronounced with time 

as climate change is expected to increase the frequency of phenological mismatches between 

predator and prey (Winton et al. 2013, Visser and Gienapp 2019).  

As with fishes, transport by currents can have a large effect on feeding rates and early 

survivorship of sea turtles (Hays et al. 2010; Putman et al. 2010a; Putman et al. 2012a) that may 

ultimately play a major role in population size (Putman et al. 2010b).  Sea turtles from families 

Cheloniidae and Dermochelyidae have an oceanic phase which is often referred to as the ‘lost 

years’ because historically, so little was known about what happens during this critical period 

(Shillinger et al. 2012, Mansfield et al. 2014, Putman et al. 2020a). On coastal beaches, most sea 

turtle hatchlings enter the water and swim offshore to begin an oceanic stage that lasts for at least 

1-2 years (Bolten et al. 2003, Carr 1987). One critically endangered sea turtle species, Kemp’s 

ridley (Lepidochelys kempii), is primarily found in the Gulf of Mexico (GOM). As hatchlings, 

Kemp’s ridleys emerge from nesting beaches in the Western Gulf and spend several years 

dispersing widely in the open waters of the Gulf of Mexico and Northwest Atlantic Ocean before 

recruiting to nearshore habitats, such as along the West Florida Shelf (WFS) (Putman and 

Mansfield 2015). In these coastal areas, larger juvenile Kemp’s ridleys shift from surface-based 

foraging in floating macroalgal habitats, to benthic foraging (Avens et al. 2020). Once recruited 

to coastal waters, these sea turtles feed on benthic invertebrates in sand-, rock-, macroalgae, or 

live-bottom habitats (Schmid et al. 2003), many of which are dependent on the seagrass beds of 

the WFS for nursery habitat (Ralph et al. 2013). Transport to these coastal foraging areas may 

therefore be crucial for the survivorship of early life stage Kemp’s ridleys. Indeed, a marked 

leveling off of exponential growth in Kemp’s ridley nesting from approximately 2010-2017 was 

suggested to have been due to limited per capita food availability and resulting density-
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dependent effects on population abundance (Caillouet et al. 2018). Sufficient per capita food 

resources may also play an important role in the ability of Kemp’s ridley populations to recover 

following large-scale mortality events (Kocmoud et al. 2019). 

Circulation patterns that influence dispersing juvenile Kemp’s ridley in the deep GOM 

are dominated by the Loop Current and its associated eddies. Circulation over the WFS is 

additionally influenced by buoyancy fluxes (e.g., those caused by changes in temperature and 

freshwater inputs) and wind-driven upwelling (Weisberg et al. 2005). Likewise, the distribution 

and abundances of the juveniles of many commercially and ecologically important species in the 

GOM are influenced by mesoscale circulation features (Gorecki et al. 2022).  For example, high 

larval numbers of several tuna species have been associated with the presence of convergent 

zones and eddies (Cornic and Rooker 2018, Cornic et al. 2018), and the dispersal patterns of the 

highly managed Panulirus argus have been related to the location of gyres and the Loop Current 

(Lara-Hernández et al. 2019). Similarly, survival of the oceanic stage for sea turtles is thought to 

be dependent on their access to oceanographic fronts which concentrate prey in surface waters 

(Carr 1987; Polovina et al. 2000).  For example, these concentrating features in the GOM may 

affect the availability of Sargassum-dominated surface pelagic drift communities, an important 

foraging habitat for Kemp’s ridleys (Witherington et al. 2012).  Thus, circulation patterns on the 

WFS likely play a key role in determining prey availability for juvenile sea turtles. 

Many studies have used ocean circulation models to simulate hatchling sea turtle 

dispersal (Hays et al. 2010; Shillinger et al. 2012, Putman et al. 2013, Putman et al. 2020a). 

However, few if any studies have quantified the prey resources available to young sea turtles 

based on their simulated dispersal patterns (Harrison et al. 2021; Gaspar et al. 2022). Given the 

protected status of nearly all marine sea turtle species, and that transport to areas of adequate 
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food availability is critical for early life survivorship (Hjort 1914, 1926, Houde 2008), 

understanding this potential bottleneck of juvenile sea turtle survival in the oceanic ‘lost years’ is 

crucial to managing populations (DuBois et al. 2021). Sea turtle population dynamics models are 

highly sensitive to assumptions regarding this juvenile oceanic-stage mortality (Kocmoud et al. 

2019); these models could therefore be improved by a better understanding of the physical 

drivers of early-stage mortality. 

Here, we use ICHTHYOP, virtual particle tracking software (Lett et al. 2008), informed 

by physical oceanographic data, sea turtle hatchling production, and estimated sea turtle 

mortality rates to simulate the density and distribution of juvenile Kemp’s ridleys as they leave 

their natal beaches and are transported eastward across the Gulf of Mexico (Putman et al. 2020a). 

An assumption of these sea turtle movement simulations is that they consider only the role of 

ocean circulation, not the role of swimming behavior. Tracking studies indicate that young (1–2-

year-old) Kemp’s ridleys show directed swimming that influences their movement (Putman and 

Mansfield 2015). Previous models that have simulated observed or hypothesized swimming 

behavior have tended to show that ignoring this component of movement results in predicting 

fewer sea turtles in “favorable” locations and more turtles in “unfavorable” locations (Putman et 

al. 2012a, 2012b, 2015a, 2015b). However, ocean circulation dynamics remain the dominant 

driver in spatiotemporal variation in simulated distributions and overall dispersal patterns. More 

importantly, ICHTHYOP predictions based on ocean circulation alone correspond well to 

observed spatiotemporal variation in various metrics of juvenile sea turtle recruitment, 

particularly transport of Kemp’s ridley to the WFS and the eastern U.S. coast (Putman et al. 

2020a, 2020b). We therefore use these model outputs as a first-order approximation of Kemp’s 

ridley distribution that could be combined with a spatially explicit trophic ecosystem model, the 
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Gulf of Mexico Atlantis model (Ainsworth et al. 2015), to quantify the amount of prey available 

to young sea turtles once they reach juvenile habitat on the West Florida Shelf.  This integrates 

estimates of diet composition and consumption rates for Kemp’s ridleys. We then consider 

spatiotemporal consumption patterns alongside hydrodynamic datasets to examine whether 

variations in Gulf circulation patterns may be driving the dispersal of Kemp’s ridley recruits to 

areas of adequate food availability.  

 

Materials and Methods 

Modeling juvenile sea turtle abundance and distribution 

Putman et al. (2020a) simulated the distribution and density of oceanic-stage Kemp’s 

ridley sea turtles using ICHTHYOP (ver. 2.2.1) particle-tracking software (Lett et al. 2008). 

Lagrangian particles representing hatchling sea turtles were released from the primary Kemp’s 

ridley nesting sites in the western Gulf of Mexico (Tamaulipas, Mexico; Veracruz, Mexico; and 

Texas, USA). Throughout the 60 days of peak hatchling emergence, 350 virtual particles were 

released from each region each day. This number was chosen as a balance of computational 

efficiency and ensuring transport pathways within the model were adequately sampled; prior 

modeling work indicates that this number of particles is appropriate (DuBois et al. 2021, Putman 

et al. 2012b, Putman et al. 2013, Putman and He 2013).  Dispersal of hatchlings was then 

modeled by ICHTHYOP using Global HYCOM daily surface velocities at 0.08° resolution for 

years 1993-2017 (Chassignet et al. 2009, HYCOM experiments 19.0, 19.1, 90.9, 91.0, 91.1, 

91.2). ICHTHYOP uses a Runge-Kutta fourth-order time-stepping method to calculate particle 

position each half-hour as they are moved through HYCOM surface velocity fields. For Kemp’s 
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ridley hatchlings, particles from each cohort were tracked for 2.5 years to capture the entire the 

oceanic-stage (Putman et al. 2013, 2015a; Avens et al. 2020). 

An annual time series of Kemp’s ridley hatchling abundance was produced using a 

combination of hatchling release numbers (for Tamaulipas and Texas) and nest counts that were 

converted to hatchling abundance using species-specific egg production and clutch survival 

estimates (for Veracruz) (Putman et al. 2020a). These production estimates were then multiplied 

by annual survival rates obtained from the literature and used to scale ICHTHYOP transport 

predictions and to estimate the abundance of each cohort. We used the median annual survival 

estimate (81.7%) for oceanic-stage juvenile sea turtles obtained from a previous literature review 

(Putman et al. 2015a). This resulted in monthly, spatially distributed estimates of juvenile 

Kemp’s ridley abundance from 1996 through 2017. The annual predicted abundance of juvenile 

Kemp’s ridleys shows close agreement with spatiotemporal variation in the recruitment of 

oceanic-stage sea turtles to coastal waters on the WFS and along the eastern U.S. coast, as 

inferred from strandings, survey, and fisheries dependent bycatch data (Putman et al. 2020a; 

2020b, 2023). For this study, we specifically consider the Gulf of Mexico West Florida Shelf 

extent of the ICHTHYOP model (24.0-30.7°N, -80.1--88.0ºW).  

 

Modeling juvenile sea turtle feeding 

Atlantis is a spatially explicit whole ecosystem model that is utilized worldwide as a tool 

for modeling fisheries and ecology (Fulton et al. 2004, 2011). A complete set of process 

equations is available in Audzijonyte et al. (2017). Atlantis links both high and low-level trophic 

processes via a suite of sub-models that simulate important ecosystem dynamics such as physical 

processes (e.g., hydrodynamics, stratification), biochemistry (e.g., nutrient cycling, primary 

productivity), trophic interactions, habitat dependence, and fisheries production. Species are 
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organized into functional groups aggregated by niche and life history traits, each having 

corresponding sub-models related to reproduction, movement, consumption, and production. The 

flow of nitrogen is tracked between functional groups through trophic interactions.  Consumption 

is modeled based on diet composition, gape limitation, spatiotemporal predator-prey co-

occurrence, and density-dependent feeding functions.  Atlantis uses irregularly shaped polygons 

to capture biophysical provinces and regulatory areas and to reduce computation time in 

homogeneous space.   

The Gulf of Mexico Atlantis model (‘Atlantis-GOM’) was developed by Ainsworth et al. 

(2015).  The map is composed of 66 polygons, each with up to seven depth layers (Figure 1). 

There are 91 functional groups in the Atlantis-GOM model including 61 vertebrate (which are 

age-structured), 19 invertebrate, 6 primary producer, 2 bacteria, and 3 detritus groups. Species of 

commercial or managerial importance belong to their own functional group (e.g., yellowfin tuna, 

white shrimp).  

 

 

Figure 2.1: The spatial extent and polygon geometry for the West Florida Shelf Extent of the 

Atlantis ecosystem model for the Gulf of Mexico (Atlantis-GOM) (inset shows entire GOM 

extent, Ainsworth et al. 2015), light blue shading denotes the continental shelf and slope, darker 

blue indicates the deep GOM. 
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We updated the life history parameters of our Kemp’s ridley sea turtle group based on a 

literature review including maximum lifespan, and age at sexual maturity (Avens et al. 2017, 

Chabot et al. 2021, Chaloupka and Zug 1997, Gallaway et al. 2016, Seney 2008). The updated 

age structure for Kemp’s ridleys can be found in Table A.1. We also updated the model’s diet 

matrix for adult and juvenile Kemp’s ridley using published Gulf of Mexico-specific diet studies 

(Witzell and Schmid 2005, Schmid and Tucker 2018, Servis et al. 2015) (Table A.2). There is a 

major ontogenetic transition in habitat and diet that occurs in Kemps ridley juveniles after the 

first few years of life, at which point oceanic phase juveniles feeding in Sargassum surface drift 

communities begin to move closer inshore and feed more on benthic crustaceans (Schmid and 

Tucker 2018).  The juvenile age classes of the Kemps ridley sea turtle Atlantis functional group 

(KMP) encompass both the pelagic-feeding and benthic-feeding juvenile stages (the only 

ontogenetic diet change modeled is the transition from juveniles to adults).  The locations of the 

sea turtles in Atlantis are driven by ICHTHYOP, and feeding rates on benthic versus pelagic prey 

are partly determined by simulated spatiotemporal predator-prey overlap that is relevant to the 

effects of ocean currents on dispersal patterns.  Where stomach contents included unidentifiable 

fish prey, we evenly divided the diet proportion of fish among taxa most commonly found in 

Gulf shrimp trawl discards (e.g., Lutjanidae, Sciaenidae) as previous studies have suggested that 

Kemp’s ridleys opportunistically scavenge from shrimping boats (Harrington et al. 2005). 

 We used the average Kemp’s ridley abundance outputs from Putman et al.’s (2020a) 

ICHTHYOP model’s median annual survival rate scenario to force the numbers of the three 

juvenile Kemp’s ridley age class stanzas in Atlantis-GOM on monthly time steps. Kemp’s ridley 

numbers were updated (forced) in Atlantis using the ICHTHYOP data in each 30-day time step.  

We used a ray casting method to determine which Atlantis polygon each particle fell into based 
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on their latitude and longitude and numbers were summed for that polygon and timestep. Since 

the ICTHYOP data refers only to juveniles, the numbers were applied only to the juvenile age 

classes (Table A.1).  The numbers of sea turtles in older age classes were scaled relative to 

juveniles using equilibrium age structure estimates from Siler’s competing risk model as 

modified by Barlow and Boveng (1991).  This mortality model is often used for cetaceans 

because it combines a constant rate of mortality with an end-of-life mortality.  The parameters 

we used (based on cetaceans) do not include early life stage mortality, but this is appropriate as 

the first Atlantis age class includes individuals up to 3 years of age and the hatchling phase is 

implicit.  We ran a 22-year Atlantis simulation representing the 1996-2017 extent of ICHTHYOP 

model outputs, with the consumption of prey biomass by each predator age class reported on a 

30-day time step. Note that each Atlantis output reflects only the prey biomass consumed during 

the last day of the 30-day time step period; each output therefore represents the quantity 

consumed by juvenile sea turtles in the system over the course of one day. 

Consumption by predators in Atlantis-GOM follows a Hollings type 2 functional 

response. Parameters defining the slope at the origin and the asymptote of the feeding response 

are functional group-specific and are important tuning parameters used in model calibration. The 

consumption rate for each group is calculated using a weight-consumption relationship and an 

assimilation efficiency term (Audzijonyte et al. 2017). The particular prey groups consumed by a 

given predator are determined by the user-defined diet composition and spatiotemporal overlap. 

Sea turtle position and density were determined by ICHTHYOP outputs, and prey functional 

groups move in space dynamically through diffusion and three types of migration (ontogenetic, 

seasonal, and diel).  Primary production is affected spatiotemporally by physical processes 
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including advection and upwelling.  For this study, consumption within each model polygon was 

summed across depth layers.  

 

Hydrodynamic processes 

We compiled monthly time series and (when available) spatial data for several 

hydrodynamic processes associated with surface circulation patterns in the Gulf of Mexico 

(Table 1). Two such variables were frontal gradient magnitudes (‘FGM’s) calculated from sea 

surface temperature and color index values taken from MODIS satellites and are representative 

of the strength of ocean fronts (Zhang and Hu 2021). We also gathered spatiotemporal upwelling 

data derived from Satellite-Derived Upwelling Indices; in this dataset, negative values indicate 

downwelling (Zhang and Hu 2021). Finally, we utilized monthly time series data for two 

climatological indices that have been associated with important Gulf hydrodynamical patterns: 

the Atlantic Multidecadal Oscillation (AMO) (NOAA 2023a) and North Atlantic Oscillation 

(NAO) (NOAA 2023b). The AMO is a measure of sea-surface temperature variation that is 

associated with density-driven changes in wind and current patterns and Mississippi River 

outflow and has been hypothesized to affect the dispersal patterns of marine taxa with a 

planktonic stage (Enfield et al. 2001, del Monte-Luna et al. 2015, Nye et al. 2014). The NAO has 

been shown to vary on the same amplitude and period as patterns in the Gulf of Mexico Loop 

Current and can change the latitude of the Gulf Stream into which the Loop Current feeds (Lugo-

Fernández 2007, Taylor and Stephens 1998, Weisberg and Liu 2017).  

Spatial hydrodynamic variables were trimmed to the West Florida Shelf geographic 

extent of the ICHTHYOP model.  We were able to compile consistent monthly data for all 

hydrodynamic variables beginning in 2003; all analyses presented in this study therefore 

consider the years 2003-2017. 
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Statistical analyses 

We hypothesized that there is spatiotemporal variation in juvenile Kemp’s ridley 

dispersal, feeding, and food availability, and that these patterns may be related to variations in 

mesoscale hydrodynamic features as these will influence both the distribution of sea turtles and 

their prey. To examine patterns in the spatial distribution of young sea turtles, we used the 

COGravity function in the SDMTools R package (VanDerWal et al. 2014) to calculate the 

geographic center of mass of juvenile Kemp’s ridleys for each monthly time step; the resulting 

center of mass coordinate is calculated using a weighted average of ICHTHYOP abundance 

values.  

We then calculated spatially explicit total consumption (Qi) values for each ICHTHYOP 

grid cell (i) based on consumption in the corresponding Atlantis polygon (Qpolygon) (Equation 

2.1). 

 

𝑄𝑖 = (
𝑄𝑝𝑜𝑙𝑦𝑔𝑜𝑛

𝐶𝑝𝑜𝑙𝑦𝑔𝑜𝑛
) ∙ 𝑁𝑖  (Eq. 2.1) 

 

The consumption of prey by the juvenile age classes of Kemp’s ridley within each Atlantis 

polygon was divided evenly amongst all ICHTHYOP model grid cells that fell within it 

(Cpolygon). This value was then multiplied by a scaling factor representing the abundance of 

Kemp’s ridley juveniles (𝑁i) present at grid cell i from ICHTHYOP. The unit of the resulting (Qi) 

value is therefore still in tonnes of prey consumed by all juvenile Kemp’s ridleys in the WFS 

model domain. This was repeated for each monthly time step.  We then summed across all cells 

within the model domain to create a non-spatial monthly time series of total consumption QI as 

in Equation 2.2.   
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𝑄𝐼 = ∑ 𝑄𝑖𝑖   (Eq. 2.2) 

 

We also calculated a spatially explicit measure of per capita consumption within each 

ICHTHYOP model grid cell (‘pcQi’) to quantify the amount of food available to each individual 

juvenile Kemp’s ridley (Equation 2.3).  

 

𝑝𝑐𝑄𝑖 = ((
𝑄𝑝𝑜𝑙𝑦𝑔𝑜𝑛

𝐶𝑝𝑜𝑙𝑦𝑔𝑜𝑛
) /𝑁𝑖) ∗ 1𝑒

6  (Eq. 2.3) 

 

Total juvenile Kemp’s ridley consumption within each Atlantis polygon (Qpolygon) was divided 

evenly amongst all ICHTHYOP model grid cells that fell within it (Cpolygon). This value was then 

divided by the abundance of Kemp’s ridley juveniles (𝑁i) within ICHYTHOP grid cell i to 

determine the amount of prey consumed by each individual in a given cell. Atlantis quantifies 

prey consumption in tonnes; we converted the units to grams (x 1e6) to be more easily interpreted 

on a per capita scale. To create a monthly time series of per capita consumption (pcQI), we 

averaged pcQi values across all model grid cells as in Equation 2.4, where C is the total number 

of grid cells in the WFS model domain.  

 

𝑝𝑐𝑄𝐼 = (∑ 𝑝𝑐𝑄𝑖𝑖 )/𝐶  (Eq. 2.4) 

 

 We looked for temporal (seasonal, annual) differences in abundance, overall 

consumption, and per capita consumption using one-way ANOVAs and, if statistically 

significant, post-hoc Tukey Honest Significant Difference (HSD) tests for multiple comparisons. 

For seasonal analyses we defined winter as December 1st – February 28/29th, spring as March 1st- 



23 

 

May 31st, summer as June 1st – August 31st, and fall as September 1st – November 30th. To test 

the hypothesis that dispersal patterns dictate feeding opportunities during critical early life stages 

we identified periods of high and low per capita feeding by dividing our 15 model years into 

terciles based on mean pcQI values. We considered the first and third terciles as ‘low pcQI’ and 

‘high pcQI’ groups, respectively. and compared latitude and longitude components of the center 

of mass of juveniles during these times using two-sample t-tests.  

Monthly timeseries of the hydrodynamic variables in Table 1 were compared against the 

latitudinal and longitudinal center of mass components from ICHTHYOP abundance data using 

linear regression models to understand circulation and climate drivers behind broad scale 

movement patterns. We applied a feasible generalized least squares estimation method to account 

for heteroscedasticity in the data. 

 

Results 

Temporal patterns in consumption 

One-way ANOVAs revealed statistically significant patterns in juvenile abundance and 

overall consumption (QI) between at least seasons (abundance: F(3, 176) = 8.992, p<0.001; QI: 

F(3, 176) = 3.286, p = 0.022). We found no statistically significant difference in per capita 

consumption (pcQI) between seasons (p = 0.158). Seasonal trends for all variables are visualized 

in Figure 2. 

Post-hoc Tukey HSD tests for multiple comparisons found that the abundance of juvenile 

Kemp’s ridleys was not significantly different between winter and spring or summer and fall but 

differed significantly between spring and fall, spring and summer, and winter and fall (Table 2). 

Abundance in general was higher in summer and fall months than in spring and winter months. 
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The only statistically significant difference in total consumption (QI) between seasons was found 

between winter and summer, with summer having higher QI (p =0.029).  

 

Table 2.1: Gulf of Mexico hydrodynamic variables considered in statistical analyses. 
Variable Units Spatial? Source 

Sea surface temperature frontal 

gradient magnitude (SST-FGM) 
ΔSST (°C)/km Yes Zhang and Hu 2021 

Color index frontal gradient 

magnitude (CI-FGM) 
ΔCI/km Yes Zhang and Hu 2021 

Upwelling index (UI) None  Yes 

Zhang and Hu 2021, FSU 

Center for Ocean-

Atmospheric Prediction 

Studies 

Atlantic Multidecadal Oscillation 

index (AMO) 
None  No 

NOAA Physical Sciences 

Laboratory 

North Atlantic Oscillation index 

(NAO) 
None  No 

NOAA Center for 

Weather and Climate 

Prediction 

 

 

Figure 2.2: System-wide seasonal average values of abundance (a), total prey consumption (QI) 

(b), and per capita consumption (pcQI) (c) of juvenile Kemp’s ridleys. Letter groupings represent 

significant differences (p <0.05) between groups determined via post-hoc Tukey HSD tests; if 

any letters are shared, groups were not statistically distinct. Error bars are +/- one standard 

deviation around the mean. Values are shown log transformed. 
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Table 2.2: Results from post-hoc Tukey tests comparing season pairs for juvenile Kemp’s ridley 

sea turtle abundance and total consumption (QI). Bolded values indicate statistical significance at 

p < 0.05. 

  log(abundance) (N) log(QI) (tonnes) 

  Diff. p 95% CI Diff. P 95% CI 

Spring-Fall -0.44 <0.001 (-0.70,-0.18) 0.21 0.502 (-0.18,0.60) 

Summer-Fall -0.03 0.991 (-0.28,0.23) 0.29 0.216 (-0.10,0.68) 

Winter-Fall -0.28 0.029 (-0.53,-0.02) -0.13 0.823 (-0.52,0.26) 

Summer-Spring 0.41 <0.001 (0.15,0.67) 0.08 0.949 (-0.31,0.47) 

Winter-Spring 0.16 0.357 (-0.09,0.42) -0.34 0.111 (-0.73,0.05) 

Winter-Summer -0.25 0.062 (-0.50,0.01) -0.42 0.029 (-0.81,-0.03) 

 

Because we did not identify any seasonal patterns in per capita consumption (pcQI), we 

further examined annual trends to determine any drivers of variability in food availability (Figure 

3).  A one-way ANOVA was conducted to compare average pcQI in the study system between 

years; abundance values were log-transformed and homogeneity of variance was confirmed 

using a Shapiro-Wilk test. We found statistically significant differences in pcQI between years 

(F(14, 165) = 3.775, p<0.001); the results from post-hoc Tukey HSD tests can be found in Table 

A.3.  

We divided our 15 model years into terciles based on mean pcQI values; the five years 

with the highest average pcQI in the study system were, in chronological order, 2005, 2007, 

2012, 2014, and 2017.  The five years with the lowest average per capita Q were 2003, 2006, 

2008, 2011, and 2013. These years comprised our ‘low pcQI’ and ‘high pcQI’ groups, 

respectively. 

 

Spatial patterns in consumption 

Spatial distribution of juvenile (i.e., sexually immature) sea turtle total consumption (QI) 

and per capita consumption (pcQI) are shown in Figure 4. In winter months, when both 
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Figure 2.3: Average per capita consumption (pcQI) by juvenile Kemp’s ridleys relative to the 

average of all time steps combined (dashed line). The black line represents yearly averages, with 

values averaged across all 30-day timesteps within in a given year. The shaded gray area 

represents +/- one standard deviation around the mean.  
 

abundance and total consumption are significantly lower relative to other seasons, the juveniles 

that are present converge in the northern Gulf along the coasts of Alabama and the panhandle of 

Florida; QI is therefore also concentrated in this area. During the summer, when both abundance 

and QI are significantly higher relative to other seasons, feeding and abundance are additionally 

concentrated inshore along the southwest coast of Florida (including the Tampa Bay and 

Charlotte Harbor regions). Spatial patterns in pcQI do not appear to vary much between seasons, 

which is not surprising given the insignificant one-way ANOVA results. 

There was a significant difference in the east-west distribution (i.e., longitude) of juvenile 

Kemp’s ridleys between years of low per capita Q (M = -84.9, SD = 1.3) and high per capita Q 

(M = -85.6, SD = 0.9); t(105) = 3.444, p = <0.001 (Table 3). Specifically, the center of modeled 

mass of juvenile Kemp’s ridleys was further west (i.e., offshore) in years with high pcQI. This 

was visually supported by the spatial pattern of pcQI in Figure 4. Because the abundance values 

used to calculate the center of gravity values were significantly different in the summer and fall 
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from the winter and spring (Table 2), we also divided the pcQI data seasonally in this way within 

high/low groups to determine if any annual spatial relationships were being temporally driven. 

The results of both seasonal two-sample t-tests were statistically significant at p < 0.05, 

suggesting that the relationship between juvenile distribution and per capita consumption is 

consistent year-round and that there is no seasonal component (Table 3). There was not a 

significant relationship between per capita consumption and the north-south distribution of 

juvenile Kemp’s ridleys for any grouping. 

 

Hydrodynamic relationships 

Results from linear regressions of hydrodynamics variables against abundance center of 

mass are shown in Table 4. Many hydrodynamic variables were significantly related to the 

horizontal component of juvenile Kemp’s ridley distribution (east–west center of mass). Note 

that a negative slope in a significant relationship with center of mass longitude or latitude 

indicates a more western (or offshore) or southern distribution, respectively, with higher values 

of a given predictor variable. Our results suggest that movement of juveniles inshore towards the  

west coast of Florida is more likely during years with high AMO and low NAO indices. The 

center of mass of sea turtles was further offshore on the WFS when ocean fronts (FGMs) were 

stronger. The vertical (north–south center of mass) distribution of sea turtles was significantly 

related to patterns in the upwelling and NAO indices. Higher NAO index values, which follow 

patterns in the Loop Current, were associated with a more northern distribution of juveniles. In 

contrast, results suggested that higher upwelling may be associated with more southward 

advection.  
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Figure 2.4: Seasonal average maps of juvenile Kemp’s ridley sea turtle abundance (Atlantis age 

groups age 0 -3, Table A.1), total prey consumption (QI), and per capita consumption (pcQI). 

Seasonal averages encompass the years 2003-2017. Values are shown log-transformed. Maps 

have a 0.08° spatial resolution.  
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Table 2.3: Results from two-sample t-tests assuming unequal variances comparing juvenile Kemp’s ridley sea turtle abundance center 

of mass values between years of low and high per capita consumption (pcQI). p-values are two-tailed, t-tests assumed unequal 

variances, bolded values indicate significance at p < 0.05. 
  pcQI 

grouping 
All months (n = 60)                                                                     Winter and Spring only (n = 30)                                                   Summer and Fall only (n = 30) 

  Mean SD T p Mean SD t p Mean SD t p 

C
en

te
r 

 

o
f 

 M
as

s 
  
  

(N
-S

) Low 28.5 1.1 
-1.273 

(df = 109) 
0.206 

28.5 1.1 
-0.416  

(df = 54) 
0.679 

28.4 1.1 
-1.398 

 (df = 53) 
0.168 

High 28.7 0.8 28.6 0.9 28.8 0.8 

C
en

te
r 

 

o
f 

M
as

s 
  

  
 

(E
-W

) Low -84.9 1.3 
3.444     

(df = 105) 
<0.001 

-85.0 1.3 
2.359  

(df = 53) 
0.022 

-84.9 1.3 
2.473 

 (df = 50) 
0.017 

High -85.6 0.9 -85.6 0.9 -85.6 0.9 
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Table 2.4: Results of linear regressions conducted on monthly time series of hydrodynamic 

predictor variables and the center of mass of juvenile Kemp’s ridleys from 2003 to 2017. 

Regression models used a feasible generalized least squares estimation method. Bolded values 

highlight significant results at p <0.05. Negative slope values indicate a more western or 

southern distribution of juvenile sea turtles with increasing predictor values. 

       Center of Mass (E-W)           Center of Mass (N-S)      

  slope F R2 p slope F R2 p 

CI-FGM -22063.68 7.39 0.04 0.007 518.04 0.01 0.00 0.943 

SST-FGM -40.24 6.37 0.04 0.012 -16.62 1.42 0.01 0.236 

Upwelling index 0.99 0.15 0.00 0.695 -6.60 9.67 0.05 0.002 

NAO index -0.22 8.90 0.05 0.003 0.14 4.55 0.03 0.034 

AMO index 1.90 12.08 0.07 0.001 -0.58 1.42 0.01 0.235 

 

Discussion 

We identified seasonal patterns in both the abundance and overall consumption of prey by 

juvenile Kemp’s ridleys in the WFS region of the GOM. In winter months, both the number of 

juveniles and the amount of prey consumed in the system was significantly lower than in other 

seasons. Conversely, juvenile abundance and total consumption was significantly higher in 

summer months. Because abundance and consumption followed similar seasonal patterns, there 

was no significant difference in per capita consumption between seasons. Ectothermic organisms 

such as sea turtles would be expected to have a lessened metabolic rate (and therefore 

consumption) in winter months, but this effect was not reflected in our model outputs. 

In the summer when there is high abundance and overall consumption, juvenile Kemp’s 

ridleys are concentrated in inshore areas including areas of high seagrass density (Gorecki et al. 

2022) and large estuaries such as Tampa Bay and Charlotte Harbor. While these inshore habitats 

are rich with benthic invertebrate prey (Ralph et al. 2013, Darnell and Dutton 2015), the arrival 

of high numbers of juvenile Kemp’s ridleys will result in increased competition and less 

available food for each individual sea turtle. This was reflected in our results, which found a 

more inshore distribution (center of mass) of juvenile Kemp’s ridleys in years with the lowest 
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average per capita consumption rates. Spatial patterns showed areas of high per capita 

consumption over the deep shelf (Figure 4).  We hypothesize that this may be reflective of areas 

of high offshore production such as convergence zones, which we discuss more below. The 

success of these young sea turtles may therefore depend on whether oceanic conditions favor 

being retained offshore over the WFS where there is higher per capita prey availability during 

critical periods of growth. We found no seasonality to the relationship between the spatial 

distribution of juveniles and per capita consumption, although existing literature suggests that 

juvenile Kemp’s ridleys migrate somewhat southward in the Gulf of Mexico during winter 

months (Schmid and Witzell 2006, Coleman et al. 2017).  

A significant relationship was identified only between per capita consumption and the 

horizontal component of juvenile distribution. Therefore, we focus on the effect of circulation on 

east-west advection and retention in good foraging habitat for this discussion. The timeseries of 

FGM and upwelling index variables used in these analyses were created using only data from the 

WFS model domain, so results should be considered on this spatial extent. However, NAO and 

AMO indices were not spatially resolved, so patterns may reflect processes happening on a more 

Gulf-wide scale. In the WFS region, we found that the strength of ocean frontal features, such as 

those indicated by SST gradients, were positively associated with a more westward (i.e., 

offshore) distribution of juvenile sea turtles. Because per capita consumption was higher 

offshore over the shelf, these fronts could be facilitating the retention of juveniles in areas of 

high food availability (e.g., sargassum and sargassum-associated species). Satellite mapping in 

the Gulf of Mexico shows agreement between the location of frontal features and aggregation of 

Sargassum mats (Zhang and Hu 2021). On the WFS, both SST and CI fronts were significantly 

correlated to coastal upwelling indices in southern regions but not in the north; this suggests that 
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local environmental dynamics may be driving front features in this area (Zhang and Hu 2021, 

Weisberg and He 2003). Riverine discharge does not appear to be a local driver of SST and CI 

frontal strength on the WFS; discharge from the Apalachicola River was not found to be 

correlated with frontal strength on the northern WFS, and there are no major river systems that 

drain onto the southern WFS (Zhang and Hu 2021).  

The NAO index, which may serve as a proxy for the strength of the Loop Current (Lugo-

Fernández 2007, Taylor and Stephens 1998, Weisberg and Liu 2017), was positively associated 

with a more western distribution of juvenile Kemp’s ridleys in the model domain.  Periods of 

high Loop Current strength may retain juveniles in offshore areas with high feeding rates. On a 

global scale, the NAO index has been increasing at a rate inconsistent with natural variability in 

response to increasing greenhouse gases and sea surface temperatures (Gillett et al. 2003). On the 

regional WFS scale, the NAO index has been observed to vary on the same amplitude as the 

Loop Current (Lugo-Fernández 2007, Taylor and Stephens 1998, Weisberg and Liu 2017), but, 

conversely to the NAO, the Loop Current is expected to decrease in magnitude with warming sea 

surface temperatures (Liu et al. 2012). Climate change implications for the correlations found 

here between the east-west distribution of juvenile sea turtles and the NAO climatological index 

are therefore difficult to predict on the WFS spatial scale of this study. If increasing sea surface 

temperatures result in a future weakening of the Loop Current, this may result in more inshore 

(eastern) transport of juvenile Kemp’s ridley sea turtles to where feeding opportunities are lower. 

We found that the AMO climatological index was related to the horizontal dispersal of 

juvenile sea turtles, but in the opposite direction of the relationship with NAO.  Sea turtles were 

more eastward/inshore during times of high AMO values. The AMO index is adjusted for 
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anthropogenic warming (Enfield et al. 2001) and fluctuates naturally between warm and cold 

periods. Warm AMO periods, the current AMO state since 1995, are associated with lower 

Mississippi River output (Enfield et al. 2001).  This lessened output of freshwater may be 

impacting density-driven circulation patterns. Interestingly, AMO has been negatively correlated 

with important prey species (e.g., Callinectes sapidus) for Kemp’s ridley in the Gulf of Mexico 

(Nye et al. 2014, Sanchez-Rubio et al. 2011). Correlations between the AMO and other sea turtle 

species suggest relationships may be complex. The abundance of hawksbill sea turtles 

(Eretmochelys imbricata) in the southern GOM shows negative associations with the AMO (del 

Monte-Luna et al. 2012). High AMO periods positively impact juvenile loggerhead sea turtle 

(Caretta caretta) recruitment in the North Atlantic as higher SSTs release physiological 

temperature restraints on hatchlings (Bostrom et al. 2010, Van Houtan and Halley 2011); 

however, juveniles experience less low-temperature stress in a subtropical system such as the 

Gulf (Arendt et al. 2022). When the AMO cycles back to a cool phase, cooler sea surface 

temperatures and increased Mississippi River outflow will change density-driven circulation 

patterns, particularly in the northern Gulf. At the WFS spatial extent, the positive correlation 

found here between the AMO index and a more eastward/inshore distribution of juvenile Kemp’s 

ridleys suggests that young sea turtles may be more westward/offshore during cool AMO phases.  

 Patterns identified in this study may shift over time as the local hydrodynamics that drive 

juvenile Kemp’s ridley feeding rates are affected by climate change (Arendt et al. 2022). Frontal 

gradients over the WFS that contribute to the retention of juvenile sea turtles offshore in the 

winter may weaken in magnitude with rising sea surface temperatures. A warmer climate is 

predicted to reduce the strength, transport, and northern penetration of the Loop Current into the 

GOM (Liu et al. 2012). On the WFS, these new circulation patterns may result in less time 
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retained offshore in areas of high per capita feeding opportunities and a higher risk of juvenile 

starvation mortality. Because the modeling conducted in the present study assumed passive 

transport, these potential early life history bottlenecks should be considered as mainly relevant to 

the early oceanic stage of the Kemp’s ridley lifecycle and are less relevant to the older, actively 

swimming juvenile stages. The consequences of these changing patterns may also extend to other 

species with passive pelagic transport, such as the larvae of commercially important fish species. 

Several Thunnus species have been found to concentrate in high densities on the edges of frontal 

features in the Gulf of Mexico where productivity is high, and mesoscale features associated 

with the Loop Current may serve to partition nursery habitat between tuna species (Cornic et al. 

2018). For example, the highest densities of blackfin (Thunnus atlanticus) and yellowfin tuna 

(Thunnus albacares) larvae in the northern Gulf occurred in years of high northward Loop 

Current penetration (Cornic et al. 2018). Weaker frontal features and lessened Loop Current 

penetration due to climate change may therefore have population-level effects on many Gulf of 

Mexico species.  

In addition to being a potential area of high juvenile Kemp’s ridley abundance and 

resource competition, the approximate area from Tampa Bay to south of Charlotte Harbor is also 

the most vulnerable area to harmful algal blooms (HABs) (Weisberg et al. 2019). Red tide caused 

by the toxic dinoflagellate Karenia brevis is detrimental to many GOM species. While we did not 

simulate HAB events in this study, spatial overlap with red tide blooms could lead to mortality in 

juvenile sea turtles either directly or indirectly through reduction in prey species or consumption 

of contaminated prey (Foley et al. 2019, Gravinese et al. 2019, Perrault et al. 2014).  The spatial 

extent of red tide blooms is influenced by similar hydrodynamic patterns that disperse hatchling 

Kemp’s ridleys (Weisberg et al. 2019), and the extent of juvenile dispersal into areas of high red 
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tide concentration may therefore vary year-to-year depending on these mesoscale circulation 

features. Offshore retention on the WFS by frontal features and the Loop Current may further 

benefit juvenile sea turtles by keeping them out of areas where the food web has been highly 

impacted by HABs. Additionally, recreational fishing bycatch provides another potential source 

of mortality to juvenile Kemp’s ridley sea turtles when they reach inshore areas (Reimer et al. 

2023). 

Another potentially important mechanism that we did not directly address in this study 

given the limits of our modeling framework was the presence and probable benefit of Sargassum 

mats. Previous work has indicated that oceanic stage (age class 0, Table A.1) Kemp’s ridleys 

utilize Sargassum for shelter and foraging (Witherington et al. 2012).  Hydrodynamic patterns 

likely play a role in these feeding associations as well, as small juvenile sea turtles have been 

found to utilize mesoscale circulation features that concentrate Sargassum and associated prey 

items (Gaube et al. 2017).  There is extensive ongoing work to map the distribution and transport 

of Sargassum in the Gulf of Mexico via satellite (e.g. Zhang et al. 2024). Gulf-wide patterns of 

Sargassum distribution are heavily driven by the Loop Current and resulting eddies, and locally 

on the West Florida Shelf Sargassum mats align with the ocean frontal features used as predictor 

variables in this study (Zhang et al. 2024, Zhang and Hu 2021). Atlantis does not have the fine 

spatial resolution to model individual macroalgae aggregations; however, Sargassum distribution 

could be simulated via ICHTHYOP and assessed for overlap with juvenile Kemp’s ridleys in a 

future study (Putman et al. 2018, Putman et al. 2020c). The concentrating features that we 

examined here combined with the spatial patterns of per capita consumption suggest that 

offshore feeding opportunities such as Sargassum mats may be important for growth during early 

life history stages of Kemp’s ridley sea turtles. Any disruptions to these concentrating features, 
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such as the potential climate-induced changes discussed above, may have negative implications 

for Kemp’s ridley conservation by increasing the potential for early life stage mortality. These 

results have further implications for the resilience of Kemp’s ridley populations as sufficient per 

capita feeding is an important component of successful population recovery following large-

scale mortality events such as HABs or oil spills (Kocmoud et al. 2019). 

 

Conclusions 

The relationships described here between annual oceanic circulation patterns and feeding 

opportunities for immature Kemp’s ridleys provide insight on the continued viability of protected 

sea turtle populations in the Gulf of Mexico. Specifically, the positive association between the 

strength of hydrodynamic circulation components and the retention of juveniles in favorable 

feeding areas offshore may be of interest in conservation and management decisions. Weakening 

of these regional circulation features in future climate change scenarios could have a negative 

impact on the feeding success and survival of juvenile Kemp’s ridleys. Given that this study used 

passive ICHTHYOP particles to simulate juvenile sea turtles, our findings may also be 

applicable to other species with pelagic early life histories that have been shown to utilize 

mesoscale concentrating features for foraging purposes such as large pelagic fishes (Cornic and 

Rooker 2018, Cornic et al. 2018). The patterns that we have identified in this paper regarding the 

relationship of offshore feeding opportunities, mesoscale circulation patterns, and potential 

climate change implications could therefore also be relevant for fisheries stock recruitment and 

management.  

 

 



37 

References 

Ainsworth, C.H., Schirripa, M. J. and Morzaria-Luna, H.N., 2015. An Atlantis ecosystem 

model for the Gulf of Mexico supporting integrated ecosystem assessment. US Dept. 

Comm. NOAA Technical Memorandum NMFS-SEFSC-676: 149p. 

Arendt, M.D., Webster, R.P. and Schwenter, J.A., 2022. High annual survival suggested by size 

structure of Kemp’s ridley sea turtles captured by coastal research trawling in the

 Northwest Atlantic Ocean since 1990. Endangered Species Research, 48, pp.107-121. 

Audzijonyte, A., Gorton, R., Kaplan, I. and Fulton, E.A., 2017. Atlantis User’s Guide Part I: 

General Overview, Physics and Ecology. 

Avens, L., Goshe, L.R., Coggins, L., Shaver, D.J., Higgins, B., Landry Jr, A.M. and Bailey, R., 

2017. Variability in age and size at maturation, reproductive longevity, and long-term 

growth dynamics for Kemp's ridley sea turtles in the Gulf of Mexico. PloS one, 12(3), 

p.e0173999. 

Avens, L., Ramirez, M.D., Hall, A.G., Snover, M.L., Haas, H.L., Godfrey, M.H., Goshe, L.R., 

Cook, M. and Heppell, S.S., 2020. Regional differences in Kemp’s ridley sea turtle 

growth trajectories and expected age at maturation. Marine Ecology Progress Series, 654, 

pp.143-161.  

Barlow, J. and Boveng, P., 1991. Modeling age‐specific mortality for marine mammal 

 populations. Marine Mammal Science, 7(1), pp.50-65. 

Bolten, A.B., Lutz, P.L., Musick, J.A. and Wyneken, J., 2003. Variation in sea turtle life history 

 patterns: neritic vs. oceanic developmental stages. The Biology of Sea Turtles, 2, pp.243- 

 257. 

Bostrom, B.L., Jones, T.T., Hastings, M. and Jones, D.R., 2010. Behaviour and physiology: the 

 thermal strategy of leatherback turtles. PLoS One, 5, p.e13925. 

Caillouet, C.W., Raborn, S.W., Shaver, D.J., Putman, N.F., Gallaway, B.J. and Mansfield, K.L., 

2018. Did Declining Carrying Capacity for the Kemp’s Ridley Sea Turtle Population 

Within the Gulf of Mexico Contribute to the Nesting Setback in 2010- 2017? Chelonian 

Conservation and Biology, 17, pp.123–133. 

Carr, A., 1987. New perspectives on the pelagic stage of sea turtle development. Conservation 

Biology, 1(2), pp.103-121. 

Chabot, R.M., Welsh, R.C., Mott, C.R., Guertin, J.R., Shamblin, B.M. and Witherington, B.E., 

2021. A sea turtle population assessment for Florida's Big Bend, Northeastern Gulf of 

Mexico. Gulf and Caribbean Research, 32(1), pp.19-33. 

Chaloupka, M. and Zug, G.R., 1997. A polyphasic growth function for the endangered Kemp's  

 ridley sea turtle, Lepidochelys kempii. Fishery Bulletin, 95(4), pp.849-856. 

Chassignet, E.P., Hurlburt, H.E., Metzger, E.J., Smedstad, O.M., Cummings, J.A., Halliwell, 

G.R., Bleck, R., Baraille, R., Wallcraft, A.J., Lozano, C. and Tolman, H.L., 2009. US 

GODAE: global ocean prediction with the HYbrid Coordinate Ocean Model 

(HYCOM). Oceanography, 22(2), pp.64-75. 

Coleman, A.T., Pitchford, J.L., Bailey, H. and Solangi, M., 2017. Seasonal movements of 

immature Kemp's ridley sea turtles (Lepidochelys kempii) in the northern Gulf of 

Mexico. Aquatic Conservation: Marine and Freshwater Ecosystems, 27(1), pp.253-267.  

Cornic, M. and Rooker, J.R., 2018. Influence of oceanographic conditions on the distribution and 

abundance of blackfin tuna (Thunnus atlanticus) larvae in the Gulf of Mexico. Fisheries 

Research, 201, pp.1-10. 



38 

Cornic, M., Smith, B.L., Kitchens, L.L., Alvarado Bremer, J.R. and Rooker, J.R., 2018. 

Abundance and habitat associations of tuna larvae in the surface water of the Gulf of 

Mexico. Hydrobiologia, 806(1), pp.29-46. 

Cushing, D.H., 1974. The natural regulation of fish populations. Sea fisheries research, pp.399 

411. 

Cushing, D.H., 1990. Plankton production and year-class strength in fish populations: an update 

of the match/mismatch hypothesis. Advances in Marine Biology, 26, pp.250–93. 

Darnell, K.M. and Dunton, K.H., 2015. Consumption of turtle grass seeds and seedlings by crabs 

in the western Gulf of Mexico. Marine Ecology Progress Series, 520, pp.153-163. 

del Monte-Luna, P., Guzmán-Hernández, V., Cuevas, E.A., Arreguín-Sánchez, F. and Lluch 

Belda, D., 2012. Effect of North Atlantic climate variability on hawksbill turtles in the 

Southern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology, 412, 

pp.103-109. 

del Monte-Luna, P., Villalobos, H. and Arreguín-Sánchez, F., 2015. Variability of sea surface 

temperature in the southwestern Gulf of Mexico. Continental Shelf Research, 102, pp.73- 

79. 

DuBois, M.J., Putman, N.F. and Piacenza, S.E., 2021. A global assessment of the potential for 

ocean-driven transport in hatchling sea turtles. Water, 13(6), p.757-777. 

Enfield, D.B., Mestas‐Nuñez, A.M. and Trimble, P.J., 2001. The Atlantic multidecadal 

oscillation and its relation to rainfall and river flows in the continental US. Geophysical 

Research Letters, 28(10), pp.2077-2080. 

Fulton, E.A, Parslow, J.S, Smith, A.D.M. and Johnson, C.R., 2004.  Biogeochemical marine 

ecosystem models 2.The effect of physiological data on model performance. Ecological 

Modelling, 173, pp.371–406. 

Fulton, E.A., Link, J.S., Kaplan, I., Savina-Rolland, M., Johnson, P., Ainsworth, C.H., Horne, P., 

Gorton, R., Gamble, R.J., Smith, A.D.M. and Smith, D.C., 2011.  Lessons in Modelling 

and Management of Marine Ecosystems: The Atlantis Experience.  Fish and Fisheries, 

12(2), pp.171-188. 

Foley, A.M., Stacy, B.A., Schueller, P., Flewelling, L.J., Schroeder, B., Minch, K., Fauquier, 

D.A., Foote, J.J., Manire, C.A., Atwood, K.E. and Granholm, A.A., 2019. Assessing 

Karenia brevis red tide as a mortality factor of sea turtles in Florida, USA. Diseases of 

Aquatic Organisms, 132(2), pp.109-124. 

Gallaway, B.J., Gazey, W.J., Caillouet Jr, C.W., Plotkin, P.T., Abreu Grobois, F.A., Amos, A.F., 

Burchfield, P.M., Carthy, R.R., Castro Martínez, M.A., Cole, J.G. and Coleman, A.T., 

2016. Development of a Kemp's ridley sea turtle stock assessment model. Gulf of Mexico 

Science, 33(2), p.138-157. 

Gaspar, P., Candela, T. and Shillinger, G.L., 2022. Dispersal of juvenile leatherback turtles from 

different Caribbean nesting beaches: A model study. Frontiers in Marine Science, 9, 

p.959366.  

Gaube, P., Barcelo, C., McGillicuddy Jr, D.J., Domingo, A., Miller, P., Giffoni, B., Marcovaldi, 

 N. and Swimmer, Y., 2017. The use of mesoscale eddies by juvenile loggerhead sea 

 turtles (Caretta caretta) in the southwestern Atlantic. PloS one, 12(3), p.e0172839. 

Gorecki, R., Schrandt, M.N. and Switzer, T.S., 2022. Evidence of shared trends in juvenile fish 

 recruitment to nearshore seagrass habitats of the eastern Gulf of Mexico. Marine Ecology 

 Progress Series, 694, pp.157-174. 

 



39 

Gravinese, P.M., Saso, E., Lovko, V.J., Blum, P., Cole, C. and Pierce, R.H., 2019. Karenia 

 brevis causes high mortality and impaired swimming behavior of Florida stone crab 

 larvae. Harmful algae, 84, pp.188-194. 

Harrington, J.M., Myers, R.A. and Rosenberg, A.A., 2005. Wasted fishery resources: discarded 

by‐catch in the USA. Fish and fisheries 6(4), pp.350-361. 

Harrison, C.S., Luo, J.Y., Putman, N.F., Li, Q., Sheevam, P., Krumhardt, K., Stevens, J. and 

Long, M.C., 2021. Identifying global favourable habitat for early juvenile loggerhead sea 

turtles. Journal of the Royal Society Interface, 18(175), p.20200799.  

Hays, G.C., Fossette, S., Katselidis, K.A., Mariani, P. and Schofield, G., 2010. Ontogenetic 

development of migration: Lagrangian drift trajectories suggest a new paradigm for sea 

turtles. Journal of the Royal Society Interface, 7(50), pp.1319-1327.  

Hjort, J., 1914. Fluctuations in the Great Fisheries of Northern Europe Viewed in the Light of 

Biological Research. Rapports et Procès-Verbaux des Réunions, Conseil International 

pour l'Exploration de la Mer, 20, pp. 1-13. 

Hjort, J., 1926. Fluctuations in the year classes of important food fishes. ICES Journal of Marine 

Science, 1(1), pp.5-38. 

Houde, E.D., 2008. Emerging from Hjort's shadow. Journal of Northwest Atlantic Fishery 

Science, 41, pp.53-70.  

Kocmoud, A.R., Wang, H.H., Grant, W.E. and Gallaway, B.J., 2019. Population dynamics of the 

endangered Kemp’s ridley sea turtle following the 2010 oil spill in the Gulf of Mexico: 

Simulation of potential cause-effect relationships. Ecological Modelling, 392, pp.159- 

178. 

Lara-Hernández, J.A., Zavala-Hidalgo, J., Sanvicente-Añorve, L. and Briones-Fourzán, P., 2019. 

Connectivity and larval dispersal pathways of Panulirus argus in the Gulf of Mexico: A 

numerical study. Journal of Sea Research, 155, p.101814. 

Lett, C., Verley, P., Mullon, C., Parada, C., Brochier, T., Penven, P. and Blanke, B., 2008. A 

Lagrangian tool for modelling ichthyoplankton dynamics. Environmental Modelling & 

Software, 23(9), pp.1210-1214. 

Liu, Y., Lee, S.K., Muhling, B.A., Lamkin, J.T. and Enfield, D.B., 2012. Significant reduction of 

the Loop Current in the 21st century and its impact on the Gulf of Mexico. Journal of 

Geophysical Research: Oceans, 117(C5). 

Lugo-Fernández, A., 2007. Is the Loop Current a chaotic oscillator?. Journal of physical 

oceanography, 37(6), pp.1455-1469. 

Mansfield, K.L., Wyneken, J., Porter, W.P. and Luo, J., 2014. First satellite tracks of neonate sea 

turtles redefine the ‘lost years’ oceanic niche. Proceedings of the Royal Society B: 

Biological Sciences, 281(1781), p.20133039. 

NOAA 2023a. AMO (Atlantis Multidecadal Oscillation) Index. Online database. National 

Oceanographic and Atmospheric Administration Physical Sciences Library. Available: 

https://psl.noaa.gov/data/timeseries/AMO/. Date accessed: August 22, 2022.  

NOAA 2023b. North Atlantis Oscillation (NAO). Online database. National 

Oceanographic and Atmospheric Administration Center for Weather and Climate 

Prediction. Available: 

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml. Date accessed: 

August 22, 2022.  

 

 

https://psl.noaa.gov/data/timeseries/AMO/
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml


40 

Nye, J.A., Baker, M.R., Bell, R., Kenny, A., Kilbourne, K.H., Friedland, K.D., Martino, E., 

Stachura, M.M., Van Houtan, K.S. and Wood, R., 2014. Ecosystem effects of the Atlantic 

multidecadal oscillation. Journal of Marine Systems, 133, pp.103-116. 

Perrault, J.R., Schmid, J.R., Walsh, C.J., Yordy, J.E. and Tucker, A.D., 2014. Brevetoxin 

exposure, superoxide dismutase activity and plasma protein electrophoretic profiles in 

wild-caught Kemp's ridley sea turtles (Lepidochelys kempii) in southwest 

Florida. Harmful Algae, 37, pp.194-202. 

Polovina, J.J., Kobayashi, D.R., Parker, D.M., Seki, M.P. and Balazs, G.H., 2000. Turtles on the 

edge: movement of loggerhead turtles (Caretta caretta) along oceanic fronts, spanning 

longline fishing grounds in the central North Pacific, 1997–1998. Fisheries 

Oceanography, 9(1), pp.71-82.  

Putman, N.F., Shay, T.J. and Lohmann, K.J., 2010a. Is the geographic distribution of nesting in 

the Kemp’s ridley turtle shaped by the migratory needs of offspring? Integrative 

Computional Biology, 50, pp.305-314. 

Putman, N.F., Bane, J.M. and Lohmann, K.J., 2010b. Sea turtle nesting distributions and 

oceanographic constraints on hatchling migration. Proceedings of the Royal Society B: 

Biological Sciences, 277(1700), pp.3631-3637.  

Putman, N.F., Scott, R., Verley, P., Marsh, R. and Hays, G.C., 2012a. Natal site and offshore 

swimming influence fitness and long-distance ocean transport in young sea 

turtles. Marine Biology, 159, pp.2117-2126.  

Putman, N.F., Verley, P., Shay, T.J. and Lohmann, K.J., 2012b. Simulating transoceanic 

migrations of young loggerhead sea turtles: merging magnetic navigation behavior with 

an ocean circulation model. Journal of Experimental Biology, 215(11), pp.1863-1870.  

Putman, N.F., Mansfield, K.L., He, R., Shaver, D.J. and Verley, P., 2013. Predicting the 

distribution of oceanic-stage Kemp's ridley sea turtles. Biology Letters, 9(5), p.20130345. 

Putman, N.F. and He, R., 2013. Tracking the long-distance dispersal of marine organisms: 

sensitivity to ocean model resolution. Journal of the Royal Society Interface, 10(81), 

p.20120979. 

Putman, N.F. and Mansfield, K.L., 2015. Direct evidence of swimming demonstrates active 

dispersal in the sea turtle “lost years”. Current Biology, 25(9), pp.1221-1227. 

Putman, N.F., Abreu-Grobois, F.A., Iturbe-Darkistade, I., Putman, E.M., Richards, P.M. and 

Verley, P., 2015a. Deepwater Horizon oil spill impacts on sea turtles could span the 

Atlantic. Biology Letters, 11(12), p.20150596. 

Putman, N.F., Verley, P., Endres, C.S. and Lohmann, K.J., 2015b. Magnetic navigation behavior 

and the oceanic ecology of young loggerhead sea turtles. The Journal of Experimental 

Biology, 218(7), pp.1044-1050.  

Putman, N.F., Goni, G.J., Gramer, L.J., Hu, C., Johns, E.M., Trinanes, J. and Wang, M., 2018. 

Simulating transport pathways of pelagic Sargassum from the Equatorial Atlantic into the 

Caribbean Sea. Progress in oceanography, 165, pp.205-214. 

Putman, N.F., Seney, E.E., Verley, P., Shaver, D.J., López‐Castro, M.C., Cook, M., Guzmán, V., 

Brost, B., Ceriani, S.A., Mirón, R.D.J.G.D., Peña, L.J., Tzeek, M., Valverde, R.A., 

Cantón, C.C.G., Howell, L., Ravell Ley, J.A., Tumlin, M.C., Teas, W.G., Caillouet Jr, 

C.W., Cuevas, E., Gallaway, B.J., Richards, P.M. and Mansfield, K.L., 2020a. Predicted 

distributions and abundances of the sea turtle ‘lost years’ in the western North Atlantic 

Ocean. Ecography, 43(4), pp.506-517. 

 



41 

Putman, N.F., Hawkins, J. and Gallaway, B.J., 2020b. Managing fisheries in a world with more 

sea turtles. Proceedings of the Royal Society B, 287(1930), p.20200220. 

Putman, N.F., Lumpkin, R., Olascoaga, M.J., Trinanes, J. and Goni, G.J., 2020c. Improving

 transport predictions of pelagic Sargassum. Journal of experimental marine biology and 

ecology, 529, p.151398. 

Putman, N.F., Richards, P.M., Dufault, S.G., Scott-Dention, E., McCarthy, K., Beyea, R.T., 

Caillouet, C.W., Heyman, W.D., Seney, E.E., Mansfield, K.L. and Gallaway, B.J., 2023. 

Modeling juvenile sea turtle bycatch risk in commercial and recreational 

fisheries. Iscience, 26(2). 

Ralph, G.M., Seitz, R.D., Orth, R.J., Knick, K.E., and Lipcius, R.N., 2013. Broad-scale 

association between seagrass cover and juvenile blue crab density in Chesapeake Bay. 

Marine Ecology Progress Series, 488, pp.51–63. 

Reimer, J., Siegfried, T., Roberto, E. and Piacenza, S.E., 2023. Influence of nearby environment 

on recreational bycatch of sea turtles at fishing piers in the eastern Gulf of 

Mexico. Endangered Species Research, 50, pp.279-294. 

Sanchez-Rubio, G., Perry, H.M., Biesiot, P.M., Johnson, D.R. and Lipcius, R.H., 2011. Climate- 

related hydrological regimes and their effects on abundance of juvenile blue crabs 

(Callinectes sapidus) in the northcentral Gulf of Mexico. Fisheries Bulletin, 109, pp.139–

146. 

Schmid, J. R., Bolten, A.B., Bjorndal, K. A., Lindberg, W. J., Percival, H. F. and Zwick, P. D., 

2003. Home range and habitat use by Kemp’s ridley turtles in west-central Florida. 

Journal of Wildlife Management, 67, pp.196–206. 

Schmid, J.R. and Wtizell, W.N., 2006. Seasonal migrations of immature Kemp’s ridley turtles 

(Lepidochelys kempii Garman) along the west coast of Florida. Gulf of Mexico Science, 

24(1/2), pp. 28-40. 

Schmid, J.R. and Tucker, A.D., 2018. Comparing diets of Kemp's ridley sea turtles 

(Lepidochelys kempii) in mangrove estuaries of Southwest Florida. Journal of 

Herpetology, 52(3), pp. 252-258. 

Seney, E.E., 2008. Population dynamics and movements of the Kemp's ridley sea turtle, 

 Lepidochelys kempii, in the northwestern Gulf of Mexico. Texas A&M University. 

Servis, J.A., Lovewell, G. and Tucker, A.D., 2015. Diet analysis of subadult Kemp’s ridley 

(Lepidochelys kempii) turtles from west-central Florida. Chelonian Conservation and 

Biology, 14(2), pp.173-181. 

Shillinger, G.L., Di Lorenzo, E., Luo, H., Bograd, S.J., Hazen, E.L., Bailey, H. and Spotila, J.R., 

2012. On the dispersal of leatherback turtle hatchlings from Mesoamerican nesting 

beaches. Proceedings of the Royal Society B: Biological Sciences, 279(1737), pp.2391- 

2395. 

Taylor, A.H. and Stephens, J.A., 1998. The North Atlantic oscillation and the latitude of the Gulf 

Stream. Tellus A: Dynamic Meteorology and Oceanography, 50(1), pp.134-142. 

Van Houtan, K.S. and Halley, J.M., 2011. Long-term climate forcing in loggerhead sea turtle 

nesting. PLoS One 6, p.e19043. 

VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L. and Strolie, C., 2014. SDMTools: Species 

Distribution Modelling Tools: Tools for processing data associated with species 

distribution modelling exercises. R package version 1.1-221.2,  https://cran.r-

project.org/web/packages/SDMTools/index.html. 

 

https://cran.r-project.org/web/packages/SDMTools/index.html
https://cran.r-project.org/web/packages/SDMTools/index.html


42 

Visser, M.E. and Gienapp, P., 2019. Evolutionary and demographic consequences of 

Phenological mismatches. Nature ecology & evolution, 3(6), pp.879-885. 

Walters, C.J. and Martell, S.J., 2004. Fisheries ecology and management. Princeton University  

Press. 

Weisberg, R.H. and He, R., 2003. Local and deep‐ocean forcing contributions to anomalous 

water properties on the West Florida Shelf. Journal of Geophysical Research: 

Oceans, 108(C6). 

Weisberg, R. H., He, R., & Liu, Y., 2005. West Florida Shelf circulation on synoptic, seasonal, 

and interannual time scales. In W. Sturges & A. Lugo-Fernandez (Eds.), Circulation in 

the Gulf of Mexico: Observations and models, 161, pp. 325–347. 

Weisberg, R.H. and Liu, Y., 2017. On the Loop Current penetration into the Gulf of 

Mexico. Journal of Geophysical Research: Oceans, 122(12), pp.9679-9694. 

Weisberg, R.H., Liu, Y., Lembke, C., Hu, C., Hubbard, K. and Garrett, M., 2019. The coastal 

ocean circulation influence on the 2018 West Florida Shelf K. brevis red tide 

bloom. Journal of Geophysical Research: Oceans, 124(4), pp.2501-2512. 

Winton, M., Griffies, S.M., Samuels, B.L., Sarmiento, J.L. and Frölicher, T.L., 2013. Connecting 

changing ocean circulation with changing climate. Journal of climate, 26(7), pp.2268-

2278. 

Witherington, B., Hirama, S. and Hardy, R., 2012. Young sea turtles of the pelagic Sargassum 

dominated drift community: habitat use, population density, and threats. Marine Ecology 

Progress Series, 463, pp.1-22. 

Witzell, W.N. and Schmid, J.R., 2005. Diet of immature Kemp's ridley turtles (Lepidochelys 

kempi) from Gullivan Bay, Ten Thousand Islands, southwest Florida. Bulletin of Marine 

Science, 77(2), pp.191-200. 

Zhang, Y. and Hu, C., 2021. Ocean temperature and color frontal zones in the Gulf of Mexico: 

Where, when, and why. Journal of Geophysical Research: Oceans, 126(10), 

p.e2021JC017544. 

Zhang, Y., Hu, C., McGillicuddy Jr, D.J., Barnes, B.B., Liu, Y., Kourafalou, V.H., Zhang, S. and 

Hernandez, F.J., 2024. Pelagic Sargassum in the Gulf of Mexico driven by ocean currents 

and eddies. Harmful Algae, 132, p.102566. 

 

 

 

 

 

 

 

 



43 

 

 

 

 

CHAPTER 3: INFLATED-TYPE MODELS FOR ESTIMATING FISH DIET 

COMPOSITION 

Introduction 

Ecosystem models are increasingly popular tools for evaluating dynamics in marine 

environments and populations and are often used to answer questions related to living resource 

management. To simulate complex system dynamics, ecosystem models contain multiple 

subroutines modeling hydrodynamics, biogeochemistry, and ecology. Trophic information for all 

modeled species is required in the form of a square diet matrix (i.e., one proportional value for 

each predator-prey interaction). Trophic dynamic modeling is routine with use of models like 

Ecopath with Ecosim, Atlantis, ERSEM, OSMOSE and many others (Christensen and Walters 

2004, Fulton et al. 2011, Shin and Cury 2001, Baretta et al. 1995). The transition towards 

probabilistic ecosystem modeling approaches has been advanced by improved methodology to 

overcome computational limits (Morzaria-Luna et al. 2022, Allen et al. 2007) and statistical 

techniques are only now being developed that can properly characterize error around a wide 

variety of trophic ecologies. 

 A common problem in analyzing diet data is that it is zero-inflated by nature.  In a diet 

matrix of many prey items, the most frequently observed diet proportion is often zero. This is 

because any given stomach likely contains a non-zero quantity for only a few of the many 

potential prey species. Stomach content data may be zero-inflated in predators for whom prey is 

patchy or feeding events are rare. Additionally, diet data can become one-inflated if a stomach 

often contains only one prey species. One-inflation may be more common in specialist predators. 
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Both zero- and one-inflation make using simple data averages to estimate diet composition 

problematic as they can result in under- or overestimation of diet, respectively. Taking a simple 

average conflates the underlying processes of prey encounter (a binomial outcome) and capture 

success (a continuous outcome). This source of error is made worse when diet information for 

either predator or prey is aggregated into functional groups as is often done in trophic modeling. 

The Gulf of Mexico (GOM) food web has been described statistically using the Dirichlet 

distribution (Tarnecki et al. 2018, Morzaria-Luna et al. 2018, 2022), which is the multivariate 

generalization of the beta distribution. It is defined on the interval (0, 1) so it is appropriate for 

fitting proportional diet data. In building a diet matrix for ecosystem models, a statistical 

approach is better than averaging predator stomach contents because it preserves error 

information useful in probabilistic modeling (Morzaria-Luna et al. 2022). However, this method 

again combines the encounter and capture processes, which may be inappropriate for some 

interactions. Inflated-type models could yield more accurate estimates of diet composition from 

zero- or one-inflated stomach content data with a more consistent representation of error across 

different predator feeding ecologies. In this study, we use zero- and zero-and-one-inflated beta 

distributions that employ a discrete-continuous approach to separately model occurrences of 

zeroes and ones (Ospina and Ferrari 2010). Through these inflated-type models we can 

separately model the binomial probability of prey encounter and the continuous quantity of prey 

consumed during a successful feeding event.  

Productivity and resulting prey aggregations are often patchy in open ocean systems and 

availability can be highly coupled with environmental fluctuations (e.g., Steele 1976, Gomez et 

al. 2019). There is particularly high potential for zero- and one-inflated data in the diets of large 

pelagic predators that use a bout feeding strategy to target large aggregations of forage species, 
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such as vertically migrating mesopelagic organisms (Sutton 2013, Murawski et al. 2014, Iglesias 

et al. 2023). This may also be generally true in wasp-waist food webs, such as in major 

upwelling systems (Cury et al. 2000) where predators target a small number of species. 

Effectively estimating diet and simulating trophic linkages in ecosystem models is important for 

capturing system connectivity (Grilli et al. 2016) and quantifying ecosystem impacts following 

environmental disturbances. For example, following the 2010 Deepwater Horizon oil spill in the 

GOM, the deep oil plume resulted in a large biomass loss of deep-sea species and accumulation 

of oil toxins in many meso- and bathypelagic species (Murawski et al. 2014, Romero et al. 2018, 

Sutton et al. 2022). In Atlantis simulations where oil-related mortality forcing functions were 

applied to mesopelagic prey groups, the contribution of mesopelagic prey to a pelagic predator’s 

diet was important in determining the predator’s response to the deep oil spill (Morzaria-Luna et 

al. 2018, 2022). By better characterizing pelagic food web connections we improve our ability to 

model cascading ecosystem effects following a deep-water disturbance.  

Through this work we will create an improved diet matrix for the Atlantis ecosystem 

model of the GOM (Ainsworth et al. 2015, 2018, Perryman et al. in press). We specifically aim 

to improve the representation of pelagic trophic connectivity by testing whether an inflated-type 

statistical model is better suited to simulate bout feeding. We incorporated new data from recent 

sampling and fit inputs to both non-inflated and inflated-type models to find the best-fitting 

distribution. Once the models were fit, we were particularly interested in 1) differences in diet 

estimates between non-inflated and inflated-type models, and 2) whether the best-fitting model 

varied across predator species by particular life history traits such as trophic level or habitat 

association. We hypothesized that pelagic predator diets would be better represented by inflated-

type models as prey is patchy and predators utilize a bout feeding strategy. 
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Methods 

Diet data preparation 

We compiled diet data from multiple surveys conducted in US Gulf of Mexico waters, including 

the Fisheries Independent Monitoring survey through the Florida Fish and Wildlife Conservation 

Commission and the Gulf of Mexico Species Interaction database through Texas A&M 

University. Because most of these sources were inshore- or shelf-focused, we also included 

stomach content data from offshore pelagic predators provided by Murawski, S. (unpublished 

data). Collectively, these sources added 6,492 new stomachs to the diet dataset used to create the 

existing diet matrix for the GOM Atlantis model (Tarnecki et al. 2016). All stomach contents 

were converted into volumetric units (mm3) and normalized to proportions so that each 

stomach’s contents summed to one. We then coded predator and prey species into GOM Atlantis 

model functional groups (Appendix 3) for future diet matrix creation. More information 

regarding the informing and parameterization of the GOM Atlantis model can be found in 

Ainsworth et al. (2015) and Perryman et al. (in press). 

 

Distribution fitting 

To find the best model for estimating diet composition from datasets that may be zero- or 

zero-and-one inflated, we fit our proportional diet dataset to three different forms of a beta 

distribution (Table 3.1). We first fit data to a non-inflated, two-parameter beta distribution (BE). 

This is a special case of the Dirichlet distribution currently used to create the GOM Atlantis 

model diet matrix (Ainsworth et al. 2010). The density function for the BE distribution can be 

defined as 
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where Γ(·) is the gamma function. The parameter ϕ plays the role of a precision parameter in the 

sense that, for fixed μ, the larger the value of ϕ, the smaller the variance of y. Different values of 

the parameters generate different shapes of the beta density (Ospina and Ferrari 2010). The mean 

of the beta distribution is calculated as 

 

 

Because the interval of the BE density function does not include true zero, we next 

employed a mixed continuous-discrete distribution that combines the beta distribution with a 

degenerate discrete distribution to represent occurrences of zero. In other words, we are 

combining the beta distribution of our proportional diet data with the probability of that prey 

item being patchy (i.e., having a value of 0). This is referred to as the zero-inflated beta 

distribution (‘BEZI’) and is outlined further in Ospira and Ferrari (2010). The corresponding 

probability density function for the mixed model combining the beta distribution with the 

degenerate distribution would therefore be  

 

 

 

where f (y: μ, ϕ) is the beta density (1) and α represents an added third-parameter; the probability 

of observing a zero for a given prey item in a predator stomach, or the probability mass at y=0. 

The mean of the BEZI distribution is calculated as 

 

(Eq. 3.1) 

(Eq. 3.3) bezi 
0, 

(Eq. 3.2) 

 

𝐸(𝑦) =  𝜇 
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Finally, we included a four-parameter model with the ability to fit ‘one’ values, such as in 

the case of a stomach that only contained one prey item. This is referred to as the zero-and-one-

inflated beta distribution (‘BEINF’) (Ospina and Ferrari 2010), and has the density function 

 

 

 

 

where f (y: μ, ϕ) is the beta density (1), α represents the probability of observing a zero for a 

given prey item in a predator stomach, or the probability mass at y=0, and αγ represents the 

probability of observing a one for a given prey item in a predator stomach, or the probability 

mass at y=1. The mean of the BEINF distribution is calculated as 

 

 

 

Table 3.1: Candidate statistical distribution models fit to our diet dataset. Names and acronyms 

are adopted from Ospina and Ferrari (2010). Column k represents the number of parameters in 

each model. 

Model Code k Parameters 

Beta BE 2 μ,σ 

Zero-inflated beta BEZI 3 μ,σ,α 

Zero-and-one-inflated beta BEINF 4 μ,σ,α,γ 

(Eq. 3.5) 

 

(Eq. 3.4) 

𝐸(𝑦) =  
𝛾 + 𝜇

(1 + 𝛼 + 𝛾)
 (Eq. 3.6) 

𝐸(𝑦) =  
𝜇

(1 + 𝛼)
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Model selection 

The input diet dataset was fit to all three candidate models using the gamlss() and 

gamlss.dist() packages in R statistical software (Rigby and Stastinopoulos 2005, Ospina 2006). 

We used model outputs to calculate the residual sums-of-squares (SS) for each fitted predator-

prey interaction, with a lower sum of squared residuals (SS) value indicating a better model fit. 

In addition, we calculated Akaike Information Criterion (AIC) values for each fitted model as a 

measure of model parsimony, with lower AIC values indicating a more parsimonious model. 

Because AIC values include a penalty for the number of model parameters, they allowed us to 

examine whether the added 3rd and 4th parameters of the BEZI and BEINF models, respectively, 

improved fit significantly enough to warrant their use.  

 

Matrix creation and food web analysis 

We calculated the distribution means of each model (Equations 3.2, 3.4, 3.6) to determine 

the final diet composition estimate of each predator-prey interaction. We also calculated 95% 

confidence intervals for distribution means using bootstrapped samples of our input data. We 

then examined quantitative differences in diet composition values between models for predator-

prey interactions to determine how estimates varied across inflated- vs non-inflated-type models. 

We were particularly interested in examining diet estimates across models for different trophic 

levels and life histories, as we hypothesized that certain life histories and habitats may lead to 

more zero- or zero-and-one-inflated input data (e.g., patchy prey in the pelagic environment). To 

visualize any potential patterns, we chose example ‘high trophic level’ and ‘low trophic level’ 

predators for four different marine life histories: demersal, reef-associated, pelagic-inshore, and 

pelagic-offshore (Table 3.2). Trophic levels and habitat associations were determined using 
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FishBase (Froese and Pauly 2024), and all chosen example species were teleost fish with most 

belonging to their own GOM Atlantis model functional group. Because offshore sampling 

surveys are limited in the Gulf, we did not have sufficient sample sizes to present results from 

any low trophic level ‘pelagic-offshore’ species, and so the two high trophic level species with 

the largest number of stomachs are presented. Additionally, we examined how diet evenness 

changed when diets were represented by non-inflated vs inflated-type models by calculating 

Shannon’s evenness (E) for fitted diets (e.g., in Jones 2004).  

 

Table 3.2: Selected predator species highlighted in results, chosen to represent multiple trophic 

levels and habitat associations. Trophic levels were taken from FishBase (Froese and Pauly 

2024). 

Predator species 
Trophic 

Level (TL) 

Stomachs 

(n) 

Demersal   
Red drum (Sciaenops ocellatus) 3.74 4,320 

Striped mullet (Mugil cephalus) 2.48 241    
Reef-associated   

Gray snapper (Lutjanus griseus) 4.23 5,626 

White grunt (Haemulon plumierii) 3.59 1,367 
   

Pelagic-inshore   
Spanish mackerel (Scomberomorus maculatus) 4.53 223 

Spanish sardine (Sardinella aurita) 3.4 337 
   

Pelagic-offshore   
Blackfin tuna (Thunnus atlanticus) 4.35 54 

Yellowfin tuna (Thunnus albacares) 4.41 30 

 

Results 

Based on goodness-of-fit metrics, the zero-inflated BEZI distribution was the best-fitting 

and most parsimonious model for the highest contributing prey item to every predator’s diet, but  

model fit varied across predator-prey interactions for the next highest contributing prey groups 

(Table 3.3). The BEZI distribution fit best for two to three of the top three prey items for lower-
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trophic level predator diets, whereas it was only the best fit for the highest contributing prey item 

in higher-trophic level species’ diets. The exceptions to this were the pelagic-offshore predators 

and mullet, for which all three top prey items were best represented by the zero-inflated model. 

An example of a pelagic-offshore predator/prey interaction that was better fit by the BEZI 

distribution is shown in Figure 3.1. There was no apparent difference in the best-fitting model 

selected between trophic levels. The AIC values for all interactions agreed with sums-of-squares, 

suggesting that the additional third parameter modeling the occurrences of zero values 

significantly improved model fit in those cases. The zero-and-one-inflated (BEINF) distribution 

was never chosen as the best-fitting model based on either sums-of-squares or AIC values, 

suggesting there was no benefit to the added fourth parameter. Therefore, only BE and BEZI 

results are presented from this point forward.  

 

Figure 3.1: The diet interaction of predator Thunnus albacares consuming functional group 

Deepwater Fish fit to a beta, BE (solid gray line), and zero-inflated beta, BEZI (solid black line), 

distribution. The dashed gray and black lines indicate the fitted μ parameters for the BE and 

BEZI distributions, respectively. A histogram of the raw diet data is shown underneath in light 

gray. The vertical solid black line at y=0 represents the α parameter fit by the BEZI. 
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Table 3.3: Goodness-of-fit criteria and measure of parsimony for each fitted model. The top three prey items of each example predator 

species are shown. 

Trophic interaction Sum-of-squared (SS) residuals Akaike Information Criterion (AIC) 

Predator (habitat) Prey BE BEZI BEINF BE BEZI BEINF 

Sciaenops ocellatus 

(Demersal) 

  Crabs and lobsters 3162.1 3027.1 4328.3 10917.7 10731.2 12278.0 

  Other demersal fishes 2911.8 3487.7 4273.6 10561.5 11343.1 12223.0 

  Infaunal meiobenthos 2697.2 3606.1 4243.8 10230.8 11487.3 12192.7 

Mugil cephalus  

(Demersal) 

  Detritus 199.2 120.0 287.8 644.0 523.8 736.7 

  Infaunal meiobenthos 190.3 151.3 259.4 633.0 579.8 711.7 

  Protists 187.3 149.9 259.8 629.2 577.5 712.0 

Lutjanus griseus        

(Reef-associated) 

  Other Shrimp 4631.8 3282.9 5615.3 14877.9 12943.4 15965.2 

  Other demersal fishes 3822.5 4297.6 5676.3 13797.5 14458.5 16025.9 

  Crabs and lobsters 3659.1 4613.5 5622.1 13551.7 14857.6 15972.0 

Haemulon plumierii  

(Reef-associated) 

  Infaunal meiobenthos 1112.7 819.4 1420.4 3604.0 3187.7 3941.8 

  Shrimps 1042.5 878.1 1305.0 3515.0 3282.3 3825.9 

  Crabs and lobsters 857.0 1137.7 1343.0 3247.1 3636.4 3865.2 

Scomberomorus maculatus           

(Pelagic-inshore) 

  Other demersal fishes 188.9 130.3 224.7 601.8 521.1 644.6 

  Small pelagic fishes 153.1 173.1 232.7 555.0 584.3 652.3 

  Infaunal meiobenthos 127.1 220.6 217.1 513.5 638.4 636.9 

Sardinella aurita   

(Pelagic-inshore) 

  Small zooplankton 286.1 177.6 345.9 907.2 748.5 975.1 

  Infaunal meiobenthos 255.5 245.7 285.0 869.0 857.8 909.9 

  Large zooplankton 209.3 278.0 362.2 801.8 899.5 990.7 

Thunnus atlanticus 

(Pelagic-offshore) 

  Deep water fishes 43.6 30.9 56.0 147.7 131.2 165.2 

  Other demersal fishes 42.2 28.9 57.4 145.9 127.4 166.6 

  Squid 39.2 32.8 53.7 141.9 134.3 163.0 

Thunnus albacares  

(Pelagic-offshore) 

  Squid 29.4 24.3 24.5 90.5 86.9 89.1 

  Deep water fishes 26.5 15.2 25.3 87.4 72.8 90.1 

  Small pelagic fishes 18.9 14.0 40.5 77.3 70.3 104.1 
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Figure 3.2: Contribution of all prey items to the diets of example predators for each habitat-type based on different fitted distributions. 

The yellow ‘other’ category represents the sum of all other prey items not otherwise specified.  
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Distribution means (as defined in Equations 3.2, 3.4, and 3.6) were considered as the 

fitted diet composition estimates for each modeled predator/prey interaction. Diet composition 

values calculated by the BEZI distribution were higher than those from the non-inflated BE 

distribution for all predators’ top contributing prey items (Table 3.4). Bootstrapped confidence 

interval ranges did not overlap for any example predator between distributions. However, as prey 

items became less important (i.e., contributed less) to predator diets, this pattern begins to break 

down. For the second-most utilized prey item, BE and BEZI distribution means were similar for 

reef-associated and pelagic-inshore species and some confidence intervals begin to overlap. For 

the third-most utilized prey item by each predator, zero-inflated diet estimates were less than 

estimates from the BE distribution for a few predators (e.g., pelagic-inshore species), and most 

confidence interval ranges overlapped (Table 3.4).  

When fitted diet estimates are compared between the BE and BEZI distributions, the non-

inflated BE distribution underestimates the highest contributing prey item when compared to 

BEZI estimates (Figure 3.2). In contrast, the BE can overestimate rarer prey items as compared 

to the fitted BEZI. Mid-range contributing prey items had similar contribution estimates across 

the two models. These findings were reflected in the Shannon’s E for fitted diets (Table 3.5); a 

diet with a Shannon’s E of 1 would represent a diet equally composed of all potential prey items. 

For all example predators, diet compositions fitted by the BE distribution had more dietary 

evenness than those fit with the zero-inflated model. 
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Table 3.4: Distribution means (% diet contribution) for selected predators and their three most 

consumed prey items; 95% confidence intervals are provided in parentheses. Bolded values 

indicate best-fitting model. 

Trophic interaction % of diet (95% CI) 

Predator (habitat) Prey BE BEZI 

Sciaenops ocellatus 

(Demersal) 

  Crabs and lobsters 11.6 (10.1 - 13.9) 20.3 (18.4 - 22.6) 

  Other demersal fishes 8.9 (7.0 - 10.2) 13.9 (13.7 - 19.2) 

  Infaunal meiobenthos 8.4 (6.4 - 11.5) 10.3 (9.4 - 12.6) 

Mugil cephalus      

(Demersal) 

  Infaunal meiobenthos 21.4 (19.0 - 22.9) 26.0 (24.6 - 28.8) 

  Detritus 20.2 (18.8 - 22.6) 25.3 (23.5 - 29.9) 

  Protists 16.7 (15.3 - 17.1) 23.2 (23.0 - 26.8) 

Lutjanus griseus            

(Reef-associated) 

  Other Shrimp 18.8 (17.7 - 19.7) 39.3 (36.0 - 41.0) 

  Other demersal fishes 11.1 (9.1 - 12.2) 14.2 (11.7 - 16.6) 

  Crabs and lobsters 10.8 (8.7 - 11.5) 12.0 (9.8 - 14.1) 

Haemulon plumierii     

(Reef-associated) 

  Infaunal meiobenthos 20.2 (20.2 - 23.0) 37.1 (36.7 - 44.6) 

  Other Shrimp 19.6 (17.8 - 22.4) 25.4 (21.8 - 26.1) 

  Crabs and lobsters 11.2 (5.7 - 11.2) 10.5 (9.3 - 12.6) 

Scomberomorus maculatus             

(Pelagic-inshore) 

  Other demersal fishes 32.0 (30.4 - 33.7) 59.1 (57.3 - 63.6) 

  Small pelagic fishes 15.4 (13.9 - 17.6) 15.1 (14.0 - 18.2) 

  Infaunal meiobenthos 10.9 (8.5 - 13.3) 6.2 (5.8 - 8.6) 

Sardinella aurita         

(Pelagic-inshore) 

  Small zooplankton 26.0 (24.2 - 27.0) 45.7 (42.8 - 46.8) 

  Infaunal meiobenthos 20.7 (19.3 - 21.6) 20.9 (19.0 - 22.8) 

  Large zooplankton 12.0 (10.5 - 13.4) 8.7 (7.2 - 11.0) 

Thunnus atlanticus      

(Pelagic-offshore) 

  Deep water fishes 14.3 (12.7 - 15.4) 32.4 (29.3 - 34.4) 

  Other demersal fishes 13.2 (11.9 - 14.1) 24.4 (22.5 - 27.8) 

  Squid 11.8 (8.7 - 12.8) 15.2 (11.8 - 15.6) 

Thunnus albacares      

(Pelagic-offshore) 

  Squid 25.5 (25.0 - 29.4) 49.0 (48.4 - 51.7) 

  Deep water fishes 16.2 (13.6 - 18.7) 28.4 (25.8 - 32.8) 

  Small pelagic fishes 8.7 (5.8 - 8.9) 7.2 (6.5 - 8.6) 
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Table 3.5: Dietary evenness (Shannon’s E) for example predator diet composition as fit by non-

inflated beta (BE) and zero-inflated beta (BEZI) distributions.  

Predator species 
Shannon's E 

BE BEZI 

Demersal   
Red drum (Sciaenops ocellatus) 0.93 0.71 

Striped mullet (Mugil cephalus) 0.93 0.69 
   

Reef-associated   
Gray snapper (Lutjanus griseus) 0.91 0.56 

White grunt (Haemulon plumierii) 0.92 0.59 
   

Pelagic-inshore   
Spanish mackerel (Scomberomorus 

maculatus) 
0.86 0.42 

Spanish sardine (Sardinella aurita) 0.93 0.62 
   

Pelagic-offshore   
Blackfin tuna (Thunnus atlanticus) 0.88 0.67 

Yellowfin tuna (Thunnus albacares) 0.85 0.53 

 

Discussion 

Zero-inflated beta distributions (BEZI) were the best-fitting model for estimating marine 

predator diets, particularly for top prey items. For subsequently ranked prey items, the added 

third parameter of the BEZI model no longer improved model fit enough to pass measures of 

parsimony for demersal, reef-associated, and pelagic-inshore predators. The trophic interactions 

between pelagic-offshore predators and their top three prey items were best represented by zero-

inflated distributions. This discrepancy may reflect the more homogenous nature of potential 

prey species in inshore habitats versus the heterogenous distribution (patchiness) of prey in the 

open ocean. Low trophic-level productivity in the open ocean, specifically in the epipelagic zone, 

is highly dependent on environmental factors such as sea surface temperature, salinity, and 

nutrient inputs, which can be tied to large-scale climatic drivers (e.g., riverine input, ENSO 

cycles) (Steele 1976, Lorenzen 1976, Gomez et al. 2019). Ocean physics such as eddies and 

frontal features concentrate this productivity in ephemeral patches that provide essential grazing 
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opportunities for zooplankton, juvenile organisms, and planktivorous forage fishes (Suthers et al. 

2023, Belkin et al. 2014, Zhang and Hu 2021, Scott et al. 2024). The spatiotemporal 

inconsistency of these prey aggregations may result in more zero-inflation in pelagic-offshore 

predator diets, as evidenced by this study.  

The zero-and-one-inflated model (BEINF) did not improve model fit enough to warrant 

inclusion of an additional fourth parameter in any predator-prey interaction. This was surprising 

for pelagic-offshore predators who are likely to bout feed on one taxa in a prey patch, but this 

may be explained by their most-utilized prey group. Pelagic predators, such as the tuna species 

considered here, heavily utilize the mesopelagic prey that vertically migrate into surface waters 

each night (Iglesias et al. 2023, Young et al. 2015, Olson et al. 2014). This vertically migrating 

biomass is composed of numerous mesopelagic fish, cephalopod, and crustacean taxa (Sutton 

2013). The pelagic-offshore species highlighted in this study (e.g., Thunnus albacares) are non-

selective (Young et al. 2015) and opportunistically consume multiple mesopelagic species, 

potentially preventing a one-inflated diet.  

Predators in wasp-waist ecosystems, such as major upwelling zones, may also exhibit 

zero- and/or one-inflated data as productivity is environmentally stochastic and predators exploit 

a few key forage species (Cury et al. 2000). Inflated-type models such as the ones presented in 

this paper could be beneficial for characterizing diets in these systems. Additionally, inflated-

type models may be useful for characterizing diets of specialist consumers. We found the diet of 

the inshore detritivore Mugil cephalus to be zero-inflated, which is likely representative of a 

specialist feeding mechanism. The top three prey items of M. cephalus, which all represent 

sediment feeding, contributed similarly to overall diet make-up and accounted for approximately 
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75% of the fitted diet composition. All other potential prey items were therefore rare, resulting in 

zero-inflation.  

When diet data was fit to the BEZI model, the resulting estimates of diet composition 

showed the top 1-2 prey items for each predator contributing more to the diet, middle prey items 

contributing about the same amount, and rarer prey items contributing less. The BEZI 

distribution therefore seems to place more importance or reliance on a predator’s most common 

prey items, and less importance on rarely utilized prey items compared to the non-inflated model. 

In other words, non-inflated models may over-estimate rare prey items and under-estimate key 

food groups. We found this to be true based on the Shannon’s evenness (E) of fitted diet 

compositions; diet dependence was more evenly distributed amongst potential prey items when 

fit to non-inflated distributions versus the BEZI. Given that the current diet matrix in the GOM 

Atlantis model was created using a form of the non-inflated beta distribution, updating our model 

using the diet estimates from fitted zero-inflated models will result in less ‘balanced’ diets of 

predator groups. The methodology presented here is also an important advancement over taking 

a simple average of stomach data, which conflates the underlying processes of prey encounter (a 

binomial outcome) and capture success (a continuous outcome). Independently modeling 

encounter success as the probability of a binomial outcome is not only applicable to feeding in 

the patchy pelagic zone (e.g. Sims et al. 2006) but has also been used to model mate-finding (e.g. 

Gilroy and Lockwood 2012). 

This increased dependence on top prey groups may leave predators more vulnerable to 

environmental disturbances affecting key food groups. For example, the tuna species examined 

in this paper showed an increased utilization of deep-water prey species when their diets were fit 

to zero-inflated models (Figures 3.1 & 3.2). This is particularly of interest as deep water spills 
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(i.e., Deepwater Horizon) have previously resulted in mortality and physiological impairment of 

meso- and bathypelagic species (Lewis and Ricker 2020). Studies using the current version of 

the GOM Atlantis model have demonstrated a loss in these pelagic predators following simulated 

mortality of mesopelagic prey (Morzaria-Luna et al. 2022), an effect that will likely be 

exacerbated by the diet estimates produced by this study. Additionally, inshore predators such as 

red drum showed an increased dependence on prey items negatively affected by harmful algal 

bloom (HAB) events, the frequency of which is increasing with climate change impacts (Walsh 

et al. 2006). As oil exploration moves into deeper waters and climate change effects become 

more pronounced, environmental disturbances may become more common. Improving 

ecosystem model parameterization to more effectively predict predator population effects 

following environmental disturbances is therefore increasingly essential. As many GOM species 

are targets of commercial fisheries, this has important implications for fisheries management on 

both the state and federal levels.  
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CHAPTER 4: CONSIDERING MESOPELAGIC FORAGE AVAILABILITY IN 

MANAGEMENT STRATEGIES FOR PELAGIC PREDATORS 

Introduction 

Ecosystem-based fisheries management strategies 

In recent decades, a growing understanding of marine ecosystems has led to a call for the 

development and implementation of fisheries management policies that consider ecosystem 

influences on target species (‘ecosystem-based fisheries management’, EBFM). The managing 

body of federal United States (US) fisheries stocks has committed to moving towards an EBFM 

approach (NOAA 2016), and the concept has gained traction among both decision-makers and 

stakeholders (Biedron and Knuth, 2016). Marshall et al. (2019) found that about one quarter of 

US stock assessments included some form of ecosystem consideration, most often in the form in 

a modifier on assessment inputs (e.g., a mortality modifier on Gag grouper in the Gulf of Mexico 

to account for red tide impacts; SEDAR 2021, Vilas et al. 2023). However, ecosystem 

considerations are more likely to be applied in already overfished stocks (Marshall et al. 2019), 

and most fisheries management rules in the US are set using a single-species framework.  

All 507 federally-managed US fish stocks under federal jurisdiction utilize some form of 

harvest control rule (HCR) to determine catch limits (Free et al. 2022). HCRs can take many 

different forms, including constant catch, constant escapement, constant instantaneous fishing 

mortality (F), or threshold HCRs. Threshold HCRs use pre-determined guidelines to scale back 

or stop fishing mortality on a target species when its biomass drops below pre-determined 

biological reference points (e.g., US Congress 2004, PFMC 2020). This approach provides a 
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more adaptive management strategy compared to reactive adjustments made following stock 

assessments, and threshold HCRs have been found to outperform other HCR types in preventing 

overfishing, reducing rebuilding times, and maintaining high yields in high uncertainty scenarios 

(Kritzer et al. 2019, Wiedenmann et al. 2017). In the US, threshold HCRs are mostly commonly 

used in the management Mid-Atlantic stocks (e.g. MAFMC 2016), but there is a push for more 

regional fisheries councils to move towards the use of threshold HCRs given their robustness to 

uncertainty and improved performance under climate change scenarios (Wilberg et al. 2011, 

Wiedenmann et al. 2017, NRC 2014).  

Additionally, recent work has called for harvest control rules to move from the traditional 

single-species structure towards an ecosystem-based approach, and for the use of management 

strategy evaluations (MSEs) to compare the performance of multiple candidate HCRs (Free et al. 

2022). An MSE is an iterative modeling framework used to simulate and test the performance of 

candidate management strategies, such as HCRs (Sainsbury et al. 2000). The design of HCRs has 

been identified as a potential avenue for incorporating ecosystem information in fisheries 

management (Punt et al. 2014). One successful case study of this is the control rule for Pacific 

sardine, in which the harvest fraction is adjusted based on water temperature (Tommasi et al. 

2017, PFMC 2023). Another example is the Atlantic herring management plan (NEMFC 2021), 

for which an MSE was conducted to examine the performance and tradeoff of several HCRs. The 

final harvest rule selected by the NEFMC management council was a threshold HCR that 

managed the Atlantic herring stock to ensure that it remained high enough to support key 

predators (e.g., bluefin tuna) (Deroba et al. 2019, Feeney et al. 2019). A similar hypothetical 

harvest control rule was developed for the Pacific sardine fishery that considers retaining enough 
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sardines in the system to provide an adequate forage base for predators, although this has not yet 

been adopted into management (Punt et al. 2016).   

Predation effects such as these play crucial roles in marine population dynamics yet are 

only included in 1% of US stock assessments and are disproportionately more likely to be 

considered in regions that have access to a well-established stomach contents laboratory and 

robust diet datasets (Marshall et al. 2019). The examples described above consider the top-down 

impact of predation mortality on population size, but it is also important to consider bottom-up 

impacts on a harvested predator population. Kaplan et al. (2020) conducted a pseudo-MSE that 

accounted for bottom-up trophic impacts by adjusting fishing mortality on targeted predator 

species based on the availability of their main forage prey (zooplankton), finding that these 

ecosystem-based threshold rules resulted in widespread ecosystem effects. In these limited cases 

where food-web connections have been assessed in relation to management questions, only 

epipelagic forage species have been considered. However, in the pelagic ecosystem, mesopelagic 

forage resources may play a more important mid-tropic level role in food web dynamics.  

 

The ecosystem role of mesopelagic fishes 

Mesopelagic fishes (e.g., families Myctophidae, Gempylidae, Gonostomatidae) are a 

numerically dominant component of the open ocean pelagic fauna worldwide. One genus in 

particular, Cyclothone, is considered to be the most abundant vertebrate on earth (Ahlstrom et al. 

1984). Mesopelagic fishes reside at depths of 200-1000m during daylight hours, but most 

undergo diel vertical migration into surface waters each night to follow their planktonic prey 

(e.g., Anderson and Sardou 1992, Frost and McCrone 1979, Hopkins et al. 1996). This massive 

vertical movement of biomass plays a significant role in carbon transport and biogeochemical 
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cycling in the open ocean (Hoagland et al. 2019). This vertical connectivity results in strong 

trophic linkages between deep sea species and large pelagic predators. Mesopelagic fishes have 

been determined to be important prey items for highly migratory finfishes and marine mammals 

across the World Ocean (Satoh et al. 2004, Iglesias et al. 2023, Duffy et al. 2017, Pusineri et al. 

2008). Mesopelagic fishes may even be underestimated in the diets of large pelagic fishes, as 

many stomachs used for diet analysis are taken from fish caught during the day in sportfishing 

tournaments or from commercial fishing trips. Mesopelagic fishes from the previous night’s 

feeding, which are higher in fat and lower in protein than epipelagic forage fishes, may already 

be digested (Yancey et al. 1992, Salvanes and Kristoffereson 2001). 

Mesopelagic fishes play an important forage role in pelagic ecosystems that exhibit wasp-

waist dynamics. They can occupy a central place in the food web connecting lower and higher 

trophic levels (Griffiths et al. 2013, Woodstock et al. 2021). Furthermore, it’s possible that 

mesopelagic fishes provide a more stable forage base than epipelagic fishes. The availability of 

epipelagic forage fishes (e.g., menhaden, sardine) is spatiotemporally dynamic; abundances are 

heavily tied to climate factors (e.g., Buchheister et al. 2016, Tommasi et al. 2017, Adams et al. 

2018). In contrast, the distribution of Myctophidae, one of the most abundant mesopelagic fishes, 

is spatially homogenous despite fluctuations in environmental conditions (Milligan and Sutton 

2020). Given the globally large quantity of high-fat and low-protein, but readily accessible, 

mesopelagic prey in apex predator diets, it may be that predators are utilizing mesopelagic forage 

to sustain themselves when more energetically rewarding epipelagic forage is unavailable 

(Rooney et al. 2006). Mesopelagic fishes may therefore be useful indicators for representing 

bottom-up drivers of secondary productivity in the pelagic system. The ecosystem role provided 

by deep sea fishes has historically been under-considered; the intrinsic value of the deep-sea 
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ecosystem is traditionally a tough sell to stakeholders (Smith et al. 2020, Jamieson et al. 2020) 

and vertical water column connectivity of the pelagic food-web has been understudied (Sutton et 

al. 2021).  

However, the deepwater pool of forage fish and invertebrates is unlikely to remain 

consistently available under future climate change and increasing anthropogenic exploitation of 

deep ocean resources. With rising ocean temperatures due to large-scale climate change, there is 

an expected poleward range shift of many Myctophidae species (Freer et al. 2019). Although too 

bony and oily for human consumption, there has been talk of a potential fishery on deep sea 

fishes for use in fish meal to feed livestock to help meet growing global protein demands (St. 

John et al. 2016). Furthermore, the risk of future deep-water disturbances is high as oil extraction 

moves increasingly deeper and more of the seafloor is claimed for mining contracts (Smith et al. 

2020, Sutton et al. 2020).  

 

The Gulf of Mexico 

One of the most extreme examples of a deep-water disturbance came in 2010 with the 

Deepwater Horizon (DWH) disaster, which injected over 100 million gallons of crude oil into 

the deep Gulf of Mexico (GOM) in the largest accidental marine oil spill in history. The GOM is 

one of the most highly biodiverse mesopelagic ecosystems in the world, with 97% of its water 

mass below the 200m isobath (Sutton et al. 2022). Following the DWH spill there was an 

abundance of funding and research efforts to attempt to evaluate environmental impacts. The 

task of analyzing impacts on deepwater communities was challenging given the lack of pre-spill 

deep-water studies. Since 2011, the mesopelagic biomass of the northern GOM has been 

quantified through sampling efforts by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico 
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(DEEPEND) Consortium and now the GOM represents one of the most extensively studied 

deep-sea systems in the world (Sutton et al. 2022). The harshest DWH impacts on GOM 

mesopelagic fishes were delayed. High levels of oil toxins (e.g., polycyclic aromatic 

hydrocarbons, ‘PAHs’) were still detected in guts and eggs five years after the DWH spill 

suggesting bioaccumulation and maternal transfer, and numbers remain depleted likely due to 

repeated recruitment failure (Romero et al. 2018, Sutton et al. 2022). Mesopelagic fishes in the 

GOM are thus highly vulnerable and exhibit low resilience to deep-water oil spills due to 

prolonged exposure to oil, long-term toxicity effects, consumption of contaminated prey, and low 

fecundity (Sutton et al. 2022). 

There are limited diet studies of large pelagic fishes specific to the GOM, but those that 

exist paint an interesting story of how mesopelagic fishes are utilized as prey. In the 1980s, 

Manooch and Mason (1983) conducted a diet study of yellowfin (Thunnus albacares) and 

blackfin (Thunnus atlanticus) that found only epipelagic prey (e.g., sargassum-associated fishes) 

in stomachs. Following the DWH oil spill, Murawski (unpublished data) conducted targeted 

longline and hook-and-line sampling for large pelagic fishes in the northern GOM and found 

mesopelagic fishes in the stomachs of yellowfin tuna, blackfin tuna, swordfish (Xiphias gladius), 

great barracuda (Sphyraena barracuda), and wahoo (Acanthocybium solandri). Mesopelagic 

fishes have also been found in the stomachs of bluefin tuna (Thunnus thynnus) and swordfish 

(Xiphias gladius) in the GOM and Florida Straits, respectively (Butler et al. 2015, Heemsoth 

2009). Stomach contents from Murawski (unpublished data) showed a greater prevalence of 

mesopelagic fish prey in the stomachs of predators captured around oil rigs at night. This 

suggests that while deep-water oil rigs are sites of potential disasters, they may also be creating 

new feeding opportunities via structure and artificial light. In the GOM, research suggests that oil 
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rigs may be functioning as fish aggregating devices for highly migratory species (Snodgrass et 

al. 2020) and there is evidence of intentional directed movement of yellowfin tuna between oil 

rigs (Price et al. 2022). These offshore oil rigs may be providing feeding opportunities for large 

pelagic predators where vertically migrating mesopelagic species are attracted to artificial light; 

these feeding events may be more dependable than the availability of epipelagic prey in the 

open-ocean GOM (Adams et al. 2018). However, given the susceptibility of mesopelagic fishes 

to deep-water oil spills, large pelagic predators become more vulnerable to the impacts of deep-

water disturbances with increased utilization of mesopelagic prey (Morzaria-Luna et al. 2022). 

Given these strong food-web connections and the many risks to deepwater species including 

mesopelagic fish, it is important for managers to consider the population impacts on exploited 

pelagic predators if the availability of reliable mesopelagic forage fishes were to decrease. 

 

Project purpose 

We used an Atlantis ecosystem model of the Gulf of Mexico to conduct a management 

strategy evaluation (MSE) on a variety of threshold HCRs for an example large pelagic predator 

(yellowfin tuna, Thunnus albacares), including some that reduce fishing mortality on the target 

species depending on the availability of mesopelagic fish prey. The use of ecosystem models as 

operating models in MSEs has been recommended for informing ecosystem-based management 

in the Gulf of Mexico (Grüss et al. 2017). Atlantis has previously been used to conduct MSEs 

with ecosystem considerations. Masi et al. (2018) applied blanket HCRs to the entire managed 

GOM reef fish complex and Kaplan et al. (2020) evaluated threshold HCRs that account for 

bottom-up trophic effects. We took inspiration from the forage-based HCRs applied by Kaplan et 

al. (2020), and our objective with this work was to provide a proof-of-concept study that 
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examined whether considering the availability of mesopelagic prey could be beneficial for the 

management of large pelagic fishes.  

 

Methods 

The Gulf of Mexico Atlantis ecosystem model 

The Atlantis ecosystem modeling framework is a three-dimensional ‘end-to-end’ 

simulation model that represents detrital processes up through apex predators and human 

exploitation (Audzijonyte 2017a). Species in Atlantis are incorporated into functional groups, 

which can be fully age-structured and have unique suites of sub-routines (e.g. growth, 

reproduction, movement) to represent their ecology. Other biological dynamics simulated by the 

model include habitat affinities, space competition, and feeding. Atlantis models also incorporate 

physical and biogeochemical processes to capture environmental and nutrient dynamics and 

include an effort prediction routine for simulating fisheries behavior. A built-in policy simulation 

routine allows the user to implement and assess the ecosystem impacts of desired management 

policies, such as total allowable catch (TAC) and HCRs (Audzijonyte 2017b). 

The Gulf of Mexico (GOM) Atlantis model was created by Ainsworth et al. (2015) and 

updated by Perryman et al. (in press). It includes 91 functional groups (Appendix 3). Functional 

groups are either single-species (if of managerial importance) or aggregated into a group with 

similar life history traits (e.g. ‘small reef fish’). The polygon geometry of the GOM Atlantis 

model was designed to capture biogeography, bathymetry, important estuarine areas, and 

jurisdictional boundaries (Figure 4.1).  
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Figure 4.1: Polygon geometry of the GOM Atlantis model (Source: Ainsworth et al. 2015) 

 

We used yellowfin tuna (Thunnus albacares, ‘YTN’) as an example predator to simulate 

feeding effects of large pelagic predators that utilize both epipelagic and mesopelagic fish prey 

(e.g., Iglesias et al. 2023). Mesopelagic fishes in GOM Atlantis are represented by the deepwater 

fish (‘DWF’) group (Appendix 3). For this study, we compiled the most up-to-date available diet 

information for YTN (and other large pelagic predators) from the Florida Fish and Wildlife 

Conservation Commission’s (FWC) Fisheries Independent Monitoring (FIM) group (K. 

Thompson, FWC-FIM, pers. comm.), the Gulf of Mexico Species Interaction (GoMexSI) 

database (Simons et al., 2013; http://gomexsi.tamucc.edu), and stomach contents from ongoing 

offshore sampling efforts Murawski (unpublished data). We also conducted a literature review of 

large pelagic diet studies from the Gulf of Mexico and the southern portion of the US Atlantic 

coast (Davies and Bortone et al. 1976, Satoh et al. 2004, Rudershausen et al. 2010, Butler et al. 

2015, Manooch and Mason 1983, Heemsoth 2009, Matthews et al. 1977). Diet data from these 

sources were fitted to a zero-inflated beta distribution to create a matrix of diet availabilities for 

input to the GOM Atlantis model (Scott, unpublished manuscript). See Audzijonyte et al. (2017a) 

for a description of availabilities in Atlantis. The parameterized diet composition for adult and 

juvenile yellowfin tuna in the GOM Atlantis model is visualized in Figure 4.2.  
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Figure 4.2: Normalized prey availabilities for yellowfin tuna (YTN) in the GOM Atlantis model  

 

Simulating mesopelagic fish abundance 

 Following the 2010 DWH oil spill in the Gulf of Mexico, the Deep Pelagic Nekton 

Dynamics of the Gulf of Mexico (DEEPEND) Consortium 

(https://restore.deependconsortium.org/) conducted consistent water column sampling of the 

mesopelagic community in the northern Gulf using a Multiple Opening and Closing Net 

(MOCNESS), resulting in a timeseries of mesopelagic fish abundance (n fish per m3 sampled). 

For this study, we considered the combined abundance of all captured mesopelagic fish taxa. For 

consistency, we only used abundance data from surveys conducted at night, as this is when most 

mesopelagic fishes are active and migrating, so night-time samples are more likely to be 

representative of the true abundance of mesopelagic fishes. There were seasonal differences in 

mesopelagic fish abundance throughout the timeseries as determined by a two-sample t-test 

(t(62) = -3.66, p < 0.001 ), and so we chose retain only summer data as summer sampling events 

had both the highest mean abundance and variance; by only using summer values we avoided 

https://restore.deependconsortium.org/
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underestimating the variance. We then scaled all data points that so the mean = 1, and each data 

point functioned as a scalar relative to the mean value.  

We divided the abundance data into two sets based on abundance trends (Figure 4.3), 

with one set (2011 sampling events, n = 33) representing a former, higher mesopelagic 

abundance regime, and one (2015-2021 sampling events, n = 31) representing the presumed 

current, lower abundance levels. These levels may represent the long-term population decline 

following the DWH oil spill due to maternal toxin transfer and resulting recruitment failure in 

mesopelagic fish species (Romero et al. 2018, Sutton et al. 2022), but causation cannot be proven 

given the lack of pre-spill data. We henceforth refer to abundances from 2011 sampling events as 

‘pre-decline’ and abundances from 2015-2021 sampling events as ‘post-decline’. 

 

 

Figure 4.3: Mesopelagic fish abundance as determined by MOCNESS trawl sampling conducted 

by the DEEPEND Consortium (https://restore.deependconsortium.org/). Sampling efforts were 

funded by the NOAA National Resource Damage Assessment program (2011), the Gulf of 

Mexico Research Initiative (2015-2018), and the NOAA RESTORE program (2021+). Values are 

shown as the predicted number of individuals captured per 106m3 of water sampled and 

represent all captured mesopelagic fish taxa. Values from 2011 sampling events were used to 

create the ‘pre-decline’ mesopelagic regime forcing files for Gulf of Mexico Atlantis model 

simulations, and values from 2015+ sampling events were used to create the ‘post-decline’ 

regime forcing files. (Source: Sutton et al. in prep) 
 

We then created a third hypothetical ‘future decline’ fish abundance dataset by dividing 

the ‘post-decline’ mesopelagic abundances by the difference in the means (35%) between the 

https://restore.deependconsortium.org/
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‘pre-decline’ (mean = 0.00844 n m-3) and the ‘post-decline’ datasets (mean = 0.00295 n m-3). 

Those pseudodata represent a potential future deep-water disturbance where mesopelagic fish 

populations are reduced even further, such as in the case of another deepwater oil spill or the 

creation of a mesopelagic fishery (St. John et al. 2016). We then bootstrapped the three 

abundance vectors with replacement to create three (‘pre-decline’, ‘post-decline’, ‘future 

decline’) timeseries with daily values for 50 years that had similar means and variances to the 

original DEEPEND sampling data. Capturing true variability in mesopelagic fish abundance is 

important to ensure that applied HCRs turn on and off at a realistic frequency. We confirmed via 

F-tests and a Welch 2-sample test that the variance and mean were not significantly different 

between bootstrapped vectors and the original data. We used these three timeseries to create 

forcing files for the GOM Atlantis model, one for each mesopelagic fish abundance regime, that 

forced the abundance of mesopelagic fish daily for 50 years. This was accomplished by taking 

the initial value for numbers of our deepwater fish (DWF) group in the model and multiplying it 

by each timeseries vector to create three timeseries forcing files. The same process was applied 

to all age classes of the DWF group. 

 

Management strategy simulations in Atlantis 

For each of the three mesopelagic abundance regimes (‘pre-decline’, ‘post-decline’, 

‘future decline’), we ran a 50-year model simulation with fishing mortality (F) on our yellowfin 

tuna group (YTN) held constant at FMSY (no adaptive management) (Table 4.1). We determined 

FMSY for YTN to be approximately 0.38 by creating an equilibrium catch curve by varying F on 

YTN and keeping F for all other groups in the model constant. We compared the ‘post-decline’ 

and ‘future decline’ scenarios as relative to outputs from the ‘pre-decline’ scenario. We examined 
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yellowfin tuna population impacts at multiple levels of mesopelagic forage (group DWF) 

availability under no adaptive management.  

 

Table 4.1: A list of simulated management strategies. All simulations were conducted for each 

mesopelagic abundance regime (‘pre-decline’, ‘post-decline’, ‘future decline’), for a total of 18 

Atlantis simulations. All simulations were run for 50 years. 

Simulated management strategies 

1. Constant fishing at FMSY for yellowfin tuna (no adaptive management) 

2. Single-species threshold harvest control rule for yellowfin tuna 

3. 

Threshold harvest control rule that decreases F on yellowfin tuna by 33% when mesopelagic forage is 

low (<75% of B0) 

4. 

Threshold harvest control rule that decreases F on yellowfin tuna by 50% when mesopelagic forage is 

low (<75% of B0) 

5. 

Threshold harvest control rule that decreases F on yellowfin tuna by 33% when mesopelagic forage is 

low (<50% of B0) 

6. 

Threshold harvest control rule that decreases F on yellowfin tuna by 50% when mesopelagic forage is 

low (<50% of B0) 

 

We then ran a two-point single-species threshold harvest control rules (HCR) for each 

mesopelagic abundance regime with yellowfin tuna biomass thresholds defined by B0; we set 

Btarget to 50% of B0 and Blim to 25% of B0 (Figure 4.4). We considered B0 as the starting 

biomass in the model. 

 

 
Figure 4.4: An example conceptual diagram of a two-point single-species threshold HCR (solid 

line) versus an ecosystem-based threshold HCR (dashed line) 
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Finally, we tested multiple configurations of ecosystem-based HCRs (Figure 4.4) that 

reduced the fishing mortality on YTN based on the biomass of the deepwater fish (DWF) group. 

We tested two different DWF biomass thresholds (B/ B0 = 50% and B/ B0 = 75%) and two 

different YTN F scalars when DWF biomass drops below defined thresholds (F decrease of 33% 

and F decrease of 50%), for a total of 4 candidate ecosystem-based HCR management strategies 

(Table 4.1). Each candidate management rule was applied throughout all 50 years of the Atlantis 

simulation. To assess the performance of each candidate management strategy under the varying 

mesopelagic abundance regimes, we present changes in catch and biomass relative to the FMSY 

scenario. We also calculated the coefficient of variation (CV) of YTN catch under each 

management rule, following the example of other MSEs (e.g. Tommasi et al. 2017, Wiedenmann 

et al. 2017). In this study, the CV of catch is largely determined by how often HCRs are triggered 

by biomass thresholds (i.e. how often F is reduced due to a management rule). They should 

therefore be interpreted not as a measure of population stability but as a reflection of how often 

effort is restricted.  

 

Results 

Mesopelagic fish abundance 

 Over the 50 years of Atlantis model simulations, the biomass of the deepwater fish 

(DWF) group was below the 75% B/B0 threshold in 20 years and below the 50% B/B0 threshold 

in two years under the ‘post-decline’ mesopelagic fish abundance regime. Under the ‘future 

decline’ mesopelagic fish abundance regime, DWF biomass was below the 75% B/B0 threshold 

in three years and below the 50% B/B0 threshold in 47 years (Figure 4.5).  
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Figure 4.5: Biomass of the deepwater fish (DWF) group over a 50-year Atlantis simulation. 

Values are shown as relative to the model’s starting biomass (B0) for the group for the three 

simulated mesopelagic fish abundance regimes. The dashed and dotted lines represent the 75% 

and 50% B/B0 thresholds (respectively) utilized in the simulated ecosystem-based harvest control 

rules. 
 

Under the ‘post-decline’ mesopelagic abundance scenario, YTN biomass decreased to a 

minimum of 40% of what biomass was under ‘pre-decline’ but increased back up to 75% by the 

end of the 50-year model simulation (Figure 4.6). Under the ‘future decline’ scenario, yellowfin 

tuna biomass decreased to a minimum of 22% of what biomass was under ‘pre-decline’ 

mesopelagic fish biomass but increased back up to 60%. 

 

Performance of harvest control rules (HCRs) 

Target species biomass 

No threshold harvest control rules were activated under the ‘pre-decline’ mesopelagic 

abundance scenario as the biomasses of both the DWF and YTN groups were too high to trigger 

the parameterized biomass thresholds (see Figure 4.5, Figure 4.7). Results hereafter are 
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Figure 4.6: Yellowfin tuna biomass under constant FMSY management throughout 50-year 

Atlantis simulations. Results are shown as relative to yellowfin tuna biomass under ‘pre-decline’ 

mesopelagic fish abundance. 
 

therefore only presented for the ‘post-decline’ and ‘future decline’ mesopelagic abundance 

scenarios. For both scenarios, YTN biomass was consistently higher under adaptive management 

than under constant fishing pressure at FMSY. Under the ‘post-decline’ mesopelagic fish 

abundance regime, YTN biomass was highest under management by the ecosystem-based 

threshold HCRs that reduced YTN F when DWF biomass fell below a 75% B/B0 threshold 

(Figure 4.8). Specifically, the total YTN biomass produced by the system over 50 years resulted 

from the control rule that reduced YTN F by 50% when DWF biomass was below 75% B/B0 

(Table 4.2). For both the ‘post-decline’ and ‘future decline’ scenarios, the YTN biomass relative 

to the constant FMSY scenario peaked throughout years 15-30 of the model run (Figure 4.8). 

Biomass differences between candidate management strategies began to level out at the end of 

the 50-year simulations. By the last ten years of the model simulation, YTN biomass under the 

single-species HCR and the ecosystem-based HCRs using a 50% B/B0 DWF threshold leveled 



78 

out to a similar biomass as under constant FMSY management, whereas ecosystem-based HCRs 

using a 75% B/B0 DWF threshold remained consistently higher (Figure 4.8). 

 

 

Figure 4.7: F versus biomass under single-species two-point HCRs for each mesopelagic fish 

abundance regime (top panel) and a comparison of F versus biomass between a single-species 

HCR and an ecosystem-based HCR under the ‘future disturbance’ mesopelagic fish abundance 

regime (bottom panel). For this example, results are shown for the ecosystem-based HCR that 

decreased F on YTN by 33% when mesopelagic fish biomass fell below a 50% B/B0 threshold 

(Rule 5 in Table 4.1). 

 

Under the ‘future decline’ mesopelagic fish abundance regime, YTN biomass was 

consistently higher under the ecosystem-based HCRs that reduced F on YTN by 50% when 

mesopelagic fish biomass fell below defined B/B0 thresholds (Figure 4.8). By the last ten years 
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of the model simulation, there was little difference in YTN biomass under control rules using the 

same reduction in YTN F but different DWF biomass thresholds (75% vs. 50% B/B0); this is 

because DWF biomass under this abundance regime only rose above the 50% B/B0 threshold in 

3 out of 50 years (Figure 4.5). Similarly to the results from the ‘post-decline’ mesopelagic 

abundance scenario, the increase in YTN biomass relative to the constant FMSY scenario peaked 

throughout years 15-30 of the model simulation.  As the model approached the end of the 50 year 

simulation, YTN biomass under the traditional threshold HCR approached biomass values under 

constant FMSY management, but ecosystem-based HCR management strategies maintained an 

increase in YTN biomass of at least 150% over the constant FMSY scenario (Figure 4.8). The 

overall benefit of adaptive management strategies (when defined by YTN biomass) was greater 

under the ‘future decline’ mesopelagic fish abundance regime than under the ‘post-decline’ 

abundance regime (e.g., a 125% versus 33% increase in total biomass, respectively) (Tables 4.2 

& 4.3). 

 

Target species catch 

In general, YTN catch decreased in the first 10-15 years under adaptive management strategies 

as the control rules reduced F in response to various biomass thresholds (Figure 4.8). This 

reduction in fishing mortality resulted in increased biomass in the system and catch generally 

peaked in years 15 through 30 in response. Under the ‘post-decline’ mesopelagic fish abundance 

regime, YTN catch under ecosystem-based HCRs using a 50% B/B0 DWF threshold was the 

same as under traditional threshold HCR management until DWF biomass dropped below the 

50% B/B0 threshold in year 32 (Figure 4.5). Catch under ecosystem-based HCRs using a 75% 

B/B0 DWF threshold was variable through time as the HCRs were triggered (Figure 4.9), but 
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showed an overall higher catch through time than under other management strategies (Table 4.2). 

The management strategies that produced the highest total YTN catch over 50 years were 

ecosystem-based HCRs with the 75% B/B0 DWF threshold; the strategies that produced the 

highest average YTN catch over the last ten years were ecosystem-based HCRs with the 50% 

B/B0 DWF threshold (Table 4.2). This difference is likely because DWF biomass didn’t fall 

below 50% of B0 until year 32 in the ‘post-decline’ scenario (Figure 4.5). The coefficient of 

variation (CV) of YTN catch under the ‘post-decline’ mesopelagic abundance regime was the 

lowest under the single-species threshold HCR, although CV values were similar across all 

management strategies (Table 4.2).  

 

 

Figure 4.8:  Relative yellowfin tuna (‘YTN’) biomass over a 50-year Atlantis simulation under 

the ‘post-decline’ mesopelagic fish abundance regime (a) and the ‘future decline’ mesopelagic 

fish abundance regime (b). Values are shown as relative to the constant FMSY management 

scenario. 
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Figure 4.9:  Relative yellowfin tuna (‘YTN’) catch over a 50-year Atlantis simulation under the 

‘post-decline’ mesopelagic fish abundance regime (a) and the ‘future decline’ mesopelagic fish 

abundance regime (b). Values are shown as relative to the constant FMSY management scenario. 

 

Under the ‘future decline’ mesopelagic fish abundance regime, YTN catch under 

ecosystem-based HCR was higher than under a single-species HCR. Catch spiked under the 

control rule that used a 50% B/B0 DWF biomass threshold in the three years when DWF biomass 

was >50% B0 (Figures 4.5 and 4.9). Catch was overall highest under ecosystem-based HCR 

management strategies that used a 75% B/B0 DWF threshold, although the increase in catch 

relative to constant FMSY management was similar to that under ecosystem-based HCR 

management strategies using a 75% B/B0 DWF threshold. Total catch of YTN over time was 

46.5% higher than under constant FMSY management for the best-performing candidate 

management strategy (decreasing YTN F by 50% when DWF <75% of B0), and the average 

YTN catch over the last ten years of the model simulation was 32.1% higher (Table 4.3). 

Similarly to results from the ‘post-decline’ mesopelagic fish abundance regime, the CV of YTN 

catch over 50 years was similar across simulated management strategies. The CV of catch was 

lower for all control rules than for constant fishing at FMSY under the ‘future decline’ 
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mesopelagic abundance regime (Table 4.3). The benefit of adaptive management (when defined 

by YTN catch) was greater under the ‘future decline’ mesopelagic fish abundance regime than 

under the ‘post-decline’ abundance regime (e.g. up to a 46.5% versus 16.4% increase in total 

catch, respectively) (Tables 4.2 & 4.3).  

 

Table 4.2: Performance metrics of interest for yellowfin tuna (YTN) for all simulated 

management strategies under the ‘post-decline’ mesopelagic fish abundance regime. Biomass 

and catch values are shown as relative to the constant FMSY management scenario. 

      F(YTN) dec. by 33% F(YTN) dec. by 50% 

Performance 

metric 

constant 

FMSY 

single-

species 

HCR 
meso. forage 

<50% B0  

meso. forage 

<75% B0 

meso. forage 

<50% B0 

meso. forage 

<75% B0 

Total biomass  

(50 yrs) - +12.9% +14.6% +25.2% +15.6% +33.4% 

Average biomass  

(last 10 years) - +4.3% +5.8% +14.3% +6.6% +20.5% 

Total catch  

(50 yrs) - +11.4% +12.0% +14.6% +12.4% +16.4% 

Average catch  

(last 10 years) - +5.0% +6.7% +4.5% +7.7% +3.7% 

CV catch  

(50 years) 0.806 0.755 0.770 0.777 0.782 0.820 

 

Table 4.3: Performance metrics of interest for yellowfin tuna (‘YTN’) for all simulated 

management strategies under the ‘future decline’ mesopelagic fish abundance regime. Biomass 

and catch values are shown as relative to the constant FMSY management scenario. 

      F(YTN) dec. by 33% F(YTN) dec. by 50% 

Performance 

metric 

constant 

FMSY 

single-

species 

HCR 
meso. forage 

<50% B0 

meso. forage 

<75% B0 

meso. forage 

<50% B0 

meso. forage 

<75% B0 

Total biomass  

(50 yrs) - +34.5% +76.1% +81.5% +113.6% +125.3% 

Average biomass 

(last 10 years) - +16.4% +56.8% +61.3% +90.3% +99.4% 

Total catch  

(50 yrs) - +30.7% +40.7% +42.1% +45.4% +46.5% 

Average catch 

(last 10 years) - +18.5% +25.7% +29.8% +25.1% +32.1% 

CV catch  

(50 years) 0.859 0.768 0.777 0.788 0.786 0.785 
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Discussion 

The Atlantis ecosystem model simulations we conducted showed evidence of strong 

trophic connectivity between large pelagic predators (YTN) and mesopelagic fish prey; YTN 

biomass decreased markedly in scenarios with lessened mesopelagic fish abundance. These 

patterns are consistent with other ecosystem and food-web modeling studies in the Gulf of 

Mexico (Woodstock et al. 2021, Calhoun-Grosch et al. 2024). We tested four different 

configurations of ecosystem-based threshold HCRs which included two different mesopelagic 

fish biomass threshold limits and two different fishing mortality scalars on YTN when 

mesopelagic thresholds were triggered. HCRs that decreased YTN F by 50% yielded higher 

average YTN biomass in the last ten years of the model run than those that decreased YTN F by 

33%. The total catch over time was higher under HCRs that reduced fishing pressure by 50% due 

to the increased biomass in the system from reduced fishing early in the simulation, suggesting 

long-term benefits to more conservative EBFM strategies. Average catch over the last ten years 

and catch CVs were comparable between F reduction strategies.  

In a system with the current mesopelagic fish abundance (‘post-decline’), average YTN 

biomass over the last ten years of the model simulation saw its highest increase (21%) under the 

most restrictive candidate management strategy (decreasing F by 50% when mesopelagic 

biomass is <75% B0). However, average catch over the last ten years was highest under less 

restrictive strategies that did not activate control rules until mesopelagic biomass was <50% B0, 

suggesting a tradeoff between biomass and catch. Under the scenario representing a further 

dampening of mesopelagic fish populations (‘future decline’), the case for ecosystem-based 

management becomes stronger. Ecosystem-based management strategies provided up to a 125% 

and 47% increase in total YTN biomass and catch over time, respectively, in the case of a 
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hypothetical future deep-water disturbance.  This management strategy had lower catch 

variability than under no adaptive management (Table 4.3). The most restrictive control rule 

(decreasing F by 50% when mesopelagic biomass is <75% B0) had the highest YTN biomass and 

catch, suggesting that there are less tradeoffs in management decisions under this scenario. These 

combined results imply that it may be particularly beneficial to apply ecosystem-based 

approaches to predator management when key forage resources are considerably reduced.  

In Kaplan et al.’s (2020) work, ecosystem-based harvest control rules produced higher 

catch CVs than a constant FMSY strategy because their zooplankton forage base was so 

temporally variable that control rules were consistently being triggered and turned off. This 

combined with our findings suggest that the CV of catch under a given HCR is highly dependent 

on the user-defined forage biomass thresholds; the highest catch CVs in the current study were 

produced from an HCR that was activated by forage biomass thresholds in 40-60% of simulation 

years (DWF <75% B/B0; ‘post-decline’ mesopelagic regime, Table 4.2). In simulations where 

threshold HCRs were either rarely or consistently triggered (e.g., DWF <50% B/B0; ‘post-

decline’ mesopelagic regime, DWF <75% B/B0; ‘future decline’ mesopelagic regime, 

respectively), catch CV was lower than under constant FMSY management (Tables 4.2 & 4.3). 

Future MSE studies examining ecosystem-based harvest control rules should use careful 

consideration when defining biomass threshold limits.  

 Although we performed a comprehensive data and literature review to parameterize the 

diet matrix of our Atlantis model for this work, few Gulf of Mexico-specific diet studies for large 

pelagic predators exist. We are assuming that the trophic interactions simulated by our model are 

reflective of true yellowfin tuna diet in the GOM, although many highly migratory species diet 

studies are limited in seasonality and are fisheries-dependent. Because GOM diet studies are few 
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and far between we also considered YTN diet studies from the southern Atlantic coast of the US, 

which may have a different pelagic food-web structure than the GOM (particularly if GOM YTN 

are heavily utilizing deep oil rigs for feeding (Snodgrass et al. 2020, Price et al. 2022). Another 

assumption that we made in that study is that the mesopelagic fish abundance trends gleaned 

from DEEPEND Consortium sampling are representation of GOM-wide abundance; this may or 

may not be the case as GOM Loop Current waters contain 2-4 times less mesopelagic biomass 

than surrounding waters (Sutton et al. 2021).  

This work highlighted the importance of mesopelagic forage fish to large pelagic predator 

populations and suggests that considering the availability of mesopelagic prey may be beneficial 

in developing predator management strategies. Recent sampling efforts and a literature review 

suggest that mesopelagic fishes may be more important to yellowfin tuna diets than epipelagic 

forage species, and this may be particularly true in the GOM due to opportunistic feeding events 

on oil rigs (Murawski, unpublished data, Snodgrass et al. 2020, Price et al. 2022). If so, 

mesopelagic fish abundance may be a good candidate regionally-specific ecosystem indicator for 

the GOM, such as those being considered for potential ecosystem-based management of highly 

migratory species (ICCAT 2023).  

Observant readers may have noticed that the largest contributor to yellowfin tuna diet in 

the GOM is pelagic squids, which also play a crucial role in the vertical connectivity of the open-

ocean GOM food web with 95% of GOM cephalopods occurring at the meso/bathypelagic 

interface (Sutton et al. 2021). However, the methodology applied in the current work requires a 

time series of prey abundance and such a time series is not currently available in the GOM. 

Future work quantifying and characterizing GOM pelagic cephalopod trends would be useful for 

large pelagic predator management questions.  
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Ecosystem-based fisheries management of pelagic resources will be particularly 

important going forward for a multitude of reasons, including increasing variability of epipelagic 

production due to climate change (Free et al. 2019, Bryndum-Buchholz et al. 2019) and 

continued exploitation of the still under-studied deep sea. Future deep-water oil spills in the Gulf 

of Mexico (and elsewhere) are more than just a hypothetical. With the majority of US oil 

production coming from ‘ultra-deep’ wells, future deep spills are likely (Muehlenbachs et al. 

2013, Murawski et al. 2019, Sutton et al. 2021). While this study used yellowfin tuna as an 

example pelagic predator, findings may be of interest to other commercially important offshore 

predators that heavily utilize the mesopelagic prey pool (e.g., swordfish). We do not intend for 

these results to be taken as specific management recommendations, but to provide a proof-of-

concept of the utility of ecosystem models for investing EBFM questions using indicators 

representing bottom-up drivers of secondary productivity. There is no existing case of outputs 

from an ecosystem model being explicitly used for management advice, but they can be used as 

tools to provide guidance in single-species stock assessments (e.g., Howell et al. 2021, Vilas et 

al. 2023) and have been identified as a tool for conducting MSEs (Grüss et al. 2017). The current 

federal management of Gulf of Mexico stocks primarily utilizes constant F harvest control rules, 

but the Gulf of Mexico Fishery Management Council has discussed a move towards threshold-

type HCRs for data rich stocks (Cass-Calay & Porch 2019); studies such as this one that perform 

MSEs to examine trade-offs between multiple candidate threshold HCRs could be beneficial. 

Additionally, Free et al. (2022) suggested that future MSEs considering various threshold HCRs 

may be useful for highly migratory stocks as NOAA is considering amendments to the Highly 

Migratory Species management plan (NOAA 2020). We hope that the methodology presented 
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here can inspire others to explore the use of ecosystem models for testing management strategies 

that consider predator/prey dynamics, both in pelagic systems and others. 

This study provided novel work as it used an ecosystem model as the operating model in 

a management strategy evaluation that considered mesopelagic forage availability in candidate 

harvest control rules. Model outputs showed a substantial decrease the biomass of a large pelagic 

predator when mesopelagic forage fish populations decline, reflecting the strong vertical trophic 

linkages and bottom-up control in the pelagic food web. We found that adaptive management (all 

candidate control rules) consistently yielded higher YTN biomass and catch than a constant 

FMSY strategy, which was not surprising given results from similar work (Kaplan et al. 2020). 

In general, ecosystem-based harvest control rules out-performed traditional, single-species 

threshold HCRs, and the benefit (i.e. increased YTN biomass, catch) that ecosystem-based 

control rules provided over other management strategies increased as mesopelagic forage 

availability decreased. There were few tradeoffs even under restrictive management strategies in 

the case of another significant decrease in mesopelagic fish abundance. Our findings indicate that 

it may be useful for managers to consider ecosystem approaches to pelagic predator management 

given that threats to the deep-ocean and deep-ocean prey resources are only increasing. 
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CHAPTER 5: CONCLUSIONS 

In this dissertation I applied both statistical and numerical modeling techniques to 

characterize pelagic feeding in the Gulf Mexico. I combined a hydrodynamically-driven particle 

tracking model (Lett et al. 2008, Putman et al. 2020) with an Atlantis ecosystem model of the 

Gulf of Mexico (GOM) (Ainsworth et al. 2015) to quantify feeding by juvenile sea turtles as they 

were dispersed onto the West Florida Shelf (WFS). I then presented an improved statistical 

method for estimating the diets of pelagic predators in the GOM Atlantis model, the zero-inflated 

beta distribution (Ospina and Ferrari 2010). Finally, I used the GOM Atlantis model to conduct a 

management strategy evaluation for an example large pelagic predator using harvest control rules 

(HCRs) which included a consideration of prey abundance. This research overall highlighted the 

utility of ecosystem models such as Atlantis for simulating pelagic food webs and investigating 

ecosystem-based fisheries management (EBFM) questions. 

 In Chapter 2, Modeling transport and feeding of juvenile Kemp’s ridley sea turtles on the 

West Florida shelf (Scott et al. 2024; Ecological Modelling 490 (2024) 110659), I found that 

feeding opportunities for juvenile Kemp’s ridley (Lepidochelys kempii) sea turtles were greatest 

offshore towards to the WFS edge, and that the retention of juveniles in these areas was 

facilitated by oceanographic frontal features. Large-scale climatic indices, such as the North 

Atlantic Oscillation (NAO), may also be related. These findings are intuitive given that prey 

items of oceanic-stage sea turtles are often concentrated by frontal features such as the ones 

analyzed here (e.g. zooplankton, sargassum communities) (Witherington et al. 2012, Zhang and 

Hu 2021, Zhang et al. 2024). My work suggests that it may be beneficial for juveniles to be 
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retained offshore for a period in these concentrated prey patches before moving to inshore 

habitats on the WFS. While this work used an ICHYTHOP model where particles represented 

juvenile sea turtles (Putman et al. 2020), these findings are also applicable to other species with a 

planktonic-type juvenile stage such as the larvae of commercially important fishes (e.g., Cornic 

and Rooker 2018).  

The importance of locating offshore prey patches was reflected in the characteristics of 

pelagic predator diets that I estimated in Chapter 3, Inflated-type models for estimating fish diet 

composition. I found that the zero-inflated beta (BEZI) distribution (Ospina and Ferrari 2010) 

was the best-fitting model for estimating pelagic predator/prey interactions, moreso than in 

inshore habitats (e.g. reef systems). This likely reflects the patchy nature of pelagic prey 

resources and suggests a benefit from the additional BEZI model parameter describing the 

binomial process of encounter success. My results suggest that the BEZI method is a statistical 

improvement over the current Dirichlet model for estimating diets in the GOM Atlantis model 

(Tarnecki et al. 2016), particularly for pelagic predators. For offshore-pelagic predators, the 

regular beta distribution (BE) underestimated top prey items and overestimated rare prey items. 

Estimation of Shannon’s evenness demonstrated a more even diet composition when fit to the BE 

versus the BEZI, which may not represent true trophic dynamics. Future trophic modeling work, 

particularly of pelagic food webs, should consider the use of the BEZI distribution for estimating 

diets. The prey groups most consumed by pelagic-offshore predators were deep-water-associated 

(squids, deep-water fishes), and diet estimates for these prey items increased under the best-

fitting BEZI model. Heavy utilization of deep-water prey resources could cause large pelagic 

fishes to be increasingly vulnerable to environmental disasters such as deep-water oil spills, 

which was previously demonstrated by GOM Atlantis model (Morzaria-Luna et al. 2022).  
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I explored the implications of this vertical trophic linkage and its potential importance for 

EBFM in Chapter 4, Considering mesopelagic forage availability in management strategies for 

pelagic predators. In this chapter I found that the biomass of an example large pelagic predator, 

yellowfin tuna (Thunnus albacares), decreased markedly in Atlantis model scenarios that 

simulated declines in mesopelagic fish abundance. I applied a suite of candidate harvest control 

rules (HCRs) and found that adaptive management strategies consistently outperformed a 

constant fishing at FMSY strategy in regard to the amount of yellowfin tuna (YTN) biomass 

retained in the system. Catch of yellowfin tuna under HCRs was lower than under constant 

FMSY in the first ten or so years, but then increased above constant FMSY for the remainder of 

the fifty-year simulation. This suggests that there may be tradeoffs in management strategies in 

the short-term under HCRs, but that adaptive management improves both predator biomass and 

catch in the long-term. Ecosystem-based HCRs that reduced fishing pressure on YTN when 

mesopelagic fish abundance was below pre-defined biomass thresholds yielded higher YTN 

biomass and catch over time than a single-species two-point HCR. The most conservative 

ecosystem-based HCR produced both the highest YTN biomass and catch over fifty years, 

suggesting that catch benefits in the long-term from the conserved biomass in the system.  

This research presented a case for EBFM strategies that consider bottom-up food web 

dynamics. I found that the benefit of the ecosystem-based HCRs was greatest when mesopelagic 

prey availability was the lowest, suggesting that EBFM is particularly strategic when prey 

resources are scarce. The lowest mesopelagic fish abundance regime that I modeled was intended 

to simulate a future mortality event of deep-water species, such as another deep-water oil spill 

(Sutton et al. in prep, Romero et al. 2018). My results showed that implementing EBFM 

strategies can help conserve pelagic predator populations following an environmental 
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disturbance that harms lower trophic levels. These findings are timely given that anthropogenic 

exploitation of deep-water resources (e.g. oil drilling, seafloor mining, fishing) is increasing 

(Smith et al. 2020, Sutton et al. 2020, St. John et al. 2016) and future deep-water disasters like 

the 2010 Deepwater Horizon oil spill are likely (Muehlenbachs et al. 2013, Murawski et al. 

2019).  

Another potential stressor on pelagic trophic dynamics is a warming climate. In Chapter 2 

I highlighted the role of concentrating oceanographic features in providing pelagic feeding 

opportunities. Patterns in these features, such as currents and frontal zones, are expected to be 

altered by future climate change. Climate change is expected to weaken the Loop Current, the 

key driver of circulation in the deep GOM, along with its eddies (Liu et al. 2012). Another key 

hydrodynamic component of the GOM is freshwater output from the Mississippi River, which is 

a major driver of surface production in the open Gulf and is at its highest under El Niño 

conditions (Gomez et al. 2019). The variability of ENSO events is expected to increase under a 

warming climate (Cai et al. 2021) which will in turn increase the variability in epipelagic forage 

fishes in the northern GOM (Gomez et al. 2019, Adams et al. 2018). As these hydrodynamic 

features in the GOM change over time it will be important to consider how the pelagic food web 

will be affected. Ecosystem models such as Atlantis will continue to be useful tools for 

simulating these dynamics and potential food web implications. Future trophic modeling of the 

pelagic Gulf of Mexico could benefit from more fine-scale simulation of areas of concentrated 

feeding, such as convergence zones that amass sargassum communities (Zhang et al. 2024) or 

offshore oil rigs that may act as large fish aggregating devices (Snodgrass et al. 2020).  

Findings from this research suggest that there is benefit in the further exploration of 

including predator-prey interactions in management strategies. In general, ecosystem 
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considerations are more likely to be included in US fisheries management when populations are 

already at an overfished status (Marshall et al. 2019). This work suggests that it is beneficial to 

proactively manage predator stocks using an ecosystem approach when prey populations are low. 

Some US management policies have included top-down considerations by selecting HCRs for 

forage species that ensure there is an adequate forage base left in the system to sustain predators 

of conservation importance (Deroba et al. 2019). My results demonstrate the value of including 

bottom-up considerations in predator management strategies, which has only recently begun to 

be explored using modeling approaches (Kaplan et al. 2020). In Chapter 4 I used yellowfin tuna 

as an example pelagic predator, which is a highly migratory species that moves between 

international jurisdictions. United States regulations for this species in the Atlantic and GOM are 

set by the National Marine Fisheries Service (NMFS) which utilizes management guidance 

provided by the International Commission for the Conservation of Atlantis Tunas (ICCAT). 

Highly migratory tunas are currently managed using traditional single-species stock assessments 

(NOAA 2006, ICCAT 2019), but there has been movement in the last few years towards the 

investigation of ecosystem considerations (ICCAT 2023). This dissertation provides an example 

of how ecosystem modeling approaches can be applied to simulate pelagic food web dynamics 

and advance research efforts towards ecosystem-based approaches in the management strategies 

of large pelagic predators.  

 

References 

Adams, G.D., Leaf, R.T., Wu, W. and Hernandez, F.J. 2018. Environmentally driven fluctuations 

in condition factor of adult Gulf menhaden (Brevoortia patronus) in the northern Gulf of 

Mexico. ICES Journal of Marine Science, 75(4), pp.1269-1279. 

Ainsworth, C. H., Schirripa, M. J., & Morzaria-Luna, H. N. 2015. An Atlantis ecosystem 

model for the Gulf of Mexico supporting integrated ecosystem assessment. US Dept. 

Comm. NOAA Technical Memorandum NMFS-SEFSC-676: 149p.  



99 

Cai, W., Santoso, A., Collins, M., Dewitte, B., Karamperidou, C., Kug, J.S., Lengaigne, M., 

McPhaden, M.J., Stuecker, M.F., Taschetto, A.S. and Timmermann, A. 2021. Changing El 

Niño–Southern oscillation in a warming climate. Nature Reviews Earth & 

Environment, 2(9), pp.628-644. 

Cornic, M. and Rooker, J.R. 2018. Influence of oceanographic conditions on the distribution and 

abundance of blackfin tuna (Thunnus atlanticus) larvae in the Gulf of Mexico. Fisheries 

Research, 201, pp.1-10. 

Deroba, J.J., Gaichas, S.K., Lee, M.Y., Feeney, R.G., Boelke, D. and Irwin, B.J. 2019. The 

dream and the reality: meeting decision-making time frames while incorporating 

ecosystem and economic models into management strategy evaluation. Canadian Journal 

of Fisheries and Aquatic Sciences, 76(7), pp.1112-1133. 

Gomez, F.A., Lee, S.K., Hernandez Jr, F.J., Chiaverano, L.M., Muller-Karger, F.E., Liu, Y. and 

Lamkin, J.T. 2019. ENSO-induced co-variability of Salinity, Plankton Biomass and 

Coastal Currents in the Northern Gulf of Mexico. Scientific reports, 9(1), p.178. 

ICCAT. 2019. Report of the 2019 ICCAT yellowfin tuna stock assessment meeting. International 

Commission for the Conservation of Atlantic Tunas. 

https://iccat.int/Documents/SCRS/DetRep/YFT_SA_ENG.pdf 

ICCAT. 2023. ICCAT Circular #11903/2023: Call for Tenders – Simulation Testing Ecosystem 

Indicators: Support to ICCAT’s Ecosystem Approach to Fisheries Management (EAFM). 

International Commission for the Conservation of Atlantic Tunas. 

https://www.iccat.int/Documents/CFT/11903-23_ENG.pdf 

Kaplan, I.C., Hansen, C., Morzaria-Luna, H.N., Girardin, R. and Marshall, K.N. 2020. 

Ecosystem-based harvest control rules for Norwegian and US Ecosystems. Frontiers in 

Marine Science, 7, p.652. 

Lett, C., Verley, P., Mullon, C., Parada, C., Brochier, T., Penven, P., Blanke, B., 2008. A 

Lagrangian tool for modelling ichthyoplankton dynamics. Environ. Model. Softw. 23 (9), 

1210–1214.  

Marshall, K.N., Koehn, L.E., Levin, P.S., Essington, T.E. and Jensen, O.P. 2019. Inclusion of 

ecosystem information in US fish stock assessments suggests progress toward ecosystem 

based fisheries management. ICES Journal of Marine Science, 76(1), pp.1-9. 

Morzaria-Luna, H. N., Ainsworth, C. H., & Scott, R. L. 2022. Impacts of deep-water spills on 

mesopelagic communities and implications for the wider pelagic food web. Marine 

Ecology Progress Series, 681, 37-51. 

Muehlenbachs, L., Cohen, M.A. and Gerarden, T. 2013. The impact of water depth on safety and 

environmental performance in offshore oil and gas production. Energy Policy, 55, 

pp.699-705. 

Murawski, S.A., Ainsworth, C.H., Gilbert, S., Hollander, D.J., Paris, C.B., Schlüter, M. and 

Wetzel, D.L. eds. 2019. Scenarios and responses to future deep oil spills: fighting the 

next war. Springer. 

NOAA. 2006. Final Consolidated Atlantic Highly Migratory Species Fishery Management Plan. 

NOAA National Marine Fisheries Service. 

https://media.fisheries.noaa.gov/dam-migration/atlantic-hms-consolidated-fmp.pdf 

Ospina, R., & Ferrari, S. L. 2010. Inflated beta distributions. Statistical Papers, 51(1), 111-126. 

 

 

https://iccat.int/Documents/SCRS/DetRep/YFT_SA_ENG.pdf
https://www.iccat.int/Documents/CFT/11903-23_ENG.pdf
https://media.fisheries.noaa.gov/dam-migration/atlantic-hms-consolidated-fmp.pdf


100 

Putman, N.F., Seney, E.E., Verley, P., Shaver, D.J., L´opez-Castro, M.C., Cook, M., 

Guzm´an,V.,Brost, B., Ceriani, S.A., Mir´on, R.D.J.G.D., Pe˜na, L.J., Tzeek, M., 

Valverde, R.A., Cant´on, C.C.G., Howell, L., Ravell Ley, J.A., Tumlin, M.C., Teas, W. 

G., Caillouet Jr, C.W., Cuevas, E., Gallaway, B.J., Richards, P.M., Mansfield, K.L., 

2020a. Predicted distributions and abundances of the sea turtle ‘lost years’ in the western 

North Atlantic Ocean. Ecography. 43 (4), 506–517. 

Romero, I.C., Sutton, T., Carr, B., Quintana-Rizzo, E., Ross, S.W., Hollander, D.J. and Torres, 

J.J. 2018. Decadal assessment of polycyclic aromatic hydrocarbons in mesopelagic fishes 

from the Gulf of Mexico reveals exposure to oil-derived sources. Environmental science 

& technology, 52(19), pp.10985-10996. 

Scott, R.L., Putman, N.F., Beyea, R.T., Repeta, H.C. and Ainsworth, C.H. 2024. Modeling 

transport and feeding of juvenile Kemp's ridley sea turtles on the West Florida 

shelf. Ecological Modelling, 490, p.110659. 

Smith, C.R., Tunnicliffe, V., Colaço, A., Drazen, J.C., Gollner, S., Levin, L.A., Mestre, N.C., 

Metaxas, A., Molodtsova, T.N., Morato, T. and Sweetman, A.K. 2020. Deep-sea 

misconceptions cause underestimation of seabed-mining impacts. Trends in Ecology & 

Evolution, 35(10), pp.853-857. 

Snodgrass, D.J., Orbesen, E.S., Walter, J.F., Hoolihan, J.P. and Brown, C.A. 2020. Potential 

impacts of oil production platforms and their function as fish aggregating devices on the 

biology of highly migratory fish species. Reviews in Fish Biology and Fisheries, 30, 

pp.405-422. 

St. John, M.A., Borja, A., Chust, G., Heath, M., Grigorov, I., Mariani, P., Martin, A.P. and 

Santos, R.S. 2016. A dark hole in our understanding of marine ecosystems and their 

services: perspectives from the mesopelagic community. Frontiers in Marine Science, 3, 

p.31. 

Sutton, T.T., Frank, T., Judkins, H. and Romero, I.C. 2020. As Gulf oil extraction goes deeper, 

who is at risk? Community structure, distribution, and connectivity of the deep-pelagic 

fauna. In Scenarios and Responses to Future Deep Oil Spills: Fighting the Next War, 

pp.403-418. 

Tarnecki, J. H., Wallace, A. A., Simons, J. D., & Ainsworth, C. H. 2016. Progression of a Gulf 

of Mexico food web supporting Atlantis ecosystem model development. Fisheries 

Research, 179, pp. 237-250. 

Witherington, B., Hirama, S. and Hardy, R. 2012. Young sea turtles of the pelagic Sargassum 

dominated drift community: habitat use, population density, and threats. Marine Ecology 

Progress Series, 463, pp.1-22. 

Zhang, Y. and Hu, C. 2021. Ocean temperature and color frontal zones in the Gulf of Mexico: 

Where, when, and why. Journal of Geophysical Research: Oceans, 126(10), 

p.e2021JC017544. 

Zhang, Y., Hu, C., McGillicuddy Jr, D.J., Barnes, B.B., Liu, Y., Kourafalou, V.H., Zhang, S. and 

Hernandez, F.J. 2024. Pelagic Sargassum in the Gulf of Mexico driven by ocean currents 

and eddies. Harmful algae, 132, p.102566. 

 

 



101 

 

 

 

 

APPENDIX 1: ACCESS AND PERMISSIONS FOR CHAPTER 2: MODELING 

TRANSPORT AND FEEDING OF JUVENILE KEMP’S RIDLEY SEA TURTLES ON 
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Table A.1: Age structure of the Kemp’s ridley group in the Atlantis Gulf of Mexico model. Final 

values were determined via literature review (Avens et al. 2017, Chabot et al. 2021, Chaloupka 

and Zug 1997, Gallaway et al. 2016, Seney 2008). 
Atlantis-GOM 

age class 

Atlantis-GOM 

age group 

Age range 

(years) 

Size range  

(cm CCL) Life history notes 

0 (recruits) Juvenile 0-3 0-29.5 Oceanic 

1 Juvenile 4-7 29.6-44.0 Benthic immature 

2 Juvenile 8-11 44.1-62.0 Benthic immature 

3 Adult 12-15 62.1-65.8 Sexual maturity 

4 Adult 16-19 65.9-66.2 Adult 

5 Adult 20-23 66.2+ Adult 

6 Adult 24-27 66.2+ Adult 

7 Adult 28-31 66.2+ Adult 

8 Adult 32-35 66.2+ Adult 

9 Adult 36+ 66.2+ Adult 
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Table A.2: Proportional diet composition of the juvenile and adult age classes of the Kemp’s 

ridley group in the Atlantis Gulf of Mexico model. Values are sorted high-low for the juvenile 

age class. Final values were determined via literature review (Witzell and Schmid 2005, Schmid 

and Tucker 2018, Servis et al. 2015). Species of commercial importance are placed in their own 

functional group in the Gulf of Mexico Atlantis model (Atlantis-GOM). 

Atlantis-GOM                    

prey group 

Kemp's ridley age class 

Juvenile Adult 

Crabs and lobsters 0.512 0.523 

Sessile filter feeders 0.130 0.114 

Stone crab 0.073 0.097 

Bivalves 0.070 0.024 

Macroalgae 0.051 0.051 

Carnivorous macrobenthos 0.039 0.035 

Blue crab 0.035 0.110 

Lutjanidae 0.022 0.004 

Large reef fish 0.022 0.004 

Sciaenidae 0.022 0.004 

Other shrimp 0.017 0.000 

Sponges 0.006 0.010 

Oysters 0.001 0.011 

Flatfish 0.000 0.003 

Echinoderms 0.000 0.011 
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Table A.3: Results from post-hoc Tukey tests comparing annual values for juvenile Kemp’s 

ridley per capita consumption (pcQI). Values were log-transformed before analysis and n = 12 

months for each group. Bolded values indicate statistical significance at p < 0.05. 

  pcQI (tonnes/N) 

  Diff. p 95% CI 

2004-2003 0.18 1.000 (-0.48,0.84) 

2005-2003 0.47 0.485 (-0.19,1.13) 

2005-2004 0.29 0.972 (-0.37,0.95) 

2006-2003 -0.04 1.000 (-0.70,0.62) 

2006-2004 -0.22 0.998 (-0.88,0.44) 

2006-2005 -0.51 0.340 (-1.17,0.15) 

2007-2003 0.65 0.057 (-0.01,1.31) 

2007-2004 0.47 0.467 (-0.19,1.13) 

2007-2005 0.18 1.000 (-0.48,0.84) 

2007-2006 0.69 0.030 (0.03,1.35) 

2008-2003 -0.24 0.995 (-0.90,0.41) 

2008-2004 -0.42 0.663 (-1.08,0.24) 

2008-2005 -0.71 0.021 (-1.37,-0.05) 

2008-2006 -0.20 0.999 (-0.86,0.46) 

2008-2007 -0.89 0.001 (-1.55,-0.24) 

2009-2003 0.37 0.843 (-0.29,1.02) 

2009-2004 0.19 1.000 (-0.47,0.85) 

2009-2005 -0.10 1.000 (-0.76,0.56) 

2009-2006 0.41 0.715 (-0.25,1.06) 

2009-2007 -0.28 0.977 (-0.94,0.37) 

2009-2008 0.61 0.103 (-0.05,1.27) 

2010-2003 0.27 0.983 (-0.38,0.93) 

2010-2004 0.10 1.000 (-0.56,0.75) 

2010-2005 -0.19 1.000 (-0.85,0.46) 

2010-2006 0.31 0.946 (-0.34,0.97) 

2010-2007 -0.38 0.813 (-1.03,0.28) 

2010-2008 0.52 0.313 (-0.14,1.17) 

2010-2009 -0.09 1.000 (-0.75,0.57) 

2011-2003 -0.01 1.000 (-0.67,0.64) 

2011-2004 -0.19 1.000 (-0.85,0.47) 

2011-2005 -0.48 0.433 (-1.14,0.18) 

2011-2006 0.03 1.000 (-0.63,0.68) 

2011-2007 -0.66 0.046 (-1.32,-0.01) 

2011-2008 0.23 0.997 (-0.423,0.89) 

2011-2009 -0.38 0.803 (-1.03,0.28) 

2011-2010 -0.29 0.974 (-0.94,0.37) 

2012-2003 0.59 0.138 (-0.07,1.25) 

2012-2004 0.41 0.703 (-0.25,1.07) 

2012-2005 0.12 1.000 (-0.54,0.78) 
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2012-2006 0.63 0.079 (-0.03,1.29) 

2012-2007 -0.06 1.000 (-0.72,0.60) 

2012-2008 0.83 0.002 (0.17,1.49) 

2012-2009 0.22 0.998 (-0.44,0.88) 

2012-2010 0.31 0.946 (-0.34,0.97) 

2012-2011 0.60 0.114 (-0.06,1.26) 

2013-2003 -0.04 1.000 (-0.69,0.62) 

2013-2004 -0.21 0.999 (-0.87,0.44) 

2013-2005 -0.50 0.353 (-1.16,0.15) 

2013-2006 0.00 1.000 (-0.65,0.66) 

2013-2007 -0.69 0.032 (-1.34,-0.03) 

2013-2008 0.21 0.999 (-0.45,0.86) 

2013-2009 -0.40 0.729 (-1.06,0.26) 

2013-2010 -0.31 0.952 (-0.96,0.35) 

2013-2011 -0.02 1.000 (-0.68,0.64) 

2013-2012 -0.62 0.083 (-1.28,0.03) 

2014-2003 0.45 0.552 (-0.21,1.10) 

2014-2004 0.27 0.984 (-0.39,0.93) 

2014-2005 -0.02 1.000 (-0.68,0.64) 

2014-2006 0.49 0.400 (-0.17,1.15) 

2014-2007 -0.20 0.999 (-0.86,0.46) 

2014-2008 0.69 0.028 (0.04,1.35) 

2014-2009 0.08 1.000 (-0.57,0.74) 

2014-2010 0.18 1.000 (-0.48,0.83) 

2014-2011 0.46 0.498 (-0.19,1.12) 

2014-2012 -0.14 1.000 (-0.80,0.52) 

2014-2013 0.49 0.414 (-0.17,1.14) 

2015-2003 0.06 1.000 (-0.59,0.72) 

2015-2004 -0.11 1.000 (-0.77,0.54) 

2015-2005 -0.40 0.726 (-1.06,0.25) 

2015-2006 0.11 1.000 (-0.55,0.76) 

2015-2007 -0.59 0.141 (-1.24,0.07) 

2015-2008 0.31 0.955 (-0.35,0.97) 

2015-2009 -0.30 0.961 (-0.96,0.36) 

2015-2010 -0.21 0.999 (-0.87,0.45) 

2015-2011 0.08 1.000 (-0.58,0.74) 

2015-2012 -0.52 0.292 (-1.18,0.13) 

2015-2013 0.10 1.000 (-0.56,0.76) 

2015-2014 -0.39 0.785 (-1.04,0.27) 

2016-2003 0.25 0.992 (-0.41,0.91) 

2016-2004 0.08 1.000 (-0.58,0.73) 

2016-2005 -0.22 0.998 (-0.87,0.44) 

2016-2006 0.29 0.969 (-0.36,0.95) 

2016-2007 -0.40 0.746 (-1.06,0.26) 
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2016-2008 0.50 0.382 (-0.16,1.15) 

2016-2009 -0.11 1.000 (-0.77,0.54) 

2016-2010 -0.02 1.000 (-0.68,0.64) 

2016-2011 0.27 0.987 (-0.39,0.92) 

2016-2012 -0.34 0.913 (-0.99,0.32) 

2016-2013 0.29 0.973 (-0.37,0.95) 

2016-2014 -0.20 0.999 (-0.86,0.46) 

2016-2015 0.19 1.000 (-0.47,0.85) 

2017-2003 0.39 0.774 (-0.27,1.05) 

2017-2004 0.21 0.999 (-0.45,0.87) 

2017-2005 -0.08 1.000 (-0.74,0.58) 

2017-2006 0.43 0.629 (-0.23,1.09) 

2017-2007 -0.26 0.989 (-0.92,0.40) 

2017-2008 0.63 0.074 (-0.03,1.29) 

2017-2009 0.02 1.000 (-0.63,0.68) 

2017-2010 0.12 1.000 (-0.54,0.77) 

2017-2011 0.40 0.726 (-0.25,1.06) 

2017-2012 -0.20 0.999 (-0.86,0.46) 

2017-2013 0.43 0.645 (-0.23,1.08) 

2017-2014 -0.06 1.000 (-0.72,0.60) 

2017-2015 0.33 0.930 (-0.33,0.98) 

2017-2016 0.14 1.000 (-0.52,0.79) 
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APPENDIX 3: FUNCTIONAL GROUPS IN THE GULF OF MEXICO ATLANTIS 

MODEL 

Category Functional Group Code Category Functional Group Code 

Reef fish Gag grouper GAG  Small sharks SMS 

 Red grouper RGR  Skates and rays RAY 

 Scamp SCM Shrimp Brown shrimp BSH 

 Shallow serranidae SSR  White shrimp WSH 

 Deep serranidae DSR  Pink shrimp PSH 

 Red snapper RSN  Other shrimp OSH 

 Vermilion snapper VSN Seabirds Diving birds DBR 

 Lutjanidae LUT  Surface feeding birds SBR 

 Bioeroding fish BIO Mammals Manatee MAN 

 Large reef fish LRF  Mysticeti MYS 

 Small reef fish SRF  Dolphins and porpoises DOL 

Demersal fish Black drum BDR  Deep diving odontocetae DDO 

 Red drum RDR Turtles Loggerhead LOG 

 Seatrout SEA  Kemps ridley KMP 

 Sciaenidae SCI  Other turtles TUR 

 Ladyfish LDY Macrobenthos Blue crab BCR 

 Mullets MUL  Stone crab SCR 

 Pompano POM  Crabs and lobsters LOB 

 Sheepshead SHP  Carnivorous macrobenthos CMB 

 Snook SNK  Infaunal meiobenthos INF 

 Flatfish FLT  Herbivorous echinoderms ECH 

 Other demersal fish ODF Filter feeders Oysters OYS 

 Small demersal fish SDF  Bivalves BIV 

Pelagic fish Yellowfin tuna YTN  Sessile filter feeders SES 

 Bluefin tuna BTN 

Structural 

species Stony corals COR 

 Little tunny LTN  Crustose coralline algae CCA 

 Other tuna OTN  Octocorals OCT 

 Swordfish SWD  Sponges SPG 

 White marlin WMR 

Primary 

producers Epiphytes EPI 

 Blue marlin BMR  Sea grass GRS 

 Other billfish BIL  Macroalgae ALG 

 Greater amberjack AMB  Microphytobenthos MPB 

 Jacks JCK  Large phytoplankton LPP 

 King mackerel KMK  Small phytoplankton SPP 

 Spanish mackerel SMK  Toxic dinoflagellates DIN 

 Spanish sardine SAR  Protists PRO 
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 Large pelagic fish LPL 

Pelagic 

invertebrates Jellyfish JEL 

 Deep water fish DWF  Squid SQU 

Forage Menhaden MEN  Large zooplankton LZP 

 Pinfish PIN  Small zooplankton SZP 

 

Medium pelagic 

fish MPL Nutrient cycle Bacteria PB 

 Small pelagic fish SPL  Sediment bacteria BB 

Elasmobranchs Blacktip shark TIP  Carrion detritus DC 

 

Benthic feeding 

sharks BEN  Labile detritus DL 

 Large sharks LGS  Refractory detritus DR 

  

Filter feeding 

sharks FIL       
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