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ABSTRACT

The ideal class group is a fundamental concept in algebraic number theory, providing

insights into the structure and factorization properties of the ring of integers of a number field.

It measures the extent to which unique factorization fails in the ring of integers. Efficiently

computing the ideal class group is crucial for exploring unproved heuristics in number theory

and solving Diophantine equations. Additionally, the computation of the ideal class group

has several cryptographic applications, such as schemes based on the Discrete Logarithm

Problem (DLP), the computation of isogenies, and groups of unknown order. Despite its

importance, much about the ideal class group and its order, known as the class number,

remains enigmatic due to the computational challenges involved.

In the first part of this thesis, we present a modified version of the Hafner and McCurley

class group algorithm [41] for the ideal class Group computation of imaginary quadratic fields.

Our modified version improves the asymptotic run time and achieves the conjectured run

time of the Hafner and McCurley class group algorithm [41, Sec. 5]. This improvement relies

on recent results regarding the properties of the Cayley graph of the ideal class group [46].

In the second part of this thesis, we introduce a new approach for unconditional class

number computation of the maximal real subfield of cyclotomic fields. Our method for com-

puting class numbers in the maximal real subfield of cyclotomic fields closely adheres to the

methodology outlined by John C. Miller [54, 55, 56]. The cornerstone of our novel approach

for unconditional class number computation of the maximal real subfield of cyclotomic fields

lies in the norm relations techniques introduced by Biasse, Fieker, Hofmann, and Page [20].

In particular, we employ norm relation-based Principal Ideal Problem (PIP) technique as

outlined in [43].
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CHAPTER 1

INTRODUCTION

Algebraic number theory is a captivating and profound branch of mathematics that

utilizes the techniques of abstract algebra to study integers, rational numbers, and their

generalizations. At its core, algebraic number theory explores number fields, extensions of

the field of rational numbers, and their intricate structures, such as the ring of integers. One

of the most important properties of rational integers is the unique factorization, meaning

integers can be expressed as the product of prime numbers in a unique way. However, this

property can fail in the ring of integers of a general number field. This failure is measured

by the ideal class group and its order, known as the class number. The ideal class group and

its order, the class number, are perhaps the most important concepts in the study of number

fields. Computing the structure and order of the ideal class group is considered a challenging

problem, one of the four major tasks in computational number theory postulated by Pohst

and Zassenhaus [62], alongside the computation of the unit group, the Galois group, and

the ring of integers. Much about class groups and class numbers remains mysterious due to

their computational difficulty. This thesis focuses on the computation of class groups for two

important number fields in algebraic number theory. The first number field is the imaginary

quadratic field, and the second is the maximal real subfield of a cyclotomic field. Specifically,

for imaginary quadratic fields, we provide a proof for the conjectured run time of the Hafner

and McCurley class group algorithm [41]. For the maximal real subfield of cyclotomic fields,

we introduce a new technique for unconditional class number computation and determine

the class numbers of a few maximal real subfields of cyclotomic fields that have not been

documented in the literature. Our approach to class number computation for these maximal

real subfields of cyclotomic fields closely follows the methodology of Miller [54, 55, 56].
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1.1 Class Group Computation of Imaginary Quadratic Fields

The study of the ideal class group of imaginary quadratic field Cl(−d) goes back to

Gauss [85]. Gauss studied the class group of imaginary quadratic fields by using quadratic

forms and presented an algorithm for the class computation with a run time of O(d1/2),

where −d is the discriminant of the imaginary quadratic field. Later in 1968 Shanks [73,

74] proposed an algorithm for computing the ideal class group of quadratic number field by

using the baby-step giant-step method. This algorithm had time complexity O(e(1/4+ϵ) log d),

or O(e(1/5+ϵ) log d) under a generalization of the Riemann hypothesis (GRH) [48]. The input

for the ideal class group computation of a quadratic field is its discriminant d, and its bit-

length is polynomially bounded in O(log|d|). Hence, all the above class group computation

algorithms for quadratic fields are exponential. For number fields of higher degree, a lattice

reduction is needed for class group computation, and its time complexity depends on the

degree and the discriminant of the number field. A breakthrough in the ideal class group

computation came through Hafner and McCurley [41] in 1989. Hafner and McCurley in-

troduced a subexponential algorithm for the ideal class group computation of an imaginary

quadratic field under the Generalized Riemann hypothesis (GRH). After the breakthrough

of the Hafner and McCurley class group algorithm, much research happened in the practi-

cal implementation of the Hafner and McCurley algorithm [6, 11, 16, 30, 44] and the ideal

class group computations of higher degree number fields [10, 12, 14, 18, 20, 23]. Although

these computations in higher-degree number fields have achieved reduced asymptotic run-

ning time [10, 12, 14, 18, 20, 23] , for imaginary quadratic fields until now the best known

asymptotic complexity was the one stated by Hafner and McCurley [41].

In this thesis, we present a modified version of the Hafner-McCurley class group algorithm

for the ideal class group computation of imaginary quadratic field under GRH. Our modified

version improves the asymptotic run time and we achieve the conjectured run time of the

Hafner and McCurley class group algorithm [41, Sec. 5]. Our modified version of the Hafner

2



and McCurley class group algorithm relies on recent results on the properties of the Cayley

graph of the ideal class group [46]. The following is the main result we present on ideal class

group computation of imaginary quadratic field.

Theorem 1. Under a generalization of the Riemann hypothesis, there is a Las Vegas algo-

rithm which computes Cl(−d) with probability 1− 1
d1+o(1) in time

L(d)3/
√
8+o(1) = e(3/

√
8+o(1))

√
log d log log d.

1.2 Class Number Computation of Maximal Real Subfield of Cyclotomic Fields

Cyclotomic fields are one of the important number fields, and they have played a crucial

role in the development of algebraic number theory due to their connection with Fermat’s

Last Theorem. However not much is known about the class numbers of cyclotomic fields

due to computational difficulty. Schoof described the computation of class numbers for

cyclotomic fields as a ’notoriously hard’ problem [69]. The difficulty of this problem lies in

the class number computation of the maximal real subfield Q(ζm)
+ of the cyclotomic field

Q(ζm). The class number of the maximal real subfield of a cyclotomic field is also known

as the “plus part” of the class number and it is denoted by h+. The classical method for

calculating h+ is by using the Minkowski bound and we will discuss it in Section 3.4. However,

this method becomes impractical for cyclotomic fields with large discriminants. To address

cyclotomic fields with large discriminants, Masley [51] and van der Linden [49] introduced a

method for h+ computation using Odlyzko’s discriminant lower bounds. Unfortunately, this

method is limited to cyclotomic fields with small root discriminants. Later, John C. Miller

described a new approach for unconditional (without assuming GRH) h+ computation [54,

55, 56]. Miller’s approach finds an upper bound for h+ by establishing nontrivial lower

bounds for sums over prime ideals of the Hilbert class field. This upper bound, combined

with some divisibility arguments, yields the exact h+. In this thesis, we introduce a variant

of Miller’s technique for computing unconditional h+. The key behind our new approach

3



for unconditional h+ computation is the concept of norm relations introduced by Biasse,

Fieker, Hofmann, and Page [20]. Specifically, we utilize a norm relation based Principal

Ideal Problem (PIP) resolution subroutine as described in [43] as part of our new approach.

The following is the summary of our results on class number computation of maximal real

subfield of cyclotomic fields.

Theorem 2. The class number of Q(ζm)
+ is one for m = 285, 540, 372, 396, 308, 231, 462.

1.3 Outline

In Chapter 2, we discuss some foundational results in algebraic number theory necessary

for the subsequent chapters. Chapter 3 covers various algorithms in the literature for ideal

class group computation. Our modified version of the Hafner and McCurley class group al-

gorithm is presented in Chapter 4. In Chapter 5, we examine the norm relations introduced

by Biasse, Fieker, Hofmann, and Page [20] and explore various arithmetic applications of

these norm relations. Chapter 6 introduces our new technique for unconditional h+ compu-

tation. Chapter 4 is based on collaborative research with Jean-François Biasse, published in

Advances in Mathematics of Communications (AMC) [13]:

Jean-François Biasse and Muhammed Rashad Erukulangara. “A proof of the conjectured

run time of the Hafner-McCurley class group algorithm”. In: Advances in Mathematics of

Communications 17 (Jan. 2021). DOI: https://doi.org/10.3934/amc.2021055

Chapter 5 is based on the following joint work with Jean-François Biasse, Claus Fieker,

Tommy Hofmann and William Youmans [19].

Jean-François Biasse,Claus Fieker, Tommy Hofmann ,William Youmans and Muhammed

Rashad Erukulangara. “Mildly Short Vectors in Ideals of Cyclotomic Fields Without Quan-

tum Computers”. In: Mathematical Cryptology 2.1 (Nov. 2022), pp. 84–107. url: https:

//journals.flvc.org/mathcryptology/article/view/132573.

The content of Chapter 6 is derived from collaborative, unpublished work with Jean-

François Biasse.
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CHAPTER 2

BACKGROUND

In this chapter, we discuss some of the basic results in algebraic number theory that will

be useful for the subsequent chapters.

2.1 Number Fields

A number field is a finite field extension K of Q. In other words, a number field is a

Q-vector space of finite dimension. The dimension [K : Q] is called the degree of the number

field K. An element in a number field is called an algebraic integer if it is a root of a monic

polynomial with coefficients in Z. The set of algebraic integers of a number field is called the

ring of integers of K and it is denoted by OK . The ring of integers OK is a ring and also a

free abelian group whose rank is the degree of the corresponding field K. Orders generalize

the notion of the ring of integers of a number field. An order of an algebraic number field

K is a subring O ⊆ OK which is also a free abelian group of rank n = [K : Q] .

A number field K of degree n over Q has n distinct embedding into C. Let L/K be a

degree m extension of number fields. Let σ1, ..., σm be the m distinct embeddings of L into

C which fix K. Then for an element α ∈ L, the norm is defined as

NL/K(α) =
m∏
i=1

σi(α).

Also, the trace of α is defined as

TrL/K(α) =
m∑
i=1

σi(α)

5



The norm map is multiplicative and the trace map is additive. For an algebraic integer

α ∈ K, the norm and trace of α belong to Z.

Definition 2.1 (Euclidean lattice). Let v1, ..., vn be linearly independent vectors in Rn.

Then, the lattice generated by these vectors is the set of all points
∑

i aivi with ai ∈ Z. The

set {v1, ..., vn} is called a basis of the lattice, and the dimension of the lattice is defined as

the cardinality of this basis set.

Conceptually, a lattice can be viewed as a collection of points in a multi-dimensional

space arranged in a regular, grid-like pattern. Let L be a lattice of dimension n with a

basis v1, ..., vn. The fundamental domain of L with respect to the basis v1, ..., vn is the region

defined by

F (v1, ..., vn) = {t1v1 + t2v2 + ...+ tnvn : 0 ≤ ti < 1}.

Let K be a number field of degree n. Let OK be the ring of integers of K with a basis

w1, ..., wn. We can define the embedding σ : K → Cn by σ(a) = (σ1(a), ..., σn(a)), where

σ1, ..., σn are n distinct embeddings of K into C. Then the image σ(OK) can be considered as

an n -dimensional lattice with basis σ(w1), ..., σ(wn). Let V be the volume of the fundamental

domain of the lattice σ(OK). Then the discriminant of the number field K, denoted by dK ,

is:

dK = V 2.

The discriminant is an integer and it is independent of the choice of the basis of OK . The

discriminant can be computed by using the following formula

dK = det(TrK/Q(wiwj)1≤i,j≤n).

The root discriminant of a number field is defined as |dK |1/n and it is denoted by rd(K).

6



Figure 1. A fundamental domain of OK for K = Q[x]/(x3 − x2 − 2x+ 1) [67]

Let us consider a non-zero ideal I of OK , then the norm of the ideal I is defined by

N(I) = |OK/I|.

For an element α ∈ OK , consider the principal ideal αOK of OK . Then, N(αOK) =

|NK/Q(α)|, which means that the notions of norm of an element and of an ideal coincide.

Let p be a prime ideal of OK . Then p ∩ Z is a prime ideal of Z. Since the prime ideals of Z

are in the form pZ, p ∩ Z will be pZ for some prime number p and we say that p lies above

p. Every non-zero prime ideal of OK is a maximal ideal. So, we can define the residue field

OK/p for p. Similarly we can define the residue field for pZ as Fp = Z/pZ. It can be easily

verified that the residue field OK/p is a finite dimensional Fp-vector space and the dimension

of OK/p over Fp is called the inertial degree. We use fp to denote the inertia degree of p and

the norm of the prime ideal p can be expressed as

N(p) = |OK/p|= |Fp|dimFp (OK/p)= |Fp|fp= pfp .

One of the important algebraic structures inside a number field are the fractional ideals.

A fractional ideal I is a finitely generated OK-module contained in K. The ideals of OK are

particular cases of fractional ideals of K. So, to avoid ambiguity we use the term integral

7



ideals for the ideals of OK . Now let us discuss the factorization of the fractional ideals. Let

I be a non-zero fractional ideal of K. Then

I = p1...prq
−1
1 ...q−1

s ,

where p1, ..., pr, q1, ..., qs are prime integral ideals. This factorization is unique up to the

permutation of the factors. The non-zero fractional ideals of a number field K form a

multiplicative group. Let us denote it by IK . Let PK be the subgroup of IK formed by the

principal ideals of the form αOK , where α ∈ K∗. Then, the ideal class group, denoted by

Cl(K), is defined as Cl(K) = IK/PK . The cardinality of the class group is called the class

number and it is denoted by hK and it is finite [52]. We can also define the class group for an

order in K which is not the maximal order OK . For a non-maximal order O of K, not every

ideal is invertible. For a non-maximal order O, the class group is defined as the following

quotient of groups

Cl(O) = {Invertible fractional ideals of O}
{Principal invertible fractional ideals of O} .

The cardinality of the class group Cl(O) is called the class number of O and it is a multiple

of hK .

Units of a number field K are the elements of OK that have an inverse in OK . The norm

NK/Q(α) of an element α of OK is equal to ±1 if and only if α is a unit of K. As mentioned

earlier the number field K of degree n has n distinct embeddings into C. An embedding

is called a real embedding if its image is contained in R. Otherwise it is called a complex

embedding. The complex embeddings come in conjugate pairs. Let r1 be the number of

real embeddings of K and r2 be the number of pairs of complex embeddings of K. Then

the group of units of K, denoted by O∗
K , is given by the Dirichlet’s Units theorem [36]. By

8



Dirichlet’s Units Theorem, we have

O∗
K ' Zr1+r2−1 × µ(OK).

Here µ(OK) is the group of roots of unity in OK . Let r = r1 + r2 − 1. Then, there exist

units u1, ..., ur such that every element x of O∗
K can be written in a unique way as

x = ηun1
1 . . . unr

r ,

where η is a root of unity in K. Such a family (ui) is called the fundamental units of K.

Consider the first r1+r2 embeddings of K into C. Here σi for 1 ≤ i ≤ r1 are real embeddings

and the remaining embeddings are complex embeddings. The logarithmic embedding of K∗

into Rr1+r2 is defined by the map

L(x) = (ln|σ1(x)|, . . . , ln|σr1(x)|, 2 ln|σr1+1(x)|, . . . 2 ln|σr1+r2(x)|)

for x ∈ K∗. Since the norm of a unit is ±1, the image of the unit group O∗
K under the

logarithmic embedding will be a lattice of rank r1+r2−1 in the hyperplane
∑

1≤i≤r1+r2
xi = 0

of Rr1+r2 . The volume of the fundamental domain of this lattice is called the regulator of

K and it is denoted by RK . The regulator can also be defined as the absolute value of the

determinant of any r × r matrices extracted from the r × (r + 1) matrix

ln ‖σj(ui)‖1≤i≤r,1≤j≤r+1.

One of the important results in algebraic number theory which links different arithmetic

invariants of a number field K is the class number formula [35] of Dedekind which is given

by

lim
s→1

(s− 1)ζK(s) = 2r1(2π)r2
hKRK

wK

√
dK

,

9



where ζK is the Dedekind zeta function of K and wk is the number of roots of unity in K.

The class number formula is one among numerous instances where the class number and

regulator of a field are inextricably linked.

Another important invariant of a number field is the S-unit group. For a set S of prime

ideals of OK , the S-units are the elements x ∈ K∗ such that vp(x) = 0 for all p /∈ S. Here

vp(x) denotes the valuation of x at the prime ideal p. The group of S-units is denoted by

O∗
K,S, and it is called the S-unit group of K.

2.2 Class Groups of Imaginary Quadratic Fields and Binary Quadratic Forms

A field K is called an imaginary quadratic field if [K : Q] = 2 and if its signature is

r1 = 0, r2 = 1. The study of the class groups of imaginary quadratic fields is an old one and

it was initiated by Gauss who studied this by using binary quadratic forms. The discriminant

of an imaginary quadratic field is negative and it is congruent to 0 or 1 mod 4. Every order

O of K has discriminant d = dkf
2, where dk is the fundamental discriminant (discriminant

of K) and f is a positive integer called the conductor of O. Also, if d is a non square integer

such that d ≡ 0 or 1 mod 4, then d = dkf
2, and there is a unique quadratic order O of

discriminant d.

A polynomial g = ax2+ bxy+ cy2 ∈ Z[x, y] with b2−4ac = d is called a binary quadratic

form of discriminant d. If d < 0 and a > 0, then the binary quadratic form is called positive

definite. If gcd(a, b, c) = 1, then we say that the corresponding binary quadratic form is

primitive. We usually denote a binary quadratic form ax2 + bxy + cy2 of discriminant d

by (a, b, c) or by (a, b) since c is determined by the discriminant. Let g1 = (a1, b1, c1) and

g2 = (a2, b2, c2) be two quadratic forms of the same discriminant d. Let s = (b1 + b2)/2,

n = (b1 − b2)/2. Consider the integers u, v, w and d′ which satisfy

ua1 + va2 + ws = d′ = gcd(a1, a2, s).

10



Also consider the integer d0 = gcd(d′, c1, c2, n). Then the composition of two quadratic forms

g1 and g2 is defined as

(a3, b3, c3) =

(
d0
a1a2

d′2
, b2 +

2a2
d′

(v(s− b2)− wc2),
b23 − d
4a3

)
.

The composition of two quadratic forms can be computed by using Algorithm 5.4.7 of [29].

Let g1 = a1x
2+ b1xy+ c1y

2 and g2 = a2x
2+ b2xy+ c2y

2 be positive definite binary quadratic

forms. We say g1 and g2 are equivalent if there is a matrix A =
( α γ
β δ

)
∈ SL2(Z) such that

a2r
2 + b2rt+ c2t

2 = a1x
2 + b1xy + c1y

2;

where r = αx+ γy and t = βx+ δy. Under this notion of equivalence, the binary quadratic

forms of discriminant d partition themselves into equivalence classes. These equivalence

classes form a group under the composition of forms. This group is isomorphic to the class

group of the quadratic order O of discriminant d. The correspondence between equivalence

classes of binary quadratic forms and ideal classes of quadratic order O of discriminant d is

given by the following map:

ax2 + bxy + cy2 →

(
aZ+

b+
√
d

2
Z

)
.

Since we have a natural bijection between equivalence classes of binary quadratic forms

and ideals, we can transport the class group structure of an imaginary quadratic order

to the group of equivalence classes of quadratic forms. The multiplication between ideals

corresponds to the composition of quadratic forms.
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2.3 Properties of the Ideal Class Groups

In this section, we discuss some properties of the ideal class groups that will be crucial

to the design and analysis of algorithms presented in subsequent chapters.

2.3.1 Generalized Riemann Hypothesis(GRH)

The Riemann zeta function, denoted by ζ, is a function of a complex variable defined as

ζ(s) =
∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · ·

for Re(s) > 1. One of the most important conjectures in mathematics is about the Rie-

mann zeta function, and is known as the Riemann Hypothesis. This hypothesis states that

the Riemann zeta function has zeroes only at negative even integers and complex numbers

with a real part of 1
2
. The Riemann Hypothesis is considered one of the most significant

unsolved problems in mathematics and is one of the Millennium Prize Problems of the Clay

Mathematics Institute.

The Riemann Hypothesis implies profound results about the distribution of prime num-

bers and is of great importance in number theory [66]. There have been several general-

izations of the Riemann Hypothesis, and the vast majority of the mathematical community

believes these generalizations to be true. One such generalization concerns Hecke L-functions

and is known as the Generalized Riemann Hypothesis (GRH). This same assumption is some-

times referred to as the Extended Riemann Hypothesis (ERH), particularly in [41] and [4].

Consider a finite field extension E of K with an abelian Galois group G = Gal(E/K).

Let p be a prime ideal of OK that is unramified in the abelian extension E. Consider a prime

ideal P of OE that lies above p. There is a unique element σ in the Galois group G such

that for any element α ∈ OE,

σ(α) ≡ αN(p) modP.
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This unique element σ of G is called the Artin symbol of p and is denoted by
(

p
E/K

)
. A

Hecke character χ is defined on the ideals of OK as follows. Let φ be a homomorphism from

G into the complex roots of unity. This homomorphism induces a function on the prime

ideals of OK , given by

χ(p) = φ

(
p

E/K

)
when p is unramified, and 0 otherwise. The Hecke character constructed in this manner can

then be extended to all ideals by multiplicativity. If a character χ takes only the values 0, 1,

then the character is called a principal character. For any character χ there is an ideal f of

OK such that χ((t)OK) = 1 for all totally positive t congruent to 1 modulo f. Then we say χ

is defined modulo f. The ideal of the least norm with respect to which χ is defined is called

its conductor. The Hecke L-function associated with a character χ is defined as

L(s, χ) =
∑
a

χ(a)

N(a)s

where sum is over nonzero ideals of OK . When χ is a trivial character, then the Hecke

L-function is called the Dedekind ζ function of K:

ζ(s) =
∑
a

1

N(a)s
.

The following is the Generalized Riemann hypothesis (GRH):

Conjecture 2.2 (GRH). Let K be a number field and χ be a Hecke character on K. Then

the Hecke L-function given by L(s, χ) =
∑

a
χ(a)
N(a)s

is zero free in the half-plane <(s) > 1/2.

13



2.3.2 Small Generators of the Ideal Class Group

As we discussed in the previous section, the Generalized Riemann Hypothesis (GRH)

asserts that all Hecke L-functions are zero-free in the half-plane <(s) > 1/2. By using GRH,

Eric Bach made an estimate for
∑

ρ
1

|ρ+a|2 for 0 < a < 1, where the sum is over the zeros

of Hecke L- function and Dedekind ζ function [4, Lem. 5.6]. By using this critical estimate

and the results derived from it, Eric Bach proved the following theorem:

Theorem 2.3 (Thm.4 of [4]). Let K be a number field of degree greater than 1. Let d be

the absolute value of the discriminant of K. Let χ be a non-principal character of the ideals

of K that is defined modulo f. Then:

χ(p) 6= 1 occurs for N(p) ≤ 3 log2(d2N(f))

χ(p) 6= 0, 1 occurs for N(p) ≤ 12 log2(d2N(f))

χ(p) 6= 0, 1 and degree(p) = 1 occurs for N(p) ≤ 18 log2(d2N(f)).

By using Theorem 2.3, we obtain the following important result on ideal class groups.

Corollary 2.4. Let K be a number field with discriminant d. Then the ideal class group is

generated by classes of prime ideals of norm at most 12 log2(|d|).

Proof. Since the ideal class group of K is arithmetically constructed from K, we can interpret

Hecke characters as discrete characters of the ideal class group Cl(K). Let H be the subgroup

of the ideal class group generated by the classes of prime ideals of norm less than 3 log2(d2) =

12 log2(d). Assume H is a proper subgroup of the ideal class group Cl(K). Then there is a

nontrivial character on Cl(K) which is trivial on H. This character is trivial on the prime

ideals of norm less than 12 log2(d). This contradicts the first part of Theorem 2.3 with

f = OK . So, H = Cl(K), and Cl(K) is generated by the classes of prime ideals of norm less

than 12 log2(d).
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So, the ideal class group has a finite generating set, and this result is very useful for the

computation of the class groups and units of K.

2.3.3 Cayley Graph of the Ideal Class Group

A Cayley graph is a visual representation of a group, built using a particular set of

generators for that group. Named after the mathematician Arthur Cayley, these graphs

find applications in diverse fields like algebra, geometry, and computer science. Here is the

definition of a Cayley graph.

Definition 2.5. Let G be a group generated by a subset of elements S ⊆ G. Then the

Cayley graph Cay(G,S) of G is a graph in which each vertex corresponds to an element of

the group G. Also, there is a directed edge from vertex g1 to vertex g2 if and only if there is

an element s ∈ S such that s.g1 = g2.

If k is the cardinality of the generating set S of Cay(G,S), then Cay(G,S) is a k-regular

graph. We can apply the definition of a Cayley graph to the class group of a number field

K. Thus, we can select G as Cl(K) and require a generating set S for G. Since the class

group Cl(K) is generated by the classes of prime ideals with norms less than 12 log2|d|,

we can choose S := {prime ideals of OK with norm less than log2+ϵ|d| for any ϵ > 0} and

construct the Cayley graph Cay(Cl(K), S). Expanding the generating set slightly does not

have a significant impact on the overall cost of any of the algorithms being considered. The

most intriguing result about Cay(Cl(K), S) is that random walks in Cay(Cl(K), S) reach

arbitrary subsets of Cl(K) with a probability at least proportional to the size of the subset.

This rapid mixing property of Cay(Cl(K), S) is highly beneficial, and we will briefly discuss

it here.

The adjacency operator A acts on the functions over the vertices of a graph G by

(Af)(x) =
∑

x and y connected by an edge

f(y).
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For a k-regular graph, the constant function 1(x) = 1 will be an eigenfunction of the

adjacency operator A with eigenvalue k. We denote this eigenvalue by λtriv, which is the

largest eigenvalue of the adjacency operator A. The spectral gap of a graph G is defined to

be γ(G) = λtriv − λ2, where λ2 is the largest non-trivial eigenvalue. We say G has spectral

expansion γ if γ(G) ≥ γ. A graph is called a good expander if it has a large expansion

parameter γ.

Expansion properties of graphs are extensively studied across various fields of mathe-

matics and computer science. The bounds on the eigenvalues of a good expander graph are

particularly valuable for determining the number of paths between two sets of graph vertices.

These bounds on the eigenvalues of a good expander yield the following important result.

Proposition 2.6 (Lem.2.1 of [46]). Let G be a finite k-regular graph such that λ < c for

some c < k for all eigenvalue λ 6= λtriv. Then a random walk of length at least log 2|G|/|G0|1/2
log k/c

starting from v ends in G0 with probability between |G0|
2|G| and 3|G0|

2|G| .

Proof. Let G be a finite k-regular graph with the bound λ < c for nontrivial eigenvalues λ

for some c < k. Consider the characteristic function χG0 for a subset G0 of vertices of the

graph G. The characteristic function χG0 is defined by χG0(x) = 1 if x ∈ G0 and χG0(x) = 0

if x /∈ G0. The L2 inner product on the functions f, g over the vertices of the graph G is

defined by 〈f, g〉 =
∑

x f(x)g(x). Now, consider a vertex v and a subset G0 of the vertices

of the graph G. For a given t, Atχ{v}(x) will be the number of paths of length t from the

vertex v to the vertex x of the graph. So, the number of paths of length t from vertex v

to the subset G0 will be 〈χG0 , A
tχ{v}〉. Then, we get the following inequality by using the

properties of the L2 inner product and Cauchy-Schwartz inequality,

〈χG0 , A
tχ{v}〉 ≤

|G0|
|G|

kt + ct|G0|2.
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That is, we have a bound on the number of paths of length t between the vertex v and subset

G0 in terms of the eigenvalue bounds. If we take t > log 2|G|/|G0|1/2
log k/c

, then we get the following

inequality

|G0|
2|G|

kt ≤ 〈χG0 , A
tχ{v}〉 ≤

3|G0|
2|G|

kt. (2.1)

For a k-regular graph, the number of paths of length t from a given vertex is given by kt.

So, if we divide Inequality 2.1 by kt, we get the result.

Consider the Cayley graph Cay(Cl(K), S). Since Cl(K) is a finite abelian group, the

eigenfunctions of the adjacency operator A are precisely the characters χ : Cl(K) −→ C∗.

Indeed, we have the formula:

(Aχ)(x) =
∑
s∈S

χ(sx) = λχχ(x) where λχ =
∑
s∈S

χ(s).

So, the spectrum of eigenvalues consists of the character sums λχ =
∑

s∈S χ(s) ranging over

the generating set S. Theorem 1.1 of Jao, Miller, and Venkatesan [46] gives eigenvalue bounds

for these character sums under the assumption of GRH. So the Cayley graph Cay(Cl(K), S)

can be considered as a good expander graph, and we have the following result from [46, Cor.

1.3].

Theorem 2.7 (Cor.1.3 of [46]). Let K be a number field of degree n and discriminant d, m

be an integral ideal of OK. Let G be the narrow ray class group relative to m, ϵ > 0, and

S :=
{

prime ideals of norm less than log2+ϵ(N(m)|d|) and their inverses
}
.

Then there is a constant C > 0 such that for d sufficiently large, a random walk of length

t > C
log|G|

log log(N(m)|d|)
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starting from any vertex ends in any G0 ⊆ G with probability at least |G0|
2|G| .

The above result applies to a narrow ray class group of a number field K relative to a

conductor m. However, it can be extended to the ideal class group of orders in K. As a

result, asymptotically, random walks of length O
(

log|Cl(K)|
log log|d|

)
in the Cayley graph of Cl(K)

reach subsets of Cl(K) that are distributed almost uniformly at random.

2.4 Finiteness of the Ideal Class Group

In this section, let’s discuss the Class Number Theorem, which states that the ideal class

group is finite. The backbone of the Class Number Theorem is the famous Minkowski’s

Theorem [52]. Minkowski’s Theorem is stated as follows:

Theorem 2.8 (Minkowski’s Theorem). Let L be a full lattice in an n-dimensional vector

space V over R. Let Y be a centrally symmetric, bounded, context subset of V . If vol(Y ) >

2nvol(L), then Y contains a nonzero point of L.

By applying Minkowski’s Theorem to the ideal lattices formed by the canonical embed-

dings of K, we obtain the result that every ideal class of Cl(K) contains an integral ideal

whose norm is at most Cr1,r2

√
|d|. Here, the constant Cr1,r2 depends only on the number

of real embeddings r1 and the number of pairs of complex embeddings r2 of K. That is,

each ideal class contains a representative integral ideal whose norm is bounded by a constant

depending only on the field. Then, by using the fact that there are only a finite number of

integral ideals with a given norm, we obtain the result that the class group is finite.
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CHAPTER 3

CLASS GROUP AND UNIT GROUP COMPUTATIONS

In this chapter, we discuss various algorithms for the computation of ideal class groups

and unit groups of number fields.

3.1 Algorithms For Class Group and Unit Group Computations

The computation of the ideal class group and the unit group of a number field are pri-

mary challenges in computational algebraic number theory, along with the computation of

the Galois group and the ring of integers, as postulated by Zassenhaus [62]. The theoreti-

cal results and computational experiences show these computations are very difficult tasks.

Even under the assumption of the Generalized Riemann hypothesis (GRH), the fastest de-

terministic algorithm for the computation of the ideal class group and the unit group has

exponential time complexity, i.e exponential in log(|d|), where d is the discriminant of the

number field K. Computationally hard problems like class group computation can serve

as the security assumption for certain cryptosystems. In 1968 Shanks [73, 74] proposed an

algorithm for computing the ideal class group of a quadratic number field by using the baby-

step giant-step method. This algorithm had exponential time complexity O(e(1/4+ϵ) log|d|), or

O(e(1/5+ϵ) log|d|) under a generalization of the Riemann hypothesis (GRH) [48]. On input d

with |d|> 1 and 0 < a, b < 1, we define the subexponential function as

Ld(a, b) = eb log(|d|)
a log log(|d|)1−a

.

An algorithm is termed as subexponential algorithm if its running time grows according

to a subexponential function with respect to its input size log|d|. A breakthrough in the
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ideal class group computation came through Hafner and McCurley [41] in 1989. Hafner and

McCurley introduced a subexponential algorithm for the ideal class group computation of an

imaginary quadratic field under the Generalized Riemann hypothesis. The expected running

time of the Hafner and McCurley subexponential algorithm is Ld(
1
2
,
√
2 + o(1)). After the

breakthrough of the Hafner and McCurley class group algorithm, much research happened

in the practical implementation of the Hafner and McCurley algorithm [6, 11, 16, 30, 44]

and the ideal class group computations of higher degree number fields [10, 12, 14, 18, 20,

23]. All these algorithms have subexponential time complexity under the assumption of the

Generalized Riemann hypothesis. Also, all these algorithms use the index calculus method

as used in the Hafner and McCurley class group algorithm. The following is the outline of

the index calculus method for ideal class group computations.

3.1.1 Index Calculus Method For Ideal Class Group Computation

One of the important steps in the index calculus method is the computation of the SNF

of a matrix, which is defined as follows.

Definition 3.1. Let A = (aij) be a n × n matrix with integer entries. Then the matrix A

is in SNF if

1. aij = 0 for i 6= j.

2. For some k with 0 ≤ k ≤ n, aii 6= 0 for i ≤ k, and aii = 0 for i > k.

3. a11 | a22 |. . . | akk.

For any integer n × n matrix with non-zero determinant, there exists a unique Smith

norm form corresponding to the matrix [29, Th. 2.4.12] and it can be computed by using

Algorithm 2.4.14 of [29]. Let G be a finite abelian group. Then G is isomorphic to a quotient

Zn/L where L is a submodule of Zn of rank n [29, Th. 2.4.1]. We can represent the finite

abelian group G by an n × n matrix A, where the columns of A correspond to coordinates
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of a Z-basis of L with respect to some Z-basis of Zn. Then we can determine the structure

of G from the SNF of A. In fact, we have the following isomorphism

G ∼=
⊕
1≤i≤n

(Z/diZ),

where di are the diagonal elements of the SNF of A.

Let B = p1, . . . , pN be a set of invertible prime ideals of the ideal class group Cl(O)

of order O of the number field K such that it generates Cl(O). Then, we can define the

surjective homomorphism

ZN ϕ−−→ I
π−−→ Cl(O)

(e1, ..., eN) −→
∏
i

pi
ei −→

∏
i

[pi]
ei .

The ideal class group Cl(O) is isomorphic to Zn/Ker(π ◦ ϕ). Therefore, computing the

ideal class group Cl(O) is equivalent to computing Ker(π ◦ ϕ). The elements of Ker(π ◦ ϕ)

are the vectors (e1, . . . , eN) in the lattice Zn such that pe11 · · · p
eN
N = (α), where α ∈ O.

For the index calculus strategy, we aim to collect relations of the form
∏

i p
e
(j)
i
i = (αj),

and we store these relations as the rows of the matrix M = (e
(j)
i ). After gathering enough

relations, the SNF of the matrix M reveals the class group structure of Cl(O).

Additionally, if a vector (x1, . . . , xN) belongs to the left kernel of the matrixM , it provides

us with the unit γ = αx1
1 · · ·α

xN
N . Using this method, we can compute the unit group of Cl(O)

from the left kernel of M .
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Input : Number field K with an order O, factor base B = {p ⊆ O |N(p) ≤ B}
that generates the class group Cl(O)

Output: Class group and unit group of O
1 Generate a Z-lattice L of random relations in Cl(O) between the classes of elements

of B;
2 Consider a matrix M for a generating system of L;
3 Compute the left kernel ker(M) of the matrix M;
4 Compute the class group structure of Cl(O) from the Smith norm form of M ;
5 Compute a generating set for the units of the form γX obtained from Ker(M) ;
6 Certify the result;

Algorithm 1: Index calculus method

3.2 Hafner and McCurley Algorithm

As mentioned in the previous section, a breakthrough in the ideal class group computation

came through Hafner and McCurley [41] in 1989. By using the properties of binary quadratic

forms, Hafner and McCurley introduced a subexponential algorithm for the ideal class group

of imaginary quadratic fields. So, Let us briefly discuss imaginary quadratic fields and the

Hafner and McCurley algorithm in this section.

Imaginary quadratic fields contain only a finite number of units. For d > 0, we consider

the imaginary quadratic order O−d of discriminant −d. The imaginary quadratic order of

discriminant −d is a Z-module O−d = Z + −d+
√
−d

2
Z. If −d is a fundamental discriminant,

then the imaginary quadratic field of discriminant −d is a Q-vector space Q(
√
−d) = Q +

Q
√
−d. An ideal of O−d is a two-dimensional Z-module a = m(aZ + b+

√
−d

2
Z), where

a, b,m ∈ Z and 4a|b2 + d. The integers a and m are unique, and b is defined modulo 2a.

The ideal a is said to be primitive if m = 1. The norm of an ideal is N(a) = am2. The

prime ideals of O−d have the form p = pO−d for p prime with Kronecker symbol
(

−d
p

)
= −1

and p = pZ+ bp+
√
−d

2
Z for primes p with Kronecker symbol

(
−d
p

)
6= −1 and bp the uniquely

determined square root b of −d modulo 4p in [0, p]. In both cases, we say that p lies over

p and we denote this by p | p. When
(

−d
p

)
≤ 0, only one prime ideal lies over p. When(

−d
p

)
= 1, there are two prime ideals lying over p, which correspond to the two possible

22



roots modulo p. If the prime ideal p corresponds to the choice of root bp, then its conjugate

p corresponds to −bp mod 4p.

In the previous chapter, we discussed the natural correspondence between the classes of

binary quadratic forms and the ideal class group of an imaginary quadratic order. So, we

have the following correspondence between the prime ideals of the imaginary quadratic order

and prime binary quadratic forms of discriminant −d:

pZ+
bp +

√
−d

2
Z→ (p, bp, .)

Since we can transport the class group structure of an imaginary quadratic order to the set

of equivalence classes of quadratic forms, we use the same notation Cl(−d) for the ideal class

group of imaginary quadratic order of discriminant −d and the class group of equivalence

classes of binary quadratic forms of negative discriminant −d. We use h(−d) to denote

the class number of Cl(−d). Working on equivalence classes of binary quadratic forms is

more practical than the ideal class group of imaginary quadratic fields. We have the following

result for the set of generators of the class group Cl(−d) of binary quadratic forms of negative

discriminant −d.

Theorem 3.2 (Thm.4 of [4]). Let pi be the ith prime with
(

−d
pi

)
= 1, and let

bi = min{b ∈ Z≥0 : b
2 ≡ −d mod 4pi}.

Then, under GRH, there exists an absolute, effectively computable constant c such that the

classes [(pi, bi, .)], 1 ≤ i ≤ n0, generate Cl(−d), where n0 is the largest integer such that

pno ≤ c log2 d.

Let P be a set that contains primes p such that (−d/p) = 1 and p < c log2 d, then the

classes of prime forms [(pi, bi, .)] for pi ∈ P will generate the class group. Let us use fi to

denote the reduced prime form (pi, bi, .) and let n = |P|. Then we have a homomorphism
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φ : Zn → Cl(−d) by

φ(x1, ..., xn) =
n∏

i=1

fxi
i .

An integer relation on f1, ..., fn is a vector (x1, ..., xn) ∈ Zn such that φ(x1, ..., xn) =∏n
i=1 f

xi
i = 1Cl(−d) where 1Cl(−d) is the identity element of the class group Cl(−d). Re-

lations in f1, ..., fn form an additive subgroup of Zn (i.e. a Euclidean lattice) which we

denote as Λ. Since φ is surjective, we have

Zn/Λ ∼= Cl(−d).

Therefore, the computation of Cl(−d) reduces to the search for relations between the

f1, . . . , fn. Once enough relations are collected to generate Λ, a polynomial time linear

algebra phase yields the quotient Zn/Λ, and therefore the ideal class group Cl(−d) and class

number h(−d) = |det(Λ)|.

Let us denote the box {x ∈ Zn, ||x||∞≤ t} by Wn(t). Algorithm 2 outlines the Hafner

and McCurley class group algorithm.

Input : d > 4 with d ≡ 0 or 3 mod 4
Output: The class number h(−d) and the invariants of the class group Cl(−d)

1 Compute a rational number B such that B/2 ≤ h(−d) < B as explained in [53];
2 By using the relation search strategy of Seysen [72], generate n relations w1, ..., wn

on the generators f1, ..., fn from Wn(n
2d);

3 Compute the determinant h0 of the n× n matrix A0 formed by the columns
w1, ...wn;

4 Create new relations v1, ..., vm from Wn(d
2);

5 Compute the Hermite normal form H of the n× (n+m) matrix formed by the
columns w1, ..., wn, v1, ..., vm;

6 Let h be the product of the diagonal entries of the Hermite normal form H. If
h > B go back to Step 3. Otherwise, compute the SNF S of H and output the
diagonal entries of S;

Algorithm 2: Hafner and McCurley Class group algorithm
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3.2.1 Running Time of the Hafner and McCurley Algorithm

In this section, we discuss the running time of the Hafner and McCurley class group

algorithm as explained in [41, Sec. 4]. The crucial part of Hafner and McCurley’s class

group computation strategy is the finding of a generating set for the lattice of the relations

Λ. We have to choose B such that it generates the class group and is optimum for the

generation of the lattice of the relations Λ. Let

B =

{
p ≤ B,

(
−d
p

)
6= −1

}
,

for a suitable B. According to Hafner and McCurley B should be taken as L(d)z with a

parameter z, where

L(d) = e
√
log d log log d.

Then the the cardinality n of set B will be L(d)z+o(1).

Theorem 3.3. The expected running time of Hafner and McCurley class group algorithm is

L(d)
√
2+o(1) bit operations.

Proof. Step 1 of Hafner and McCurley algorithm takes at most n1+o(1) bit operations [41].

For testing a relation in either Step 2 or Step 4, we have to do the composition and reduc-

tion of quadratic forms. The reduction algorithm is a variant of Euclid’s algorithm as in

Algorithm 5.4.2 of [29]. The composition of quadratic forms can be done by using Algorithm

5.4.7 of [29]. Both composition and reduction of quadratic forms can be done in O(log2 d)

bit operations. So, the running time to test a single relation in either Step 2 or Step 4 is

n1+o(1) bit operations. Also, the probability for a random vector to generate a relation in

either Step 2 or Step 4 is L(d)−1/4z+o(1). So, the expected running time to create all the

relations for Step 2 and Step 4 is

(n+m)n1+o(1)L(d)1/4z+o(1)
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Hafner and McCurley [41] proved that the number of relations m needed in Step 3 should be

n1+o(1). So the total expected time for relations collection steps will be n2+o(1)L(d)1/4z+o(1)

bit operations. By using the Gaussian elimination and the Chinese remainder theorem

Step 2 can be done by O(n4+o(1)) bit operations. The Hermite normal form computation in

Step 5 can be done by using fast integer multiplication methods [2] and we get the running

time of O(n4+o(1)) bit operations. Also, the SNF computation in Step 5 can be done by

O(n3 log4(d)) bit operations. Since we have n = L(d)z+o(1), the total running time for the

Hafner and McCurley class group algorithm will be

L(d)2z+1/4z+o(1) + L(d)4z+o(1).

So, with optimum choice z = 1/
√
8, the expected running time of the Hafner McCurley class

group algorithm is L(d)
√
2+o(1) bit operations.

In [41, Sec. 5], Hafner and McCurley observed that the collection of relations in the

subexponential class group computation method could be improved and made the following

conjecture.

Conjecture 3.4. Under the Generalized Riemann Hypothesis (GRH), the class group Cl(−d)

can be computed with an expected runtime of L(d)2/
√
3+o(1).

In Chapter 4, we modify the relation collection phase of Hafner and McCurley class

group algorithm and prove Conjecture 3.4. In fact, by using better linear algebra methods

we achieve a run time of L(d)3/
√
8+o(1).
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3.3 Class Group Computations in Higher Degree Number Fields

As mentioned in Section 3.1, the subexponential algorithms for the ideal class group

computation of number fields are based on the index calculus method. The crucial part of

the index calculus method is the relation collection phase. Let K be a number field of degree

n and O be an order in K. For the relation collection phase of class group computation of

Cl(O), we have to find the relations of the form a = (ϕ)pe11 ...p
ek
k for a given ideal a ⊆ O and

B > 0, where pi are invertible prime ideals and belong to the factor base B = {p |N(p) ≤ B}.

We aim to achieve a subexponential class group algorithm when the bound B on the factor

base is subexponential. In other words, we want the running time of the relation collection

phase in Ld(a1, b1) for 0 < a1 < 1 and b1 > 0 when the bound B is in Ld(a2, b2) for 0 < a2 < 1

and b2 > 0. The classical method to produce a relation is by testing the smoothness of the

power product of the ideals a ·
∏

peii over the factor base B where N(pi) ≤ 48 log|d|2 and

ei ≤ |d| where d is the discriminant of the order O. We have to do ideal reduction before

testing the smoothness of the product a ·
∏

peii . That is, we have to find an ideal b ⊆ O of

small norm in the same equivalence class of a′ = a ·
∏

peii . The following is the procedure

for the ideal reduction.

Ideal reduction Let A be fractional ideal of the number field K of degree n. Consider

the embeddings (σi)1≤i≤n of K into C. Then the Minkowski map from K to Rn is defined

as follows

x −→ (σ1(x), ..., σr1(x), Re σr1+1(x), Imσr1+1(x), ...., Re σr1+r2(x), Imσr1+r2(x)).

The image of A under the Minkowski map is an n-dimensional lattice in Rn. We compute a

shortest non zero vector α⃗ in this lattice. We find a short element α in A corresponding to
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this shortest vector. Then for some t ∈ Z the ideal t
α
A is an integral ideal and has a small

norm. We call this ideal t
α
A a reduced ideal in the equivalence class of A.

The subexponential class group algorithms apply the reduction procedure described above

to the ideal c = l a′ −1 with l ∈ Z. The reduction procedure provides ϕ ∈ c that satisfies

||ϕ||≤ λO|d|
1
2nN(c)

1
n .

So we have the ideal b = ϕ
l
a′ of a small bounded norm where the approximation factor λO

depends on the reduction procedure we use. The reduced ideal b satisfies

N(b) ≤ λnO
√
|d|

and it will be in the same class of a′. The following is the summary of ideal reduction.

Proposition 3.5. Let K be a number field of degree n. Let O be an order of K with

discriminant d. Given an ideal a of O, the ideal reduction provides an ideal b of bounded

norm in the same ideal class of a that satisfies

N(b) ≤ λnO
√
|d|,

where the approximation factor λO depends on the reduction procedure.

Input : Number field K of degree n, ideal a ⊆ O with discriminant d.
Output: Ideal b ⊆ O with N(b) ≤ λnO

√
|d|, where λO is the approximation factor.

1 c = la−1 with l ∈ Z;
2 Let L = Φ(c) be the image of c under the Minkowski map Φ;
3 Find a shortest vector v in L;
4 Find the short element ϕ ∈ c corresponding to v;
5 return b = ϕ

l
a

Algorithm 3: Ideal reduction

After obtaining the reduced ideal b, we try to decompose the ideal b over the factor base B

to obtain a relation. Using the above strategy in 1990 Buchmann [23] generalized the Hafner
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and McCurley subexponential algorithm for arbitrary number fields under the Generalized

Riemann hypothesis (GRH). In [23], Buchmann achieved a heuristic time complexity of

Ld(
1
2
, 1.7 + o(1)). Later [30] provided the practical implementation of Buchmann’s strategy.

In [30], Cohen, Diaz Y Diaz and Olivier used LLL-reduction for the ideal reduction procedure.

One important observation to make here is that the reduction procedure is easy for the Hafner

and McCurley class group algorithm of imaginary quadratic fields. For the class group

computation of an imaginary quadratic field, we can work with binary quadratic forms, and

the reduction procedure is easy and can be performed in O(log2|d|) bit operations where d is

the discriminant of the binary quadratic form. But we can no longer work on quadratic forms

for higher degree number fields. Another key difference between the class group computation

of quadratic fields and the higher degree fields is the smoothness probability of the reduced

ideals. For imaginary quadratic fields, we have a theorem due to Seysen [72] which gives a

probability for the smoothness of the reduced form over the factor base. The same theorem

can be applied to real quadratic fields as well. But for higher degree number fields we don’t

have any such theorem and we have to depend on heuristics such as Corollary 2.1 of [12]

for the class group computations. Also these heuristics on the probability of smoothness of

reduced ideals depend on the norm of the reduced ideal. That is, the smaller the norm of

the reduced ideal, the higher the smoothness probability, and vice versa.

Buchmann’s algorithm’s time complexity is valid only for classes of number fields of

fixed degree with a discriminant that tends to infinity. We will explain the reason for this

limitation shortly. In 2014 Biasse [10] introduced a method to compute the class group and

the unit group of an equation order Z[θ] with a heuristic subexponential time complexity

Ld(1/3, c) for some c > 0 in certain classes of number fields under GRH. The results presented

in [10] deal with the instances where the degree and the discriminant of the extension grow

to infinity under certain conditions. This method was influenced by the L(1/3) algorithm

of Enge, Gaudry, and Thomé [37] which computes discrete logarithms in the Jacobian of

certain classes of algebraic curves. Later in [12, 14] Biasse and Fieker introduced a heuristic
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subexponential algorithm for the class group computation of all classes of number fields

under GRH. Biasse and Fieker deal with instances where the degree of the number field goes

to infinity. The main idea behind the subexponential algorithm of Biasse and Fieker is the

use of the BKZ [68] reduction for the ideal reduction procedure. The following is the outline

of BKZ [68] ideal reduction.

For classes of number fields for which the degree n→∞, we have n ≤ log|d|. The BKZ

reduction offers a trade-off between the time spent for the reduction and approximation

factor λO. In other words, it offers trade-off between the time spent for the reduction and

the bound on the norm of the reduced ideal b. The approximation factor for the BKZ

reduction is λO = k
n
2k for a parameter k ≤ n and it has a running time of 2O(k) ·P (n) where

P is a polynomial. So we have the bound on the norm of the reduced ideal

N(b) ≤ k
n2

2k

√
|d|.

If we choose k = log(|d|) 2
3 log log(|d|) 1

3 , the bound on the norm of the reduced ideal becomes

Ld(4/3, e1) for some e1 > 0. Also if we choose a subexponential bound B = Ld(2/3 + ϵ) for

the factor base for some ϵ > 0, then by using the heuristic on smoothness probability as in

Corollary 2.1 of [12], the expected number of BKZk reduced ideals we have to draw to find

a B-smooth ideal is Ld(2/3+ ϵ, O(1)) and we get Ld(2/3+ ϵ)-time algorithm to compute the

class group Cl(O). But if we use LLL-reduction as in [30] then the approximation factor

will be λO = 2
n
2 and the bound on the reduced ideal will be

N(b) ≤ 2
n2

2

√
|d| ≤ Ld(2, e2)

for some e2 > 0. Then for a subexponential bound on the factor base B = Ld(α, c) for some

0 < α < 1 and c > 0, the expected time to find a B−smooth ideal will be Ld(2 − α, e3)

for some e3 > 0. So it’s impossible to find a subexponential algorithm for the class group
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computation by using LLL-reduction for the classes of number fields where degree tends to

infinity. The following is the summary of BKZ ideal reduction method.

Proposition 3.6. Let K be a number field of degree n. Let O be an order of K with

discriminant d. Given an ideal a of O, the BKZ ideal reduction provides the ideal b of

bounded norm in the same ideal class of a that satisfies

N(b) ≤ k
n2

2k

√
|d|,

for a parameter k and it has a running time of 2O(k) · P (n) where P is a polynomial.

Beyond the subexponential complexity In 2019, motivated by the work of [5], Biasse

and van Vredendaal [18] presented a heuristics algorithm for the S-unit computation in real

multiquadratic fields K = Q(
√
d1, . . . ,

√
dn) under GRH. This algorithm has a heuristic time

complexity of Poly
(
log(|d|), Size(S)

)
eÕ(
√

log|d0|) where d0 = d1 · · · dn and d is the discriminant

of the multiquadratic field K. Since the ideal class group of the field can be obtained from the

S-unit group computation when S generates the ideal class group, the method of Biasse and

van Vredendaal gives the ideal class group in time Poly
(
log(|d|)

)
eÕ(
√

log|d0|). The key idea

behind the algorithm of [18] is a recursive strategy that takes advantage of the computation

in subfields. Later Biasse, Fieker, Hofmann and Page [20] generalized the strategy of [18].

In [20], they presented a systematic method to leverage the computations in subfields for

the computation of rings of integers, S-unit groups, and class groups. The strategy of [20]

was used for computing the class group of K = Q(ζ6552) of degree 1728 with a 5258-digit

discriminant and other number fields of large degree and discriminant under the assumption

of GRH.
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3.4 Unconditional Class Group Computations

The index calculus algorithms we discussed earlier for ideal class group computations

depend on the Generalized Riemann Hypothesis (GRH) and other heuristics. In this section,

we discuss the unconditional class group computational results, meaning the class group

computations without assuming GRH, as documented in the literature, and we analyze their

time complexity compared to index calculus algorithms. In 1968, Shanks [73] introduced

the powerful technique called baby-steps-giant-steps. Using this technique the class number

of the imaginary quadratic field of discriminant d can be computed unconditionally with a

running time of O(|d|1/4+ϵ). Later, Buell [28] did a comprehensive computation of imaginary

quadratic fields. Buell unconditionally computed the class group of imaginary quadratic

fields with discriminants 0 < |d|< 2.2 · 109. Buell’s unconditional computation was based

on counting the number of reduced binary quadratic forms. This strategy took O(|d|1/2)

steps for each discriminant d. In 2006, Jacobson et al. [45] tabulated the class groups of all

imaginary quadratic fields for 0 < |d|< 1011. They used an algorithm given by Buchmann,

Jacobson, and Teske (BJT) [24] for their computation and its correctness is conditional on

GRH. But Jacobson et al. verified their results unconditionally using a verification algorithm

based on the Eichler Selberg Trace Formula [71]. Overall this approach takes O(|d|1/4+ϵ)

steps per discriminant. Using the same approach of [45], Ramachandran [64] extended the

bound on discriminant to |d|< 2 · 1011 with same number of steps per discriminant. In

2016, Mosunov and Jacobson [57] presented an improved algorithm for unconditional class

group tabulation of imaginary quadratic fields up to the discriminant 240. Mosunov and

Jacobson’s method [57] was inspired by that of Hart et al. [42] and they used certain class

number generating functions and a product of two large-degree power series for their class

group computations.

For the class group computation of real quadratic fields Lenstra [48] and Schoof [70]

introduced a modified version of Shanks’ baby-steps-giant-steps algorithm. These modified
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algorithms could compute the class groups of real quadratic fields unconditionally with a

probabilistic running time of O(d1/4+ϵ). Later, in 1998 Srinivasan [78] presented a proba-

bilistic algorithm, a version of Shanks’s algorithm, that could compute the class group of real

quadratic field. Srinivasan’s algorithm did not assume GRH and has an expected running

time of O(d1/5+ϵ). In 2023, Bian et al. [9] introduced a modified generic group structure al-

gorithm of Buchmann and Schmidt [25] for class group computation of real quadratic fields.

They also used the Selberg trace formula for Maaß forms to verify the class groups and

regulators. This algorithm could compute the class group and the regulator for discriminant

d < X in time O(X5/4+o(1)). Bian et al. [9] were able to compute unconditionally correct

class groups and regulators of real quadratic fields up to discriminant 1011. It is important to

observe that there are currently no unconditional subexponential class group computation

methods available for both real and imaginary quadratic fields.

The case of cyclotomic fields The computation of the class number of cyclotomic fields

is considered a computationally hard problem. The difficulty lies within the computation of

the class number of the maximal real subfield of cyclotomic fields. The classical method for

unconditional computation of the class number of maximal real subfield of cyclotomic fields

is by using Minkowski’s bound, which is defined as

MK =
n!

nn

(
4

π

)r2√
|d|.

This method involves checking whether prime numbers below Minkowski’s bound factor

into principal ideals. Since the Minkowski bound is proportional to the square root of the

discriminant, this method becomes impractical for large discriminants. Based on Odlyzko’s

discriminant lower bounds [60], Masley [51] computed the class numbers of maximal real

subfield of cyclotomics fields unconditionally. Later Van der Linden [49] extended Masley’s

results and performed unconditional computations of composite conductors up to conductor

200. But the methods of Masley [51] and Van der Linden [48] become too difficult when
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the root discriminant of the field becomes large. To overcome this difficulty, Miller [54]

introduced a new approach for class number upper bound that applies to number fields

of large root discriminants. Miller’s method involved establishing a lower bound for the

sums of prime ideals of the Hilbert class field, consequently yielding an upper limit for the

class number of the maximal real subfield of a cyclotomic field. By using this method,

Miller computed unconditional class numbers of maximal real subfield of cyclotomic fields

of composite conductors with degree up to 116 [54]. Later this method was extended to

prime conductors in [56]. In [56], Miller presented unconditional computation of the class

numbers of the maximal real subfield of cyclotomic fields for all prime conductors less than

151. In Chapter 6, we introduce a new technique for unconditional class number computation

of maximal real subfield of cyclotomic fields and present a few class numbers that are not

documented in the literature.

3.5 Applications of Ideal Decomposition

As we discussed in the Section 3.3, a key step in the computation of the ideal class

group and the unit group of order O in a number field K is to decompose a given ideal a

as a = (ϕ)pe11 ...p
eN
N , where the pi are invertible prime ideals and belong to the factor base

B = {p |N(p) ≤ B}. This way of representing an ideal as a power product of ideals of

smaller norms is called ideal decomposition. If we replace the LLL-reduction method of

Buchmann [23] with the BKZ-reduction, then we can obtain a subexponential method for

ideal decomposition [12, 14]. One of the main applications of the ideal decomposition is the

computation of the ideal class group and fundamental units of O. This is done by deriving

relations in Cl(O) of the form
∏

peii = (ϕ). There are also other important applications for

the ideal decomposition method. Let’s briefly discuss a few of them.
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3.5.1 Principal Ideal Problem

Given an arbitrary ideal a ⊆ O, the principal ideal problem is checking whether the

ideal is principal, and if it is principal find the ϕ such that a = (ϕ). An algorithm for the

principal ideal problem by using ideal decomposition is presented in [12] and it is as follows.

First, we do the ideal decomposition of a over a factor base B = p1, ..., pN . Let the ideal

decomposition of a be a = (ϕ)pb11 ...p
bN
N . Let b = (b1, ..., bN). Using the ideal decomposition,

we can also find the relations between the elements of B. That is vectors of the form (ei)

such that
∏

peii = (ϕ) for some ϕ ∈ K. Let M be an N × N ′ matrix whose rows generate

all relations over the factor base B. If we can show that b belongs to the lattice spanned

by the row vectors of M , then the ideal a should be principal by the construction. In other

words, if XM = b has a solution, then a is principal and otherwise not. The generator of the

principal ideal can be obtained from the solution X of XM = b. Since ideal decomposition

can be done in subexponential time as in [12, 14], the principal ideal problem can also be

done in subexponential time under GRH.

3.5.2 S-Unit Group Computation

Let S be a finite set of prime ideals of a field K. An element x ∈ K is called an S-integer

if vp(x) ≥ 0 for all p /∈ S. We denote the ring of S-integers by OK,S. An element x ∈ K

is called S-unit if vp(x) = 0 for all p /∈ S. We denote the multiplicative group of S-units

by UK,S. The S-unit group UK,S can also be considered as the set of all invertible elements

of the ring of S-integers OK,S. The S-unit group is finitely generated and each S-unit can

be written as a power product of its fundamental S-units. In [75], Simon presented an

algorithm for the computation of fundamental S-units by using the ideal decomposition.

This is another application of ideal decomposition for solving computationally hard number

theory problems. We briefly discuss Simon’s S-unit computation here. Let’s start with the

definition of Hermite normal form computation, which is crucial for Simon’s method.
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Definition 3.7. An m by n matrix A with integer entries has a Hermite normal form

H = (hij) if there is a square unimodular matrix U such that H = UA and H satisfies the

following conditions:

1. ∀j < i, 0 ≤ hij < hjj.

2. ∀j > i, hij = 0.

The Hermite normal form of a matrix can be computed by using the Algorithm.2.4.4

of [29]. The strategy of Simon’s S-unit computation [75] is as follows. For a vector V with l

elements and a k×l matrix U , we define a k element vector W = V U as Wi =
∏

j V
Ui,j

j . Also,

we use

A
B

 to denote the concatenation of two matrices A and B. Let S = {p1, ..., ps}.

Also, let d1, ..., dr be the elementary divisors of the ideal class group Cl(K) and g1, ..., gr be

the generators corresponding to cyclic subgroups corresponding to the elementary divisors.

Consider the matrix

M =


d1

. . .

dr


Since gi is the generator of the cyclic subgroup of order di, we have gdii = (βi)OK for some

βi ∈ K∗ and let V = (β1, ..., βr) be the vector corresponding to g1, ..., gr. Now we do the

ideal decomposition of prime ideals pi in S over the factor base g1, ..., gr. That is we do the

decomposition

pj =
∏
i

gei,jαj

for αj ∈ K∗ and ei,j ∈ Z. Then, consider the matrix M ′ = −(ei,j) and the vector V ′ =

(α1, ..., αs). We compute the Hermite normal form of the concatenated matrix

M
M ′

 and

get the unimodular matrix U such that
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U

M
M ′

 =

H
0

 ,

where H is the Hermite normal form. Then compute

(W |W ′) = (V |V ′)U

and the elements in W will be the generators of the S-unit group modulo the units of K.

If we use ideal decomposition as in [12, 14], then the S-unit group computation can also be

done in subexponential time under GRH.

One of the applications of subexponential S-unit computation mentioned above is solving

the so-called norm equations. The norm equation is NL/K(x) = a for a given arbitrary

extension of number fields L/K and an algebraic number field element a of K. In [76],

Denis Simon introduced an algorithm to solve the norm equation when a is an S-unit, and

when we need the solution x to be also an S-unit for a given S. So, the subexponential S-

unit group computation can be used here to solve the norm equation. Another noteworthy

observation is that one of the traditional approaches to solving Pell’s equation involves

calculating numerous elements with small norms in a quadratic field. Hence, solving norm

equations contributes to addressing Pell’s equations.

3.6 Applications to Cryptography

Ideal class groups play a significant role in cryptography due to their algebraic prop-

erties, which can be harnessed to create secure cryptographic systems. Ideal class group

computation has applications in schemes based on the discrete logarithm problem, elliptic

curve cryptography, and lattice-based cryptography. These applications span various cryp-

tographic primitives and protocols, advancing secure communication and data protection.
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In this section, we briefly discuss some of these applications of ideal class group computation

in cryptography.

Schemes based on the discrete logarithm problem Schemes based on the discrete

logarithm problem are the most obvious applications of ideal class group computations in

cryptography. For an order O in a number field K, the ideal decomposition of an ideal a ⊆ O

is used for solving discrete logarithm problems in the ideal class group Cl(O). Buchmann

and Williams [26, 27] introduced schemes based on discrete logarithm problems in the ideal

class groups in 1980. They described two types of schemes: those utilizing imaginary fields

and those utilizing real fields. In the imaginary field case, cryptosystems rely on arithmetic

operations within the ideal class group, and security is based on solving the discrete logarithm

problem. In the real field scenario, a structure known as the infrastructure is used, and

security is based on a problem analogous to the discrete logarithm problem, namely the

principal ideal problem. The latest security estimates, derived from computational data on

solving the underlying challenging problems (which stem from the difficulty of computing

the ideal class group), have been provided by Biasse, Jacobson, and Silvester [17].

Evaluation of isogenies An elliptic curves E defined over a finite field Fq is an algebraic

group given by the equation

E : y2 = x3 + ax+ b, a, b ∈ Fq, 4a
3 + 27b2 6= 0.

For elliptic curves E,E ′ defined over Fq, an isogeny is a non-constant rational map between

E and E ′. It is also a group homomorphism. An endomorphism of E is an isogeny E → E.

The set of all endomorphisms of E forms a ring under pointwise addition and multiplication.

This ring is called the endomorphism ring of E. In ordinary elliptic curves defined over

finite fields, as well as in supersingular elliptic curves defined over prime fields, the ring

of endomorphisms is isomorphic to an order in an imaginary quadratic field. Isomorphism
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classes of curves are in correspondence with classes of ideals in Cl(−d), and the class of a

split prime ideal of norm ℓ acts as an isogeny of degree ℓ. As shown by Biasse, Fieker and

Jacobson in [15, Prop. 6.2], the computation of a reduced basis of relations yields efficient

ideal decompositions in Cl(−d), which in turn allows the fast evaluation of isogenies of

large degrees. This strategy was used in the signature scheme CSI-FiSh [8] where the pre-

computation of the class group of a 154-digit discriminant field enables good performances

because signing involves the evaluation of large degree isogenies through the decomposition

of the corresponding ideal class.

Short generator of a principal ideal In 2009 Gentry [39, 40] presented the first fully

homomorphic encryption scheme. The scheme was based on hardness of finding short vectors

in ideal lattices. Later Vercauteren and Smart [77] showed that finding a short generator

of principal ideal could break some variations of Gentry’s scheme. This is an application

of ideal decomposition or principal ideal problem to the cryptanalysis of homomorphic en-

cryption schemes. In 2013 Lyubashevsky et al. [50] introduced a lattice-based cryptosystem

called Ring Learning With Error (RLWE). RLWE is based on finding short vectors in the

ideal lattices of cyclotomic fields. Later [31, 32, 33] showed that there was an efficient

heuristic quantum reduction from the search for short vectors in ideal lattices to generators

of principal ideal problem. The bottleneck of this ideal lattice-based cryptosystem is the

ideal decomposition in the ideal class group.
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CHAPTER 4

CONJECTURED RUN TIME OF THE HAFNER-MCCURLEY CLASS

GROUP ALGORITHM

In this chapter1, we present a modified version of the Hafner-McCurley class group algo-

rithm and prove the conjectured runtime of the Hafner-McCurley class group algorithm [41,

Sec. 5]. In this modified version, we demonstrate that the class group algorithm of Hafner

and McCurley runs in expected time e(3/
√
8+o(1))

√
log d log log d, where −d is the discriminant

of the input imaginary quadratic order. In the original paper, an expected runtime of

e(
√
2+o(1))

√
log d log log d was proven, and better bounds were conjectured. To achieve a proven

result, we rely on a mild modification of the Hafner and McCurley algorithm and recent

results on the properties of the Cayley graph of the ideal class group [46]. This chapter

is based on collaborative research work with Jean-François Biasse, published in Advances

in Mathematics of Communications (AMC) [13]. The following is the main result of our

publication.

Theorem 4.1. Under a generalization of the Riemann hypothesis, there is a Las Vegas

algorithm that computes Cl(−d) with probability 1− 1
d1+o(1) in time

L(d)3/
√
8+o(1) = e(3/

√
8+o(1))

√
log d log log d.

The complexity proved in the main result is not surprising. Indeed, as early as 1988,

McCurley [53] gave heuristic arguments showing that |Cl(−d)| should be computable in time

L(d)3/
√
8+o(1) (note that this conjecture only concerns the computation of the cardinality of

1This chapter is based on collaborative research work with Jean-François Biasse, published in Advances
in Mathematics of Communications (AMC) [13]
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Cl(−d), not the group structure itself). Then, in [41, Sec. 5], Hafner and McCurley described

conjectural improvements to their subexponential techniques for computing Cl(−d) that

included the observation that the collection of the relations could be improved and that

such an improvement would yield a run time of L(d)2/
√
3+o(1). Combined with better linear

algebra methods than the ones used in [41], this yields the run time of L(d)3/
√
8+o(1) we prove

in this chapter. In 2000, Vollmer even claimed a proof of this run time [82, Th. 2]. However,

this claim was retracted in the Corrigendum of a 2002 follow-up paper [81]. In 2016, Biasse,

Fieker, and Jacobson conjectured the main result of this chapter [15, Conj. 1].

Our methods rely on a result from Jao, Miller, and Venkatesan [46] showing that under

the GRH, the Cayley graph of Cl(−d) is an expander graph (for a good choice of edges).

This allowed us to show that relations between generators of Cl(−d) could be obtained from

short products of generators. With that knowledge, we prove that a minor modification of

the original algorithm of Hafner and McCurley yields the conjectured expected run time. We

do not rule out the existence of a more elementary proof involving techniques available at

the time of Hafner and McCurley’s paper [41] in addition to cubic complexity linear algebra

methods (as observed in [41, Sec. 5], linear algebra with quartic complexity can only yield a

total run time of L(d)2/
√
3+o(1)).

On the other hand, we do not foresee any improvement of these methods that would

yield a subexponential run time that is not conditional on a generalization of the Riemann

Hypothesis being true. Indeed, all variations around the subexponential algorithm of [41]

rely on the manipulation of vectors whose length is given by the first n primes generating

the class group. So far, the only known unconditional bounds on the length of such vectors

are all exponential in the input size. We assume a generalization of the Riemann hypothesis

in this chapter as described in Conjecture 2.2 and we abbreviate it by “GRH”. Note that the

same assumption is sometimes referred to as the Extended Riemann Hypothesis (ERH), in

particular in [4] and [41].
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4.1 Overview of the Algorithm

As we have seen in Section 3.2, the subexponential algorithm of Hafner and McCurley

consists in the choice of a factor basis f1, . . . , fn, and the resolution of the following two main

tasks:

• Finding a generating set of elements of Λ, the lattice of relations between factor basis

elements.

• Computing the quotient Zn/Λ.

The quotient computation is well understood and essentially corresponds to the computation

of the Smith Normal Form (SNF) of the matrix representing a basis for Λ. Such a basis is

typically obtained by computing the Hermite Normal Form (HNF) of a rectangular matrix

representing a generating set for Λ. Polynomial time methods for the computation of HNF

and SNF of integer matrices are known. Therefore, the main challenge of the algorithm is

the calculation of a generating set for Λ as we discussed in Section 3.2.

The main issue with computing a basis of Λ is that we cannot easily sample random

elements of Λ. In practice, products of the generators f1, . . . , fn with exponents drawn

uniformly at random seem to be equivalent to random smooth form, and thus yield relations

between the generators that appear to be distributed closely to the uniform distribution.

This explains why in practical implementations [6, 11, 16, 30, 44], the randomization of

the elements in Λ that are calculated is never an issue, and the number m of elements of

Λ we need to draw is never significantly larger than n. At the end of the procedure, we

can efficiently test whether enough relations were collected, thus certifying the computation.

This test is based on a bound h∗ as mentioned in Step 1 of the class group algorithm of [41]

that we can efficiently compute, which satisfies h∗ ≤ det(Λ) < 2h∗. If det(Λ) ≥ 2h∗, then

more relations are needed.

Making a formal case for the run time without the heuristic that elements sampled in

Λ are distributed uniformly at random is more difficult. This was achieved by Hafner and
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McCurley in their original paper [41] at the price of a procedure that makes relation collection

artificially more expensive than what is done in practical implementations in order to prove

its expected run time under GRH. In this chapter, we show how to enhance this phase of

the algorithm without having to rely on additional heuristics. The relation collection can

be divided into phases. The original algorithm of Hafner and McCurley has two phases.

The first one consists in the creation of n relations that are linearly independent. This

means that at the end of it, we know Λ0 ⊆ Λ of full rank. However, since we typically have

det(Λ0)� det(Λ), more relations are needed to find a generating set of Λ. Then the second

phase consists of creating new relations with an expensive randomization strategy such that

the the corresponding lattices (Λi)i≤m they generate satisfy

Λ0 ⊆ Λ1 ⊆ ... ⊆ Λm ⊆ Λ

Our algorithm introduces an intermediate phase before the expensive randomization strategy

of Hafner and McCurley in order to make sure that Λ1 has a moderate determinant. We

label our phases from 1 to 3.

Phase 1- For each k = 1, . . . , n, we compute a relation whose k-th coefficient is signifi-

cantly larger than the others. This method due to Seysen [72] ensures the fact that at the

end of the collection of the first n relations, the lattice Λ0 they generate has full rank.

Phase 2- We construct additional relations in order to ensure that at the end of this

phase, the lattice Λ1 they generate satisfies det(Λ1) ∈ 2O(log4 d). This is our main technical

addition to the original method from [41]. We achieve this by observing that as long as

det(Λ1) > elog
4 d, the lattice Λ1 is very sparse within Λ, and therefore we can ensure the

creation of new relations outside of Λ1 with large enough probability.

Phase 3- Once we have det(Λ1) ∈ 2O(log4 d), we resume the creation of new relations

with the expensive last phase of [41]. Since |Λ/Λ1| is small, the number of expensive steps

is significantly smaller than in [41].
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4.2 Phase 1

In this section, we show how to create n linearly independent relations between the

(fi)i≤n. We follow the approach of Seysen [72, Sec. 4] which consists in ensuring that the

matrix (ai,j) whose rows are the relation vectors satisfies |aii|>
∑

j ̸=i|ai,j|, which in turns

guarantees that the matrix (ai,j) has full rank. To improve on the run time of Seysen,

we use the fact that the Cayley graph of Cl(−d) is an expander graph as we discussed in

Theorem 2.7. According to Theorem 2.7 a random walk of length at least C log|Cl(−d)|
log log d

starting

from any vertex of the Cayley graph of Cl(−d) ends on a node whose distribution is close

to the uniform one.

We can use this result to produce an analogue of the method of Seysen [72, Sec. 4] which

requires only short products in order to produce a sparse relation with a dominant i-th

coefficient. Here, we assume that

B = f1, . . . , fn =

{
Prime forms corresponding to p ≤ L(d)z and

(
d

p

)
6= 1

}
,

which means that n = L(d)z+o(1). Choosing t = log(d) � C log|Cl(−d)|
log log d

, we draw random

vectors x⃗ of ℓ1-norm t until f ·
(∏

i≤n0
fxi
i

)
factors as a product of elements of B (i.e. is

B-smooth). The cost and the chances of success are given by Theorem 2.7 applied to the

set G0 of B-smooth reduced forms. We fix an amount of attempts such that the probability

of obtaining the desired decomposition is high enough. To test for smoothness, we use

Bernstein’s batch smoothness test [7] rather than trial division. Bernstein’s batch smoothness

test allows us to test the smoothness of a set of elements together over a factor base. Given

a finite set P of primes and a set S of positive integers, Bernstein’s batch smoothness test

finds P -smooth elements in S with a running time of b(log b)2+o(1), where b is the total

number of bits in P and S. In contrast, with trial division, we have to test the smoothness

of each element in S separately, resulting in a running time of b2+o(1). Therefore, Bernstein’s

batch smoothness test allows us to reduce the asymptotic complexity. If at the end of the
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procedure, no smooth form was found, we declare a failure. If not, the result is guaranteed

to be correct. This is compatible with a Las Vegas algorithm. All procedures presented

throughout this chapter satisfy this property.

Input : Fundamental discriminant −d < 0, reduced form f , set of prime forms
B = {f1, . . . , fn}, ε > 0

Output: x⃗ ∈ Zn such that
∏

i≤n f
xi
i = f , or FAILURE

1 B ← 4 · eu(log u+log log u+c(ε)) for c(.) as in [72, Th. 5.2] and u =
log(

√
d/2)

log(L(d)z)
;

2 f ′
1, . . . , f

′
n0
←
{

Prime forms with p ≤ log2+ε(d) and
(

d
p

)
6= 1
}

;
3 if (fi)i≤n0 6= (f ′

i)i≤n0 then
4 return: FAILURE
5 end
6 t← log d. Initiate an empty list Lforms;
7 for k ← 1 to dBe do
8 Draw y⃗ ∈ Zn0 uniformly at random among the ℓ1-norm t vectors;
9 Store y⃗ and

(∏
i≤n0

f yi
i

)
· f in Lforms;

10 end
11 Test the B-smoothness of all forms in Lforms using [7];
12 if There is

(∏
i≤n0

f yi
i

)
· f that is B-smooth in Lforms then

13 Let x⃗′ ∈ Zn with
(∏

i≤n0
f yi
i

)
· f =

∏
i≤n f

x′
i

i and y⃗′ = (y⃗ || 0⃗) ∈ Zn;
14 return: x⃗ = x⃗′ − y⃗′;
15 else
16 return: FAILURE
17 end

Algorithm 4: Relation search algorithm

Proposition 4.2. Under GRH, Algorithm 4 with input

B =

{
Prime forms corresponding to p ≤ L(d)z and

(
d

p

)
6= 1

}
,

succeeds with probability at least 1 − 1
d1+o(1) in time L(d)1/4z+o(1) + L(d)z+o(1) and returns a

vector x⃗ whose ℓ1-norm is in O(log d).

Proof. We denote by S the set of B-smooth reduced forms of Cl(−d). From the proof

of [72, Prop. 4.4], we know that the probability |S|
2|Cl(−d)| that a single product of the form
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(∏
i≤n0

f yi
i

)
· f be B-smooth satisfies

|S|
2|Cl(−d)|

≥ ψ−d(
√
d/2, L(d)z)

2
√
d log d

,

where the function ψ−d(x, y) := {a ≤ x : Any prime dividing a satisfies p ≤ y and (−d
p
) = 1}.

The function ψ−d(x, y) satisfies the inequality

ψ−d(x, y) ≥ x · e−u(log u+log log u+c(ε)) for u =
log x

log y
,

provided that x > 10 and log(x)1+ε, log2+ε(d) ≤ y ≤ elog
1−ε d. The pair x =

√
d/2 and

y = L(d)z satisfies these constraints, and we can thus deduce that

ψ−d(
√
d/2, L(d)z)

2
√
d log d

≥ 1

4 log d
e−u(log u+log log u+c(ε)) for u =

log
(√

d/2
)

log (L(d)z)
.

Let us denote by ps the probability of smoothness of one of the forms in the list. We repeat

the experiment dBe times where B ≥ log d
ps

. Therefore the probability of failure is given by

(1− ps)⌈B⌉ = e−⌈B⌉ps(1+o(1)) ≤ e− log d(1+o(1)).

Moreover, as shown in the proof of [72, Prop. 4.4], the number of times Steps 8 and 9 are

repeated satisfies dBe = L(d)1/4z+o(1).

To test the B-smoothness of the elements of Lforms, we use Bernstein’s batch smoothness

test [7] on the set S of first coefficients of the corresponding reduced form, with the set of

primes P that are bounded by L(d)z. This algorithm takes time b log(b)2+o(1) where b is the

total number of bits of all integers in S and P combined, which is in L(d)1/4z+o(1)+L(d)z+o(1).

Therefore, the time taken for this step is in L(d)1/4z+o(1) + L(d)z+o(1).
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Algorithm 4 will be used for different input forms f in the rest of this chapter. To use

it in the context of Seysen’s relation collection method [72], we set f = f 2nd
i to ensure the

creation of a row vector of the relation matrix that satisfies |aii|>
∑

j ̸=i|ai,j|.

Input : Fundamental discriminant −d < 0, set of prime forms B = {f1, . . . , fn},
ε > 0

Output: Matrix (ai,j) with ∀i,
∏

j f
ai,j
j = 1Cl(−d), |aii|>

∑
j ̸=i|ai,j|, or FAILURE

1 (ai,j)← 0n×n;
2 for i ≤ n do
3 Use Algorithm 4 with input f = f 2nd

i , B and ε and add the vector x⃗− 2nde⃗i
to the i-th row of (ai,j);

4 if Algorithm 4 outputs FAILURE then return FAILURE;
5 end
6 return (ai,j)i,j;

Algorithm 5: Phase 1

Proposition 4.3. Assuming GRH, Algorithm 5 is valid, and succeeds with probability at

least 1− 1
d1+o(1) in time

L(d)z+o(1)
(
L(d)z+o(1) + L(d)1/4z+o(1)

)
.

Proof. The running time for Algorithm 4 is L(d)1/4z+o(1) + L(d)z+o(1). So the running time

for Algorithm 5 is n.
(
L(d)z+o(1) + L(d)1/4z+o(1)

)
. Since n = L(d)z+o(1), the running time

for Algorithm 5 is L(d)z+o(1)
(
L(d)z+o(1) + L(d)1/4z+o(1)

)
. The probability of success of Algo-

rithm 5 is at least (1 − 1
d1+o(1) )

n. Since n/d1+o(1) � 1 for large d, we can use the binomial

approximation, (1 + x)α ≈ 1 + xα, which yields (1− 1
d1+o(1) )

n = 1− n
d1+o(1) (1 + o(1)). Then,

since n = do(1), the Algorithm 5 succeeds with probability at least 1− 1
d1+o(1) .

47



4.3 Phase 2

The second phase is where a modification of the strategy of Hafner and McCurley needs

to be made in order to lower the cost of the search for relations with good guarantees of

randomness. From a high level perspective, we quantify how sparse the relation lattice Λ′ is at

a given step to measure the chances of drawing a relation outside of it. When the determinant

of Λ′ ⊆ Λ is large enough, new relations are outside of Λ′ with overwhelming probability.

When this happens, the addition of a new vector to Λ′ means that its determinant gets

divided by at least a factor 2. At some point, success in enriching Λ′ with new relations

results in a determinant that is no longer large enough to guarantee the probability that

new relations are outside of it. At this point, we need to switch to Phase 3 to finish the

calculation of Λ. We fix the target determinant for the switch to elog4 d. The determinant is

calculated only once after collecting n1+o(1) relations. If it does not fall below the required

bound, then the procedure returns a failure.

Figure 2. Finding relations outside Λ′ (red dots)

The specificity of the method to search for relations in Phase 2 is that for each new

attempt at finding a relation, we first draw a large vector of exponents x⃗ = (x1, . . . , xn) and

compute the form f =
∏

i f
xi
i . This product is expensive to evaluate, and the odds of f being

B-smooth are low. Then, rather than drawing a new f , we multiply short random products

to f in order to generate a relation involving f via Algorithm 4. Due to the properties of
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Algorithm 4 analyzed in the previous section, each short product, which is inexpensive to

evaluate, has a reasonable chance to yield a relation. Moreover, once a relation v⃗ ∈ Λ is

found, we have that ‖v⃗ − x⃗‖ is short, which means that if we were able to argue that x⃗ was

far enough from Λ′, then we know that the new relation satisfies v /∈ Λ′.

Figure 3. Phase 2 - Multiplying small random products

To efficiently test the determinant at the end of Phase 2, we need to introduce a new

building block to the algorithm. The original Hafner-McCurley algorithm [41] proceeds

with computing the (row) Hermite Normal Form of the integer matrix whose rows are the

vectors of exponents of the relations that are collected (i.e. the relation matrix). However,

the Hermite Normal Form takes time n4+o(1) to compute for a n1+o(1) × n matrix with

polynomial sized entries such as the one we have at the end of Phase 2. Better techniques

are now available to find the Smith Normal Form (SNF) of a basis of the lattice generated

by the rows of the relation matrix without having to compute the Hermite Normal Form at

all. The advantage of using such a method is two-fold:

• It allows the intermediate verification of the determinant of a full-rank Λ′ ⊆ Λ at a

lower cost.
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• Once a generating set for Λ is found, the SNF of a basis for Λ is diag(d1, . . . , dn) where

Cl(−d) = Z/d1Z × . . . × Z/dnZ, thus giving us the final result of the class group

algorithm.

Lemma 4.4. Given n1+o(1) vectors in Zn with polynomial-sized entries that generate a full-

rank sublattice Λ1 ⊆ Λ, there is a Las Vegas algorithm to compute the SNF of a basis for Λ1

in time n3+o(1).

Proof. First, we need to reduce the problem to the computation of the SNF of a square

matrix. This is a direct application of [79, Th. 58] which states that there is a Las Vegas

algorithm to compute a matrix B ∈ Z(2m+5)×(2m+5) (where m = n1+o(1) is the number

of input vectors) whose Hermite Normal Form has the shape

H (0)

(0) I

 with entries of

polynomial bit-size, in time nω+o(1), where ω ≤ 3 is the exponent for the complexity of

matrix multiplication. This directly implies that the SNF of B is diag(d1, . . . , dn, 1 . . . , 1)

where diag(d1, . . . , dn) is the SNF of H, which is a basis of Λ1. The Las Vegas SNF algorithm

recently introduced in [21] allows us to compute the SNF of B in time n3+o(1), which concludes

this proof.

We summarize Phase 2 in Algorithm 6. We analyze its run time and correctness sep-

arately from its probability of success, as the former is straightforward, while the latter

requires a careful analysis of the odds of the random vector z⃗ being far enough from the

lattice Λ1 in Step 3.

Proposition 4.5. Algorithm 6 is valid and terminates in time

L(d)3z+o(1) + L(d)z+1/4z+o(1).

Proof. The validity immediately derives from the results previously stated. In particular,

note that if f =
∏

i f
zi
i =

∏
i f

xi
i where x⃗ is the output of Algorithm 4 on input f , then x⃗−z⃗ ∈

Λ. The running time of the “for loop” of Steps 2 to 11 is L(d)z(L(d)z+o(1) + L(d)1/4z+o(1))
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as Algorithm 4 is repeated n1+o(1) times. Then Step 12 takes time L(d)3z+o(1), and therefore

the overall time is

L(d)z(L(d)z+o(1) + L(d)1/4z+o(1)) + L(d)3z+o(1) = L(d)3z+o(1) + L(d)z+1/4z+o(1).

Input : Fundamental discriminant −d < 0, B = (fi)i≤n for n = L(d)z, ε > 0,
and n generators of Λ0 ⊆ Λ of full rank

Output: n+ log2
(
n5n/2dn

)
generators of Λ1 ⊆ Λ with det(Λ1) ≤ elog

4 d or
FAILURE

1 Λ1 ← Λ0;
2 for i ≤ log2

(
n5n/2dn

)
do

3 Choose z⃗ ∈ [−d2, d2]n uniformly at random ;
4 f̃ ←

∏n
k=1 f

zk
k ;

5 Use Algorithm 4 with input f = f̃ , B and ε ;
6 if Algorithm 4 outputs FAILURE then
7 return FAILURE;
8 else
9 Λ1 ← Λ1 + Z(x⃗− z⃗);

10 end
11 end
12 Compute the determinant h1 of Λ1 using Lemma 4.4;
13 if h1 > elog

4 d then
14 return: FAILURE
15 else
16 return: the n+ log2

(
n5n/2dn

)
generators of Λ1

17 end
Algorithm 6: Phase 2

We now turn to the analysis of the probability of success of Algorithm 6. Whenever we

generate a new relation in Step 5, we need to find a bound on the probability that it does not

belongs to Λ1 already. Each time x⃗− z⃗ /∈ Λ1, the update Step 9 divides the index Λ1 within

Λ by a factor at least 2, thus getting us one step closer to passing the test of Step 13 on the

determinant of Λ1. Let us denote the box {x : x ∈ Zn, ‖x‖∞≤ d2} by Wn(d
2) as in [41]. We

also denote an n-dimensional sphere of radius r for the Euclidean distance, centered at x by
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B(x, r). We define the subspace of Wn(d
2) ,

V :=
{⋃

B(x, (2 + ε) log d) : x ∈ Λ1 ∩Wn(d
2)
}
∩Wn(d

2)

By construction, the relations added to the sublattice Λ1 on Step 9 of Algorithm 6 are within

distance log(d) for the ℓ1-norm of a vector x⃗ ∈ Wn(d
2) drawn uniformly at random. This

means that they are also at distance log(d) of x⃗ for the Euclidean distance. By the triangular

inequality, they cannot be in Λ1 as long as the random vector x⃗ is outside of V .

Lemma 4.6. Let Λ1 be a full rank sublattice of Λ with discriminant greater than elog
4 d.

Then the probability that a vector x⃗ drawn uniformly at random in Wn(d
2) be outside of V

is at least 1− 1

elog
4 d(1+o(1))

.

Proof. We obtain a lower bound on the cardinality Wn(d
2) \ V by subtracting an upper

bound on the total number of integer points contained inside V from |Wn(d
2)|. According

to [65, Corollary 1.4], the number of integer elements contained inside each individual n-

dimensional sphere is bounded from above by 3.eπ.k2.r2

2
, where r is the radius of the sphere

and k = 10(log n+2). According to [41, Lem. 1], the number of elements of Λ1 inside the box

Wn(d
2) is (2d2)n

det(Λ1)
.(1 + O(nD/d2)), where D is a bound on the diameter of the fundamental

domain of Λ1. In the proof of [41, Lem. 2], it is specified that the diameter of the fundamental

domain of Λ0 is in O(n2d) by a triangular inequality argument on the vectors of the basis

of Λ0. Since the fundamental domain of Λ1 is contained in that of Λ0, it satisfies the same

bound and ∣∣Λ1 ∩Wn(d
2)
∣∣ ∈ (2d2)n

det(Λ1)
.

(
1 +O

(
n3

d

))
.

Therefore, the number of integer elements inside V is bounded from above by

(2d2)n

det(Λ1)
.

(
1 +O

(
n3

d

))
.
3.eπ.k

2.r2

2
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In turn, this implies that the number of integer elements on the space Wn(d
2) \ V is at least

(2d2)n − (2d2)n

det(Λ1)
.

(
1 +O

(
n3

d

))
.
3.eπ.k

2.r2

2

So the probability to draw an x⃗ in Wn(d
2) \ V is at least

1− 3.eπ.k
2.r2

2 det(Λ1)
(1 + o(1)) = 1− 1

elog
4 d(1+o(1))

because r = (2 + ε) log d, n = L(d)z+o(1), k = 10(log n+ 2), and det(Λ1) ≥ elog
4 d.

Note that we did not discuss the probability of success of the Las Vegas SNF method

used in Step 12 of Algorithm 6. The probability of success of the methods described in [21,

79] is at least 1/2. Therefore, we can achieve a probability of success of 1 − 1
elogc d for any

constant c > 0 without (asymptotically) increasing the cost by repeating the procedure a

polynomial amount of times. To assess the overall success probability of Algorithm 6, we

need to find a lower bound on the probability of finding enough relations outside of Λ1 so

that at the end of the procedure det(Λ1) ≤ elog
4 d.

Proposition 4.7. Under GRH, the probability of success of Algorithm 6 is at least 1− 1
d1+o(1) .

Proof. We derive a conservative lower bound on the success probability of Algorithm 6 by first

noticing that according to the Hadamard inequality, det(Λ0) < n5n/2dn. This means that the

number of times a vector x⃗− z⃗ /∈ Λ1 needs to be added on Step 9 of Algorithm 6 is less than

the number log2
(
n5n/2dn

)
= n1+o(1) of relation collected. The probability of drawing enough

random vectors z⃗ outside of V in Step 4 is higher than
(
1− 1

elog
4 d(1+o(1))

)n1+o(1)

. Combining

this with the probability 1− 1
d1+o(1) of success of Algorithm 4, we get that the probability of

finding enough relations to bring det(Λ1) below elog
4 d is higher than

(
1− 1

elog
4 d(1+o(1))

)n1+o(1)

·
(
1− 1

d1+o(1)

)n1+o(1)

.
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Since n = L(d)z+o(1), we have n1+o(1)

elog
4 d(1+o(1))

� 1 and n1+o(1)

d1+o(1) � 1 for very large d. Therefore,

we can use the binomial approximation (1+ x)α ≈ 1+ xα as in the proof of Proposition 4.3.

Moreover, we have n = do(1) and d = eo(1)·log
4 d, therefore,

(
1− 1

elog
4 d(1+o(1))

)n1+o(1)

·
(
1− 1

d1+o(1)

)n1+o(1)

= 1− 1

d1+o(1)
.

4.4 Phase 3

The last phase of the relation search uses the exact same method described in [41, Sec.

3]. In a nutshell, it consists in creating a tower of sublattices (Λi)2≤i≤m of the lattice of

relations such that

Λ0 ⊆ Λ1 ⊆ . . . ,⊆ Λm = Λ.

The key observation proved in [41, Lem. 2] is that when relations are obtained simply by

testing the B-smoothness of elements f =
∏

i f
xi
i for a vector x⃗ drawn uniformly at random

in Wn(d
2), the probability that they belong to a given coset in Λ/Λ1 is essentially given

by det(Λ)/det(Λ1). This means that new relations have somewhat comparable chances of

landing in different cosets of Λ/Λ1. Once every coset has been hit at least once, the relation

collection is complete. What makes Phase 3 less expensive than the analogue procedure

in [41, Sec. 3] is the fact that we start the procedure from Λ1 where |Λ/Λ1| ≤ elog
4 d instead of

starting from Λ0 which is only known to satisfy the more pessimistic bound |Λ/Λ0| < n5n/2dn,

thus requiring the drawing of exponentially more vectors to complete the lattice of relations.

Proposition 4.8. Under GRH, Algorithm 7 returns Cl(−d) with probability at least 1− 1
d1+o(1)

in time

L(d)3z+o(1) + L(d)z+1/4z+o(1)
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Input : Fundamental discriminant −d < 0, B = (fi)i≤n for n = L(d)z, ε > 0,
and m = n1+o(1) generators of Λ1 ⊆ Λ of full rank with det(Λ1) ≤ elog

4 d

Output: Cl(−d), or FAILURE
1 B ← 4 · eu(log u+log log u+c(ε)) for c(.) as in [72, Th. 5.2] ;
2 for k ← 1 to log4 d+log d

log(1.5)
do

3 Initiate an empty list Lforms;
4 for r ← 1 to dBe do
5 Choose x⃗ uniformly at random in Wn(d

2). f ←
∏n

i=1 f
xi
i ;

6 Store f, x⃗ in Lforms;
7 end
8 Test the B-smoothness of all forms in Lforms using [7];
9 if there is f that is B-smooth in Lforms then

10 Let y⃗ ∈ Zn with f =
∏

i≤n f
yi
i . Λk+1 ← Λk + Z(x⃗− y⃗);

11 else
12 return: FAILURE
13 end
14 end
15 Compute h∗ such that h∗ ≤ det(Λ) < 2h∗;
16 Compute d1, . . . , dn such that Λ/Λk =

∏
i Z/diZ using Lemma 4.4;

17 if
∏

i di ≥ 2h∗ then
18 return: FAILURE
19 else
20 return: Z/d1Z× . . .× Z/dnZ
21 end

Algorithm 7: Phase 3
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Proof. We rely on [41, Lem. 3] which states that if we generate at least log|Λ/Λ1|+ log d
log(2/α)

new

relations stemming from a random choice of x⃗ ∈ Wn(d
2) as in Step 5 with α = 1 + O

(
n3

d

)
,

then we have a probability at least 1− 1
d

of generating Cl(−d). For d large enough, log(2/α) ≥

log(1.5), which ensures that if all attempts at finding relations in the “for loop” of Steps 3

to 14 succeed then we have a probability 1 − 1
d

of obtaining Cl(−d). The probability of

succeeding in finding these relations is at least

(
1− 1

d1+o(1)

) log4 d+log d
log(1.5)

= 1− 1

d1+o(1)
,

which proves the result on the probability of success. The evaluation of a product in Step 5

takes time n1+o(1), The number dBe of attempts to generate a relation with probability

1 − 1
d1+o(1) is L(d)1/4z+o(1). This means that the loop between Step 2 and Step 14 costs

L(d)z+1/4z+o(1). The computation of h∗ runs in polynomial time under the ERH, and the

computation of d1, . . . , dn via the SNF costs L(d)3z+o(1) as seen before.

Corollary 4.9. Assuming GRH, there is a Las Vegas algorithm to compute Cl(−d) in time

L(d)3/
√
8+o(1) with probability at least 1− 1

d1+o(1) .

Proof. The setup of the algorithm for computing Cl(−d) consists in computing B in time

L(d)z+o(1). The time of the subsequent phases is bounded by L(d)3z+o(1) + L(d)z+1/4z+o(1).

Therefore, the total run time is optimal for z = 1/
√
8.
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CHAPTER 5

NORM RELATIONS AND ARITHMETIC APPLICATIONS

In this chapter1, we discuss norm relations and the necessary and sufficient criteria for

the existence of norm relations. Additionally, we explore subfield-based algorithms for the

computation of the S-unit group, the principal ideal problem (PIP), and the ideal decompo-

sition using norm relations. Sections 5.1, 5.2, 5.4, and 5.6 of this chapter are based on joint

work with Jean-François Biasse, Claus Fieker, Tommy Hofmann, and William Youmans,

published in Mathematical Cryptology (MC) [19].

Let K/F be a normal extension of number fields, and let G be the Galois group of the

extension K/F . Exploring relations between the arithmetic invariants of a number field and

its subfields has been an important topic in algebraic number theory since its inception.

The first investigation in this area was conducted by Dirichlet in 1842 [34]. According to

Dirichlet [34], in the case of biquadratic fields K = Q(
√
m,
√
−m), the class number of K

can be expressed as either the product of the class numbers of its subfields Q(
√
m) and

Q(
√
−m), or half of this product. Dirichlet also offered a simple rule to figure out which

situation applies to a given value of m. Later Walter [83] generalized this to the biquadratic

fields of the form K = Q(
√
m,
√
n). For the quadratic subfields K1 = Q(

√
m), K2 = Q(

√
n)

and K3 = Q(
√
mn) of K, Walter [83] presented the class number formula

h(K) = 2ih(K1)h(K2)h(K3)

where i ∈ Z depends on the index of certain unit groups. Hence, once we have the class

numbers of these quadratic subfields, we can obtain the class number of K.
1This chapter is based on the paper published in Mathematical Cryptology (MC) [19]
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A more organized study of these class number formulae of number fields was done by

Brauer [22] and Kuroda [47]. They showed that relations between the permutation characters

of the subgroups of the Galois group G of the number field K can give us the relations

between the arithmetic invariants of the corresponding intermediate fields. For a subgroup

H ≤ G, let’s denote the permutation character of G induced by the trivial character of H

by IndG/H(1H). Then, a relation of the form

∑
H≤G

aHIndG/H(1H) = 0

is called a Brauer relation. According to Brauer [22], the existence of a Brauer relation

implies the existence of relations between zeta functions and arithmetic invariants of the

corresponding fixed fields KH of K.

Relations closely related to Brauer relations are relations of norms of subgroups of G.

For H ≤ G, we define the corresponding norm as NH =
∑

h∈H h ∈ Q[G]. Then, the equality

of the form

0 =
∑
H≤G

aHNH

for aH ∈ Z is a relation of norms of subgroups of G. Walter [83] proved a correspondence

between Brauer relations and relations of norms of subgroups. In other words, the exis-

tence of relations of norms of subgroups of G implies the existence of relations between the

arithmetic invariants of K and its subfields. Bauch, Bernstein, de Valence, Lange and van

Vredendaal [5] and Biasse and van Vredendaal [18] implicitly used these kinds of relations of

norms of subgroups of G in their recursive approaches. Bauch, Bernstein, de Valence, Lange,

and van Vredendaal [5] presented a recursive method to reduce the computation of principal

ideal generators of multiquadratic fields to quadratic subfields by using the information from

the subfields. Biasse and van Vredendaal [18] generalized this strategy for the computation

of the S-unit group of multiquadratic fields. In 2020, Biasse, Fieker, Hofmann, and Page [20]

generalized the idea of relations of norms of subgroups and introduced the relations of the
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form

d =
l∑

i=1

aiNHi
bi,

where d ∈ N>0 and ai, bi ∈ Z[G]. These relations are called norm relations, and they help

leverage the computations in subfields for the computation of rings of integers, S-unit groups,

and class groups of a number field.

One of the crucial applications of norm relations is the resolution of the principal ideal

problem (PIP). Norm relations help us solve PIP recursively by utilizing the subfield informa-

tion. In the next chapter, we present a variant of Miller’s technique [55] for the computation

of class numbers of maximal real subfields of cyclotomic fields. The core idea behind this

variant is the recursive PIP computation by using norm relations. More specifically, we use

the norm relation-based PIP algorithm as described in [43]. In this chapter, we discuss norm

relations and the necessary and sufficient criteria for their existence. Also, we discuss the

subfield-based algorithms for the computation of S-unit group and principal ideal problem

by using norm relations.

5.1 Definition

Let K be a Galois number field with Galois group G = Gal(K/Q). For a subgroup

H ≤ G we denote by NH =
∑

h∈H h ∈ Q[G] the norm of H as an element of the group

algebra Q[G]. A norm relation of G is an equality of the form 1 =
∑l

i=1 aiNHi
bi in Q[G]

with ai, bi ∈ Q[G] and subgroups 1 6= Hi ≤ G. By clearing denominators, a norm relation

can always be written as

d =
l∑

i=1

aiNHi
bi (5.1)

with d ∈ N>0 minimal such that ai, bi ∈ Z[G]. We call d the denominator of the norm

relation.
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The relation between arithmetic objects of the number field K and its subfields can be

obtained from norm relation (see [20]). Equation (5.1) implies that for all x ∈ K× we have

xd =
l∏

i=1

NK/KHi (x
bi)ai , (5.2)

where KH = {x ∈ K | σ(x) = x for all σ ∈ H} is the fixed field of H, xa =
∏

g∈G g(x)
ag for

all x ∈ K×, and a =
∑

g∈G agg ∈ Z[G]. We mostly use Equality (5.2) when we refer to a

norm relation. Let us consider a fractional ideal a of the number field K. Then from [58,

Chapter III, §1, Proposition 1.6] we can obtain the following equality for a subgroup H ≤ G:

NK/KH (a)OK =
∏

σ∈H σ(a) = aNH . That is, we have the following result from Equation (5.1)

ad =
l∏

i=1

NK/KH (abi)aiOK . (5.3)

.

Example 5.1 (Ex.2.5 of [20]). Consider a biquadratic field K = Q(
√
d1,
√
d2) where d1, d2

are squarefree coprime integers. The Galois group of K is Gal(K/Q) = 〈σ〉×〈τ〉 ∼= C2×C2.

Then we have the norm relation

2 = N⟨σ⟩ +N⟨τ⟩ − σN⟨στ⟩.

Let’s denote the quadratic subfields fixed by σ, τ and στ as Kσ, Kτ and Kστ respectively.

Then for α ∈ K∗, we have the following identity:

α2 =
NK/Kσ(α)NK/Kτ (α)

σ(NK/Kστ (α))
.

Due to Funakura [38] we have the following simple criterion for the existence of norm

relations for abelian groups G.
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Theorem 5.2 (Thm.2.27 of [20]). Let G be a finite abelian group, and write G ∼= C × Q

where C is the largest cyclic factor of G.

1. The group G admits a norm relation with denominator 1 if and only if |Q| is divisible

by at least two distinct primes. If the condition is satisfied, then G admits a norm

relation with ai ∈ Z, denominator 1, and where all Hi satisfy that G/Hi is a pi-group

times a cyclic group, for some prime number pi.

2. Assume that Q is a p-group. Then G admits a norm relation if and only if Q 6= 1. If

the condition is satisfied, then G admits a norm relation with ai ∈ Z, denominator a

power of p and where all Hi satisfy that G/Hi is a cyclic group.

Basically, the theorem states that norm relations exist if and only if the finite abelian

group G is not cyclic.

5.2 Saturation Techniques

Equation (5.2) shows us that if a norm relation of denominator d involving the fields

K1, . . . , Kl exists, then we know that the d-th powers of all elements x ∈ K can be expressed

as products of elements in K1, . . . , Kl. Suppose we want to compute a generating set of a

multiplicative group U ⊆ K× (typically the group of units, of the S-unit group for a certain

set S), we can use the following recursive strategy:

1. Compute a subgroup V ⊆ U such that V ∩ (K×)d = Ud.

2. Compute generators v1, . . . , vk of V ∩ (K×)d.

3. Take the d-th roots of the vi and deduce generators of U .

When U is the S-unit group for a set of prime ideals S that is stable under the action of the

Galois group, we can take V to be the subgroup of U generated by all the Si-unit groups

of Ki, where Si is the set of prime ideals of Ki lying under the primes of S. Then, since V
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contains all NK/Ki
(U), we know from Equation (5.2) that it contains all d-th powers of U .

Additionally, if xd ∈ V , then x must be only divisible by elements of S, hence x ∈ U and

V ∩ (K×)d = Ud. Step (2) is known as a saturation technique. We define the d-saturation

W of V as the smallest group W ⊆ K× with V ⊆ W and K×/W being d-torsion free.

The group V is d-saturated if it equals its d-saturation. The saturation technique takes the

subgroup V of the group U that we desire to compute, with the guarantee that U equals the

d-saturation of V , and computes generators for (V ∩ (K×)d)/V d.

When dealing with an arbitrary denominator d, we first factor d as a product of prime

powers, and we repeat Steps (2) and (3) for all prime powers dividing d. Thus, from now on,

we will assume that d is a prime power. Saturation employs local computations to detect

global powers. This is a well-known technique in computational algebraic number theory,

used, for example, in the class and unit group computation of number fields ([62, Section

5.7]) or the number field sieve ([1]). Note that, in contrast to previous applications of this

technique, in our case the number d is in general not a prime. As a consequence, we will rely

on the Grunwald–Wang theorem (see [3, Chapter X] or [59, Chapter IX, §1]) and therefore

have to consider the following dichotomy. For k ∈ Z≥1 denote by ζk a primitive k-th root

of unity and set ηk = ζk + ζ−1
k . Let s ≥ 2 be an integer such that ηs ∈ K but ηs+1 6∈ K.

Moreover, let S be a finite set of prime ideals of OK . Recall that d is a prime power. We

say that we are in the bad case when the following conditions are simultaneously satisfied:

1. The number d = 2t is even and t > s.

2. The elements −1, 2 + ηs and −(2 + ηs) are non-squares in K.

3. We have {p | 2 ∈ p and − 1, 2 + ηs} and −(2 + ηs) are non-squares in Kp ⊆ S

If we are not in the bad case, we say that we are in the good case. The terminology is

explained by the theorem of Grunwald–Wang, which gives the following connection between

global and local d-th powers.
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Theorem 5.3 (Grunwald–Wang). Consider the canonical map K×/(K×)d −→
∏

p ̸∈S K
×
p /(K

×
p )

d.

If we are in the good case, this map is injective. If we are in the bad case, the kernel of the

map is 〈η̄s〉 ∼= Z/2Z.

The good case Finding d-th powers in the good case can be done exclusively by detecting

local d-th powers modulo a set of prime ideals.

Proposition 5.4 ([20, Proposition 4.5]). Assume that p is a non-zero prime ideal with d 6∈ p

and let ϖ ∈ K be a local uniformizer at p, that is, an element with vp(ϖ) = 1. Then the

map

K×
p /(K

×
p )

d −→ Z/dZ× k×p /(k×p )d, x̄ 7 −→ (v, xϖ−v) where v = vp(x),

is an isomorphism.

Proposition 5.5. Assume that we are in the good case of Grunwald–Wang. For a multi-

plicative finitely generated subgroup V ⊆ K× we have

(V ∩ (K×)d)/V d =
⋂
d ̸∈p

ker(V/V d → Z/dZ× k×p /(k×p )d).

There exists c0 ∈ R>0 (depending on K,V and d) such that

(V ∩ (K×)d)/V d =
⋂

d ̸∈p,N(p)≤c0

ker(V/V d → Z/dZ× k×p /(k×p )d).

The general case In the general case, d is a power of 2, but the approach we sketch here

applies to d = pt a power of an arbitrary prime p. In essence, it consists in inductively

computing the p-saturation of V and replacing it with its p-saturation t times. At each step,

p-th roots of generators of (V ∩ (K×)p)/V p need to be computed, which makes this process

in practice more computationally expensive than in the so-called good case, but does not

change the overall asymptotic complexity.
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5.3 S-Unit Group Computation With Norm Relation

Let K/F be a normal extension of algebraic number fields with Galois group G. Let us

assume G admits a norm relation of denominator d of the form

d =
l∑

i=1

aiNHi
bi.

Here Hi ⊆ G, d ∈ N>0, ai, bi ∈ Z[G]. Consider a finite set S of G-stable non-zero prime

ideals of OK . We can use the following steps to compute a Z-basis of the S-unit group as

described in [20, Alg. 4.16].

1. For each fixed field Ki = KHi of K, compute a basis of the S-unit group O×
Ki,S

2. Determine the group V = (O×
K1,S

)a1 ...(O×
Kl,S

)al ⊆ O×
K,S.

3. Compute the d-saturation of V as explained in Section 5.2.

By this approach we obtain a polynomial reduction for the S-unit group computation of K

to the S-unit group computation of subfields Ki with the help of norm relation.

5.4 Principal Ideal Problem With Norm Relations

The S-unit group computation discussed above can be used to solve the PIP. We use the

following method to solve the PIP by using the S-unit group as discussed in [19, Sec. 6].

Given an ideal a of the number field K, we enumerate small linear combinations of LLL-

reduced basis of a until we find α ∈ a such that (α)/a = p is a prime ideal. Consider

the set of prime ideal S = {pσ | σ ∈ Gal(K/Q)}, the set of all conjugates of p under the

action of Gal(K/Q). Then by using the method discussed above, we can find a generating

set α1, ..., αr+s of the S-unit group, where r is the rank of the unit group O×
K and s is the

cardinality of the set S. Let v⃗1, ..., v⃗r+s ∈ Zs represent the vectors corresponding to the

valuations of αi at the primes in S. Then by solving a linear system, we can find a vector
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x⃗ ∈ Zr+s such that
∑
xiv⃗i is a vector with zeros everywhere except for a 1 in the entry

corresponding to the prime ideal p. Then
∏

i α
xi
i will be a generator of p. Since (α)/a = p,

we have α.
∏

i α
−xi
i as a generator of the ideal a and as solution to PIP.

5.5 Principal Ideal Problem Without S-Unit Group Computation

In this section, we explore solving the PIP through norm relations, without relying on

the S-unit group computation discussed in the previous section. Let K be a Galois number

field with Galois group G = Gal(K/Q). Let’s assume G admits a norm relation of the form

d =
l∑

i=1

aiNHi
bi (5.4)

with subfields H1, H1, ..., Hl. Then we use the following crucial result for solving the PIP in

K by using the information from the subfields.

Lemma 5.6 (Lem. 4.1 of [43]). Let a be a fractional ideal of a number field K. If a is a

principal ideal, then NK/Ki
(abi) is also a principal ideal in the fixed field Ki = KHi of Hi

for 1 ≤ i ≤ l. If d = 1, then the converse is also true and the generator of a is given by∏l
i=1(αi)

ai, where αiOK = NK/Ki
(abi) for 1 ≤ i ≤ l.

The previous lemma states that if the denominator d is one, then the PIP in K can be

reduced to PIP instances in the subfields Ki. But if the denominator is not equal to one, we

can not solve the PIP in K directly from the subfields Ki, and more work is needed. If the

denominator is greater than one, we get the generator of ad from the subfield computations.

That is we have

ad = βOK .

If there exists a u ∈ O×
K such that uβ = αd, then a = αOK and we have the solution α for

the PIP in K. We use the saturation technique as explained in Section 5.2 to find the d-th

power modulo unit group. Proposition 4.4 of [43] shows that we can even work on a smaller
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group U generated by the subgroups of OKi
instead of the full unit group for the saturation

method. We use Algorithm 8 to solve the PIP by using norm relations as described in [43,

Alg. 1].

Input : A fractional ideal a of K which satisfies ad =
∏l

i=1 NK/Ki
(abi)aiOK .

Output: Whether a is a principal ideal and a generator in case it is
1 y ← 1;
2 for i← 1 to l do
3 if NK/Ki

(abi) is principal then
4 Find αi of Ki such that NK/Ki

(abi) = αiOKi
;

5 else
6 return: a is not principal
7 end
8 end
9 β = αa1

1 ...α
al
l ;

10 Compute U = V a1
1 ...V al

l , where Vi are subgroups of OKi
with index coprime to d ;

11 if β is a d-th power modulo U then
12 return: α ∈ K× such that β/αd ∈ U ;
13 else
14 return: a is not principal
15 end

Algorithm 8: PIP With Norm Relations

5.6 Ideal Decomposition With Norm Relations

Let K be a number field and let a ⊆ K be an ideal of K. As we discussed in Section 3.5,

the ideal decomposition of a consists in representing a as a = (ϕ)pe11 ...p
eN
N , where pi belongs

to a set of prime ideals S. In this section, we discuss how to leverage norm relations for

the decomposition of an ideal by using subfield computations. Let S = {pi}i≤k be a set

prime ideals of OK that is stable under the action of G = Gal(K/Q), and let [a] ∈ 〈S〉.

Assume K admits a norm relation with subfields (Ki)i≤l. That is, we have the equation

ad =
∏l

i=1 NK/Ki
(abi)aiOK . Then for each i, we find the decomposition of NK/Ki

(abi) in

Cl(OKi
) with respect to p ∩ Ki for p ∈ S. From this decomposition of NK/Ki

(abi), we can

get the corresponding decomposition of NK/Ki
(abi)aiOK in Cl(OK) with respect to S. That
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is, we have the decomposition

ad ∼
∏
i

pxi
i

for some vector x⃗. For each subfield Ki, by using ideal decomposition and PIP in Cl(OKi
),

we can get an identity of the form

NK/Ki
(abi)aiOK = (αi)

∏
j

p
xi,j

j .

By combining all the identities from the subfields as above and by using the form ad ∼
∏

i p
xi
i ,

we can get the ideal decomposition for ad

ad = (α)
∏
i

pyii . (5.5)

Now we have the ideal decomposition for ad. We would like to get the ideal decomposition

of a from ad = (α)
∏

i p
yi
i . We use the following strategy as described in [19, Sec. 5.1] for this

purpose.

Since the class of a is a product of the classes of S, there must exist z⃗ ∈ Zk and β ∈ K

such that a = (β)
∏

i p
zi
i , which means that

ad = (βd)
∏
i

pdzii .

Since ad = (α)
∏

i p
yi
i , we obtain the equality

(βd)
∏
i

pdzii = (α)
∏
i

pyii .

Since α is not necessarily βd, we don’t necessarily have yi = dzi. However, we know that∏
i p

yi
i ∼ pdzii so we must have y⃗ − dz⃗ ∈ L where L ⊆ Zk is the lattice of relations between

the pi, i.e. the lattice of vectors u⃗ such that
∏

i p
ui
i is a principal ideal. Our goal is to express

α as α = β′d · δ where δ is an S-unit with (δ)OK =
∏

i p
ui
i such that u⃗ + y⃗ ∈ dZk. If we
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can express α = β′d · δ, then we have the equality ad = (β′d)
∏

i p
dz′i
i where z⃗′ := u⃗+ y⃗. The

decomposition of the ideal a follows from this equality. Once we find a S-unit δ0 such that

(δ0) =
∏

i p
u0
i

i with u⃗(0) + y⃗ ∈ dZk, then any other solution δ is of the form δ = δ0δ
′ where δ′

is an S-unit satisfying (δ′)OK =
∏

i p
u′
i

i with u⃗′ ∈ dZk. The set of such δ′ is a subgroup of

the S-unit group.

By using the saturation methods as discussed in Section 5.2, we can find generators

α1, . . . , αr+k+1 of the S-unit group, where r is the rank of the unit group. Consider the

matrix M ∈ Z(r+k+1)×k whose rows are the valuations of the αi according to the primes in

S. Since we have y⃗ − dz⃗ ∈ L, there is x⃗ ∈ Zr+k+1 such that y⃗ = x⃗M + dz⃗, i.e.

y⃗ = x⃗M mod d.

This system does not have a unique solution. However, we can put M in row reduced echelon

form modulo d and find

1. a solution x⃗(0) to y⃗ = x⃗M mod d,

2. a basis x⃗(1), . . . , x⃗(m) of the left kernel of M mod d.

So all the x⃗ such that y⃗ = x⃗M mod d are of the form x⃗ = x⃗(0) +
∑

j ajx⃗
(j), including the

one that satisfies y⃗ = x⃗M + dz⃗ for z⃗ defined above. We denote by x⃗(j)Mi the i-th coefficient

of x⃗(j)M , and by αi ∈ K the element that satisfies
∏

j p
Mi,j

j = (αi)OK . With the notation

previously used, δ0 =
∏

i α
x
(0)
i

i , while the subgroup of δ′’s is generated by δi :=
∏

i α
x
(j)
i

i for

i = 1, . . . ,m. Therefore, we have
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(α)
∏
i

pyii = (α)
∏
i

px⃗Mi
i ·

∏
i

pyi−x⃗Mi

i

= (α)
∏
i

px⃗
(0)Mi

i ·
∏
j≤m

[∏
i

px⃗
(j)Mi

i

]aj
·
∏
i

pyi−x⃗Mi

i

= (α)

(∏
i

α
x
(0)
i

i

)
·

(∏
j≤m

[∏
i

α
x
(j)
i

i

]aj)
·
∏
i

pyi−x⃗Mi

i

= (α′)

(∏
j

δ
aj
j

)
·
∏
i

p
dz′i
i for some z′i ∈ Z

where we have a product representation of α′ ∈ K and the δj ∈ K.

If we can find (aj)i≤m such that α′ ·
∏

j δ
aj
j = β′d for some β′ ∈ K, we can obtain the

identity

ad = (β′d)
∏
i

p
dz′i
i .

β′ = β and z′i = zi provides us one solution to the above identity. Other choices of

(ai)i≤m can provide to other solutions. Once a solution is found, we have a = (β′)
∏

i p
z′i
i ,

which solves the ideal class decomposition problem.

Now the question is how to find the desired (ai)i≤m. Since there is a solution, we know

that α′ is a d-th power modulo U for U = 〈δ1, . . . , δm〉. This means that there are x ∈ K×

and u ∈ U such that α′ = u · xd. To find the ai, we apply a variation of the saturation

methods described in Section 5.2. More precisely, we use Proposition 3 of [19] for finding

(ai)i≤m such that α′ ·
∏

j δ
aj
j = β′d. We summarize the ideal decomposition with Algorithm 9.
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Input : Number field K of unit rank r, norm relation d =
∑

i aiNHi
bi where d is

a prime power in the good case of Grunwald–Wang, ideal a and set S of
k primes stable under the action of G = Gal(K/Q), together with α, y⃗
such that ad = (α)

∏
i p

yi
i .

Output: β′, z⃗′ such that a = (β′)
∏

i p
z′i
i .

1 Compute a basis (αi)i≤k+r+1 for the S-unit group (using recursive norm relation
techniques), and let M ∈ Z(r+k+1)×k such that (αi) =

∏
j p

Mi,j

j ;
2 Put M in row reduced echelon form modd. Find x⃗(0) solution to y⃗ = x⃗M mod d;
3 Compute x⃗(1), . . . , x⃗(m) basis of the left kernel of M mod d ;

4 α′ ← (α)

(∏
i α

x
(0)
i

i

)
. For j ≤ m: δj ←

∏
i α

x
(j)
i

i .U ← 〈δ1, . . . , δm〉. Let c ≤ c0 large

enough. ;
5 Compute a (Z/dZ)-generating set δ1α′n1 , . . . , δmα′nm of⋂

p ̸∈p,N(p)≤c

ker(〈U, α′〉/〈U, α′〉d → Z/dZ× k×p /(k×p )d)

Compute k, ai ∈ Z, 1 ≤ i ≤ m, with 1 = kd+
∑m

i=1 aini ;
6 Let x⃗← x⃗(0) +

∑
j≤m ajx⃗

(j);
7 return: d

√
α′ ·

∏
j δ

aj
j ,

1
d
(y⃗ − x⃗M)

Algorithm 9: Ideal Decomposition With Norm Relations
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CHAPTER 6

CLASS NUMBER OF MAXIMAL REAL SUBFIELD OF CYCLOTOMIC

FIELDS

The computation of class numbers of cyclotomic fields is known as a “notoriously hard

problem” [69]. The difficulty of this problem lies in the class number computation of the

maximal real subfield of cyclotomic field [69, Sec. 1]. The class number of the maximal

real subfield of a cyclotomic field is also known as the “plus part” of the class number of a

cyclotomic field and it is denoted by h+. The classical method to calculate h+ is by using

Minkowski’s bound. But this method becomes impractical for cyclotomic fields of large

discriminant. To address the cyclotomic fields of large discriminants, Masley [51] and van

der Linden [49] introduced a method for h+ computation by using Odlyzko’s discriminant

lower bounds. However, this method could only be applied to cyclotomic fields of small root

discriminants, thus limiting their applicability. Later Miller described a new approach for

h+ computation [54, 55, 56]. Miller’s approach finds an upper bound for h+ by establishing

nontrivial lower bounds for sums over prime ideals of the Hilbert class field. This upper

bound, together with some divisibility arguments, gives the exact h+. The crucial part of

Miller’s technique is finding a large number of principal prime ideals of the maximal real

subfield of the cyclotomic field. In this chapter, we introduce a variant of Miller’s technique

for computing h+ unconditionally. Then, we apply it to determine the class numbers of a

few maximal real subfields of cyclotomic fields that are not documented in the literature.

The key component of our new approach is the implementation of Algorithm 8 for the PIP

resolution. These PIP methods were introduced in Chapter 5.
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6.1 Miller’s Approach For h+ Computation

In this section, we discuss Miller’s approach for h+ computation [54, 55]. A Schwartz

class function on R is a complex-valued smooth function f : R → C that decays rapidly to

zero. That is, for all m,n ∈ Z≥0 we have

supx∈R|xmf (n)(x)|<∞,

where f (n) denotes the n-th derivative of f . Consider a Schwartz class function F on R with

the condition F (0) = 1 and F (−x) = F (x). Let Φ be the function defined by

Φ(s) =

∫ ∞

−∞
F (x)e(s−1/2)x dx.

Then Poitou’s version [63] of Weil’s “explicit formula” for a number field K of degree n and

r1 real embeddings will be of the form

log d(K) =r1
π

2
+ n(γ + log 8π)− n

∫ ∞

0

1− F (x)
2 sinh x

2

dx

− r1
∫ ∞

0

1− F (x)
2 cosh x

2

dx− 4

∫ ∞

0

F (x) cosh
x

2
dx

+
∑
ρ

Φ(ρ) + 2
∑
P

∞∑
m=1

logNP

NPm/2
F (m logNP)

(6.1)

where γ is Euler’s constant. Here the first summation is over nontrivial zeros of the Dedekind

zeta function of the number field K. The second summation is over the prime ideals of K.

When K is a totally real field we can apply Weil’s explicit formula to the Hilber class field

of K and deduce the following result, which is crucial for Miller’s h+ computation approach.
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Theorem 6.1 (Thm. 2.3.1 of [55]). Let K be a totally real field of degree n. For a positive

constant c, consider the function

F (x) =
e−(x/c)2

cosh x
2

.

Let S be a subset of prime integers which totally split into principal prime ideals of K. Let

B =
π

2
+ γ + log 8π − log rd(K)−

∫ ∞

0

1− F (x)
2

(
1

sinh x
2

+
1

cosh x
2

)
dx

+ 2
∑
p∈S

∞∑
m=1

log p

pm/2
F (m log p).

(6.2)

If B > 0 then we have the following upper bound for the class number h of K,

h <
2c
√
π

nB
.

We denote the class number of the cyclotomic field Q(ζm) of conductor m as hm and the

class number of its maximal real subfield Q(ζm)
+ as h+m. The main part of Miller’s approach

is finding sufficiently many algebraic integers x in Q(ζm)
+ such that N(x) is a prime integer

p congruent to ±1 modulo m. Consider an integral basis {b0, b1, ..., bn−1} of Q(ζm)
+ with

b0 = 1 and bj = 2 cos(2πj
m
) for j = 1, ..., n−1. Miller’s approach searches “sparse vectors” over

this integral basis, where almost all the coefficients are zero and the remaining coefficients

are ±1. Specifically, Miller searched over the vectors of the form

x = b0 + b1 + a1bj1 + a2bj2 + a3bj3 + a4bj4 + a5bj5 + a6bj6,

where 1 < j1 < j2 < j3 < j4 < j5 < j5 < j6 < n and aj ∈ {−1, 0, 1} for 1 ≤ j ≤ 6.

Once we find a vector x such that N(x) is a prime integer p congruent to ±1 modulo m,

then this prime integer p will split completely into principal ideals of Q(ζm)
+ and we can

include p into the set S. Once we have a sufficient number of prime integers in S, we can

use Equation 6.1 to get an upper bound for the class number h+m. Then by using various
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divisibility theorems, we can obtain the exact class number from the upper bound. The

following theorems are used for this purpose as described by van der Linden [49], Masley [51]

and Washington [84]. We denote the relative class number hm

h+
m

by h−m.

Parity Check Theorem 6.2 (Thm. 2.21 of [51]). If h−m is odd, then h+m is odd.

Reflection Theorem 6.3 (Thm. 2.22 of [51]). For a prime integer p, consider the least

common multiple M of p and the conductor m. If p does not divide the relative class number

h−M , then p does not divide h+m.

Pushing Down Theorem 6.4 (Thm. 10.4 of [84]). Consider a Galois extension L/K with

degree power of a prime p. Suppose at most one prime of K ramifies in L. Then if p does

not divide hK, then p does not divide hL.

Rank Theorem 6.5 (Cor. 2.15 of [51]). Let L/K be a cyclic extension of degree n. Let p be

a prime that does not divide hE for all intermediate fields E with K ⊆ E ⊂ L. If p divides

hL, then pf divides hL, where f is the order of p modulo n.

6.2 A Variant of Miller’s Approach For Unconditional h+ Computation

We present a new approach for unconditional h+ computation that is very similar to

Miller’s unconditional h+ computation approach. The main difference between our ap-

proach and Miller’s approach lies in the search process for finding prime integers which split

completely into principal ideals of Q(ζm)
+. We use Algorithm 8 to find the prime integers

which split completely into principal ideals. More precisely, we start from the smallest prime

integer p which split completely in Q(ζm)
+ and check whether any ideal above p is princi-

pal by using Algorithm 8. If any ideal above p is principal, then p should split completely

into principal ideals and we can include p into the set S of Theorem 6.1. We continue this

strategy to the next split prime until we find enough prime integers in S, that can give a

sufficient upper bound for the class number. Once we get the class number upper bound we

use the same divisibility arguments used by Miller to obtain the exact class number. The
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main computational task of our approach is PIP computation. But the norm relation-based

PIP of [43] helps us to tackle this issue. We use Algorithm 10 to find the prime integers that

split completely into principal ideals. We summarize our results with the following theorem.

Theorem 6.6. The class number of Q(ζm)
+ is one for m = 285, 540, 372, 396, 308, 231, 462.

Input : Integer k > 0, number field K, and a norm relation d =
∑

i aiNHi
bi

Output: A list Lprimes of prime integers which split completely into principal
ideals in K

1 Initialize empty lists L and Lprimes ;
2 L← First k prime integers which splits completely in K;
3 for p in L do
4 Choose any prime ideal p above p in K;
5 Solve PIP for the prime ideal p by using Algorithm 8;
6 if p is principal then
7 Find α of K such that p = αOK ;
8 if NK/Q(α)=p then
9 Store p in Lprimes;

10 end
11 end
12 end
13 Consider Lprimes as S and compute B by using Equation (6.2);
14 if B > 0 then
15 return: Lprimes

16 else
17 k ← 2k and go to step 1
18 end

Algorithm 10: Primes search algorithm

The significance of our approach Miller [54, 55] computed h+ for cyclotomic fields of

composite conductor up to degree 116 without assuming GRH. Generally, when the degree

of the cyclotomic field Q(ζm) increases, the root discriminant of the maximal real subfield

Q(ζm)
+ also increases and we need a large contribution from the prime summation term

in Equation (6.2) to obtain a positive B and an upper bound for h+. As mentioned in

the previous section, to find prime integers which split completely into principal ideals of

Q(ζm)
+ Miller searches “sparse” vectors with respect to an integral basis of Q(ζm)

+ and
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tries to find algebraic integers of prime norm. Usually, the prime integers we obtain by

this approach are very large. So, we need a large number of prime integers to obtain a

positive B in Equation (6.2). This makes h+ computation very difficult when the degree of

the cyclotomic field goes beyond 116. The primes we collect in our approach are smaller

by construction, and each of these smaller primes has a high contribution to the prime

sum term in Equation 6.2. Hence, we need a smaller number of primes to establish an

unconditional upper bound for the class number compared to Miller’s approach. As we

mentioned in Section 3.3, Biasse, Fieker, Hofmann, and Page [20] introduced a recursive

strategy for the computation of class groups by leveraging the information from subfields

by using norm relation. In Table 1 and Table 2 of [20], Biasse, Fieker, Hofmann and Page

present a list of cyclotomic fields with their unconditional h+ values. Biasse et al. [20] used

GRH-conditional computations in subfields for the class group computations [20, Sec. 4.5].

Then they performed unconditional certification in subfields by using PARI/GP bnfcertify

function [80] and thus obtained unconditional h+ values. So, the class groups are correct only

if the class groups of subfields are correct. For all the number fields Q(ζm)
+ we consider in

this chapter, the norm relation involves cyclic subfields with large discriminants. Therefore,

the norm relation-based class group computation as in [20] is not applicable for these cyclic

subfields, and we have to rely on classical methods. However, these cyclic subfields have large

Minkowski bounds, making the classical class group computation infeasible. Consequently,

the unconditional certification approach of [20] will not work for the number fields Q(ζm)
+

we consider in this chapter.

6.2.1 The Proof of h+285 = 1

Consider the cyclotomic field Q(ζ285) of degree 144. We compute the class number h+285
of the maximal real subfield Q(ζ285)

+. If we use Miller’s approach to establish a good

unconditional class number upper bound, we might need more than 1012 primes which split

completely into principal ideals and it becomes extremely computationally challenging. The
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norm relation of Q(ζ285)
+ involves a subfield of degree 36 with cyclic Galois group. The

class group computation with norm relation as in [20] is not applicable for this degree 36

subfield and we have to depend on classical methods. But the Minkowski bound for this

degree 36 subfield is around 1020 and it is not computationally feasible. So, the unconditional

certification as in [20] is not applicable for Q(ζ285)
+. But by implementing our approach,

Algorithm 10, we get 6143 small prime integers which split completely into principal ideals

in Q(ζ285)
+. We use these prime for the prime summation term in Equation (6.2) and obtain

a positive B and thus an upper bound of 24 for h+285. Then we use the divisibility theorems

to get the exact class number.

There are three subfields of degree 36 for Q(ζ285)
+. One of them is Q(ζ95)

+ the maximal

real subfield of the cyclotomic field of conductor 95. Among the other two subfields of

degree 36 one has cyclic Galois group over Q. We denote this subfield as K36. There are

three degree 18 subfields for Q(ζ285)
+. One of them is Q(ζ57)

+ the maximal real subfield of

the cyclotomic field of conductor 57. Among the other two subfields of degree 18 subfields

one has root discriminant 62.48. We denote this subfield as K18,1 and the remaining one as

K18,2.

2-part Consider the degree 18 subfield Q(ζ57)
+ of Q(ζ285)

+. Then the Galois extension

Q(ζ285)
+/Q(ζ57)

+ has degree 4. The prime integer 5 is inert in Q(ζ57)
+. The prime ideal (5)

is the only prime ideal of Q(ζ57)
+ that ramifies in the degree 4 extension Q(ζ285)

+/Q(ζ57)
+.

Since Q(ζ57)
+, has class number 1, we can use the pushing down theorem to show that 2

does not divide h+285.

3-part We consider the extension Q(ζ285)
+/Q(ζ19)

+. We prove that 3 does not divide

the class numbers of intermediate fields of Q(ζ285)
+/Q(ζ19)

+, those are cyclic over Q(ζ19)
+.

Then we apply the Rank Theorem and obtain that 3 does not divide h+285.

The maximal real subfield of the cyclotomic field of conductor 19, Q(ζ19)
+ has degree

9 and it is a subfield of Q(ζ285)
+. Q(ζ19)

+ has class number 1. Q(ζ285)
+/Q(ζ19)

+ is an

abelian extension of degree 8. The extension Q(ζ285)
+/Q(ζ19)

+ is not cyclic. Three degree
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18 subfields K18,1, K18,2 and Q(ζ57)
+ are cyclic over Q(ζ19)

+. Also, the degree 36 subfields

Q(ζ95)
+ and K36 are cyclic over Q(ζ19)

+. These are the nontrivial intermediate fields of

Q(ζ285)
+/Q(ζ19)

+, those are cyclic over Q(ζ19)
+. We want to check the divisibility of 3 for

the class numbers of these degree 18 and 36 intermediate fields.

We start with degree 18 intermediate fields of Q(ζ285)
+/Q(ζ19)

+. The Q(ζ57)
+, has class

number 1. So, 3 does not divide the class number of Q(ζ57)
+. Now let’s check, whether 3

divides the class number of K18,1. Consider the quadratic field defined by the polynomial

x2 + x − 71. Let’s denote this field as K and it has class number 2. Consider the degree 9

extension K18,1/K. Then the prime integer 19 factors as (19) = P 2 in K for a prime ideal P .

The prime P is the only prime of K that ramifies in K18,1. Since the class number of K is 2,

by using the Pushing Down Theorem we can show that 3 does not divide the class number

of K18,1. For the subfield K18,2, we can choose a pair (45.037, 15.201) from Odlyzko’s table

of unconditional bounds for discriminants [61] to get a class number upper bound of 2. So,

3 does not divide the class number of K18,2.

Now let’s check the divisibility of 3 for degree 36 intermediate fields of Q(ζ285)
+/Q(ζ19)

+.

The subfield Q(ζ95)
+, has class number 1. For K36, consider the degree 4 cyclic extension

K36/Q(ζ19)
+. There is only one intermediate field K18,2 for the extension K36/Q(ζ19)

+. We

have a class number upper bound of 2 for K18,2. By using Miller’s approach and by using an

LLL reduced basis of the ring of integers, we can get a class number upper bound 8 for K36.

Thus, by the Rank Theorem, we obtain that 3 does not divide the class number of K36.

So far, we have shown that 3 does not divide the class number of all the intermediate

fields of Q(ζ285)
+/Q(ζ19)

+, those are cyclic over Q(ζ19)
+. So, by The Rank Theorem, we can

show that 3 does not divide the class number of Q(ζ285)
+.

5-part 285 is the least common multiple of 5 and the conductor 285. From Washington’s

table [84], we find that 5 does not divide the relative class number h−285. Thus, by using the

Reflection Theorem we obtain 5 does not divide h+285.
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p-part 7 ≤ p ≤ 23. We prove that p does not divide the class numbers of intermediate

fields of Q(ζ285)
+/Q(ζ19)

+, which are cyclic over Q(ζ19)
+. Then we apply the Rank Theorem

and obtain that p does not divide h+285. The only intermediate fields of Q(ζ285)
+/Q(ζ19)

+,

that are cyclic over Q(ζ19)
+ are degree 18 intermediate fields Q(ζ57)

+, K18,1,K18,2 and degree

36 intermediate fields Q(ζ95)
+ and K36.

Let’s start with degree 18 intermediate fields of Q(ζ285)
+/Q(ζ19)

+. The degree 18 in-

termediate field Q(ζ57)
+ has class number one. So, p does not divide the class number of

Q(ζ57)
+. We have already shown that the class number of the degree 18 intermediate field

K18,2 has an upper bound of 2. So, p does not divide the class number of K18,2. For the

degree 18 intermediate field K18,1, we consider the degree 9 cyclic extension K18,1/K as we

constructed earlier. We can not use the Push Down Theorem as we used for prime 3. The

only nontrivial intermediate field for this extension is the degree 6 field defined by the poly-

nomial x6 + x5 − 74x4 + 68x3 + 607x2 − 603x − 449. This subfield has class number 2. By

using Miller’s approach as in Section 6.1, we can get a class number upper bound of 11 for

K18,1. So, by using the Rank Theorem we can show that p does not divide the class number

of K18,1.

Now, let’s consider degree 36 intermediate fields of Q(ζ285)
+/Q(ζ19)

+. The degree 36

intermediate field Q(ζ95)
+ has class number 1. For K36, we can use the same degree 4 cyclic

extension K36/Q(ζ19)
+ as we used for prime 3. There is only one intermediate field K18,2 for

the extension K36/Q(ζ19)
+. We already have a class number upper bound of 2 for K18,2 and

a class number upper bound of 8 for K36. Thus, by Rank Theorem we obtain that p does

not divide the class number of K36.

Since p does not divide the class number of all the intermediate fields of Q(ζ285)
+/Q(ζ19)

+,

those are cyclic over Q(ζ19)
+, by using the Rank theorem, we can show that p does not divide

the class number of Q(ζ285)
+.

So by using the upper bound h+285 ≤ 24, we can conclude that the class number h+285 = 1.
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6.2.2 The Proof of h+540 = 1

Consider the cyclotomic field Q(ζ540) of degree 144. We compute the class number

h+540 of its maximal real subfield Q(ζ540)
+. If we use Miller’s approach to establish a good

unconditional class number upper bound we might need more than 1012 primes which split

completely into principal ideals and it becomes computationally almost impossible. The

norm relation of Q(ζ540)
+ involves a subfield of degree 36 with cyclic Galois group. So, class

group computation with norm relation as in [20] is not applicable for this degree 36 subfield

and we have to depend on classical methods. But the Minkowski bound for this degree 36

subfield is around 1022 and it is not computationally feasible. So, unconditional certification

as in [20] is not applicable for Q(ζ540)
+. But, by using our approach we can get a class

number upper bound of 31 for h+540. Then we use the divisibility theorems to obtain the

exact class number.

2-part h−396 is odd. So, by the Parity Check Theorem, h−540 is odd.

3-part Consider the degree 24 field Q(ζ180)
+. It is a subfield of Q(ζ540)

+. Consider the

degree 3 extension Q(ζ540)
+/Q(ζ180)

+. Then the prime integer 3 factors as P 6 in Q(ζ180)
+ for

a prime ideal P of Q(ζ180)
+. P is the only prime ideal of Q(ζ180)

+ that ramifies in Q(ζ540)
+.

Since the class number of Q(ζ180)
+ is one, by using the Push Down Theorem we obtain that

3 does not divide h+540.

p-part p = 5, 7, 11, 13, 17, 23, 29, 31. Consider the degree 9 extension Q(ζ540)
+/Q(ζ60)

+.

The class number of Q(ζ60)
+ is one. The only intermediate field which is cyclic over Q(ζ60)

+

is Q(ζ180)
+. The class number of Q(ζ180)

+ is one. Since pf , where f is the order of p modulo

n is greater than 31, by using the Rank Theorem we conclude that p does not divide h+540.

19-part Consider the degree 4 extension Q(ζ540)
+/Q(ζ108)

+. The class number of Q(ζ108)
+

is one. There is only one intermediate field which is cyclic over Q(ζ108)
+. That is a degree 36

subfield and let’s denote it by K20. By using the PARI/GP [80] we can get the class number

of K20 as one. The PARI/GP bnfcertify unconditional certification for this class number of
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K20 took just a few seconds. Since the order of 19 modulo 4 is 2, by using the Rank Theorem

we obtain that 19 does not divide h+540.

Then by using the class number upper bound of 31 and the above divisibility arguments,

we can conclude that the class number h+540 = 1.

6.2.3 The Proof of h+396 = 1

Consider Q(ζ396) is of degree 120. We compute the class number of its maximal real

subfield Q(ζ396)
+. The norm relation of Q(ζ396)

+ involves a degree 30 subfield with cyclic

Galois group. The Minkowski bound for this degree 30 subfield is around 1016. So, the

unconditional certification approach of [20] is not applicable for h+396 computation. By using

the Algorithm 10, we get 2448 small prime integers which split completely into principal

ideals in Q(ζ396)
+. Then Equation 6.2 provides us a positive B and thus an upper bound of

20 for h+396.

2-part The relative class number of the cyclotomic field of conductor 396 is odd. So by

the Parity Check Theorem h+396 is odd.

3-part The field Q(ζ132)
+ of degree 20 is a subfield of Q(ζ396)

+. Consider the degree 3

extension Q(ζ396)
+/Q(ζ132)

+. The prime integer 3 factors as P 2 in Q(ζ132)
+. This is the only

prime of Q(ζ132)
+ that ramifies in Q(ζ396)

+. Since the class number of Q(ζ132)
+ is one, using

the Pushing Down Theorem we obtain that 3 does not divide h+396.

5-part The field Q(ζ33)
+ of degree 10 is a subfield of Q(ζ396)

+. Its class number is

one. Consider the degree 6 extension Q(ζ396)
+/Q(ζ33)

+. There is an intermediate field of

degree 30 which is cyclic over Q(ζ33)
+ with root discriminant 44.97. We can choose a pair

(45.037, 15.201) from Odlyzko’s table of unconditional bounds for discriminants [61] to get a

class number upper bound of 4 for this degree 30 intermediate field. The field Q(ζ132)
+ is also

an intermediate field for the extension Q(ζ396)
+/Q(ζ33)

+. Q(ζ132)
+ is cyclic over Q(ζ33)

+.

The class number of Q(ζ132)
+ is one. The order of 5 modulo 6 is 2. So if 5 divides h+396, then
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by the Rank Theorem, 25 must divide h+396. Since we have the class number upper bound of

20 for h+396, 5 does not divide h+396.

7-part There is a unique degree 12 subfield for Q(ζ396)
+. Let’s denote this subfield as

K12. Consider the degree 5 extension Q(ζ396)
+/K12. There are no intermediate fields for

this extension. The root discriminant of K12 is 34.47. We can choose a pair (55.509, 29.867)

from Odlyzko’s table of unconditional bounds for discriminants to get a class number upper

bound of 5 for K12. The order of 7 modulo 5 is 4. So, by using the Rank Theorem we can

find that 7 does not divide h+396.

11-part Here we can use the degree 6 extension Q(ζ396)
+/Q(ζ33)

+ as we used for p = 5.

Since the order of 11 modulo 6 is 2, by using the Rank Theorem we get 11 does not divide

h+396.

p-part 13 ≤ p ≤ 19. Here we can use the degree 7 extension Q(ζ396)
+/K12 as we did

for p=7. Since the order of p modulo 5 is greater than one, by using the Rank Theorem we

obtain that p does not divide h+396.

So, by using the class number upper bound h+396 ≤ 20, we obtain that h+396 = 1.

6.2.4 The Proof of h+372 = 1

Consider Q(ζ372) of degree 120. We compute the class number h+372 of its maximal real

subfield Q(ζ372)
+. The norm relation of Q(ζ372)

+ involves a degree 30 subfield with cyclic

Galois group. The Minkowski bound for this degree 30 subfield is around 1017. So, the

unconditional certification approach of [20] is not applicable for h+372 computation. By using

the Algorithm 10, we get 6871 small prime integers which split completely into principal

ideals in Q(ζ372)
+. We use these prime for the prime summation term in Equation (6.2) and

obtain a positive B and thus an upper bound of 15 for h+372.

2-part There is a unique degree 12 subfield for Q(ζ372)
+. Let’s denote it by K12. Consider

the degree 5 extension Q(ζ372)
+/K12. There are no intermediate fields for this extension.

By using PARI/GP [80] we find that the conditional class number of K12 is one. The
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unconditional certification for this class number by using PARI/GP bnfcertify function [80]

took just a few seconds. The order 2 modulo 5 is 4. So, if 2 divides the h+372, then by the

Rank Theorem, 16 should divide h+372. Since we have a class number upper bound of 11 for

Q(ζ372)
+, 2 does not divide h+372.

3-part Here we can use the same extension Q(ζ372)
+/K12 as we used for p = 2. The

order of 3 modulo 5 is 4. So, if 3 divides h+372, then by the Rank Theorem, 81 divides h+372.

Since the class number upper bound for Q(ζ372)
+ is 11, 3 does not divide h+372.

5-part There is a unique degree 20 subfield. Let’s denote it by K20. Consider the

degree 3 extension Q(ζ372)
+/K20. There are no intermediate fields for this extension. By

using PARI/GP [80] function we can get the class number of one for K20. The PARI/GP

bnfcertify unconditional certification took just a few seconds. The order of 5 modulo 3 is 2.

If 5 divides h+372, then by the Rank Theorem 25 must divide h+372. Since the class number

upper bound for Q(ζ372)
+ is 15, 5 does not divide h+372.

7-part Here we can use the same extension Q(ζ372)
+/K12 as we used for p = 2. The

order of 7 modulo 5 is 4. So, if 7 divides h+372, then by Rank Theorem 74 divides h+372. Since

the class number upper bound for Q(ζ372)
+ is 15, 7 does not divide h+372.

11-part Here we can use the same extension Q(ζ372)
+/K20 as we used for p = 3. The

order of 11 modulo 3 is 2. So, if 11 divides h+372, then by Rank Theorem 112 divides h+372.

Since the class number upper bound for Q(ζ372)
+ is 15 , 11 does not divide h+372.

13-part For p=13, consider the degree 5 extension Q(ζ372)
+/K12 as we used for p = 2.

The order of 13 modulo 5 is 4. So, by the Rank Theorem, 13 does not divide h+372.

6.2.5 The Proof of h+231 = 1

Consider the maximal real subfield Q(ζ231)
+ of the cyclotomic field Q(ζ231). We compute

the class number h+231 of Q(ζ231)
+. The norm relation of Q(ζ231)

+ involves a degree 30 subfield

with cyclic Galois group. The Minkowski bound for this degree 30 subfield is around 1015.

So, the unconditional certification approach of [20] is not applicable for h+231 computation.
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By using Algorithm 10, we can obtain 1962 primes that split completely into principal ideals

in Q(ζ231)
+, resulting in an upper bound of 10 for the class number h+231. We then use the

following divisibility arguments to determine the exact class number.

2-part The degree 30 field Q(ζ77)
+ is subfield of Q(ζ231)

+. The prime integer 3 is inert

in Q(ζ77)
+ and the prime ideal (3) is the only prime that ramifies in degree 2 extension

Q(ζ231)
+/Q(ζ77)

+. The class number of Q(ζ77)
+ is one. So, the Pushing Down Theorem

shows that h+231 is odd.

3-part There is only one degree 20 subfield for Q(ζ231)
+. Let’s denote it by K20. Consider

the degree 3 extension Q(ζ231)
+/K20. Then the prime integer 3 factors as P 2 in K20 for a

prime ideal P of K20. P is the only prime ideal of K20 that ramifies in Q(ζ231)
+. The class

number of K20 is one according to the PARI/GP bnfcertify function. So, by using the Push

Down Theorem we obtain that 3 does not divide h+231.

5-part Consider the degree 3 extension Q(ζ231)
+/K20. There are no subfields for this

extension. The class number of K20 is one. The order of 5 modulo 3 is 2. Since we have a

class number upper bound of 10 for Q(ζ231)
+, 5 does not divide h+231 by the Rank Theorem.

7-part The least common multiple of 7 and 231 is 231. 7 does not divide h−231 [84]. So,

by the Reflection Theorem, 7 does not divide h+231.

By using the class number upper bound of 10 and above divisibility arguments we con-

clude that the class number h+231 = 1.

6.2.6 The Proof of h+462 = 1

Consider the maximal real subfield Q(ζ462)
+ of the cyclotomic field Q(ζ462). We compute

the class number h+462 of Q(ζ462)
+. The norm relation of Q(ζ462)

+ involves a degree 30 subfield

with cyclic Galois group. The Minkowski bound for this degree 30 subfield is around 1015.

So, the unconditional certification approach of [20] is not applicable for the computation of

h+396. By using Algorithm 10, we can get 1962 primes that split completely into principal
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ideals in Q(ζ462)
+ and thus class number upper bound of 10 for h+462. Then we use the

following divisibility arguments to obtain an exact class number.

2-part The degree 30 field Q(ζ77)
+ is subfield of Q(ζ462)

+. The prime integer 3 is inert

in Q(ζ77)
+ and the prime ideal (3) is the only prime that ramifies in degree 2 extension

Q(ζ462)
+/Q(ζ77)

+. The class number of Q(ζ77)
+ is one. So, the Pushing Down Theorem

shows that h+462 is odd.

3-part There is only one degree 20 subfield for Q(ζ462)
+. Let’s denote it by K20. Consider

the degree 3 extension Q(ζ462)
+/K20. Then the prime integer 7 factors as P 2 in K20 for a

prime ideal P of K20. P is the only prime ideal of K20 that ramifies in Q(ζ462)
+. The class

number of K20 is one by PARI/GP bnfcertify function. So, by using the Push Down Theorem

we find that 3 does not divide h+462.

5-part There is only one degree 12 subfield for Q(ζ462)
+. Let’s denote it by K12. Consider

the degree 5 extension Q(ζ462)
+/K12. Then the prime integer 11 factors as P 2 in K12 for a

prime ideal P of K12. P is the only prime ideal of K12 that ramifies in Q(ζ462)
+. The class

number of K12 is one. So, by using the Push Down Theorem we get 5 does not divide h+462.

7-part Consider the degree 7 extension Q(ζ462)
+/K12. There are no subfields for this

extension. The class number of K12 is one. The order of 7 modulo 5 is 4. Since we have a

class number upper bound of 10 for Q(ζ462)
+, 7 does not divide h+462 by the Rank Theorem.

So, by applying the class number upper bound of 10 and employing the aforementioned

divisibility arguments, we conclude that h+462 = 1.

6.2.7 The Proof of h+308 = 1

Consider Q(ζ308) of degree 120. We compute the class number h+308 of its maximal real

subfield Q(ζ308)
+. The norm relation of Q(ζ308)

+ involves a degree 30 subfield with cyclic

Galois group. The Minkowski bound for this degree 30 subfield is around 1016. So, the

unconditional certification approach of [20] is not applicable for h+308 computation. By using

Algorithm 10, we can get 3587 primes that split completely into principal ideals in Q(ζ308)
+.
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So, we have an upper bound of 12 for h+308. Then we use the following divisibility arguments

to get an exact class number.

2-part The degree 30 field Q(ζ77)
+ is a subfield of Q(ζ308)

+. The prime integer 2 is inert

in Q(ζ77)
+ and the prime ideal (2) is the only prime that ramifies in degree 2 extension

Q(ζ308)
+/Q(ζ77)

+. The class number of Q(ζ77)
+ is one. So, the Pushing Down Theorem

shows that h+308 is odd.

3-part There is only one degree 12 subfield for Q(ζ308)
+. Let’s denote it by K12. Consider

the degree 5 cyclic extension Q(ζ308)
+/K12. There are no subfields for this extension. By

using the PARI/GP function we can get the conditional class number of K12 as one. The

PARI/GP unconditional certification took just a few seconds. The order 3 modulo 5 is 4.

So, if 3 divides h+308 then by Rank Theorem 34 divides h+308. Since we have the class number

upper bound of 12 for Q(ζ308)
+, 3 does not divide h+308.

5-part There is only one degree 20 subfield for Q(ζ308)
+. Let’s denote it by K20. By

using the PARI/GP [80], we find that the class number of K20 is 1 unconditionally. The order

of 5 modulo 3 is 2. Consider the degree 3 extension Q(ζ308)
+/K20. There are no subfields

for this extension. If 5 divides h+308, by using the Rank Theorem to the degree 3 extension

Q(ζ308)
+/K20, we obtain that 25 divides h+308. Since we have the class number upper bound

of 12 for Q(ζ308)
+, 5 does not divide h+308.

7-part Consider the degree 5 extension Q(ζ308)
+/K12 as we used for p = 3. The order

of 7 modulo 5 is 4. So, by using the Rank Theorem we find that 7 does not divide h+308.

11-part Consider the degree 3 extension Q(ζ308)
+/K20 as we used for p = 5. The order

of 11 modulo 3 is 2. So, by using the Rank Theorem we obtain that 11 does not divide h+308.

Hence, by applying the class number upper bound of 12 and employing the aforemen-

tioned divisibility arguments, we conclude that h+308 = 1.
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CHAPTER 7

FUTURE WORKS

Our modified version of Hafner and McCurley algorithm introduced in Chapter 4 im-

proves the asymptotic time complexity of class group computation of imaginary quadratic

fields. The key component of our new approach is the improvement in the creation of the

lattice of relations whose determinant is class number h. In 1990, Buchmann [23] generalized

the Hafner and McCurley algorithm for class group computation of number fields of higher

degree. Buchmann’s algorithm computes the class group of infinite classes of number fields

of fixed degree. Since the unit group is non-trivial in general number fields, Buchmann’s

method has to create a lattice L, whose determinant is hR, where R is the regulator of the

number field. It will be interesting to investigate our new approach for relation collection as

introduced in Chapter 4 can be applied to creating the lattice L and consequently improve

the asymptotic run time of Buchmann’s class group algorithm.

The existence of norm relation for a number field K with Galois group G implies the

following equality of zeta functions [20, Prop. 3.8]:

ζK(s)
a1 =

∏
1 ̸=H≤G

ζKH (s)aH (7.1)

where aH ∈ Z and a1 > 0. Equation (7.1) motivates us to investigate whether the class

number upper bound for h+ can be deduced from the class number upper bounds of the

subfields involved in norm relation. Finding the class number upper bound for subfields of

Q(ζm)
+ is comparatively easy because of its small degree and it may help us to find h+ for

cyclotomic fields of higher degree.
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