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ABSTRACT 

To keep up with the ever-growing demand for reliable and efficient availability of data, 

locally recoverable codes (LRCs) have been the focus of much study due to their applications 

in cloud and distributed storage systems. A fundamental construction of LRCs was given in 

[36] based on polynomials which relied on the existence of r-good polynomials. In the same 

paper some constructions of good polynomials were given, but these constructions did not 

cover every configuration of parameters. Naturally this led to research into constructing good 

polynomials for what was not addressed in [36], but new ponderings were also posed, such as 

the following: for a locally recoverable code with fixed parameters, are some good polynomials 

better than others? In [29], Micheli approached this topic using machinery from Galois theory 

and defined more generally (r , £)-good polynomials and showed that maximizing .e (for a 

given locality r) yields a code with higher dimension. In this dissertation, we determine the 

optimum value of .e for any (r, £)-good polynomials of degree up to 5. We then provide an 

explicit construction of a newer class of LRCs called hierarchical locally recoverable codes 

(HLRCs) and prove that our construction yields codes with higher dimension than existing 

literature in some regimes of parameters. This dissertation is intended to be self-contained. 

As a result, the first few chapters address the fundamental background in coding theory, 

algebraic number theory, etc., needed to understand the aforementioned results. 
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CHAPTER 1: 

INTRODUCTION 

1.1 History of Coding Theory 

As technology continues to rapidly develop, the idea of being "connected" has become 

somewhat commonplace nowadays. The average person can access data in a multitude of 

ways, from making a call or sending a text, to watching a movie, to accessing a file from 

a cloud storage system. In each of these situations, the reliability of the content being 

transmitted is of vital import. Discrepancies (typically erasures or errors) can occur in data 

transmission for various reasons, such as physical interference, environmental factors, or 

equipment malfunctions, to name a few. Also, bits or entire packets of the transmitted data 

can be affected, though this dissertation will be concerned only with the effect of noise on the 

bits of the data. Increasing the integrity of received data by accounting for and correcting 

errors due to noise is the primary goal of coding theory. 

Suppose data is transmitted from a sender to a recipient over a noisy channel. The 

fundamental problem is as follows: 

Problem 1.1. How can we efficiently increase the integrity of the data obtained by the 

recipient? 

Since this statement is rather vague, we will begin by discussing a couple simple potential 

solutions and the obstacles they face before addressing the more intricate methods which are 

the topic of this dissertation. 

The approach which is perhaps the most obviously impractical is to request re-transmission 

of the data from the sender. Not only can re-transmission be costly and time-consuming, 
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but there are many cases where the sender no longer has access to the data, temporarily or 

even permanently. For example, a server might be down due to a power outage, or the data 

may have been stored in a data center that experienced a fire. To combat this, a way of 

correcting errors in the data ( up to a certain extent) is incorporated along with the data so 

that the error correction, if it is possible, depends only on the data obtained by the recipient. 

This method is called forward error correction. 

A trivial but classical example of forward error correction is to simply repeat the bits 

within the data. As an example, if the sender wishes to transmit the string 1010 then they 

could send the string 111000111000. As such, if an error occurs during transmission and 

the recipient obtains 011000111000, they can be reasonably confident that the first symbol 

is an error and hence that the data was 1010. However, this comes at the cost of sending 

three times as much as data, so for practical applications this method requires far too much 

overhead. Furthermore, one is only guaranteed to be able to recover the data in the presence 

of a single error. If again the string 111000111000 is sent and there are two errors in what is 

received, it may or may not be possible to recover the data. This can be seen from the strings 

011000111001 (for which it is possible) and 001000111000 (for which it is not possible). 

To summarize, we seek a way to transmit data of an arbitrary size in such a way that 

the recipient of the transmission is able to correct a maximal number of erasures or errors 

as efficiently as possible, i.e., with as little overhead as possible. To this end, modern coding 

theory has focused on error-correcting codes. Error-correcting codes as a whole aim to 

address the discrepancies, or the errors, which result from the transmission of data over a 

channel by encoding the original data in a way which allows the user to successfully recover 

the data in the presence of errors. 

There are many classes of error-correcting codes, and we will discuss a few particularly 

relevant ones in Chapter 2. 
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1.2 Subject of Dissertation 

This dissertation is organized as follows. The current chapter serves as an overview of 

the subject area and provides some motivation into its practical applications. Chapters 2 

and 3 provide the necessary background in coding theory for the techniques and results in 

each of Chapter 5 and Chapter 6 but is not otherwise necessary. In a similar manner Chap­

ter 4 provides the necessary background in algebraic number theory for the techniques and 

results in Chapters 5 and 6 and, in particular, provides greater detail about the Chebotarev 

Density Theorem which is employed in those following chapters. Finally, the main results 

of the dissertation are contained in the last two chapters. In Chapter 5 we classify all good 

polynomials of degree up to 5 and, in turn, provide an explicit estimate on the maximal 

length and dimension of a Tamo-Barg code (see [36]). The last chapter, Chapter 6, gener­

alizes the ideas of [36] via nested polynomials to allow for one to simultaneously obtain the 

efficiency in decoding granted by locality in the case of a single erasure and in the case of 

multiple erasures. 

Note that each chapter in this dissertation is intended to be readable on its own, so any 

necessary notation will be restated at the beginning of each chapter. 

For the reader's convenience, in this section we collect any notation which is used through­

out the entire thesis. 

• The cardinality of the set S will be denoted ISi. 

• The union of two disjoint sets A and B is denoted A LJ B. 

• lF q denotes the finite field with q elements. 

• Given a function f: D-+ Rand some A~ D, the restriction off to A will be denoted 

by !IA• 

3 



CHAPTER 2: 

CODING THEORY AND CODES 

2.1 Preliminaries 

Modern coding theory has been heavily interested in the theory of error-correcting codes. 

For the sake of being self-contained, we dedicate this chapter to addressing any necessary 

technical background needed to understand the techniques and results in Chapters 5 and 

6. The experienced reader may skip this chapter as there are no original results contained 

within. 

A code of length n over the alphabet IF q is a set C of elements of IF;, and an element c E C 

is called a codeword of C. The (Hamming) weight w(c) of the codeword c EC is the number 

of nonzero entries inc, and the hamming distance d(c1 , c2 ) between two codewords c1 , c2 EC 

is the number of distinct components between them; equivalently, d(c1 , c2 ) = w(c1 - c2 ) . If 

the minimum distance between distinct codewords of C is d, we say that C has distance d. A 

code C is said to be linear if every linear combination of codewords in C is also a codeword 

in C, that is, if every c1 , c2 E C and a, /3 E IFq satisfy ac1 + f3c2 EC. One can easily check 

that a linear code forms a vector subspace of IF; ( and hence a vector space over IF q) , and 

we say that C has dimension k if dimlF'q C = k. If C is a code over IFq of length n which 

has minimum distance d, then we call C an ( n, d)q code ( or an ( n , d) code if the choice of 

alphabet is clear). If C is further known to be linear ( of dimension, say, k), then we will 

instead call Can [n, k, d]q code (or an [n, k, d] code if, again, the choice of alphabet is clear) . 
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2.2 Some Bounds on Codes 

In general, we want to maximize k and d while minimizing n. Codes with larger dimen­

sions are able to encode more information, and codes with larger distances permit increased 

error-correction. On the other hand, shorter codes require less storage overhead. From 

this perspective, a vital concern in practical applications is how to optimize each of the pa­

rameters simultaneously. One class of codes which accomplishes this is maximum distance 

separable (MDS) codes. Before we can formally define this class of codes, we will first state 

and prove a fundamental theorem known as the Singleton bound. 

Theorem 2.1 (Singleton bound, [25, Theorem 5.2.1]). For any positive integers n, d, q with 

q 2 2, an (n , d)q code C satisfies 

Proof. Let C' = {(c1 , c2 , ... , Cn-(d-I)) : (c1 , c2 , ... , en) EC} be the (punctured) code obtained 

by deleting the last d - l components of each codeword in C. The length of C' is clearly 

n - ( d - l) = n - d + l. Since the minimum distance of C is d, no two distinct codewords in 

C can agree on all of the first n - d + l coordinates, so we see that IC'I = ICI. We conclude 

that ICI ~ IJF;-d+l I = qn-d+l. □ 

If C is known further to be linear of dimension k, then ICI = qk, yielding the following 

corollary: 

Corollary 2.2 ([25, Corollary 5.2.2]). If C is an [n, k , d]q code, then 

k~n-d+l. 

A (linear) [n , k, d]q code C is called a maximum distance separable (MDS) code if its 

parameters satisfy the Singleton bound, that is, if k = n - d + l. 
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We next state and prove the Hamming bound, which is commonly called the sphere­

packing bound. The aptness of this name becomes clear after considering the hound's proof 

along with the following definition. 

For x E JF;, let B(x,r) ~ JF; be the ball of radius r centered at x, i.e., B(x,r) = {y E 

JF; : d(x, y) :::; r }. Observe immediately that 

r 

IB(x, r)I = Ll{Y E lF;: d(x, y) = i}I 
i=O 

Theorem 2.3 (Hamming bound, [25, Theorem 5.2.7]). For any positive integers n, d, q with 

q 2: 2 and e = l d;l J, an (n, d)q code C satisfies 

Proof. Since the distance of C is d, one can easily see by the triangle inequality that the balls 

B(c1 , e) and B(c2 , e) are disjoint for any two distinct codewords c1 , c2 EC. Thus 

cEC 

The bound now follows. □ 

Our last upper bound on the size of C is known as the Plotkin bound. It was initially 

proved for binary codes, but the proof we present works for any q. 
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Theorem 2.4 (Plotkin bound, [25, Theorem 5.2.4]). For any positive integers n, d , q with 

q 2: 2 and 0 = ( 1 - ¼), if C is an ( n, d)q code satisfying d > 0n, then 

d 
ICI ~ d- 0n 

Proof. Write ICI = M. Since the distance of C is d, we have L x cfayEC d(x , y) 2: M(M - l)d. 

On the other hand, for 1 ~ i ~ n and O ~ j ~ q - l define m i,j to be the number of 

codewords in C whose ith component is j. Then we have 

where the last equality follows from the fact that "2:,J:;~ mi,j = M for any i. Further, for any 

fixed i, Cauchy-Schwarz gives us 

q-1 (q-1 ) 2 
M 2 - ~ m~. < M 2 - ~ ~ m· · = M 20. 
~ i,J - q ~ i ,J 
j=O j=O 

Hence 
n 

L d(x , y) ~ L0M2 = n0M2 • 

xcfayEC i=l 

Combining this with the first inequality yields 

M(M - l)d ~ n0M2 . 

The bound now follows. □ 

The next bound is quite similar in appearance to the Hamming bound, but this one 

provides a lower bound for the size of a maximal (n , d)q code C. We note that C is a 

maximal (n, d)q code if for any (n, d)q code C' we have ICI 2: IC'I• 
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Theorem 2.5 (Gilbert-Varshamov bound, [25, Theorem 5.1.7]). For any positive integers 

n, d, q with q 2 2 and d ::; n, if C is a maximal ( n , d)q code C then 

Proof. If C is maximal, then there is no element x E JF; \ C such that d(x, c) 2: r for all c EC 

since otherwise the code C' =CU {x} is an (n,r)q code with IC'I > ICI, which contradicts 

the maximality of C. Thus 

cEC 

The bound now follows. D 

We note that the bounds given in this section (besides that of Corollary 2.2) apply to 

arbitrary codes. In this dissertation, however, we will be concerned solely with linear codes. 

As such, we now turn our focus to linear codes in particular. Moreover, from this point 

onward (unless otherwise specified) when we say that C is a code, we mean that C is a linear 

code. If C is a linear code over lFq with length n and dimension k, we will briefly write that 

C is an [n, k]q code. If the distance of C is known to be d, then we may write that C is an 

[n, k, d]q code instead. 
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2.3 Linear Algebra 

Since a linear code C forms a vector space over IF q, linear algebra becomes an invaluable 

tool in the study of these codes. We will identify the codeword c E C with the row vector 

[ c1 c2 • • • en], where ci E IF q are the components of the codeword c and n is the code length. 

If the codeword in question is already denoted by ci, then we will enumerate its components 

as ci(l), Ci(2), ... , ci(n) to prevent any overlapping of notation. 

Suppose C is an [n, k, d]q code. Then one can select k linearly independent codewords 

c1, c2, ... , ck EC~ IF~ which span C. (In other words, the ci form a basis for C.) With these, 

we define the k x n matrix G to be the matrix whose ith row is the codeword ci. This allows 

us to express any codeword x E C as 

=x*G, 

G 

where the element x* = [x! x; x%] E IF: is seen to be unique by comparing the 

dimensions of C and IF!. The matrix G defined above is called a generator matrix for the 

code C, and we say that G is in standard form if G = [h I G'], where h is the k x k 

identity matrix and G' is a kx (n-k) matrix over IFq. Two codes C and C' are called equivalent 

if there is a monomial matrix T such that T : C --+ C' is a vector space isomorphism. For an 

arbitrary linear code there may be no generator matrix in standard form, but it is well-known 

that every linear code is equivalent to a code with a generator matrix in standard form. 

We will not provide an explicit formula for the map Dec(·) : C --+ IF! given by x f---+ x* 

(though such a formula can be obtained using one of various elementary techniques, such 

as Gaussian elimination). Nevertheless, since G has full rank, this map is a bijection, and 
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we define Enc to be the inverse map to Dec. Observe immediately that Enc(x) = xG. We 

encode a message vector x E JF! by computing Enc(x), and, similarly, we decode a codeword 

c EC by computing Dec(c). 

Now, given an [n, k]q code C, the dual code c..1 to C is defined as the set of x E JF; 

satisfying xyT = 0 for every y E C. The dual code is easily seen to be an [n, n - k]q code, 

and a generator matrix for c..1 is called a parity-check matrix for C. 

Example 2.6. Let C be the (5, 4, d)2 code obtained by the generator matrix 

1 0 0 0 1 

0 1 0 0 1 
G= 

0 0 1 0 1 

0 0 0 1 1 

For x = [x1 x2 x3 x4] E lF~ we have 

so we see that 

Further, C is easily seen to have minimum distanced= 2. 

In the next chapter, we discuss some of the fundamental notions and results pertaining 

to a class of codes known as locally recoverable codes. Such codes are a primary focus of 

applications of the original theoretical results written in this dissertation. 
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CHAPTER 3: 

LOCALLY RECOVERABLE CODES 

3.1 Introduction 

In this chapter we will restrict our attention to codes with locality, so we begin with 

the basic definitions. A (linear) [n, k, d] code C is said to have locality parameter r if every 

codeword c E C is such that each component of c can be recovered by accessing at most r 

other components of c. More formally, C has locality r if for every c E C and 1 ::;; i ::;; n there 

is a set Ai of indices such that i E Ai and the component ci is a function of the components 

Cj for j E Ai \ { i}. Note that the set Ai depends only on the index i and not on the choice of 

codeword. We refer to the set Ai as a locality set for the component in position i ( or simply 

for position i) . 

We define and provide a construction of a class of codes having multiple localities in 

Chapter 6. In a practical application, it is far more likely that a single erasure will occur in 

a codeword than that two or more erasures will occur, and this is particularly what locally 

recoverable codes help to address. However, locally recoverable codes do not necessarily 

provide an advantage in the case of multiple erasures. It may be the case in a specific 

application that having exactly one erasure is the most likely scenario but that having 

exactly two erasures is common enough for one to desire a code which allows for efficient 

repairing in both cases. This is the typical scenario the construction in Chapter 6 aims to 

address. 

In this chapter we will only discuss locally recoverable codes with a single locality pa­

rameter, and we will write that a code C is an [n, k, d, r] code to mean that C is an [n, k, d] 
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code with locality r . Our first goal is to define optimal LRCs, which are locally recoverable 

codes whose parameters satisfy with equality a particular bound similar in nature to that of 

the Singleton bound. 

3.2 Singleton-like Bound 

Recall the Singleton bound for linear codes, which states that the parameters of an [n, k, d] 

code C satisfy d ~ n - k + l. We state and prove the following bound, which is commonly 

called the Singleton-like bound. 

Theorem 3.1 (Singleton-like bound). Let C be an [n, k, d, r] LRC. Then 

lk - lj k - 1 + -r- ~ n - d. 

To prove the above theorem, we first state the following well-known lemma, and we 

include a proof for completeness. We note that the first proof of Theorem 3.1 is due to 

Gopalan et al. in [19]. In what follows we write Mmxn(q) to denote the set of all matrices 

of dimension m x n defined over lF q. 

Lemma 3.2 ([13, Proposition 2.1]). Let C be an [n, k , d]q code with generator matrix g E 

Mkxn(q) and let SE Mkxt(q) be a submatrix of Q. If rank(S) ~ k - 1 then t ~ n - d. 

Proof. Let S = [S1, .. . , St], where Si is a column of g for i E {1, ... , t}. Define S: lF: -+ lF~ 

such that x H S(x) = xS = [xS1, ... , xSt]. Since rank(S) ~ k - 1 and we can write 

S(x) = x1R1 + ... xkRk, where Ri are the rows of S, there exists x' E lF: such that S(x') = 0. 

Assuming without loss of generality that S consists of the first t columns of g, there exists 

a codeword c = [S(x') , Yt+I, ... , Yn] whose weight equals n - t. Hence d ~ n - t. □ 

We now prove Theorem 3.1 and note that our proof differs from other proofs in the 

literature in that it does not make formal use of an algorithm. 
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Proof. We know that every set of r + 1 columns has rank r by the locality condition. This 

means that we can choose a set S of l k;l J (r + 1) + {r;1} r columns in such a way that 

rank( S) ::; k - 1 (here { x} = x - l x J). Thus, by applying Lemma 3.2, we have the following: 

( l
k - lj { k - 1 }) lk - lj lk - lj -r- + -r- r + -r- = k - 1 + -r- ::; n - d. □ 

We also present the following convenient reformulation of the Singleton-like bound which 

is often used in the literature. 

Corollary 3.3. The parameters of an [n, k, d, r] locally recoverable code C satisfy 

(3.1) 

The obvious question is whether codes exist (for all, or for almost all, values of r) which 

satisfy the bound in Corollary 3.3 with equality. Some ad hoc constructions were provided 

in [34, 38], for example, but these constructions have the problem that the alphabet size grows 

exponentially in the length of the code, making these codes impractical for most applications. 

On top of that , these examples are only defined for a few choices of the parameters, most 

notably the cases r = 1 and r = k. In the next section, we will explore the first general 

construction that does not have these shortcomings. 

3.3 Tamo-Barg Construction 

Recall that a locally recoverable code C with parameters n, k, r, d is called optimal if 

the parameters satisfy the bound in Corollary 3.3 with equality. In 2014, ltzhak Tamo and 

Alexander Barg constructed a large family of optimal locally recoverable codes with locality 

r in [36], and we present this construction here. For simplicity we will assume r I k and 

(r + 1) I n, but in Section 3.4 we present modified constructions which do not require these 

conditions. A fundamental part of all the constructions is the existence of a polynomial 

g(x) E IF q[x] satisfying the following conditions: 
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• The degree of g is r + l, and 

• There exists a set A ~ IF q of size n and a partition A. = { A 1, .. . , A r~i } of A into sets, 

each of sizer+ l, such that g is constant on each set Ai in the partition. 

We call a polynomial g satisfying the two conditions above a good polynomial. Such a 

polynomial can be used to construct a locally recoverable code as follows. 

Construction 3.4. /36, Construction 1 J Let n ~ q be the desired code length. Let A = 

{ a1, ... , an} ~ IF q, and let g(x) be a good polynomial for the partition A. of the set A. To 

obtain the codeword for the message vector m E IF~, first write m = ( mi,j), where O ~ i ~ r- l 

and 0 ~ j ~ ~ - 1. Define the encoding polynomial associated to m by 

Now, the codeword Enc(m) form is exactly the evaluation vector of fm at all the points of 

A. In other words, the [n, k, r] locally recoverable code C is defined to be the set of vectors 

The elements of the set A are called locations, and the fm(a1), ... , fm(an) are the symbols of 

the codeword. 

In short, a message vector m E IF~ is encoded by first associating m with the encod­

ing polynomial fm- One then evaluates fm at each location in A to obtain the codeword 

Note that when r = k, the Tamo-Barg construction becomes that of the well-known 

Reed-Solomon error correction codes. 

We now describe the recovery process: given the codeword c EC, assume that the erasure 

occurs at location i E A1, where A1 is a set in the partition A. as described above. To recover 
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the symbol q, we determine the (unique) polynomial L(x) E lFq[x] of degree less than r that 

satisfies L(ja) = Cja for all Ja E A3 \ {i}. This can be done in a simple and straightforward 

manner using Lagrange interpolation; that is, 

L(x) = ( 
X - j' ) L Cjc, IT . - ~ . 

• A \ {"} ., A \{" • } Ja Ja Ja E 1 i JaE 1 i,Ja 

We then set ci = L( i). 

To see that this correctly recovers the symbol ci, observe in particular that since g(x) is 

constant on A3, observe that for any Ja E A3 \ {i} we have 

Thus the r known symbols in the recovery set Aj \ { i} can be used to recover the symbol ci. 

Example 3.5. We will use Construction 3.4 to construct a [10, 8, 4, 2] LRC over lF 11 . First , 

note that the polynomial g(x) = x5 is constant on each of the sets A1 = {1 , 3, 4, 5, 9} 

and A2 = {2, 6, 7, 8, 10}, and these sets clearly partition A = A1 LJ A2 . Suppose we wish 

to encode the message vector m = (m0,0 ,m0,1,m0,2 ,m0,3 ,m1,0,m1,1 , m 1,2 ,m1,3 ) E 1Fi1 . The 

encoding polynomial for m is defined to be 

which, for g(x) = x5 , simplifies to 

f ( ) 5 6 10 11 15 16 
m x = mo,o + m1,0X + mo,1X + m1,1X + mo,2X + m1,2X + mo,3X + m1,3X . 
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Then the codeword c = Enc(m) is obtained by evaluating fm(x) at each of the elements in 

A1 and A2 , respectively. That is, 

Suppose now that m = (1, 1, 0, 0, 1, 0, 1, 0). Then fm = 1 + x + x5 + x11 , so we compute 

c = (4, 8, 10, 1, 9, 4, 1, 3, 5, 9). To demonstrate the recovery process, let us assume that the 

symbol fm(2) = 4 is erased. Since 2 E A2, we will use the set A2 \ {2} and the corresponding 

values of fm to compute L(x) . Explicitly, we have 

x-j~ 
L(x) = L ci"' IT . ., 

jaEA2\{2} j~EA2\{2,j a } Jo. - Jo. 

(x - 7)(x - 8)(x - 10) (x - 6)(x - 8)(x - 10) 
= (6 - 7)(6 - 8)(6 - 10) + 3 (7 - 6)(7 - 8)(7 - 10) 

(x - 6)(x - 7)(x - 10) (x - 6)(x - 7)(x - 8) 
+ 5 (8 - 6)(8 - 7)(8 - 10) + 9 (10 - 6)(10 - 7)(10 - 8) 

= 4(x - 7)(x - 8)(x - 10) + (x - 6)(x - 8)(x - 10) 

+ 7(x - 6)(x - 7)(x - 10) + lO(x - 6)(x - 7)(x - 8). 

Finally, we compute L(2) = 4 = fm(2), so we have recovered the erased symbol. 

Now, since the encoding in Construction 3.4 is linear, a lower bound for the distance of 

the resulting code is given by 

d 2: n - max{ deg(f m)}. 
mEIF~ 

0 bserve that for any m E lF~ we have 
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and hence 
k 

d > n-k- -+2. - r 

With the Singleton-like bound given in Corollary 3.3, the above shows that these codes are 

optimal locally recoverable codes. We state this formally in the following theorem. 

Theorem 3.6. {36, Theorem 3.1} The Tama-Barg codes obtained from Construction 3.4 are 

optimal locally recoverable codes, i.e. , satisfy the Singleton-like bound in Corollary 3.3 with 

equality. 

We note that the Tamo-Barg construction yields optimal LRCs which are not subject 

to the same restrictions as previously known locally recoverable codes. In particular, the 

alphabet size is no longer exponential in the code length, and such a construction can be 

defined for a large selection of parameters (which satisfy the stated divisibility requirements) 

so long as one can find a good polynomial g(x). We show how to remove the aforementioned 

divisibility requirements in Section 3.4, and we completely classify good polynomials up to 

degree 5 (over an arbitrary finite field) in Chapter 5. 

The construction of the Tamo-Barg codes naturally leads to the following questions: 

1. Are there simple ways of obtaining many good polynomials, in particular for different 

parameters? 

2. Is it possible to classify all good polynomials of arbitrary degree over JF q for a fixed 

prime power q? 

We now present some constructions of good polynomials from the literature. These 

constructions depend on the desired locality of the code ( and hence on the degree of the 

good polynomial) as well as on the characteristic and size of the field 1Fq. As such, for 

what follows let q = p8 be the size of the underlying field and write r + 1 = m • pt, where 

gcd(m,p) = 1 and t is a nonnegative integer. (Recall that Construction 3.4 uses a good 

polynomial of degree r + 1 to construct a code with locality r.) 
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1. If g( x) is a good polynomial, then ,\g( x) + a: is clearly a good polynomial for any ,\ E JF; 

and a E lFq. 

2. If t = 0, i.e., if gcd(r + l,p) = 1, then the power function 

is a good polynomial. This follows from the multiplicative structure in JF; , as P( x) is 

constant on the multiplicative cosets of { x E JF; : P(x) = 1 }. (See [36, Proposition 

3.2].) 

3. If t > 0 and m = 1, then for ai E lFq satisfying a0 , at =/- 0, the linear function 

t 

C(x) = LaixPi 
i=O 

is a good polynomial so long as £(x) splits over lFq. This follows from the additive 

structure in lFq, as £(x) is constant on the additive cosets of {x E lFq : £(x) = 0}. (See 

[36, Proposition 3.2].) 

4. If t > 0, m > l, and p8 l (mod m), then fore I t such that pe l (mod m) and 

ai E lF q satisfying I::!~o ai = 0 and ao, at/e =/- 0, the function 

t/e 
is a good polynomial so long as L aixPei splits over lFq. This follows jointly from 

i=O 

the multiplicative and additive structures in the previous two examples, as F(x) is 

constant on the additive cosets of {x E lFq: F(x) = 0} . (See [36, Theorem 3.3].) 
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5. If t > 0, q = p8 - l (mod m), t I s, and s > t(m - 1), then the function 

t t l 1(x) =xP -a,P- X 

is a good polynomial for any a E IF;. (See [26, Corollary 26].) 

Remark 3.7. One of the functions P(x) or 1(x) above yields a good polynomial for any 

choice of locality r. If pf ( r + l), then P( x) can be used to construct an optimal LRC over IF q 

with locality r. On the other hand, if p I (r + 1) , then one can instead use 1(x) to construct 

an optimal LRC over IFq . In other words, there is a known good polynomial for any choice 

of locality r. 

As mentioned above, as an original part of this dissertation, we give a complete classifi­

cation of all good polynomials up to degree 5 in Chapter 5. 

3.4 Modified Constructions 

3.4.1 Optimal LRCs Without r I k 

Recall that Construction 3.4 as stated requires that r I k and (r + 1) I n. In this 

section, we present some modifications which allow for the removal of these constraints. The 

constructions in this section were originally detailed in [36], but we adapt the notation to 

our setting. 

The assumption r I k can be removed without any effect on the optimality of the code. 

This construction is very similar to that of Construction 3.4; the difference between the two 

can be seen in the way the encoding polynomial f m ( x) is defined. Recall that in Construc­

tion 3.4 we have 
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If r f k the internal sum is clearly no longer defined, so for this case the authors of [36] 

redefine f m ( x) by 

h (k .) { l~J w ere s , r, i = 
l~J - 1 

if i < k 

if i ~ k 

(mod r), 

(mod r). 

The dimension of the resulting code is seen to be k by a nearly identical argument as 

for Construction 3.4. The maximum possible degree of fm(x) with this definition is attained 

when k - r - l ( mod r), and the particular term from the sum which attains this degree 

corresponds to i = r - 2 < k (mod r) and j = s(k, r, i) = l~J. Observe that the degree of 

this term is exactly 

lt j (r + 1) + (r - 2) = k - r + l + lt j + r - 2 

= k + 1tl -2' 

and this agrees with the maximum degree of f m ( x) in the original definition given in Con­

struction 3.4. Thus Construction 3.4 can easily be adjusted to yield an optimal LRC in the 

case r f k without any effect on the optimality of the code. 

3.4.2 Almost Optimal LRCs Without (r + 1) In 

In the previous subsection we saw that the condition r I k was not necessary for Con­

struction 3.4 to produce an optimal LRC. This is not exactly the case for the condition 

( r + l) I n. Before we address the issue of optimality, we first present the construction. 

Construction 3.8. /36, Construction 5, Construction 6/ Let A ~ lFq be a subset such that 

IAI = n and write n (mod r + l) = s =I= 0, 1. Let N = I r~l l and assume that (r + l) I k 

(this assumption is not necessary but allows for simpler notation). Let A= {A1, ... , AN} 

be a partition of A such that IAil = r + l for 1 :::; i:::; N - l and IANI = s < r + l, and let 
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g( x) be a polynomial which is constant on each Ai. Assume without loss of generality that g 

vanishes on AN (since otherwise we can use g'(x) = g(x) - g(AN)). To obtain the codeword 

for the message vector m E F!, first write m = ( mi,j), where O ::; i ::; r - 1 and the bounds 

for j are as follows: for i =/=- s - l we have O ::; j ::; kt1 - 1 and for i = s - l we have 

1 ::; j ::; ktl - 1. Define the encoding polynomial associated to m by 

where h(x) = IL,EAN(x-a) E Fq[x] is the annihilator of the set AN, As in Construction 3.4, 

the [n, k, r] locally recoverable code C is now defined to be the set of vectors 

In this case it is not as obvious that the dimension is k, so we begin by showing that 

if di ,j is the degree of the polynomial obtained from the pair (i,j), then di,j = di',j' implies 

(i,j) = (i',j'). For O ::; i ::; s - 2 we have di ,j = j • deg(g) + i = j(r + 1) + i, so di,j 

(mod (r + 1)) = i::; s - l. For i = s - l we have ds-I ,j = j(r + 1) + s - l, so ds-I,j - s - l 

( mod ( r + l)). Finally, for s ::; i ::; r - l we have di ,j = deg( h) + j ( r + l) + i - s = j ( r + l) + i, 

so once again we have di,j i (mod (r + 1)). Now, if di,j = di',j' then di,j (mod (r + 1)) = 

i = i' = di',j' so that i = i'. From this it follows that j(r + 1) = j'(r + 1) so that j = j' and 

hence ( i , j) = ( i' , j') . Since these polynomials are all of distinct degrees, we have 

d1mJF C = ( s - l )-- + -- - 1 + (r - 1 - s + l )--
. k + l (k + 1 ) k + l 

q r r r 

k+l 
=r-- -1 

r 

=k. 
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Next we consider the maximum possible degree of fm(x). Clearly deg(fm) :S: max(i,j){di,j}­

Further, in the above we saw that di ,j = j(r+l)+i for any pair (i,j), so we have the following: 

deg(f m) :S: max{j(r + 1) + i} 
( i,j) 

( k+ 1 ) = -r- - 1 (r + 1) + (r - 1) 

k+l 
=k+---l 

r 

=k+f~l-1. 

Combining the above with Equation 3.2 yields the following theorem: 

Theorem 3.9. /36, Theorem 5.2/ The code obtained in Construction 3.8 is an [n, k , r] LRC 

whose minimum distance satisfies 

We note that the recovery process is still quite similar to that of Construction 3.4. Since 

g(x) is constant on Ai for each i , the degree of the restriction fmlAi of fm to the set Ai for 

0 :S: i :S: N - l satisfies 

deg (fmlAJ) = max{s - 2, s - l, r - 1} = r - 1, 

so recovery can be done exactly as in Construction 3.4. For i = N, however, only the first 

of the three summations in fm is not identically 0, so 

If the symbol f m (/3) is erased for some /3 E AN, then we need to interpolate a polynomial of 

degree at mosts - 2 on the set AN\ {/3}, which consists of IANI -1 = s - l locations. Thus 

recovery is possible in this case as well since g(x) is constant on AN, 
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Finally, notice that the bound in Theorem 3.9 does not match the bound given in Corol­

lary 3.3, i.e., the codes obtained from Construction 3.8 are not optimal LRCs. However, the 

distance of these codes differs from being optimal by at most 1, so they are often referred 

to as being almost optimal LRCs. Moreover, it was shown in [21 , Corollary 10] that no 

[n, k, r] LRC satisfies the Singleton-like bound with equality when 2 < d < r + 3 and r I k. 

Equivalently, there are no ( n , k, r) LRCs with r I k and d = n - k - ~ + 2 which satisfy 

~ < r~l < ~ + 1. This is not restrictive when (r + 1) I n since these inequalities clearly 

cannot both be satisfied. So we conclude that any [n, k, r] LRC satisfying r I k, (r + 1) f n , 

and k < +nl < Is.+ 1 is subJ·ect to d < n - k - Is.+ 2, i.e. , d < n - k - Is.+ 1. Thus the r r r r - r 

codes obtained from Construction 3.8 are optimal in some sense for at least one regime of 

parameters n, k, r. 

We end this chapter by recalling that each of the aforementioned constructions relies 

entirely on the existence of a good polynomial of degree r + 1. For any choice of locality r we 

have explicitly provided a good polynomial which allows for the construction of an [n, k, r] 

LRC over some field lF q with q 2:: n , and we detailed multiple constructions in which the 

corresponding LRCs are proved to be optimal (or at least almost optimal when (r + 1) f n). 

We next cover the background in algebraic number theory which is needed for the optimal 

selection results in Chapter 5 and the existential results in Chapter 6. 
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CHAPTER 4: 

ALGEBRAIC NUMBER THEORY AND CHEBOTAREV DENSITY 

THEOREM 

4.1 Preliminaries 

For the sake of being self-contained, in this section we define the terms we will use most 

often in the rest of this dissertation. The field-theoretical definitions in Subsection 4.1.1 can 

be found in any graduate-level textbook on abstract algebra (see [22), for example). The 

notions in Subsection 4.2 closely follow the notation and terminology in [35]. 

4.1.1 Field Theory 

For q a power of a prime, let lF q be the finite field with q elements and let JF; = lF q \ { 0} 

be its multiplicative subgroup. It is known that this subgroup is cyclic, that is, generated 

by a single element for any q. 

For a field K, we will write K[X] to denote the polynomial ring in the indeterminate X 

over K. 

Recall that if K ~ F is a field extension, then F forms a vector space over K. If 

dimK F < oo, then the degree [F: K] of the extension is defined to be [F : K] = dimK F. 

Definition 4.1. Given an extension of fields K ~ F, the group of all automorphisms of F / K 

is denoted by Aut(F/K). When IAut(F/K)I = [F : K] < oo, we say that the extension 

F / K is Galois with Galois group Gal(F / K) = Aut(F / K). 
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Definition 4.2. For a polynomial f E K[X] of positive degree, an extension F 2 K 

is said to be the splitting field of f over K if f splits into linear factors in F[X] and 

F = K(x 1 , x2, ... , Xn), where the Xi are the roots off in F. 

Definition 4.3. Given a field K and a polynomial f E K[X], we define the Galois group 

Gal(J(X) I K) off over K to be the group Aut(F / K), where Fis a splitting field off over 

K . 

Definition 4.4. Given a field F, an algebraic closure F of Fis a field extension of F which 

is algebraically closed. In other words, if f E F[X] is any polynomial over F, then f splits 

into linear factors in F. 

4.1.2 Algebraic Number Theory 

Definition 4.5. A polynomial f E F[X] is said to be separable over F if its roots are 

distinct in an algebraic closure F of F. 

We note that when F = lFq, Definition 4.5 allows us to write the following: an irreducible 

polynomial f E lFq[X] is separable if f rt lFq[XP], where p = charlFq. 

Definition 4.6. Lett be transcendental over lFq. We will denote by lFq(t) the field of rational 

functions in t over lFq. A finite-dimensional field extension F of lFq(t) is called a (global) 

function field over lF q. 

Note immediately that if f E lFq[X] is separable over lFq, then f - t is a separable and 

irreducible polynomial over lFq(t). 

If Mis defined to be the splitting field of J(X) - t over lFq(t), then M can equivalently 

be defined as the Galois closure of the extension 1Fq(x)/1Fq(t), where xis any root of J(X)-t 

in the algebraic closure lFq(t) of lFq(t). 

Definition 4.7. Given a function field F ;2 lFq(t), the field of constants kF of F consists of 

the elements in F which are algebraic over lF q· We may more simply denote kF by k if there 

is no risk of confusion. 
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In the definition above, we clearly have IFq ~ k for any choice of F. However, we note 

that it is possible to have IFq ~ k. We provide a brief example below. 

Example 4.8. Let q 2 (mod 3) and f(X) = X 3 E IFq[X] and consider the field of 

constants k of M, where Mis a splitting field of f(X) - t over IFq, One can easily see that 

[M: IFq(t)] = 6 and that M ~ IFq(t)('TJ, ¼) = IFg{'T}, ¼) for some element 'T/ E IB'g \IFq satisfying 

1J3 = l. We have 'T/ ~ IFq since q-1 _ 1 (mod 3) and hence 3 f (q-1); moreover, we see that 

actually 'T/ E IFq2 \ IFq since q2 - 1 0 (mod 3). Thus [IFq('TJ, t) : IFg{'T], t)] = [IFg{'T]) : IFq] = 2, 

so [k: IFq] ~ 2. Further, since we clearly have [IFg{'T}, ¼) : IFg{t)] = 3 = 6/2, it follows that 

[k : IFq] = 2. Hence k = IFq2 ;;2 IFq. 

Definition 4.9. A valuation ring of a function field F / K is a ring O such that K ~ 0 ~ F 

and which contains at least one of z or z-1 for every z E F. 

Definition 4.10. A place P of F / K is the unique maximal ideal of some valuation ring 0 

of F / K. We will write IP' F to denote the set of all places of F / K. An element t E P such 

that P = tO is called a prime element for P. 

It turns out that each place PE IP'F is actually the maximal ideal of a unique valuation 

ring O of F / K, namely the ring Op = { z E F : z-1 ~ P}. Hence there is a one-to-one 

correspondence between the places of F / K and the valuation rings O of F / K, and so we 

will sometimes conveniently write Op to denote the valuation ring whose maximal ideal is 

P. 

We can also examine places and valuation rings via valuations, which are defined as 

follows. 

Definition 4.11. A (discrete) valuation of a function field F / K is a function v F ➔ 

Z U { oo} satisfying the following: 

(a) v(x) = oo if and only if x = 0, 

(b) v(xy) = v(x) + v(y) for all x, y E F, 
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(c) v(x+y) ~ min{v(x),v(y)} for all x,y E F. 

(d) there exists an element z E F with v(z) = 1, and 

( e) v (a) = 0 for all O -=/- a E K. 

To connect these functions to places and valuation rings, we first need the following 

theorem. 

Theorem 4.12 ([35, Theorem 1.1.6]). Let O be a valuation ring of the function field F/ K 

and let P E lJl>p be its maximal ideal. Then O is a discrete valuation ring. In other words, 

the following hold: 

(a) P is a principal ideal, that is, P = tO for some t E 0. 

(b) If P = tO, then each O -=/- z E F has a unique representation of the form z = tnu for 

some n E Z and some unit u E ox. 

(c) 0 is a principal ideal domain. More precisely, if P = tO and {O} -=/-I~ 0 is an ideal, 

then I= tno for some n EN. 

Now, suppose we are given a place P and/ or its corresponding valuation ring Op. By the 

above theorem, we can find an element t E P such that every element z E F can be written 

as z = tnu for some n E N and unit u E ox . Define the function Vp : F--+ NU { oo} given 

by vp(z) = vp(tnu) = n for z-=/- 0 and vp(O) = oo. Then Vp is a discrete valuation of F/K. 

We will revisit these functions in Appendix A. 

If we consider the function field K(X) / K, where X is an indeterminate over K, then a 

more explicit representation of the places and valuation rings of K(X)/ K can be stated as 

follows. For an irreducible monic polynomial p(X) E K[X], the ring 

{ f(X) I . } 
Op(X) = g(X) f(X), g(X) E K[X] copnme, p(X) f g(X) (4.1) 
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is a valuation ring of K(X)/ K, and its maximal ideal Pp(X) is given by 

{ f(X) I . } Pp(X) = g(X) f(X), g(X) E K[X] copnme, p(X) I J(X), p(X) f g(X) . 

In fact , all valuation rings of K(X)/ K but one are of the form 4.1. The exceptional valuation 

ring is given by 

Ooo = { ;i:j I J(X), g(X) E K[X] coprime, deg(!) :S deg(g)}. (4.2) 

The maximal ideal P00 ~ 0 00 , which is given by 

Poo = { ;i:j I J(X) , g(X) E K[X] coprime, deg(!) < deg(g)}, 

is called the infinite place, or the place at infinity, of K ( X) / K. 

Definition 4.13. Let F/ K be a function field, and let PE JP>F, 

(a) Fp = 0 / P is called the residue class field of P, and the map x H x(P) from F to 

Fp U { oo} is called the residue class map with respect to P. 

(b) deg(P) = [Fp: K] is called the degree of P. A place of degree one is called a rational 

place of F / K, and the set of all rational places of F / K will be denoted by JP>~ ~ JP> F · 

Now, the above definition requires some clarification. Since the place P is the maximal 

ideal of Op, the quotient Op/ P ( often called a residue class ring) forms a field. Then 

the residue class map induces a (ring) homomorphism from K into Fp since K ~ Op by 

definition. Moreover, we must have K n P = { 0} since otherwise P contains an element 

which is invertible in Op and hence P is equal to Op, which is a contradiction. Thus the 

residue class map actually embeds Kin Fp , so we can treat Kasa subfield of Fp under this 

embedding, and so the quantity [Fp : K] is defined. 
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Definition 4.14. For places P E JIDx and Q E JIDF, we say that Q lies over P (and write 

Q I P) if P ~ Q. We may equivalently say that Q divides P or that Q I Pis an extension 

of places. 

Definition 4.15. Let F' / K' be an algebraic extension of F / K, and let Q E JID F' be a place 

of F' / K' lying over PE JIDF. 

(a) The integer e(QIP) = e satisfying vQ(x) = e • vp(x) for all x E F is called the 

ramification index of Q over P. We say that Q I P is ramified if e(QIP) > 1, and 

Q I P is unramified if e( QIP) = 1. 

(b) f(QIP) = [FQ: Fp] is called the relative degree of Q over P. 

The next theorem, commonly called the Fundamental Equality, relates the quantities 

defined above. 

Theorem 4.16 ([35, Theorem 3.1.11]). Let F'/K' be a finite extension of F/K, let P be a 

place of F / K , and let Q1 , ... , Qm be all the places of F' / K' lying over P. Then we have 

m 

L e(QilP)f(QilP) = [F': F] . 
i=l 

In the above, if we know further that F'/F is a Galois extension, then e(QilP) = e(P) 

and f(QilP) = f(P), i.e., the ramification index and relative degree do not depend on the 

index i. In this case, the above becomes 

m 

L e(QilP)f(Qi lP) = m • e(P) • f(P) = [F': Fl, 
i=l 

and this shows that each of e(P), f(P), and m divides [F' : F] when F' /Fis Galois. 

Definition 4.17. Let F' / F be an algebraic extension of functions fields and let PE JIDF. 

(a) An extension Q of Pin F' is said to be tamely (resp. wildly) ramified if e(QIP) > 1 

and the characteristic of K does not divide e(QIP) (resp. char K divides e(QIP)). 
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(b) We say that P is ramified ( resp. unramified) in F' / F if there is at least one Q E IfD F' 

lying over P such that Q I P is ramified (resp. if Q I P is unramified for all Q I P). 

The place P is tamely ramified in F' / F if it is ramified in F' / F and no extension of 

P in F' is wildly ramified. If there is at least one wildly ramified place Q I P we say 

that P is wildly ramified in F' / F. 

( c) P is totally ramified in F' / F if there is only one extension Q E IfD F' of P in F', and 

the ramification index is e(QIP) = [F': F]. 

( d) F' / F is said to be ramified (resp. unramified) if at least one P E IfD F is ramified in 

F' / F (resp. if all PE IfDF are unramified in F' / F). 

( e) F' / F is said to be tame if no place P E IfD F is wildly ramified in F' / F. 

Theorem 4.18 (Abhyankar's Lemma, [35, Theorem 3.9.1]). Let F'/F be a finite separable 

extension of function fields. Suppose that F' = F1F2 is the compositum of two intermediate 

fields F ~ Fi, F2 ~ F'. Let RE IfDF' be an extension of PE IfDF, and set Qi =Rn Fi for 

i = 1, 2. Assume that at least one of the extensions Q1 I P or Q2 I P is tame. Then 

Definition 4.19. Let F' / F be a Galois extension of algebraic function fields with Galois 

group G = Gal(F' / F). Let P be a place of F and let Q be an extension of P to F'. 

(a) The decomposition group D(QIP) of Q over Pis defined to be 

D(QIP) = {a E G: a(Q) = Q}. 

(b) The inertia group I(QIP) of Q over Pis defined to be 

I(QIP) = {a E G: vQ(a(z) - z) > 0 for all z E OQ} . 
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The final definition we need is that of the genus of a function field. This requires a number 

of tools outside the scope of this dissertation, so we defer formally defining this quantity to 

Appendix A. For now we will simply mention that for a given function field F / K, the genus 

( denoted 9F) is the most essential invariant of this function field . 

Theorem 4.20 ([35, Proposition 1.6.3]). If F / K is a rational function field, that is, if 

F = K(x) for some x which is transcendental over the field K, then F/ K has genus 0. 

We present the next theorem in a form which will be especially useful in the rest of this 

dissertation. 

Theorem 4.21 (Riemann-Hurwitz Formula, [35, Theorem 3.4.13]). Let F / K be an algebraic 

function field of genus 9F and let F' / F be a finite separable extension. Let K' denote the 

constant field of F' and 9F' the genus of F' / K', respectively. Then we have 

Theorem 4.22 (Castelnuovo's Inequality, [35, Theorem 3.11.3]). Let F/ K be a function 

field with constant field K. Suppose there are given two subfields Fi/ K and F2 / K of F / K 

satisfying 

(1) F = F1F2 is the compositum of Fi and F2, and 

(2) [F: ~] = ni and Fi/ K has genus gi for i = 1, 2. 

Then the genus g of F / K is bounded by 
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4.2 Galois Theory and Chebotarev Density Theorem 

A significant portion of the content in this section is based on the published extended 

abstract "Understanding Polynomial Maps over Finite Fields," written by the author of this 

dissertation together with Giacomo Micheli (see [12]) . We also adapt some parts of [11] 

and [13] so that the framework set up in this section can be easily applied to the following 

chapters of this dissertation. 

4.2.1 Polynomial Maps 

In this section we explain how to use algebraic number theory to study polynomial maps 

over finite fields, which occur virtually everywhere in cryptography and coding theory (such 

as in APN functions, Reed-Solomon codes, locally recoverable codes, etc.). The method we 

will discuss, which is based on techniques from Galois theory and algebraic geometry, has 

been a particularly useful tool in these areas in recent literature. 

Our method was initially used for constructing locally recoverable codes (LRCs) where 

the known constructions did not work (see [29] for details). This method has also been used 

to classify functions with low differential uniformity, such as perfect nonlinear functions (PN) 

and almost perfect nonlinear functions (APN) , which have been studied extensively (see [4] 

and [28], for example) for their applications in cryptography. Much work has been dedicated 

to classifying such functions, and nonexistence results for some exceptional monomial PN 

and APN ( and their recent generalizations to PcN and APcN) were obtained in [4] using 

similar ideas to the ones here. We begin by summarizing the context in which our method 

finds relevance and then describing the method. 

Let q = pr be a power of a prime and let IFq be the finite field of order q. For any map f 

from IF q to IF q , by using Lagrange interpolation we can write 

~ ( IT x-b) f(x) = ~ f(a) a_ b 
aElF q bElFq \ {a} 
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Since f is completely determined by the values f (a) as a runs through all elements of lF q, 

the above shows that any map from lF q to lF q can be identified uniquely with a polynomial 

of degree at most q - l. Hence we need only consider polynomial maps of bounded degree 

in this framework. 

Where algebraic number theory most often finds application, however, is when considering 

a polynomial J(X) E lFq[X] of degree n in the regimen<< q. With this context in mind, 

we now describe the method we use to study f as a map. 

Let f E lFq[X] be a polynomial of degree n. Let lFq(t) be the field of rational functions 

in the transcendental t, and denote by M the splitting field of J(X) - t over lFq(t) . Many 

of the properties of the (polynomial) map f : lF q -+ lF q are encoded in the Galois group 

A := Gal(M/lFq(t)). In particular, analyzing the cycle structures of particular elements of 

A allows us to obtain asymptotic estimates on the number of t0 E lFq such that J(X) - t0 

splits in some desired way. 

4.2.2 Chebotarev Density Theorem 

In what follows , let F/lFq be a global function field with full constant field lFq, and let 

M / F be a finite Galois extension with Galois group A := Gal( M / F). Let k = W q n M be 

the field of constants of M . Notice that Gal(kF/ F) ~ Gal(k/lFq) ~ 2/[k : lFq]Z, where the 

final isomorphism follows from the fact that every finite extension of a finite field is cyclic. 

Let '°Y E A be such that ¢ = '°Ylk is the Frobenius automorphism of the extension k/lFq. 

Let R ~ M be a place of degree 1 of M lying above a place P ~ F. Let Op and OR be 

the valuation rings of P and of R, respectively. Write G := Gal(M/kF). It is known that 

D(RIP) / !(RIP) ~ Gal (OR/R/op /P) (for a proof, see [35, Theorem 3.8.2(c)]), and we define 

D4>(RIP) to be the coset in D(RIP) of elements which are mapped to¢ via this isomorphism. 

For an element a in the coset G1, let r a be the conjugacy class of a in A and notice that 

since A/ G is cyclic we have r a ~ G1. Further, recall that for an element a E A, we say 

a is a Frobenius at the place P if there exists R lying above P such that a E D(RIP) and 

33 



the induced map of CY in Gal (OR/R/op/P) is x f----+ xqdeg(P). Finally, for CY E G"( we define the 

quantity 

We give the definition of the genus 9M of the extension M / F in Appendix A. 

We are now ready to state the Chebotarev Density Theorem. 

Theorem 4.23 (Chebotarev Density Theorem). Let F/IFq be a global function field whose 

constant field is exactly lF q. Let M / F be a finite Galois extension and define k = W q n M to 

be the field of constants of M . Let G = Gal( M / kF) be the geometric Galois group of M / F, 

9M be the genus of M, and CY E G1. Define wp(CY) as above. Then 

PEIP'1 (F/lFq) 
P ramified 

PEIP'1 (F/lFq) 
P unramified 

a is a Frobenius at P 

1 1 2 
1r al - Tcf (q + l) ~ Tcf gMJq, 

where IP'1 (F/1Fq) is the set of places of degree 1 of F. 

A particularly convenient corollary obtained from the above theorem (by ignoring the 

first sum and multiplying throughout by If al) is as follows: 

Corollary 4.24. The number of places P E IP'1 (F/1Fq) such that CY is a Frobenius at P is 

1~i' (q + 1) + O(-Jq), where the implied constant can be chosen independently of q. 

For more information regarding Theorem 4.23 and Corollary 4.24, see [15], and for a full 

exposition and proof of Theorem 4.23, see [24]. We now state the theorem which is the key 

to obtaining the asymptotic estimate mentioned above. 

Theorem 4.25. Let f(X) E lFq[X] be a polynomial of degree n with geometric Galois group 

G. Let £ be a positive integer and d1, ... dg be positive integers such that :Z:::!=l di = n. Then 

the number of t0 E lFq such that there exist some distinct irreducible polynomials Pi E lFq[X] 
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C 

(depending on to) with f(X)-to = ITPi(X) and deg(pi) = di is (ISI/IGl) ·q+O(Jq), where 
i=l 

S is the subset of elements of G having cycle decomposition 

(- - ... -) (- - . . . -) ... (- - ... -) . 
'-,,,-''-,,,-' '-,,,-' 

d1 d2 de 

We temporarily defer the proof of this theorem as we wish to first demonstrate how we 

can employ it in some concrete applications. 

Let q = 100003 and let f E IFq[X] be a polynomial of degree 4. Suppose we are interested 

in finding the number T of elements to E IFq for which f(X) has exactly four preimages as a 

map from IF q to IF q· Notice that this is the same as the number T of elements t0 E IF q such 

that f(X)-t0 has four zeroes. We first compute the Galois group A= Gal(f(X)-t I IFq(t)) 

and suppose that the splitting field M off ( X) -t over IF q ( t) has field of constants k = IF q . For 

the sake of simplicity of notation (and since it is the generic case) , we assume A= G = S4 . 

Clearly the number of elements t0 in IFq such that f(X) - t0 has four zeros is the same 

as the number of t0 such that f(X) -t0 = (X - a)(X - b)(X - c)(X - d). Since the identity 

element of A is the only element with four fixed points, we see that ISi = 1. Therefore 

Theorem 4.25 gives that the number T of to having 4 preimages is roughly 100003/24 ~ 4167. 

As a more elaborate example, suppose we are in the situation above but are now in­

terested in finding the number T' of t0 E IFq for which f(X) - t0 has exactly two zeros. 

We compute A = Gal(f(X) - t I IFq(t)) and verify that the splitting field of f(X) - t has 

field of constants IFq. Again, we assume A = G = S4 . Note immediately that the num­

ber T' is the same as the number of t0 such that f(X) - t0 factors over IFq as f(X) -

t0 = (X - a)(X - b)g(X) for some irreducible polynomial g E IFq[X] of degree 2. Let 

S' = { (1 , 2), (1, 3), (1 , 4) , (2, 3) , (2, 4) , (3, 4)} ~ A be the set of elements in A fixing exactly 2 

points. We see that IS'I = 6, so Theorem 4.25 gives that the number T' of to having exactly 

2 preimages is roughly 100003/6 ~ 16667. 

We now prove Theorem 4.25. 
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Proof of Theorem 4,25. Suppose f E lFq[X] is a polynomial of degree n, let t be transcen­

dental over lFq, and fix natural numbers di, d2, ... , de 2: 1 such that :Z:::f=i di= n. Define T 

to be the set of t0 E lFq for which the polynomial f(X) - t0 can be written in the form 

e 
f(X) - to= ITPt0 ,i(x), 

i=i 

where the Pto,i E lFq[X] are distinct irreducible polynomials satisfying deg(Pto,i) = di. We 

wish to count the size of T, so we let T = ITI. Write F = lFq and observe that t0 ++ 

Pt0 = (t - t0 ) is a one-to-one correspondence between the elements t0 E lF q and the places 

Pt0 C F of degree 1. Hence the number of places Pt0 such that f(X) - to admits the desired 

factorization is exactly T, and Pt0 E IfDi(F/lFq) for each t0 , where IfDi(F/lFq) is the set of 

places of degree 1 of F. Notice that the t0 's for which f(X) - t0 has a multiple root are only 

0(1), as they are at most the zeros of the discriminant ~(t) off - t , so we may restrict to 

the unramified places. 

Next, fix a place P := Pt1 C F for some ti E lF q as described above. Let M be the 

splitting field of f(X) - t over lFq(t) , fix some root x E M of f(X) - t, and let L = lFq(x) 

(note that 1Fq(t) ~ lFq(x) since f(x) -t = 0). Then since the irreducible factors of f(X) -ti 

have degrees di , d2 , . . . , de , there are corresponding places Qi, Q2, ... , Qe C L lying over P 

Now fix any place RC M lying above P. By observing the form of the factorization of 

f(X) - ti, we see that R I P is unramified since the polynomials Pti ,i are irreducible and 

pairwise distinct. It follows that e(RIP) = 1, and this implies e(QilP) = 1 for each i since 

Mis Galois over F. Thus by Lemma [5, Lemma 2.1] the orbit of D(RIP) corresponding to 

Qi has size e(QilP)f(QilP) = f(QilP) = di for each i. On the other hand, that R I Pis 

unramified yields D(RIP) ~ Gal (OR/R/op/P) ~ Gal(k/lFq) ~ Z/([k: IFq]Z). From this it follows 

that we can write D(RIP) ~ ('y) for some 'Y E A, and since the orbits of D(RIP) are the 
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same as those of 'Y, we obtain the decomposition 'Y = cp1 o • • · o cpg of 'Y into disjoint cycles 'Pi 

such that the length of 'Pi is di . 

Since R I P is unramified and 'Y E D(RIP), we may assume without loss of generality 

that 'Y is a Frobenius at P, i.e., that 'Ylk is the map a H aq_ Note that for any place 

P' E JP>1 (F/1Fq) we have that if u EA is a Frobenius at P', then u E Gry and every Frobenius 

at P' is conjugate to u. In particular, r a ~ Cry. 

Finally, let S ~ G be the elements of G that have the same cycle decomposition as 'Y. 

Then S consists of exactly the automorphisms u E G for which u is a Frobenius at the place 

Pt0 for some to E T . Note that r a ~ S for every u E S and let u1, . .. , O'm be a list of 

representatives for the distinct conjugacy classes r ai, . .. , ram ~ S. For each i, let Ui be the 

set of unramified places P' E JP>1 ( F /JF q) such that O'i is a Frobenius at P' , and this allows us 

to write 
m 

T= 
Pt0 EIP'1 (F/!Fq) i=l 

toET 

Because the conjugacy classes r ai partition S, applying Corollary 4.24 to each Ui thus yields 

m 

i=l 

and this completes the proof. □ 
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CHAPTER 5: 

GOOD POLYNOMIALS OF DEGREE UP TO FIVE 

This chapter is based on the original and published work "Optimal selection for good 

polynomials of degree up to five," written by the author of this dissertation together with 

Andrea Ferraguti and Giacomo Micheli (see [11]). 

5.1 Introduction 

We remind the reader that a code C with alphabet lF q, length n , and dimension k is 

called a locally recoverable code (LRC) with locality parameter r, or an (n, k, r)q LRC, if 

for any c = (c1 , ... , cn) EC and any 1 :Si :Sn, the coordinate Ci is a function of at most r 

other coordinates Ci1 , Ci2 , ... , Cir of c. In other words, the value of any symbol in a particular 

codeword can be recovered by accessing at most r other symbols of the codeword. 

Given the linear (n , k, r) LRC C, Gopalan et al. [21] and Papailiopoulos and Dimakis 

[32] proved that the minimum distance d = d( C) of C satisfies the upper bound d :S n - k -

I k/r l + 2. As in the literature, we will say C is an optimal LRC if the minimum distance d 

of C achieves this bound, that is, if d = n - k - I k/r l + 2. 

A powerful approach to constructing LRCs was given by Tamo and Barg in [36], and it can 

be accomplished by constructing polynomials of degree r + l which are constant on pairwise 

disjoint subsets of lF q of size r + l. Such polynomials are called good polynomials. This 

construction and some families of good polynomials are discussed in detail in Section 3.3. 

A more formal definition is as follows. For a positive integer .e, we will say that the 

polynomial f E lFq[X] is (r, .e)-good if 
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• the degree off is r + l, and 

• there are pairwise disjoint sets A1 , ... , Ae ~ lF'q , each of cardinality r + l , such that 

f(Ai) = {ti} for some t i E lFq, i.e., f is constant on each Ai. 

Given a good polynomial, one can construct an optimal linear LRC as follows (we use 

the notation of [26), which is the most convenient for our purposes). Fix r 2: 1, and let 

f(X) E lFq be a good polynomial. Write n = (r + 1)£ and k = rt, where t < .e. For 

a = ( aij I i = 0, . . . , r - l ; j = 0, . . . t - 1) E JF!, define the encoding polynomial 

r-1 t-1 

!a(X) =LL aijf(X)j x i . 
i=l j=O 

Let A = Uf =1 Ai and define 

C = { (fa ( x) , x E A) I a E F!} . 

Then C is an optimal linear (n, k, r) LRC code over Fq. 

In the rest of this chapter, we classify all (r, £)-good polynomials up to r = 4 as follows: 

for any fixed prime power q ( even or odd) and a fixed r up to 4, we provide an explicit 

estimate ( of the form cq + 0( -Jq), where c E [0, 1), and the implied constant in the error 

term is explicitly computable) of the maximal .e such that a polynomial of degree r + l 

is (r, £)-good. Moreover, we provide examples of polynomials achieving these values for .e, 

showing that the estimate is the best possible. 

The machinery we use involves Galois theory, the classification of transitive subgroups 

of the symmetric group Sn up to n = 5, and the theory of function fields, using the results 

and techniques of [29, 30], then further developed in [4, 5, 7, 8, 14, 15]. 
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5.2 Monodromy Groups and Totally Split Places 

We continue with the notation introduced in Chapter 4, particularly that of Subsec­

tion 4.2.2. Recall that, given a separable polynomial f E lFq[X], the arithmetic and geometric 

monodromy groups off are denoted by A(J) and G(J), respectively. 

For any fixed n, it is possible to construct a polynomial f of degree n having A(J) = 

G (J) = Sn . Hence one can define a function 

G n ( ·): {prime powers} --+ N 

that assigns to every prime power q the least positive integer such that there exists a separable 

f E lFq[X] of degree n with IG(J)I = IA(J)I = Gn(q). Notice that Gn(q) ~ n for every q as 

a group with order strictly less than n cannot act transitively on a set of n elements. 

Thanks to the the techniques introduced in [29], given a separable polynomial f E lFq[X] 

such that A(J) = G(J) , one can obtain an explicit estimate on the cardinality of the set 

'rstlitU) := { to E lF q: f (X) - to splits into deg(!) distinct linear factors}. 

This is done via the following result: 

Proposition 5.1 ([29, Proposition 3.1]). Let f E lFq[X] be a separable polynomial of degree 

n with G(J) = A(J) and let gf be the genus of the splitting field of f(X) - t. Then 

The genus 9J can be bounded solely in terms of deg(!) by using, for example, Casteln­

uovo's inequality (see Theorem 4.22). As noticed in [29, Proposition 3.3], if char(lFq) f IG(J)I 

then we have 
(n - 2)IG(J)I + 2 

9f ~ 2 · 

40 



It is clear from the above proposition that for a fixed n , minimizing IG(f)I maximizes 

the expected number of totally split places, which in turn maximizes the dimension of the 

Tamo-Barg code. 

In this chapter, we compute the function Gn for every n E {2, ... , 5}. The simpler cases 

n = 2, 3, 4 are completely treated in Section 5.3. When n = 5 the problem becomes more 

difficult as, up to conjugation, there are 5 transitive subgroups of the symmetric group S5: 

• The cyclic group C5, generated by a 5-cycle; 

• The dihedral group D5 , generated by a 5-cycle and a product of two disjoint transpo­

sitions; 

• The affine general linear group AGL1 (IF5) (which is isomorphic to C5 ~ C4 ), generated 

by a 5-cycle and a 4-cycle; 

• The alternating group A5; 

• The symmetric group S5. 

Nevertheless, we prove the following theorem for good polynomials of degree 5. 

Theorem 5.2. Let q be a prime power. Then 

5 if 5 I q( q - l) , 

G5(q)= 10 if5l(q+l), 

120 otherwise. 

We note that the estimate of Proposition 5.1 can be made explicit, leading to a formula 

for the maximal dimension of a Tamo-Barg code of locality 4 as in the next three theorems. 

Theorem 5.3. Let q be a prime power. Let f E IFq[X] of degree 5 with G(f) = A(f) ~ C5 . 

Then 
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Proof. Let x E lF q( t) be a root of f ( X) - t. Let F = lF q( x) and let M be the splitting field of 

f - t over Fq(t). Note that n =deg(!)= 5 and IG(J)I = 5, so the only quantity remaining 

to address is 9f = 9M· 

Since G(J) ~ Cs is cyclic, then we immediately see that F = M , and so by Theorem 4.20 

we have 9M = 0. With this, the desired inequalities follow immediately from Proposition 5.1 . 

□ 

Theorem 5.4. Let q be a prime power for some prime p-=/=- 5. Let f E lFq[X] of degree 5 

with G(J) =A(!)~ Ds . Then 

Proof. Let x E lFq(t) be a root of f(X)-t. Let F = Fq(x) and let M be the splitting field of 

f - t over Fq(t). Note that n =deg(!)= 5 and IG(J)I = 10, so the only quantity remaining 

to address is 9f = 9M· 

Since G(J) ~ Ds is isomorphic to a subgroup of As, the discriminant of f(X) - t (of 

degree 4) must be a square in Fq(t). From this we deduce that there are distinct places 

P, P' ~ Fq(t) which ramify in M. With the infinite place P00 ~ Fq(t) (which clearly ramifies), 

these comprise all the ramified places. 

We first consider the place P ~ Fq(t). Observe that there must be at least two places 

of F lying above P. If not, then P is totally ramified, and this implies that f - t is of the 

form (x - a)s - b - t, which yields G(J) ~ Cs, a contradiction. By examining the cycle 

decompositions of the elements in Ds, one concludes that there are places Q1, . . . , Qs lying 

above P and that these are the only such places. In particular, by Theorem 4.16 we must 

have e(QilP) = 1 for each i since [F : Fq(t)] = deg(! - t) = 5. For each 1 ::; i ::; 5, let 

~ ~ M be a place lying above Qi (and hence above P) . Because P ramifies in M we 

necessarily have e(RIP) 2:: 2 for any R ~ M lying over P. With [M : lFq(t)] = 10 and the 

fact that e(RIP) is independent of the choice of R I P since M is Galois over Fq(t) , we see 
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that e(RIP) = 2 for any such R. Further, R1 , .. . , R5 are all the places of M lying above P 
5 -

since Li=l e(~IP) = 5 • 2 = [M: IFq(t)]. 

By an identical argument to the above, we have the following: there are places Q~, ... , Q~ ~ 

F lying over P'; for each Q: there is a place R: ~ M lying over Q:; and the Q: and R: are 

the only such places lying over P' . 

Next we address P00 • Let x' E M be another root of J(X) - t which is distinct from 

x. Then since [M: F] = 2 we must have M = F(x') = Fq(x ,x') = Fq(x)Fq(x'). Since P00 

is totally ramified in each of Fq(x) and Fq(x'), there is exactly one place Q ~ Fq(x) (resp. 

Q' ~ Fq(x')) lying over P , and e(QIP) = 5 (resp. e(Q'IP) = 5). By Theorem 4.18, if R ~ M 

is a place lying above both of Q and Q', we have e(RIP) = lcm{e(QIP) , e(Q'IP)} = 5. So 

by Theorem 4.16 there must be exactly two such places R , R' ~ M. 

Finally, noting that the genus of Fq(t) is 0 and using Theorem 4.21 with the above data 

yields the following: 

2gM - 2 = 10(0 - 2) + 5(2 - 1) + 5(2 - 1) + 2(5 - 1) 
~ ~ ~ 

p P' p= 

=-2. 

Thus 9M = 0. The desired inequalities now follow immediately from Proposition 5.1. □ 

In the next theorem we give an explicit estimate for the remaining cases, restricting for 

simplicity to the case 2, 3, 5 f q. 

Theorem 5.5. Let q be a prime power with 2, 3, 5 f q. Let f E IFq[X] of degree 5 with 

G(J) = A(J) ~ S5. Then 

q + 1 - 12Jq _ ~ < l1o1 . (!) I < q + 1 + nJQ. 
120 2 - split - 120 

Proof. Let x E IFq(t) be a root of J(X) - t . Let F = Fq(x) and M be the splitting field 

of f - t over lFq(t). By Proposition 5.1 , all we have to do is bound the genus 9M of M . 
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We will do this via the Riemann-Hurwitz formula (see Theorem 4.21) applied to the degree 

24 = 5! /5 extension M/ F. Notice that F has genus gp equal to zero. We have that 

2gM - 2 = 24(2gp - 2) + L L (e(QIP) - 1) 
PEIP'p QEIP'p, 

QIP 

because, by our assumptions on q, the ramification is tame. Here the external sum is over 

all places P of F , while the internal one is over all places Q of M dividing P, and e(QIP) is 

the ramification index. Since f has degree 5, its derivative has degree 4 and therefore there 

are at most 5 places of F that can ramify in M (notice that a place of IB'g(t) ramifies in M 

if and only if it ramifies in F). Now since M / F is a Galois extension the ramification index 

e(QIP) depends only on P, and it is at most 24. On the other hand, there are at least two 

places of F that ramify in M, since there are at least two places of IB'g(t) that ramify in F: 

the infinite place and a finite one, since the derivative of f has positive degree. All in all, we 

have that 

L L (e(QIP) -1) = L e(QIP) - L L 1 :S 5 • 24- 2 = 118, 

and substituting in the above equation yields 9M :S 36. □ 

5.3 Degrees Up to 4 

In this section we compute G2 , G3 and G4 . We start with two general lemmas. 

Lemma 5.6. Let p be a prime and q = pm for some m ~ 1. Let f = Xq - X E lF q [X]. Then 

Proof. Let x be a root off and let F := lFq(x). Then Fis a Galois extension of lFq(t), because 

x + a is a root of f(X) - t for every a E lFq, and therefore IA(f)I = q. Since f(X) - tis 

absolutely irreducible, both A(f) and G(f) act transitively on the set of roots of f (X) - t 
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and therefore it must be that G(J) = A(J) . If u E A(J) and r = x + a is a root off - t for 

some a E IF q, then u ( r) = r + f3 for some f3 E IF q , and therefore uP ( r) = r . It follows that uP 

is the identity, and therefore A(J) = ( Cp)m. □ 

Lemma 5.7. Let/!, be a prime and q a prime power with/!, f q. Let f E IFq(X) be a degree/!, 

polynomial. Then G(J) = A(J) ~ Cc if and only if f I q - 1 and f = (X - al+ b for some 

a, b E IFq . 

Proof. Necessity is obvious. 

Conversely, suppose that G(J) = A(J) ~ Cc . Let x be a root of f(X)-t and F := IFq(x) . 

Then the ramification in F is always tame, and hence Theorem 4.21 implies that there must 

be a finite place of IFq(t) that ramifies in F . Let this place correspond to b E IFq. Then 

f(X) - b must factor as (X - al for some a E IFq. Comparing the coefficients of the linear 

terms, it follows immediately that a E IFq, and hence b E IFq. But then f = (X -a)c+b, and 

in order to have G(J) = A(J) the field of constants F n IFq must be IFq. This immediately 

implies that/!, I q - 1 because certainly F contains a primitive £-th root of unity. □ 

Theorem 5.8. The following hold: 

1. G2(q) = 2 for every q, and 

{
3 if3lq(q-1) , 

2. G3(q) = 

6 otherwise. 

Proof. When n = 2 and q is odd, every quadratic f E IFq[X] has G(J) = A(J) ~ C2 . When 

q is even, by Lemma 5.6 if f = X 2 +XE IFq(X) we have G(J) = A(J) = 2. 

When n = 3 and 3 I q, by Lemma 5.6 for f = X 3 -X we have G(J) = A(J) ~ C3 . When 

3 I (q - 1) for f = X 3 we have G(J) = A(J) ~ C3 . When 3 f q(q - 1) by Lemma 5.7 we 

cannot have G(J) = A(J) = C 3 . The only other transitive group inside S3 is S3 itself, and 

hence G3(q) = 6. D 

Theorem 5.9. The following holds: 
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24 if q = 2, 

G 4 ( q) = 4 if 4 I ( q - l) or q = 2m for some m > 1, 

8 otherwise. 

Proof. Recall that the transitive groups of degree 4 are C4 , C2 x C2 , D4 , A4 and 84. Here 

the non-trivial elements of C2 x C2 are products of two disjoint transpositions, and therefore 

this copy of C2 x C2 is contained in A4 . 

If q is even and greater than 2, then there exist distinct elements a 1 , a 2 , o:3 E IF; such 

that a 1 + a2 + a3 = 0. Now let f = X(X + a 1)(X + a2)(X + a3); this is of the form 

X4 + aX2 + bX for some a, b with b-=/=- 0. Therefore if xis a root of f(X) - t , then all other 

roots are of the form x + ai for some i E {1, 2, 3}. It follows that IFq(x)/IFq(t) is a Galois 

extension of degree 4, and therefore G(f) = A(f) and G2 (q) = 4. In fact it is easy to see 

that these monodromy groups are isomorphic to C2 x C2 : if O' is any element of G(f) and r 

is any root off - t, then O'(r) = r + a for some a E IFq, and hence 0'2 (r) = r, showing that 

non-trivial elements have order 2. 

If q = 2, a quick search shows that the only two separable polynomials f with A(f) -=/=- 84 

are X 4 + X and X 4 + X 2 + X . However, the first one has A(f) ~ D 8 and G(f) ~ C2 x C2, 

while the second one has A(f) ~ A4 and G(f) ~ C2 x C2 . Hence G4 (2) = 24. 

If 41 (q - 1), then for f = X 4 we have G(f) = A(f) ~ C4 , and therefore G4 (q) = 4. 

Finally, suppose q is odd and 4 f (q - 1). If A(f) ~ A4 , then the discriminant off - t 

is a square in IFq(t). However, this discriminant is always a polynomial of degree 3 int, so 

A(f) ~ A4 can never happen (and therefore, in particular, we cannot have A(f) ~ C2 x C2). 

If we assume A(f) = G(f) ".::::' C4 , then since the ramification in the splitting field F off - t 

is tame, by Theorem 4.21 there is a finite place P of IFq(t) that ramifies in F. Let R be 

a place of F lying over it. Then the decomposition group D(RIP) is either C4 or C2 . In 

the former case, for some t0 E IFq the polynomial f - t0 factors as (X - a)4, and this leads 

to a contradiction as in the proof of Lemma 5.7. In the latter case, since the element of 
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order 2 in C4 is a product of two disjoint transpositions, then up to translations we have 

f - t 0 = X 2(X - a) 2 for some a, t 0 E Fq with a =I 0. This implies that f equals the 

composition go h, where g = X 2 and h = X(X - a), and it is a well-known fact (see for 

example [16]) that for the Galois group of go h - t to be smaller than D4 one needs that t 

and a2 /4 - tare linearly dependent in the IF2-vector space IFq(t)* /(IFq(t)*) 2 , and this clearly 

does not hold since a =I 0. Hence G4 (q) 2: 8. On the other hand, for the same well-known 

reasons one has that if f = X 4 + bX2 for some b =I 0, then G(f) = A(f) = D4 . Hence 

G4(q) = 8. □ 

5.4 Degree 5: AGL1(IF5) Never Occurs 

In this section we will prove that if 5 f q then there exists no degree 5 polynomial f with 

G(f) ~ AGL1(IF5). From now on, we let M be the splitting field of f-t over IFq(t). If Pis a 

place of lFq(t) and Risa place of M lying above it, we denote by D(RIP) the corresponding 

decomposition group. For every t0 E Fq, we denote by Pt0 the corresponding place of Fq(t). 

We start with a preliminary lemma. 

Lemma 5.10. Let q be a prime power with 5 f q. Let f E IFq[X] be a degree 5 polynomial 

and assume that G(f) '.::::' AGL1(IF5). Then there are a, b, to E Fq with a =/ b such that 

f - to = ( X - a )4 ( X - b). 

Proof. We start by showing that M = Fq(x, x') = Fq(x)Fq(x') for any two roots x =Ix' of 

J(X) - t in M. Observe that Fq(t)(x) = Fq(x) since t = f(x) E lFq(x) (and similarly for 

x') and write F = Fq(x) and F' = Fq(x'). Clearly we have [F : JFq(t)] = [F' : Fq(t)] = 

deg(!) = 5. Because G(f) ~ AGL1(IF5) is 2-transitive, the stabilizer Gx ~ G of x acts 

transitively on the four other roots of f - t. In particular, since Gx is the Galois group of 

(f(X) - t)/(X - x) over Fq(t), and since the orbit of x' under the action of Gx is a set of 

size 4, we have that [FF' : F] = [G : Gx] = 4. By definition M ~ FF', so since IGI = 20 we 

have M =FF'= Wq(x ,x'). 
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Now, let P00 be the place at infinity of IFq(t) and let R00 be a place of M lying over P00 . 

Let Q00 = R00 nF and consider the ramification index e(Q00 IP00 ) of Q00 over P00 • Recalling 

that f(x) =tin F, we have 

since P 00 is a pole of order 1 of t. On the other hand, by the strict triangle inequality we 

also have VQ00 (f(x)) =deg(!)· VQ 00 (x) = -5. This yields e(Q00 IP00 ) = 5, and an identical 

argument applied to Q'oo = R 00 n F' yields e(Q'oo1P00 ) = 5. Since we have seen that M 

is the compositum of the fields F and F' (both of which are tame extensions of IFq(t) as 

we are working in characteristic =/- 5), it now follows from Lemma 4.18 that e(R00 IP00 ) = 

lcm{e(Q00 IP00 ), e(Q'oolP00 )} = 5. Thus the decomposition group D(R00 1P00 ) is a group of 

order 5, and hence it is isomorphic to C5 . 

Next, we claim that there must be some to E IFq such that for any place R of M lying over 

Pt0 , the decomposition group D(RIPt0 ) is isomorphic to C4 . To see this, notice that there 

must be some t0 E IF q such that the decomposition group of any place of M lying above it 

contains a cycle of order 4. In fact, consider the subset of G(f) of elements of even order that 

belong to some decomposition group: this contains no transpositions because the transitive 

copy of AGL1 (IF 5) inside S5 contains no transpositions, and on the other hand if all such 

elements had order 2 then they would all be products of two transpositions. However the 

decomposition groups generate G(f) 1 , and in this latter case it would follow that G(f) ~ A5 , 

which is false once again. So let to E IF q be such that for some place R of M lying above 

Pt0 , the decomposition group contains a cycle of order 4. If we had C4 ~ D(RIPt0 ), it would 

follow that D(RIPt0 ) ~ G(f) by the maximality of C4 in G(f). But then R I Pt0 would 

be totally ramified, and hence f(X) - t 0 = (X - a0) 5 for some a0 E IFq. Since the field of 

1This is because if G is the subgroup of G(f) generated by all the decomposition subgroups, then MG is 
an unramified extension of Fq(t), and there are no non-trivial such extensions. 
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constants of M /W q ( t) is trivial, this factorization implies 5 I ( q - 1). But then G ~ C5 , an 

immediate contradiction. Thus D(RIPt0) ~ C4. 

To conclude the proof, notice that specializing at the place Pt0 and applying the Dedekind­

Kummer Theorem [35, Theorem 3.3.7] allows us to write f(X) - t0 = (X - a)4 (X - b) for 

a, b E F q with a =/- b. □ 

We are now ready to prove that AGL1(1F5 ) cannot occur as a geometric monodromy 

group. The proof will require separate arguments for even and odd characteristics. 

Theorem 5.11. Let q be a prime power with 5 f q and f E IFq[X] a polynomial of degree 5. 

Then G(f) ~ AGL1(1Fs). 

Proof. Assume by contradiction that G(f) ~ AGL1(1F5). By Lemma 5.10, there are elements 

t 0 , a, b E Fq such that f-t0 = (X -a)4 (X -b). We can assume without loss of generality that 

to =a= 0 and b =/- 0 since Gal (f(X) - t I Fq(t)) ~ Gal (f (X - c) - (t - d) I Fq(t - d)) for 

every c, d E IFq , 

First, assume the characteristic of 1Fq is odd. Computing f'(X) = X 3 (5X - 4b) shows 

that f'(4b/5) = 0, so for ti= f(4b/5) E Fq , we see that f(X)-ti is divisible by (X -4b/5)2 . 

Furthermore, since X = 4b/5 is not a root of f"(X) = 4X2(5X -3b), it follows that X = 4b/5 

is precisely a double root off (X) - t1. Notice that 

t1 = f ( 4b/5) = ( 4b/5)4 (-b/ 5) =/- 0 

and hence t1 =/- 0, so X = 0 is not a root of f(X) - t1. This implies that the only repeated 

root of f(X) - t1 is X = 4b/5 since the only roots of f'(X) are X = 0 and X = 4b/5. In 

other words, we can write f(X) - t1 = (X - 4b/5)2(X - x1)(X - x2)(X - x3 ) for pairwise 

distinct elements 4b/5 , x1, x 2 , x3 E Fq, Finally, let R be any place of M lying over Pti . Then 

the previous factorization shows that there is a transposition in D(RIPti) ~ G(f). But G(f) 

contains no transpositions, and we have a contradiction. 
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Next, assume the characteristic of lF q is even. From now on, we let x be some fixed root 

of f(X) - tin M and let F = Fq(x). Fix a place R of M lying above the place Po of Fq(t). 

The natural action of C4 ~ D(RIPo) ~ G on the set of roots off (X) -t yields orbits of sizes 

4 and 1, so there must be two places Q0 and Q1 of F lying over Po with ramification indices 

e(QolPo) = 4 and e(Q11Po) = 1, respectively, by [5, Lemma 2.1]. Let Ro be a place of M 

lying over Qo. We have just seen that 4 = ID(RolPo)I = e(RolPo) = e(RolQo) • e(QolPo), so 

it follows that e(RolQo) = 1. 

Before proceeding, we introduce the following notation: given a function field K and a 

place P of K, we will write Kp to denote the completion of K at P with respect to the P­

adic metric. In particular, F'Q0 = Fq((x)) and Fq(t)p0 = Fq((t)). Using a well-known number 

theoretical fact (see for example [31 , Proposition 11.9.6]), we have Gal ( MRo/Fq((t))) ~ 
D(RolPo) ~ C4. Observe that MRo :2 F'Q0 ;;2 Fq((t)) , so since [FQ0 : Fq((t))] = e(QolPo) = 4 

and [MRo : Fq((t))] = e(RolPo) = 4 we have MRo = F'Qo · In particular, F'Q0 /1Fq((t)) is a 

Galois extension. Denoting the local Galois group Gal (PQo I Fq((t))) by G, we have G ~ C4 . 

The above shows that every root of f(X) - tin MRo can be expressed as an element of 

F Qo = lF q ( ( x)), that is, as a Laurent series in x. We proceed by showing that if z -=/=- x is 

any other root of f(X) - t, then we can write z = x + uxi for some i 2:: 2 and u E Fq[[x]] . 

First , recall that f(X) - t = X 4 (X - b) - t so that b is a simple root of f(X). Then 

by Hensel's lifting lemma (see (4.6) in [31]) there is some b E Fq((t)) such that we can 

write f(X) - t = f(X)(X - b) over Fq((t)) , where f(X) E Fq((t))[X] and deg(f) = 4. 

Further, the polynomial J must be irreducible over Fq((t)) since otherwise we could write 

f(X) = g(X)(X -r) for an irreducible g E Fq((t))[X] and some r E Fq((t)), or we could write 

f(X) = h1 (X)h2(X) for two irreducible quadratic polynomials h1 , h2 E Fq((t))[X] having 

distinct roots in FQ0 (since f - t is separable). The former factorization implies IGI = 4 

divides 3!, a clear contradiction, so assume the latter factorization holds and let H1 and H2 
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be the splitting fields of h1(X) and h2(X), respectively, in FQo· Then FQ0 = H1H2 so that 

another contradiction. Thus we conclude that G is the Galois group of f(X) over IB'g((t)); 

in particular, we have that G acts transitively on the roots of f(X) in FQo and hence there 

is some automorphism TE G of M satisfying T(x) = z. 

Observe that (x) is the unique maximal ideal of the ring IFq[[x]], so since Tis an automor­

phism ofIFq((x)) (and hence T preserves maximal ideals) we must have (T(x)) = T ( (x)) = (x). 

Then z _ 0 (mod (x)) if and only if T(x) _ 0 (mod (T(x)) ), and the latter clearly holds. 

This allows us to write z = ex+ uxi for some e E IFq, u E IFq[[x]], and some i ~ 1. We 

can assume further that i ~ 2 since otherwise we could replace ex by e' x for an appropriate 

d E w; so that this holds. Now computing T4(x) by using T(x) = ex+ uxi and comparing 

coefficients with T 4 (x) = x yields e4 = 1 and hence c = 1 (as we are working over a field 

with characteristic 2). Putting everything together, we can now write z = x + uxi for some 

i ~ 2 and some u E IFq[[x]]*. 

Observe the following: 

f ( z) - t = z4 ( z - b) - t 

= (x + uxi)4 (x + uxi - b) - t 

= ( x4 + u4x4i) ( x - b + uxi) - t 

= x4(x - b) - t + ux4+i + u4x4i(x - b) + u5x5i 

= ux4+i + u4x4i(x - b) + u5x5i, 

where the last equality holds since x is a root of J(X) - t. Let A= ux4+i + u4x4i(x - b) + 

u5x5i = f(z) - t. Since z was chosen to be another root of f(X) - t, we must have A= 0. 
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But VQo(A) = VQo(x) • ipJr{ 4 + i , 4i , 5i} = 4 + i =/= oo = VQo(O), a contradiction since u =/= 0. 

Thus our initial assumption was false, so G(J) 1- AGL1 (1F5). □ 

5.5 Degree 5: If Ds or As Occurs, Then 5 I (q2 - 1) 

Assume q is a prime power and f E lFq[X] is a separable polynomial of degree 5. Lett 

be transcendental over lFq and let M be the splitting field of J(X) - t. Let A(J) and G(J) 

be the arithmetic and geometric monodromy groups of f, respectively. 

Theorem 5.12. Suppose that 5 f q and A(J) ~ A 5 . Then 5 I (q2 - 1). In particular, if 

A(J) ~ Ds, then 5 I (q2 - 1). 

Proof. The second assertion follows immediately from the fact that the transitive copy of 

D5 inside S5 lies inside A5 . 

If q is odd, just use the fact that A(f) ~ A 5 if and only if the discriminant of f(X) - t 

is a square in lFq(t). When J(X) is monic of degree 5, the discriminant has the form 55t4 + 

I:f=o aiti. Hence 5 needs to be a square in lFq; this implies that either q is an even power of 

a prime p or, by quadratic reciprocity, that q ±1 mod 5. In any case, 5 I q2 - 1. 

If q = 2n for some n ~ 1, one needs to use the Berlekamp discriminant (see [9]), which 

is the characteristic two analogue of the discriminant. If k is a field of characteristic 2 

and g E k[X] is of degree n, the Berlekamp discriminant of g is an element ~ E k which 

can be effectively computed using the coefficients of g. Further, ~ has the property that 

Gal(g) ~ An if and only if the polynomial X 2 + X +~has a root ink. 

Now let f = X 5 + aX4 + bX3 + cX2 + dX E lF2n[X] . We will show that if A(J) ~ As 

then 2 I n, and consequently 5 I ( q2 - 1) once again. One can compute the Berlekamp 

discriminant ~/ off - t , viewed as a polynomial over lF2n(t), and see that this is given by 

an expression of the form r(t)/s(t)2 , where r,s E lF2n(t) are two monic polynomials with 

deg(r) = 4 and deg(s) = 2. Suppose that A(f) ~ A5 and hence that X 2 + X + ~! has a 

root in lF 2n ( t) . Then there are coprime polynomials u( t), v( t) E lF 2n [t], with v( t) monic, such 

that ~/ = (u(t)2 + u(t)v(t))/v(t)2. Therefore if r, s share a common factor, this can only 
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have degree 2 or 4, and if it has degree 2 then it must be of the form (t + a)2 for some a. 

Clearly if they share a factor of degree 4 then ~ f = r ( t) / s ( t) 2 = 1, so in this case X 2 + X + l 

has a root in IF2n(t) and consequently 2 In. Otherwise, by comparing degrees we must have 

deg( u) = deg( v) and deg( u2 + uv) = 2 deg( v). If the leading coefficient of u is c5 E IF 2n, these 

two conditions, together with the fact that r( t) is monic of degree 4, imply that c52 + c5 + 1 = 0 

and consequently that 2 I n. □ 

Proof of Theorem 5. 2. First, suppose that 5 I q(q - 1). Then by Lemmas 5.6 and 5.7 we 

have G5(q) = 5. 

Now suppose that 5 f q(q - 1). Then by Lemma 5.7 we have G5(q) > 5. If 5 I (q + 1), 

it is known (see for example [10, Section 3]) that degree 5 Dickson polynomials of the first 

kind, e.g. f = X 5 - 5X3 + 5X, satisfy G(f) =A(!)= D5. Hence G5(q) = 10. 

Finally, suppose that 5 f q(q2 - 1). Then by Lemma 5.7 and Theorems 5.11 and 5.12 we 

cannot have G5(q) = 5, 10, 20 or 60. Hence G5(q) = 120. □ 

Remark 5.13. Notice that the q/10 asymptotic when 5 I (q + 1) was in fact obtained in 

[27] using Dickson Polynomials and an independent approach. 

5.6 Computational Examples 

Let us show with a couple of explicit examples how the number of totally split places 

compares to the theoretical estimate given by Proposition 5.1. We pick examples with 

G5(q) = 120; for each of these values of q we pick polynomials f with G(f) = A(!) ~ S5 for 

5 f q(q2 - 1). As proved in Theorem 5.2, it is not possible to do better for these q's. 

In order to construct polynomials whose geometric monodromy ( and therefore also arith­

metic monodromy) group is S5, one can use the following well-known group-theoretical fact 

(see [18]): if G ~ S5 is a transitive subgroup containing a transposition and a cycle of prime 

length£> 2, then G = S5. In order to force the geometric monodromy group to contain two 

such elements, it is enough, by ramification arguments, to pick g(X) E IFq[X] irreducible of 

degree 3 and set f = X 2g(X). 
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q I T}vlit (J) I l1goJ 
2rn 78 68 
215 278 273 
217 1088 1092 
219 4332 4369 

(a) f = X 2 (X3 + X + 1) 

q l~;lit(f)I l1goJ 
3·r 21 18 
39 159 164 
311 1474 1476 
313 13338 13286 

(b) f = X2 (X3 - x + 1) 

q l~;litU)I l1goJ 
19583 156 163 
19597 163 163 
19687 155 164 
19753 194 164 
19793 179 164 
19913 189 165 
19927 160 166 
19963 162 166 
19993 156 166 
19997 161 166 

(c) f=X2 (X3 +X+3) 

Table 1. Comparing the asymptotic and actual number of totally split places for a few 
degree 5 polynomials defined over varying base fields. 
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CHAPTER 6: 

HIERARCHICAL GOOD POLYNOMIALS 

This chapter is based on the original and published work "Optimal locally recoverable 

codes with hierarchy from nested F-adic expansions," written by the author of this disser­

tation together with Giacomo Micheli and Vincenzo Pallozzi Lavorante (see [13]). 

6.1 Introduction 

Various classes of locally recoverable codes have received great attention in recent times 

due to their applications to cloud and distributed storage systems [2, 3, 6, 11, 20, 23, 26, 34, 

36, 37]. 

In this chapter, we produce new optimal hierarchical locally recoverable codes (HLRCs). 

HLRCs are suitable solutions for the problem of recovering lost information in a distributed 

storage system, and they have been widely studied in [1, 17, 33, 38]. 

Hierarchical locally recoverable codes allow to recover certain patterns of erasures by 

gradually looking at more components of a codeword depending on the number of erasures 

that occurred in that codeword. One can then design codes which recover one erasure by 

looking at at most b other components; A erasures by looking at a other components; and 

d - 1 erasures by looking at at most k components, where k is the dimension of the code. 

This is impactful from a practical perspective, as one can deal with the most likely scenario 

(1 erasure) in the optimal way, with the less likely scenario (.\ erasures) in an acceptable 

way, and still be able to recover d - 1 erasures by accessing a large number of nodes. Tuning 

these parameters in an efficient way depends on the reliability of the servers and the required 

efficiency of the system in terms of node retrieval. One of the features that one would desire 
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from this kind of code is that A is not too large, as the second most likely scenario is the 

failure of just a few other nodes more than 1 ( and not too many others since the worse 

cases can be recovered using the minimum distance). We address this problem by proving 

a sharper Singleton-like bound for this regime of parameters and then constructing codes 

which achieve our bound. Let us now define the main objects we will be treating in this 

chapter. 

6.1.1 Definitions 

In the rest of the chapter we will consider the occurrence of either 1, A, or d-1 erasures, 

as these arise most commonly from applications (instead of the more general setting where 

one allows A1 , A2 , or d - l erasures). Let n, k, b be positive integers with k ~ n. A locally 

recoverable code (LRC) C having parameters [n, k, b] is an lF q-subspace of JF; of dimension k 

such that if one deletes one component of any c E C, this can be recovered by accessing at 

most b other components of c. If d is the minimum distance of the code, we will write that 

C is an [n, k, d, b] LRC. 

We now give the following definition which will be useful in the rest of the chapter. 

Definition 6.1. Let n be a positive integer, C ~ JF; be a linear code, and S be a subset 

of the set of indices { 1, .. . , n}. We say that C can tolerate x erasures on S if, whenever 

there are x erasures on components of a codeword with indices belonging to S, the missing 

components can be recovered by looking at ISi - x other coordinates in S. 

In this chapter we construct new locally recoverable codes with hierarchy of locality 

sets. Our Definition 6.2 is equivalent to the one of hierarchical codes in [1], but we find it 

slightly easier to employ ours in practical situations as we keep direct track of the size of the 

"hierarchy." 

Definition 6.2. Let n , k, d, b, a, A be positive integers with n > k and 2 ~ A ~ b. An 

[n, k, d, b, a, A] hierarchical locally recoverable code (HLRC) is an [n, k, d]-linear code such 

that 
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• (a+,\) I n, 

• (b+l) I (a+,\), 

• the codeword indices are partitioned into C 2 1 distinct sets Ai, each of size a+,\, such 

that C tolerates ,\ erasures on Ai for every i E { 1, . .. , C}, and 

• each Ai can be partitioned into distinct sets Bi,j, each of size b+l, such that C tolerates 

1 erasure on each Bi,j for every i E { 1, ... , C} and every j E { 1, . .. , ( a + ,\) / ( b + l)}. 

6.1.2 Motivation 

Let us now briefly explain the motivation behind codes with hierarchical locality. Let 

T be the time needed to replace a failed node. Suppose that a second node fails in the 

same locality set as the first node during the time T. An [n, k, d, b] LRC will still need to 

access k information symbols, as the I-locality procedure is not guaranteed to work anymore. 

However, an [n, k , d, b, a,,\] HLRC only requires accessing at most a information symbols. 

Since the failure of only a few nodes, say ,\ < d - l , is significantly more likely than the 

failure of d - l nodes in the span of time T, it is convenient to have a code which addresses 

separately the case in which only ,\ nodes fail. The codes in [1] address this issue, but they 

are restricted to certain ,\'s (as we explain in subsection 6.3.5). Moreover, in many cases 

they require restrictions on the arithmetic of q and the size of the hierarchy (see for example 

the case of power functions in [1, Section IV.A, Example]). 

6.1.3 Our Contribution 

In this chapter we provide new constructions of optimal codes with hierarchical locality 

and an improved bound for HLRCs for a special set of parameters. Our construction is 

based on the ideas in [1] combined with powerful techniques from algebraic number theory, 

allowing us to remove arithmetic restrictions on the size of the hierarchy compared with q 

or q - l. 
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Structure of the chapter: 

• In Section 6.1 and its subsections we explain the basic coding theoretical definitions 

and provide the practical motivations for the study of such codes. 

• In Section 6.2, for some regime of parameters, we provide a stronger Singleton bound 

than the one already present in the literature for HLRCs [33]. Our bound beats the 

previous bound for an infinite set of parameters (see for example Remark 6.5). 

• In Section 6.3 we achieve our new bound with a new construction of HLRC that covers 

a set of parameters that are not available using previous constructions ( see subsection 

6.3.5). In Subsection 6.3.6 we construct one of our codes to show what a generator 

matrix looks like in practice. 

• In Section 6.4 we show that our codes can be constructed without any arithmetic 

restrictions on q, q- l, the locality parameters, or the sizes of the sets in the hierarchy. 

• Using the existential results provided in Section 6.4, in Section 6.5 we provide some 

practical choice of parameters for codes with large length. 

6.2 An Improved Bound for Hierarchical Locally Recoverable Codes 

6.2.1 The Singleton Bound for [n, k, d, b, a,,\.] HLRCs With ,\. ::; b. 

To help the reader understand the more complex bound we propose on HLRCs in what 

follows, we encourage the reader to refer first to the standard Singleton-like bound for LRCs 

and its proof given in Section 3.2. 

We aim to generalize the bound in Theorem 3.1 when C is an [n, k, d, b, a,,\.] HLRC. The 

key observation is that one can partition the columns of the generator matrix into £ sets of 

a+ A columns so that each set has rank strictly less than a, and each set of a+ A columns 

can be partitioned further into sets of b + l columns so that each of these sets has rank at 

most b. To see this, note that each set Si of a + A columns ( corresponding to the indices in 
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Ai) can be divided into /3 = (a+ >-.)/(b + 1) sets, say Si,j for j E {1 , ... , /3}, of b + l columns 

(corresponding to Bi,j) with rank at most b for i E {1 , . . . ,.e} by the definition of the code. 

Now, in the first set Si,l we have).. columns which are in the span of the other a columns in 

Si. This means that we can choose b + l - ).. columns from Si 1 and b columns from each of 
' 

the other Si,j, with j =J. 1, and be able to recover any ).. of the a+>-. columns in Si. Therefore, 

the rank of each Si is at most 

p := [(a+ >-.)/(b + 1) - 1 ]b + (b + 1 - >-.) ~ a. 

/3-1 

Theorem 6.3. Let C be an [n, k, d, b, a,>-.] HLRC with>-.~ b, and let p = b(a + >-.)/(b + 1) -

().. - 1) . Then 

l k - lj lk1j -p- (a+>-.)+ k1 + b ~ n - d, (6.1) 

where k - l _ k1 (mod p) and O ~ k1 < p. 

Proof. Given l k;l j locality sets Ai , say i E {1, ... , l k;l j }, denote by S the set of the 

corresponding columns of the generator matrix g of the code. Then ISi = l k;l j (a+>-.), 

and, by the above discussion, we have rank(S) = pl k;l j ~ k - l. This allows us to add 

more columns to S until the rank equals k - l using a smaller locality set. More precisely, 

we can always choose a set of the remaining columns of 9, say S1, of size l kb J (b+ 1) + { kbi }b, 

such that rank(S1) = k1 (explicitly, S1 is the union of columns which correspond to Bi,j, for 

j E {1 , ... , l\1 J}). Hence 

lk - lj rank(SUS1)= -P- p+k1=k-l 

by the definition of k1. Applying Proposition 3.2 we have 

l k - l j l k1 j { k1 } -p- (a+>-.)+ b (b + 1)+ b b ~ n - d. 
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Now, since kb = l kb J + { kbi} we have 

□ 

Definition 6.4. We say that an [n, k , d, b, a,>.] HLRC is optimal if its minimum distance 

attains the upper bound in (6.1), i.e., if 

fork - 1 k1 (mod p) and O:::; k1 < p. 

Remark 6.5. Note that our bound improves upon the bound in [33] for infinitely many 

parameters, but ours holds only for >. :::; b. In fact, for any length n, and for parameters 

k = 6, a = 4, r 1 = p = 3, r 2 = b = 2, 81 = >. + 1 = 3, and 82 = 2, [33, Theorem 2.1] gives 

d:::; n - 8 when instead our bound gives d:::; n - 9. The moral reasons for this are that we 

are taking into account a finer arithmetic of the parameters which involves the reduction of 

the dimension modulo the upper level hierarchical locality, and we are restricting to the case 

in which the number of nodes that we simultaneously erase is strictly smaller than the size 

of the smaller locality set. 

6.3 Our Construction of Optimal HLRCs Using Nested f-adic Expansions 

6.3.1 Main Tool for the Construction 

Lemma 6.6. Let f , h E lFq[X] be non-constant polynomials. Suppose there is some to E 

1F'q such that f(h(X)) - t0 splits completely (i .e., factors into deg(!) deg(h) distinct fac­

tors) over lF'q. Then the set of roots of f(h(X)) - t0 , say A 0 , can be partitioned into sets 

B1, ... , Bdeg(f) ~ 1F q which satisfy the following: 

• the cardinality of each Bi is deg( h), and 
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deg(!) deg(h) 

Proof. By the hypothesis we may write J(h(X)) - t0 IT ( X - Xi) for distinct 
i=l 

elements xi, . . . , Xdeg(f)deg(h) E IFq. Notice now that if J(h(X)) - to splits completely, then 

f ( X) - to splits completely. If we let a1, ... , adeg(f) E IF q be the (distinct) roots of f ( X) - to, 
deg(!) 

then we may also write f(h(X)) - to = IT (h(X) - ai) E IFq[X]. Combining these two 
i=l 

factorizations and relabeling the Xi appropriately yields 

deg(!) deg(h) deg(!) 

IT IT (X - xi,j) = IT (h(X) - ai), 
i=l j=l i=l 

deg(h) 

so that IT (X - xi,j) = h(X) - ai for each 1 ~ i ~ deg(!) . In particular, it follows that 
j=l 

ai E IFq for each i. Write Bi= {xi,j : 1 ~ j ~ deg(h)} . Then we have h(Bi) = ai for each i, 

proving the first statement. The second and third statements both follow from the fact that 

the Xi,j 's are pairwise distinct and the Bi's are pairwise disjoint. □ 

Definition 6.7. For f, h E IFq[X], we say that a set AC IFq is a nest for(!, h) if A is the 

set of preimages of t 0 E IFq such that f(h(X)) - t 0 is totally split. 

Furthermore, we say that BC A is a sub-nest if his constant on B and IBI = deg(h). 

6.3.2 The Main Construction 

We present a general method of constructing linear codes with the nested locality prop­

erty. Later we will show that these codes are optimal in the sense of Section 6.2. In line with 

the notion of (r, £)-good polynomials in [29], we now begin defining our nested polynomials. 

Definition 6.8 (£-nested). Let f, h E IFq[X] and let .e be a positive integer. Then f and 

h are said to be £-nested if f(h(X)) - to splits completely over IFq for at least .e elements 

to E IFq. 
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Remark 6.9. Note that if f and hare f-nested , then from Lemma 6.6 there exist A1, ... , Ac 

distinct nests for (f, h) such that 

• for any i E {1, ... ,.e}, f(h(Ai)) = {ti} for some ti E IFq, 

• Ai n Ai = 0 for any i #- j, and 

• each Ai can be partitioned into sub-nests Bi,j for (f, h). 

Those properties will be fundamental in the following construction. 

Construction 6.10 (Nested HLRC). Let f, h E IFq[X] be f-nested, with 3 ~ deg(h) = b + 1 

and deg(!) = t!; for some integer 2 ~ .X ~ b, and let A = uf=1 Ai, where { A1 , . . . , Ac} is a 

set of nests for (f, h). 

For a positive integers ~ 1, consider the set 'D of polynomials of the form 

s [ (deg(f)-2 ) ] 
8(X) = ~ ~ gi,j(X)h(X)i + 9i(X)h(X)<leg(f)-l J(h(X))i, 

where gi,j E IFq[X]::;deg(h)-2 and 9i E 1Fq[X]::;deg(h)->.-1· 

Let n = deg(!) deg( h ).e and let k be the dimension of 'D as an 1F q-vector space. 

Define 

'D = {(8(x), x EA) I 8 E 'D}. 

We will prove that C is an optimal [n, k, b, a, .X] HLRC over IFq. 
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6.3.3 Locality 

Since we evaluate at n distinct points of IFq, we need q 2 n. Write n = (a+ ,\)(s + 1) 

and recall that b + l divides a + ,\, 

Take m E IF~ and write Encc(m) = c = Ci,ji ,h for 1 :::; i :::; s + l, 1 :::; j 1 :::; (a+ >.)/(b + 1) , 

1 :::; J2 :::; b + l. Note that the first index i determines a nest Ai , the second index j 1 refers 

to a sub-nest Bi,ju and the final index j 2 specifies the particular element of the sub-nest in 

question, which we denoted by ci,ji ,h. We begin by showing that the code C described in 

Construction 6.10 allows one to recover a single missing component of c by accessing at most 

b other components of c. 

Fix R, 2 1 and let f, h E IFq[X] be the £-nested polynomials from which C is obtained. 
deg(!) 

Write A = {A1, ... , Ac} with Ai = lJ Bi,ii and Bi,ii = {xi,ji,j2 : 1 :::; }2 :::; b + l} as in 

Remark 6.9. 

Without loss of generality, assume that the missing component is c 1,l,b+I = 8m(x1,i,b+1) , 

where am E 'D. Observe immediately that because both of Joh and hare constant on B1,1 , the 

restriction 8mlB can be written as a polynomial of degree max{ deg(h)-2, deg(h)-,\-1} = 
1 ,1 

deg(h)-2 = b-1. Since x1,1,32 E B1,1 for each }2 , we have that 8mlB11 (x1 ,1,32 ) = 8m(x1,1,32 ) = 

c1,1,j2 • Using Lagrange interpolation on the points ( x1,1,32 , c1,1 ,32 ) for 1 :::; }2 :::; b, we obtain 

a polynomial ~B1 ,1 of degree b - l which agrees with 8mlB at b distinct points, so the two 
1,1 

polynomials must be equal. Thus we can recover c 1,l,b+I by evaluating ~B1 ,1 at the element 

X1,l ,b+l· 

Let us now consider the case of ,\ erasures (in the practical example we will take ,\ = 

2, as that is the second most likely scenario of failures) . Among these ,\ erasures, the 

erasures which are isolated in locality sets Bi,j can be recovered by using the I-locality, so 

the interesting case is when multiple erasures occur in a single Bi,j. Let us assume that 

,\ 2 2 erasures occur in the same locality set Bi,j. In this case, since f o h is constant on Ai , 

the restriction 8mlA; is a polynomial of degree deg(!) deg(h) - ,\-1 =a+,\-,\- l = a-1. 
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Thus Lagrange interpolation on a set of a points of Ai on which no erasure occurred yields 

a polynomial ,6.Ai which agrees with Om on all of Ai. Hence the missing components can be 

obtained by evaluating ,6.Ai at each of the corresponding locations in Ai. 

6.3.4 Optimality of the Code 

We dedicate this subsection to proving the optimality of our code C. Therefore, we will 

be computing the values of k and d. 

Lemma 6.11. Let C be the code in (6.3). Then 

k = (s + l)((deg(f) - l)(deg(h) - 1) + deg(h) - .\). 

Proof. Since in particular deg(gi ,jhj) + deg(gihdegf-l) ::S deg(! oh) and deg(gi,j) , deg(gi) ::S 

deg( h), by uniqueness of F-adic expansion both for F = f o h and for F = h, we have 

k = dim1Fq V = (s + l)((deg(f) - l)(deg(h) - 1) + (deg(h) - .\)) , 

as we wanted to prove. □ 

Lemma 6.12. Let C be the code in (6.3). Then d 2:: n - 8, where 

8 = (s + 1) deg(!) deg(h) - .\ - 1. 

Proof. A lower bound for the minimum distance is obtained by subtracting 8 from n, where 

8 is the upper bound for the maximum number of zeros of 8 EV. We compute 

8 = (deg(!) deg(h)s + (deg(!) - 1) deg(h) + deg(h) - ,\ - 1) 

= (s + 1) deg(!) deg(h) - ,\ - 1, 

and this proves the claim. 
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Theorem 6.13. Let C be the code obtained by using Construction 6.10. Then C is an optimal 

[n, k, b, a, -X] HLRC. 

Proof. Let p = (a +-X)/(b + l)b- (,\ - 1) and k1 = k - 1- l k;l j p. Moreover, we recall that 

a+,\= deg(!) deg(h) and deg(h) = b + l. Let d' denote the optimal distance, such that 

{/ = n - d' = ( l k ; l j ( a + ,\) + k1 + l :1 j ) . 

Note that 

since ,\ :S deg(h) - 1, and 

in fact k1 = deg(J)(-(b + l)s + deg(h)(s + 1) - 1) - ,\ = deg(f)(deg(h) - 1) - ,\. By using 

the results of Lemma 6.11 , 6.12, we have 

8 - {/ = (s + 1) deg(!) deg(h) - ,\ - 1 - s deg(!) deg(h) - k1 - l :1 J 

= deg(!) deg(h) - ,\ - 1 - (deg(J)(deg(h) - 1) - ,\) - deg(!)+ r deg(~)_ 1 l 
= r deg(~ - 1 l -l , 

and since r deg(~)-l l - 1 = 0 for ,\ :S deg(h) - 1, the code is optimal. □ 
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6.3.5 Comparison With Another Optimal Hierarchical RS-like Code 

A construction of optimal HLRCs for a certain set of parameters is presented in [1, 

Proposition IV.2] . Let us fix the parameters for which that construction exists, i.e., r 1 = sr2 

( we note that we do not require such a constraint, but that even in this scenario we show 

that we can construct codes that are not available from [1, Proposition IV.2]). The set of 

parameters of the codes in [1, Proposition IV.2], also given in our notation, is as follows: 

• the length of the codes in both settings is n, 

• each small locality set (at the bottom level of the hierarchy) has size r 2 + 1, so in our 

case each has size b + l, 

• their v is our a + ..\, 

• the middle code has distance r 2 + 3 and hence can tolerate r 2 + 2 erasures, so their 

r2 + 2 corresponds to our ..\, 

• their r1 is our p, 

• the code is optimal, with distance d = n - t(r1 + r 2 + 1 + s) + r 2 + 3, for some t , s , and 

• the two-level hierarchy has locality parameters (r1, r2 + 3) and (r2 , 2). 

This shows immediately that our class of codes is different from the codes in [1, Proposition 

IV.2]. In fact, the optimality of our codes strongly relies on the assumption .,\ ::; r 2 , which 

is not the case in the construction in [1, Proposition IV.2], in which instead .,\ = r 2 + 2. It 

follows that our class of codes contains codes which are not covered by this construction, 

as we can construct optimal hierarchical codes with two-level hierarchy which have locality 

parameters (r1, ..\) and (r2, 2) for any .,\::; r2, such as for .,\ = 2. 

We emphasize that in [33] it is necessary to set a fixed .,\ = r 2 + 2 since in this way one can 

reach optimality using the bound in [33, Theorem 2.1], while, using our improved bound and 

enhancing the construction in [1], one is allowed more flexibility as we explained. Moreover, 
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we will see in Section 6.4 how to construct our codes without the arithmetic restrictions 

appearing in the examples which use monomials or linearized functions. 

For a better comparison and to simplify the presentation, in the next paragraph we will 

still use monomials for the toy example, even though it is not a requirement as we explain 

in Section 6.4. 

6.3.6 Toy Example 

Suppose one desires a code over lF 19 of dimension 6 which can recover 1, 2, and 8 lost 

nodes by accessing at most 2, 4, and 6 other nodes, respectively (i.e., the distance of the 

code is equal to 9). This is not possible using the standard Tamo-Barg construction since, 

to recover more than 1 node, one would need to access as many nodes as the dimension of 

the code, that is, 6 nodes. Another option is to consider codes with availability using an 

orthogonal partition of the multiplicative group of lF 19 that includes C3 ( as one wants the 

locality to be 3) . But this does not work in this case either as the only other option is C9 

and C3 ~ C9 (since lF; is cyclic for any prime power q) . Moreover [33, Proposition IV.2] does 

not hold for A= 2. 

Our construction instead provides a code that allows these recovery cababilities and is 

information-theoretically optimal in the sense of the Singleton bound in Section 6.2. 

Suppose we choose J(X) = X 2 and h(X) = X 3 (so b = 2 and a = 4). A general 

information polynomial is given by 

1 

a(X) = L [gi(x) + 9i(X)h(x)]J(h(X))i, 
i=O 

for 9i E lFq[X]:-:;i and .9i E lFq[X]:SD· In particular the .9i(X) = 9i are constants (notice that 

the internal sum in j in (6.2) disappears since deg(!) = 2). Therefore, by evaluating the 

messages at the preimage of the the 3 totally split places of x6 = f o h, we get a code of 

length n = 18 and dimension k = 6 with a= 4 and b = 2. Notice that this code can recover 

1 erasure by looking at b = 2 other nodes. Moreover, if two erasures occur, we have two 
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possibilities: either the erasures occur in the same nest for (f , h) , in which case one needs to 

access (in the worst case scenario) at most 4 other nodes, or the erasures occur in different 

nests, in which case one can use twice the locality (that is, 2) to recover each node so that one 

again needs to access at most 4 other nodes. Since we are evaluating polynomials of degree 

at most 9, the distance of the code is 18 - 9 = 9 and therefore one has a fault tolerance of 8 

erasures. Practically, given those 18 nodes, we are looking at the disposition of hierarchy in 

Figure 1. To simplify the presentation, we label each part of the hierarchy corresponding to 

t1 = 1 only. 

a 1=1 a2=l8 

I I 
X1,1 =1 X12=7 

' 
X13=11 

' 
X21=8 

' 
X2 2=12 

' 
X2 3=18 

' 

t2=7 t3=ll 

I I I I 

8 11 7 12 

~ I rn I 

2 3 14 5 16 17 4 6 9 10 13 15 

Figure 1. The nest hierarchy for f(X) = X 2 and h(X) = X 3 . 

The above corresponds to the following matrix: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 7 11 8 12 18 2 3 14 5 16 17 4 6 9 10 13 15 

1 1 1 18 18 18 8 8 8 11 11 11 7 7 7 12 12 12 

1 1 1 1 1 1 7 7 7 7 7 7 11 11 11 11 11 11 

1 7 11 8 12 18 14 2 3 16 17 5 6 9 4 15 10 13 

1 1 1 18 18 18 18 18 18 1 1 1 1 1 1 18 18 18 
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where the rows correspond to (the evaluations of) the basis {1 , x , x3, x6 , x7 , x9 } and the 

columns to the elements of 1Fi9 ordered as in Figure 1. This means that to check the locality 

of each set one just needs to check the rank of the corresponding set of columns in the above 

matrix. For example, suppose we want to recover the third column, which corresponds to 

the symbol 11 . We can do that using only the first two columns, since the matrix 

1 1 1 

1 7 11 

1 1 1 

1 1 1 

1 7 11 

1 1 1 

has rank equal to 2. Similarly, we can recover any two lost symbols using either 3 (if they 

belong to the same large orbit) or 4 ( otherwise, if they belong to distinct large orbits) other 

symbols. 

6.4 Existential Results via Chebotarev Density Theorem 

In this section we explain how to apply Chebotarev Density Theorem to count the places 

t0 E lF q such that f ( h) - t0 is totally split . A lower bound on this quantity determines 

directly a lower bound on the size of the hierarchy in our construction. This determines 

completely the range of parameters of our hierarchical codes, and in turn it shows that they 

always exist for q large enough, without arithmetic restrictions on the localities and the size 

of the base field. 
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6.4.1 The Number of Totally Split Places t0 of f(h) - t 

We will appeal to the Chebotarev Density Theorem as in Proposition 3.1 of [29] since 

this formulation is the most convenient for our purposes. We provide a full exposition in 

this section, but we briefly describe in the next paragraph the general procedure and ideas. 

For polynomials f, h E 1Fq[X], consider the composition f(h). By the lower bound in [29, 

Proposition 3.1] on the number £ of t0 E lF q such that f ( h) - t0 splits into linear factors over 

1Fq , we have that for large enough q it is guaranteed to have a large number of totally split 

places of degree 1 of lFq(x)/lFq(t) when f(h) is chosen correctly. Now, we may assume that 

the field of constants kf(h) of Mf(h) is trivial since otherwise there cannot be a totally split 

place of degree 1. Since we want £ to be as large as possible, one quickly sees from the lower 

bound in [29, Proposition 3.1] that minimizing the size of the monodromy group Gf(h) of 

f ( h) achieves this goal. Thus our construction always effectively results in an optimal code 

as long as the size of the alphabet verifies a certain lower bound. 

For the extension M/lFq(t), let G = Gal(M/lFq(t)) be its arithmetic Galois group and 

let N be its geometric Galois group. Since we are interested in the number £ of places 

P ~ lFq(t) of degree 1 which are totally split in M, by Proposition 3.4 of [29] we may assume 

that Mn Fq = lF'q is the field of constants of the extension M/lF'q(t) since otherwise£= 0. 

Hence G = N. 

Lemma 6.14. Let f , h E lFq[X] be nonzero polynomials having positive degrees. Define Gt= 

Gal(f (X)-t/lF q(t)) and similarly for Ch. Then the number of t 0 E lF q such that f(h(X) )-t0 

1 
splits completely into distinct (linear) factors over lF'q is at least IGhldeg(f)IGtlq + O(y'q), 

where the implied constant can be chosen explicitly and is independent of q. 

Proof. Denoting the number of t0 E lF q we are considering by IT;plit (f oh) I, from Proposition 

3.l(ii) of [29] we immediately have 

IT 1 _ (f h)I q + l - 2gy'Q _ 1Ram1 (M: lFq(t))I 
split o ~ I GI 2 • (6.5) 
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We proceed by proving an upper bound on the size of G, which in turn gives the wanted 

lower bound for IT;plitU o h)I 

Let T be the rooted tree of height 2 with deg(!) branches and deg(h) roots adjacent to 

each branch. One can easily see that G ~ Aut(T), so because Aut(T) is isomorphic to the 

wreath product (Gh x • • • x G~) ~ Gt , we have IGI ~ IGhldeg(f)IGtl • 
v 

deg(!) 
Combining (6.5) with the bound on IGI, we obtain 

C > q + l - 2gy'q _ 1Ram1(M : lFq(t))I 
- IGhldeg(f)IG1I 2 

D 

Note that the bound given in the previous lemma can be written more explicitly as 

C > (q + 1) - 2gy'q _ deg(!) deg(h) 
- IGhldeg(f)IGtl 2 

Proposition 6.15. Let f, h E lFq[x] be polynomials such that f(h)-t has Galois group G and 

the splitting field M off ( h) - t has constant field equal to lF q · Then there exists an optimal 

HLRC with parameters [deg(J(h))C, k , d, deg(h) - 1, deg(f(h)) - .X , .X] for any .X < deg(h), 

where the implied constant can be made explicit, Gt (resp. Gh) is the Galois group off - t 

(resp. h - t), and k is as in Lemma 6.11 . 

Remark 6.16. Notice that the condition of having trivial constant field extension is auto­

matic once there is a single totally split place, and it is the generic situation if the polynomials 

are chosen at random. 

Proof. Since M has trivial constant field lFq, Lemma 6.14 guarantees that there exist at least 
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totally split places, i.e., elements to of lFq such that J(h) - to is totally split. Now Lemma 

6.6 guarantees that the evaluation set T consisting of the preimages of the t0 's forms a nest 

for the pair (J, h) (see Remark 6.9). Construct the code by evaluating the polynomials in 

(6.2) at the subset A of preimages of T via J(h) , i.e. A = (Jo h)-1(T), which has size 

deg(J(h))£. The hierarchy is now given by the nest structure in the sense of Remark 6.9 and 

the parameters obtained from Section 6.3. □ 

6.5 Practical Choice of Parameters to Construct Optimal HLRCs 

The construction we presented in the previous sections allows us to exhibit some inter­

esting examples of HLRCs. To begin with, we consider the case lF64 . Choosing f and h 

such that deg(!) = deg(h) = 3 and £ = 7, our construction gives rise to a (63, k, d, 2, 5, 2) 

HLRC, where the values of k and d depend on the choice of s in Construction 6.10. In fact , 

the first locality b equals deg(h) - 1, whereas the second locality (a= 5) can be computed 

by following the passages of Section 6.3.3. This means that we are able to recover 1 (resp. 

2) lost node(s) by looking at 2 (resp. 5) other nodes. We point out that the Tamo-Barg 

construction for availability over the field of size 64, under the same first locality assumption 

(b = 2), forces to have length 21 (with locality sets of size 3 and 7), whereas ours permits to 

have length 63, leading to a much better minimum distance and a larger number of servers 

allowed. More precisely, the Tamo-Barg construction requires the use of two orthogonal 

partitions, and this can be achieved by using 21 symbols corresponding to the action of x3 

and of x7 on JF64 \ {0}. Note further that their construction has a larger second locality: 7, 

against our better parameter a= 5. 
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APPENDIX A: 

THE GENUS OF A FUNCTION FIELD 

This appendix is dedicated to formally defining the genus of a function field. We closely 

follow the exposition from [35]. 

Let F/ K be a function field with full constant field K, where K is algebraically closed. 

Recall that a place P ~ F of F / K is the unique maximal ideal of a valuation ring O ~ F in 

F and that given P we can define a discrete valuation vp : F ➔ NU { oo }. 

Definition A.1. The divisor group Div(F/K) of F/K is defined as the (additively written) 

free abelian group which is generated by the places of F / K. The elements of Div( F / K) are 

called divisors of F / K. More explicitly, a divisor D E Div(F / K) is a formal sum 

where each np E Zand only finitely many np are nonzero. 

For Q E JPlp and D = I: npP E Div(F), we define VQ(D) = nQ . 

A partial ordering on Div(F) is defined by 

The degree of a divisor is defined to be 

deg(D) = L vp(D) • deg(P) . 
PE I? p 
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A divisor D E Div(F) is called principal if there is some x E F such that D 

I:PEIPF vp(x)P. If such an element x E F exists, we will write D = (x). 

Our next definition is of great import in algebraic function field theory. 

Definition A.2. For a divisor D E Div(F), we define the Riemann-Roch space associated 

to D by 

£(D) = {x E F : (x) ~ -D} U {0}. 

Given a divisor D E Div(F), the Riemann-Roch space £(D) forms a vector space over 

K . In particular, this vector space is of finite dimension. 

Definition A.3. For DE Div(F), we define the dimension R(D) of the divisor D by R(D) = 

dimK £(D). 

Now, for a divisor DE Div(F) we have defined both the degree and the dimension of D. 

The following proposition shows that the degree deg(D) and the dimension R(D) cannot be 

"too far apart ," and this property is independent of the choice of D. 

Proposition A.4 ([35, Proposition 1.4.14]). There is a constant 'Y E Z such that for all 

divisors DE Div(F) the following holds: 

0 ~ deg(D) - R(D) + 1 ~ 'Y· 

We are now ready to define the genus of a function field. 

Definition A.5. The genus g of the function field F / K is defined to be 

g = max {deg(D) -R(D) + 1}. 
DEDiv(F) 
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