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ABSTRACT

The principal ideal problem (PIP) is the problem of determining if a given ideal of a number field is principal,

and if so, of finding a generator. Algorithms for resolving the PIP can be efficiently adapted to solve many

hard problems in algebraic number theory, such as the computation of the class group, unit group, or S-unit

group of a number field. The PIP is also connected to the search for approximate short vectors, known as the

γ-Shortest Vector Problem (γ-SVP), in certain structured lattices called ideal lattices, which are prevalent

in cryptography. We present an algorithm for resolving the PIP that leverages the norm relation techniques

of Biasse, Fieker, Hofmann, and Page [20] to efficiently reduce the PIP in certain number fields to instances

of the PIP in subfields. Our algorithm is focused on practical performance and we demonstrate its viability

by resolving instances of the PIP in cyclotomic fields of degree up to 1800. We further adapt this technique

to the problem of finding mildly short vectors, solutions to γ-SVP for γ = 2Õ(
√
n), in an ideal lattice of a

cyclotomic field. Cramer, Ducas, and Wesolowski [28, 29] show that the search for mildly short vectors in

such a lattice reduces efficiently to the PIP on a quantum computer. We describe a classical variant of this

reduction that applies to non-cyclic cyclotomic fields, demonstrating that our technique implies a polynomial

improvement over the state of the art in almost all cyclotomic fields. We further show that there are infinite

families of cyclotomic fields where this approach achieves a superpolynomial improvement over the state of

the art.

iv



CHAPTER 1

INTRODUCTION

For hundreds of years mathematicians have been interested in the algebraic properties of numbers for their

own sake. That these properties would come to be a cornerstone of modern cryptography is no surprise, as

their study has produced a large number of well-known, computationally hard problems. In 1987 Zassenhaus

[61] summarized four central tasks of algorithmic algebraic number theory. Tasks three and four on this list

are the computation of the unit group and class group of a number field respectively (tasks one and two are

the computation of its Galois group and ring of integers). Both tasks three and four are closely connected

to the so-called Principal Ideal Problem (PIP), the problem of determining if a given ideal is principal, and

if so, recovering a generator.

1.1 The Principal Ideal Problem

Let K be a number field with ring of integers OK and discriminant ∆K . In general, resolution of the

PIP for ideals of OK relies on the computation of the ideal class group of OK , denoted Cl(OK). A classical

result of algebraic number theory is that Cl(OK) is a finite abelian group, but determining its order and

structure (decomposition into a direct product of cyclic subgroups) appears to be a hard problem.

The study of class groups goes back to Gauss [37] who studied the group of equivalence classes of certain

binary quadratic forms, which we now know as another interpretation for the class group of a quadratic

field. In 1801 Gauss gave an algorithm for computing the class number hK = |Cl(OK)| in time O(∆
1/2
K )

for imaginary quadratic fields [37, Article 305]. Approximately 170 years later, Shanks [70, 71] improved

this to O(∆
1/4+ϵ
K ), or O(∆

1/5+ϵ
K ) under the assumption of the Extended Riemann Hypothesis (ERH) (for a

complexity analysis see [46, 69] or [40, Theorem 10.6]). However, these results are limited to quadratic fields

and take time exponential in the bit-length of the discriminant. Furthermore, it requires more work to then

determine the structure of the class group from it’s order.

In 1989 Hafner and McCurly [38] described an algorithm for computing the class group of an imaginary

quadratic field in time subexponential in the bit-length of the discriminant. This was subsequently general-

ized by Buchmann [22] to the case of an arbitrary number field with fixed degree with practical improvements

by Cohen, Diaz y Diaz, and Olivier [27]. In 2014 Biasse and Fieker [14] gave a heuristic subexponential algo-
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rithm for computing the class group in all classes of number fields, with an improved asymptotic complexity

when specialized to the case of cyclotomic fields [18]. Despite these improvements class group computation

remains a hard problem and advancements show no signs of breaking the subexponential barrier in the

general case.

In the particular case of multiquadratic fields, fields of the form Q(
√
d1, . . . ,

√
dn) for di ∈ Z, it was

demonstrated by Bauch, Bernstein, de Valence, Lange, and Van Vredendaal that it was possible to reduce an

instance of the PIP to multiple instances of the PIP in subfields [5]. This was generalized to the computation

of the class group of multiquadratics (by way of the S-unit group) by Biasse and Van Vredendaal [17], who

showed that for certain choices of di the class group could be computed in polynomial time. A similar

approach was used by Lesavourey, Plantard, and Susilo [47] in the case of multicubic fields, number fields

generated by cube roots of integers.

In 2020, Biasse, Fieker, Hofmann, and Page [20] generalized the methods of [5, 17, 47] to arbitrary non-

cyclic number fields using an object known as a norm relation. They showed how to compute invariants of

a number field by exploiting its subfield structure, and using norm relations they computed the class group

structure (as an abstract abelian group) of a cyclotomic field of degree 1728 in just 4 hours on a single core

machine, a massive improvement over the state-of-the-art. In Chapter 3 we recall important details on norm

relations from [20] and provide some examples which hopefully illuminate their utility. In Chapter 4 we show

how norm relations can be used to solve the PIP in various ways, and describe a variant that is optimized

for practical performance.

1.2 Ideal Lattices and Cryptography

The problem of integer factorization is widely believed to be hard on a classical computer. This presumed

difficulty is at the core of the security of the widely used RSA public key cryptosystem [64]. However, in 1994

Shor [73] proposed the first polynomial time algorithm for factoring integers, and more generally, solving

the discrete logarithm problem, with a quantum computer. This discovery renders RSA (among other

cryptosystems) useless in the post-quantum setting, motivating the research of new problems and security

assumptions able to resist an adversary equipped with a quantum computer.

The seminal work of Regev [63] describes a quantum reduction from certain worst-case problems in

lattices to a learning problem called Learning With Errors (LWE). In other words, cryptosystems whose

security is based on the hardness of LWE are then based on the worst-case quantum hardness of lattice

problems such as the decisional version of the Short Vector Problem (SVP). Hence LWE provides a strong

foundation for the security of lattice-based cryptosystems. In an effort to increase efficiency of LWE-based
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cryptosystems Lyubashevsky, Peikert, and Regev defined a variant of LWE called Ring Learning With Errors

(Ring-LWE) [49]. In contrast to the Euclidean lattices of LWE, Ring-LWE is instantiated over cyclotomic

integer rings and relies on the hardness of the approximate search variant of SVP, γ-SVP, in ideals of a

cyclotomic field, for polynomial approximation factor γ.

Furthermore, γ-SVP in an ideal lattice and the PIP are closely related. In 2016 Biasse and Song [16]

gave an efficient quantum algorithm for resolving the PIP in a arbitrary number field. Cramer, Ducas,

Peikert, and Regev showed that γ-SVP in a principal ideal of a prime-power conductor cyclotomic field with

γ ∈ 2Õ(
√
n) efficiently reduces to the PIP [30] on a quantum computer. Following the convention of [28] we

will refer to a solution to γ-SVP with γ = 2O(
√
n) as a mildly short vector. Combining the above results we

see that there is an efficient quantum algorithm for finding mildly short vectors in principal ideal lattices

of prime-power conductor cyclotomic fields. Cramer, Ducas, and Wesolowski [29] extended this work by

exhibiting a quantum reduction from the search for a mildly short vector in a general (i.e. not necessarily

principal) ideal of Q(ζ2k) to an instance of the PIP, and further generalized this to arbitrary cyclotomic fields

in [28]. We refer to this reduction as CDW.

As we alluded to earlier, the security proof of Ring-LWE relies on the hardness of γ-SVP for a polynomial

approximation factor γ. As a mildly short vector is only a solution to γ-SVP for subexponential γ these

results have no impact on the security of Ring-LWE. However, in the case of an arbitrary Euclidean lattice

the BKZ algorithm [65] finds a mildly short vector in time 2Õ(
√
n), and as of right now this is the best one

can hope for in an arbitrary lattice. Thus the existence of an efficient quantum algorithm for finding mildly

short vectors in cyclotomic ideal lattices demonstrates a gap in the hardness of lattice problems in structured

lattices versus general lattice.

1.3 Outline

The goal of this work is to employ the norm relations of [20] in the resolution of the PIP and the search

for mildly short vectors in ideal lattices. In Chapter 2 we introduce preliminary results. We recall some

technical details regarding the saturation of multiplicative groups in Section 2.3. In Section 2.4 we give

a concise description of compact representations of field elements alongside a complexity analysis, and in

Section 2.5 we discuss the heuristic subexponential algorithms for resolution of the PIP and related problems.

Chapter 3 summarizes the main results on norm relations of [20]. We provide a slightly simplified exposition

and examples that demonstrate the utility of norm relations, as well as families of fields where norm relations

can yield impressive asymptotic improvements compared to algorithms over general number fields.

3



In Chapter 4 we investigate the application of norm relations to resolution of the PIP. We begin with a

simple method in Section 4.1 where we analyze the asymptotic complexity. We find that in certain families of

fields, norm relations allow resolution of the PIP in time 2n
o(1)

. In Section 4.2 we further develop saturation

techniques to the particular case of finding roots modulo multiplicative groups. We use this in Section 4.3

to reduce the problem of ideal decomposition to subfields with the same asymptotic cost as resolution of

the PIP. In Section 4.4 we give an alternative algorithm for resolution of the PIP optimized for practical

performance and demonstrate its viability by solving instances of the PIP in cyclotomic fields of degree up

to 1800.

We then consider the applications of these results to finding mildly short vectors in ideal lattices of a

cyclotomic field in Chapter 5. In Section 5.1 we review the case of principal ideals, where the search for

mildly short vectors efficiently reduces to the PIP [30, 81]. In Section 5.2 we recall the core components of the

efficient quantum reduction of [28, 29] in the case of an arbitrary ideal. We give an algorithm for computing

generators of the minus part of the class group in Section 5.3, used in the description of a classical analogue

of the CDW reduction which we provide in Section 5.4. We show that, using the results of Chapter 4, our

classical variant can find mildly short vectors in arbitrary ideals in time 2n
o(1)

in certain families of fields.

In Section 5.6 we provide numerical evidence in support of heuristic assumptions made in [28, 29] used to

justify the asymptotic cost of the CDW reduction. Finally, we implemented our classical variant of the CDW

reduction and report our findings in Section 5.6.3.

Much of Chapter 4 is based on unpublished joint work with Jean-François Biasse, Claus Fieker, and

Tommy Hofmann. Chapter 5 and Section 4.3 are based on the following joint work with Jean-François

Biasse, Muhammed Rashad Erukulangara, Claus Fieker, and Tommy Hofmann [19]:

J.-F. Biasse et al. “Mildly Short Vectors in Ideals of Cyclotomic Fields Without Quantum Comput-

ers”. In: Mathematical Cryptology 2.1 (Nov. 2022), pp. 84–107. url: https://journals.flvc.org/

mathcryptology/article/view/132573
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CHAPTER 2

BACKGROUND

We use Bachmann-Landau notation to compare the asymptotic behavior of functions. Given functions

f and g, we say f(x) ∈ O(g(x)) (or by abuse of notation, f(x) = O(g(x))) when |f(x)| ≤ Cg(x) for some

constant C ∈ R>0 and sufficiently large x. We say f(x) ∈ o(g(x)) when for every c ∈ R>0, |f(x)| ≤ cg(x)

for sufficiently large x. Furthermore, f(x) ∈ Õ(g(x)) if f(x) ∈ O(g(x) logk(g(x))) for some k ∈ N. In other

words, Õ hides logarithmic factors. We say a function is polynomial in x when it is in O(xk) for some k ∈ N.

We will sometimes denote this Poly(x).

2.1 Lattices and Hard Lattice Problems

A lattice L is an additive, discrete subgroup of an m-dimensional R-vector space of the form L =

Zb1+ · · ·+Zbn where (b1, . . . , bn) are linearly independent vectors. The tuple (b1, . . . , bn) is called a basis of

L and is not unique. We say L has full rank if m = n. Let B be the m× n matrix with columns b1, . . . , bn.

The determinant of L is defined as det(L) =
√
det(BTB) and is sometimes referred to as the volume Vol(L).

We denote by λ1(L) the l2-norm of the shortest non-zero vector of L. More generally, the successive

minima of L are λ1, . . . , λn ∈ R such that λi is minimal and that there are independent vectors v1, . . . , vn ∈ L

such that ∥vj∥2 ≤ λi for 1 ≤ j ≤ i. There are a number of hard problems surrounding the search for short

vectors in a lattice. We formally state some of these problems that we will be referencing throughout this

work.

Definition 2.1 (Shortest Vector Problem (SVP)). Given a basis (b1, . . . , bn) for a lattice L, find v ∈ L such

that ∥v∥2 = λ1(L).

Definition 2.2 (Shortest Independent Vector Problem (SIVP)). Given a basis (b1, . . . , bn) for a lattice L,

find n linearly independent vectors v1, . . . vn ∈ L such that ∥vi∥2 ≤ λn(L).

Definition 2.3 (γ-Shortest Vector Problem (γ-SVP)). Given a basis (b1, . . . , bn) for a lattice L, find v ∈ L

such that ∥v∥2 ≤ γλ1(L).

Definition 2.4 (γ-Shortest Independent Vector Problem (γ-SIVP)). Given a basis (b1, . . . , bn) for a lattice

L, find n linearly independent vectors v1, . . . vn ∈ L such that ∥vi∥2 ≤ γλn(L).

5



The LLL algorithm solves γ-SVP for γ ∈ 2O(n) in time polynomial in n. Exponential algorithms such as

sieve methods [2] can solve exact SVP in time 2O(n), while the BKZ algorithm [65] allows one to solve γ-SVP

for γ ∈ 2O(n/k) in time 2O(k). In particular, the time to solve γ-SVP for γ ∈ 2Õ(
√
n) is in 2Õ(

√
n). In [28],

solutions of γ-SVP for γ ∈ 2Õ(
√
n) are referred to as mildly short vectors and we adopt this terminology.

2.2 Number Theory

Let K be an algebraic number field of degree n, that is, a finite extension of the rational numbers Q with

n = [K : Q]. Let α ∈ K. Its minimal polynomial is the unique monic irreducible polynomial f ∈ Q[x] with

f(α) = 0, and we call α integral if the minimal polynomial is in Z[x]. The set of all integral elements of K is

a subring of K, which is called the ring of integers of K and which is denoted by OK . The ring of integers

OK as well as all non-zero ideals of OK are free Z-modules of rank n. For a non-zero ideal a of OK the

quotient OK/a is a finite abelian group, whose order is called the norm of a and which we denote by N(a).

By setting N({0}) = 0 for the zero ideal, the norm becomes a multiplicative map on the set of all ideals of

OK . Any Z-basis of OK is called an integral basis. Given such an integral basis ω1, . . . , ωn, we denote by

∆K = det((TrK/Q(ωiωj))1≤i,j≤n the discriminant of K, whose value is independent of the chosen integral

basis. The degree of any number field K is polynomial in log|∆K | and we will use this to simplify complexity

statements accordingly [58]. Some of the results we describe will be dependent on the Generalized Riemann

Hypothesis (GRH), a statement about the zeros of the Dedekind zeta function ζK . We will clearly state

when this is the case.

For a non-zero prime ideal p of OK we will denote by Kp the p-adic completion of K, by vp the p-adic

valuation and by kp = OK/p ∼= OKp
/pOKp

the residue field at p. We use a bar notation to denote cosets

of various multiplicative groups, and ⟨X⟩ to denote the subgroup generated by X. A fractional ideal of K

is a non-zero OK-submodule of K, or equivalently, a set of the form a
d , where a is a non-zero ideal of OK

and d ∈ Z, d ̸= 0. The set IK of fractional ideals of K is an abelian group with respect to multiplication

with neutral element OK . The inverse of a fractional ideal a is given by a−1 = {x ∈ K | xa ⊆ OK}. The

group of fractional ideals is free on the set of non-zero prime ideals of OK and therefore the norm map

extends uniquely to a group homomorphism IK → Q, which we also denote by N. Of particular interest are

principal fractional ideals, which are the fractional ideals of the form αOK with α ∈ K×. The set PK of

principal fractional ideals is a subgroup of the abelian group IK . The quotient group IK/PK is the (ideal)

class group of OK or K, which we denote by Cl(OK). A classical theorem of algebraic number theory asserts

that Cl(OK) is a finite group [54, Theorem 6.3]. We denote its order by hK and call it the class number of

OK or K. When two fractional ideals a and b are in the same ideal class, we denote this as a ∼ b. We call
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K = Q(ζm) the cyclotomic field of conductor m where ζm is the m-th primitive root of unity, and denote its

totally real subfield by K+ := Q(ζm + ζ−1
m ). Define h+

m as the class number of K+ and the minus part of

the class group Cl−(OK) as the kernel of the relative norm map NK/K+ : Cl(OK) 7→ Cl(OK+) which maps

[a] 7→ [aa], where · denotes complex conjugation. The cardinality of Cl−(OK) is denoted by h−
m and we have

hm = h+
mh−

m.

Since K is of degree n, there are n embeddings σ:K → C which can be classified as follows: If the

image of σ is contained in the real numbers R, we call σ a real embedding of K. Otherwise σ is called a

complex embedding. Because of complex conjugation, the complex embeddings of K always come in pairs.

If 2s denotes the number of complex embeddings and r the number of real embeddings, then (r, s) is the

signature of K. The Minkowski embedding is the map K → Rr ⊕ Cs, or equivalently K → Rn induced

by the embeddings of K modulo complex conjugation. Denote by σ1, . . . , σr the real embeddings and by

σr+1, σr+1, . . . , σr+s, σr+s the complex embeddings. We call K totally real if all embeddings are real and

totally complex if all embeddings are complex.

As an ideal a ⊂ OK is free Z-module with a Z-basis (α1, . . . , αn), we can view it under the Minkowski

embedding as a full rank lattice in Rn called the ideal lattice with volume Vol(a) =
√
|∆K |N(a). By [28] we

have the following relationship between the shortest vector of an ideal and its algebraic norm.

1

Poly(n)
N(a)1/n ≤ λ1(a) ≤ Poly(n)N(a)1/n.

Given an embedding σ of K, α 7→ log|σ(α)| is a group morphism mapping K× → R. We obtain the

logarithmic embedding

Log:K× −→ Rr+s, α 7 −→ (log(|σ1(α)|), . . . , log(|σr+s(α)|)).

The celebrated theorem of Dirichlet asserts that Log(O×
K) is a lattice of rank r+ s− 1 and ker(Log) is equal

to the torsion units of K. In particular O×
K
∼= Zr+s−1 × T , where T are the torsion units of K. For a

set S of prime ideals of OK we denote by OK,S the ring of S-integers, that is, the elements x ∈ K with

vp(x) ≥ 0 for all p ̸∈ S, and O×
K,S the group of S-units, i.e., the elements x ∈ K× such that vp(x) = 0 for

all p ̸∈ S. Equivalently, O×
K,S is the multiplicative group of all α that generate a principal ideal of the form

(α)OK =
∏

p∈S pxp .
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2.3 Saturation of Multiplicative Groups

In the course of computing the unit group or S-unit group of a number field K we often first compute

a finite index subgroup from which we wish to deduce the full group. More generally, assume we are given

a subgroup V of W where W ⊆ K×. If [W : V ] = m then for some d dividing m there exists an element

α ∈ W such that αd ∈ V but α ̸∈ V . By finding such elements, taking their d-th roots, and enlarging V

by adding these roots to its set of generators, we can reduce the index [W : V ]. We refer to this process

as saturation.

We define the d-saturation W of V as the smallest group W ⊆ K× with V ⊆W where K×/W is d-torsion

free. We say the group V is d-saturated if it equals its d-saturation.

Lemma 2.5 ([20, Lemma 4.3]). Let V ⊆ K× be finitely generated. Then the following hold.

1. The d-saturation of V contains the d-torsion of K×.

2. The group V is d-saturated if and only if V is p-saturated for all primes p dividing d.

3. For a prime p the group V is not p-saturated if and only if there exists α ∈ K× \ V with αp ∈ V . In

this case p divides the index [⟨V, α⟩ : V ].

4. Let p be a prime and assume that V contains the p-torsion of K×. Then V is p-saturated if and only

if V ∩ (K×)p = V p.

In practice, saturation techniques employ local computations to detect global powers. This is a well

known technique in computational algebraic number theory, used for example in the class and unit group

computation of number fields ([60, Section 5.7]) or the number field sieve ([1]). Note that, in contrast to

previous applications of this technique, in our case the number d is in general not a prime. However, by

Lemma 2.5 we may assume that d is a prime power, since it is enough to p-saturate at each prime p dividing

d.

Let S be a finite set of prime ideals of OK . Recall that Kp is the completion of K at the prime p.

Consider the following map

K×/(K×)d −→
∏
p̸∈S

K×
p /(K×

p )d.

If this map is an injection then it follows that any element that is locally a d-th power for each p ̸∈ S is a

d-th power globally. This is a variation of the Hasse local-global principle. It turns out that by the following

theorem of Grunwald–Wang (see [3, Chapter X] or [55, Chapter IX, §1]) this is not always true, and there

is an obstruction to this local-global principle in certain cases.
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Theorem 2.6 (Grunwald–Wang). Consider the canonical map

K×/(K×)d −→
∏
p̸∈S

K×
p /(K×

p )d.

Either this map is injective or the kernel is cyclic of order 2.

If the map of Theorem 2.6 is injective we say we are in the ”good case”, otherwise, using the terminology

of [19], we say we are in the ”bad case”. This is also referred to as the ”special case” in the literature. For

k ∈ Z≥1 denote by ζk a primitive k-th root of unity and set ηk = ζk + ζ−1
k . Let s ≥ 2 be an integer such

that ηs ∈ K but ηs+1 ̸∈ K. We have a straightforward criterion for determining which case we are in. Recall

that d is a prime power. We are in the bad case when the following conditions are simultaneously satisfied [3,

Chapter X, Theorem 1]:

1. d = 2t with t > s.

2. The elements −1, 2 + ηs and −(2 + ηs) are non-squares in K.

3. We have {p | 2 ∈ p and −1, 2 + ηs and −(2 + ηs) are non-squares in Kp} ⊆ S.

Given d, it is straightforward to test conditions (1) and (2). To test condition (3), it is sufficient to

determine all prime ideals p lying over 2 such that −1, 2 + ηs and −(2 + ηs) are non-squares in Kp. Being

locally a square can be checked using the so-called quadratic defect [56, §63.A], which can be computed

using an efficient algorithm due to Kirschmer [41, Algorithm 3.1.3]. Thus given K, d and S, we can always

check whether we are in the good case or not. Although the conditions for being in the bad case look rather

complicated, this situation is not as rare as it might appear. More precisely, if K is linear disjoint from the

cyclotomic field Q(ζ8), then we are always in the bad case for d = 2t, t ≥ 3. Thus for almost all fields we

are in the bad case at the prime 2.

2.3.1 The Good Case

Finding d-th powers in the good case can be done exclusively by detecting local d-th powers modulo a set

of prime ideals. Recall that for a set S of prime ideals of OK we denote by OK,S the ring of S-integers, that

is, the elements x ∈ K with vp(x) ≥ 0 for all p ̸∈ S, and O×
K,S the group of S-units, i.e., the elements x ∈ K×

such that vp(x) = 0 for all p ̸∈ S. Recall that kp = OK/p ∼= OKp
/pOKp

is the residue field of K at p. We

use the following proposition to detect local powers.
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Proposition 2.7 ([20, Proposition 4.5]). Assume that p is a non-zero prime ideal with d ̸∈ p and let ϖ ∈ K

be a local uniformizer at p, that is, an element with vp(ϖ) = 1. Then the map

K×
p /(K×

p )d −→ Z/dZ× k×p /(k
×
p )

d, x̄ 7 −→ (v, xϖ−v) where v = vp(x),

is an isomorphism.

By Proposition 2.7 if we restrict to degree 1 prime ideals then we are working in kp = Fp, which simplifies

the computations needed. Denote the map of Proposition 2.7 by χp. Note that χp induces a map on V/V d

for any V ⊆ K×. The following propositions show that we can compute the d-saturation of V ⊆ K× by

computing sufficiently many kernels of the χp.

Proposition 2.8 ([19, Proposition 2]). Assume that we are in the good case of Grunwald–Wang. For a

multiplicative finitely generated subgroup V ⊆ K× we have

(V ∩ (K×)d)/V d =
⋂
d ̸∈p

ker(χp:V/V
d → Z/dZ× k×p /(k

×
p )

d).

Furthermore, there exists c0 ∈ R>0 (depending on K,V and d) such that

(V ∩ (K×)d)/V d =
⋂

d̸∈p,N(p)≤c0

ker(χp:V/V
d → Z/dZ× k×p /(k

×
p )

d).

Proof. The first part is [20, Proposition 4.6]. As V is finitely generated, V/V d is a finitely generated (Z/dZ)-

module. Thus V/V d is Artinian and the existence of c0 follows from the first part.

Proposition 2.9. Let c ∈ R>0, V ⊆ K× finitely generated, let d be a power of a prime and let m be the

dimension of the intersection

⋂
d ̸∈p,N(p)≤c

ker(χp:V/V
d → Z/dZ× k×p /(k

×
p )

d) ⊆ V/V d.

Assume it is generated by the classes of α1, . . . , αm ∈ V .

1. If m = 0, then V is d-saturated.

2. Assume that V is not d-saturated. Then if c is sufficiently large, there exists 1 ≤ i ≤ m such that αi

is a d-th power.

3. Assume that V is d-saturated. Then for c sufficiently large we have m = 0.
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Proof. Write W/V d for the intersection. Since (V ∩ (K×)d)/V d ⊆ W/V d, (1) follows from Lemma 2.5. For

(2) and (3) we take c > c0 for the c0 of Proposition 2.8, so (V ∩ (K×)d)/V d = W/V d. If V is not d-saturated

then m ̸= 0 and there is some αi ∈ V ∩(K×)d which is a d-th power. For (3), as d-saturation and p-saturation

coincide when d is a prime power the result follows from [20, Proposition 4.8].

Proposition 2.9 is adapted from the version of [20, Proposition 4.8] which addresses the p-saturation of

some V ⊆ K×. While d-saturation and p-saturation coincide when d is a prime power (by Lemma 2.5) the

distinction is that we can find d-powers directly instead of iteratively working with p-powers. Proposition 2.8

shows we can find an upper bound c0 on the norms of primes required, so we only need to compute finitely

many intersections. In [20] a concrete bound is found under GRH. However, in practice we typically want to

explicitly compute the d-saturation of V , for example to find generators for the unit group or S-unit group

of K. So once we find a d-th power by Proposition 2.9 we will want to take the root anyway. If this is the

case, there is no need to use primes up to c0. If Proposition 2.9 finds the dimension of the intersection of

kernels is 0 then we know the input is d-saturated. Otherwise, we have some candidate αi that may be a

d-th power, which we can test by explicitly computing the root. If this succeeds we are done, otherwise we

need to increase the number of primes and continue. If we don’t want to compute the root and just detect

powers then we can use the bound c0, which can be useful for decisional problems.

2.3.2 The General Case

In general, we may have d = 2t and be in the bad case of Grunwald–Wang. The solution to this is

relatively simple. We can iteratively apply Proposition 2.9 with d = 2 (or even d = 4). If we find that V is

not 2-saturated, we find an element which is a power of 2, compute its root, and add this to our generating

set for V . Then we repeat the process. In practice this may be more computationally expensive than in the

good case as it involves more root computations, but it does not change the overall asymptotic complexity.

This is also the general strategy taken in [20], for any input d.

2.4 Compact Representation

It is evident from the previous section that saturation of multiplicative subgroups of K× involves the

computation of roots in K×. More precisely, given δ ∈ K and d ∈ Z>0, we need to decide whether there

exists an element γ ∈ K such that γd = δ (and if so, then compute γ). Since δ will in general be quite

large, we first compute a compact representation with respect to d, which amounts to finding small elements

δ0, . . . , δk ∈ K such that

δ = δ0 · δd1 · · · · · δd
k

k .
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The advantage, of course, is that computing a d-th root should now be easier as we only need to compute a

root of δ0.

This presentation was introduced by Thiel [76] for units. An algorithm for finding such a presentation

for S-units goes back to lecture notes of Fieker and has subsequently been used in [13, 14, 16, 34]. To the

best of our knowledge, nobody has carefully analyzed this algorithm. Given such a presentation, it is clear

that δ is a d-th power if and only if δ0 is a d-th power. For the latter task, we use Hensel lifting of the linear

factors of Xd − δ0 ∈ K[X] modulo a non-zero prime ideal p of OK , as described in [33]. To evaluate the

performance of the compact representation, we need a notion of size of an element in K.

Recall that the number field K has n = [K : Q] distinct embeddings σi:K → C. In the following, for

an element α ∈ K, we denote by α(i) = σi(α), the image under such an embedding. The T2-norm of α is

defined to be

∥α∥= (
∑

1≤i≤r+2s

|α(i)|2)1/2,

which is just the Euclidean norm of α under the embedding K → Cd. For positive real numbers (wi)1≤i≤d,

we denote by

T2,(wi)i(α) =
∑

1≤i≤r+2s

wi · |α(i)|2

the square of the weigthed T2-norm. The value ∥α∥ is a good measure for the size of an element α. Indeed,

as recalled in [15, Sec. 3], the maximum absolute value of a coefficient of α ∈ OK when represented on an

LLL-reduced integral basis is less than 23n/2∥α∥, and, when α = α0/d for d ∈ Z>0 and α0 ∈ OK , the bit

size S(α) of α is less than n
(
3n
2 log∥α∥+ log(d)

)
.

Algorithm 1: Compact representation algorithm

Input : α ∈ OK , such that N(α) has known factorization, and an integer d > 1

Output: α0, . . . , αk such that α =
∏

i α
di

i

1 t← max(N(α), 2);

2 Ai ←
∏

p p
⌊(vp(α) mod di+1)/di⌋ for i = 0, . . . , logd log(t) and Ai ← OK for i > logd log(t);

3 Find D such that N(Ai) ≤ D for all i = 0, . . . , logd log(t);

4 Find k such that dk
√
|α(j)| ≤ D for all 1 ≤ j ≤ d;

5 I ← OK ;
6 while k > 0 do
7 I ← IAk;

8 wj ← dk
√
|α(j)| for j = 1, . . . , d, w ← d

√∏
wi;

9 Find γk a T2,(wj/w)j -LLL-short element in I−1;

10 α← αγdk

k , I ← I · (γ);
11 k ← k − 1;

12 I ← Id;

13 end

14 return: (γ−1
i )i=0,...,k;
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Theorem 2.10. Algorithm 1 is correct and runs in time

Poly(log|∆K |, d,S(α)).

Proof. First of all, notice that the ideal I · (γ) is always integral, so I is always integral. By using LLL, in

Step 9, N(I · (γ)) is bounded by C ·
√
|∆K | where C is the approximation factor in LLL. Therefore, N(I) has

polynomial bit size. In Step 8, we have w = n

√∏
j wj = n

√
dk
√
|N(α)|. Now at the beginning of the while

loop (before executing Step (7)) we always have αOK = Id
k ∏k

i=0 A
di

i . Thus, dk
√
|N(α)| stays bounded, and

w as well.

We show next that ∥(wj)j∥2 is bounded during Steps (6)–(11). This is true at the beginning as k is taken

large enough for this to be correct. The update at Step (10) implies that (wj)j ← ((wj · |γ(j)|)d)j , where

γ = γk+1. We then have

∥((wj · |γ(j)|)d)j∥2≤ ∥(wj · |γ(j)|)j∥d2.

Now

∥(wj · |γ(j)|)j∥22= T2,(wj)j (γ) = w2 · T2,(wj/w)j (γ) ≤ C ′

since w is bounded, and T2,(wj/w)j (γ) is bounded as well because it is LLL-reduced.

Finally, γ ∈ I−1, but N(I) is bounded, hence so is the denominator of γ. From the bound on ∥(wj)j∥2

and the T2,(wj)j we get a polynomial bound on the total size of γ, and therefore on its inverse as well.

We now bound the size of D and k. Assume that α has support S, that is, α ∈ OK,S . Then

N(Ai) ≤
∏

p∈S N(p)d−1, which shows that we can choose log(D) = d · |S| ·maxp∈S log(N(p)) ∈ Poly(d, ∥α∥) =

Poly(d,S(α)). As |α(j)|≤ ∥α∥, we can choose k such that dk
√
∥α∥ ≤ D, which is true as soon as we have

(log log∥α∥− log log(D))/log(d) ≤ k. Hence k ∈ Poly(d, log∥α∥) = Poly(d, S(α)).

Corollary 2.11. Assume that α ∈ OK is given as α =
∏l

j=1 β
ej
j with βj ∈ K and ej ∈ Z and known

factorization of N(βj) for all 1 ≤ j ≤ l. Then Algorithm 1 runs in time

Poly(log|∆K |, d, l,max
j

S(βj),max
j

log(ej)).
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Proof. Let S be the support of α. Then as in the previous proof we can take D with log(D) = d · |S| ·

maxp log(N(p)) ∈ Poly(d,maxj S(βj)). Similar, it is sufficient to take k with log log∥α∥≤ k. As

log log∥α∥ = log

 l∑
j=1

ej log∥βj∥


≤ log(l)max

j
log(ej)max

j
log∥βj∥∈ Poly(max

j
log(ej),max

j
S(βj)),

the claim follows

Subfield unit calculations, and subfield resolutions of the PIP are assumed to be followed by a compact

representation routine. In both cases, the prime factorization of the input is known in advance, therefore

Fact(N(α)) = 0. Moreover, the product of a polynomial number of terms in compact representation can be

kept in a compact representation by direct multiplication of the terms. Therefore, the compact representation

algorithm is only executed in subfields. Then, operations on compact representations in field extensions have

polynomial run time.

2.5 Subexponential Methods For the PIP and Related Problems

In this section, we recall the main results of the subexponential method for computing the class group

and solving the PIP in number fields of large degree of [11, 14]. The first ingredient of this method is a

reduction algorithm that takes as input an ideal a ⊆ OK and returns another ideal of norm bounded by the

invariant of the fields only in the same ideal class as a.

Algorithm 2: BKZ-ideal reduction [14, Algorithm 2]

Require: a ⊆ OK and block size k > 0.
Ensure: b ⊆ OK and α ∈ K such that b = (α)a has bounded norm.
1: c

d ← a−1 where c ⊆ OK , and d > 0.
2: γ ← first element of a BKZ-reduced basis of c with block size k.
3: b← (γ/d)a
4: return b, (γ/d)

Proposition 2.12. Algorithm 2 with block size k runs in time

Poly(log|∆K |, log(N(a))) · 2O(k),

and returns b such that

• N(b) ∈ 2Õ(n2/k)
√
|∆K |.
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• log(d), log∥γ∥∈ Poly(log|∆K |, log(N(a))).

Proof. BKZ with block size k finds γ ∈ c such that

∥γ∥ ≤ kn/2k Vol(c)1/n

= kn/2k|∆K |1/2nN(c)1/n

in time Poly([K : Q], log(N(c))) · 2O(k) [66]. Moreover, we have d ≤ N(a) and

N(c) = N(da−1) ≤ dn/N(a) ≤ dn−1 ≤ N(a)n−1 ≤ N(a)n.

This shows the bounds on the bit size of d and ∥γ∥. Additionally, we have

N(b) =
N(γ)

N(d)
N(a) =

N(γ)

N(d)

N(d)

N(c)
≤ ∥γ∥

n

N(c)
≤

2Õ(n2/k)
√
|∆K |N(c)

N(c)
.

Given an input ideal a and a set of prime ideals S that generate Cl(OK), we want to return a decomposi-

tion of the ideal class of a over ⟨S⟩. This is done by multiplying short products of primes in S, BKZ-reducing

the resulting ideal, and hoping that it decomposes as a product of elements in S. To simplify the analysis, we

assume that S = {p prime ideals with N(p) ≤ 2(log|∆K |)2/3}. We use the fact that under the GRH, primes of

norm up to 12(log|∆K |)2 generate Cl(OK) [4], and that the class of an ideal multiplied by a short product

of such primes is almost uniformly distributed in Cl(OK). This procedure is described in Algorithm 3. Thus

Algorithm 3: Ideal decomposition [14, Algorithm 3]

Require: a ∈ OK .

Ensure: α ∈ K and (xi)i≤l ∈ Zl for some l with (α)a =
∏l

i p
xi
i and N(pi) ≤ 2Õ((log|∆K |)2/3).

1: S = {p prime ideals with N(p) ≤ 2(log|∆K |)2/3}, and l← |S|.
2: S0 = {p prime ideals with N(p) ≤ 12(log|∆K |)2}, and l0 ← |S|
3: while true do
4: (xi)i≤l

R←− [0, log|∆K |]l0 . a′ ← a
∏

i≤l0
pxi
i .

5: Compute BKZ-reduced b, α with Algorithm 2 on input a′, k = n2/3.
6: if b is S-smooth then
7: Compute y⃗ such that b =

∏
i≤l p

yi

i .

8: x⃗← y⃗ − x⃗||⃗0.
9: return α, x⃗

10: end if
11: end while

far, the run time of Algorithm 3 has only been analysed heuristically. The probability of b = (α)a′ to be
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S-smooth is not rigorously understood at this point, but there are rigorous results mentioned in [14, Sec.

3.1] showing that the proportion of ideals of norm less than ι that are a product of prime ideals of norm

less than µ is e−u log(u)(1+o(1)) where u = log(ι)/log(µ). Heuristic 1 of [14, Sec. 3.1] postulates that this is

also the smoothness probability of the reduced ideal a of Step 6. Due to the high connectivity of the Caley

graph of Cl(OK), we can argue that the ideal class of I ′ is distributed almost uniformly at random, but

so far, there is no rigorous proof of how the multiplication by α obtained with Algorithm 2 influences the

smoothness probability.

Conjecture 2.13 (Rephrasing of Heuristic 1 of [14]). Let k > 0, a be an ideal in a class of Cl(OK) that is

drawn uniformly at random, and a′ be the output of Algorithm 2 with input a and k. Then the probability of

a′ being a product of prime ideals of norm less than µ is e−u log(u)(1+o(1)) where u = log(N(a′))/log(µ).

Proposition 2.14 (under GRH and Conjecture 2.13). Algorithm 3 is correct, has asymptotic complexity

in Poly (log|∆K |, log(N(a))) · 2Õ((log|∆K |)2/3), and returns α = (γ/d), x⃗ ∈ Zl where γ ∈ OK , d ∈ Z>0, and

(γ/d)a =
∏

i≤l p
xi
i with

• log(d), log∥γ∥∈ Poly (log|∆K |) , log(N(a))).

• log∥x⃗∥∈ Poly (log|∆K |).

Proof. We apply Proposition 2.12 to the ideal a′ = a ·
∏

i≤l0
pxi
i . It satisfies

log(N(a′)) ∈ Poly (log|∆K |, log(N(a)))

which proves the bound on ∥γ∥ and d. Moreover, the runtime is Poly (log|∆K |, log(N(a))) · 2Õ(k) where

k = n2/3 is the block size used for the BKZ reduction, hence showing the cost of one reduction. Then, as-

suming Conjecture 2.13, the probability that the resulting reduced ideals a′ whose norms satisfy log(N(a′)) ∈

Õ
(
(log|∆K |)4/3

)
be S-smooth is in

1

2
Õ

(
(log|∆K |)4/3

(log|∆K |)2/3

) =
1

2Õ((log|∆K |)2/3)
.

This shows that the expected cost to find a relation is in Poly (log|∆K |, log(N(a))) · 2Õ((log|∆K |)2/3). Finally,

the size of the output vector derives from the fact that it is of the form y⃗− x⃗||⃗0 where log∥x⃗∥∈ Poly(log|∆K |)

by construction, while y⃗ is the decomposition of the BKZ-reduced ideal a′ with respect to S.

The general strategy to solve the PIP is to first apply Algorithm 3 to a = OK as many times as it takes in

order to compute a basis for the lattice L of vectors x⃗ ∈ Zl such that
∏

i p
xi
i ∼ (1), i.e. the so-called lattice of
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relations between elements of S. Then the input ideal a is decomposed with Algorithm 3, and it is principal

if and only if its decomposition vector x⃗ belongs to L. To justify the run time of Algorithm 4 we need to

make an additional heuristic, which corresponds to Heuristic 3 of [14]. It argues that the relations drawn

during Step 4 of Algorithm 4 are well-enough distributed among the full lattice of relations between classes

of primes in S. Even though Algorithm 3 uses randomization, we have no guarantee on the distribution

of the relations we create. In [38, Sec. 3.1], Hafner and McCurley show how to estimate this distribution

rigorously in the case of quadratic fields, and they show in [38, Sec. 3.2] that once a sublattice of rank |S|

is found, only |S|1+o(1) extra relations need to be found randomly to complete the lattice of relations.

Conjecture 2.15 (Rephrasing of Heuristic 3 of [14]). With probability 1− 1/|∆K |, the number of iterations

of Steps 4 and 5 of Algorithm 4 is bounded by |S|1+o(1).

Algorithm 4: PIP resolution

Require: a ∈ OK .
Ensure: If a is principal, β0, . . . , βk ∈ K, and (xi)i≤k ∈ Zk with a =

(
β0 ·

∏
i>0 β

xi
i

)
OK .

1: S = {p prime ideals with N(p) ≤ 2(log|∆K |)2/3}, and l← |S|.
2: L ← {}. M ← () ∈ Z0×l, Lα ← {}.
3: while L is not the full lattice of relations between primes in S do
4: α, v⃗ ← output of Algorithm 3 on input OK .
5: L ← L+ Zv⃗, M ←

(
M
v⃗

)
, Lα ← Lα||{v⃗}.

6: end while
7: k ← |Lα|. Find U ∈ GLk(Z) such that UM is the Hermite Normal Form of M .

8: Let H ∈ Zl×l such that UM =
(

H
(0)

)
.

9: α, y⃗ ← output of Algorithm 3 on input a.
10: if x⃗H = y⃗ has a solution then
11: x⃗← (x⃗||⃗0)U , and β0 ← 1/α, βi ← αi for i ≥ 1.
12: return β0, . . . , βk ∈ K, and (xi)i≤k ∈ Zk.
13: else
14: return a is not principal.
15: end if

Theorem 2.16 (Under GRH and Conjectures 2.13-2.15). Algorithm 4 is correct, runs in time

Poly (log|∆K |, log(N(a))) · 2Õ((log|∆K |)2/3)

with probability 1− 1/|∆K |, and its output satisfies

• βi =
γi

di
with γi ∈ OK , di ∈ Z>0.

• log∥γ0∥, log(d0) ∈ Poly(log|∆K |, log(N(I))).

• log∥γi∥, log(di) ∈ Poly(log|∆K |), for d > 0.
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• log∥x⃗∥∈ 2Õ((log|∆K |)2/3).

Proof. From Conjecture 2.15, the number of iterations of Steps 4 and 5 is in 2Õ((log|∆K |)2/3), so we have

l, k ∈ 2Õ((log|∆K |)2/3). The cost of the calculation of the Hermite Normal Form of M is polynomial in the

size of M , and the resulting U satisfies log (∥U∥∞) ∈ 2Õ((log|∆K |)2/3). This shows the bound on ∥x∥. The

bounds on the sizes of the βi derive directly from Proposition 2.14.

Corollary 2.17. The cost of applying the compact representation method of Algorithm 1 to the output of

Algorithm 4 is in

Poly(log|∆K |, log(N(a))) · 2Õ((log|∆K |)2/3),

and it yields a compact representation α =
∏

i≤k α
ni

i satisfying

k, log∥γi∥, log(di) ∈ Poly(log|∆K |, log(N(a))),

where αi =
γi

di
with γi ∈ OK , and di ∈ Z>0.

Proof. The important point here is that the decomposition of (1/β0) · a is known and has polynomial size (it

is a BKZ-reduced smooth ideal). So Algorithm 1 should be applied to a′ = (1/β0) · a generated by
∏

i>0 β
xi
i .

The size of the βi is polynomial. The bulk of the effort consists in handling the coefficients xi which have

subexponential bit size in 2Õ((log|∆K |)2/3), hence this dependency in the asymptotic cost. In the end, the

first term of the compact representation of the generator of a′ is multiplied by γ0, thus yielding the compact

representation of a with the desired properties.

Finally, we make a note regarding the S-unit group O×
K,S . The heuristic subexponential methods of [11,

14] allow us to compute S-unit groups for S a generating set of the class group as well as ideal decompositions

and solve the PIP, as we have seen. Combined with Simon’s work [74] or Cohen [24, Algorithm 7.4.8] this

also allows the computation of S-unit groups for arbitrary sets S.

Lemma 2.18. Let K be a number field of degree n, a be an ideal of K and S be a set of prime ideals of K.

Then, under the heuristics of [14], the computation of the S-unit group takes time in

Poly(log(|∆K |,max
p∈S

log(N(p)), |S|) · 2Õ((log|∆|)2/3).
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CHAPTER 3

NORM RELATIONS

3.1 Background

Exploiting the subfield structure of number fields to reduce difficult problems to smaller instances is not

a new concept. As early as 1842 Dirichlet [31] discovered a relationship between the class number of a bi-

quadratic field Q(
√
d1,
√
d2) and it’s quadratic subfields. In 1899 Weber [80] described a formula expressing

the relative class number of the conductor 2k cyclotomic field Q(ζ2k) in terms of subfields, exploiting the re-

peating subfield structure. Brauer [21] and Kuroda [43] placed these ideas on a single foundation by studying

similar relationships on group characters, and Kuroda’s resulting class number formula for biquadratic fields

directly generalized the identity of Dirichlet. This formula was also studied by Walter [78] who exploited a

correspondence between a related group-theoretic interpretation and an identity on relative norms of number

field elements to give a simple proof of Kuroda’s formula.

These techniques however did not see much application to algorithmic number theory: “Until recently,

the use of subfields in algorithmic number theory had been restricted to ad hoc tricks and heuristic observa-

tions” [20]. One of the first algorithmic applications was to multiquadratic fields of the form Q(
√
d1, . . . ,

√
dn)

for di ∈ Z. In [77] Wada used subfield information to describe an exponential time algorithm for computing

the unit group of a multiquadratic field. Bauch, Bernstein, de Valence, Lange and Van Vredendaal [5] ex-

panded on this approach and described more efficient techniques for computing the unit group and resolving

the PIP in multiquadratic fields. This was generalized to the recursive computation of S-unit groups in mul-

tiquadratics by Biasse and Van Vredendaal [17], and Lesavourey, Plantard, and Susilo [47] further extended

these techniques to multicubic fields, number fields that are generated by cube roots of integers.

The key component underpining these results was the following relationship among relative norms of field

elements.

Example 3.1. Let K = Q(
√
d1,
√
d2) with d1, d2 ∈ Z coprime and squarefree. Then K has Galois group

Gal(K/Q) = ⟨σ⟩ × ⟨τ⟩ ∼= C2 × C2. Denote by Kσ,Kτ , and Kστ the quadratic subfields of K fixed by τ, σ,
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and στ respectively. Then for α ∈ K× we have the following identity:

α2 =
NK/Kσ

(α)NK/Kτ
(α)NK/Kστ

(α)

NK/Q(α)
. (3.1)

Note that this was originally given in [5, 17] as

α2 =
NK/Kσ

(α)NK/Kτ
(α)

σ(NK/Kστ
(α))

and it is easy to show they are equivalent.

This particular identity is the same as the one in [5, 17, 77]. A similar identity is at the heart of the

multicubic variant of [47]. Biasse, Fieker, Hoffman, and Page [20] generalized the technique to arbitrary

non-cyclic number fields via the notion of a norm relation, closely related to the relations used previously

in the study of class number formulae. In what follows we give a summary of norm relations and their

applications as developed in [20].

3.2 Definition

Let G be a group. For H ≤ G define the norm element NH =
∑

h∈H h ∈ Q[G].

Definition 3.2 ([20, Definition 2.1]). Let G be a finite group, H a set of subgroups of G. H will be omitted

from the terminology whenever it is the set of all subgroups of G.

1. A norm relation of G with respect to H is an equality of the form

1 =

l∑
i=1

aiNHibi

with ai, bi ∈ Q[G] and Hi ∈ H, Hi ̸= 1, where the equality holds in the group algebra Q[G].

2. A scalar norm relation of G with respect to H is an equality of the form

0 =
∑
H∈H

aHNH

with aH ∈ Q and a1 ̸= 0, where the equality holds in the group algebra Q[G].
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We define the denominator of a norm relation as the least common denominator of the coefficients of the

ai, bi ∈ Q[G]. By clearing the denominators we can rewrite this relation in the form

d =

l∑
i=1

aiNHi
bi

where now ai, bi ∈ Z[G], d ∈ Z>0. By [20, Remark 2.17] if we have a scalar norm relation of the form

0 =
∑

H∈H ahNH with aH ∈ Z we can view it as a norm relation of the form 1 =
∑

H∈H
−aH

a1
NH . Clearing

denominators again we find that a scalar norm relation with denominator d has the form

d =
∑
H∈H

bHNh

with d, bH ∈ Z coprime.

Definition 3.2 makes some simplifications from [20, Definition 2.1]. Indeed, we ignore for now the closely

related Brauer relations and avoid generalizing to arbitrary group rings, as these are not necessary for our

purposes. Now we turn our attention to the question of existence.

Theorem 3.3 ([20, Theorem A]). The group G admits a norm relation if and only if G contains a noncyclic

subgroup of order pq, where p and q are primes, or a subgroup isomorphic to SL2(Fp) where p = 22
k

+ 1 is

a Fermat prime with k > 1.

When a norm relation does exist it is not always obvious how to determine the corresponding subgroups

and coefficients. As they are not necessarily unique, we can also ask how to find a norm relation which is

optimal with respect to the denominator and index of the involved subgroups (this notion of an ”optimal”

norm relation and its motivation will become clearer in Section 3.4.) In fact, it turns out that when G is a

finite abelian group there is a simple, closed formula for producing just such a norm relation.

3.3 Norm Relations in Finite Abelian Groups

Let G be a finite abelian group. In this case we can be much more precise about the existence and

properties of norm relations. First we recall the explicit construction of [20, Proposition 2.26] for a norm

relation on G when one exists.

Proposition 3.4 ([20, Proposition 2.26]). Let µ denote the Möbius function. For n > 1 an integer, let

rad(n) =
∏

p|n p.

Let G be a non-cyclic abelian group.
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1. We have the norm relation RG:

1 =
∑

C=⟨χ⟩≤Ĝ cyclic

akerχNkerχ,

where

akerχ =
1

|kerχ|
∑

C≤C′≤Ĝ cyclic

µ([C ′ : C]).

2. We have

akerχ =
c

|G|
∏
p|c

(
1− prp−1δχ,p

) ∏
p||G|, p∤c

(
−p− p2 − · · · − prp−1

)
where c denotes the order of χ, where δχ,p = 1 or 0 according as whether there exists χ′ ∈ Ĝ such that

(χ′)p = χ, and where rp = dimFp
(G/Gp) denotes the p-rank of G.

3. The denominator of RG is |G|
rad(|G|)

̸= 1.

In [20, Theorem 2.28] this formula is applied to produce a scalar norm relation on G which is optimal,

in the sense that the denominator and the index of the involved subgroups are as small as possible. It can

be considered as two cases.

Theorem 3.5 ([20, Theorem 2.28]). Write G ∼= C ×Q where C is the largest cyclic factor of G.

1. The group G admits a norm relation with denominator 1 if and only if |Q| is divisible by at least

two distinct primes. If the condition is satisfied, then G admits a scalar norm relation with ai ∈ Z,

denominator 1, and where all Hi satisfy that G/Hi is a pi-group times a cyclic group, for some prime

number pi.

2. Assume that Q is a p-group. Then G admits a norm relation if and only if Q ̸= 1. If the condition

is satisfied, then G admits a scalar norm relation with ai ∈ Z, denominator a power of p and where

all Hi satisfy that G/Hi is a cyclic group.

Note that we omit some details here from the original formulation of [20, Theorem 2.28]. Let’s consider

an example where both cases of Theorem 3.5 will appear.

Example 3.6. Let G = C2
2 ×C2

3 of order 36. Then G ∼= C ×Q where C = C6, Q = C6. This is the smallest

example of a finite abelian group with a denominator 1 norm relation, and admits a norm relation with

respect to Hi < G where G/Hi is isomorphic to one of C2 × C2
3 , C

2
2 × C3, C2 × C2 or C3 × C3, and each Hi

has index at most 18 in G.
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Example 3.7. Let G = C2 × C2
3 , one of the quotient groups appearing in the previous example. Then

G ∼= C × Q where C = C6, Q = C3. Now Q is a p-group and admits a norm relation with respect to

subgroups Hi of G where G/Hi is cyclic, hence Hi = G or the subgroups of C2
3 .

As evidenced by these examples, when G admits a denominator 1 norm relation with respect to Hi the

quotient groups G/Hi admit a p-power denominator norm relation as well. This is an important property

that we will take advantage of in Section 3.4.1.

3.4 Norm Relations in Number Fields

Let K/F be a normal extension of algebraic number fields with Galois group G. The connection between

norm relations and identities of relative norms like those seen in [5, 17, 47, 77] can be explained by the

following. By [20, Proposition 3.5] G admits a norm relation

d =

l∑
i=1

aiNHi
bi

if and only if for all x ∈ K× we have

xd =

l∏
i=1

NK/Ki
(xbi)ai (3.2)

where Ki is the fixed field KHi of K with respect to Hi < G. We will alternatively use the term norm

relation to refer to equations of the form (3.2) when it is clear from the context.

If K is abelian then we can use the results of the previous section to find a scalar norm relation of the

form d =
∑l

i=1 aiNHi
with ai, d ∈ Z coprime, implying that for all x ∈ K× we have

xd =

l∏
i=1

NK/Ki
(x)ai . (3.3)

Again, when it is clear from the context we will simply refer to identities of the form (3.3) as a norm relation

for K.

Lastly, we note that the existence of a norm relation for K implies an equivalent identity on fractional

ideals of K.

Proposition 3.8. Let a be a fractional ideal of K. Then

ad =

l∏
i=1

NK/Ki
(abi)aiOK . (3.4)
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The proof is analogous to that of [20, Proposition 3.5]. We will make use of this to describe algorithms

for resolving the PIP and ideal decomposition in Chapter 4.

3.4.1 Denominator 1

The existence of a norm relation for a number field allows studying their multiplicative properties by

working in subfields, as was demonstrated in [5, 17, 47, 77]. As norm relations are multiplicative the norms of

involved elements can grow rapidly, and as the relations involve d-th powers we often need to compute many

d-th roots. These computational issues can be mitigated by the use of compact representations discussed in

Section 2.4, however it is clear that the ideal scenario is the case d = 1.

Example 3.9. Let K = Q(ζ63) with Galois group G ∼= (Z/63Z)× ∼= C2
2 × C2

3 . This is the same group

appearing in Example 3.6 and is the smallest abelian group with a denominator 1 norm relation. As the

subgroups Hi appearing in the norm relation have index [G : Hi] ≤ 18, by Galois theory we also have

[Ki : Q] ≤ 18. In this particular case we have 1 subfield of degree 4, 1 of degree 9, 4 of degree 12, and 3 of

degree 18, and every element of K× can be written directly as a product of elements in these subfields.

By Theorem 3.5 we know that if K admits a denominator 1 norm relation with respect to Hi ≤ G then

G/Hi is of the form C ×Q for Q a p-group. By Galois theory Gal(Ki/Q) ∼= G/Hi hence the fixed fields Ki

now admit a p-power denominator norm relation. In practice this means we typically treat the denominator

1 case as a two step process: first we can reduce to subfields Ki ⊂ K occuring in the denominator 1 norm

relation ”for free” (no root computation is needed to lift information back to K), and these subfield instances

can be further reduced to subfields Ki,j ⊂ Ki by the existence of a nontrivial norm relation in Ki. This

also implies that even in the denominator 1 case we will still need to consider the cost of root computations,

albeit in subfields of smaller degree.

Example 3.10. Take K and G as defined in Example 3.9. Now take for example one of the degree 18

subfields with Gal(Ki/Q) ∼= C2 × C2
3 . As noted in Example 3.7 this admits a denominator 3 norm relation

with subgroups Hi,j of index [Hi : Hi,j ] ≤ 6, hence subfields with degree [Ki,j : Q] ≤ 6. In fact, the norm

relation on the subfields Ki have denominator either 2 or 3 and all involve subfields of degree at most 6.
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3.4.2 Fields Admitting Good Norm Relations

Cyclotomic fields are a prime target for norm relation applications. They are well-studied and ubiquitous,

and their Galois groups are abelian and easy to describe. Let K = Q(ζm) be the cyclotomic field with

conductor m, with Galois group G ∼= (Z/mZ)×. Write G ∼= C × Q where C is the largest cyclic factor

and |Q| is divisible by 2 distinct primes. Then |G| = φ(n) and |C| = λ(m) where λ is the Carmichael

lambda function. By the discussion in Section 3.4.1 we know K admits a denominator 1 norm relation

with respect to subfields Ki, and each Ki admits a (nontrivial denominator) norm relation with respect to

subfields Ki,j . Each Ki,j has cyclic Galois group by Theorem 3.5 hence does not admit a norm relation, and

it follows [Ki,j : Q] ≤ λ(m) for all i, j. Hence norm relations provide the largest computational advantage

in cyclotomic fields of conductor m when λ(m) is small.

Unfortunately, the Carmichael function oscillates a lot, so there is no simple function f yielding a useful

bound λ(m) ≤ f(m). We consider the case λ(m) ≤ φ(m)a for a < 3/4. Note that by [32, Theorem 2] such

values m must have negligible density. However, we see in Table 1 that in the practical range (m < 100, 000)

a significant fraction of m do satisfy λ(m) < φ(m)a for a < 3/4. Hence in cyclotomic fields Q(ζm) for

m < 100, 000 a significant fraction admit a norm relation with the largest subfield having degree at most

φ(m)3/4.

Table 1. Proportion of conductors in the practical range admitting a good norm relation.

N log(λ(m))
log(φ(m)) < 3/8 log(λ(m))

log(φ(m)) < 1/2 log(λ(m))
log(φ(m)) < 5/8 log(λ(m))

log(φ(m)) < 3/4

1000 0.300% 2.000% 11.70% 30.20%
10000 0.180% 1.780% 10.42% 29.45%
100000 0.092% 1.580% 8.830% 26.32%

Example 3.11 ([20, Example 5.3]). Let m = 6552. K = Q(ζm) has degree φ(m) = 1728 and Galois group

G ∼= C12× (C6)
2× (C2)

2. The largest cyclic factor is C12 hence λ(m) = 12 and m satisfies λ(m) < φ(m)3/8.

K admits a denominator 1 norm relation involving 62 subfields of degree at most 192. These subfields admit

norm relations with a power of 2 or 3 denominator involving a total of 672 subfields of degree at most 12.

Finally, we can construct an infinite family of conductors with small Carmichael numbers by using the

following theorem of Erdös, Pomerance and Schmutz.

Theorem 3.12 (Erdös–Pomerance–Schmutz [32, Theorem 1 part 2]). There exists an infinite sequence m1 <

m2 < . . . of positive integers such that

λ(mk) = (log(mk))
O(log log log(mk)).
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Note again that such integers have negligible density. Nevertheless we can easily construct such a sequence

in practice, as follows. Let L be a highly divisible number (for instance, take L to be a product of a few

small primes). Then let Q be the set of all primes p such that p − 1 divides L, and let m =
∏

p∈Q p. This

integer satisfies λ(m) | L, and the proof of Theorem 3.12 shows that for suitable choices of L, the integer m

is much larger than L.

Example 3.13. We illustrate the construction by taking L to be the product of the first prime numbers.

1. L = 2 · 3 = 6, m = 2 · 3 · 7 = 42, φ(m) = 12, λ(m) = 6.

2. L = 2 · 3 · 5 = 30, m = 2 · 3 · 7 · 11 · 31 = 14322, φ(m) = 3600, λ(m) = 30.

3. L = 2 · 3 · 5 · 7 = 210, m = 2 · 3 · 7 · 11 · 31 · 43 · 71 · 211 = 9225988926, φ(m) = 2222640000, λ(m) = 210.

We will use the existence of such an infinite sequence of conductors to show that norm relations can lead

to a significant asymptotic improvement over state of the art techniques in certain families of fields. Finally,

note that while conductors with λ(m) small are sparse, almost all cyclotomic fields do admit a norm relation.

For m ̸= 2, 4, pk, 2pk for p ̸= 2 (i.e. a density 1 subset of conductors) the Galois group of Q(ζm) is non-cyclic

hence there exists a norm relation. Thus in almost all cyclotomic fields we can reduce computations to

subfields of degree at least half the degree of initial field.
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CHAPTER 4

RESOLUTION OF THE PRINCIPAL IDEAL PROBLEM

The known subexponential methods for solving the PIP for ideals of a number field K rely on the

computation of the class group of K (see Section 2.5). The subexponential strategy for the computation of

the class group of an imaginary quadratic field was described in 1989 by Hafner and McCurley [38]. The

expected running time of this method is

L∆(1/2, 3/
√
8 + o(1)) = e(3/

√
8+o(1))

√
|∆K | log log|∆K |,

where ∆K is the discriminant of the field assuming the Generalized Riemann hypothesis (GRH) [12]. Buch-

mann [22] generalized this result to the case of infinite classes of number fields with fixed degree. Practical

improvements to Buchmann’s algorithm were presented in [26] by Cohen, Diaz Y Diaz and Olivier. In [11,

14], Biasse and Fieker showed that there is a heuristic subexponential algorithm for the computation of the

ideal class group in all classes of number fields, and that it could be used to solve the PIP. The methods

of [14] can be specialized to the case of cyclotomic fields for a better asymptotic complexity [18] (heuristically

in eÕ(
√

log|∆K |)). This complexity can be brought even further down (as low as eÕ( 3
√

log|∆K |)) assuming a

one-time subexponential precomputation on the field [10]).

A turning point in the development of algorithms for solving the PIP was achieved when Bauch, Bernstein,

de Valence, Lange and van Vredendaal [5] showed how to recursively solve the PIP in fields of the form

K = Q(
√
d1, . . . ,

√
dn) (the multiquadratic fields). Depending on the family of di chosen, this method can

have asymptotic complexity as low as polynomial in the logarithm of the discriminant of the field. This

method was successfully adapted to calculation of S-unit groups and ideal class groups by Biasse and van

Vredendaal [17] who proved that it had asymptotic run time in Poly(log(|∆K |))eÕ(
√

log|d|) with d = d1 · · · dn,

under GRH and an assumption on the distribution of certain families of characters. The main idea allowing

a recursive computation in the subfields of relative degree 2 was to find a norm relation implying that

the square of any element in K was the product of elements coming from subfields. In another direction,

the method of [5] was adjusted by Lesavourey, Plantard and Susilo [47] to the case of multicubic fields.

Recent work from Biasse, Fieker, Hofmann and Page [20] generalized this concept using norm relations. See
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Chapter 3 for a summary. Among other computational tasks, they showed how to leverage these relations

to compute S-unit groups and ideal class groups recursively using subfields.

We use the norm relations construction technique introduced by Biasse, Fieker, Hofmann and Page [20]

to solve the PIP recursively in non-cyclic number fields. This framework includes the prior work of [5] on

multiquadratics and extends it to a significantly larger variety of fields. The prior work of [20] allows the

recursive computation of S-unit groups from subfields, which in turn can be used to solve the PIP [19].

We describe this approach in Section 4.1 and provide an analysis of its complexity in general, as well as in

specific families of fields with good norm relations from Section 3.4.2. In these fields we show it is possible

to resolve the PIP asymptotically faster than the standard subexponential methods.

This S-unit based method for resolving the PIP is suboptimal in practice, however. The S-unit group

computations involve many saturation steps requiring compact representations and root computations, and

the primes in S are generally large compared to the input, increasing the impact of this step. In Section 4.2 we

develop some technical results that will be necessary to detect and compute roots of number field elements

modulo a multiplicative group U ⊆ K×. In Section 4.3 we apply this to the recursive decomposition of

ideals over a set of primes using norm relations, and show this has the same asymptotic performance as

the resolution of the PIP using S-units. Ideal decomposition is useful in its own right and is an important

subproblem in many number-theoretic algorithms, and is needed in Chapter 5 as well. We show how this

can be used for resolving the PIP with the same asymptotic performance as the S-unit approach.

We provide an alternative algorithm for the PIP in Section 4.4 which avoids computing S-unit groups

and efficiently reduces the PIP to the resolution of the PIP in subfields. This can be seen as a variant

of the recursive ideal decomposition of Section 4.3 optimized for resolving the PIP, focused on practical

performance. We show that while has the same asymptotic performance as the S-unit approach, it behave

much better in practice. We provide numerical results in Section 5.6, where we resolve the PIP in fields up to

degree 1800. Finally, in Section 4.4.3 we compare our methods with the direct use of the S-unit algorithms

of [20] to solve the PIP given in Section 4.1 and [19, Sec. 6], further demonstrating the difference between

these approaches in practice.

Throughout this chapter let K denote a Galois number field with Galois group G admitting a norm

relation with respect to H = {H1, . . . ,Hl}, 1 ̸= Hi ≤ G. Denote by Ki the fixed field of K with respect to

Hi. Then for some ai, bi ∈ Z[G] and d ∈ Z>0 we have

xd =

l∏
i=1

NK/Ki
(xbi)ai . (4.1)

for all x ∈ K×.
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4.1 PIP With S-Units

In the presence of a norm relation, [20, Algorithm 4.16] describes an algorithm for a polynomial-time

reduction of the computation of (generators of) an S-unit group of K to the computation of S-unit groups

in the subfields (Ki)i≤l. By reframing an instance of the PIP as an S-unit group computation we get a

simple, equivalent reduction for the PIP. The PIP variants of Section 4.3 and 4.4 are focused on practical

improvements and have no advantage in terms of asymptotic complexity, so we use this simpler PIP variant

as a backdrop for a first discussion of the complexity of our results.

The strategy of this algorithm is to enumerate short elements α of an input ideal a until p = (α)/a is

prime. As p and a are equivalent in the class group, p is principal if and only if a is. We compute the S-unit

group O×
K,S where S contains all Galois conjugates of p, then p can be decomposed over the generators of

O×
K,S and we find a generator of p, and deduce a generator for a.

Algorithm 5: Solving the PIP using S-units

Input : A fractional ideal a of K.
Output: A generator of a if it exists, otherwise false.

1 B ← LLL-reduced basis of a;

2 α
R←− Span(B);

3 while p = (α)/a is not prime do

4 α
R←− Span(B);

5 end
6 S ← {pσ for σ ∈ Gal(K/Q)};
7 Compute a basis (α1, . . . , αr+s) of O×

K,S using [20, Alg. 4.16] where r = rankO×
K , s = |S|;

8 Set M ∈ Z(r+s)×s such that row i is the valuations of αi at the primes in S;
9 Solve x⃗ ·M = y⃗ where y⃗ is the zero vector with a one at the index corresponding to p;

Return: α ·
∏

i α
−xi
i

Theorem 4.1 (under GRH). Algorithm 5 is correct and has complexity

Poly(log|∆K |, log(N(a)), l,max
i

log(ai)) + l · COSTS−units(Subfields),

where COSTS−units(Subfields) denotes the cost of computing an S-unit group in a subfield.

Proof. Let n = [K : Q]. The correctness of the algorithm is clear, so we focus on the complexity statement.

Assume a has basis matrix M ∈ Zn×n with columns (m1, . . . ,mn). An LLL-reduced basis of M can be

found in time Poly(n, log(B)) where maxi∥mi∥ ≤ B [45]. If we assume M is given in Hermite Normal

Form then its entries are bounded by |det(M)|= N(a) and maxi∥mi∥ ≤ B where B = n1/2N(a). Then

log(B) = (1/2) log(n) + log(N(a)) and an LLL-reduced basis for a can be found in time Poly(n, log N(a)).
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An LLL-reduced basis (b1, . . . , bn) is a solution to γ-SIVP with γ = 2O(n) so the basis vectors have size

2O(n)λn(a). We now estimate λn(a). By the properties of an LLL-reduced basis
∏n

i=1 λi(a) ≤
∏n

i=1∥bi∥≤

2n(n−1)/4 Vol(a). Recall that Vol(a) =
√
|∆K |N(a). Thus we have

λn(a) ≤ 2n(n−1)/4
√
|∆K |N(a)

(
n−1∏
i=1

λi(a)

)−1

.

As λ1(a) ≤ λi(a) for 1 ≤ i ≤ n we have

n−1∏
i=1

λi(a) ≥ λ1(a)
n−1 ≥

(
1

Poly(n)
N(a)1/n

)n−1

.

It follows that

λn ≤ 2n(n−1)/4
√
|∆K |Poly(n)n−1N(a)1−(n−1)/n

∈ 2Õ(n2)
√
|∆K |N(a)o(1).

so the LLL-reduced basis vectors (b1, . . . , bn) satisfy ∥bi∥ ∈ 2Õ(n2)
√
|∆K |N(a)o(1).

If we sample α
R←− Span(B) with α =

∑
i≤n aibi for ai ∈ 2Õ(n2) then ∥α∥ ∈ 2Õ(n2)

√
|∆K |N(a)o(1). As

N(α) ≤ ∥α∥n we have

N (p) =
N(α)

N(a)
≤ ∥α∥

n

N(a)
∈ 2Õ(n3)|∆K |n/2N(a)o(n).

Due to the density of prime numbers, the number of times we expect to need to draw an element of norm

2Õ(n3)|∆K |n/2N(a)o(n) before finding one whose norm is prime is about Õ(n5 · log|∆K |· log(N(a))), so the

cost of the loop at Step (3) is Poly(n, log|∆K |, log(N(a))).

By [20, Theorem 4.18] computing O×
K,S in Step (7) is reduced to the computation of S-unit groups

in the subfields Ki in time Poly(n, log|∆K |, l,maxi log(ai)). This also accounts for the cost of compact

representation from Algorithm 1.
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4.1.1 Special Families of Fields

We now examine the complexity of Algorithm 5 in the context of certain families of cyclotomic fields.

Recall from Section 3.4.2 that in cyclotomic fields K = Q(ζm) of conductor m, the degree of K is given

by φ(m) and the largest cyclic factor C of G = Gal(K/Q) satisfies |C|= λ(m) where λ is the Carmichael

lambda function. By the discussion of Section 3.4.1 if K admits a denominator d ̸= 1 norm relation then

Algorithm 5 reduces to the computation of S-unit groups in subfields of degree bounded by |C|, and if K

admits a denominator 1 norm relation then we apply the 2-step process discussed in Section 3.4.1 and once

again reduce computations to subfields of degree at most |C|. Thus λ(m) is an upper bound on the degree

of the largest subfields occuring in Step (3) of Algorithm 5 in either case.

While this 2-step process is the most efficient use of norm relations in practice, we describe a simplification

in Algorithm 6 that does not impact the asymptotic analysis. This simplification avoids the 2-step procedure,

instead finding a norm relation directly to the smallest possible subfields at the cost of a potentially larger

denominator.

Algorithm 6: Norm relation with minimal subfields (abelian case) [19, Algorithm 10]

Require: Non-cyclic abelian number field K with Galois group G.
Ensure: Subgroups (Hi)i≤l of G, integers (ai)i≤l, d > 0, with d =

∑
i aiNHi .

1: Ĝ← dual of G, H ← {H ≤ G with G/H cyclic}.
2: for Hi ∈ H do
3: C ⊆ Ĝ← ⟨χ⟩ where Hi = ker(χ).
4:

ni

di
← 1

|kerχ|
∑

C≤C′≤Ĝ cyclic µ([C
′ : C]) where µ is the Möbius function.

5: end for
6: Find minimal (ai), d such that d =

∑
i aiNHi

⇔ 1 =
∑

i
ni

di
NHi

.
7: return H, (ai), d.

Proposition 4.2 ([19, Proposition 5]). Let K be an abelian number field of degree n and Galois group

G = C × Q where C is the maximal cyclic subgroup of G and Q is non trivial. Then Algorithm 6 is

correct, runs in polynomial time, and returns a norm relation d =
∑

i≤l aiNHi
with ai ∈ Z and that satisfies

d, l, |ai| ≤ n, and maxi[K
Hi : Q] ≤ |C|.

Proof. The number of subgroups Hi is less than |Ĝ|= n. The computation of the ni/di requires the factoriza-

tion of n which is polynomial in log|∆K |. For all subgroupsHi with cyclic quotient we have |G/Hi|| |C|, which

proves the bound on the degrees of the KHi . Finally, the bound on (ai) and d comes from µ(x) ∈ {−1, 0, 1}

and [20, Prop. 2.26 (3)].

Lemma 4.3 ([19, Lemma 4]). Let m ≥ 2, K = Q(ζm) and L ⊂ K a subfield. Let n = [K : Q] and

n′ = [L : Q]. We have
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1. |∆L|≤ |∆K |n
′/n.

2. log(n) = log(m) +O(log log(m)) and log(m) = log(n) +O(log log(n)).

3. log|∆K |= n
(
log(n) +O(log log(n))2

)
.

Proof. The first inequality derives directly from the fact that the discriminants satisfy ∆K = NL/Q(∆K/L)∆
[K:L]
L

where ∆K/L is the relative discriminant between K and L. Since K is a cyclotomic field, we have

∆K = (−1)φ(m)/2 mφ(m)∏
p|m pφ(m)/(p−1)

,

so log|∆K |= φ(m)
(
log(m)−

∑
p|m

log(p)
p−1

)
. Let d ≤ log2(m) be the number of distinct prime divisors of m:

∑
p|m

log(p)

p− 1
=
∑
p|m

log(p)

p
+
∑
p|m

log(p)

p2 − p

=
∑
p|m

log(p)

p
+O(1)

≤
d+2∑
k=3

log(k)

k
+O(1) since t 7→ log(t)

t
is decreasing on [3,∞)

≤
∫ log2(m)

1

log(t)

t
dt+O(1)

= O(log log(m))2.

Moreover we have

log(n) = log(φ(m))

= log(m) +
∑
p|m

log

(
1− 1

p

)

= log(m)−
∑
p|m

1

p
+O(1)

= log(m) +O(log log(m)) by the same argument as above,

and therefore log(m) = log(n) +O(log log(n)). This gives

log|∆K |= φ(m)
(
log(m) +O(log log(m))2

)
= n

(
log(n) +O(log log(n))2

)
,

as claimed.
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Proposition 4.4 (Under GRH). Let a > 0 and (mk)k∈Z>0 be a sequence of integers satisfying λ(mk) ≤

φ(mk)
a for all k. Then Algorithm 5 applied to the infinite family of fields Kk := Q(ζmk

) has asymptotic

complexity

Poly([K : Q], log(N(a))) · 2Õ([K:Q]2a/3).

Proof. Fix k and denote by n the degree φ(mk) of Kk and by ∆ it’s discriminant. Index by i the subfields

occuring in the norm relation of Kk, with degree ni and discriminant ∆i. By the previous discussion the

subfields where we compute S-unit groups have degree bounded by λ(mk) ≤ φ(mk)
a. The number l of

such subfields and the size of the coefficients are bounded by n by Proposition 4.2. The main term of the

complexity of the subfield operations is 2Õ((log|∆i|)2/3) by Lemma 2.18, and by Lemma 4.3

(log|∆i|)2/3 ≤
(ni

n
log|∆|

)2/3
∈ Õ(n

2/3
i ) = Õ(n2a/3).

The subfield S-unit groups are computed with respect to sets Si = {p ∩ OKi
| p ∈ S}, and we have

NKi/Q(p ∩ OKi) = NKi/Q(NKk/Ki
(p)) = NKk/Q(p). By the proof of Theorem 4.1 and Lemma 4.3

N(p) ∈ 2Õ(n3)|∆K |n/2N(a)o(n)

∈ 2Õ(n3)N(a)o(n)

so we have log(N(p)) ∈ Õ(n3 log(N(a))). This proves our complexity bound.

In Section 3.4.2 we noted that almost all cyclotomic fields admit a norm relation. Applying Proposition 4.4

it follows that in almost all cyclotomic fields Algorithm 13 provides at least a quadratic improvement over

the state of the art. However, we are much more interested in determining when we have a superpolynomial

improvement, in other words, resolving the PIP in time 2Õ(nϵ) for ϵ < 1/2. In Table 1 we show a significant

number of conductors m in the practical range satisfy λ(m) < φ(m)3/4, so in the corresponding cyclotomic

fields we achieve the desired superpolynomial improvement. Furthermore, by Theorem 3.12 there exists an

infinite family of cyclotomic fields Q(ζmk
) admitting norm relations whose subfield degrees are bounded by

λ(mk) where

λ(mk) = (log(mk))
O(log log log(mk)).

In these fields we have the following complexity result.
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Theorem 4.5 (Under GRH). There exists an infinite sequence of integers m1 < m2 < · · · such that

Algorithm 5 has complexity

Poly([K : Q], log(N(a))) · 2(log(mk))
O(log log log(mk))

.

Proof. Take (mk) to be the sequence from Theorem 3.12. Let m = mk be a term in this sequence, and Kk =

Q(ζmk
) be the corresponding field. Let D be the maximum absolute value of the discriminant of a subfield

used by Algorithm 17 applied to Kk. Then by Lemma 4.3 and recalling that |∆K | ≤ mn we have D ≤ mλ(m),

so that

log(D) ≤ λ(m) log(m) = (log(m))O(log log log(m))

by Theorem 3.12. Proceeding similarly to the proof of Proposition 4.4 we see the cost for the subfields is

2(log(D))O(1)

= 2(log(m))O(log log log(m))

.

Let ∆k be the discriminant of Kk. Then we have log(mk) = O(log log|∆k|), so that the second term of

the complexity is

2(log log|∆k|)O(log log log log|∆k|)
.

This complexity is not quite quasi-polynomial (which would correspond toO(1) instead ofO(log log log log|∆k|)

in the second exponent), but it is strongly subexponential, as can be seen by rewriting it as

2(log|∆k|)
O

(
log log log log|∆k| log log log|∆k|

log log|∆k|

)
= 2(log|∆k|)o(1) .

This complexity is in time 2n
o(1)

, an impressive improvement over the state of the art. Note again, however,

that conductors where we have such an improvement have negligible density and are exceedingly uncommon.

In practice, relying on the computation of S-unit groups as in Algorithm 5 is suboptimal. Recovering the

full S-unit group O×
K,S from subfield S-unit groups potentially requires many root computations in K (or

intermediate subfields in the case of denominator 1). This is mitigated by the use of compact representations

in theory as discussed in Section 2.4 but it is still desirable to avoid root computations if possible: while

they only incur extra polynomial factors in the overall asymptotic complexity they can be a major concern

in practice, quickly making larger instances intractable. In Section 4.3 we describe how to take advantage

of norm relations to perform recursive ideal decomposition, and in Section 4.4 we go to great lengths to

specialize this to the PIP, and remove many of the root computations by avoiding the computation of an

S-unit group or even the unit group in K altogether.
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4.2 Interlude: Powers Modulo Multiplicative Groups

Recall that by Proposition 3.8 the existence of a norm relation of the form (4.1) for K implies that for a

fractional ideal a of K the following also holds:

ad =

l∏
i=1

NK/Ki
(abi)aiOK .

Assume that we have generators αi of NK/Ki
(abi)aiOK . Then we can deduce a generator ad = αOK where

α =
∏l

i=1 αi. If a is principal and generated by β then βd is a generator for ad, and we must have u ∈ O×
K

such that uα = βd. Thus to recover a generator of a from a generator of ad we must find a suitable unit

u ∈ O×
K such that uα is a d-th power. In the case of ideal decomposition we run into a similar but more

general problem. We formalize this in Definition 4.6.

Definition 4.6. Let U ⊆ K× be a multiplicative group and β ∈ K×. We say that β is a d-th power modulo

U or that β has a d-th root modulo U , if there exists u ∈ U such that uβ is a d-th power, i.e., uβ ∈ (K×)d.

Let U ⊆ K× be a finitely generated multiplicative group and β ∈ K×. Throughout this section we

assume that U ∩ ⟨β⟩ = {1}. We now investigate how to detect if β is a d-th power modulo U , and if so,

compute u ∈ U such that uβ is a d-th power. To this end we develop a variation on the saturation techniques

described in Section 2.3. First, we show that by Lemma 4.7 it is sufficient to work with d a prime power, so

we will assume this is the case.

Lemma 4.7. Assume that U ⊆ K× is a multiplicative group and d = a · b with gcd(a, b) = 1. Then β is a

d-th power modulo U if and only if β is an a-th and a b-th power modulo U .

Proof. Since one of the implications is trivial, let us assume that β is an a-th and a b-th power modulo U ,

say β = uγa = u0γ
b
0. Since a and b are coprime there exist r, s ∈ Z with 1 = ra+ sb. Thus

β = βraβsb = (u0γ
b
0)

ra(uγa)sb = ura
0 usb(γr

0γ
s)d ∈ U · (K×)d.
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4.2.1 The Good Case

First we assume that we are in the good case of Grunwald–Wang. Recall that for a non-zero prime ideal

p of OK we denote by Kp the p-adic completion of K, by vp the p-adic valuation and by kp = OK/p ∼=

OKp
/pOKp

the residue field at p. We use a bar notation to denote cosets of various multiplicative groups,

and ⟨X⟩ to denote the subgroup generated by X. We have the following criterion for detecting whether β

is a d-th power modulo U , and if so, computing u ∈ U such that uβ ∈ (K×)d. This is an adaptation of

Proposition 2.9.

Proposition 4.8. Let V = ⟨U, β⟩ where U = ⟨α1, . . . , αl⟩, and assume U ∩ ⟨β⟩ = {1}, d is a prime power,

and that we are in the good case of Grunwald–Wang. Furthermore let c ∈ R>0 be arbitrary. Assume that

the intersection ⋂
d̸∈p,N(p)≤c

ker(V/V d → Z/dZ× k×p /(k
×
p )

d) ⊆ V/V d

is generated by the classes of α1β
n1 , . . . , αlβ

nl ∈ V with αi ∈ U , ni ∈ Z.

1. If gcd(d, n1, . . . , nl) ̸= 1, then β is not a d-th power modulo U .

2. Assume β is not a d-th power modulo U . Then for c sufficiently large we have gcd(d, n1, . . . , nl) ̸= 1.

3. Assume β is a d-th power modulo U . Then for c sufficiently large we have gcd(d, n1, . . . , nl) = 1 and

that the element αk1
1 · · ·α

kl

l β is a d-th power, where ki ∈ Z are integers with 1 = k0d+
∑l

i=1 kini.

Proof. Let us denote by W/V d the intersection of the kernels.

(1): Assume that β is a d-th power modulo U , that is, αβ ∈ V ∩ (K×)d for some α ∈ U . As (V ∩

(K×)d)/V d ⊆W/V d, there exist integers 0 < ki < d such that

αβ = (α1βn1)k1 · · · (αlβnl)kl

in W/V d ⊆ V/V d. As V is generated by U and β, the group V d is generated by Ud and βd. Hence there

exists α0 ∈ U and k0 ∈ Z such that

αβ = (α1β
n1)k1 · · · (αlβ

nl)klαd
0(β

d)k0 .

From U ∩ ⟨β⟩ = {1} we get 1 = k0d+
∑l

i=1 kini i.e. gcd(d, n1, . . . , nl) = 1.

(2): Let c0 be the constant from Proposition 2.8 and assume c ≥ c0. In particular it holds (V ∩

(K×)d)/V d = W/V d. Assume gcd(d, n1, . . . , nl) = 1. Then there exist ki ∈ Z, 0 ≤ i ≤ l, such that
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1 = k0d+
∑l

i=1 kini. Then the element α = αk1
1 · · ·α

kl

l satisfies

αβ = αβn1k1 · · ·βnlklβdk0 = (α1β
n1)k1 · · · (αlβ

nl)klβdk0 ,

that is αβ ∈W/V d = (V ∩ (K×)d)/V d and β is a d-th power modulo U .

(3): Let c0 be as in Proposition 2.8 and assume c ≥ c0. Note that as β is a d-th power modulo U , it

follows from (1) that gcd(d, n1, . . . , nl) = 1. The result follows, since

αk1 · · ·αklβ = (α1β
n1)k1 · · · (αlβ

nl)kl(βk0)d

and for all 1 ≤ i ≤ l we have αiβ
ni ∈ (K×)d (as c ≥ c0).

Algorithm 7 decides whether an element β is a a d-th power modulo U , and if so, it finds an element of

u such that uβ is a d-th power. Proposition 4.8 directly shows its correctness.

Algorithm 7: d-th power modulo units in the good case

Input : U ⊆ K× finitely generated, β ∈ K× such that U ∩ ⟨β⟩ = {1}, d = pr a prime power, such
that we are in the good case of Grunwald–Wang

Output: Whether β is a d-th power modulo U and an element γ ∈ K× with β/γd ∈ U in case it
exists

1 Let c ∈ R>0 (chosen arbitrarily);

2 Determine a (Z/dZ)-generating set α1βn1 , . . . , αlβnl of⋂
p ̸∈p,N(p)≤c

ker(⟨U, β⟩/⟨U, β⟩d → Z/dZ× k×p /(k
×
p )

d);

if gcd(d, n1, . . . , nl) ̸= 1 then
3 return: β is not a d-th power modulo U ;
4 else if gcd(d, n1, . . . , nl) = 1 then

5 Determine k, ki ∈ Z, 1 ≤ i ≤ l, with 1 = kd+
∑l

i=1 kini;

6 Test whether the element δ = β
∏l

i=1 α
ki
i is a d-th power;

7 if there exists γ with γd = δ then
8 return: γ;
9 end

10 Replace c by 2c and go to step 2;
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4.2.2 The General Case

We now assume that we are in the general case and d = pr is a prime power. Since this includes the bad

case of Grunwald–Wang, in general we cannot detect global d-th powers just using local information. The

algorithms are therefore more complicated; the reader can skip this section without significantly affecting

their understanding. We state results for an arbitrary p, but for us the only relevant case is p = 2. In

general, we detect d-th powers for d = 2rd′ with 2 ∤ d′ by detecting d′-th powers using Algorithm 7, detecting

2r-th powers using results of this section, and recombining the results using Lemma 4.7. We investigate the

situation where U is p-saturated.

Under the GRH, when c > c0 = 72d2(log|∆K | + 3n log(p))2, iterating [20, Algorithm 4.9] correctly

returns the p-saturation of U ⊆ K× in polynomial time [20, Theorem 4.11]. We now assume that U is

p-saturated, and we show that testing whether β is a pr-th power modulo U can be reduced to r instances

of the problem where the exponent is p (instead of pr), hence to a situation where we are in the good case

of Grunwald–Wang.

Proposition 4.9. Assume that U ⊆ K× is a multiplicative group and β ∈ K× a pr-th power modulo U .

Then the following hold:

1. The element β is a pi-th power modulo U for all 1 ≤ i ≤ r.

2. Assume that U is p-saturated and that there exist u ∈ U , γi ∈ K× with uβ = γpi

i for some 1 ≤ i ≤ r−1.

Then γi is a pr−i-th power modulo U .

Proof. (1): Trivial. For (2), first note that by assumption there exist ũ ∈ U , γ ∈ K× such that ũβ = γpr

.

Then

γpi

i = uβ =
u

ũ
ũβ =

u

ũ
γpr

.

Hence

u

ũ
=

γpi

i

γpr =

(
γi

γpr−i

)pi

∈ U.

As U is p-saturated this implies γi/γ
pr−i ∈ U . Thus (γpr−i

/γi)γi = γpr−i

shows that γi is a pr−i-th power

modulo U .

Corollary 4.10. Assume that U ⊆ K× is a p-saturated multiplicative group. An element β ∈ K× is a pr-th

power modulo U if and only if there exist u1, . . . , ur−1 ∈ U , γ1, . . . , γr ∈ K×, γ1 = β such that γp
i+1 = uiγi

for all 1 ≤ i ≤ r − 1.

Therefore, under the assumption that U is p-saturated, we can check whether β is a pr-th power modulo

U by iteratively checking whether certain elements are p-th powers modulo U . As p is a prime, we are
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always in the good case of the Grunwald–Wang theorem and we can use Algorithm 7. We summarize this

in Algorithm 8, which is correct according to Corollary 4.10. Finally, note that in Step (4) of Algorithm 8

we must compute γi as a p-th root of an element of K×. This is the primary distinction between the good

and bad case in practice: in the good case we can determine if β ∈ K× is a d-th power modulo U without

any root computation if we take c > c0, or with a single root computation otherwise. In the bad case when

d = pr we may be required to do up to r root computations.

Algorithm 8: d-th power in the bad case

Input : A p-saturated multiplicative group U ⊆ K×, r ≥ 1, and β ∈ K× with U ∩ ⟨β⟩ = {1}
Output: Whether β is a pr-th power modulo U and an element γ ∈ K× with β/γpr ∈ U in case it

exists

1 γ0 ← β;
2 for i← 1 to r do
3 if γi−1 is a p-th power modulo U using Algorithm 7 then
4 Compute γi ∈ K× such that γi−1/γ

p
i ∈ U ;

5 else
6 return: that β is not a pr-th power modulo U ;
7 end

8 end
9 return: γr;

4.3 Ideal Decomposition

Given an input ideal a whose ideal class in Cl(OK) is known to be a product of powers of the classes

of g1, . . . , gk, the task of finding exponents such that a ∼
∏

i g
xi
i is a core subroutine in number theory

referred to as ideal decomposition. As discussed in Section 2.5 the best classical algorithms for ideal class

decomposition have the same asymptotic cost as the computation of Cl(OK), which is subexponential. In

this section, we show how to leverage norm relations to reduce the decomposition of the class of an input

ideal a ⊆ K to subfield computations. Again, we assume that K admits a norm relation with subfields

(Ki)i≤l so that ideals of K satisfy Equation 3.4, i.e ad =
∏l

i=1 NK/Ki
(abi)aiOK . We first tackle the case of

the decomposition of a according to a set S of prime ideals invariant under the action of Gal(K/Q). Then,

given a subgroup H ⊆ Cl(OK), and generators g1, . . . , gk of order d1, . . . , dk such that H ≃ ⟨g1⟩× . . .×⟨gk⟩,

we show how to find the unique (x1, . . . , xk) ∈ Z/d1Z× . . .× Z/dkZ such that a ∼
∏

i g
xi
i .
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4.3.1 Decomposition With Respect to Primes

Given a set S = {pi}i≤k of non-zero prime ideals of OK and an ideal a ⊆ OK , our goal is to find x⃗

such that a ∼
∏

i p
xi
i . We assume that S is stable under the action of G = Gal(K/Q), so σ(p) ∈ S for any

σ ∈ G, p ∈ S. Let ⟨S⟩ ⊆ Cl(OK) be the subgroup of Cl(OK) generated by the classes of the elements of S.

Then, one can recursively find the decomposition of NK/Ki
(abi) in Cl(OKi

) with respect to the p ∩Ki for

p ∈ S, and deduce the decomposition of NK/Ki
(abi)aiOK in Cl(OK) with respect to S (each (p ∩Ki)OK is

a product of elements of S since it is assumed to be stable under the action of G).

At this point, we have a decomposition of ad instead of a as desired. In other words, we have x⃗ such

that ad ∼
∏

i p
xi
i . This information alone is not enough to decompose a with respect to the pi in Cl(OK).

In particular, we need to use a generator of the principal ideal ad
∏

i p
−xi
i . To get this information, in each

subfield, we can make sure that we obtain an identity of the form

NK/Ki
(abi)aiOK = (αi)

∏
j

p
xi,j

j .

This can be done by working exclusively in the subfields (an ideal class decomposition in Cl(OKi
) followed

by solving a PIP in Ki). By recombining all subfield information, we obtain an identity of the form

ad = (α)
∏
i

pyi

i , (4.2)

where y⃗ ∈ Zk and α ∈ K is given in product form. We summarize this procedure in Algorithm 9.

Algorithm 9: Decomposition of ad with norm relation

Require: Number field K of unit rank r, norm relation d =
∑

i aiNHi
bi, ideal a and set S of k prime

ideals stable under the action of G = Gal(K/Q), and with [a] ∈ ⟨S⟩.
Ensure: y⃗ and α such that ad = (α)

∏
i p

yi

i .
1: Compute a basis (βi)i≤r+k for the S-unit group (using recursive norm relation techniques), and let

M ∈ Z(r+k)×k such that (βi) =
∏

j p
Mi,j

j .
2: for Ki in the norm relation do
3: Compute αi, x⃗i such that NK/Ki

(abi)aiOK = (αi)
∏

j(pj ∩Ki)
xi,j .

4: end for
5: Deduce α in product form and y⃗ such that ad = (α)

∏
i p

yi

i .
6: return α, y⃗.

Theorem 4.11 (under GRH). Algorithm 9 is correct and has complexity

Poly(log|∆K |, log N(a), l,max
i

log ai) + l · (CostS-unit(subfields) + CostIdeal Dec(subfields)) ,
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where CostS-unit(subfields) is the cost of computing S-units in the subfields involved in the norm relation (3.4),

and CostIdeal Dec(subfields) is the cost of ideal decomposition in the subfields involved in the norm rela-

tion (3.4).

Proof. The cost of computing O×
K,S in Step (1) is reduced to the computation of S-unit groups in the

subfields Ki by [20, Theorem 4.18] in time Poly(log|∆K |, l,maxi log(ai)). The loop at Step (2) involves an

ideal decomposition in each subfield as well, giving us the result.

Now we also know that since the class of a is a product of the classes of S, there must exist z⃗ ∈ Zk and

β ∈ K such that a = (β)
∏

i p
zi
i , which means that

ad = (βd)
∏
i

pdzii .

Now we have the equality of ideals (βd)
∏

i p
dzi
i = (α)

∏
i p

yi

i , but since α is not necessarily βd, we don’t

necessarily have yi = dzi. However, we know that
∏

i p
yi

i ∼ pdzii so we must have y⃗ − dz⃗ ∈ L where L ⊆ Zk

is the lattice of relations between the pi, i.e. the lattice of vectors u⃗ such that
∏

i p
ui
i is a principal ideal.

We want to re-write α as α = β′d · δ where δ is an S-unit with (δ)OK =
∏

i p
ui
i such that u⃗ + y⃗ ∈ dZk. If

this is the case, then ad = (β′d)
∏

i p
dz′

i
i where z⃗′ := u⃗+ y⃗. Once an S-unit δ0 such that (δ0) =

∏
i p

u0
i

i with

u⃗(0) + y⃗ ∈ dZk is found, then any other solution δ is of the form δ = δ0δ
′ where δ′ is an S-unit satisfying

(δ′)OK =
∏

i p
u′
i

i with u⃗′ ∈ dZk. The set of such δ′ is a subgroup of the S-unit group

By [20, Algorithm 4.16] we can compute generators α1, . . . , αr+k+1 of the S-unit group from subfield

computations (where r is the rank of the unit group), together with a matrix M ∈ Z(r+k+1)×k whose rows

are the valuations of the αi according to the primes in S. Thus, there is x⃗ ∈ Zr+k+1 such that y⃗ = x⃗M +dz⃗,

i.e.

y⃗ = x⃗M mod d.

This system does not have a unique solution. However, we can put M in row reduced echelon form modulo

d and find

1. a solution x⃗(0) to y⃗ = x⃗M mod d,

2. a basis x⃗(1), . . . , x⃗(m) of the left kernel of M mod d.

So all the x⃗ such that y⃗ = x⃗M mod d are of the form x⃗ = x⃗(0) +
∑

j aj x⃗
(j), including the one that satisfies

y⃗ = x⃗M + dz⃗ for z⃗ defined above. We denote by x⃗(j)Mi the i-th coefficient of x⃗(j)M , and by αi ∈ K

the element that satisfies
∏

j p
Mi,j

j = (αi)OK . With the notation previously used, δ0 =
∏

i α
x
(0)
i

i , while the

subgroup of δ′’s is generated by δi :=
∏

i α
x
(j)
i

i for i = 1, . . . ,m. Therefore, we have
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(α)
∏
i

pyi

i = (α)
∏
i

px⃗Mi
i ·

∏
i

pyi−x⃗Mi

i

= (α)
∏
i

px⃗
(0)Mi

i ·
∏
j≤m

[∏
i

px⃗
(j)Mi

i

]aj

·
∏
i

pyi−x⃗Mi

i

= (α)

(∏
i

α
x
(0)
i

i

)
·

∏
j≤m

[∏
i

α
x
(j)
i

i

]aj
 ·∏

i

pyi−x⃗Mi

i

= (α′)

∏
j

δ
aj

j

 ·∏
i

p
dz′

i
i for some z′i ∈ Z

where we have a product representation of α′ ∈ K and the δj ∈ K.

So we are looking for (aj)i≤m such that α′ ·
∏

j δ
aj

j = β′d for some β′ ∈ K. Once we find (aj)i≤m, we

derive the corresponding x⃗ = x⃗(0) +
∑

j≤m aj x⃗
(j) and then z⃗′ = 1

d (y⃗ − x⃗M). This means that we have the

identity

ad = (β′d)
∏
i

p
dz′

i
i .

Such an identity exists at least for β′ = β and z′i = zi (with the notation above), but other choices of (ai)i≤m

might lead to other solutions. Once a solution is found, we have a = (β′)
∏

i p
z′
i

i since an equality of fractional

ideals of the form Id = Jd implies that I = J by uniqueness of prime decomposition. Thus, we are able to

conclude that a ∼
∏

i p
z′
i

i , which solves the ideal class decomposition problem.

Now the question is how to find the desired (ai)i≤m? Since there is a solution, we know that α′ is a d-th

power modulo U for U = ⟨δ1, . . . , δm⟩. By Proposition 4.8 we have gcd(d, n1, . . . , nm) = 1, where the ni are

the exponents defined in Proposition 4.8. Let k, and (ai)i≤m such that 1 = kd+
∑m

i=1 aini. With this choice

of ai we have that α′∏
i δ

ai
i is a d-th power and we can find the decomposition of a in Cl(OK). Finally,

recall from Section 2.4 that taking the d-th root of α′∏
i δ

ai
i can be done efficiently by keeping elements in

compact representation. We summarize the procedure in Algorithm 10. While we discussed how to compute

roots modulo U in both the good and bad case of Grunwald–Wang, we restrict to the good case here for

simplicity. Then Algorithm 10 can be easily extended to the general case.

Theorem 4.12 (under GRH). Algorithm 10 is correct and has complexity

Poly(log|∆K |, log(N(a)), l,max
i

log(ai)) + l · COSTS−units(Subfields),

where COSTS−units(Subfields) denotes the cost of computing an S-unit group in a subfield.
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Algorithm 10: Ideal decomposition from subfields in the good case where d = pt

Require: Number field K of unit rank r, norm relation d =
∑

i aiNHi
bi where d is a prime power in the

good case of Grunwald–Wang, ideal a and set S of k primes stable under the action of G = Gal(K/Q),
together with α, y⃗ such that ad = (α)

∏
i p

yi

i .

Ensure: β′, z⃗′ such that a = (β′)
∏

i p
z′
i

i .
1: Compute a basis (αi)i≤k+r+1 for the S-unit group (using recursive norm relation techniques), and let

M ∈ Z(r+k+1)×k such that (αi) =
∏

j p
Mi,j

j .

2: Put M in row reduced echelon form modd. Find x⃗(0) solution to y⃗ = x⃗M mod d.
3: Compute x⃗(1), . . . , x⃗(m) basis of the left kernel of M mod d.

4: α′ ← (α)

(∏
i α

x
(0)
i

i

)
. For j ≤ m: δj ←

∏
i α

x
(j)
i

i .

5: U ← ⟨δ1, . . . , δm⟩. Let c ≤ c0 large enough.
6: Compute a (Z/dZ)-generating set δ1α′n1 , . . . , δmα′nm of⋂

p ̸∈p,N(p)≤c

ker(⟨U,α′⟩/⟨U,α′⟩d → Z/dZ× k×p /(k
×
p )

d).

7: Compute k, ai ∈ Z, 1 ≤ i ≤ m, with 1 = kd+
∑m

i=1 aini. Let x⃗← x⃗(0) +
∑

j≤m aj x⃗
(j).

8: return d

√
α′ ·

∏
j δ

aj

j , 1
d (y⃗ − x⃗M).

Proof. Just as in Theorem 4.11 the cost is reduced to the cost of subfield S-unit group computation in time

Poly(log|∆K |, l,maxi log(ai)), and the result follows.

The following cases need extra care:

1. The case where α is an S-unit (which leads to U ∩ ⟨α′⟩ ≠ {1} for U = ⟨δ1, . . . , δm⟩).

2. The case of d not a prime power.

3. The bad case of Grunwald–Wang.

Case (1) can be easily avoided by replacing α by α ·xd where x is outside of the S-unit group. The procedure

will succeed, and lead to the computation of appropriate exponents a1, . . . , am. For Case (2), assume that d

is not a prime power. We rely on the following lemma

Lemma 4.13. Let a, b be coprime integers such that d = ab. Assume that with Algorithm 10 we can find

βx, x⃗, βy, y⃗ such that

ad = (βa
x)
∏
i

paxi
i = (βb

y)
∏
i

pbyi

i .

Then a = (βs
xβ

r
y)
∏

i p
sxi+ryi

i .
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Proof. Let r, s be such that ra+ sb = 1. This means that

ad =
(
ad
)ra+sb

=
(
ad
)ra (

ad
)sb

=

(
(βy)

∏
i

pyi

i

)rab(
(βx)

∏
i

pxi
i

)sab

=

(
(βs

xβ
r
y)
∏
i

psxi+ryi

i

)d

.

Therefore, by equality of ideals, we have a β, z⃗ such that a = (β)
∏

i p
zi
i .

This process can be iterated for all prime powers that divide d, thus reducing the case of arbitrary d to

that of d being a prime power.

Finally, Case (3) concerns the bad case of Grunwald–Wang. Because of the above consideration, we can

assume that d is a prime power, and since the bad case only concerns powers of two, there is t such that

d = 2t. Algorithm 10 cannot be applied directly on input d, but we can use it with denominator 2. This

leads to the creation of β′, z⃗′ such that

a2
t−1

= (β′)
∏
i

p
z′
i

i .

This can be iterated t times, yielding the decomposition of a.

4.3.2 Decomposition With Respect to Elementary Generators

Let H be a subgroup of Cl(OK). In the previous section, we established how to decompose the class of

an input ideal a with respect to a given set of primes S (if this decomposition exists, which is always the

case when we pick S a generating set of Cl(OK)). For certain uses this is sufficient. For example, if we know

that the primes in S generate the class group then we can use this for solving instances of the PIP, which

we detail in 12. However, in Section 5.3 we wish to instead find a decomposition of the class of a according

to a fixed set of generators g1, . . . , gk where

H ≃ ⟨[g1]⟩ × · · · × ⟨[gk]⟩ ≃ Z/d1Z× · · · × Z/dkZ.

We assume that S = {pi}i≤k is a set of non-zero prime ideals stable under the action of Gal(K/Q) such that

⟨S⟩ = H. By using the recursive S-unit group computation, we can find a matrix M ∈ Zk×k such that the

rows of M generate the lattice of vectors v⃗ ∈ Zk such that
∏

i p
vi
i ∼ (1). This can be done by working in the

subfields involved in the norm relation. Then, we compute the Smith Normal Form (SNF) diag(d1, . . . , dk)

of M and unimodular matrices U, V such that UMV = diag(d1, . . . , dk) (note that some di might equal 1).
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Given a fractional ideal a such that [a] ∈ H, we are interested in computing the unique exponents in

Z/d1Z × · · · × Z/dkZ of the decomposition of [a] according to the generators (gi)i≤k. The previous section

shows how to decompose [a] according to the primes in S. We can convert this decomposition into one

with respect to the gi via linear algebra involving V . Indeed, the conversion back-and-forth between a

representation over the gi and one over the pj corresponds to a multiplication of V −1 (resp. V ) with the

vector of exponents:

a ∼
∏
j

p
xj

j =
∏
j

(∏
i

g
xj ·V −1

i,j

i

)
=
∏
i

g
∑

j xjV
−1
i,j

i =
∏
i

g
(V −1·x⃗T )
i .

Therefore a ∼
∏

i g
x′
i

i for x⃗′ := V −1 ·x⃗. By a similar argument, if a ∼
∏

i g
y′
i

i , then a ∼
∏

i p
yi

i where y⃗ = V · y⃗′.

Algorithm 11: Conversion of decomposition with respect to primes in S to generators

Require: Number field K, Set S of non-zero primes (pi)i≤s, vector x⃗ such that a ∼
∏

i p
xi
i , U, V

unimodular such that UMV = diag(d1, . . . , dk) where the rows of M are a basis of the lattice of
relations between primes in S.

Ensure: x⃗′ with a ∼
∏

i g
x′
i

i where ⟨S⟩ = ⟨[g1]× . . .× ⟨[gk]⟩.
1: return x⃗′ := V −1 · x⃗.

4.3.3 Application to the PIP

Ideal decomposition, while useful for many routines in number theory, can also be used for resolution of

the PIP. Assume we have computed a basis (βi)i≤r+k for the S-unit group (using recursive norm relation

techniques) where the primes in S generate the class group. Let M ∈ Z(r+k)×k such that (βi) =
∏

j p
Mi,j

j .

Compute a decomposition of a ⊆ OK as a = (β)
∏

i p
yi

i for some β, y⃗ by Algorithm 10. Then a is principal if

and only if y⃗ belongs to the lattice of relations given by the rows of M . We summarize this in Algorithm 12.

Algorithm 12: Solving the PIP using ideal decomposition

Require: A fractional ideal a of K.
Ensure: A generator of a if it exists, otherwise false.
1: Compute a set S of non-zero primes (pi)i≤s that generate Cl(OK).
2: Compute a matrix M whose rows are a basis of the relations between pi in S.
3: Compute α, x⃗ such that a = (α)

∏
i p

xi
i with Algorithm 10.

4: Solve y⃗M = x⃗.
5: return false if no solution, or α =

∏
i β

yi

i .

Theorem 4.14 (under GRH). Algorithm 12 is correct and has complexity

Poly(log|∆K |, log(N(a)), l,max
i

log(ai)) + l · (COSTS−units(Subfields) + COSTIdealDec(Subfields)) ,
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where COSTS-units(Subfields) and COSTIdeal Dec(Subfields) denote the cost of computing an S-unit group in

a subfield and the cost of ideal decomposition in a subfield respectively.

Proof. Steps (1) and (2) can be done recursively of course, reducing to the cost of subfield S-unit group

computation in time Poly(log|∆K |, l,maxi log(ai)). Then the result follows directly from the complexity

analysis of Algorithm 9 and Algorithm 10.

Recall the families of fields with good norm relations of Section 3.4.2. Algorithm 12 enjoys the same

asymptotic improvements in these fields as in Algorithm 5.

Proposition 4.15 (Under GRH). Let a > 0 and (mk)k∈Z>0
be a sequence of integers satisfying λ(mk) ≤

φ(mk)
a for all k. Then Algorithm 12 applied to the infinite family of fields Kk := Q(ζmk

) has asymptotic

complexity

Poly([K : Q], log(N(a))) · 2Õ([K:Q]2a/3).

Proof. This follows from the proof of Proposition 4.4, with the only difference being the primes used in the

S-unit group computation and the use of ideal decomposition in the subfields.

As the class group is generated by prime ideals with norm bounded by 12 log|∆K |2 ∈ O(log|∆K |2) this is

no issue, and by 2.14 the subfield ideal decompositions take time Poly(log(N(a))) · 2Õ(n2a/3) using the same

argument used for the S-unit group.

Proposition 4.16 (Under GRH). There exists an infinite sequence of integers m1 < m2 < · · · such that

Algorithm 12 has complexity

Poly([K : Q], log(N(a))) · 2(log(mk))
O(log log log(mk))

which by is in 2n
o(1)

.

In practice we can do better than Algorithm 12. Consider what happens if we compute a decomposition

of a ⊆ OK by Algorithm 10 using an empty set S. Then subfield decompositions reduce to the PIP and

Algorithm 10 only needs the unit group O×
K for lifting these to a solution a = αOK , resolving the PIP in K.

This further avoids computing the S-unit group O×
K,S where S generates the class group in Algorithm 12.

These changes reduce the amount of saturations, compact representations, and root computations needed,

which has a significant impact on practical performance. In Section 4.4 we describe this approach, and show

that this can be even further improved by eliminating the need for the full unit group O×
K , instead working

with a finite index subgroup.
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4.4 PIP Without S-Units

We will once again leverage the following identity for ideals a ⊆ OK in the prescence of a norm relation

of the form (4.1).

ad =

l∏
i=1

NK/Ki
(abi)aiOK . (4.3)

We will specialize the techniques used to compute ideal decompositions in the prescence of a norm relation

developed in Section 4.3 to the task of resolving the PIP. Notably, we avoid not just the computation of

S-unit groups in K but generally avoid computing the full unit group O×
K at all, instead requiring only a

finite index subgroup. This leads to a significant improvement to the resolution of the PIP in practice. In

Section 4.4.2 we give computational evidence supporting this claim and successfully compute the generator

of a principal ideal in a cyclotomic field of degree 1800, much larger than previously possible.

Lemma 4.17. Let a be a fractional ideal of K. If a is principal, then NK/Ki
(abi) is principal for all 1 ≤ i ≤ l.

If d = 1, then the converse also holds and a generator of a is given by
∏l

i=1 α
ai
i , where αiOK = NK/Ki

(abi),

1 ≤ i ≤ l.

The previous lemma shows that if the denominator d is equal to 1, then solving the principal ideal

problem in K is equivalent to solving the principal ideal problems in the subfields Ki, 1 ≤ i ≤ l. In case

the denominator is not equal to 1, the situation is more complicated. Indeed, we can only find α such that

ad = αOK . If α happens to be a d-th power, say α = βd, then β generates a. Otherwise, if α is not a d-th

power but a is principal, there must be another generator of ad that is a d-th power. Then we need to find

a unit u ∈ O×
K such that uα = βd, so α is a d-th power modulo the unit group O×

K .

It follows that if ad = βOK , then a is principal if and only if β is a root modulo U = O×
K . Moreover if

uβ = αd for some u ∈ O×
K , then a = αOK . Working with the full unit group U = O×

K can be expensive in

practice. In the following we improve upon this by showing that in our situation we can often pick a smaller

group U generated by subgroups of the unit groups O×
Ki

. We begin by showing that one can restrict to full

rank subgroups with index coprime to d.

Lemma 4.18. Assume that U ⊆ K× is a multiplicative group, β ∈ K× and d ∈ Z. Further let V ⊆ U be a

subgroup of finite index with [U : V ] coprime to d. Then β is a d-th power modulo U if and only if β is a

d-th power modulo V .

Proof. Let k = [U : V ] and a, b ∈ Z such that ad + bk = 1. Assume that there exists u ∈ U such that

uβ ∈ (K×)d. As uβ = (ua)d(uk)bβ and v = (uk)b ∈ V , we have vβ = uβ/(ua)d ∈ (K×)d, thus showing that

β is a d-th power modulo V . The other implication is clear.

47



We can now show that in the presence of norm relations, it is sufficient to work with a multiplicative

group generated by units from the involved subfields. In fact, not even the full unit groups of the subfields

are necessary, but just subgroups with index coprime to d.

Proposition 4.19. Let a be a fractional ideal satisfying (3.4). Assume that the ideal NK/Ki
(abi) =

αiOKi
is principal for all 1 ≤ i ≤ l and let β =

∏l
i=1 α

ai
i . Consider the multiplicative group W =

(O×
K1

)a1 · · · (O×
Kl

)al ⊆ O×
K . Let V ⊆ W be a subgroup of finite index with [W : V ] coprime to d and

Vi ⊆ O×
Ki

subgroups of finite index with [O×
Ki

: Vi] coprime to d. Then the following are equivalent:

1. The ideal a is principal.

2. The element β is a d-th power modulo O×
K .

3. The element β is a d-th power modulo W .

4. The element β is a d-th power modulo V .

5. The element β is a d-th power modulo V a1
1 · · ·V

al

l .

If we have ai ∈ Z for all 1 ≤ i ≤ l, then we can use W = O×
K1
· · · O×

Kl
in (d) and V1 · · ·Vl in (e).

Proof. (a) ⇔ (b): Clear.

(a) ⇔ (c): Assume a = αOK is principal. As NK/Ki
(αbi)OKi

= NK/Ki
(abi) = αiOKi

, there exist units

ui ∈ O×
Ki

such that NK/Ki
(αbi) = uiαi. Thus

uai
1 · · ·u

al

l︸ ︷︷ ︸
∈W

·β =

l∏
i=1

(uiαi)
ai =

l∏
i=1

NK/Ki
(αbi)ai = αd ∈ (K×)d

and β is a d-th power modulo W . Conversely if β is a d-th power modulo W , it is also a d-th power modulo

O×
K and hence a is principal.

(c) ⇔ (d): Lemma 4.18.

(d) ⇔ (e): Since the Vi have index coprime to d, it follows that [W : V a1
1 · · ·V

al

l ] is coprime to d. Hence

the result follows again by Lemma 4.18.

We now describe an algorithm for resolution of the PIP using norm relations in Algorithm 13. In contrast

with Algorithm 5 and Algorithm 12 this approach does not require the computation of S-unit groups.

Remark 4.20. The idea of reducing the principal ideal problems to subfields using relative norms and the

existence of d-th powers was already considered in [BBVLV] for multiquadratic and in [47] for multicubic

fields. While not formulated using the notion of norm relations, in both works criterion 4.19 (b) is used to
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Algorithm 13: Solving the PIP without S-units

Input : A fractional ideal a of K.
Output: A generator of a if it exists, otherwise false.

1 y ← 1;
2 for i← 1 to l do
3 if NK/Ki

(abi) is principal then
4 Find a generator αi ∈ Ki of NK/Ki

(abi);
5 else
6 return: a is not principal.
7 end

8 end

9 β ← αa1
1 · · ·α

al

l . //β generates ad.;

10 Compute U = V a1
1 · · ·V

al

l , where the Vi are subgroups O×
Ki

with index coprime to d. // Details in

Section 4.2;
11 if β is a d-th power modulo U by Algorithm 7 or Algorithm 8 then
12 return: α ∈ K× such that β/αd ∈ U ;
13 else
14 return: a is not principal;
15 end

decide the principal ideal problem in the field K. In particular, the full unit group had to be computed via

saturation.

In contrast to the aforementioned papers, the use of Proposition 4.19 (c) allows us to avoid the compu-

tation of the full unit group O×
K of K (in most cases, see Section 4.2). Actually Proposition 4.19 (e) allows

us to avoid the computation of the full unit groups in the subfields themselves. All that is required are

subgroups whose index is finite and coprime to d. This results in a significant practical speed-up.

4.4.1 Asymptotic Analysis

In this section, we show how the cost of our PIP method relates to the cost of the PIP in subfields. We

reiterate that the PIP algorithm presented here does not offer any asymptotic improvement over the PIP

algorithms described in Section 4.1 and Section 4.3.3.

Theorem 4.21 (under GRH). Algorithm 13 is correct and has complexity

Poly(log|∆K |, log(N(a)), l,max
i

log(ai)) + l · PIP(Subfields),

where PIP(Subfields) denotes the cost of Step (3) (PIP in a subfield).

Proof. From Lemma 4.7 it follows that it is sufficient to show that Algorithms 7 and 8 have the claimed

complexity. We first consider Algorithm 7. From [20, Theorem 4.11] it follows that the algorithm terminates
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as soon as c > 72d2(log|∆K |+ 3n log(d))2, hence after a number of steps which is polynomial in the size of

the input. As the same holds for the final root computation, this proves the claim for Algorithm 7.

For Algorithm 8, first note that a 2-saturated subgroup U ⊆ O×
K can be computed in polynomial time

([20, Corollary 4.13]). As the successive applications of Algorithm 7 for p = 2 have the same complexity, the

claim follows.

For completeness we also state the complexity in the families of fields admitting good norm relations

described in Section 3.4.2. The proofs follow from the cost of PIP and compact representation in the

subfields given by Corollary 2.17 and the analogous proofs in Sections 4.1.1 and 4.3.3.

Proposition 4.22 (Under GRH). Let a > 0 and (mk)k∈Z>0 be a sequence of integers satisfying λ(mk) ≤

φ(mk)
a for all k. Then Algorithm 13 applied to the infinite family of fields Kk := Q(ζmk

) has asymptotic

complexity

Poly([K : Q], log(N(a))) · 2Õ([K:Q]2a/3).

Proposition 4.23 (Under GRH). There exists an infinite sequence of integers m1 < m2 < · · · such that

Algorithm 13 has complexity

Poly([K : Q], log(N(a))) · 2(log(mk))
O(log log log(mk))

which is in 2n
o(1)

.

4.4.2 Numerical Results

We implemented our algorithm using the algebra package Hecke [35] (written in Julia [9]). We used

55 nodes of 20 cores 2x Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz processors with 192GB memory. We

focused our attention on examples outside of the reach of the previous techniques by a substantial margin:

The field K(1) = Q(ζ825) of degree 400 and discriminant ≈ 10960, the field K(2) = Q(ζ3276) of degree 864

and discriminant ≈ 102369, and the field K(3) = Q(ζ2387) of degree 1800 and discriminant ≈ 105539. For

each field, we report on the resolution of one instance of the PIP chosen at random. The class groups of

the fields K(1) and K(2) have been determined using norm relations in [20]. That computation took less

than two hours using a single core, but note that the method employed for the class group computations

avoids taking the roots of elements and is therefore computationally much easier than solving the PIP. In

particular, it cannot be used to compute S-unit groups or to solve the PIP.

Each of these fields admit a denominator 1 norm relation, so we use the two step approach discussed

in Section 3.4.1. First, we find a norm relation of denominator 1 of the form x =
∏l

i=1 NK/Ki
(xbi)ai such
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that the quantity max1≤i≤l[Ki : Q] is minimal. In other words, we find a norm relation of denominator 1

where the degrees of the subfields are as small as possible. As a second step, for each subfield Ki, we find

a norm relation xdi =
∏li

j=1 NKi/Ki,j
(xbi,j )ai,j with di as small as possible, such that max1≤j≤li [Ki,j : Q] is

bounded by some heuristically chosen constant B. To test whether some fractional ideal a of K is principal,

Algorithm 13 is now applied first using the norm relation of K of denominator 1 and then again using the

norm relations of the Ki when testing whether NK/Ki
(abii ) is principal. In particular this means that:

1. The largest degree field where we compute roots modulo units is max1≤i≤l[Ki : Q].

2. The largest degree field where we have to classically solve the principal ideal problem and compute (a

saturated subgroup of) the unit group is bounded by B.

Since the norm relations are too large to display, we present several values quantifying the difficulty of solving

the PIP in Table 2.

Table 2. Quantification of the hardness of PIP instances in large degree fields.

K [K : Q] l = #{Ki} n = maxi[Ki : Q] #{Ki,j} m = maxi,j [Ki,j : Q]

K(1) 400 19 100 86 20
K(2) 864 38 108 341 12
K(3) 1800 131 150 297 30

Recall that n is the maximal degree of the subfields where saturation and root computation needs to take

place. Likewise, m is the maximal degree of a subfield where the PIP must be solved with a subexponential

method and the column labeled “#{Ki,j}” denotes the number of these subfields. In particular, we observe

that the saturation and root computation to solve the PIP in the field K(3) of degree 1800 only occurs in

fields of degree bounded by 150 while the subexponential computations occur in subfields of degree no more

than 30.

Results We ran the computation of subexponential PIP instances in the subfields on independent cores.

A second layer of parallelization was employed by computing individual roots on independent cores. After

picking a principal ideal a = (α) of OK , the main steps of our computations are the following: (1) Finding

the initial norm relation to determine the subfields Ki, (2) Finding the norm relation in each of the subfields

Ki, (3) computing the subfields Ki,j , (4) Computing the unit groups of the Ki,j , (5) Computing the relative

norms NK/Ki,j
(a), (6) Computing generators of the ideals NK/Ki,j

(a), (7) Identifying d-powers (without root

computation), (8) Compact representation, and (9) Root computation.
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Table 3. PIP Runtime in CPU hours in large degree fields.

(1) (2) (3) (4) (5) (6) (7) (8) (9) Total

K(1) 0.46 2.70 0.33 0.25 0.55 0.13 0.05 0.37 1.71 6.55
7.0% 41.2% 5.0% 3.8% 8.4% 2.0% 0.8% 5.6% 26.1%

K(2) 4.12 15.23 2.90 1.00 11.21 1.54 0.12 2.61 60.19 98.92
4.2% 15.4% 3.0% 1.0% 11.3% 1.6% 0.1% 2.6% 60.8%

K(3) 66.61 140.00 58.34 102.15 641.92 203.62 3.25 55.19 1634.01 2905.09
2.3% 4.8% 2.0% 3.5% 22.1% 7.0% 0.1% 1.9% 56.2%

4.4.3 Comparison With S-Unit Method

Algorithm 13 was designed with the practical performance in mind. This is why we strive to avoid

the compact representation and saturation steps as much as possible. In particular, the units used are

directly coming from subfields, and seldom need saturation. On the other hand, computing S-units as in

Algorithm 5 would require significantly more compact representation and saturation steps. We will give a

rough comparison of the expected number of compact representations in either case. The analysis given in

the proof of Theorem 4.1 was aimed at estimating the worst-case complexity of the PIP using S-units. To

simplify the discussion here we consider what is essentially the best-case scenario for Algorithm 5.

At the beginning, we can assume that we have performed an LLL-reduction on the input and replaced a

by (b1)/a where b1 is the first basis vector. This means that we may assume

N(a) ≤ λn
√
|∆| ∈ O

(
2O(n2)

√
|∆|
)
,

with n = deg(K), and λ ∼ 2O(n) the approximation factor of LLL. Let b1, . . . , bn be an LLL-reduced basis

of a, so that

∥b1∥≤ λ|∆|1/2nN(a)1/n ∈ 2O(n)|∆|1/2nN(a)1/n.

This means that N(b1) ∈ 2O(n2)
√
|∆|N(a) and

N ((b1)/a) ∈ 2O(n2)
√
|∆|

Due to the density of prime numbers, the number of times we expect to need to draw an element of norm

2O(n2)
√
|∆| before finding one whose norm is prime is about O(n2). The chosen strategy for enumeration of

short elements in a is to draw elements of the form

α = bi1 + bi2 + . . . ,+bic ,
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for a constant c (typically c = 3 to ensure that the search space is large enough to find a prime norm) and

a choice of c random indices i1, · · · , ic. The vectors b2, . . . , bn are at least as long as b1, but in the best case

scenario, all vectors are of the same length. If this were the case, then ∥α∥∼
√
c∥b1∥. In practice, we expect

∥α∥ to be in fact larger. In any case, the algebraic norm of α is expected to satisfy

N

(
(α)

a

)
≥ cn/2N

(
(b1)

a

)
∼ cn/2λn

√
|∆| ∼ cn/2N(a).

Hence the bit size of the norm of an S-unit, where S = {pσ | p = (α)/a, σ ∈ Gal(K/Q)}, is expected to be

O(n) times larger than the bit size of the norm of the generator of a. In addition, the cardinality of S is

equal |Gal(K/Q)|+ r ∈ O(n) where r is the rank of the unit group of K. Here we assume that p is of degree

1, which happens the majority of the time. In any case, r ∈ Ω(n) is a lower bound on |S|.

In the compact representation algorithm, the complexity of the calls to LLL is proportional to the

log(N(a′)) where a′ is an ideal whose norm is proportional to
∏

p N(p) where p runs over the prime ideals

dividing the input element. Hence, when computing compact representations of S-units for S defined above,

the execution time of the compact representation algorithm is proportional to |S| log(N(p)) where p = (α)/a.

On the other hand, this term becomes log(N(a)) when the compact representation is called on a generator of

a. Therefore, each call to the compact representation on input an S-unit is expected to be O(n2) times more

expensive than the call on input a generator of a. Moreover, to solve the PIP with Algorithm 5, we need

the entire S-unit group, which means that there need to be |S| calls to the compact representation instead

of a single one on the generator of a, hence multiplying the compact representation effort by an O(n) factor.

Altogether, we estimate that the S-unit based resolution of the PIP should be O(n3) times slower than the

methods introduced in this paper.

Asymptotically, the slowdown induced by opting for Algorithm 5 does not impact the overall complexity

which is strongly subexponential. However, given that this complexity is somewhat close to being polynomial,

an n3 slowdown does impact concrete computations to the point that the large degree calculations presented

in this paper are infeasible with the S-unit method. To illustrate the sharp increase of the slowdown, we

compared the two methods for small instances of increasing difficulty on a single core Intel(R) Xeon(R)

Silver 4114 CPU @ 2.20GHz with 192GB memory. We see in Table 4 that trivial examples are more easily

solved by using S-units because in small dimension, the random choice of a small element in a almost always

directly yields a generator. However, the method described in this paper is already showing its impact on

examples taking 30 min (by being twice as fast), and on examples taking several hours on a single core, it is

already faster by a significant margin. This sharp increase backs our heuristic estimate of an n3 speedup.
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Table 4. Comparison with the S-unit method.

[K : Q] This paper S-unit method
36 5.5sec 0.3 sec
72 2.1 min 1.6 min
144 31.7 min 1.1h
216 3.6h 54h

We further document our estimate by running the following experiment. In the degree 1800 field K(3)

of Section 5.6, the chosen PIP challenge has the prime decomposition a = p1p2 where N(p1) = 133673 and

N(p2) is a 733 bit prime. On the other hand, our experiments showed that random short elements α ∈ a had

algebraic norms of about 1,000,000 bits. This is consistent with our estimate that the bit size of the norm

of the primes in S is O(n) times larger than the bit size of the norm of a.

54



CHAPTER 5

MILDLY SHORT VECTORS IN CYCLOTOMIC IDEAL LATTICES

Given a Euclidean lattice L and γ ≥ 1, recall that the problem of finding a non-zero v ∈ L such that

∥v∥≤ γλ1(L) is called the γ-Shortest Vector Problem (γ-SVP). The security of lattice-based cryptosystems

such as LWE schemes [62] relies on the hardness of γ-SVP for γ polynomial in the dimension of the lattice.

The LLL algorithm [45] solves γ-SVP for γ ∈ 2O(n) in polynomial time in n. Exponential algorithms such

as sieve methods [2] can solve exact SVP (i.e. γ = 1) in time 2O(n), while the BKZ algorithm [65] allows

one to solve γ-SVP for γ ∈ 2O(n/k) in time 2O(k). In particular, the time to solve γ-SVP for γ ∈ 2Õ(
√
n) is in

2Õ(
√
n). In [28], solutions of γ-SVP for γ ∈ 2Õ(

√
n) are referred to as mildly short vectors and we adopt this

terminology. The study of the hardness of γ-SVP is crucial both from a fundamental standpoint and for its

applications to cryptology. In particular, there are no efficient algorithms to solve γ-SVP for non-exponential

γ. In the subexponential γ regime, any superpolynomial improvement over the state of the art (i.e. the BKZ

algorithm) represents a significant step forward.

To gain efficiency, variants of lattice-based cryptosystems using lattices that are ideals in cyclotomic

number fields were introduced. This is the case of cryptosystems based on the Ring Learning With Error

(RLWE) problem [49]. It can be shown that γ-SVP in the cyclotomic field Q(ζm) with a polynomial γ reduces

to RLWE in this field. The most typical cyclotomic fields used in RLWE cryptosystems are those of the form

Q(ζ2l) for some l (i.e. the fields with a power-of-two conductor). However, the use of general cyclotomic fields

is possible [50]. One of the main security assumptions on which ideal lattice based cryptosystems rely is that

γ-SVP in ideals of cyclotomic fields is not significantly easier than in general Euclidean lattices. Because

of that, γ-SVP algorithms for ideals of Q(ζm) that outperform the BKZ reduction method are of particular

interest. Indeed, they document the gap between the hardness of this problem in the special case of ideals in

cyclotomic fields and in the case of general lattices. However, such improvements do not necessarily imply

an attack against RLWE schemes. Indeed, the proof of security of RLWE schemes relies on the hardness

of γ-SVP for a polynomial γ. Hence, the hardness of the search for mildly short vectors does not directly

impact it. In addition, even an efficient algorithm for the resolution of γ-SVP with a polynomial γ would

not necessarily imply the cryptanalysis of RLWE schemes. It would however render the security proof moot.
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Because of its close connection to the security proof of RLWE cryptosystems, the investigation of the

hardness of γ-SVP in ideal lattices of cyclotomic fields (including the search for mildly short vectors) is a

crucial stake in mathematical cryptology. It was heuristically observed by a scientific team from the British

Government Communications Headquarter (GCHQ) that the search for short generators of principal ideals

of Q(ζ2l) should be efficient with a quantum computer [23]. This observation relied on two conjectures: a)

Quantum computers allow us to efficiently find generators of principal ideals in number fields, and b) The

search for a short generators of a principal ideal in Q(ζ2l) efficiently reduces (on a classical computer) to the

search for an arbitrary generator. Point a) was proven by Biasse and Song [16], while Point b) was proven by

Cramer, Ducas, Peikert and Regev [30]. In particular, it is shown in [30] that a short generator of a principal

ideal of Q(ζ2l) is a solution to γ-SVP for γ ∈ 2Õ(
√
n) with n = [Q(ζ2l) : Q] (i.e. a mildly short vector). This

is the first example of a superpolynomial gap between the hardness of γ-SVP in ideal lattices and in general

lattices. This line of work was further expanded by Cramer, Ducas and Wesolowski [29] who showed that

there was an efficient heuristic quantum reduction from the search for mildly short vectors in general ideal

lattices of Q(ζ2l) (i.e. not necessarily principal) and the search for generators in principal ideals. This result

was later extended to ideal lattices of Q(ζm) for arbitrary m in [28]. We refer to this heuristic reduction

as CDW. To achieve an efficient quantum reduction, the CDW approach relies on two assumptions: a) The

class group of the maximal real subfield Q(ζm)+ of Q(ζm) is small, and b) The minus part Cl−(OK) of the

ideal class group of K = Q(ζm) is generated by few prime ideals. Limited numerical data in support of these

conjectures is available, and most of it concerns the case m = p a prime.

One of the key aspects of Q(ζm) that enables the CDW approach is the knowledge of a set of units

with good properties: the cyclotomic units. Indeed, units in number fields can be arbitrarily large, but

in Q(ζm), one can efficiently construct a set of small units that generate a subset of finite index of the

group of units. This approach has been generalized by Pellet-Mary, Hanrot, and Stehlé who used S-units

instead of units for a small enough set of primes S that generates the ideal class group of the field [59].

This method, known as PHS, allows one to solve γ-SVP for γ in 2O(na) where a < 1/2 at the cost of an

exponential precomputation on the S-units based on the work of Laarhoven [44]. The PHS approach was

further improved [6], but the cost of the precomputation prevents it from solving γ-SVP more efficiently

than the benchmark BKZ method. Recent preliminary work from Bernstein and Lange [8] conjectured that

S-units of cyclotomic field have properties allowing one to adapt the PHS approach to outperform BKZ

in the search for solutions to γ-SVP where γ ∈ 2O(na) with a < 1/2. To this date, there is no available

strong evidence of this conjecture, even if it seems like the lattice of logarithmic embeddings of S-units of

cyclotomic fields might not comply with so-called “Gaussian heuristics” which provide estimates for the first

minima of random lattices. Independent work of Bernard, Lesavourey, Nguyen and Roux-Langlois [7] aimed
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to improve S-unit attacks by investigating sets of small S-units analogously to the case of cyclotomic units.

They also attempted to remove the need for quantum computers in the CDW approach, but they were not

able to improve the bottleneck of the method which consists in decompositions of ideals in the ideal class

group.

We adapt the results of Chapter 4 to the problem of finding a mildly short vector of an ideal lattice

in a cyclotomic field. First we review the case of a principal ideal. In particular, we review the efficient

reduction of the search for a mildly short vector to the PIP of [30, 81] which, when combined with the

results of Chapter 4, result in an asymptotic improvement over BKZ. Afterwards we move to the case of an

arbitrary ideal and review the efficient quantum reduction of [28, 29]. We show that the bottleneck of this

reduction, the decomposition of ideals in the minus part of the class group Cl−(OK), can also be improved

by the results of Chapter 4. With this we propose a classical variant of the CDW algorithm and analyze the

asymptotic cost of this algorithm in Section 5.5. in Section 5.6 we present an implementation of our subfield

CDW variant, as well as numerical data in support of the heuristics made to support the runtime of the

CDW method.

5.1 Mildly Short Vectors in Principal Ideals

First we recall the main results of [30, 81], the reduction from the search for mildly short vectors in a

principal ideal lattice to the PIP. A solution to the mildly short vector problem in a principal ideal a is a

generator α of a such that ∥σ(α)∥≤ 2Õ(
√
n) where σ is the Minkowski embedding (note that we often work

instead with the logarithmic embedding ∥Log(α)∥.) When this happens we simply say α is a short generator

of a. If we are given an arbitrary generator β of a, it is related to α by α = uβ where u ∈ O×
K is a unit. Our

task then is: given a generator β of a, find a u ∈ O×
K such that α = uβ is short.

The techniques we are using in this section were originally stated for cyclotomic fields K = Q(ζm) in the

case where m = 2k [30], but this was recently extended to the case of an arbitrary conductor in [81]. It relies

on cyclotomic units, which are the units generated by {±ζm}∪{1− ζim | j = 1, . . . ,m− 1}. We denote this

subgroup of O×
K by C. From [79, Th 4.12], we know that [Log(O×

K) : Log(C)] has finite index. Let the pi be

the prime divisors of m = pα1
1 . . . pαk

k , and let mi := m/pαi . From [81, Th 6.12], we know that the Log(vj)

generate Log(C) and that ∥Log(vj)∥ ∈ O(
√
m) for

vj =

 1− ζjm if for all indices i, we have mi ∤ j;
1−ζj

m

1−ζ
mi
m

otherwise, for the unique i such that mi | j.
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Algorithm 14: Finding a short generator of gOK

Require: A generator g of I = gOK .
Ensure: A unit u such that ug is a short generator of I.
1: ∀i, wi ← Log(vi), W ← (w1, . . . , wm−1).
2: s(G)←

∑
σ∈G σ ∈ R[G]/(1− τ).

3: t′ ← Log(g), t′′ ← 1
φ(m) · log(N(g)) · s(G).

4: t← t′ − t′′ ∈ Log(O×
K)⊗ R, x← (0, . . . , 0).

5: while ∥W · x− t∥∞>
√
2 · log(4φ(m)) ·maxw∈W ∥w∥ do

6: x← CV∞(W, t).
7: end while
8: return u :=

∏
i v

−xi
i .

The procedure CV∞(W, t) in Step 6 is described in [81, Lem 6.6] and finds a vector x in W that is close to

t for the infinity norm, given the set of short generators wi for W that we have as input. One of the technical

challenges outlined in [81] is that we need to ensure that we can work with rational approximations of the

wi, and of Log(g) while ensuring numerical stability. Assume the input g is given as the (non-evaluated)

product g =
∏

i≤k γ
ki
i for γi ∈ OK , ki > 0, and let p = maxi⌈log(ki∥γi∥)⌉. In [81, Sec. 6.5.2], fixed point

approximations with p + m2 bits of precision were used, that is, the approximation of x ∈ R is given by

x ∈ Q of the form ax

2p+m2 where ax ∈ Z. Then, to use CV∞(W, t), we need an approximation W of W with

p +m2 bits of precision that lies in Log(O×
K) ⊗ R. This is achieved by computing an approximation W̃ of

W with p+m2 + 1 bits of precision and setting

wi := w̃i −
2

φ(m)

φ(m)/2∑
j=1

w̃i,js(G).

The matrix W satisfies ∥W − W̃∥∞≤ 1
2p+m2+1

, and ∀i, wi ∈ (s(G) · R)⊥ = log(O×
K) ⊗ R. Then it can be

shown that the element x such that

∥W · x− t∥∞≤
√

2 log(4φ(m)) max
w∈W
∥w∥

gives us a short generator g ·
∏

i v
−xi
i of I.

Theorem 5.1 (Th. 6.15 of [81]). There is a randomized algorithm that for any g ∈ OK finds an element

h ∈ OK such that gOK = hOK and

∥h∥= e
O
(√

m log(m)
)
·N(g)1/φ(m).
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In the quantum setting the PIP can be resolved in polynomial time by [16], so Theorem 5.1 shows that

there is a quantum polynomial time algorithm for finding mildly short vectors in principal ideal lattices of a

cyclotomic field. In the classical case we can apply the results of Chapter 4 to see that in cyclotomic fields

with conductor m satisfying λ(m) ≤ φ(m)a for a < 3/4 we can find mildly short vectors of principal ideal

lattices asymptotically faster than BKZ, which is in 2Õ(
√
n). While asymptotically such conductors have

negligible density, by Table 1 we see that for conductors in the practical range (m ≤ 100, 000) approximately

25% do satisfy this condition. Furthermore by Theorem 3.12 there exists an infinite sequence of conductors

m1 < m2 < . . . satisfying λ(mk) = (log(mk))
O(log log log(mk)), and in the fields Q(ζmk

) we can find mildly

short vectors in time 2n
o(1)

.

5.2 The CDW Technique

We now consider the search for mildly short vectors where the input ideal is not necessarily principal. To

reduce the search for mildly short vectors to the PIP, we first find an ideal b ⊆ OK such that ab is principal,

and N(b) ∈ 2Õ(n3/2) where n = [K : Q]. In [29], this task is referred to as the Close Principal Multiple

Problem. Then, the techniques of Section 5.1 yield a short generator of ab, which is a solution to γ-SVP in

a for γ in 2Õ(
√
n). This involves three main steps:

1. Multiply a by random ideals of small norm a0 until the class of a′ := a0a is in Cl−(OK) ⊆ Cl(OK), the

“minus part” of Cl(OK).

2. Decompose the class of a′ in Cl−(OK) according to a set S = {p1, . . . , pk} of prime ideals that generate

Cl−(OK).

3. Find a close vector v in a lattice L (which is known to annihilate Cl−(OK)) to t ∈ Zk such that

a′−1 ∼
∏

i p
ti
i .

Then the solution to the problem is b := a0
∏

i p
ti−vi
i ∼ a−1 (which has small norm if the vector v found in

Step (3) is close enough to t). In [28, 29], Steps (1) and (2) require the quantum polynomial time algorithm

of [16]. With classical computers, subexponential algorithms for ideal class group computations and the

principal ideal problem (PIP) such as [18] can be used, but they do not provide a better complexity than

the BKZ algorithm. Step (3) on the other hand, can be performed efficiently on a classical computer with

the methods introduced in [29].

If a ∼
∏

i p
xi
i , then b =

∏
i p

x′
i

i with x′
i = −xi mod h and h = |Cl(OK)| satisfies that ab is principal.

The issue is that the x′
i can be quite large, thus preventing b from satisfying N(b) ≤ 2Õ(n3/2). However, the

techniques of [28, 29] show how to derive b ∼
∏

i p
x′
i

i with small exponents. We recall the general idea of this
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method, and we refer to [28, 29] for the details of the proofs. This task involves the search for close vectors

in the so-called Stickelberger lattice, and to bound the runtime, we need to rely on a key conjecture:

Conjecture 5.2 ([28, Assumption 1]). There are integers l ≤ Polylog(m) and B ≤ Poly(m) such that the

following holds. Choose uniformly at random l prime ideals p1, . . . , pl among the primes of norm less than

B that lie in Cl−(OK). Then the set S := {pσi | σ ∈ G} generates Cl−(OK) with probability at least 1/2.

We first compute a short generating set of Cl−(OK). Then we perform a random walk in the Cayley

graph of Cl(OK) whose edges are defined by the primes in S from Conjecture 5.2. In other words, this means

that we multiply a by random elements of S until we get an ideal a′ whose class lies in Cl−(OK). This is

described in [28, Alg. 5]. Its cost is in O
(
h+
K · Poly(m, log(N(a))) · Cost(PIP)

)
according to [28, Lem. 5.2],

where h+
K denotes the class number of the totally real subfield Q(ζm + ζ−1

m ). To bound this asymptotic cost,

we need to assume that h+
K is small enough:

Conjecture 5.3 ([28, Assumption 2]). For any integer m, it holds that h+(m) ≤ Poly(m).

So we find small xi ≤ 0 such that the class of a′ := a ·
∏

i p
xi
i is in Cl−(OK), and then we decompose

the ideal class of a′ according to the set of primes S defined by Conjecture 5.2 to get a vector y⃗ such that

a′ ∼
∏

i p
yi

i . Then [28, Sec. 4] constructs a lattice of vectors in Z[G] that act trivially on Cl−(OK) from the

Stickelberger ideal. The Stickelberger ideal (see [28, Sec. 4.1]) is an ideal of Z[G] that annihilates Cl(OK) but

that does not have full rank as a Z[G]-module. To get a full rank module, we project it to R = Z[G]/(1+ τ),

where τ is the complex conjugation. The action of the resulting lattice L of R-rank φ(m)/2 annihilates

Cl−(OK) because τ + 1 annihilates Cl−(OK). The decomposition of a′ is then split according to each cycle

under the action of R:

a′ ∼

(∏
σ∈G

(pσ1 )
y1,σ

)(∏
σ∈G

(pσ2 )
y2,σ

)
. . .

(∏
σ∈G

(pσd )
yd,σ

)

Then, we apply [28, Alg. 3] on each cycle y⃗i := (yi,σ)σ∈G. According to [28, Th. 4.7], this yields a vector

y⃗′i such that
∏

σ∈G (pσi )
yi,σ ∼

∏
σ∈G (pσi )

y′
i,σ with ∥y⃗′i∥1≤ 1

4φ(m)3/2 in polynomial time in log∥y⃗i∥. Then,

under Conjecture 5.2, b :=
∏

i

∏
σ(p

σ
i )

y′
i,σ satisfies N(b) ∈ 2O(n3/2) and ab is principal, thus solving the Close

Principal Multiple Problem.
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5.3 Computing the Minus Part of the Class Group

The computation of the minus part of the class group is an essential building block of Step (2) of

Section 5.2. Recall that Cl−(OK) is the kernel of the relative norm NK/K+ : Cl(OK) → Cl(OK+). Let

g1, . . . , gk be such that Cl(OK) = ⟨[g1]⟩×· · ·×⟨[gk]⟩, and g′1, . . . , g
′
l be such that Cl(OK+) = ⟨[g′1]⟩×· · ·×⟨[g′l]⟩.

We could compute our norm map by decomposing each NK/K+(gi) with respect to the g′j in Cl(OK+),

however, we only know the gi in a product representation from the primes in S = {p1, . . . , ps} that generate

Cl(OK). Evaluating these products would be costly. Instead, it is easier to decompose each NK/K+(pi) with

respect to the g′j in Cl(OK+). Then, since we know how to express each gi with respect to the primes in S,

this allows us to associate with each NK/K+(gi) a vector x⃗ ∈ Z/d′1Z × · · · × Z/d′lZ that corresponds to the

exponents of the decomposition of NK/K+(gi). Therefore, we get a map

φ : Z/d1Z× · · · × Z/dkZ→ Z/d′1Z× · · · × Z/d′lZ

whose kernel is isomorphic to Cl−(OK). We summarize this procedure in Algorithm 15.

Algorithm 15: Minus part of the ideal class group

Require: Number field K that admits a norm relation of the form (3.4).
Ensure: Cl−(OK).
1: Compute a set of non-zero primes S that generate Cl(OK) .
2: Compute a set of non-zero primes S+ that generate Cl(OK+) .
3: Compute a matrix M whose rows are a basis of the relations between pi in S.
4: Compute a matrix M+ whose rows are a basis of the relations between qj in S+.
5: Compute unimodular matrices U, V such that UMV = diag(d1, . . . , dk).
6: Compute unimodular matrices U ′, V ′ such that U ′M+V

′ = diag(d′1, . . . , d
′
l).

7: for all pi do
8: Find x⃗i such that NK/K+(pi) ∼

∏
j q

xi,j

j with Algorithm 10.

9: Find x⃗′
i such that NK/K+(pi) ∼

∏
j g

′
j
x′
i,j with Algorithm 11.

10: end for
11: for all gi do
12: Find y⃗i such that gi ∼

∏
j p

yi,j

j with the inverse of Algorithm 11.

13: y⃗′i ←
∑

j yi,j x⃗
′
j (hence NK/K+(gi) ∼

∏
j g

′
j
y′
i,j )

14: end for
15: Let φ defined by (0, . . . , 0, 1︸︷︷︸

i

, 0, . . . , 0) ∈
∏

j Z/djZ 7→ y⃗′i ∈
∏

j Z/d′jZ.

16: return ker(φ).

Under the Generalized Riemann Hypothesis, there is a polynomial size set S of prime ideals that generate

the ideal class group Cl(OK), namely S := {p | N(p) ≤ 12 log2|∆K |}, where ∆K is the discriminant of K

(see [4]). We refer to this bound on the norm of the prime ideals as Bach’s bound. While this means that

Steps (1) and (2) of Algorithm 15 are asymptotically efficient, one can hope to find generating sets of size
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at most O(log|∆K |). However, the effort required might be commensurate with that of computing the ideal

class group. A method for class group computations using norm relations is described in [20, Alg. 4.23]. A

byproduct of this algorithm is a set of primes S that generate the ideal class group. In a nutshell, it uses

the fact that when K admits a norm relation of the form (3.4), the group Cl(OK)⊗ Z[1/d] is isomorphic to

a direct summand of
⊕ℓ

i=1 Cl(OKi
)⊗Z[1/d], and the group Cl(OK)/Cl(OK)[d] is isomorphic to a subgroup

of
⊕ℓ

i=1 Cl(OKi
). This means that a subset of Cl(OK) (namely

⊕ℓ
i=1 Cl(OKi

)⊗Z[1/d]) is generated by the

prime ideals above the primes that generate the Cl(OKi). The rest of the generators are chosen at random

(Step (9) of [20, Alg. 4.23]). This probabilistic method relies on subfield computations, and is likely to

return a generating set significantly smaller than that obtained from Bach’s bound (which is quadratic in

log(|∆K |). Therefore we recommend the use of [20, Alg. 4.23] to perform Steps (1) and (2) of Algorithm 15.

Note that there is no direct analogue of [20, Alg. 4.23] to compute the minus part of the class group. Indeed,

no formula linking Cl−(OK) to the class groups of the subfields involved in (3.4) exists, to the best of our

knowledge. Therefore, we rely on the recursive ideal decomposition method introduced in Section 4.3 to

perform this task.

The computation of the minus part of the class group enables Step (2) of Section 5.2 which consists in

calculating a generating set of primes for Cl−(OK) under Conjecture 5.2. Given the parameters l, B, we

construct the set of prime ideals of K whose classes are in the minus part with norm bounded by B, and we

repeatedly draw d sets of conjugates until one such subset generates the minus part of the class group. This

procedure is summarized in Algorithm 16.

Algorithm 16: Creation of a generating set for Cl−(OK)

Require: Integers l, B > 0, number field K, and a norm relation d =
∑

i aiNHi
bi.

Ensure: A set S = {pi}i≤k of prime ideals such that ∀i, [pi] ∈ Cl−(OK), and the classes of pσ for σ ∈ G
generate Cl−(OK).

1: S0 ← {}.
2: for primes ideal p with N(p) ≤ B do
3: if NK/K+(p) is principal (using Algorithm 12) then
4: S0 ← S0 ∪ {p}.
5: end if
6: end for
7: Compute Cl−(OK) with Algorithm 15.
8: while true do
9: S ← d elements of S0 chosen uniformly at random. S′ ← {pσ | σ ∈ G, p ∈ S}.

10: Compute the S′-unit group and from the finite valuations of a generating set, deduce ⟨S′⟩ ⊆ Cl(OK).
11: if ⟨S′⟩ = Cl−(OK), then return S.
12: end while

Note that Step (3) only needs the knowledge that an ideal is principal and not a generator. We refer to

this as the decisional PIP, in contrast to the search PIP. We can optimize Algorithm 12 or Algorithm 13
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for this purpose. Assume we have an input ideal a and find a generator β for ad. Algorithm 7 then uses

saturation techniques to find u such that α = uβ is a d-th power if it exists. By choosing c in Algorithm 7

large enough, by Proposition 4.8 we can gaurantee that if saturation techniques find such a u then β must

be a d-th power, and we don’t need to actually compute the d-th root.

5.4 Subfield Variant of the CDW Algorithm

The building blocks presented in the previous sections are all that is needed to classically implement

the CDW search for mildly short vectors in ideals of K = Q(ζm) when K admits a norm relation of the

form (3.4). For the sake of clarity, we recall the entire procedure in Algorithm 17.

Algorithm 17: Classical CDW search for mildly short vectors from norm relations

Require: Number field K = Q(ζm) that admits a norm relation of the form (3.4). Ideal a ⊆ OK .
Ensure: A mildly short vector of a.
1: Let S = {p | N(p) ≤ 12 log2|∆K |} (i.e. S generates Cl(OK) under GRH).
2: while true do
3: Draw a random short product

∏
i p

xi
i of elements in S.

4: if NK/K+ (a
∏

i p
xi
i ) is principal then a0 ← a

∏
i p

xi
i . break

5: end while
6: Compute a generating set of primes S′ = {pi}i≤s of Cl−(OK) with Algorithm 16.
7: Find x⃗ such that a0 ∼

∏
i p

xi
i with Algorithm 10 (on input S′).

8: Use x⃗ to derive b with N(b) ∈ 2Õ(n
3/2) with [28, Alg. 4].

9: Find a generator α of a0b with Algorithm 5, Algorithm 12, or Algorithm 13.
10: Use Algorithm 14 to derive a short generator α′ of a0b.
11: return α′.

5.5 Asymptotic Analysis

Now we analyze the asymptotic complexity of Algorithm 17. We show that the cost is dominated

(up to polynomial factors) by the cost of S-unit group computation and ideal class decomposition in the

subfields involved in (3.4). Note that unless K is cyclic, which happens e.g. when m = pl is an odd prime

power, there is always a norm relation that we can exploit to lower down the cost of ideal decompositions

and computation of Cl(OK) and Cl−(OK). This results in a practical gain for these tasks in almost all

cyclotomic fields. Additionally, we observe asymptotic gains over the BKZ algorithm in the cyclotomic fields

admitting good norm relations discussed in Section 3.4.2.

Proposition 5.4 (Under GRH). Under Conjecture 5.2 and Conjecture 5.3 the cost of Algorithm 17 is in

Poly([K : Q], log N(a)) (CostS-unit(subfields) + CostIdeal Dec(subfields)) ,
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where CostS-unit(subfields) is the cost of computing S-units in the subfields involved in the norm relation (3.4),

and CostIdeal Dec(subfields) is the cost of ideal decomposition in the subfields involved in the norm rela-

tion (3.4).

Proof. The random walk in Steps (2) to (5) of Algorithm 17 takes time in

O
(
h+
K · Poly(m, log(N(a))) · Cost(PIP)

)
.

Under Conjecture 5.3, h+
K is polynomial. For the decisional PIP of Step (4) we can simplify the analysis by

using a decisional variant of Algorithm 12. The cost of Algorithm 16 requires the computation of S-units

(through Steps (3)-(4) of Algorithm 15, and Step (11) of Algorithm 16). It also requires ideal decompositions

from Algorithm 9. Then Step (7) is another decomposition with Algorithm 10. Step (8) has an efficient

solution by [28, Algorithm 3], as well as Step (10) (with Algorithm 14). For simplicity we will assume

Algorithm 5 is used for the PIP in Step (9). Hence, up to polynomial factors, the cost of Algorithm 17 is

that of

• the computation of S-units and,

• the decomposition of the ideal class of an ideal according to a set of primes.

We know that computing S-units in K efficiently reduces to computing subfield S-units by [20, Theorem 4.8].

Since we are working in a cyclotomic field, by Proposition 4.2 and Lemma 4.3 log|∆K |, l, and maxi log ai are

all in Poly([K : Q]). Combining this with the cost of recursive ideal decomposition given in Theorems 4.11

and 4.12 we obtain the stated complexity.

Just as we have done many times already we now analyze the complexity of 17 in the families of fields

given in Section 3.4.2. In cyclotomic fields with conductor m satisfying λ(m) ≤ φ(m)a for a < 3/4 we can

find mildly short vectors of arbitrary ideal lattices asymptotically faster than BKZ, which is in 2Õ(
√
n). We

reiterate that asymptotically such conductors have negligible density, but Table 1 shows that for conductors

in the practical range (m ≤ 100, 000) approximately 25% do satisfy this condition.

Proposition 5.5 (Under GRH). Assume the heuristics of [14], as well as Conjecture5.2, and Conjecture 5.3.

Let a > 0 and (mk)k∈Z>0
be a sequence of integers satisfying λ(mk) ≤ φ(mk)

a for all k. Then Algorithm 17

applied to the infinite family of fields Kk := Q(ζmk
) has asymptotic complexity

Poly([Kk : Q], log(N(a))) · 2Õ([Kk:Q]2a/3).
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Finally we consider the infinite sequence of conductors m1 < m2 < . . . given by Theorem 3.12 satisfying

λ(mk) = (log(mk))
O(log log log(mk)). In the fields Q(ζmk

) we can find mildly short vectors of an arbitrary ideal

lattice in time Poly([Kk : Q], log(N(a))) · 2(log(mk))
O(log log log(mk))

. This complexity is in 2n
o(1)

.

Theorem 5.6 (under GRH, Conjecture 5.2 and 5.3). There exists an infinite sequence of integers m1 <

m2 < · · · such that Algorithm 17 has complexity

Poly([Kk : Q], log(N(a))) · 2(log(mk))
O(log log log(mk))

.

5.6 Numerical Results

We implemented the algorithms of this chapter, and use them to compute the structure of minus parts of

class groups, provide support for Conjecture 5.2 on the generators of the minus part of the class group, and

demonstrate the practicality of Algorithm 17. In [29], some justification in support of Conjecture 5.2 and

Conjecture 5.3 is given. Below, we review existing data in the literature, and we discuss the novelty of the

data provided via our techniques based on norm relations. We first consider Conjecture 5.3, which asserts

that h+(m) ≤ Poly(m).

5.6.1 Numerical Data on h+ (Conjecture 2)

Previous efforts The computation of the “plus part” of the class number of a cyclotomic field has been

described as ”notoriously hard” [67]. Therefore, little data is available in the literature to support Conjec-

ture 5.3. Masley [51] used lower discriminant bounds proved by Odlyzko [57] to compute real class numbers.

These results, later extended by Van der Linden [48], yielded the unconditional computation of the class

numbers of all real cyclotomic fields of composite conductor m ≤ 200, ϕ(m) ≤ 72 and m ̸= 148, 152.

However, for fields of larger degree, the root discriminant becomes too large for Masley’s method to

handle. To overcome the problem of large root discriminant, Miller [52] established a lower bound on sums

over prime ideals of Hilbert class field, which in turn establishes an upper bound on the class number.

According to [52, Th. 1.1], for a composite integer m ̸≡ 2 mod(4), the class number of the maximal real

subfield of the m-th cyclotomic field Q(ζm) is h+
m = 1 if ϕ(m) ≤ 116 and m ̸= 136, 145, 212. Also, h+

m = 2 for

m = 136, 145 and h+
256 = 1. Under the GRH, Miller [52] was able to compute h+

212 = 5 and h+
512 = 1. The

method was later extended to prime conductors in [53]. According to [53, Th. 3.1.1], for a prime number

p one has h+
p = 1 if p ≤ 151 . Under GRH we have h+

p = 1 for p ≤ 263 and p ̸= 163, 191, 229, 257. Also

h+
163 = 4, h+

191 = 11, h+
229 = 3, and h+

257 = 3.
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Tables 4.1 and 4.2 of [53] provide the class numbers of the n-th layers of cyclotomic Zp-extensions over

the rationals implying that h+
169 = h+

289 = h+
361 = 1. Also, under GRH h+

243 = h+
529 = h+

841 = h+
961 = 1

Great advances in the direction of computing class numbers of real cyclotomic fields were made by

Schoof [67] who presented a table of the orders of certain subgroups of the class groups of the real cyclotomic

fields for prime conductors less than 10000. Based on the Cohen–Lenstra heuristics, the probability that the

main table presented in [67] is actually a table of class numbers is at least 98%. The largest order in this

table is 130473 for the prime conductor 8017. So, according to the Schoof’s table, with high probability for

prime conductor m the class number of the real cyclotomic field is less than 17m.

Our results Concrete results on h+
m (even conditional to GRH) only exist for relatively small degrees,

a few sporadic reasonable size degree (m = 512, 529, 841, 961), or probabilistically for certain large prime

conductors. A Pari/GP [25] implementation of class group computation in abelian fields using norm relations

was provided by [20]. Using this, we computed h+
m (under the GRH) for many conductors for which this

invariant was not known before. What is even more interesting about the numerical data we provide is

that this method perform better for highly composite conductors, in contrast with the prime conductors for

which some probabilistic data is already available. All in all, we were able to compute 149 values of h+
m that

do not appear to be previously known in the literature. We reached a maximum conductor of 2730. Our

data supports Conjecture 5.3 which stipulates that h+
m has moderate size. Besides the support of the CDW

heuristics, this data is interesting in its own rights. Given the large number of values of h+
m we calculated,

we chose to disseminate the data in a new online database for invariants of cyclotomic fields, CycloDB [82].

To this day, CycloDB contains 362 values of h+(m), including the 149 that were not previously known. Note

that each entry of the database contains Cl(OK), hm, the factorization of hm, h−
m, h+

m, and the regulator of

the field. We will continue populating it in the future as this data is of general interest.

5.6.2 Numerical Data on the Minus Part (Conjecture 1)

Previous efforts Conjecture 5.2 is an ad-hoc assumption made for the first time in [29] that was not

previously studied in the literature. In some sense, the numerical data we provide in this section is the

first to ever put Conjecture 5.2 to the test strictly speaking. However, the authors of [28, 29] presented a

rationale to justify Conjecture 5.2 based on existing numerical data. In [28, Prop. 6.1], it is proven that if a

number s satisfies s ≥ r (log log2(h
−) + α) for a parameter α ≥ 1 and r the the number of Z[G]-generators of

Cl−(OK), then the probability that s elements of Cl−(OK) drawn uniformly at random generates Cl−(OK)

is at least 1 − O(2−α). This means that if we know that the number of (not necessarily prime) generators

of Cl−(OK) is small, then on average few random elements are required to generate Cl−(OK). The purpose
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of [28, Prop. 6.1] is to relate Conjecture 5.2 with existing numerical data from the literature which concerns

the number of generators of Cl−(OK) rather than the number of prime generators of Cl−(OK) (which is

what is needed in Conjecture 5.2). However, to justify Conjecture 5.2 from [28, Prop. 6.1], one needs

to make the extra unproven assumption that [28, Prop. 6.1] is still true even if we draw s short prime

elements (as opposed to elements chosen uniformly at random). This extra heuristic seems reasonable, but

it means that numerical results on the number of generators of Cl−(OK) do not, on its own, directly support

Conjecture 5.2.

Below, we recall known results on Cl−(OK). Most of the existing literature concerns its cardinality h−,

but not the structure itself. Motivated by the results on divisibility properties of class numbers of cyclotomic

fields, Kummer [42] was the first to carry out computations of relative class numbers of cyclotomic fields

of prime conductor, for primes below 163. These calculations were extended by Lehmer and Masley [51] in

1978 to the primes p ≤ 509. According to these results, h−
p grows rapidly with p. For instance, h−

491 already

has 138 decimal digits. Later, Fung, Granville and Williams [36] computed all h−
p for p ≤ 3000. Then,

Shokrollahi [72] extended this result to all p ≤ 10000.

Regarding the structure of the minus part, in [42], Kummer proved that Cl−(OQ(ζp)) is cyclic for every

prime p ≤ 100 and p ̸= 29, 41. Furthermore, Cl−(OQ(ζ29)) and Cl−(OQ(ζ41)) are abelian groups of type

(2, 2, 2) and (11, 11) respectively. Subsequently, Kummer’s methods were refined by Tateyama [75], Horie

and Ogura [39] and many other authors. Tateyama was able to compute the structure of Cl−(OQ(ζp)) for

prime numbers p smaller than 227 except for seven cases. Horie and Ogura determined the structure of the

minus part of any cyclotomic field with conductor less than 100. Later, Schoof [68] determined the structure

of Cl−(OQ(ζp)) for l ≤ 509. As an example, Schoof showed that Cl−(OQ(ζ491)) is isomorphic to a product

of 6 cyclic groups. Also, Theorem 3 of [68] roughly states that for prime divisors p of ℓ − 1, the p-part of

Cl−(OQ(ζℓ)) is cyclic whenever it is small.

Our results We present the first experiments that directly test the validity of Conjecture 5.2 without

relying on extra assumptions. Additionally, similar to the case of the provision of numerical data on h+,

our methods work for non-cyclic cyclotomic fields, which makes them valuable since all previous data used

to justify Conjecture 5.2 was restricted to prime conductors. The results of our experiments are presented

in Table 5. For each conductor m for which we tested Conjecture 5.2, we found the minimum B and d for

which we could generate Cl−(OK). Then we repeated 100 time the following experiment: draw d prime

ideals of norm less than B uniformly at random, and check whether their conjugates generate Cl−(OK). We

report the corresponding probability. We also report the runtime of the computation of Cl−(OK) in CPU

hours, which is of independent interest. Conjecture 5.2 is of asymptotic nature, and hence difficult to justify
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with a finite number of experiments, but the results of Table 5 are clearly consistent with the prediction of

a moderate B and d with a high probability of generating Cl−(OK).

5.6.3 Timings of the Subfield Variant of CDW

In Table 6 we report timings of our implementation of Algorithm 17, i.e. our subfield variant of the CDW

method for the computation of mildly short vectors. We assume the generators for the minus part of the

class group required in Step (6) of Algorithm 17 have been precomputed. Some of these timings can be seen

in Table 5. We selected fields with conductor m ranging between m = 23 and m = 198. For each field, we

report “lbN”, the bit size of the algebraic norm of the input ideal, “lbNsvp”, the bit size of the algebraic

norm of the short generator of the principal ideal found in Step (10) of Algorithm 17, “tcpm”, the time to

solve the Close Principal Multiple problem, “tpip”, the time to solve the Principal Ideal Problem, and “tsvp”,

the time to find the short generator of Step (10). Timings are reported in CPU seconds unless otherwise

stated.
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Table 5. Experiments on Cl−(OK)

m n Cl−(OK) B d prob. time
23 22 [3] 47 2 100.0 0.01
46 22 [3] 47 2 100.0 0.01
39 24 [2] 13 1 100.0 0.01
52 24 [3] 13 1 100.0 0.01
56 24 [2] 8 1 100.0 0.01
72 24 [3] 9 1 100.0 0.01
78 24 [2] 13 1 100.0 0.01
29 28 [2, 2, 2] 59 2 100.0 0.01
58 28 [2, 2, 2] 59 2 100.0 0.01
31 30 [9] 32 2 100.0 0.01
62 30 [9] 32 2 100.0 0.01
51 32 [5] 103 1 100.0 0.01
64 32 [17] 193 2 100.0 0.01
68 32 [8] 137 2 100.0 0.02
96 32 [3, 3] 97 2 100.0 0.01
102 32 [5] 103 1 100.0 0.01
37 36 [37] 149 2 100.0 0.01
57 36 [9] 229 2 100.0 0.01
63 36 [7] 64 1 100.0 0.01
74 36 [37] 149 2 100.0 0.01
76 36 [19] 229 1 100.0 0.01
108 36 [19] 109 2 100.0 0.01
114 36 [9] 229 2 100.0 0.01
126 36 [7] 64 1 100.0 0.01
41 40 [11, 11] 83 2 100.0 0.01
55 40 [10] 11 1 100.0 0.03
75 40 [11] 151 2 100.0 0.01
82 40 [11, 11] 83 2 100.0 0.01
88 40 [55] 89 1 100.0 0.02
100 40 [55] 101 2 100.0 0.02
110 40 [10] 11 1 100.0 0.03
132 40 [11] 397 2 100.0 0.01
150 40 [11] 151 2 100.0 0.01
43 42 [211] 173 2 100.0 0.04
49 42 [43] 197 2 100.0 0.02
86 42 [211] 173 2 100.0 0.04
98 42 [43] 197 2 100.0 0.03
69 44 [69] 139 1 100.0 0.02
92 44 [201] 277 1 100.0 0.02
138 44 [69] 139 1 100.0 0.02
47 46 [695] 283 2 100.0 0.13
94 46 [695] 283 2 100.0 0.17
65 48 [2, 2, 4, 4] 131 1 100.0 0.18

m n Cl−(OK) B d prob. time
105 48 [13] 211 1 100.0 0.02
112 48 [3, 156] 113 3 100.0 0.22
130 48 [2, 2, 4, 4] 131 1 100.0 0.18
144 48 [13, 39] 433 4 100.0 0.05
53 52 [4889] 107 2 100.0 0.24
106 52 [4889] 107 2 100.0 0.24
81 54 [2593] 163 2 100.0 0.46
162 54 [2593] 163 2 100.0 0.34
87 56 [8, 8, 24] 523 2 100.0 0.4
116 56 [8, 8, 168] 233 2 100.0 0.33
174 56 [8, 8, 24] 523 2 100.0 0.38
59 58 [41241] 709 2 100.0 3.39
118 58 [41241] 709 2 100.0 2.65
61 60 [76301] 367 2 100.0 4.9
77 60 [4, 4, 4, 20] 463 1 100.0 0.29
93 60 [6795] 373 2 100.0 0.09
99 60 [31, 93] 199 1 100.0 0.12
122 60 [76301] 367 2 100.0 6.34
124 60 [2, 22878] 373 3 100.0 0.33
154 60 [4, 4, 4, 20] 463 1 100.0 0.31
186 60 [6795] 373 2 100.0 0.08
198 60 [31, 93] 199 1 100.0 0.09
85 64 [6205] 1021 2 100.0 0.14
128 64 [359057] 257 2 100.0 45.3
170 64 [6205] 1021 2 100.0 0.12
192 64 [3, 20451] 193 2 100.0 1.78
91 72 [4, 13468] 547 2 100.0 0.07
95 72 [107692] 571 2 98.0 2.74
135 72 [75961] 271 2 100.0 0.94
148 72 [4827501] 593 3 100.0 0.51
152 72 [19, 171, 513] 457 2 100.0 0.51
190 72 [107692] 571 2 96.0 2.54
123 80 [8, 8, 88, 1496] 739 1 100.0 5.16
164 80 [11, 7528840] 821 2 100.0 14.43
165 80 [92620] 331 2 100.0 7.16
176 80 [5, 5874275] 353 1 100.0 5.27
129 84 [37821539] 1033 2 100.0 64.45
147 84 [5874617] 883 2 100.0 2.23
172 84 [2, 396326786] 173 1 100.0 54.66
196 84 [82708823] 197 2 100.0 14.79
184 88 [67, 22181154] 1289 2 100.0 16.14
189 108 [105778197511] 379 1 100.0 2.6
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Table 6. Computation of mildly short vectors with our subfield CDW variant.

m n lbN lbNsvp tcpm tpip tsvp
23 22 51 68 3.05 0.01 0.98
46 22 55 72 3.06 0.01 1.04
39 24 46 49 1.44 0.01 0.89
52 24 52 56 1.17 0.01 0.96
56 24 53 56 1.14 0.01 0.92
72 24 58 68 3.23 0.01 0.68
78 24 52 56 1.22 0.01 0.72
29 28 54 77 2.96 0.03 1.22
58 28 53 75 2.81 0.02 1.01
31 30 56 66 1.04 0.03 1.0
62 30 58 79 2.57 0.03 0.84
51 32 55 62 1.48 0.03 0.92
64 32 56 81 3.51 0.05 1.27
68 32 56 172 289.47 0.08 0.7
96 32 53 79 4.14 0.03 0.73
102 32 60 73 3.82 0.03 0.69
37 36 52 78 3.15 0.05 1.01
57 36 46 70 3.69 0.05 1.12
63 36 51 63 4.06 0.04 0.73
74 36 55 81 3.29 0.05 0.98
76 36 47 80 202.89 0.05 1.1
108 36 59 83 3.9 0.07 0.76
114 36 55 83 4.41 0.06 0.9
41 40 57 92 2.78 0.08 1.26
55 40 52 69 4.01 0.07 0.81
75 40 57 71 1.94 0.07 0.83
82 40 55 86 3.39 0.09 1.45
88 40 55 75 3.96 0.06 0.73
100 40 58 97 416.62 0.11 0.69
150 40 55 79 4.59 0.07 0.9
43 42 52 82 4.18 0.15 1.09
49 42 58 73 1.01 0.14 1.35
86 42 57 105 3.74 0.17 1.03

m n lbN lbNsvp tcpm tpip tsvp
98 42 55 88 3.22 0.1 0.99
69 44 54 78 6.08 0.1 0.77
92 44 52 94 479.72 0.12 0.71
138 44 54 78 5.62 15.1 1.28
47 46 55 100 3.26 0.29 1.14
94 46 50 104 6.21 0.19 1.12
65 48 53 152 1342.92 57.64 1.37
112 48 51 264 1894.87 45.02 1.14
144 48 53 175 1988.98 71.09 1.58
87 56 52 139 5.79 73.53 1.49
116 56 56 294 1644.03 81.35 2.07
174 56 59 153 7.13 66.76 1.81
77 60 56 243 1496.5 69.37 1.3
93 60 50 133 7.68 101.88 2.13
99 60 55 124 6.76 78.57 1.29
124 60 48 147 5.7 124.02 2.25
186 60 57 140 7.33 0.47 1.57
198 60 58 132 7.62 0.27 0.75
85 64 58 155 8.17 1023.02 9.26
128 64 50 132 7.92 518.03 8.12
192 64 51 131 6.75 1117.83 16.92
91 72 51 137 10.63 73.88 2.6
95 72 53 139 8.14 528.04 3.21
135 72 52 136 8.5 503.78 3.62
148 72 54 160 7.24 368.24 3.45
152 72 57 148 6.18 950.51 9.39
123 80 54 127 12.38 1834.57 11.32
164 80 58 153 11.35 1897.85 9.99
176 80 55 126 14.97 5500.97 39.56
172 84 52 118 13.61 1713.64 7.73
196 84 57 144 12.7 18808.78 97.63
184 88 58 157 17.82 6611.68 25.21
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CHAPTER 6

CONCLUSION

In Chapter 4 we described how to use the norm relations of [20] to reduce instances of the PIP and

ideal decomposition in a Galois number field to subfield problems. We first illustrated this in Algorithm 5

where we show how to resolve the PIP using recursive computation of S-unit groups. We analyzed the

complexity of Algorithm 5 and showed in Section 4.1.1 that this method achieves a polynomial improvement

over the state of the art in almost all cyclotomic fields, and in certain families of cyclotomic fields the

improvement is in fact superpolynomial. In Section 4.3 we show how norm relations can be used to perform

ideal decomposition by recursively decomposing ideals in subfields with the same asymptotic improvements,

and show how this can also be used for resolution of PIP instances in Section 4.3.3. Finally, in Section 4.4 we

give a third algorithm for resolving the PIP using norm relations in Algorithm 13. This algorithm avoids the

S-unit group computations of the previous PIP algorithms, resulting in significant improvements in practical

performance. In Section 4.4.2 we describe our implementation, capable of resolving instances of the PIP in

fields of degree up to 1800, breaking all previous records by a significant margin.

In Chapter 5 we moved to cryptographic applications. We recalled the results of [28, 29] which allow for

an efficient quantum reduction of the search for a mildly short vector in an arbitrary cyclotomic ideal lattice

to the PIP, and applied our variants of PIP and ideal decomposition using norm relations to improve the

classical asymptotic cost of this reduction, which is subexponential. In particular, Algorithm 15 describes

how to compute the structure of the minus part of the class group of a cyclotomic field using norm relations,

and Algorithm 16 allows for the computation of a set of generators for the minus part. In Section 5.4 we

describe how to use these results to resolve the Close Principal Multiple problem and provide a classical

variant of the CDW reduction whose asymptotic cost is reduced to the cost of S-unit group computation

and ideal decomposition in subfields. We implemented the algorithms we described provided numerical data

in Section 5.6. We provide evidence for conjectures regarding the class group of cyclotomic fields that are

crucial for the efficiency of the CDW reduction, compute minus parts of class groups for cyclotomic fields of

degree up to 108, and find mildly short vectors in non-principal cyclotomic ideal lattices in degrees up to 88.
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6.1 Future Work

The existence of norm relations allows reducing hard problems such as the PIP to subfield computations.

However, when we apply these results to large degree fields admitting norm relations with very small subfields,

the large gap in degree means the subfield elements, which are given by relative norms, are often very large.

We generally do not evaluate the products of these relative norms, and use compact representations as

described in Section 2.4 to reduce the size of elements which we may need to compute a d-th root of, but the

sheer size nevertheless takes a toll on the practical performance. Indeed, in Table 3 we give the time for each

step in the recursive PIP resolution using norm relations, and in degree 1800 computing subfield unit groups

and resolving subfield PIP instances, the most difficult step asymptotically, took only approximately 10% of

the total time. However, computing relative norms took 22% of the time, and the compact representations

and root computations 56% of the time. Improving these routines, either by optimizing the implementation

or theoretical improvements, would have a significant impact on runtime and allow computations in even

larger degree fields. This would apply equally as well to ideal decomposition and the search for mildly short

vectors in cyclotomic ideal lattices.
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