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ABSTRACT

Consider a nonautonomous nonlinear evolution ẋ = f(x, t, µ), where the vector x(t) ∈ Rn represents the

state of the dynamical system at time t, µ contains system parameters, and f(·) represents a dynamic

constraint. In most practical applications, the nonlinear dynamic constraint f is unknown analytically.

The problem of approximating f directly from data measurements generated by the system is a main

goal of this manuscript. In the postulates of the Nonlinear Autoregressive (NAR) framework, we show

that the problem of approximating f can be studied through symbols of densely defined multiplication

operators over a Reproducing Kernel Hilbert Spaces (RKHS). In this formulation, data is mapped into

a RKHS by virtue of occupation kernels which are special functions that reside in a RKHS owing to

an integration functional. The resulting scheme is a parameter identification algorithm where system

parameters are approximated according to some induced structure on the symbols of the operator. The

action of the adjoint multiplication on an occupation kernel induces a kernelized transform which is

the subject of study in the second part of the dissertation. The work is concluded by a kernelized

reconstruction of a solution to the classical Sturm-Liouville problem.
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CHAPTER 1:

INTRODUCTION AND MAIN RESULTS

1.1 Introduction

Dynamical systems are among the most frequently encountered systems in engineering and in the physi-

cal sciences. These systems emerge as models for certain physical, chemical or biological states, also, as

auxiliary tools for addressing other mathematical problems. While dynamical systems are widely studied,

the majority lack explicit mathematical models that describe them. The main goal of this dissertation

is to explore data-driven approaches to studying dynamical systems. Arguably, data is increasingly be-

coming abundant in modern systems of interest such as epidemiological systems, networks of neurons,

financial markets, etc, but models are often elusive. This makes discovering governing equations from

high-dimensional data a rapidly evolving field with great potential to address the challenge. System

identification routines offer a data-centered approach that involves reproducing system input-output

measurements. Mostly, the resulting model is applied to capture prevalent dynamical structure; an

equally crucial part of the objective [44]. In this write-up, we present a non-linear system identification

algorithm by employing Occupation kernels and densely defined multiplication operators. Occupation

kernels are functions that reside in a reproducing kernel Hilbert space (RKHS) that presents an integra-

tion functional as an inner product and can be regarded as the generalization of occupation measures

[50]. Linear models, as we know, are often deficient in their ability to represent complex nonlinear

dynamics. Meanwhile, most every day systems are nonlinear to some degree, and this dictates the need

for identification techniques specific to nonlinear systems [44]. A few such techniques are variants of

the Nonlinear Autoregressive Moving Average with Exogenous Inputs (NARMAX), including Nonlinear

Autoregressive Moving Average (NARMA), Autoregressive Moving Average (ARMA), Nonlinear Autore-

gressive NAR etc . The theoretical background of this study is sourced from NARMAX introduced by

Billings, S. A. and Leontaritis, I. J [4]. We introduce a kernelized learning algorithm that couples NAR

1



with symbols of densely defined multiplication to represent data as objects within a reproducing kernel

Hilbert Space. The result is a parameter identification routine that approximates unknown system dy-

namics in a function space based on an induced norm. The norm which is the product of the interaction

between the adjoint densely defined multiplication operators and the aforementioned occupation kernel

imposes a needed structure on the symbols. Additionally, this interaction yields a kernelized Fourier

transform which is the subject of study in the second half of the dissertation. The developed method

shares close connections with Dynamic Mode Decomposition introduced by P. J. Schmid [58] and the

Sparse Identification for Nonlinear Dynamics (SINDy) by S. L. Brunton, J. L. Proctor and J. N. Kutz

[8]. In Dynamic Mode Decomposition, fundamental governing principles of continuous time systems are

analyzed by discrete time proxies using high dimensional time series data. The algorithm identifies the

best-fit linear model that advances high dimensional measurements forward in time. This is achieved by

constructing an approximate locally linear dynamical system dX
dt = AX. Practically, a linear system is

realized by describing an analogous discrete-time system sampled every ∆t in time so that Xk+1 = AXk

where A = exp(A∆t) and A refers to the matrix in the continuous time dynamics. DMD produces a

low-rank eigen decomposition of the matrix A that specially fits the measured trajectory by minimizing

the deviation ∥Xk+1 −AX+ k∥2.

1.2 Main Results

The contributions of this work are in two folds. First, we develop an algorithm for estimating system

parameters from data for approximating unknown dynamics. The method, which stems from the NAR

architecture, incorporates past observations into predicting present values of the system. The algorithm is

suitable for dynamics of the form γ(t) = f(γ(t−τ1), γ(t−τ2), · · · , γ(t−τp)), where τi, i = 1, 2, · · · , p are

time lags. The second part of the work introduces a kernelized approximation for the Fredholm integral

operator. The framework is a formulation of a solution to the Sturm-Liouville differential equation

subject to some boundary conditions. Here, solution to the Sturm-Liouville problem is sequentially

reconstructed through through the kernel function associated to a Fredholm integral operator.

2



1.3 Organization of the Dissertation

The dissertation is organized as follows: Chapter 2 presents a background of relevant literature on

system identification. Specifically, we look at data-driven modalities like the Dynamic Mode Decompo-

sition (DMD) and Sparse Identification for Nonlinear Dynamics (SINDy) algorithms. Some topological

and operator theoretic properties of the multiplication operator and its connection to the Nevanlinna-

Pick interpolation problem are discussed. We conclude the chapter with a review on the Nonlinear

Autoregressive Moving Average Model with Exogenous input (NARMAX). The main contribution of

this work is presented in Chapters 3, 4 and 5. The third chapter introduces the notion of occupation

kernels and formulates a system identification model. Numerical experiments are carried out to verify

the methodology discussed. Chapter 4 highlights analytic properties of the interaction between the

multiplication operator and the occupation kernel, and its role in the approximation process. Finally,

Chapter 5 introduces a construction of a solution to the Sturm-Liouville problem through a kernelized

approximation of the Fredholm integral operator.

3



CHAPTER 2:

PRELIMINARIES

2.1 Introduction

In this chapter, we present relevant background in the form of literature, fundamental theory, and defi-

nitions of key terms. We shall assume throughout this manuscript that all Hilbert spaces are separable.

A Hilbert space H and its associated inner product and norm shall be denoted by ⟨·, ·⟩H and ∥·∥H

respectively. Hilbert function spaces shall be those comprising real-valued functions unless otherwise

stated.

2.2 Reproducing Kernel Hilbert Space (RKHS)

Before we begin, let’s specify some notations. We shall denote by D, the unit disk in the complex plane;

D = {z ∈ C : |z|< 1}. The unit circle shall be denoted T, representing the collection T = {z ∈ C :

|z|= 1}.

A Hilbert Space is an inner product space (H, ⟨·, ·⟩H) that is complete with respect to the norm by

the inner product. Suppose X is a topological space, a Reproducing Kernel Hilbert Space (RKHS) H

over the set X is a Hilbert space of real-valued functions such that for all x ∈ X the point evaluation

functional Exg := g(x) is well-defined and bounded. The Riesz representation theorem states that for

all x ∈ X , there exists a function kx ∈ H such that ⟨g, kx⟩H = g(x), where ⟨·, ·⟩H is the inner product

on H. The function kx is said to have the reproducing property and is called the reproducing kernel

function at x. Take for example the space of square integrable functions over the real numbers denoted

L2(R) equipped with the inner product ⟨f, g⟩ =
∫
R f(s)g(s)ds. L2(R) is a Hilbert space but not a

RKHS as its evaluation functional is not bounded.

4



For any RKHSH, the span of the reproducing kernel k := span{kx : x ∈ X} is dense inH. Equivalently,

we say k spans H with

H = span{kx : x ∈ X},

and the function K(x, y) = ⟨ky, kx⟩H is a kernel function for the RKHS. An important property of

reproducing kernels are that, the corresponding RKHS is unique for any symmetric kernel, a result

known as the Moore-Aronszajn theorem. For any X , the bijective correspondence between reproducing

kernel Hilbert spaces and positive definite reproducing kernels k : X × X → R was first discovered by

E.H. Moore [42]; also discussed by Aronszajn in [2]. Recall that a kernel k is said to be symmetric if

for all pair of elements x, y ∈ X , ky(x) = k(x, y) = k(y, x) = kx(y).

Definition 2.2.1. A function k : X×X → R is called positive semi-definite if for all n ∈ N, α1, . . . , αn ∈

R and all x1, . . . , xn ∈ X , we have

n∑
i=1

n∑
j=1

αiαjk (xj , xi) ≥ 0. (2.1)

Furthermore, k is said to be strictly positive definite if for mutually distinct points x1, . . . , xn ∈ X ,

equality in (2.1) only holds for α1 = · · · = αn = 0. Lastly, k is called symmetric if k (x, x′) = k (x′, x)

for all x, x′ ∈ X .

For fixed x1, x2, . . . , xn ∈ X , the matrix

K = [k(xi, xj)]
n
i,j=1 (2.2)

is called the Gram matrix of k. Satisfying condition (2.1) is equivalent to saying the Gram matrix is

positive semi-definite.

Symmetry and positive semi-definitness are in fact necessary and sufficient conditions for a function to

be a kernel. Like most kernel methods, at the center of our current algorithm are kernel functions. We

present a brief overview of kernels in the next few paragraphs. For a detailed treatment of the topic,

refer to Support Vector Machines by I. Steinwart, A. Christmann [61].

5



Definition 2.2.2. Let X be a nonempty set. The function k : X × X → K(R or C) is called a kernel

on X if there is a K-Hilbert space H and a map Φ : X → H such that for all x ∈ X , we have

k(x, x′) =
〈
Φ(x′),Φ(x)

〉
. (2.3)

Φ is referred to as a feature map and H a feature space of k.

A set of kernels does not necessarily form a linear space as the difference of two kernel is not a kernel,

however, new kernels can be formed from various combinations of existing ones.

Lemma 2.2.1. Let X ,X1, and X2 be sets, and α ≥ 0, then

1. If k, k1 and k2 are kernels on X then αk and k1 + k2 are kernels on X .

2. If k1, k2 are kernels on X1 and X2 respectively, then k1(x1, x
′
1) · k2(x2, x′2) is a kernel on X1×X2,

for x1, x
′
1 ∈ X1 and x2, x

′
2 ∈ X2.

Below are two examples of kernel functions over Cd and Rd [61, Chapter 4] associated with a positive

constant µ > 0.

Polynomial kernels: For d ≥ 1 and c ≥ 0, k(z, z′) = (⟨z, z′⟩+ c)m for z, z′ ∈ C.

Gaussian Radial Basis (RBF): For d ∈ N, z = (z1, z2, . . . , zn) ∈ Cd and z′ = (z′1, z
′
2, . . . , z

′
n) ∈ Cd,

define

kµ,C(z, z
′) = exp

− 1

µ2

d∑
j=1

(z − z′)2

. (2.4)

kµC is a kernel on Cd. Its restriction kµ = kµ,C|Rd×Rd is

kµ(x, x
′) = exp

(
1

µ2
∥x− x′∥22

)
. (2.5)

kµ is called the Gaussian Radial Basis kernel and the parameter µ is called the kernel width.

Suppose H is a K− Hilbert function space over some set X that has a reproducing kernel k, then H is

a RKHS on a feature space of k where the feature map Φ : X → H is given by

Φ(x) = k(·, x). (2.6)

6



As mentioned earlier, Theorem 2.2.2 states the one-to-one correspondence between reproducing kernels

and RKHS.

Theorem 2.2.2. [61] Let H be a RKHS over X , then k : X ×X → K defined by k(x, x′) = ⟨δx, δx′⟩H,

x, x′ ∈ X is the reproducing kernel of H. Furthermore, if {ei}i∈I is an orthonormal basis of H, then for

all x, x′ ∈ X we have

k(x, x′) =
∑
i

ei(x)ei(x′). (2.7)

The Hardy space H2 (which is a subspace of the space of all Lebesgue measurable functions that are

square-integrable over the unit circle T, denoted L2(T)) is an example of a RKHS. The general Hardy

Space (Hp), for p ∈ (0,∞), is given in Definition 2.2.3 below.

Definition 2.2.3. (Hardy Space, [65]) For 0 < p <∞, the Hardy spaceHp consists of analytic functions

f over the unit disk D such that

∥f∥pp= sup
0<r<1

1

2π

∫ 2π

0

∣∣∣f (reiθ)∣∣∣p dθ <∞.

When p = ∞, we use H∞ to denote the space of bounded analytic functions in D with respect to the

supremum norm. Thus

∥f∥∞= sup{|f(z)|: z ∈ D}.

The complex Hardy space over the disk can be thought of as the analytic continuation of square

integrable functions on the unit circle (T) whose Fourier coefficients f̂(n) :=
∫ π
−π f(e

iθ)e−inθdθ vanishes

for all negative values of n.

Consider the case p = 2, the Hardy space H2(D) is a reproducing kernel Hilbert space with reproducing

kernel function

k(z, ω) =
∑
n⩾0

znω̄n =
1

1− zω̄
,

commonly referred to as the Szego kernel.

Definition 2.2.4. (Mercer Kernel, [38]) Let X be a compact subset of Rd. A function k : X × X →

C is called a Mercer kernel if it is a continuous, positive semidefinite function, i.e. a continuous kernel

function.

7



Theorem 2.2.3. (Mercer’s Theorem [38]). Let k be a Mercer kernel on X , let µ be a finite Borel

measure with support X, and let Tk : L
2(X , µ) → L2(X , µ) be the associated integral operator. Then

there is a countable collection of orthonormal continuous functions {en} on X that are eigenvectors for

TK with corresponding eigenvalues {λn} such that for every g ∈ L2(X , µ) we have

Tkg =
∑
n

λn ⟨g, en⟩ en.

Furthermore, k(x, y) =
∑

n λnen(x)en(y).

Function-valued RKHS [2, 33, 54]

The theory of function-valued RKHS (equivalently referred to as vector-valued RKHS) parallels that of

its scalar-valued counterparts. Let X be a nonempty set, W a real Hilbert space endowed with an inner

product ⟨·, ·⟩W . Let B(W) be the Banach space of bounded linear operators on W and denote by WX ,

the vector space of function f : X → W. A function k : X × X → B(W) is called an operator-valued

positive definite kernel if for each pair (x, z) ∈ X × X , k(x, z) ∈ B(W) is self-adjoint and

N∑
i=1

N∑
j=1

⟨yi, k(xi, xj)yj⟩W ≥ 0 (2.8)

for every finite set {xi}Ni=1 ⊂ X and {yi}Ni=1 ⊂ W. Given x ∈ X and w ∈ W, define the function

kxw = k(·, x)w ∈ WX by

(kxw)(z) = k(z, x)w for all z ∈ X . (2.9)

Then there is a unique W−valued RKHS Hk which admits k as a reproducing kernel. Suppose we set

H0 = span{kx : x ∈ X , w ∈ W}, for f =
N∑
i=1

kxiwi and g =
N∑
i=1

kziyi ∈ H0, define the inner product

⟨f, g⟩ :=
N∑
i=1

N∑
j=1

⟨wi, k(xi, zi)yi⟩W . (2.10)

Completing H0 gives a Hilbert space Hk whose kernel has the reproducing property

⟨f(x), w⟩W = ⟨f, kxw⟩Hk
. (2.11)

8



A vector-valued RKHS H is a Hilbert space of vector-valued functions over a set X such that every

point evaluation mapping Ex : H → R, given by Exg := g(x), ∀x ∈ X , is bounded. That is, for all

x ∈ X , there is a positive constant Cx such that

∥f(x)∥≤ Cx∥f∥H, for all f ∈ H.

Therefore the reproducing kernel associated with Hk is defined to be the map K : X ×X → B(V) such

that K(x, y) = ExE
∗
y .

2.3 Multiplication Operator on a Reproducing Kernel Hilbert Space

In what follows, we look at some topological properties of the multiplication operator on a RKHS.

Multiplication operators are well-studied objects in operator theory and functional analysis in general.

Classiscal Analysis problems such as the Nevanlinna-Pick Interpolation problem use the computation of

norms of the operator over a Hilbert spaces. Sarason demonstrates this in the Generalized Interpolation

Theorem [56], where he formulates an operator theoretic solution to an interpolation problem. A brief

overview of the problem is given below with emphasis on formulations that involve the multiplication

operator.

Definition 2.3.1. For any measurable function φ on X , the multiplication operator with symbol φ

denoted by Mφ is defined on the RKHS H(X ) by

Mφ [g] (x) = φ(x)g(x), for x ∈ X . (2.12)

Mφ is said to be bounded if there is a constant C such that the operator norm Mφf ≤ C∥f∥. If φ is

a symbol of bounded multiplication operator, the Mφkx = φ(x)kx for all x ∈ X . The conjugation is

dropped when the function φ(x) is real-valued.

At times, practical applications dictates we pre-select a range space for the multiplication operator,

in which case specific conditions may be imposed on the classes of allowable symbols and/or domain.

For instance, we may define the multiplication operator between the two function spaces H and H̃,

Mg : H → H̃, such that Mgf ∈ H̃. The domain of D(Mg) therefore comprises of all those functions

{f ∈ H : fg ∈ H̃}.
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Proposition 2.3.1. Let L be a continuous linear operator on a RKHS H over the set X . Suppose for

the complex-valued function φ, Lkx = φ(x)kx for each x ∈ X , then L∗ =Mφ. That is, L
∗ is given by

multiplication by φ.

Proof. Let f ∈ H, then

⟨L∗f, kx⟩ =
〈
f, φ(x)kx

〉
= φ(x) ⟨f, kx⟩

= φ(x)f(x)

= ⟨φf, kx⟩ .

Since the span of the set {kx : x ∈ X} is dense in H, we have

⟨L∗f, g⟩ = ⟨φf, g⟩

for each g ∈ H, so that L∗ =Mφ.

Theorem 2.3.2. [6] Let X be a Banach space of analytic functions on which point evaluation is bounded

for each z ∈ D. Suppose Mg is bounded on X for some g ∈ X . Then

|g(z)|≤ ∥Mg∥. (2.13)

Multipliers

For a given collection of functions, say a Hilbert function space H on the set X , the multipliers of H is

the collection of all those functions φ on X that multiply H into itself, that is, the set

{φ : φf ∈ H, ∀f ∈ H}.

From Closed Graph Theorem, if φ is a multiplier of H, then the multiplication operator with symbol φ,

Mφ, is a bounded linear operator on H.

We shall denote by mult (H) the multipliers of H. If there is a known structure on H, such as the

Hardy space, more can be said about Mφ and mult(H), we may even be able characterize mult(H).

For instance, H∞, the space of all bounded analytic functions on the disk is the multiplier algebra

for the Hardy space H2. There is a thorough discussion of this by J. Angler and J. E. McCarthy in
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[1]. It is worth noting that the Hardy space H2 is not the only space on the disk that has H∞ as a

multiplier algebra. The Bergman space A2
a, comprising of those holomorphic functions on D that are

square-summable with respect to the planar Lebesgue measure also has H∞ as its multiplier algebra.

Definition 2.3.2. (Densely Defined and closed operators) Let H be a Hilbert space and T : H → H

be a linear operator, and let the domain D(T ) be properly contained in H. Then

1. T is called densely defined if D(T ) is a dense subspace of H.

2. T is closed if for every sequence {gn} ⊂ D(T ) such that gn → g ∈ H with Tgn → h ∈ H, then

g ∈ D(T ) and Tg = h.

Theorem 2.3.3. [1] Suppose H is a RKHS on X , and let mult(H) be the corresponding multiplier

algebra of H. Then mult(H) is closed in the operator norm topology.

Proof. Let {Mφn}
∞
n=1 be a Cauchy sequence in the space of bounded linear operators on H, (B(H)).

Then so is
{
M∗
φn

}∞
n=1

. Now, since B(H) is complete, there is a T ∈ B(H) such that M∗
φn

→ T in

operator norm . It follows from Theorem 2.3.7 that

∥∥M∗
φm

−M∗
φn

∥∥ ⩾ |φm(x)− φn(x)|

for each x ∈ X , so that the sequence {φn}∞n=1 is Cauchy and converges for each x.

Define φ(x) = lim
n→∞

φn(x), then

Tkx = lim
n→∞

M∗
φn
kx

= lim
n→∞

φn(x)Kx

= φ(x)kx.

That is, T ∗ = lim
n→∞

Mφn . See Proposition 2.3.1.

Theorem 2.3.4. [1] The algebraH∞ is isometrically isomorphic and weak-* homeomorphic tomult
(
H2
)
.

Proof. We will not discuss here the weak-* homeomorphism property since it is not as relevant to the

topic at hand, but refer the reader to [1].

Consider H2(D) as a subspace of L2(T, dµ) and H∞(D) ⊂ L∞(T, dµ).

11



Then for any φ ∈ H∞, and for any f ∈ H2, we have that φf ∈ H2. That is,

∥φf∥2H2 = sup
0<r<1

1

2π

2π∫
0

|(φf)(reiθ)|2dθ

= sup
0<r<1

1

2π

2π∫
0

|φ(reiθ)|2|f(reiθ)|2dθ

≤ ∥φ∥2∞ sup
0<r<1

1

2π

2π∫
0

|f(reiθ)|2dθ = ∥φ∥2∞∥f∥2H2 .

(2.14)

Thus ∥φf∥H2≤ ∥φ∥∞∥f∥H2< ∞. Therefore φf ∈ H2, thus φ ∈ mult(H2) and H∞ ⊂ mult(H2).

Since Mφf = φf , this shows that

∥Mφ∥ ≤ ∥φ∥∞ . (2.15)

Similarly, if φ ∈ mult
(
H2
)
that is φf ∈ H2 ∀f ∈ H, since the constant 1 ∈ H2, and because

φ = φ · 1 ∈ H2, it means that φ ∈ H2 and is therefore analytic. Moreover, for any φ ∈ H∞, Mφ is

bounded, which can be shown using arguments from the Closed Graph Theorem and continuity of point

evaluation. But ∥Mφ∥ ⩾ supλ∈X |φ(λ)|, so φ must be bounded. Therefore φ ∈ H∞(D) and hence

mult(H2) ⊂ H∞(D).

However, from M∗
φkλ = φ(λ)kλ, we have the inequality:

∥Mφ∥ =
∥∥M∗

φ

∥∥ ⩾ ∥φ∥H∞ .

Therefore

∥Mφ∥ ⩾ ∥φ∥H∞ (2.16)

for every λ in D. Combining (2.15) and (2.16), we get ∥Mφ∥ = ∥φ∥H∞(D) . This concludes the proof

that H∞(D) and the multiplier algebra of H2 are isomorphic.

To generalize the conditions under which these norms coincide, we state the following proposition.

Proposition 2.3.5. [63] Let 1 ≤ p <∞. Then the following statements are equivalent.

1. φHp ⊂ Hp.

12



2. φ is analytic in D and Mφ : Hp → Hp is bounded.

3. φ ∈ H∞.

If any (and therefore each) of the above conditions is fulfilled, then the norm of the operator Mφ is

∥Mφ∥ = ∥φ∥H∞ .

Proposition 2.3.6. For all φ ∈ H∞, the multiplication operator Mφ : H2 → H2 is densely defined and

closed with

D (Mφ) = H2.

Proof. This is a direct consequence of Theorem 2.3.4. Recall that for Mφ : H2 → H2

D(Mφ) = {f ∈ H2 :Mφf ∈ H2}. (2.17)

That is, if φ ∈ H∞ then φ ∈ mult
(
H2
)
that is φf ∈ H2 for all f ∈ H2. Hence H∞(D) ⊂ D (Mφ).

But Mφ : D (Mφ) ⊂ H2 → H2, implying equality. Consequently, the domain D(Mφ) is dense in H∞.

While closedness was shown above.

Recall that if an operator is closed and densely defined, then it admits a well-defined adjoint which is

also closed and densely defined. Therefore, for φ ∈ H∞, M∗
φ is closed and densely defined.

Theorem 2.3.7. Let H be a RKHS on X and let φ be a multiplier on H. Then the multiplication

operator Mφ acting on H is continuous (bounded).

Proof. Here, it is enough to verify the hypothesis of the Closed Graph Theorem. Suppose that

{fn}n=1 ⊂ H. Such that fn converges uniformly in norm to f ∈ H. Suppose also thatMφfn converges

to g with g ∈ H. We wish to demonstrate that Mφf = g. From the Cauchy-Schwarz inequal-

ity, we have that norm convergence implies pointwise convergence, hence fn → f and (Mφfn)(z) =

φ(z)fn(z) → g(z) for each z ∈ C; thus φ(z)f(z) = g(z), which implies Mφf = g.

As an immediate consequence of this, notice that if Mφ is continuous, then it has a well-defined adjoint

M∗
φ. By definition, the domain of the the adjoint operator comprises all functions ψ ∈ H for which the

functional L(f) = ⟨Mφf, ψ⟩ is continuous. Suppose kx ∈ D
(
M∗
φ

)
. Then
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〈
f,M∗

φkx
〉
= ⟨Mφf, kx⟩ = ⟨(φf)(x), kx⟩ = φ(x) ⟨f, kx⟩ =

〈
f, φ(x)kx

〉
, therefore M∗

φkx = φ(x)kx

This holds for all f ∈ D(Mφ).

Theorem 2.3.8. If T is a densely defined operator on H, then T ∗ is a closed operator.

Proof. The double adjoint relationship (T ∗)∗ = T is enough justification of this fact.

Self-adjoint and compact operators are well-studied with extensive literature. A self-adjoint operator T

which includes requirements that D(T ∗) = D(T ), has real-valued eigenvalues and are hermitian and

symmetric. A form of the spectral theory of compact, self-adjoint operators involving the multiplication

operator is summarized in Proposition 2.3.9. See [17]

Proposition 2.3.9. [17] Suppose T ∈ B(H) is self-adjoint. Then there exists a σ-finite measure space

(X,µ), a bounded, measurable, real-valued function h on X , and a unitary map U : H → L2(X,µ)

such that [
UTU−1(ψ)

]
(λ) = h(λ)ψ(λ)

for all ψ ∈ L2(X,µ).

2.4 Operator Theoretic Approaches to the Nevanlinna-Pick Interpolation Problem

The Nevanlinna-Pick interpolation problem was first studied by Pick around 1916 [40] and separately

by Nevanlinna in 1919 [36]. Let D = {z ∈ C : |z|< 1} be the unit disk in the complex plane C. The

original Nevanlinna-Pick problem is stated as follows. Given n distinct points λ1, λ2, . . . , λn in the open

unit disk D, and n complex numbers w1, we, . . . , wn in D, is there an analytic function ϕ : D → D that

interpolates the given data? i.e.

ϕ(λi) = wi, for i = 1, 2, · · ·n (2.18)

Pick’s existence requirement relied on the Schwarz lemma and was that such a function ϕ exists if and

only if the matrix

P =

[
1− wiwj

1− λiλj

]n
i,j=1

(2.19)
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now known as the Pick Matrix, is positive semi-definite. Pick further established that the interpolating

function is unique if and only if rank(P ) < n ( P is singular) in which case ϕ is a finite Blaschke product

of degree m = rank(P ).

Recall that, for a finite sequence z1, z2, . . . , zn in D and γ ∈ T, the function

B(z) = γ
n∏
k=1

z − zk
1− zkz

(2.20)

is a finite Blaschke product [14, chapter 3].

Nevanlinna approached the problem differently with a idea based on Schur’s algorithm. Nevalinna

provided a unified parameterization for all such solutions of the problem in the case where the Pick

matrix is invertible. Other formulations have since been recorded, including operator theoretic techniques

pioneered by D. Sarason, whose methodology is centered around the multiplication operator [55, 56].

To apply operator theoretic techniques, a reformulation of the problem involved the use of the Maximum

Modulus Principle to show that such interpolating functions come in the form of elements f ∈ H∞

such that

∥f∥∞≤ 1 and f(λi) = wi for i = 1, 2, · · · , n (2.21)

Todiscuss the approach, let H be a Hilbert space over some set X with kernel function k. If f is an

element of the multiplier algebra of H, then by application of the Closed Graph Theorem, we have that

Mf : H → H is a bounded operator on H. Also, given x ∈ X , we have shown that M∗
f kx = f(x)kx,

where kx is the kernel function at x. This indicates that kx is an eigenvector of M∗
f and f is bounded

with ∥f∥∞≤ ∥Mf∥

Suppose such an interpolating function ϕ exists, then for each i,

M∗
ϕkλi = ϕ(λi)kλi , (2.22)

implying that for any such ϕ, the action of M∗
ϕ on m = span{kλi}i is completely determined. Pick’s

theorem may then be interpreted as saying if the norm of M∗
ϕ restricted to m is less or equal to 1,

then there is some interpolating function ϕ such that ∥Mϕ∥≤ 1 on all of H, and Pick’s problem has an

affirmative answer [1].
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Thinking of H∞ as a multiplier algebra of a holomorphic space, the Pick problem can be stated in

general as: Let H be a Hilbert function space on a set X , let λ1, . . . , λN be points of X , and let

w1, . . . , wN be complex numbers. When does there exist a multiplier ϕ of H of norm at most one that

interpolates each λi to wi? A statement of the necessary conditions are given in the following theorem

Theorem 2.4.1. [1] Let H be a Hilbert function space on a set X, let λ1, . . . , λN be points of X, and

let w1, . . . , wn be complex numbers. A necessary condition to be able to solve the interpolation problem

ϕ : λi 7→ wi (2.23)

with a function ϕ in mult(H) of norm at most one, is that the Pick matrix

[(1− wiw̄j) k (λi, λj)]i,j (2.24)

be positive semi-definite, where k is the kernel function of H.

Suppose ϕ exists and satisfies (2.23). Then Mϕ is a contraction. Recalling that an operator T is a

contraction if and only if I − TT ∗ ≥ 0, we get that

I −MϕM
∗
ϕ ≥ 0. (2.25)

Equivalently,
〈(
I −MϕM

∗
ϕ

)
v, v
〉

≥ 0 for any v, in particular, this must hold for any v ∈ m =

span{kλi}. Choose v =
∑n

i=1 aikλi then

〈(
I −MϕM

∗
ϕ

) n∑
j=1

ajkλj ,
n∑
i=1

aikλi

〉
≥ 0. (2.26)

Noting that ϕ(λi) = wi and M
∗
ϕkλi = ϕ(λi)kλi , therefore we get

n∑
i,j=1

aj āi (1− wiw̄j)
〈
kλj , kλi

〉
(2.27a)

=

n∑
i,j=1

aj āi (1− wiw̄j) k
(
λi, kλj

)
≥ 0. (2.27b)
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Considering that {ai}i are arbitrary, the condition in (2.27b) says precisely that the Pick matrix is

positive semi-definite.

Notice that the Hilbert space H may be decomposed as H = m ⊕ m⊥, where m⊥ is comprised of

functions that vanish at λ1, λ2, . . . , λn. If we let P be an orthogonal projection onto m, then PMϕ|m

is an operator on the finite dimensional subspace m that depend only on ϕ(λi), . . . , ϕ(λn). Raghupathi

in his dissertation [43] formulated the following problem. Suppose we denote by I the ideal of functions

that vanish at the n points λi, λ2, . . . , λn, and A ⊂ H∞ algebra. Then the solution to the interpolation

problem is a function f ∈ A such that ∥f∥∞≤ 1. Therefore the solution is an interpolating function

that resides in a unit closed ball of A.

If we define the map πm : A ⊂ H∞ → B(m) given by πm(f) = PMfP , the map πm is a homomorphism

and the kernel of this homomorphism is the set {f ∈ A :M∗
f kλi = f(λi)kλi = 0 for i = 1, 2, . . . , n}.

If {kλi} are nonzero, then f(λi) = 0. The kernel of the homomorphism is therefore I. This gives a

contractive, unital representation of A/I on B(m). It can be observed that ∥PMfP∥≤ C if and only if

C2I − (PMfP ) (PMfP )
∗ ≥ 0. Equivalently, C2P − PMfM

∗
fP ≥ 0. An element k ∈ m has the form

k =
∑n

j=1 αjkλj , where α1, . . . , αn ∈ C. Using the fact that M∗
f kλj = f (λj)kλj , it follows that

C2∥k∥2−
〈
MfM

∗
f k, k

〉
=

n∑
i,j=1

αiαj

(
C2 − f (xi) f (xj)

)
K (xi, xj)

=

〈[(
C2 − f (xi) f (xj)

)
K (xi, xj)

]

α1

...

αn

 ,

α1

...

αn


〉
.

(2.28)

indicating that ∥πm(f)∥≤ 1 if and only if
[(

1− f(λi)f(λj)
)
k(λi, λj)

]n
i,j
.

Again, we see a reformulation of Pick’s condition as an intrinsic property of the multiplication operator

with symbols in H∞.
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2.5 Dynamic Mode Decomposition Approach to System Identification

Dynamic Mode Decomposition (DMD) highlights the connection between Koopman operators, dimen-

sionality reduction algorithms and linear models. DMD is a matrix decomposition technique that allows

for simulation of governing equations of a dynamical system directly from data measurements. The

method was developed originally by Schmid and Sesterhenn [26, 58] as a way to decompose complex

fluid flows into simple representations in time and space variables. Mezić et al [30, 31, 32] later showed

that there is a connection between DMD and the underlying nonlinear dynamics through Koopman oper-

ator, and is consistent with dynamical system techniques. The DMD algorithm has been applied to data

originating from dynamical systems in various disciplines; in epidemiology, DMD modes has been used

to gain insight into infectious disease data such as inteprating large-scale dynamic patterns of infectious

disease spread [26, 41]. DMD computes Dynamic modes from dimensionally-reduced neural recordings

to extract meaningful spatial patterns. In [7], the authors couple DMD with unsupervised clustering

to uncover distinct sleep spindle networks during sleep from recording of dynamic brain activity. In

what follows, we give a brief overview of the mathematical structure of the Koopman-based DMD. Our

discussion here is mainly sourced from the book Dynamic Mode Decomposition: Data-Driven Modeling

of Complex Systems [26] by Kutz, J Nathan, Brunton, Steven L, Brunton, Bingni W, and Proctor,

Joshua L. For an extensive treatment of the subject, we refer the reader to this material.

2.6 Koopman DMD

Given the dynamical system

dX

dt
= f(X, t, µ), (2.29)

suppose time series data from system (2.29) are collected at discrete instances asXk, k = 1, 2, 3 . . . ,m−

1. The DMD algorithm analyzes the relationship between data pairs consisting of past measurements

Xk and future measurement Xk+1, where X ∈ Rn. For all such pairs of data, it is assumed that there

is a linear operator A ∈ Rn×n that provides a relationship in the form

Xk+1 = AXk. (2.30)
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Here, the relationship is a locally linear approximation of a possible nonlinear dynamics. While the

relationship does not need to hold, there are theoretical justifications for the use of this approximation

on data generated by nonlinear systems [41]. Operator A is constructed by searching for the best-fit

solution for all pairs. This is done by choosing A that minimizes the error ∥Xk+1−AXk∥2. Intuitively,

the approach uses numerical solutions to evolve observation at present time tk to future state at time

tk+1.

Suppose snapshots of data measurements are collected on the n−dimensional state variable at m

different times, the data may be arranged into finite dimensional state and time-shifted data matrices

X1 and X2 respectively as

X1 =


| | |

x1 x2 · · · xm−1

| | |

 (2.31a)

X2 =


| | | |

x2 x3 x4 · · · xm

| | | |

 (2.31b)

The local linear approximation in equation (2.30) can then be described in terms of the data matrices

as

X2 ≈ AX1. (2.32)

The best-fit matrix A is closely related to the Koopman operator as we’ll see shortly. A is expressed in

terms of the measurement as

A = X2X
†
1, (2.33)

and the solution minimizes

∥X2 −AX1∥F . (2.34)

where † is the Moore-Penrose pseudoinverse, and ∥·∥F is the Frobenius norm. The Singular Value

Decomposition (SVD) algorithm is a commonly used method in computing the pseudoinverse, a method

which involves a low-rank truncation of the possibly noisy data. In the implementation of the algorithm,
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the method seeks a discrete-time system sampled at ∆t analogous to

dX

dt
= AX. (2.35)

where A represents the matrix in continuous-time dynamics with A = exp (A∆t). It is shown that

solution to (2.30) can be expressed as

Xk =
r∑
j=1

ϕjλ
k
j bj = ΦΛkb (2.36)

where λk, ϕk are eigenvalues and eigenvectors of the discrete-time map A. Equation (2.36) therefore

represents a low-rank eigendecomposition of A. Heuristically, this construction produces a finite-rank

representation of the possibly infinite dimensional linear operator that describes the evolution of the

state of the dynamics a step in time [26].

DMD modes, frequently called dynamic modes are the eigenvectors of the matrix A. Suppose X is an

n×m rank-r data matrix, then the corresponding SVD decomposition of the data X is given as

X = UΣV∗, (2.37)

where * denotes the conjugate transpose, U ∈ Cn×r and V ∈ Cm×r are unitary matrices and Σ ∈ Cr×r

is a diagonal matrix. The matrix U contains Proper Orthogonal Decomposition (POD) modes and the

diagonal values of the matrix Σ represent contributions of each mode.

To demonstrate, a schematic overview of DMD algorithm applied on a sample fluid flow data [26] is

shown in Figure 1.

In practice, the matrix A can be very large in size, hence computing the eigendecomposition can become

computationally expensive. As such, we solve the eigenvalue problem for an approximation matrix Ã

derived from the SVD of A. Subsequently, the low-rank approximation Ã is computed as a projection
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Figure 1. An overview of the DMD scheme on a sample fluid flow data. We note that the regression
step A = X′X† does not typically construct the best-fit matrix A, but instead an approximation Ã
which evolves the dynamics in time. Eigendecomposition of the high-dimensional matrix A is then
approximated by the eigendecompostion of Ã. The eigenvectors of A are called DMD modes. Image
source [26]

of A onto POD modes

A = X2VΣ−1U∗ (2.38a)

Ã = U∗AU = U∗X2VΣ−1. (2.38b)

A low-dimensional linear model of the original system is defined on POD coordinates using Ã, and

the corresponding reconstruction of the high-dimensional state is given respectively in equation (2.39)

below

X̃k+1 = ÃX̃k (2.39a)

Xk = UX̃k. (2.39b)

Let W be a matrix whose columns comprise the eigenvectors of Ã and Λ a diagonal matrix containing

corresponding eigenvalues λk. Then we can compute the eigendecomposition of Ã as

ÃW = WΛ. (2.40)
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To reconstruct the eigendecomposition of A, eigenvalues of A are given by Λ whiles the corresponding

eigenvectors of A (DMD modes) are given by

Φ = X2VΣ−1W. (2.41)

Koopman Operator:

Let (t,M,F) denote the discrete-time dynamical system, where t ∈ Z is time, M ∈ RN is the

state space and F is a flow map, so that X 7→ F(X) evolves the dynamics forward in time, that is

Xk+1 = F(Xk) in the discrete sense. Given a Hilbert space H of scalar-valued measurable functions

g : Cn → C, the Koopman operator is an infinite dimensional operator that acts on g ∈ H by

composition

K g = g ◦ F (2.42a)

K g (xk) = g (F (xk)) = g (xk+1) . (2.42b)

The Koopman operator, also know as the composition operator, advances the function g on the mea-

surements by mapping g(xk) to g(xk+1).

In the case of continuous dynamics, consider a continuous dynamical system dX
dt = f(X), where X ∈ M

is a state on a smooth n-dimensional manifold M. The Koopman operator K is an infinite dimensional

linear operator that acts on all observable functions g : M → C so that

K g(X) = g(f(X)). (2.43)

Essentially, the finite dimensional nonlinear dynamical system defined by dX
dt = f(X) and the infinite-

dimensional linear dynamics defined by K in (2.43) are equivalent representations. The transformation

from the state space representation of the dynamical system to the Koopman representation trades

nonlinear finite-dimensional dynamics for linear infinite-dimensional dynamics. The continuous system

dX
dt = f(X) induces a discrete time dynamical system by the flow map Ft : M → M that maps X(t0)

to X(t0 + t) via:
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Ft(X(t0)) = X(t0 + t) = X(t0) +

t0+t∫
t0

f(X(τ))dτ. (2.44)

This induces the discrete-time dynamical system

Xk+1 = Ft(Xk). (2.45)

The analogous discrete-time Koopman operator is what was given as

Ktg(Xk) = g(Ft(Xk)) = g(Xk+1), (2.46)

with a corresponding eigenvalue problem of the Koopman operator formulated as

K φk = λkφk (2.47)

where φk(X) is the Koopman eigenfunction with corresponding eigenvalue λk.

Connection between DMD and the Koopman operator: The DMD algorithm determines the

Koopman eigenvalues and modes directly from data. This is done under certain conditions that rely

heavily on the choice of observables. Figure 2 shows the contrast between the DMD and Koopman

mode decomposition

Connection between DMD and the Koopman operator is such that DMD eigenvalues are Koopman

eigenvalues provided so that: (1) The set of observables is sufficiently large; (2) The data is rich, as

described in the theorem below.

Theorem 2.6.1. (Koopman mode decomposition and DMD:[26]) Let φk be an eigenfunction of K

with eigenvalue λk and suppose φk ∈ span{gj}j so that

φk(X) = w1g1(X) + w2g2(X) + · · ·+ wpgp(X) = w · g (2.48)

for some w = [w1, w2, · · · , wp]T ∈ Cp. If w ∈ range(Y), then W is a left eigenvector of AY with

eigenvalue λk so that W̃∗AY = λkW̃
∗.

Similarly to the standard DMD algorithm, the following overview summarizes the Koopman process.
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1. From the data matrices X and X′, create data matrices of observables Y and Y′

Y =


| | |

g (x1) g (x2) · · · g (xm−1)

| | |

 , (2.49a)

Y′ =


| | |

g (x′
1) g (x′2) · · · g

(
x′m−1

)
| | |

 (2.49b)

where each column is given by yk = g(xk) or y
′
k = g(x′k)

2. Perform the DMD algorithm to compute

AY = Y′Y† (2.50)

where † is the pseudoinverse along with the low-rank approximation ÃY . The eigenvalues and

eigenvectors of AY may approximate Koopman eigenvalues and modes depending on the set of

chosen observables

3. DMD may be used to compute the modes ΦY , which may approximate the Koopman modes

ΦY = Y′VΣ−1W, (2.51)

where W comes from ÃYW = WΛ and Y = UΣV∗.

4. In the state of observables, the future state is given by

y(t) = ΦY diag (exp(ωt))b, (2.52)

where b = Φ†
Y y1 is determined by projecting back to the initial data observables and ω are the

set of eigenvalues λk generated from the matrix Λ where ωk = ln (λk)/∆t.
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5. To transform observables back to state space:

yk = g(Xk) → Xk = g−1(yk). (2.53)

.

Figure 2. Schematics of DMD/Koopman framework. In standard DMD, state measurements are taken
to construct a model that advances the state in time from X to X′. Koopman spectral analysis uses
measurements with nonlinear observables y = g(X) to provide a better map from Y to Y′. Both
methods does not rely on knowing the flow map F . Image source: Dynamic mode decomposition:
data-driven modeling of complex systems, Kutz et al [26]

Most machine learning algorithms are primarily concerned with clustering and classifications, the DMD

algorithm can however be modified in various ways to potentially incorporate the nonlinear manifold

on which the dynamics occur [26]. Using techniques from kernel methods in machine learning, one
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technique for choosing system observables gj is to think of

g(X) =



g1(X)

g2(X)

...

gn(X)


as a map from the physical space into a feature space, in which case the dynamical system is constructed

as

g(X) =

∞∑
k=1

vkφk(X) (2.54a)

g(f(X)) =

∞∑
k=1

vkλkφk(X), (2.54b)

where λk, φk are eigenvalues and eigenfunctions of the Koopman operator and vk are Koopman modes

associated with the eigenfunction. Popular ways of constructing the feature space g(X) includes using

the set of polynomials

gj(x) = {x, x2, x3, . . . , xn}. (2.55)

Alternatively, there are other kernel functions commonly used such as radial basis function and Hermite

polynomials.

Extended DMD: DMD can incorporate machine learning ideas such as kernels and extended observables

aimed at reducing computational cost and to robustify the algorithm. Given data matrices of observables

Y =


| | |

g (x1) g (x2) · · · g (xm−1)

| | |

 , (2.56a)

Y′ =


| | |

g (x′
1) g (x′2) · · · g

(
x′m−1

)
| | |

 (2.56b)
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the DMD algorithm produces the matrix decomposition

AY = Y′Y† (2.57)

along with approximate ÃY in the instance where the observable matrices is extremely large (n ≫ m

or m ≫ n), where AY becomes computationally intractable. Extended DMD and kernel techniques

produce numerically efficient ways to approximate the ÃY , a finite dimensional approximation of the

Koopman operator. In this case, the Koopman operator generated by using a kernel trick reduces com-

putational cost. Extended DMD is a method developed to reduce the cost of evaluating the Koopman

operator when the number of snapshots is extremely large (m≫ n). Suppose m≫ n, one can consider

the efficient computation for K by

AY = Y′Y†

= Y′I†

= Y′
(
YTYT †

)
Y†

=
(
Y′YT

) (
YYT

)†
= A1A

†
2,

(2.58)

where I is the identity matrix of appropriate size and

A1 = Y′YT (2.59a)

A2 = YYT . (2.59b)

It can be observed that A1, A2 ∈ Cn×n are much smaller matrices than the original n×m formulation.

Inversion of Y is traded for that of a much smaller matrix A2. This architecture is illustrated in Figure

3.
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Figure 3. Extended DMD architecture with more snapshots m much greater than the number of
observables n. Image source: [26, 41]

Kernel DMD: Kernel DMD is more suited for cases when n≫ m resulting in long and skinny observable

matrices. We consider an efficient computation of the Koopman operator by projecting to the principal

component space obtained through the SVD of the data matrix Y

Y = UΣV∗.

For the Koopman eigenvalue problem K yk = λkyk, we suppose the eigenvector yk can be constructed

by expansion,

yk = Uyk. (2.60)

Substituting this into the eigenvalue problem
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λkyk = K yk,

λkUŷk = K Uŷk

= Y′Y†Uŷk

= Y′Y†
(
YVΣ†

)
ŷk

= Y′
(
VΣ†

)
ŷk

= IY′
(
VΣ†

)
ŷk

=
(
YT
)†

YTY′
(
VΣ†

)
ŷk

=
(
YT
)† (

YTY′) (VΣ†
)
ŷk

= U(ΣV∗)
(
YTY′) (VΣ†

)
ŷk

= UK yk,

(2.61)

where I is the identity matrix. The Koopman operator is evaluated by the expression

AY = (ΣV∗)
(
YTY′) (VΣ†

)
. (2.62)

We notice that (ΣV∗) ∈ Cm×m,
(
YTY′) ∈ Cm×m, and

(
VΣ†) ∈ Cm×m, suggesting that AY is

determined by the number of snapshots taken rather than the number of features. Figure (3) illustrates

this computational infrastructure. The kernel method reduces the computation of the Koopman operator

to the product of the three matrices that are projected to the feature space embedding U.

Application: Infectious Disease Data

Among the many disciplines that makes use of modern DMD is epidemiology. The method has been

applied to many different kinds of disease data to answer a myriad of questions. Such data may be

from experiments, numerical simulations or historical data with state variables that may vary from study

to study. For example, the number of infections in a given region, average duration of incubation for

the disease or other demographic information [41]. The well-curated data is arranged into a DMD data
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Figure 4. Illustration of the DMD algorithm for infectious disease data. Image source: [26]

matrix as

X =


| | |

x1 x2 · · · xm−1

| | |

 (2.63a)

X′ =


| | | |

x2 x3 x4 · · · xm

| | | |

 , (2.63b)

where columns represent different snapshots in time and rows describe specific state of the system.

Figure 5 gives an illustration of the data collection and the DMD architecture in the studies. The set of

eigenvalues give dynamic characteristics such as growth, decay, and oscillatory behavior of the dynamic

mode. Figure 6 shows an eigenvalue spectrum with two pairs of complex conjugate eigenvalues; the

red pair represent purely oscillatory modes since they lie on the unit circle whereas the blue pair have

decaying dynamic characteristics since they lie within the circle and thus are stable. It is convenient to

convert the oscillatory frequency of the discrete eigenvalue of the approximation low rank approximation
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Figure 5. Data collection and arrangement of snapshot in the data matrix for DMD analysis. Image
source: [26, 41]

map Ã into a continuous time oscillatory frequency. The relation is given by

frequencyj =
Im(lnλj)

2π∆t
. (2.64)

This allows for each eigenvalue to be examined based on intuitive and interpretable continuous frequency

with units of per year [41]. Each element in a dynamic mode vector has two essential pieces of informa-

tion. Firstly, the absolute value of the element provides a measure of the spatial location’s participation

in the mode. For complex valued elements, the angle between the real and imaginary components of

the element provides a measure of a location’s phase of oscillation relative to others for that mode’s

frequency.

Example: Google Flu Trends [26, 41] In this example, DMD is applied to infectious disease data from

Google’s flu trend tool. Google has studied how specific search terms can be indicators for predicting flu

spread within the United States. Google used curated historical flu data and search data to construct a

method for estimating current flu activity in the country. Though recent scientific investigations have
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Figure 6. Illustration of the DMD algorithm for infectious disease data. Image source: [41]

cast doubt on the validity of the analysis, the data set used in this example was solely to demonstrate the

implementation of the DMD framework. Figure 7 indicates 4 traces of the unprocessed data from these

4 states Alaska (black), California (red), Texas (green), and New York (blue). The data is provided for

every 7 days (serving as ∆t) and represented as a two-dimensional array with state, city and the health-

human-services regional breakdown. A normalization is performed to condition the data for application

of DMD. The methods focus on state information in order to visualize every element of the dynamic

mode on the map of the US. The output of DMD analysis is shown to the right of the data visualization

in Figure 7. As shown, the eigenvalue spectrum indicates a number of modes that are within the unit

circle, which shows fast decaying eigenvalues and modes that do not have a significant contribution

to the broader structure of the dynamics. The mode selection plot illustrates a yearly frequency. The

mode and frequency aligns with seasonal varying profiles in Figure 7d. The phase of the dynamic mode

associated with this yearly frequency is plotted in Figure 7e. (phase is scaled between 0 and 1 indicating

time of the year.)

2.7 Occupation Kernel DMD

Despite the robustness of Koopman-based DMD, there are a few drawbacks that potentially limit its

application on certain classes of dynamics. Convergence of the DMD operator to the Koopman operator

is typically in the strong operator topology (SOT) sense which is a pointwise convergence. This is not

enough to justify the use of DMD to interpolate or extrapolate the system behavior from a collection

of diverse samples. In contrast, norm convergence is uniform convergence for operators and yields a
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Figure 7. Illustration of the DMD algorithm for infectious disease data. Image source: [41]

bound on the error over the kernels corresponding to the data set, however this result is only possible

for compact Koopman operators which hardly exist in many applications of interest.

A fundamental assumption of Koopman-based DMD is the idea that a finite dimensional nonlinear

dynamical system can be expressed as a linear operator over an infinite dimensional space. Additionally,

the method assumes forward completeness of the system, for example, by assuming the dynamics are

globally Lipschitz. These limitations restrict the class of systems suitable for the Koopman DMD [47].

As an example, consider the continuous time dynamics ẋ = 1 + x2. Discretizing this system with time

step 1 produces the following discrete dynamics: xk+1 = F(xk) = tan (1 + tan−1 (xk)). It can be

observed that F has a finite escape time, thus is not defined over R, and since the symbol for the

Koopman operator must be defined over the whole domain, there is no well-defined Koopman operator

arising from this discretization.

In an effort to address these limitations, the authors in [49] couple densely-defined Liouville operators

over a RKHS with occupation kernels to develop a Liouville-based DMD algorithm for continuous time

dynamical systems. Occupation kernels are special functions that reside in a RKHS by virtue of an

integration functional [46, 47, 49, 50]. These ”kernels” remove the responsibility of approximation from

that of the operators and places it on the estimation of occupation kernels from time-series data which

require less theoretical conditioning. The authors show that the incorporation of Liouville operators in

the routine allows for the study of dynamics that are locally rather than globally Lipschitz.
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Definition 2.7.1. Suppose H is a RKHS over a compact set X ⊂ Rn, let ẋ = f(x) be a dynamical

system with locally Lipschitz and continuous dynamics f : Rn → Rn. The Liouville operator with

symbol f denoted by Af is the map Af : D(Af ) → H defined by

Afg := ∇xg · f where

D(Af ) := {g ∈ H : ∇xg · f ∈ H}.
(2.65)

Considering classes of dynamics for which the associated Liouville operator is bounded and densely

defined, it can be shown that the action of the adjoint operator on an occupation kernel admits a closed

form that depends directly on the data.

Proposition 2.7.1. Let H be a RKHS of continuously differentiable functions over a compact set X ,

and suppose that f : Rn → Rn is Lipschitz continuous. If γ : [0, T ] → X is a trajectory as in Definition

3.4.3 that satisfies γ̇ = f(γ), then Γγ ∈ D
(
A∗
f

)
, and A∗

fΓγ = K(·, γ(T ))−K(·, γ(0))

where K(·, ·) is the reproducing kernel function of H.

The action A∗
f gives the difference of the kernel function centered at end points of the trajectory, which

completes the integration of the nonlinear dynamics into the RKHS. This connection sets the state for

finite dimensional nonlinear dynamics to be expressed as linear system in infinite dimensions. Suppose

α = {Γγi}
M
i=1 ⊂ H, given as Γγi(x) =

Ti∫
0

K(x, γi(t))dt for a collection of trajectories γi : [0, Ti] → X

satisfying γ̇i = f(γi). If α is selected as the basis for a vector space, the action A∗
f is known on the

span(α). Per this setup, the DMD procedure is to express a matrix representation of A∗
f on the finite

dimensional space spanned by α followed by a projection onto span(α) [49]. Take w1, w2, · · · , wM to

be the coefficients for the projection of g ∈ H onto span(α) ⊂ H, written as Pαg =
M∑
i=1

wiΓγi . The

coefficients w1, w2, · · · , wM may be obtain through the solution of a linear system given as


⟨Γγ1 ,Γγ1⟩H · · · ⟨ΓγM ,Γγ1⟩H

...
. . .

...

⟨Γγ1 ,ΓγM ⟩H · · · ⟨ΓγM ,ΓγM ⟩H




w1

...

wM

 =


⟨g,Γγ1⟩H

...

⟨g,ΓγM ⟩H

 (2.66)

Where the inner products may be expressed as a single or double integral
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〈
Γγj ,Γγi

〉
H

=

∫ Ti

0

∫ Tj

0
K (γi(τ), γj(t)) dtdτ

⟨g,Γγi⟩H =

∫ Ti

0
g (γi(t)) dt. (2.67)

2.8 Sparse Identification For Nonlinear Dynamics (SINDy)

The SINDy algorithm, like its close cousin DMD, aims at extracting governing equations from data

measurements from a dynamical system. Introduced by Brunton et al in 2016 [8], the method combines

sparsity-promoting techniques and machine learning to obtain numerical and analytic insight about

noisy data. The authors assert that the dynamics of most physical systems are fully expressible in a few

relevant terms thereby making governing equations sparse in a high-dimensional space.

Consider the dynamical system

dX(t)

dt
= f(x(t)), (2.68)

where X is the state and f is a dynamic constraint. To determine f from data, a time history of

state information is collated and stored in data matrices X and Ẋ as shown in equations (2.69a) and

(2.69b) respectively. Next, a library of candidate nonlinear functions is constructed with each column

representing a candidate function for f , indicated as the array of symbolic function Θ in equation

(2.69c). Under the assumption that a few terms are active, a sparse regression problem is setup to
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determine those nonlinearities so that system (2.68) is approximated as shown in equation (2.69d).

X =



xT (t1)

xT (t2)

...

xT (tm)


=



x1 (t1) x2 (t1) · · · xn (t1)

x1 (t2) x2 (t2) · · · xn (t2)

...
...

. . .
...

x1 (tm) x2 (tm) · · · xn (tm)


(2.69a)

Ẋ =



ẋT (t1)

ẋT (t2)

...

ẋT (tm)


=



ẋ1 (t1) ẋ2 (t1) · · · ẋn (t1)

ẋ1 (t2) ẋ2 (t2) · · · ẋn (t2)

...
...

. . .
...

ẋ1 (tm) ẋ2 (tm) · · · ẋn (tm)


(2.69b)

Θ(X) =


1 1

|
1

′ | |

1 X XP2 XP3 · · · sin(X) cos(X) · · ·

| | | | | |

 (2.69c)

Ẋ = Θ(X)Ξ (2.69d)

where Ξ is a sparse vector of coefficients.

A model of each row of f(x(t)) is determined as

ẋk = fk(x) = Θ(x)ξk (2.70a)

ẋ = f(x) = Ξ⊤
(
Θ(x⊤)

)⊤
(2.70b)

where ξk is the kth column of Ξ.

Realistically, Ẋ is approximated from X, in addition to the possibility of noise contamination, a regu-

larized version of equation (2.69d) is used

X = Θ(X)Ξ + ηz. (2.71)

where z is modeled as a matrix of Gaussian noise with zero mean and magnitude η. Equation (2.71)

is commonly an overdetermined system with noise, to which sparse promoting techniques like the least

absolute shrinkage and selection operator (LASSO) or sequential threshold least-square algorithms may
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be used. As it is rightly acknowledged by the authors, there is no single method that will solve all

problems in nonlinear system identification. One of the challenges of the SINDy algorithm is that the

sparse identification procedure relies on the fortunate choice of coordinate and basis functions that

facilitate sparse representation of the dynamics [8]. The identification may fail if the dynamics is not

sparse in a chosen basis. To mitigate the cost of making the incorrect choices in basis selection, it is

helpful to test many different function bases.

Among the experiments the authors performed to validate the algorithm is the chaotic dynamic; the

Lorenz system as shown in (2.72)

Figure 8. Lorenz equation (left), Solution to the
Lorenz system with [δ, β, ρ] = [10, 8/3, 28] (right)

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz.

(2.72)

with [δ, β, ρ] = [10, 8/3, 28] and initial conditions [x, y, z]T = [−8, 7, 27]. Data is collected from t = 0

to t = 100 with ∆t = 0.0001 and stacked in matrices X and Ẋ. A symbolic library of basis functions

is chosen to be ploynomials in (x, y, z) up to fifth order.

Θ(X) =


| | | | | |

x(t) y(t) z(t) x(t)2 x(t)y(t) · · · z(t)5

| | | | | |

 (2.73)

A schematic framework of the algorithm demonstrated on the Lorenz equation is given in Figure 9 .
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Figure 9. Schematic of the SINDy algorithm demonstrated on the Lorenz system. Image source:
Reprinted with permission from the authors and copyright owner [8]

To conclude the chapter, we address yet another data-driven method which is the platform on which

the model presented in Chapter 3 is built.

2.9 Nonlinear Autoregressive Moving Average Model With Exogenous Input (NARMAX)

Most dynamical systems in sciences such as physics, engineering and biology either do not have com-

pletely established scientific laws or closed form models for their dynamics. System Identification routines

such as Nonlinear AutoRegressive Moving Average model with eXogenous inputs (NARMAX) offer an

alternative method for establishing a mathematical description using observed inputs and outputs of

the system [5]. In instances where the algorithm relies solely on data samples to reproduce unknown

dynamics with no a priori information, it is chiefly called black box system identification. Nonlinearities

exist in most systems to some degree, and complexities in their behavior limit the ability for linear

models to capture fully their rich dynamics. Hence there is a rising need for nonlinear techniques that

address such shortfalls while maintaining applicability and interpretability. The non-parametric nonlinear

NARMAX model was introduced in a seminal work by S. A. Billings and I. J. Leontaritis in the early

80s. It was later presented in the publication [4] by the duo. The model has since seen a number of
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revisions and extensions as well as practical applications [e.g see, 3, 9, 10, 25, 64]. In this section, we

survey polynomial NARMAX models. For reference see the book [4] by Stephen A. Billings. A brief

overview of multiresolution analysis which involves a hierarchical function approximation will also be

gleaned. Subsequently in chapter 3, the NAR a derivative of model is interfaced with occupation kernel

to perform parameter identification.

Early works in nonlinear system identification methods were influenced by the Volterra Series stated in

discrete time as

y(k) =h0 +
M∑

m1=1

h1 (m1)u (k −m1) +
M∑

m1=1

M∑
m2=1

h2 (m1,m2)u (k −m1)u (k −m2)

+
M∑

m1=1

M∑
m2=1

M∑
m3=1

h3 (m1,m2,m3)u (k −m1)u (k −m2)u (k −m3) + · · ·

(2.74)

where u(k), y(k), k = 0, 1, . . . are measured inputs and outputs respectively. h(m1,m2, . . . ,ml) is the

ℓth order Volterra kernel. Initial implementations of this model involved at most the first two terms

and a Gaussian white noise, until it was later extended to include more terms [5]. Common shortfalls of

volterra series include; the number of terms needed to adequately represent a function is not known; more

so, the number of data points needed to identified for good estimation can easily become excessively

large. Example, suppose the 1st order kernel h1(m1) is described by 30 samples, then 30 × 30 points

will be required for h2(m1,m2) , and 30× 30× 30 for h3(m1,m2,m3) and so on [5].

Consider for example the Duffings Equation, ẍ = x− x3, x ∈ R which may be augmented as

ẋ1
ẋ2

 =

 x2

x1 − x31

 (2.75)

The linear dynamics are second order but the model contains a cubic term and so the Volterra series will

contain at least 3 kernels. This may involve estimation of a large number of values to characterize the

system and consequently a huge data size. NARMAX on the other hand is constructed as an expansion

of a nonlinear function in terms of past inputs, outputs and noise terms. The Single-Input Single-output
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(SISO) NARMAX model is defined as

y(k) = f [y(k − 1), . . . , y(k − ny), u(t− d− 1), . . . , u(k − d− nu), e(k − 1), . . . , e(k − ne)] + e(k)

(2.76)

where the map f : Yny ×Unu ×Ξne → Y is an unknown nonlinear dynamics of ny +nu+ne variables.

u ∈ U is an m-dimensional input vector and y ∈ Y an l−dimensional output vector. ny, nu are the

maximum time lags for output and input respectively. d is time delay which typically taken to be 1.

The noise variable e(t) is assumed to be bounded |e(k)|< δ and uncorrelated with maximum lag ne.

Typically, e(t) is taken as the error e(k) = y(k)− ŷ(k − 1).

The philosophy of the NARMAX system identification process consists of structure detection, parameter

estimation, model validation, prediction, and analysis. Billings highlights in his book that, an advantage

of the model in (2.76) is the inclusion of past outputs (y(k − 1), y(k − 2), · · · , y(k − n)y)), as the

approach yields a more concise model and requires fewer data points to implement as compared the

Volterra series. He illustrates this through the Finite Impulse Response (FIR) model whose expansion

involves only past inputs compared to its counterpart, the Infinite Impulse Response (IIR) filter.

FIR : y(k) = b1u(k − 1) + b2u(k − 2) + · · ·+ bnbu(k − nnb)

IIR : y(k) + a1y(k − 1) + a2y(k − 2) + · · ·+ anay(k − na) = b1u(k − 1)+

b2u(k − 2) + · · ·+ bnbu(k − nnb)

(2.77)

where na and nb are model orders.

Normally, a simple linear system of a FIR filter may need 50 weights nb = 50, whereas the IIR filter

would need about 4 , due to the incorporation of the output lagged terms [3, 5].

NARMAX is able to represent a wide class of nonlinear systems as well as perform a structure selection

to include only highly weighted regressors [3, 4]. Both deterministic and stochastic cases of NARMAX

exist for some choice of f [·] provided the system is finitely realisable, and a linearized model would

exist if the system were operated close to an equilibrium point, supporting the versatility of NARMAX

models. Linear and nonlinear model types like Autoregressive models, Autoregressive Moving Average

with Exogenous (ARMAX ), and Volterra series can be viewed as special cases of NARMAX. Power

form polynomial, rational models, Neural networks, wavelet expansions and Radial Basis Function (RBF)
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networks are sample model structures used to approximate a nonlinear function f [·] that satisfies

equation (2.76).

Polynomial models: The polynomial NARMAX model estimates f [·] by multivariable polynomials with

finite degree of the form

y(k) = θ0 +
n∑

i1=1

fi1(xi1(k)) +
n∑

i1=1

n∑
i2=i1

fi1i2(xi1(k), xi2(k)) + . . .

+
n∑

i1=1

. . .
n∑

il=il−1

fi1i2...il(xi1(k), xi2(k), . . . , xil(k)) + e(k)

(2.78)

Where l is the degree of polynomial nonlinearity, n = ny + nu + ne

fi1i2...il(xi1(k), . . . , xil(k)) = θi1i2...iM

M∏
k=1

xik(k) 1 ≤ m ≤ l

with θi1i2...iM as model parameters and

xm(k) =


y(k −m), 1 ≤ m ≤ ny

u(k − (m− ny)), ny + 1 ≤ m ≤ ny + nu

e(k − (m− ny − nu)), ny + nu + 1 ≤ m ≤ n

Specifically, (2.78) is explicitly written as

y(k) = θ0 +

n∑
i1=1

θi1xi1(k) +

n∑
i1=1

n∑
i2=i1

θi1i2xi1(k)xi2(k) + . . .

+

n∑
i1=1

. . .

n∑
il=il−1

θi1i2...ilxi1(k)xi2(k) . . . xil(k) + e(k).

(2.79)
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CHAPTER 3:

OPERATOR THEORETIC PARAMETER IDENTIFICATION SCHEME VIA NAR

ALGORITHM

3.1 Introduction and Motivation

Given a dynamical system ẋ = f(x, t), the problem of the current chapter is to identify parameters

that uniquely approximate the unknown function f in the basis of a reproducing Kernel Hilbert space

(RKHS) using data measurement from the system. We explore an alternative formulation for the

Nonlinear Autoregressive (NAR)-type model that leverages densely defined multiplication operators.

Over the past two decades, operator theoretic methods for modeling of dynamical systems has been

gaining substantial popularity. These methods most often utilize semi-groups of Koopman operators

and their generators for studying continuous time dynamical systems arising from differential equations.

While [51] provided a direct connection between these generators and a data driven inner product

for a parameter identification routine for such systems, this methodology does not directly apply to

NAR type dynamical systems, refer to [8, 22, 29]. Dynamical systems appear widely across numerous

disciplines, including neuro-science [34], biology [13, 59], engineering [11, 20, 23], and physics [62].

System identification routines involve reproducing system input-output measurements, and often times,

the application of the resulting model to capture prevalent dynamical structure [44]. Linear models

as we know, can be deficient in their ability to represent complex nonlinear dynamics [44], while most

everyday systems are nonlinear to some degree and this dictates the need for identification techniques

specific to nonlinear systems.

Several examples in the field of data-driven modeling have been illustrated where either the parameters

of the concerned dynamics are partially or entirely unknown and are often referred to as gray-box and

black-box respectively [35].
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There exist various modeling techniques for addressing the non-linear system identification problem such

as neural networks [35], Lyapunov methods [37], and Volterra series [15]. One of the main technical

challenges that arises from the aforementioned methods is the estimation of the state derivative, which

unfortunately is prone to error, and introduces an artificial noise component that requires additional

filtering [8].

The contribution of this dissertation is to address a non-linear system identification routine by employing

Occupation kernel techniques with densely defined multiplication operators. We develope a new param-

eter idetification algorithm to determine dynamics of the form ẋ = f(x(t−τ1), x(t−τ2), · · · , x(t−τp)),

for p ∈ Z+ and τi ∈ R. An advantage of this approach is that, properties of the underlying RKHS are

included in the identification process, which grants us access to orthonormal basis of the space for the

approximation. Occupation kernels [50] can be regarded as the generalization of occupation measures.

Multiplication operators are well studied objects over a variety of RKHSs, such as the Hardy and

Fock spaces [1, 66]. One aspect of this study is the characterization of the impact of conditions

on the operators on the symbols themselves. For example, the requirement of boundedness of the

operator restricts the symbol of the multiplication operator to be a bounded function, which leads to

the collection of bounded multiplication operators over the Hardy space [39], whereas the only bounded

analytic symbols for the Fock space are constant functions. Restricting to densely defined multiplication

operators allows for a much broader collection of symbols for multiplication operators, which includes

multivariate polynomials and many other functions for spaces like the exponential dot product and

Gaussian radial basis function’s native spaces. This is important in the present context, since the

dynamics arise as symbols of multiplication operators, it allows for a broader collection of dynamics to

be identified with this routine.

The focus of this chapter is to develop the method exhibiting a novel approach to nonlinear system

identification with respect to NAR [5] using densely defined Multiplication operators and a new “kernel”

function that represents an integration functional over a reproducing kernel Hilbert space dubbed an

occupation kernel [50, 52].
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3.2 Problem Description

A key assumption in most system identification efforts is that, only a few relevant terms define any

unknown dynamics, given a dynamical system ẋ = f(x), where x is a state variable and f , a dynamic

constraint. We suppose that the unknown dynamics f lies in the linear span of a set of functions

{fj}. The objective is to determine corresponding weights {θi} of these terms that combine to produce

the governing equation for the system. f(·) =
∑N

j θjfj(·), where θj are parameters. The unknown

parameters in the model may be identified through a series of approaches commonly referred to as

parameter identification. We develop a parameter identification technique using a version of the NAR

model. Time series data with recurrent feedforward network free of exogenous inputs is explored. Here,

we consider an autoregressive part of order τn and total moving average contribution of zero. This

results in a Nonlinear AutoRegressive (NAR) model defined by

y(s) =f [y(s− τ1), y(s− τ2), . . . , y(s− τn)], (3.1)

where f [·] is a non-linear function, y(s) ∈ Rm is the system output and τ1, τ2, . . . , τn are time lags for

the output. A large family of systems admit models that are in the form of equation (3.1) [24, 25].

In contrast to popular formulations of the identification problem, the function f [·] assumes the form

of a symbol of a densely defined multiplication operator mapping between two pre-specified RKHSs.

Subsequently, f is demonstrated to admit a decomposition in terms of an orthogonal set over a Hilbert

space .

3.3 Preliminaries

Definition 3.3.1. A reproducing kernel Hilbert space (RKHS), H, over a set X is a Hilbert space of

real valued functions over the set X such that for all x ∈ X the evaluation functional Exg := g(x)

is bounded. As such, the Riesz representation theorem guarantees, for all x ∈ X, the existence of a

function kx ∈ H such that ⟨g, kx⟩H = g(x), where ⟨·, ·⟩H is the inner product for H.

The function kx is called the reproducing kernel function at x, and the function k(x, y) = ⟨ky, kx⟩H is

called the kernel function corresponding to H.
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Definition 3.3.2. Let X ⊂ Rn be compact, and H, a RKHS of continuous functions over X . Let

γ : [0, T ] → X be a continuous trajectory. The functional g 7 −→
∫ T
0 g(γ(t))dt is bounded over H, and

by Riesz representation theorem, may be represented as
∫ T
0 g(γ(t))dt = ⟨g,Γγ⟩H for Some Γγ ∈ H .

The function Γγ is called the occupation kernel corresponding to γ in H.

For a given trajectory γ : [0, T ] → X , the occupation kernel with respect to the trajectory γ assumes

the integral form shown in proposition (3.3.1) below.

Proposition 3.3.1. Let H be a RKHS over a compact set X consisting of continuous functions and let

γ : [0, T ] → X be a continuous trajectory as in Definition 3.4.3. The occupation kernel corresponding

to γ ; Γγ in H, may be expressed as

Γγ(x) =

∫ T

0
k(x, γ(t))dt (3.2)

Proof :

Notice that Γγ(x) = ⟨Γγ ,K(·, x)⟩H , by the reproducing property of k. Consequently,

Γγ(x) = ⟨Γγ , k(·, x)⟩H = ⟨k(·, x),Γγ⟩H

=

∫ T

0
k(γ(t), x)dt =

∫ T

0
k(x, γ(t))dt

which establishes the result.

Proposition (3.3.2) defines a road map to examining interactions between occupation kernel corre-

sponding to a trajectory and the multiplication operator

Proposition 3.3.2. Let H be a RKHS of continuous functions over a compact set X ⊂ Rn, and suppose

f : C → C is Lipschitz continuous. If γ : [0, T ] → X is a trajectory as in Definition 3.3.2 above, then

Γγ ∈ D(M∗
φ) and

M∗
φ [Γγ ] (·) =

∫ T

0
φ(γ(t))k(·, γ(t))dt (3.3)

Proof. Given the reproducing kernel function centered at z, kz, per the reproducing kernel property, we

get that
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M∗
φ [Γγ ] (z) =

〈
M∗
φΓγ , kz

〉
H = ⟨Γγ ,Mφkz⟩H

= ⟨Mφkz,Γγ⟩H =

T∫
0

(Mφkz) (γ(t))dt

=

T∫
0

φ(γ(t))kz(γ(t))dt =

T∫
0

φ(γ(t))k(z, γ(t))dt.

(3.4)

where kz(γ(t)) = k(γ(t), z) = k(z, γ(t)).

Thus M∗
φΓγ(z) =

∫ T

0
φ(γ(t))k(z, γ(t))dt as desired. Over the real numbers, the inner product is

symmetric and thus the conjugation in (3.4) is dropped

We shall denote by S, the collection of all symbols corresponding to densely defined multiplication

operator on a given RKHS. S admits a well-defined structure beginning with an inner product. Let

ψ,φ ∈ S, define the bilinear form on the S × S by

⟨φ,ψ⟩S :=
〈
M∗
ψΓγ ,M

∗
φΓγ

〉
H . (3.5)

defines an inner product on S conferred by the inner product on the RKHS H

Proposition 3.3.3. Equation (3.5) defines a inner product on S.

Proof. Given that ⟨·, ·⟩H is a well defined inner product on H, the result follows directly

For scalar-valued functions φ and ψ, the inner product can be explicitly expressed as

〈
M∗
φΓγ ,M

∗
ψΓγ

〉
H =

〈
MψM

∗
φΓγ ,Γγ

〉
=

T∫
0

(
MψM

∗
φΓγ

)
(γ(t)) dt.

=

T∫
0

Mψ

T∫
0

φ(γ(t))k(·, γ(t))dt

 (γ(τ)) dτ

=

T∫
0

T∫
0

(
Mψφ(γ(t))k(·, γ(t))dt

)
γ(τ)dτ

=

T∫
0

T∫
0

ψ(γ(τ))φ(γ(t)k(γ(τ), γ(t))dtdτ
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Suppose {em}∞m=1 is an orthonormal basis set for H, So that

K(x, y) =

∞∑
m=1

em(x)em(y) (3.6)

The integral can be decomposed as

⟨ψφ⟩S =

∫ 1

0

∫ 1

0
ψ(γ(τ))φ(γ(t))

∞∑
m=1

em(γ(τ))em(γ(t))dtdτ

But em ∈ H ∀m therefore

=
∞∑
m=1

∫ T

0
φ(γ(τ))em(γ(τ))dτ ·

∫ T

0
φ(γ(t)) em(γ(t))dt (3.7a)

=
∞∑
m=1

∫ T

0
φ(γ(τ))em(γ(τ))dτ ·

∫ T

0
φ(γ(t))em(γ(t))dt (3.7b)

The integrals

∫ T

0
φ(γ(τ))em(γ(τ))dτ and

∫ T

0
φ(γ(t))em(γ(t))dt are both convergent for all m.

Furthermore, let’s define a feature Ψ map on S by

Ψ :S → C

φ 7→
[∫ T

0
φ(γ(t))em(γ(t))dt

]∞
m=1

(3.8)

As such, the inner product expression in equation (3.7b) may be written

⟨ψ,φ⟩S,γ =
∞∑
m=1

Ψ(φ)Ψ(ψ) (3.9)

If we take the perspective of the mapping φ 7→ M∗
φΓγ as transformation and assume the kernel k is

universal, it immediately follows that if M∗
φΓγ = M∗

ψΓγ then ψ agrees with φ in the L2 sense over

γ([0, T ]). Hence the mapping φ 7→ M∗
φΓγ provides a generalized Fourier transform. We defer the

exploration of this kernelized transform to Chapter 4.
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Definition 3.3.3. Given a Hilbert space Y and a set X , a vector valued reproducing kernel Hilbert space

(vv-RKHS), H, is a Hilbert space of functions mapping X to Y, where for each x ∈ X the evaluation

mapping Ex : H → Y given by Ex(f) = f(x) is bounded. The operator valued kernel for a vector

valued reproducing kernel Hilbert space is given by k : X × X → B(Y), k(x, y) = ExE
∗
y , here B(Y)

denotes the bounded operators on Y.

Boundedness of the mapping Ex : H → Y is equivalent to the boundedness of the functional H ∋

g 7→ ⟨g(x), y⟩Y for each x ∈ X and y ∈ Y. The Riesz representation theorem guarantees for each

x ∈ X and v ∈ Y the existence of a function kx,v ∈ H such that ⟨g, kx,v⟩H = ⟨g(x), v⟩Y for all

g ∈ H. In general, for a vector valued reproducing kernel Hilbert space H with kernel k, we can define

kxv(·) := k(·, x)v ∈ H. We note that kx,v = kxv = E∗
x(v) since

(E∗
x(v))(y) = EyE

∗
x(v) = k(y, x)v = (kxv)(y)

for all y and the reproducing property is given by

⟨f(x), v⟩Y = ⟨Ex(y), v⟩Y = ⟨f,E∗
x(v)⟩H = ⟨f, kx,v⟩H.

As an example of kernel for a vv-RKHS, we let P be a positive definite matrix and k(x, y) a scalar

valued kernel. The function K(x, y) = k(x, y)P defines a kernel for a vv-RKHS. We recall that a RKHS

is uniquely determined by its kernel function.

3.4 Multiplication Operators and Occupation Kernels

As opposed to the definition we saw in chapter 2, mutatis mutandis, a slightly different definition of the

multiplication operator is presented here. It is important to note that the definition of a multiplication

operator in this setting is ambiguous without specifying how the products act on the arguments. In

order to ensure the adjoint relationships hold as written, we will make a particular choice in how we

define the multiplication operator.

Definition 3.4.1. Let H be a scalar-valued RKHS over a set X ⊂ Rn and H̃ be a Rk-valued RKHS

over Y ⊂ (Rn)p+1 for k ∈ N. For a measurable function of the form φ : (Rn)p → Rk, define the
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multiplication operator with symbol φ,

Mφ : D (Mφ) ⊂ H → H̃ by Mφ(g) = h

where

h (x1, x2, . . . , xp, xp+1) := g (x1)φ (x2, . . . , xp, xp+1)

and

D(Mφ) = {g ∈ H :Mφg = φg ∈ H̃}.

Definition 3.4.2. Let H and H̃ be two RKHSs and T be a linear operator whose domain D(T ) ⊂ H

and T : D(T ) → H̃. T is densely defined in H if D(T ) is a dense subspace of H (cf. [39, Chapter 5]).

Given T and D(T ) as above, the adjoint of a densely defined (possibly unbounded) operator T has the

domain D(T ∗) := {g ∈ H̃ | h 7→ ⟨Th, g, ⟩H is bounded over D(T )}; refer [39].

The operator T is closed if for every sequence {gm}∞m=0(T ) such that gm → g ∈ H and Tgm → h ∈ H

then g ∈ D(T ) and Tg = h.

Lemma 3.4.1. The adjoint of a closed densely defined operator over a Hilbert space is closed and

densely defined.

Proof. Refer [39, Chapter 5].

Occupation kernels, introduced by Rosenfeld et al in [48], have been used for a variety of data driven

methods in dynamical systems [50, 51, 52]. A variant formulation of the occupation kernel presented in

the original manuscript is adopted for the present context. This modification ensues that it is suitable

for vector-valued symbols as used here. In addition, we present a vector-valued function formulation of

Propositions 3.3.2 and 3.3.3

Definition 3.4.3. Let X ⊂ Rn, Y := X p+1 ⊂ (Rn)p+1, and H̃ be RKHS of continuous functions over

Y. Let τ1 < τ2 < . . . < τp be real numbers. Let γ : [−τp, T ] → X be a continuous trajectory. The func-

tional g 7→
∫ T
0 g (γ(t), γ(t− τ1), . . . , γ(t− τp)) dt is bounded over H̃, and by the Riesz representation

theorem, can be represented as

∫ T

0
g (γ(t), γ(t− τ1), . . . , γ(t− τp)) dt = ⟨g,Γγ⟩H̃
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for some Γγ ∈ H̃. The function Γγ is called the occupation kernel corresponding to γ in H̃.

Proposition 3.4.2. Let H and H̃ be RKHSs of continuous functions over the sets X ⊂ Rn and Y :=

(X )p+1 ⊂ (Rn)p+1. Suppose f : (X )p → R is Lipschitz continuous and a symbol of a densely defined

multiplication operator, Mf : D(Mf ) → H̃, given as Mfg = gf for g ∈ D(Mf ). Let γ : [−τp, T ] → X

be a continuous trajectory, then Γγ ∈ D(M∗
f ) and for x ∈ X

M∗
fΓγ(x) =

∫ T

0
f(γ(t− τ1), . . . , γ(t− τp))k(x, γ(t))dt (3.10)

Proof. : Note,

M∗
fΓγ(x) = ⟨M∗

fΓγ , kx⟩H

= ⟨Γγ ,Mfkx⟩H̃

=

∫ T

0
f(γ(t− τ1), . . . , γ(t− τp))k(x, γ(t)) dt

Proposition 3.4.3. Let ψ and φ be symbols for densely defined multiplication operators, and γ1, γ2 :

[−τp, T ] → X be trajectories as in Definition 3.4.3. Suppose c1, c2 ∈ R, then

M∗
(c1ψ+c2φ)

Γγ =M∗
c1ψΓγ +M∗

c2φΓγ , and

M∗
cφΓγ = cM∗

φΓγ

M∗
φ (c1Γγ1 + c2Γγ2) = c1M

∗
φΓγ1 + c2M

∗
φΓγ2

Proof. The proof of this proposition follows from the definition, i.e. let {ci}Ni=1 ⊂ R be a set of real

constants, and {φi}Ni=1 be a collection of symbols of densely defined multiplication operators such that
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equation (3.10) holds for all t ∈ [−τp, T ]. It follows that

M∗(
N∑
i=1

ciφi

)Γγ =

T∫
0

(
N∑
i=1

ciφi

)
(γ(t− τ1), γ(t− τ2), . . . , γ(t− τp))K(·, γ(t))dt

=

N∑
i=1

ci

T∫
0

φi(γ(t− τ1), γ(t− τ2), . . . , γ(t− τp))K(·, γ(t))dt

=

N∑
i=1

ciM
∗
φi
Γγ

Suppose γ1, γ2 are continuous trajectories satisfying Proposition 3.4.2, then we have that

M∗
φ (Γγ1 + Γγ2) =M∗

φΓγ1 +M∗
φΓγ1

since M∗
φΓγ1 is linear

We shall denote by S the collection of symbols corresponding to densely defined multiplication operators

on the RKHS H of continuous functions as described above.

For ψ,φ ∈ S, with ψ,φ : (Rn)p → Rn, we define a bi-linear form over S by

⟨·, ·⟩S : S × S → R

⟨ψ,φ⟩S :=
〈
M∗
φΓγ ,M

∗
ψΓγ

〉
H .

(3.11)

Henceforth, we shall adopt the following notation for convenience,.

γ[t] := (γ(t− τ1), γ(t− τ2), . . . , γ(t− τp)).

Proposition 3.4.4. Equation (3.11) defines an inner product on S/Λ, where Λ := {φ ∈ S : ⟨φ,φ⟩S =

0}. Moreover, if {em}∞m=1 ⊂ H is an orthonormal basis for H, then

⟨ψ,φ⟩S =

∫ T

0

∫ T

0
ψ(γ[τ ])φ(γ[t])K(γ(τ), γ(t))dtdτ

=
∞∑
m=1

∫ T

0
ψ(γ[τ ])em(γ(τ))dτ ·

∫ T

0
φ(γ[t])em(γ(t))dt,
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Proof. Linearity of the transform with respect to the symbols φ and ψ expressed in Proposition 3.4.3

together with the linearity of the scalar product on H establishes the necessary linearity properties of

⟨·, ·⟩S as a pre-inner product on S. Non-negativity of our pre-inner product ⟨φ,φ⟩ for all symbols φ is

established by noting ⟨φ,φ⟩S = ⟨M∗
φΓγ ,M

∗
φΓγ⟩H. Modding out by Λ and taking ⟨φ+Λ, ψ+Λ⟩S/Λ =

⟨φ̂, ψ̂⟩S with φ̂ ∈ φ + Λ and ψ̂ ∈ ψ + Λ, the pre-inner product can be expressed as an inner product

over S/Λ by standard arguments (cf. [39]).

By definition, g 7→ ⟨g,M∗
ψΓγ⟩H is a bounded functional on H, extended off of the dense set D(Mψ) to

all of H, and given as

g 7→
∫ T

0
g(γ(t))ψ(γ[t])dt, for all g ∈ H, (3.12)

where γ[t] = (γ(t−τ1), γ(t−τ2), . . . , γ(t−τp)). Hence,
〈
M∗
φΓγ ,M

∗
ψΓγ

〉
H
is expressible as the functional

(3.12) applied to M∗
φΓγ . Thus,

〈
M∗
φΓγ ,M

∗
ψΓγ

〉
H =

∫ T

0
ψ(γ[τ ])

∫ T

0
φ(γ[t])K(γ(τ), γ(t))dtdτ

=

∫ T

0

∫ T

0
ψ(γ[τ ])φ(γ[t])K(γ(τ), γ(t))dtdτ.

This formulation relies on the fortunate coincidence that the dynamics are scalar-valued. Though the

experiments in section 3.6 use scalar-valued symbols, their vector valued counterparts are addressed

below for completeness.

3.4.1 Vector-Valued Symbols

There are natural questions that lead to an equivalent formulation involving other forms of the symbol

of the multiplication operator. In many practical applications, governing equations are best represented

as vector valued functions, such that

x(t) = f (x(t− τ1), x(t− τ2), . . . , x(t− τp))

f : Rn×p → Rk.
(3.13)

In such scenarios, it is useful that the RKHS in which the operator embeds the symbol is chosen to be

vector-valued.
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Let H be a scalar valued RKHS over a set X ⊂ Rn and H̃ a Rk-valued RKHS over the set (X )p+1 as

in Definitions 3.3.1 and 3.3.3 respectively. In this section we consider the subset of all multiplication

operators equipped with a vector-valued symbols f that maps a scalar function g ∈ H into H̃ as given

in Definition 3.4.1. Given a monotonic sequence τ1 < τ2 < τ3 < · · · < τp, and a continuous trajectory

γ, if h ∈ H̃, the mapping

h 7→
〈∫ T

0
h(γ(t), γ(t− τ1), . . . γ(t− τp))dt, v

〉
Rk

is bounded for all v ∈ Rk. As such, there exists a function Γγ,v such that

⟨h,Γγ,v⟩H̃ =

〈∫ T

0
h(γ(t), γ(t− τ1), . . . γ(t− τp))dt, v

〉
Rk

=

∫ T

0
h(γ(t), γ(t− τ1), γ(t− τ2), . . . , γ(t− τp))

⊺v dt

where ⊺ is the transpose operator. If g ∈ D(Mf ), then

⟨Mfg,Γγ,v⟩H̃ =

∫ T

0
g(γ(t))f(γ(t− τ1), γ(t− τ2), · · · , γ(t− τp))

⊺v dt. (3.14)

Additionally for a kernel function Kx ∈ H,

〈
M∗
fΓγ,v,Kx

〉
H = ⟨Γγ,v,MfKx⟩H̃ =

∫ T

0
K(γ(t), x)f(γ[t])⊺v dt.

For two symbols F,G : (Rn)p → Rk and vectors v, w ∈ Rk we have,

⟨M∗
GΓγ,w,M

∗
FΓγ,v⟩H =

∫ T

0
(M∗

GΓγ,w) γ(t)F (γ
[t])⊺vdt

=

∫ T

0

(∫ T

0
K(γ(τ), γ(t))G(γ[τ ])⊺w dτ

)
F (γ[t])⊺v dt

=

∫ T

0

∫ T

0
K(γ(τ), γ(t))

(
G(γ[τ ])

)⊺
w
(
F (γ[t])

)⊺
v dτdt

=

∫ T

0

∫ T

0
K(γ(τ), γ(t))

(
G(γ[τ ])

)⊺
wv⊺F (γ[t]) dτdt.

(3.15)
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For a finite basis {vr}kr=1 of Rk, we define the scalar product

⟨G,F ⟩S =
k∑
r=1

⟨M∗
GΓγ,vr ,M

∗
FΓγ,vr⟩H̃ . (3.16)

The scalar product under this definition depends on the choice of trajectory γ and basis {vr}kr=1.

Moreover, this formula enforces non-negativity of the inner product when F is equal to G.

3.5 System Identification

It is assumed that the unknown system dynamics are a symbol for a densely defined multiplication

operator from H to H̃, where H can be infinite dimensional. The algorithm seeks to project the

dynamics onto a subspace K ⊂ S spanned by a finite collection of basis elements, thereby finding the best

approximation of f with respect to functions in K according to the metric induced by the inner product

on S/Λ. This is achieved by leveraging properties of the action of the adjoint multiplication operator on

an occupation kernel, M∗
fΓγ . Within this setup, M∗

fΓγ is then decomposed into a linear combination

of actions involving basis elements as M∗
Yi
Γγ , where γ : [−τp, T ] → X is an observed trajectory of the

system serving as data units. Parameters are estimated through a constrained optimization problem by

virtue of the induced norm on the symbols.

Let {Yi}Mi=1 be a collection of basis functions such that f =
∑M

i=1 θiYi. Thus, satisfies the dynamics

γ(t) =f(γ(t− τ1), . . . , γ(t− τp))

=
M∑
i=1

θiYi(γ(t− τ1), . . . , γ(t− τp)),
(3.17)

where γ : [−τp, T ] → X ⊂ Rn , and Yi : (Rn)p → Rk. In the context of gray box system identification,

given the parameterizing basis above, we seek to estimate the coefficients θi, i = 1, 2, . . .M so that the

dynamics in (3.17) may be used to reproduce data points defined in terms of system trajectories

γ(t) = f(γ(t− τ1), γ(t− τ2), · · · , γ(t− τp)).

Suppose f and Yi corresponds to symbols of densely defined multiplication operators over H for all i.

Given T ∈ R, let γ : [−τp, T ] → Rn be a specified system measurement as in Proposition 3.4.2 and
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g ∈ D(Mf ). The unknown parameters θi are sought out by minimizing deviation of the approximations

from the actual dynamics. That is, find {θi} that minimize

min
θ

∥f −
M∑
i=1

θiYi∥2S (3.18)

where Yi = Yi(γ(t− τ1), γ(t− τ2), · · · , γ(t− τn)). Note that

∥∥∥∥∥f −
∑
i=1

θiYi

∥∥∥∥∥
2

S

=∥f∥2S−2
∑
i=1

θi⟨f, Yi⟩+
∑
i=1

∑
j=1

θiθj⟨Yi, Yj⟩.

The right side of above can be explicitly written as follows:

∥f∥2S−2Θ⊤



⟨f, Y1⟩

⟨f, Y2⟩
...

⟨f, YM ⟩


+Θ⊤



⟨Y1, Y1⟩ ⟨Y1, Y2⟩ . . . ⟨Y1, YM ⟩

⟨Y2, Y1⟩ ⟨Y2, Y2⟩ . . . ⟨Y2, YM ⟩
...

...
...

...

⟨YM , Y1⟩ ⟨YM , Y2⟩ . . . ⟨YM , YM ⟩


Θ (3.19)

where Θ = [θ1, θ2, θ3, . . . , θM ]⊺. Setting the gradient of (3.19) to 0 and solving for Θ, we get

Θ =



⟨Y1, Y1⟩ ⟨Y1, Y2⟩ . . . ⟨Y1, YM ⟩

⟨Y2, Y1⟩ ⟨Y2, Y2⟩ . . . ⟨Y2, YM ⟩
...

...
...

...

⟨YM , Y1⟩ ⟨YM , Y2⟩ . . . ⟨YM , YM ⟩



−1 

⟨f, Y1⟩

⟨f, Y2⟩
...

⟨f, YM ⟩


.

The inner product between basis pair ⟨Yi, Yj⟩H̃ is computed as

⟨Yi, Yj⟩S =
k∑
r=1

∫ T

0

∫ T

0
K(γ(τ), γ(t))

(
Yi(γ

[τ ])
)⊺
vrv

⊺
r

(
Yj(γ

[t])
)
dτdt.

Likewise, under the assumption that γ(t) = f(γ[t]),

⟨f, Yi⟩S =

k∑
r=1

∫ T

0

∫ T

0
K(γ(τ), γ(t))

(
f(γ[τ ])

)⊺
vrv

⊺
r

(
Yj(γ

[t])
)
dτdt

=

k∑
r=1

∫ T

0

∫ T

0
K(γ(τ), γ(t)) (γ(τ))⊺ vrv

⊺
r

(
Yj(γ

[t])
)
dτdt.
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Note that if we exclude the basis {vr}kr=1 the scalar case follows.

In the event that the target function f lies in the linear span of the chosen basis functions Yi and the

Gram matrix [⟨Yi, Yj⟩S ]M,M
i,j=1,1 is positive definite, then f will be identified as it is the unique solution

to the minimization problem. Outside of this scenario, the result will be the best approximation in the

norm ∥·∥S .

3.6 Numerical Experiments

The identification approach introduced in this chapter is centered around a new implementation within

the NAR framework. Verification of the developed model is carried out through a series of numerical

experiments, two of which are presented below. In particular, this work is not concerned with drawing

a comparison with existing methods. However, the effectiveness of the model in identifying system

parameters is evident in these experiments. In both experiments, RBF and exponential dot product

kernels were used and performance of the model with respect to each kernel function is accessed. A

kernel width of µ = 0.01 is used, step sizes of 0.01 and 0.05 is employed for numerical integration

in experiments 1 and 2 respectively. Three integer lags τ1 = 1, τ2 = 3, τ3 = 3 were utilized. With

the identified parameters, candidate input values are sampled over a pre-selected interval to carry out

prediction. While there is no unique way of selecting the predictor values, we rely on central tendencies

of the training data to sample these inputs.

Experiment 1:

In experiment 1, simulated data from the cosine function is used to train the model and generate system

parameters. The function cos (t) is discretized according to a step size h over interval [0, 2π], the data

is split into two parts, the first half is used to train the model and the second half for prediction.

Basis functions are constructed as tensor products of monomials of up to degree three (3), that is

Yi = xi11 x
i2
2 x

i3
3 , for nonnegative integers i1, i2, i3 so that 0 ≤ i1 + i2 + i3 ≤ 3. With n = 1, p = 3, the

approximation is such that

cos (t) ≈
∑
i=1

θiYi(γ(t− τ1), γ(t− τ2), γ(t− τ3))

where

Yi(γ(t− τ1), γ(t− τ2), γ(t− τ3)) = (γ(t− τ1))
i1(γ(t− τ2))

i2(γ(t− τ3))
i3 .
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Figure 10. Experiment 1: (a) Actual data (red) over [0, 2π] versus approximation by model (blue) over
training interval (left of gray line) followed by prediction by model (right of gray line). (b) Absolute
pointwise error for Approximation and prediction associated with the trained model using RBF.

Figure 10a shows the approximation of the function values over [0, 2π] and the prediction values by the

model over [2π, 4π]. Figure 10b shows the associated approximation error. Prediction over [2π, 4π]

is carried out by interchanging between the two kernel functions. Figure 11a shows both predictions

involving RBF and exponential dot product kernels whiles Figure 11b is a plot of the associated absolute

pointwise error.

Experiment 2:

In Experiment 2, time series data measurements from an Electro-Mechanical Positioning System (EMPS)

[19]; a standard configuration of a drive system for prismatic joint of robots or machine tools. The data

comprises measurements of joint positions qm and control signal at a sampling frequency of 1kHz with

a duration of approximately 25 seconds. The primary goal of the experiment is to use the trained model

to reproduce the recorded one-dimensional position data as well as predict positions over an extended

interval. Using a subset of qm comprising 1000 data points (snapshots), the data is divided into 2 parts

for training and prediction respectively. The same basis collection as in Experiment 1 was adopted.

Figure 12a compares the true data with approximations as well as prediction over adjacent interval.

Next, Figure 13a shows prediction curves of the model using RBF and the exponential dot product while

Figure 13b indicates their corresponding absolute pointwise error associated with the prediction.

57



60 70 80 90 100 110 120 130
-1

-0.5

0

0.5

1
Actual Data
RBF
Exp. dot product

(a)

60 70 80 90 100 110 120 130
-32

-30

-28

-26

-24

-22

-20
RBF
Exp. dot product

(b)

Figure 11. Experiment 1: (a) Predicted pattern over [2π, 4π] using trained model with RBF (blue) and
exp. dot product kernel (red). (b) Log plot of associated prediction error.
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Figure 12. Experiment 2: (a) EMPS joint position measurements: Actual position data (red) versus
approximation (blue) over training interval (to the left of gray line). Predicted time series data using
trained model (to the right of gray line). (b) Associated absolute pointwise error over prediction interval
using RBF.

58



500 600 700 800 900 1000 1100 1200
0.01

0.02

0.03

0.04

0.05

0.06

0.07
Actual data
 RBF prediction
 Exp. dot prod

(a)

500 600 700 800 900 1000 1100 1200
0

1

2

3

4
10-3

RBF
Exp. dot product

(b)

Figure 13. Experiment 2: (a) EMPS joint position measurements: Actual position data (red) versus
predictions using RBF (blue) and exponential dot product kernel(green). (b) Associated approximation
errors over prediction interval for RBF (blue) and exp. dot product kernel (red).

59



CHAPTER 4:

KERNELIZED FOURIER TRANSFORM

4.1 Introduction

As we alluded to in Chapters 2 and 3, given the Hilbert spaces H and H̃, it is known that, if Mφ :

H → H̃ is a bounded multiplication operator, then it admits a well-defined adjoint M∗
φ : H̃ → H. In

addition, if Mφ is densely defined, M∗
φ is in turn densely defined. Moreover, the occupation kernel Γγ

associated with the system trajectory γ resides in the domain of the adjoint multiplication operator; i.e.,

Γγ ∈ D(M∗
φ) ⊂ H̃. For a fixed symbol φ, the action M∗

φΓγ of the adjoint operator on the occupation

kernel is a well-defined kernelized-transform over the underlying set X of the Hilbert space. This

integral transform shares theoretical properties with the Fourier transform and Hilbert Schmidt integral

transforms in general. M∗
φΓγ can also be viewed as an operator acting on the set S of the symbols

of densely defined multiplication operator S 7→
[
M∗
φ

]
Γγ . Where appropriate, we shall conveniently

interchange between a compact subspace X ⊂ Rn ( equivalently X ⊂ Cn) and S for our analysis. We

shall assume that the underlying Hilbert spaces are separable unless otherwise stated. Elements of the

class S of symbols of densely defined multiplication operators shall be simply referred to as ”symbols”

unless there is ambiguity. At the very least, every symbol is continuous on its domain. For all integrals

in the plane or on the unit disk, the mean modulus
∫
|f |ds and

∫
|f |dxdy shall be though of as length or

area respectively in the the Lesbesgue sense. Similar notations will be
∫
|f |dµ(y) and

∫ ∫
|f |dA(x, y),

as Lebesgue area measure where appropriated. Most of the analysis in this chapter is done in the Hardy

space over the units disk. Otherwise, all domains shall be considered to be simply connected.

This chapter investigates the developed transform in light of similar integral transforms. It studies

function-operator theoretic properties of the transform in the Hardy space. In the first section we look

at the transform as a function on the set X , and later as an operator Λ on the set S of densely

defined symbols over L2 and gradually progress to H2. Generally, the kernel function for the integral
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operator differs from that of an RKHS, while the later can occur as an integral kernel, although there

are distinctions worth noting.

4.2 Background

In addition to literature from the previous chapters, supplemental information and theorems are presented

in this section which we shall periodically reference.

Definition 4.2.1. (Hilbert-Schmidt Operator [18]) A bounded linear operator K on a separable Hilbert

space H is said to be Hilbert-Schmidt if for any orthonormal basis of H, {ei | i ∈ N}

∞∑
i=1

∥Kei∥2 <∞.

If K is a Hilbert-Schmidt operator, then

∥K∥HS :=

√√√√ ∞∑
i=1

∥Kei∥2

is called the Hilbert-Schmidt norm of K.

Definition 4.2.2. The integral operator K : L2(X ) → L2(X ) is defined by

K□ :=

∫
X

k(x, y)□(y)dy (4.1)

where k : X × X → C is called the kernel of the integral operator

Theorem 4.2.1. [17] Let X ⊂ Rn, and k(x, y) ∈ L2(X × X ). Then for every f ∈ L2(X ), then the

integral operator

(Tf)(x) =

∫
X

k(x, y)f(y)dy (4.2)

is Hilbert-Schmidt and its Hilbert-Schmidt norm is

∥T∥HS=

 ∫
X×X

|k(x, y)|2dxdy

1/2

(4.3)

Proof. Refer to [17]
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Let k be a continuous kernel function on the product space X ×X → R, if k is Hilbert-Schmidt, that is

∫
X

∫
X
|k(x, y)|2dxdy = C <∞, (4.4)

then the associated integral operator

Kf =

∫
X
k(x, y)f(y)dy

is continuous (hence bounded) and compact in the norm topology of B(H); the Banach space of all linear

operators on H. Let X be a measure space and L2(X ) indicate the Hilbert space of real-valued square-

integrable functions on X . suppose k ∈ L2(X × X ) and consider the corresponding Hilbert-Schmidt

operator

K : L2(X ) → L2(X )

Kf(x) =

∫
X

k(x, y)f(y)dy
(4.5)

If k is symmetric; i.e., k(x, y) = k(y, x), then by Fubini’s theorem

⟨f,Kg⟩ =
∫
X

f(x)

∫
X

k(x, y)g(y)dydx =

∫
X

∫
X

k(y, x)f(x)dxg(y)dy = ⟨Kf, g⟩

This indicates that, symmetric kernels k correspond to self-adjoint Hilbert-Schmidt operators. Lemma

(4.2.2) formulates this in a more general context,

Lemma 4.2.2. Suppose (X ,Ω, µ) is a σ-finite measure space, k a kernel function on X × X for some

integral operator. Define the operator L : L2(X ) → L2(X ) by

(L)f =

∫
X
k(x, y)f(y)dy (4.6)

Then L is bounded and has unique adjoint operator L∗ : L2(X ) → L2(X ) given by

L∗f(x) =

∫
X
k(y, x)f(y)dµ(y).
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Proof. Boundedness follows immediately. To find L∗, we let A : L2(X ) → L2(X ) be the integral

operator with kernel k(y, x), i.e.,

Af(x) =

∫
X
k(y, x)f(y)dµ(y).

Then, given any f and g ∈ L2(X ), we have

⟨f, L∗g⟩ = ⟨Lf, g⟩ =
∫
X
Lf(x)g(x)dµ(x)

=

∫
X

∫
X
k(x, y)f(y)dµ(y)g(x)dµ(x)

=

∫
X
f(y)

∫
X
k(x, y)g(x)dµ(x)dµ(y)

=

∫
X
f(y)

∫
X
k(x, y)g(x)dµ(x)dµ(y)

=

∫
X
f(y)Ag(y)dµ(y)

= ⟨f,Ag⟩.

By uniqueness of the adjoint, we have L∗ = A.

Additionally, a continuous kernel k is said to satisfy the Mercer condition if an only if

∫
X

∫
X

k(x, y)f(x)f(y)dxdy ≥ 0 fo all f ∈ L2(X ) (4.7)

In relation to RKHSs, recall that given a measurable space X , the function k : L2(X × X ) → R is a

kernel if and only if there is some feature map into a separable Hilbert space; Ψ : X → H such that

k(x, y) = ⟨Φ(x),Φ(y)⟩H. This equivalently agrees that k is a kernel if an only if the following diagram

commutes
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X × X

H×H R,C
⟨·, ·⟩H

Φ k

Theorem 4.2.3. [38] Let K(x, y) be reproducing kernel for the RKHS H on X . If {es : s ∈ I} is an

orthonormal basis for H, then K(x, y) =
∑
s∈S

es(y)es(x), where the series converges pointwise.

Proof. See [38].

Consequentially, given a finite dimensional inner product space (V, ⟨·, ·⟩V ), the space of linear maps

V → V (B(V )), is isomorphic to the bilinear functionals V × V → R. The subcollection of self adjoint

maps of B(V ) is isomorphic to the symmetric linear functionals. This means an inner product on V

should be of the form (u,w) 7→ ⟨u, Lw⟩V for some self adjoint operator L : V → V . Denote by ⟨·, ·⟩L

the map

⟨u,w⟩L → ⟨u, Tw⟩V (4.8)

This produces a characterization of positive linear operators as stated in proposition (4.2.4) below

Proposition 4.2.4. The self adjoint linear map L : V → V is positive semi-definite if and only if ⟨·, ·⟩L

as defined in (4.8) is an inner product.

Proof. We recall that if L : H → H is a bounded, self-adjoint linear map, then L is positive semi-

definite if and only if ⟨Lφ,φ⟩H ≥ 0. Let L be a self adjoint linear map, then L has the decomposition

L = UDU∗ for some unitary matrix U and a diagonal matrix D, inferred from spectral theory. If L is

positive definite, then D admits a unique root, so that

⟨v, v⟩L = ⟨v, UDU∗v⟩V =
〈√

DU∗v,
√
DU∗v

〉
V
≥ 0. (4.9)

√
DU∗ is full rank and thus ⟨v, v⟩L = 0 if and only if v = 0 So ⟨·, ·⟩L is an inner product

On the other hand, suppose g is an eigenvector of L with eigenvalue λ, and if ⟨·, ·⟩L is an inner product,
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then

λ ⟨g, g⟩V = ⟨g, λg⟩V = ⟨g, Lg⟩V = ⟨g, g⟩L > 0 (4.10)

Moreover, λ > 0 since ⟨·, ·⟩L is an inner product.

There is a natural way of determining those functions on a product space X ×X that meet the criteria of

a kernel. Mercer’s theorem states that a symmetric, and positive-definite matrix can be represented as a

sum of a convergent sequence of product functions thereby generalizing the result that any such matrix

is a Gram matrix. That is, heuristically, the theorem imposes a condition on functions to determine

those that meet the criteria of a kernel function.

Theorem 4.2.5. (Mercer’s Theorem [61]) Let (X , µ) be a finite-measure space, and suppose k ∈

L∞ (X 2
)
is a symmetric real-valued function such that the integral operator

Lk : L
2(X ) → L2(X )

f 7→ (Lkf) (x) =

∫
X
k
(
x, x′

)
f
(
x′
)
dµ
(
x′
)

is positive definite; that is, for all f ∈ L2(X ), we have

∫
X

∫
X

k(x, x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0.

Let Ψj ∈ L2(X ) be the normalized orthogonal eigenfunctions of Lk associated with the eigenvalues

λj > 0, sorted in non-increasing order.

Then

i (λj)j ∈ ℓ1,

ii k (x, x′) =
NX∑
j=1

λjΨj(x)Ψj (x
′) holds for almost all (x, x′). Either NX ∈ N, or NX = ∞; in the

latter case, the series converges absolutely and uniformly for almost all (x, x′)

It is implied from the Mercer’s theorem that, if k is Mercer kernel, it is possible to construct a mapping

ϕ into a space where k is the reproducing kernel.

65



4.3 Occupation Kernel and the Kernelized Transform

For the feasibility of some of the theorems to come, we assume the trajectory γ(t) lies in the interior of

D such that we can find a concentric disk DR of radius R inside the unit disk so that γ(t) ∈ DR ⊂ D

with 1− η < R < 1 for some η > 0.

Proposition 4.3.1. Let H be an RKHS over X (presently D). Let γ : [0, T ] → X be a continuous

trajectory of finite length. The functional defined on H by g 7 −→
∫ T
0 g(γ(t))dt is bounded over H, and

may be represented as
∫ T
0 g(γ(t))dt = ⟨g,Γγ⟩H for some Γγ ∈ H by the Riesz representation theorem.

The function Γγ ∈ H is called occupation kernel corresponding to γ.

R

η η′

D

DR

γ

Figure 14. Layout of a trajectory inside the unit disk

Proof. We demonstrate boundedness of the functional for the case H = H2, the property can be

generalized. We suppose that γ lies in the interior of D such that we can construct a concentric disk of

radius R > 0, with γ ∈ DR ⊂ D.

Let Ξ : H2 → C be the map H2 ∋ g 7→
T∫
0

g(γ(t))dt. Fix 1 − η < R < 1, and let η′ := dist(∂DR, γ);

note that 0 < η′ < η. Then, by the Cauchy integral formula, since γ(t) ∈ DR, for any 0 < t < T , we
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have that

|Ξ(g)| =
∣∣∣∣∫ T

0
g(γ(t))dt

∣∣∣∣
=

∣∣∣∣∣
∫ T

0

1

2πi

∫
|ζ|=R

g(ζ)

ζ − γ(t)
dζdt

∣∣∣∣∣
≤ 1

2π

∫
|ζ|=R

|g(ζ)|
∫ T

0

dt

|ζ − γ(t)|
|dζ|.

Since η′ = dist(∂DR, γ) > 0, we have that |ζ − γ(t)|> η′. Therefore

|Ξ(g)| ≤ T

2πη′

∫
|ζ|=R

|g(ζ)||dζ|

(Cauchy − Schwarz) ≤
√
2πRT

2πη′

(∫
|ζ|=R

|g(ζ)|2|dζ|

)1/2

.

Taking the limit as R→ 1, we find that

|Ξ(g)|≤ C||g||H2(D),

where the constant C = C(η, T ). Thus, Ξ is a bounded linear functional (hence continuous).

The function Γγ , as we saw in the previous chapter, may be expressed in terms of the reproducing

kernel of H. This is a direct consequence of the reproducing property of the kernel function k. A formal

statement of is given in proposition 4.3.2 below.

Proposition 4.3.2. [48] Let H be a RKHS consisting of continuous functions over a compact set X and

let γ : [0, T ] → X be a continuous trajectory as defined above. The occupation kernel corresponding

to γ, Γγ in H, may be expressed as

Γγ(x) =

T∫
0

k(x, γ(t))dt

Proof. Notice that Γγ(x) = ⟨Γγ , k(·, x)⟩H by the reproducing property of k. Consequently,

Γγ(x) = ⟨Γγ , k(·, x)⟩H = ⟨k(·, x),Γγ⟩H

=

∫ T

0
k(γ(t), x)dt =

∫ T

0
k(x, γ(t))dt, by definition of Γγ .
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which establishes the result

Γγ(x) =

∫ T

0
k(x, γ(t))dt. (4.11)

Proposition 4.3.3. Let H be a RKHS of continuous functions over a compact set X ⊂ Cn, and suppose

φ : C → C is Lipschitz continuous. If γ : [0, T ] → X is a trajectory as defined in proposition (4.3.1),

and Mφ : H → H, then Γγ ∈ D(M∗
φ) and

[
M∗
φ

]
Γγ =

∫ T

0
φ(γ(t))k(·, γ(t))dt. (4.12)

Proof. Let H be an RKHS, and Γγ the occupation kernel associated with the continuous trajectory

γ : [0, T ] → X .

To show that Γγ ∈ D
(
M∗
φ

)
, it is enough to demonstrate that the linear functional

g 7→ ⟨Mφg,Γγ⟩H is bounded for all g ∈ D(Mφ)

Consider the map E defined by

E : H −→ X

g 7→ ⟨Mφg,Γγ⟩H .

We get that |E(g)|=
∣∣⟨Mφg,Γγ⟩H

∣∣ , where∣∣⟨Mφg,Γγ⟩H
∣∣ =

∣∣⟨φg,Γγ⟩H∣∣ =
∣∣∣∣∣∣
T∫
0

(φg)(γ(t))dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣
T∫
0

φ(γ(t))g(γ(t))dt

∣∣∣∣∣∣ ≤
T∫
0

|φ(γ(t))||g(γ(t))| dt.

But φ(γ(t)) is continuous on [0, T ] and that the image of φ(γ(t)) is compact and bounded, so

T∫
0

|φ(γ(t))||g(γ(t))| dt ≤ sup
γ(t)

|φ(γ(t))|
T∫
0

|g(γ(t))| dt (4.13)

Since g ∈ H and γ is continuous, the function g(γ(t)) is integrable and the quantity on the right hand

side of equation (4.13) is bounded. It follows that g 7→ ⟨Mφg,Γγ⟩ is bounded as desired.
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To obtain the closed-form of the interaction
[
M∗
φ

]
Γγ , we follow from the definition of Γγ .

[
M∗
φ

]
Γγ(z) =

〈
M∗
φΓγ , kz

〉
= ⟨Mφkz,Γγ⟩ =

T∫
0

(Mφkz)(γ(t))dt

=

T∫
0

φ(γ(t))kz(γ(t))dt =

T∫
0

φ(γ(t))kγ(t)(z)dt

(4.14)

as desired.

Perhaps, it is worth mentioning that under the setting of Proposition 4.3.3, the action of the multipli-

cation operator on the occupation kernel MφΓγ has the form

MφΓγ(z) = φ(z)Γγ(z) (4.15)

By the reproducing property of k, also noting that k is an eigenfunction of the adjoint operator M∗
φ, we

get that

MφΓγ(z) = ⟨MφΓγ , kz⟩ = ⟨Γγ ,Mφkz⟩ =
〈
M∗
φkz,Γγ

〉
=
〈
φ(z)kz,Γγ

〉
=

T∫
0

φ(z)k(γ(t), z)dt =

T∫
0

φ(z)k(z, γ(t))dt = φ(z)

T∫
0

k(z, γ(t))dt = φ(z)Γγ(z).

4.4 Function - Theoretic Properties of
[
M∗
φ

]
Γγ

In a typical inverse problem (in the broad sense), one wishes to recover some unknown signal, starting

with only partial knowledge about the signal. For instance, in tomography, the theoretical question

remains; is there a way to recover an unknown function f , if one knows values of its integral along

all possible cross-sections in some target domain [12]. The Radon transform for example, ”measures”

integral of f along various cross-sections. In practice, only a discrete set of cross-sections are feasible.

The approach therefore is an approximation routine that involves filtering out noise and undesirable

components captured by the Radon transform to obtain the target function. Similar to this method, we

ask the question: suppose we have enough data on the quantity
∫
φ(γ(t))k(z, γ(t))dt, is it possible to

recover the symbol φ over its domain of definition? Additionally, one would want to know the properties
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of such a function. In what follows, we attempt to study function and operator-theoretic properties of

M∗
φΓγ that may offer useful insight in the recovery of the often unknown symbol φ. We begin by

investigating some properties of the function over a Hilbert space.

By far, we have not precisely characterized the composition of the set S comprising of symbols of

densely defined multiplication operators on H2. We recall from Chapter 2 that the multiplier algebra

of H2(D) is H∞(D). Sarason outlines precisely the class of multipliers of the the Hardy space with a

dense multiplicative domain in H2 [57]. Let φ be a holomorphic function in D and let Mφ : H2 → H2.

Clearly, Mφ is a closed operator. If D(Mφ) ̸= {0}, then φ is a member of the Nevanlinna class (N),

where the Nevanlinna class consists of all functions {f : D → C, holomorphic : f = a/b; a, b ∈ H∞}.

Lemma 4.4.1. [57] If D(Mφ) is dense in H2, then φ is in the Smirnov class N+.

Proof. See [57]

The Smirnov class N+ on the other hand consists of holomorphic functions in D that are a quotient of

two functions in H∞ such that the denominator is an outer function. i.e.,

N+ = {f ∈ H∞ : f =
b

a
; a, b ∈ H∞, a is outer}.

An outer function is a function f ∈ H1 which can be written in the form

f
(
reiθ

)
= α exp

(
1

2π

∫ 2π

0

eit + reiθ

eit − reiθ
k
(
eit
)
dt

)
, (4.16)

for an integrable function k, eiθ ∈ D, and |α|= 1.

In a converse of Lemma 4.4.1, Sarason in [57] further characterized the domain, D(Mφ), corresponding

to all such symbols φ ∈ N+.

Proposition 4.4.2. [57] Let φ be an nonzero function in N+ with representation φ = a/b. Then

D(Mφ) = aH2.

Therefore, the class of symbols of densely defined multiplication operators on the Hardy space is precisely

the Smirnov classN+. However, for the rest of this chapter, we shall focus on the subset S = H∞ ⊂ N+

unless otherwise specified.
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There have been numerous discoveries in recent years on the classification of symbols of the the mul-

tiplication and Toeplitz operators. For an in depth review of the subject, we refer the reader to the

references [56, 57, 63].

Fix φ ∈ S and a system trajectory γ : [a, b] → D. The adjoint operator M∗
φ : H2 → H2 acts on H2 as

multiplication by the conjugate function φ preceeded by the analytic Szego projection onto H2:

(M∗
φ)[g](z) = PH2(D)

[
φ(ζ)g(ζ)

]
(z). (4.17)

Here, PH2(D) : L
2(T) → H2(D)|T is the canonical projection onto the Hardy space defined via integration

against the reproducing kernel

PH2(D)[h](z) :=
1

2π

∫ 2π

0
h(ζ)kz(ζ)dζ = ⟨h, kz⟩, h ∈ L2(T). (4.18)

In particular, the action of M∗
φ on the occupation kernel belongs to H2,

[
M∗
f

]
Γγ(z) ∈ H2(D).

We shall represent the function
[
M∗
φ

]
Γγ in (4.33) by Tφ,γ , that is

Tφ,γ : D → C

x 7→
∫ T

0
φ(γ(t))k(x, γ(t))dt

(4.19)

and for such choices of φ and γ, Tφ,γ is well defined. The conjugation of the integrand is dropped when

we shift the focus to real-valued symbols. Given φ ∈ H∞ as indicated, and the reproducing kernel k of

the Hardy space, the function φ(z)k(z, w) is analytic in z being the product of two analytic functions.

Assuming the function Tφ,γ is analytic, then using an idea from the complex analog of fundamental

theorem of calculus, we may construct a primitive F with F ′ = Tφ,γ as below. Taking Ω to be a smooth

curve properly contained in the interior of the disk and parameterized by ξ(t), 0 ≤ t ≤ T , if γ(t) ∈ Ω,

then we may write

F (ξ(b))− F (ξ(a)) =

∫
Ω

 T∫
0

φ(γ(t))k(z, γ(t))dt

 dz (4.20)
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where F ′ =
T∫
0

φ(γ(t))k(z, γ(t))dt. By Cauchy’s integral formula, we know that analytic functions have

derivatives of all orders, and so F ′′ exists, thus F ′ = Tφ,γ is analytic. However, analyticity of Tφ,γ is

not obvious for a general RKHS.

Take for example k(z, w) = eitz and φ ∈ L2(0, T ), then the function

M∗
φΓγ(z) =

∫ T

0
φ(w)eiwzdw

is entire and the exponential type. It satisfies the growth conditions [53]

|M∗
φΓγ(z)|≤

∫ T

0
|φ(t)|e−tydt ≤ eT |y|

∫ T

0
|φ(t)|dt. (4.21)

Suppose
∫ T
0 |φ(t)|dt = C <∞. Then equation (4.21) implies

|M∗
φΓγ(z)|≤ CeT |z|. (4.22)

In the case of the Hardy space, a similar argument can be made. We observe that the Szego kernel

which is skew symmetric is most importantly holomorphic in the first variable and antiholomorphic in

the second. As such, we can write

|Tφ,γ(z)|=

∣∣∣∣∣∣
T∫
0

φ(γ(t))k(z, γ(t))dt

∣∣∣∣∣∣ ≤ ∥φ(γ)∥∞

T∫
0

|k(z, γ(t))dt|= ∥φ(γ)∥∞
∫ T

0

∞∑
n=0

[
zγ(t)

]n
dt (4.23)

where the series on the right is convergent per the hypothesis. Therefore, we may compute the H2

norm accordingly ∫
Ω

|Tφ,γ(z)|2dz ≤ ∥φ(γ)∥∞
∫
Ω

∣∣∣∣∣
∫ T

0

∞∑
n=0

γ(t)
n
zndt

∣∣∣∣∣
2

dz. (4.24)

For an arbitrary RKHS H over the set X , if the reproducing kernel k is uniformly bounded, a similar

argument can be made. For φ ∈ H∞, the function x 7→ Tφ,γ is bounded with respect to the norm on

H. The conditions on the symbol φ and kernel could be relaxed, the property still holds for continuous

symbols. However, since the ultimate goal involves symbols S of densely defined multiplication, we will

mostly cover elements of H∞ space.
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As mentioned, the map Tφ,γ may be viewed as either a function on the set D by holding quantities φ

and γ constant, or as a map on the collection S of symbols of densely-defined multiplication operators

Mφ.

Tφ,γ :X → C (4.25a)

z 7→M∗
φΓγ(z) = Tφ,γ(z) =

T∫
0

k(z, γ(t))φ(γ(t))dt, for fixed φ, γ (4.25b)

Λ :S → H2 (4.25c)

[Λ] (φ) 7→ Tφ,γ(z) =

T∫
0

k(z, γ(t))φ(γ(t)dt, ∀z ∈ X . (4.25d)

Depending on how one chooses to view this map, different properties about the action
[
M∗
φ

]
Γγ may

be learned. It is important to note that the collection S of symbols under consideration coupled

with the scalar product ⟨·, ·⟩S defines an inner product space. Additionally, the map Λ : S 7→ Tφ,γ

is a bounded linear map that represents a one-to-one correspondence between S and the kernelized

transform. Given ψ,φ ∈ S such that Tφ,γ(x) = Tψ,γ for all x ∈ X , we get that ψ = φ almost

everywhere on γ([0, T ]) in the L2 sense. We posit that for any open contour γ, ker(Λ) = {ψ ∈ S :

Λφ = 0,∀x ∈ X , & ∀γ([0, T ])} = {0}, and is injective

Proposition 4.4.3. Suppose γ(t) is an open contour, that is D\γ is connected, then the operator

Λ : H∞ → H∞ ⊂ H2

g 7→
T∫
0

g(γ(t))k(z, γ(t))dt
(4.26)

is injective.

Proof. Suppose not, so that (Λg)(z) = 0 for all z ∈ D yet g ̸= 0 i.e.

∫
γ

g(ζ)k(z, ζ)
dt

γ′
=

∫
γ

g(ζ)

1− zζ

dζ

γ′
= 0. (4.27)
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Recall from Cauchy-type integrals that if

Φ =

∫
Γ

φ(ζ)

ζ − z
dζ, (4.28)

then Φ is holomorphic in C\Γ. With a slight manipulation, the right hand side of equation (4.27)

maybe written as a Cauchy-type integral where the integration happen over the conjugate of the path

γ. i.e.

(Λg)(z) =

∫
1/γ

Ψ(ζ)

ζ − z
dζ, (4.29)

where Ψ depend on g(γ(t))/γ′. (Λg)(z) is analytic up to the boundary of 1/γ. Implying Λg = 0 in

C\ 1
γ by the identity principle. Therefore by Sokhotski–Plemelj formula, 2πiΨ = (Λg)+ − (Λg)−, where

(Λg)± = lim
z→1/γ±

(Λg)(z). But Λg = 0 on C\1/γ′. Hence Ψ(ζ) = 0 for all t ∈ [0, T ]. Since γ′ ̸= 0, and

g is holomorphic, g ≡ 0 by the Identity Theorem.

For the first part of our investigation, we focus on function-theoretic properties of Tφ,γ as a function

on D. There are resemblances between the transform in (4.25b) and Fourier and Fredholm integral

operators. For instance, we observe that, if the path γ(t) is a smooth rectifiable curve, appropriate

parameterization restructures (4.25d) as a normalized Hilbert-Schmidt integral operator provided the

kernel function k(x, y) ∈ L2. Hilbert -Schmidt operators has a natural Hilbert space structure and it

contains the trace class operators [16] as well as compact, hence, such a connection provides useful

insight about our transform. We shall investigate properties like continuity, and analyticity of Λ . We

review a few underlying notions about the kernel function and integral operators which shall serve as

basis for the arguments to come. Discussions involving the Fredholm operator is deferred to Chapter

5.

We recall that if L is a linear map between the normed linear spaces X and Y, we say L is bounded

if maps bounded subset of X into bounded sets of Y, or equivalently, if there exists C < ∞ such that

∥Lx∥Y≤ C∥x∥X . If certain growth constraints are imposed on the kernel function k, the function Tφ,γ

is bounded in D. Suppose X = D and k : D× D → C satisfy

sup
z∈D

∫
X

|k(z, w)|dw <∞ and sup
w∈D

∫
X

|k(z, w)|dz <∞.
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Then the function Tφ,γ defined by Tφ,γ(z) =
T∫
0

φ(γ(t))k(z, γ(t))dt is bounded since

|Tφ,γ(z)|=

∣∣∣∣∣∣
T∫
0

φ(γ(t))k(z, γ(t))dt

∣∣∣∣∣∣ ≤
T∫
0

|φ(γt)k(z, γ(t))| dt ≤ ∥φ∥H∞

T∫
0

|k(z, γ(t))| dt. (4.30)

A continuous kernel function is termed Hilbert-Schmidt if it is bounded in both variables. Specifically,

given the kernel k : X × X → R, we say k is Hilbert-Schmidt if

∫
X

∫
X
|k(x, y)|2dxdy = C <∞. (4.31)

For the nature of integral in Tφ,γ , the Hillbert-Schmidt property is perhaps a strong condition that

guarantees continuity for a wide class of symbols. For instance it guarantee boundedness of the function

in equation (4.19) for merely continuous symbols.

4.5 The Operator Λ : S → Tφ,γ

Now consider the operator Λ defined as

Λ :S → H2

[Λ] : φ 7→ Tφ,γ(z) =

T∫
0

k(z, γ(t))φ(γ(t)dt, ∀z ∈ X .
(4.32)

Given the set S comprised of H∞ functions, the transform Λ is bounded if Λ(φ) ≤M∥φ∥ for all φ ∈ S.

It is clear that, for any ”nice” symbol, convergence of the integral to the right of equation (4.32)

depends heavily on the kernel function. For the obvious cases, if k is continuous and an L∞ function,

then the integral operator inherits boundedness directly as discussed in the case of the function above.

On the other hand, if k(·, ·) is continuous, symmetric and bounded in the first variable, Λ is bounded

as we will show shortly. While these conditions appear desirable, the most frequently used kernels for

system identification routines may not possess them. For instance, the Szego kernel, though analytic

in the first variable, is antiholomorphic in the second and antisymmetric; unless the region is carefully

defined the integral in (4.32) may not be defined.
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For the Hardy space, there are possible limitations on the operator Λ should the trajectory γ be made

arbitrarily close to the boundary ∂D. The presence of poles of the H2 kernel along the boundary induces

rapid growth in the integrand rendering the integral in (4.32) undefined. As such, we assume trajectories

reside in the interior of the disk reasonably spaced from the boundary as indicated in the diagram from

proposition (4.3.1).

Proposition 4.5.1. Let X be the unit disk in the complex plane. Given γ(t) : [0, T ] → X , a smooth

trajectory, such that γ(t) ⊂ int(D), the operator Λ defined above in (4.32) maps H∞ → H2 and is

bounded.

Proof. For any z ∈ D, Λ has a bound. That is, by setting ζ = γ(t), we get that the operator

[Λ] (φ) =

∫ T

0
φ(γ(t))k(·, γ(t))dt (4.33)

is a normalized Hilbert-Schmidt integral transform where the measure is normalized by the factor 1/γ′.

That is

[Λ]φ(z) =

T∫
0

φ(γ(t))k(z, γ(t))dt =

∫
γ

(
φ(ζ)

γ′

)
k(z, ζ)dζ, (4.34)

Suppose that γ′ is bounded away from 0; |γ′|> m > 0, the function φ(ζ)/γ′ is continuous, and thus

for the Szego kernel,

∫
γ

(
φ(ζ)

γ′

)
k(z, ζ)dζ =

∫
γ

Ψ(ζ)

z − ζ
dζ, (4.35)

where Ψ(ζ) = Ψ(ζ, φ(ζ)γ′ ). The integral is well-defined where z ̸= 1/ζ and is analytic in the whole

of D except possible along the contour γ. Now suppose we define B(z) =
∫
γ

Ψ(ζ)

1− zζ
dζ, for z0 ∈ γ,

let B+(z0) = lim
ζ→z+0

B(z) be the limiting value as Ψ tends to the contour from inside and B−(z0) =

lim
ζ→z−o

B(z). Then by the Sokhotski–Plemelj theorem [27], B+(z0) − B−(z0) = 2πiΨ(z0). However,

B+(z0) and B−(z0) are well-defined, holomorphic and their limits agree on the boundary γ. Thus the

function B(z) extends analytically to the boundary γ. Boundedness follows immediately since γ lies

completely in some compact set DR ⊂ D.

For the Hardy space on the unit disk, we may estimate this bound as below.
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Without loss of generality, let the set [a, b] = [0, T ], therefore

|Λ(φ)| =

∣∣∣∣∣∣
b∫
a

φ(γ(t))k(z, γ(t))dt

∣∣∣∣∣∣ ≤
b∫
a

∣∣∣φ(γ(t))k(z, γ(t))∣∣∣ dt (4.36a)

≤ ∥φ∥H∞

b∫
a

|k(z, γ(t))| dt = ∥φ∥H∞

b∫
a

∣∣∣∣∣ 1

1− zγ(t)

∣∣∣∣∣ , (4.36b)

where k(z, γ(t)) =
1

1− zγ(t)
=

∞∑
n=0

(
zγ(t)

)n
, z, γ(t) is in the interior of D which guarantees conver-

gence in the series on the right. Therefore

|Λ(φ)| ≤ ∥φ∥H∞

b∫
a

∣∣∣∣∣
∞∑
n=0

(zγ(t))n

∣∣∣∣∣ dt ≤ ∥φ∥H∞

b∫
a

∞∑
n=0

|(zγ(t))n| dt = ρ∥φ∥H∞

m(1− |z|)
,

where ρ is a constant depending on the measure of [a, b] and m ≤ γ′([a, b]) ≤M for some m,M ∈ R.

In fact, this results can be refined further. Specifically, given a continuous symbol φ ∈ C(D) and a

smooth rectifiable curve γ of finite length, the operator Λ : C(D) → H2 is bounded. The image of the

compact set [a, b] is compact under γ, and since φ is continuous, the results follows.

Recall that, every Hilbert-Schmidt operator is compact [18]. That is, given that K is Hilbert-Schmidt

operator on H, {ei|i ∈ N} an orthonormal basis collection for H, and PN a projection of K onto

the finite dimensional space spanned by {e1, e2, · · · , eN}. Then PNK is a finite rank operator with

PNK → K uniformly as N → ∞. The result therefore follows immediately. A formal statement

regarding this is given by the following theorem.

Theorem 4.5.2. [45] Suppose k : X × X → R is a Hilbert-Schmidt kernel, then the integral operator

K ∈ B(L2(X )), defined by

K(f)(x) =

∫
X

k(x, y)f(y)dy

is compact,

where B(L2(X )) is the space of all bounded linear operators on L2(X ).
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Proof. Let {ϕi(x)} be an orthonormal basis for L2(X ). One can show that {ϕi(x)ϕj(y)} is a basis for

L2(X × X ). Expanding k with respect to this basis gives

k(x, y) =

∞∑
i,j=1

kijϕi(x)ϕj(y), (4.37)

where convergence of (4.37) is in the L2(X × X ) norm and

kij =

∫
X

∫
X

k(x, y)ϕi(x)ϕj(y)dxdy. (4.38)

Furthermore, we have that ∫
X

∫
X

|k(x, y)|2dxdy =

∞∑
i,j=1

|kij |. (4.39)

For n ∈ N, define the operator Kn ∈ B(L2(X )) by

Kn(f)(x) :=

∫
X

kn(x, y)f(y)dy, (4.40)

where

kn(x, y) =

n∑
i,j=1

kijϕi(x)ϕj(y).

We refer to kn and Kn as separable kernels and separable operators respectively. Notice that the

separable operators have finite rank and thus are compact.

Applying lemma (4.2.2), we get that

∥K −Kn∥2≤
∫
X

∫
X

|k(x, y)− kn(x, y)|2dxdy (4.41)

and using the expression in equation (4.39) gives

lim
n→∞

∫
X

∫
X

|k(x, y)− kn(x, y)|2dxdy = lim
n→∞

∞∑
i,j=n+1

|kij |= 0, (4.42)
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implying that Kn converges to K in the operator norm. Recall that, if An ∈ B(X,Y ) is a sequence of

compact operators such that An converges in the operator norm to an operator A, then A is compact.

Hence, K is compact.

Take (X ,Ω, µ) to be a σ-finite measure space. Let φ be an element of H∞ and k, a Hilbert-Schmidt

kernel, then given γ, a smooth trajectory of finite length, the operator Λ : H∞ → H2 defined in (4.32)

is compact.

It suffices to show that the map [Λ(φ)] (z) =
T∫
0

φ(γ(t))k(z, γ(t)) is a Hilbert- Schmidt operator. By

virtue of the Hilbert-Schmidt kernel k, Λ is bounded over the collection of symbols S for a fixed trajectory

as shown in Proposition 4.5.1.

Given a bounded metric space X , recall that X is sequentially compact provided every sequence of points

in X has a convergent subsequence. Similarly, the operator A acting on a metric space X is said to be

compact if for any bounded sequence {zn}, the collection {Azn}n=1 has a convergent subsequence.

Definition 4.5.1. Let X ,Y be two Banach spaces. The operator K : X → Y is compact if for all

bounded sequences in X , there is a subsequence {nk}k such that {Kxnk
} is convergent.

One way to establish compactness of Λ is to show this property. To do so, we resort to an analog

of the Bolzano-Weierstrass theorem of the Euclidean space. Recall that, in the Euclidean space Rn,

the Bolzano-Weierstrass theorem states that every bounded sequence {xn}n in Rn, has a convergent

subsequence {xnk}nk ⊂ Rn. Here, we employ the notion of a normal family.

Definition 4.5.2. [60] The collection F = {fα}α∈I of holomorphic functions on a domain Ω is called

a normal family if every sequence in F has a uniformly convergent subsequence.

Therefore, it is enough to show that {M∗
φn

Γγ} is a normal family for any sequence {φn} ⊂ H∞.

According Montel’s theorem, locally uniformly bounded families are normal.

Theorem 4.5.3. (Montel’s theorem [60, chapter 3]) Let Ω be open in C, a family F of holomorphic

functions on Ω is said to be normal if every sequecce in F has a subsequence that converges uniformly

on every compact subset of Ω.

Equivalently, F is normal if and only if it is locally uniformly bounded.
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Theorem 4.5.4. Given a smooth trajectory γ : [0, T ] → D of finite length, such that dist(∂D, γ) =

η > 0, the the operator Λ defined as

Λ : H∞ → H∞ ⊂ H2

φ 7→
T∫
0

φ(γ(t))k(z, γ(t)dt)
(4.43)

is compact.

Proof. By Montel’s theorem, it is enough to show that {Λφn}n∈N is locally uniformly bounded whenever

{φn} is bounded. We have that

|Λφn(z)| =

∣∣∣∣∣∣
T∫
0

φn(γ(t))k(z, γ(t))dt

∣∣∣∣∣∣
≤

T∫
0

|φn(γ(t))| k(z, γ(t)) || dt

≤ MT

η
,

(4.44)

independently of n, where |φn|< M for all n.

This is because, for z ∈ D say z = reiθ and for any t, γ(t) = ρeiψ, by the reverse triangle inequality,

we have |1− zγ(t)|≥ |1− |z||γ(t)||= |1− |r||ρ||≥ |1− (1− η)|> η. Hence |k(z, γ(t))|= 1

|1−zγ(t)|
< 1

η

Therefore, by taking supremum over n, we get ∥Λφn∥≤M . Therefore Λ is compact.

Since we lack an inner product structure on H∞, consider Λ as a map from H2 to H2, so that

D(Λ) = {φ ∈ H2 : Λ(φ) ∈ H2}. Suppose D(Λ) is not trivial, we can discuss Hilbert-Schmidt

properties of Λ under this definition in the most restrictive sense. The closed operator Λ admits an

adjoint Λ∗ : H2 → H2. Λ∗ is in an integral transform with a kernel

k∗(x, y) = k(y, x) (4.45)
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That is

⟨Λφ, g⟩ =
∫
X

∫
X

φ(γ(t))k(k(x, γ(t)))dt

 g(x)dx
=

∫
X

φ(γ(t))

∫
X

g(x)k(x, γ(t))dx

dt
= ⟨φ,Λg⟩

(4.46)

Proposition 4.5.5. Let Λ : H2 → H2 such that D(Λ) is non-trivial, then Λ a Hilbert-Schmidt operator.

Proof. Recall that a bounded linear operator K on a separable Hilbert space H is said to be Hilbert-

Schmidt if for any orthonormal basis of H, {ei | i ∈ N}, we have

∞∑
i=1

∥Kei∥2 <∞.

with a corresponding Hilbert-Schmidt operator norm

∥K∥2HS :=
∞∑
i=0

⟨Kei,Kei⟩ =
∞∑
i=1

∥Kei∥2

take the orthonormal basis for the Hardy space en = zn, n ≥ 0. then we wish to show that

∥Λ∥2HS=

( ∞∑
n=0

⟨Λen,Λen⟩

)
<∞ (4.47)

For any any orthonormal basis, we deduce from direct calculation that |Λen(z)|≤ Cεn for some constant

C and 0 < ε < 1. That is

|Λen(z)| = |M∗
enΓγ(z)|=

∣∣∣∣∣∣
T∫
0

(γ(t))nk(z, γ(t))dt

∣∣∣∣∣∣
≤

T∫
0

|γ(t)|n |k(z, γ(t))| dt ≤ T

η
(1− η)

(4.48)
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since |γ(t)|< 1− η. Therefore

⟨Λen,Λen⟩ =
〈
M∗
enΓγ ,M

∗
enΓγ

〉
= lim

r→1

2π∫
0

∣∣∣M∗
enΓγ(re

iθ)
∣∣∣2 dθ

2π

≤ C2ε2n
2π∫
0

dθ

2π
≤ C2ε2n

(4.49)

This yields

∥Λ∥2HS=
∞∑
n=0

C2ε2n <∞. (4.50)

Recall that, every linear contraction map on a complete metric space has a unique fixed point, which

is a key component in the study of stability theory of dynamical systems. We notice in Theorem 4.5.7

below that by imposing a bound on the kernel, the operator Λ is a contraction map.

Definition 4.5.3. (Contraction map [18]) Let T : X → X be a linear map on the metric space X . T

is a contraction map if ∥Tx− Ty∥≤ q∥x− y∥ whenever 0 ≤ q < 1.

Theorem 4.5.6. [18] If T is contraction, then there exists a unique x∗ ∈ X such that Tx∗ = x∗.

Moreover, Tnx0 = x∗ for all x0 ∈ X

Theorem 4.5.7. Let X be the unit disk, γ : [0, T ] → D be a smooth trajectory residing entirely in the

interior of D so that dist(∂D, γ) = η > 0. Let the kernel k be such that

∫
X

∫
X

|k(x, y)|2 dydx = C < 1.

Then the map Λ : H∞ → H∞ ⊂ H2 is a contraction map in the ∥·∥∞ norm if T < η.

Proof. By definition

(Λφ)(z) =

T∫
0

k(z, γ(t))φ(γ(t))dt
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Let φ1, φ2 ∈ H∞ be two continuous symbols, we get that

|Λ(φ1 − φ2)|= |λ(φ1)− Λ(φ2)| =

∣∣∣∣∣∣
T∫
0

k(z, γ(t))φ1(γ(t))− k(z, γ(t))φ2(γ(t))dt

∣∣∣∣∣∣
≤

T∫
0

|k(z, γ(t))|
[
φ1(γ(t))− φ2(γ(t))

]
dt

≤ ∥φ1 − φ2∥∞
∫ T

0
|k(z, γ(t))|dt

≤ T

η
∥φ1 − φ2∥2∞.

4.6 Paley-Wiener Type Theorems

Our discussion in this section is aimed at exploring connections, where possible, between the Paley-

Wiener theorem and the induced kernelized transform M∗
φΓγ . At the center of they Payley-Wiener

theorem is the Fourier transform. The Paley-Wiener theorem utilizes the holomorphic Fourier transform

on the space of square-integrable functions that are supported on the real line (L2(R)). The Hilbert

space L2(R) remains a classic space to examine the Fourier transform as it is the setting for more

interesting theories of the transform. A unique property of L2(R) is that it is its own dual. Let

f ∈ L1(R), with norm ∥f∥L1 given as

∥f∥L1(R)=

∞∫
−∞

|f(x)|dx. (4.51)

We denote by f̂(w) = F(f(x)), the Fourier transform of the integrable function f(x) defined by

f̂(w) = (Ff)(w) :=
∞∫

−∞

f(t)e−iwtdt for all x ∈ R. (4.52)

Intuitively, for each w, f̂(w) captures the component of f that has the frequency w/2π [12, 28, 53].

For any such integrable function, the integral in equation (4.52) is well defined for every real t and f̂

is uniformly continuous [21]. Given f ∈ L2(R) , the integral in ( 4.52) converges and the transform is

83



bounded. The inverse Fourier transform for f ∈ L1 is defined as

f(t) =
(
F−1f

)
(t) =

1

2π

∫ ∞

−∞
f̂(w)eiwtdt. (4.53)

Theorem 1. Let f ∈ L1, then f̂ satisfies the following

1. f̂ ∈ L∞(R) with ∥f̂∥∞≤ ∥f∥L1 .

2. f̂ is uniformly continuous on R.

3. If f ′ exists and f ′ ∈ L1, then f̂ ′(w) = iwf̂(w).

4. Let f, h ∈ L1, then their convolution f ⋆ h ∈ L1 and (̂f ⋆ h)(w) = f̂(w)ĥ(w).

5. f̂(w) → 0 as w → ±∞.

The two theorems of R. Paley and N. Wiener collectively referred to as Paley-Wiener theorems outlines

conditions under which a function may be extended to a holomorphic function in some specified region.

Lemma 4.6.1 identifies an important relationship between an L2(0,∞) functions and its Fourier inverse

on the upper half plane.

Lemma 4.6.1. Let F ∈ L2(0,∞), then f defined by

f(z) =

∞∫
0

F (t)e2πztdt (4.54)

is analytic in Π+ = {z = x+ iy : y > 0}.

Theorem 4.6.2. (Paley-Wiener) [53] Suppose f ∈ H (Π+) (Holomorphic in Π+ ) and

sup
0<y<∞

1

2π

∫ ∞

−∞
|f(x+ iy)|2dx = C <∞. (4.55)

Then there exists an F ∈ L2(0,∞) such that

f(z) =

∫ ∞

0
F (t)eitzdt

(
z ∈ Π+

)
(4.56)
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and ∞∫
0

|F (t)|2dt = C. (4.57)

Theorem 4.6.3. [53] Suppose A and C are positive constants and f is an entire function such that

|f(z)|≤ CeA|z| (4.58)

for all z, and ∫ ∞

−∞
|f(x)|2dx <∞. (4.59)

Then there exists an F ∈ L2(−A,A) such that

f(z) =

∫ A

−A
F (t)eitzdt (4.60)

for all z.

From Theorem 4.6.2, the function F sought after has to have the property that f(x+ iy) is the Fourier

transform of F (t)e−yt. Suppose an inverse exist, then the desired F is of the form

F (t) = ety
1

2π

∞∫
−∞

f(x+ iy)e−itxdx =
1

2π

∞∫
−∞

f(z)e−itzdz, (4.61)

where the last integral is over {z = x+ iy|y > 0}. As noted in the previous sections, the function Tφ,γ

is holomorphic in D, and in fact Tφ,γ ∈ H2. To satisfy the hypothesis of the Paley-Wiener theorem, we

construct an analytic extension of Tφ,γ to the upper half plane so that Tφ,γ ∈ H2(H+) (Hardy space of

the upper half plane). This space is comprised of holomorpic functions f on H+ with a bounded norm.

H2(H+) =

{
f analytic in H+ : sup

y>0

∫
|f(x+ iy)|2dx <∞

}

∥f∥H2(H+) = sup
y>0

 ∞∫
−∞

|f(x+ iy)|2dx

1/2

.

(4.62)
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The Cayley transform conformally maps the unit disk to the upper half plane. This establishes an

isometric isomorphism between H2(D) and H2(H+). The Cayley map is defined as

η(z) = i
1 + z

1− z
, z ∈ D, z ̸= 1 (4.63)

with inverse

η−1(z) =
z + i

z − i
, z ∈ H+ (4.64)

η maps the disk to the upper half plane and η−1 maps the upper half plane to the disk. The linear

transform

Hf : H2(D) → H2(H+) (4.65)

defined by

[Hf ] (z) =
1− z√
π
f(η−1(z)) (4.66)

maps a holomorphic function in the disk to a holomorphic function in the upper half plane so that given

Tφ,γ ∈ H2(D)

T̃φ,γ =
[
HTφ,γ

]
(z) =

1− z√
π
Tφ,γ(η

−1(z)) =
1− z√
π

T∫
0

φ(γ(t))k(η−1(z), γ(t))dt ∈ H2(H+), (4.67)

where

∥Tφ,γ∥H2(D)= ∥T̃φ,γ∥H2(H+). (4.68)
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By the Paley-wiener theorem,

h(ζ) :=

∞∫
−∞

T̃φ,γ(z)e
−2iπzζdz

=

∞∫
−∞

1− z√
π

 T∫
0

φ(γ(t))k(η−1(z), γ(t))dt

 e−2iπzζdz

=
1√
π

∞∫
−∞

T∫
0

(1− z)φ(γ(t))k(η−1(z), γ(t))e−2iπzζdtdz

=
1√
π

∞∫
−∞

T∫
0

(1− z)
φ(γ(t))

(1− η−1(z)γ(t))
e−2iπzζdtdz

=
1√
π

∞∫
−∞

T∫
0

(1− z)φ(γ(t))(z − i)

((z − i)− (z + i)γ(t))
e−2iπzζdtdz

=
1√
π

T∫
0

φ(γ(t))

 ∞∫
−∞

(1− z)(z − i)e−2iπzζ

((z − i)− (z + i)γ(t))
dz

 dt,

(4.69)

and thus, h(ζ) is an analytic function. The integration against the the reproducing Szego kernel defines

a projection of h onto H2(D). Equivalently the map

H∗
h : H2(H+) → H2(D) (4.70)

given by

[H∗
h] (w) :=

√
π

1− z
h(η(w)) (4.71)

is an isomorphism between the spaces H2(H+) and H2(D) so that

[H∗
h] (w) =

√
π

1− z

1√
π

T∫
0

φ(γ(t))

 ∞∫
−∞

(1− z)(z − i)e−2iπzη(w)

((z − i)− (z + i)γ(t))
dz

 dt
=

1

1− z

T∫
0

φ(γ(t))

 ∞∫
−∞

(1− z)(z − i)e−2iπzη(w)

((z − i)− (z + i)γ(t))
dz

 dt
=

1

1− z

T∫
0

φ(γ(t))

 ∞∫
−∞

(1− z)(z − i)e−2iπz
i(1+w)
1−w

((z − i)− (z + i)γ(t))
dz

 dt.
(4.72)
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Recovery of holomophic symbols along closed trajectories

Suppose we consider a sequence of closed trajectories in the form of concentric circles of specified radii,

that is, let {rn} be a sequence of positive real numbers rn ↗ 1, and take the corresponding sequence

of trajectories

Ω =
{
γn(t) := rne

it, 0 ≤ t ≤ 2π
}
. (4.73)

Suppose also that we can access the values {(Λφ)γn(z)} for a holomorphic symbol φ, then we may

recover the function φ as follows,

Proposition 4.6.4. With the notation above, for z ∈ Dn = {z : |z|< rn} such that |z/r2n|< rn, then

the symbol φ is expressed as

φ(z) = lim
n→∞

1

2π
(Λφ)γn(z/r

2
n), (4.74)

where

φn(z) =
1

2π
(Λφ)γn(z/r

2
n).

and (Λφ)γn(z) is the value of Λφ along the trajectory γn.

Proof. Fix z ∈ Dn. By definition, for the trajectory γn(t) = rne
it

[Λ]φn(z) =

∫ 2π

0
φn(rne

it)kz(rne
it)dt

=

∫ 2π

0

φ(rne
it)

1− zrne−it
dt

(ζ = rne
iθ) =

∫
|ζ|=rn

φn(ζ)

1− zζ̄

dζ

iζ
, (kz(w) = 1/(1− wz))

= −i
∫
|ζ|=rn

φn(ζ)

ζ − r2nz
dζ by Cauchy’s integral formula

= 2πφn(r
2
nz).

Therefore [Λ]φn(z) = 2πφ(r2nz), hence φn(z) =
1
2π (Λφn)(z/r

2
n).

Precisely,

φ(z) = lim
n→∞

φn(z) = lim
n→∞

1

2π
(Λφ)γn(z/r

2
n). (4.75)
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CHAPTER 5:

KERNEL RECONSTRUCTION FOR FREDHOLM OPERATORS

5.1 Fredholm Integral Equations For Real-Valued Functions

Throughout this section, we use the notations (a < b, a, b ∈ R):

H = L2([a, b], dx), (f, g) ≡
∫ b

a
f(x)g(x)dx, ||f ||2H≡ (f, f), ∀f, g ∈ H.

Definition 5.1.1. A continuous kernel onH is a function κ ∈ C(Ω), κ : Ω → C, where Ω ≡ [a, b]×[a, b].

The associated integral operator K ∈ L(H,H) is defined by K(f)(x) =
∫ b
a κ(x, t)f(t)dt.

Theorem 5.1.1. The integral operator K is bounded, as ∀f ∈ C[a, b],

||K(f)||H≤ (b− a) sup
Ω

|κ(x, t)|sup
[a,b]

|f(x)|.

Moreover, K(f) ∈ C[a, b], ∀f ∈ C[a, b].

Definition 5.1.2. Let f, g ∈ C[a, b] and κ ∈ C(Ω), κ : Ω → C a continuous kernel on H. For λ ∈ C∗,

the integral equation of Fredholm type with data g, κ is given by

f(x) = g(x) + λ

∫ b

a
κ(x, t)f(t)dt. (5.1)

A solution for (5.1) is any pair (f, λ) satisfying the equation.

Theorem 5.1.2 (Preliminary result). For all λ in the disk

D =

{
λ ∈ C||λ|< 1

(b− a) sup[a,b]|κ|

}
,
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Eq. (5.1) has the unique solution f∞ ∈ C[a, b] given by

f∞(x) = g(x) + λ

∫ b

a
R(x, t;λ)g(t)dt, (5.2)

where

R(x, t;λ) ≡
∞∑
n=0

κn+1(x, t)λ
n,

and

κn(x, t) ≡
∫ b

a
κ(x, u)κn−1(u, t)du, n ≥ 2, κ1 = κ.

Remark 5.1. The function R(x, t;λ) is the resolvent associated to the kernel κ(x, t). As a function of

λ, it is analytic inside the disk D.

Remark 5.2. The resolvent R(x, t;λ) and the kernel κ(x, t) satisfy the identities

R(x, t;λ) = κ(x, t) + λ

∫ b

a
κ(x, u)R(u, t;λ)du (5.3)

R(x, t;λ) = κ(x, t) + λ

∫ b

a
R(x, u;λ)κ(u, t)du. (5.4)

The first important observation made by Fredholm extends the range of applicability of Theorem (5.1.2):

Theorem 5.1.3. Assume there exists a function R(x, t;λ) : Ω × C such that, for some λ0, it satisfies

the identities (5.3), (5.4). Then the equation (5.1) has a unique, continuous solution for λ = λ0, and

it is given by (5.2).

The second (very) important observation of Fredholm is that the resolvent can be obtained construc-

tively:

Definition 5.1.3. Let

dn =

∫ b

a
...

n times

∫ b

a
det[κ(ti, tj)]1≤i,j≤ndt1dt2 . . . dtn,

dn(x, t) =

∫ b

a
...

n times

∫ b

a
det[κ(xi, tj)]

∣∣∣0≤i,j≤n
x0=x,t0=t,xi=ti,i≥1

dt1dt2 . . . dtn,
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and define the functions

D(λ) =
∞∑
n=0

(−λ)n

n!
dn (5.5)

D(x, t;λ) =

∞∑
n=0

(−λ)n

n!
dn(x, t). (5.6)

Remark 5.3. The functions D(x, t;λ), D(λ) are entire with respect to λ.

Theorem 5.1.4. Any function R(x, t;λ) satisfying (5.3), (5.4) is given by

R(x, t;λ)D(λ) = D(x, t;λ). (5.7)

Corollary 5.1.5. For all λ ∈ C such that D(λ) ̸= 0, equation (5.1) has a unique, continuous solution

given by (5.2), and resolvent (5.7).

The points λ ∈ C where the resolvent is not defined (and therefore the previous result does not hold) are

the zeros of the (entire) function D(λ). They form a countable set, and their only possible accumulation

point is λ = ∞. They are called eigenvalues of the kernel κ because of the following:

Lemma 5.1.6. Assume λ = λ0 is a zero of order m for D(λ). Then it may be a zero of order at most

m− 1 for D(x, t;λ), so the resolvent R(x, t;λ) has a pole at λ0.

Theorem 5.1.7. Assume λ = λ0 is a zero for D(λ), and that the resolvent has the local Laurent

expansion

R(x, t;λ) =
br(x, t)

(λ− λ0)r
+O((λ− λ0)

−r+1).

Then the function br(x, t) is a solution for the homogenous equation

f(x) = λ0

∫ b

a
κ(x, t)f(t)dt = λ0K(f)(x). (5.8)

The most general situation for equations of Fredholm type is obtained by analyzing the space of solutions

of (5.1) when λ is an eigenvalue of the kernel κ. It requires a preliminary step, involving the adjoint of

K:
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Definition 5.1.4. The adjoint of the kernel κ is defined by κ∗(x, t) = κ(t, x). Correspondingly, the

integral operators K,K∗ satisfy the adjoint condition

(f,Kg) = (K∗f, g), ∀f, g ∈ H.

Theorem 5.1.8. Assume that λ0 is an eigenvalue for the kernel κ. The space of solutions for the

homogenous equation

Vλ0 ≡ {f ∈ H|f = λ0K(f)}

is finite-dimensional. Moreover, λ0 is an eigenvalue for the adjoint kernel κ∗, and the space of solutions

V ∗
λ0

≡ {f ∈ H|f = λ0K
∗(f)}

is isomorphic to Vλ0 (i.e., they have the same dimension).

Theorem 5.1.9. Let λ0 be an eigenvalue for the kernel κ, and f a solution for (5.1). Then the function

g is orthogonal to the space of eigenvectors V ∗
λ0
:

(ψ, g) = 0, ∀ψ ∈ V ∗
λ0
.

The most general situation is summarized in the following alternative:

Theorem 5.1.10. A given λ ∈ C can be either an eigenvalue for the kernel κ (i.e., a zero of the

entire function D(λ)), or a regular point for the resolvent R(x, t;λ). If it is not an eigenvalue, then

(5.1) has a unique, continuous solution given by (5.2), and the homogenous equation (5.8) has only

the trivial solution. If λ is an eigenvalue, then R(x, t;λ) has a pole singularity at λ, and (5.8) has

a finite-dimensional space of non-trivial solutions, Vλ. The adjoint homogenous equation also has a

finite-dimensional space of solutions, V ∗
λ
, of the same dimension as Vλ. Then (5.1) has solutions for λ

if and only if g ⊥ V ∗
λ
. Let {ϕj}nj=1 be an orthonormal basis for Vλ and {ψj}nj=1 an orthonormal basis

for V ∗
λ
. Then λ is not an eigenvalue for the modified kernel

κ̃(x, t) = κ(x, t)−
n∑
j=1

ψ(x)ϕ(t),
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so the equation f(x) = g(x)+λ
∫ b
a κ̃(x, t)f(t)dt has a unique, continuous solution f̃ . Finally, if g ⊥ V ∗

λ
,

then (5.1) has the solutions

f = f̃ +
n∑
j=1

Cjϕj , Cj ∈ C.

5.2 General Theory of the Sturm-Liouville Problem

Let p(x), q(x), f(x), g(x) ∈ C[a, b] be complex-valued functions on [a, b] ⊂ R, sufficiently smooth, and

such that p(x) > 0 on [a, b]. Take the linear differential operator

L ≡ d

dx

(
p(x)

d

dx

)
+ q(x),

and the associated equation

L(f) = g, (5.9)

subject to the boundary-value (B.V.) conditions

(I) α1f(a) + α2f
′(a) = 0, (II) β1f(b) + β2f

′(b) = 0, (5.10)

such that |α1|+|α2|̸= 0, |β1|+|β2|̸= 0. Then the Sturm-Liouville problem (5.9), (5.10) can be converted

to an integral equation of Fredholm type, and the corresponding alternative is discussed below.

5.2.1 No Nontrivial Solutions For the Homogeneous Problem

Assume that the equation L(f) = 0, subject to B.V. (5.10), has only the trivial solution f = 0. Let f1,2

be solutions for the homogenous equation L(f) = 0, such that f1 satisfies condition (I) from (5.10),

and f2 satisfies condition (II) from (5.10). As independent solutions for the homogenous problem, the

Wronskian of f1,2 does not vanish, and the functions can be chosen such that

W [f1, f2] = f ′1f2 − f ′2f1 =
1

p(x)
.
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Then the solution to the problem L(f) = g, subject to B.V. (5.10), can be obtained by the method of

variation of coefficients, and it is given by

f(x) =

∫ b

a
G(x, t)g(t)dt, (5.11)

where

G(x, t) = f1(x)f2(t), x ≤ t, G(x, t) = f1(t)f2(x), x > t.

Moreover, the homogenous equation L(f) = λf is equivalent to the homogenous integral equation

f(x) = λ

∫ b

a
G(x, t)f(t)dt.

The kernel G(x, t) is Hermitian (self-adjoint) and has an infinite, countable set of real eigenvalues,

whose accumulation point is λ = ∞.

5.2.2 Non-Trivial Solutions For the Homogenous Equation

If the problem L(f) = 0 subject to (5.10) does have a non-trivial solution, it is always possible to

find λ0 ∈ R such that L0 = L + λ0 falls under the situation described above. Denoting by {µk} the

spectrum of the kernel G0 associated to L0, the eigenvalues of L are given by λk = λ0 + µk, k ∈ N.

Remark 5.4. To prepare for the inverse problem associated with this family of operators, we note the

useful orthogonal decomposition of the operator L,

L = L(0) + L̃ := P̂LP̂ + (1− P̂ )L(1− P̂ ),

where P̂ represents the (finite-rank) projector onto Ker(L), such that

[L(0), L̃] = 0.
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5.3 Inverse Problem For Kernels of Sturm-Liouville Operators

Theorem 5.3.1. Assume that q < 0 a.e. on [a, b], then

L(f) = g ⇔ f = arg min
γ∈C2(a,b)

S[γ], (⋆)

S[γ] = −
∫ b

a

[
p(x)(γ′(x))2 − q(x)γ(x)2 + g(x)γ(x)

]
dx,

subject to either pure Dirichlet or Neumann B.V. conditions on {a, b}.

Proof. With pure Dirichlet or Neumann B.V. conditions at x = a, b, the variational problem is equivalent

to solving the Euler-Lagrange equations for the functional S[γ]. We first rewrite its integrand in the

form

[
p(x)(γ′(x))2 − q(x)γ(x)2 + g(x)γ(x)

]
= Φ′(x)− γ(x)

{[
p(x)γ′(x)

]′
+ q(x)γ(x)− g(x)

}
,

where

Φ(x) = γ(x)p(x)γ′(x),

or

S[γ] =

∫ b

a
γ(x)

{[
p(x)γ′(x)

]′
+ q(x)γ(x)− g(x)

}
dx+Φ(x)

∣∣∣b
a

At fixed B.V. data, the first variation of the functional has no contribution from the term boundary

term and it implies for the minimizer γ∗

[
p(x)γ′∗(x)

]′
+ q(x)γ∗(x)− g(x) = 0.

Existence of the minimizer is guaranteed by the fact that the integrand is a non-degenerate quadratic

form with strictly-positive definite principal symbol.

Remark 5.5. The variational formulation also allows to carry over the decomposition noted in Re-

mark 5.4 to the decomposition of the general solution for the Sturm-Liouville problem into its homoge-

95



neous and inhomogeneous parts

f [g] = f (0) + f̃ [g], f (0) ∈ ker(L), f̃ [0] = 0,

leading to the variational derivatives

− δS

δg(x)
= f̃(x), − δ2S

δg(y)δg(x)
=
δf̃(x)

δg(y)
= G(x, y),

consistent with Eq. (5.11).

5.3.1 Reconstruction For the Equilibrium Distribution Class

We will now pose the kernel reconstruction inverse problem for a convex subset of the Hilbert space H,

as the (unique) solution of Problem (⋆) on

K = {f ∈ H|f ≥ 0 a.e., ||f ||1≤ 1}.

More precisely, we seek to find ρ : [0,∞)× [a, b], ρ(t, .) ∈ K ∩ C2(a, b), such that

∂ρ

∂t
= L(ρ), ρ(0, .) = ρ0 ∈ K ∩ C2(a, b),

subject to B.V. conditions (I, II). Reconstructing the kernel for the Sturm-Liouville operator from this

family of solutions (functionally dependent on the set of initial-value data) is the goal for the remaining

part of this chapter. We will identify classes of kernels for which the reconstruction is possible and

characterize the convergence in the sense of approximation theory, with emphasis on applicability for

efficient numerical implementations.

Theorem 5.3.2. For elliptic L̃, with spectrum {λn}∞n=1 ⊂ (−∞, 0), λn → −∞,

ρ(t, x) =
[
etL̃ρ0

]
(x) =

∞∑
n=1

cnϕn(x)e
tλn ,

where

L̃ϕn = λnϕn, ϕn ∈ C2(a, b),

m∑
n=1

cnϕn
|| . ||2−→ ρ0.
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Then the Baiocchi transform of ρ(t, .) provides the pointwise reconstruction of the kernel G(x, y) by

G(x, y) = lim
ϵ→0

ρ̄(ϵ)y (x), (5.12)

where

ρ̄(ϵ)y (x) ≡ lim
T→∞

∫ T

0
ρ(ϵ)y (t, x)dt,

and ρ
(ϵ)
y solves the initial-value problem with normal initial data

∂ρ
(ϵ)
y

∂t
= L(ρ(ϵ)y ), ρ(ϵ)y (0, .) = N(y, ϵ), ϵ > 0.

Proof. Since ρ, ρ0 ∈ K∩C2(a, b), it implies that ρ0 ∈ L∞(a, b) ⊂ L2(a, b) and there are real coefficients

{cn}∞n=1 such that, in the L2 norm, as m→ ∞,

ρ0 −
m∑
n=1

cnϕn −→ ρ(0) ∈ ker(L).

For t ≥ 0, the operator U(t) = exp(tL) is bounded with operator norm ||U(t)||∗≤ 1, so the solution to

the initial value problem reads ρ(t, .) = etLρ0(.). By the orthogonal decomposition noted in Remark 5.4,

we find by expanding

ρ(t, .) = ρ(0) +
∞∑
n=1

cnϕn(x)e
tλn ,

and therefore in the limit t→ ∞,

lim
t→∞

ρ(t, .) = ρ(0)

solves the homogenous Sturm-Liouville problem. But under our assumption the only solution is trivial,

which implies that

ρ(t, .) = etL
∞∑
n=1

cnϕn(.) = etL̃
∞∑
n=1

cnϕn(.),

proving the first part of the theorem.

For the second part, let us note that L̃ is an invertible self-adjoint, negative-definite elliptic operator,

and therefore ∫ T

0
ρ(t, x)dt =

∞∑
n=1

1

λn
cnϕn(x)[e

Tλn − 1],
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which implies that the Baiocchi transform of the solution exists and has the spectral form

ρ(x) ≡ lim
T→∞

∫ T

0
ρ(t, x)dt = −

∞∑
n=1

1

λn
cnϕn(x) = [R0(L)](ρ0),

where Rζ(L) denotes the Fredholm resolvent of the operator L at ζ. Therefore,

ρ(x) =

∫ b

a
G(x, y)ρ0(y)dy.

For the case of initial-value data ρ
(ϵ)
y (0, .) = N(y, ϵ), ϵ > 0, this leads to the family of Baiocchi

transforms

ρ(ϵ)y =

∫ b

a
G(x, z)ρ(ϵ)y (z)dz,

and in the limit ϵ→ 0+, to the pointwise evaluation (5.12) and the completion of the proof.

5.4 Conclusion and Remarks

In this work we have presented two main ideas. Firstly, we have developed a parameter identification

method using the Nonlinear Autoregressive (NAR) model architecture over a reproducing kernel Hilbert

space. Specifically, we leveraged the interaction between occupation kernels and densely-defined multi-

plication operators to develop a model that determine system parameter from data measurements. Two

classes of symbols of the operator were considered; scalar-valued and vector-valued symbols. Owing to

the experimental results presented in this work, we foresee possible generalization and improvements

of the current framework. For instance, incorporating noise-damping factors and introducing essential

regularizing terms promise a more stabilized learning algorithm that will be suitable for a wide range of

dynamics.

Secondly, we have presented a kernel reconstruction for the Fredholm integral operator. Motivated

by the general theory of Sturm-Liouville differential equations, we introduced an inverse problem that

relates the reconstruction of the kernel of a Fredholm operator to solving an associated Sturm Liouville

Problem.
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