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Manufacturing Process Design and Control Based on Error Equivalence Methodology 

 
Shaoqiang Chen 

 
ABSTRACT 

 

Error equivalence concerns the mechanism whereby different error sources result 

in identical deviation and variation patterns on part features. This could have dual effects 

on process variation reduction: it significantly increases the complexity of root cause 

diagnosis in process control, and provides an opportunity to use one error source as based 

error to compensate the others. 

There are fruitful research accomplishments on establishing error equivalence 

methodology, such as error equivalence modeling, and an error compensating error 

strategy. However, no work has been done on developing an efficient process design 

approach by investigating error equivalence. Furthermore, besides the process mean shift, 

process fault also manifests itself as variation increase. In this regard, studying variation 

equivalence may help to improve the root cause identification approach. This thesis 

presents engineering driven approaches for process design and control via embedding 

error equivalence mechanisms to achieve a better, insightful understanding and control of 

manufacturing processes.  

 



 
 

vii

The first issue to be studied is manufacturing process design and optimization 

based on the error equivalence. Using the error prediction model that transforms different 

types of errors to the equivalent amount of one base error, the research derives a novel 

process tolerance stackup model allowing tolerance synthesis to be conducted. Design of 

computer experiments is introduced to assist the process design optimization.  

Secondly, diagnosis of multiple variation sources under error equivalence is 

conducted. This allows for exploration and study of the possible equivalent variation 

patterns among multiple error sources and the construction of the library of equivalent 

covariance matrices. Based on the equivalent variation patterns library, this thesis 

presents an excitation-response path orientation approach to improve the process 

variation sources identification under variation equivalence. 

The results show that error equivalence mechanism can significantly reduce 

design space and release us from considerable symbol computation load, thus improve 

process design. Moreover, by studying the variation equivalence mechanism, we can 

improve the process diagnosis and root cause identification.   
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Chapter 1 

Introduction 

Variation reduction is of vital importance for manufacturing process and product 

quality improvement due to uncertainty in the processes. It has received considerable 

attention from the manufacturing community because of the intense global competition. 

There are two main categories of approaches for process variation reduction: data driven 

approaches such as statistical process control (SPC), and engineering driven approaches. 

SPC can detect process quality changes. However, it casts little light on engineering 

knowledge about the root cause, which needs efforts of engineers to figure out the 

sources of the quality changes. Engineering driven approaches fill this gap, and have 

significantly improved manufacturing processes variation reduction. However, there are 

still some process phenomena that have not been well addressed. One phenomenon 

named “error equivalence” concerns the mechanism whereby different error sources 

result in identical deviation and variation patterns on part features. This could have dual 

effects on process variation reduction: it significantly increases the complexity of root 

cause diagnosis in process control, and provides an opportunity to use one error source as 

based error to compensate the others.  
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Although there are fruitful research accomplishments on establishing error 

equivalence methodology, such as error equivalence modeling, and error compensating 

error strategy, variation reduction for the process design and control is still an extremely 

challenging issue for the following reasons: 

 Lack of an efficient process design approach under error equivalence. For early 

process design stage, process tolerance strategy is crucial to control of 

product/process inaccuracy and imperfection. Previous tolerance synthesis has been 

carried out simultaneously in product design and process design. However, the 

traditional tolerance synthesis was conducted among different error sources. When 

the number of manufacturing stage increase, the dimension of design space will 

considerably increase. Thus, this fact impacts the efficiency of the early stage process 

design.  

 Lack of an efficient approach for process variation control under identical variation 

pattern from multiple error sources. Although root cause identification draws 

significantly attention in recent years, there still exists a lack of consideration on the 

phenomenon that different error sources may result in the identical product feature 

variation pattern. Therefore, when there are multiple error sources in a manufacturing 

process, root cause identification of variation sources will be typically a challenge. 

Since the equivalent variation patterns could conceal the information of multiple 

errors and thus significantly increase the complexity of root cause identification 

(diagnosis). Meanwhile, this fact may provide an opportunity to purposely study the 
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part feature variation patterns of equivalent error sources and thus derive a more 

efficient variation sources identification approach.   

Therefore, the aforementioned issues entail an essential analysis of error 

equivalence for process design and control improvement. The goal of this work is to 

utilize the error equivalence in manufacturing to achieve an insightful understanding of 

process variation for developing a better process design strategy and control approach. 

 

1.1 Error Equivalence and Variation Equivalence Phenomena 

In a manufacturing process, product quality can be affected by multiple error 

sources. For example, the dominant root cause of quality problems in a machining 

process includes fixture, datum, and machine tool errors. A fixture is a device used to 

locate, clamp, and support a workpiece during machining, assembly, or inspection. 

Fixture error is considered to be a significant fixture deviation of a locator from its 

specified position. Machining datum surfaces are those part features that are in direct 

contact with the fixture locators. Datum error is deemed to be the significant deviation of 

datum surfaces and is mainly induced by imperfections in raw workpieces or faulty 

operations in the previous stages. Together the fixture and datum surfaces provide a 

reference system for accurate cutting operations using machine tools. Machine tool error 

is modeled in terms of significant tool path deviations from its intended route. This thesis 

mainly focuses on kinematics aspects of these three error types.  
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A widely observed engineering phenomenon is that different individual error 

sources can result in the identical deviation and variation patterns on product features in 

manufacturing process. For instance, in a machining process, all aforementioned process 

deviations can generate the same amount of feature deviation x as shown in Fig. 1.1 

(Wang, Huang, and Katz, 2005; and Wang and Huang, 2006). This error equivalence 

phenomenon is also observed in many other manufacturing processes, e.g., the 

automotive body assembly process (Fig. 1.2, Ding, et al., 2005). 

Deviated tool path

Nominal tool path

(b) Machine process with machine tool error 

(c) Machining process with datum error 

(a) Machine process with fixture error 

Nominal tool path

Deviated datum
surface

Fixture locator deviations

Deviated tool path

Nominal tool path

(b) Machine process with machine tool error 

(c) Machining process with datum error 

(a) Machine process with fixture error 

Nominal tool path

Deviated datum
surface

Fixture locator deviations

x x

xx

x
x

Δf

Δm

Δd

Deviated tool path

Nominal tool path

(b) Machine process with machine tool error 

(c) Machining process with datum error 

(a) Machine process with fixture error 

Nominal tool path

Deviated datum
surface

Fixture locator deviations

Deviated tool path

Nominal tool path

(b) Machine process with machine tool error 

(c) Machining process with datum error 

(a) Machine process with fixture error 
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Figure 1.1 Error Equivalence in Machining Process 
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Figure 1.2 Error Equivalence in Assembly Process 
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The impact of such an error equivalence phenomenon on manufacturing process 

control is twofold. On the one hand, it significantly increases the complexity of variation 

control. As an example, identifying the root causes becomes extremely challenging when 

different error sources are able to produce the identical dimensional variations. On the 

other hand, the error equivalence phenomenon provides an opportunity to purposely use 

one error source as base error in the early stage of process design, thus efficiently 

improving the tolerance strategy for the manufacturing process.  

In both cases, a fundamental understanding of this complex engineering 

phenomenon will assist to improve manufacturing process design and control. 

 

1.2 Related Work and the State of the Arts 

Before 2005, the study on error equivalence is very limited. Most related research 

on process error modeling has been focused on the analysis of individual error sources, 

e.g., the fixture errors and/or machine tool errors, how these errors impact the product 

quality, and thereby how to diagnose the errors and conduct feedback adjustment to 

reduce variation. Since Wang et al., 2005, there have been some studies on the error 

equivalence for the above issues. This Section reviews the related research on process 

modeling, process design and optimization, and process root cause diagnosis. 
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1.2.1 Literature Review for Process Modeling 

In this Section, we will review error equivalence modeling and process modeling. 

For error equivalence modeling, Wang et al., 2005, utilized the error equivalence 

phenomena to develop the error equivalence modeling. In the error equivalence model, 

different error sources (e.g., fixture error, machine tool error and datum error) were 

linearly transformed into one based error, i.e., equivalent fixture error (EFE). After 

transforming the different types of error into one based error, we can aggregate the 

equivalent errors. This will be of great benefit to the process error prediction and 

variation propagation modeling, since it will significantly reduce the dimension of input 

variables, which will be introduced in detail in Section 2.1.1 of Chapter 2. The error 

equivalence mechanism also helped to understand the process error compensating error 

strategy. Wang and Huang, 2006, used the equivalent fixture error modeling in error 

cancellation and applied it in machining process control and deviation feedback 

adjustment.  

The process modeling in the literature is summarized as causality modeling. 

Models of predicting surface quality are often deterministic and used for a single 

machining station (Li and Shin, 2006). In the recent decade, more research can be found 

to investigate the causal relationship between part features and errors, especially in a 

complex manufacturing system. The available model formulation includes time series 

model (Lawless, Mackay, and Robinson, 1999), state space models (Jin and Shi, 1999; 

Ding, Ceglarek, and Shi, 2000; Huang, Shi, and Yuan, 2003; Djurdjanovic and Ni, 2001; 
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Zhou, Huang, and Shi, 2003; and Huang and Shi, 2004), and state transition model 

(Mantripragada and Whitney, 1999). The results of the process error model can be 

summarized as follows. Denote by x the dimensional deviation of a workpiece of N 

operations and by u = (u1, u2, …, up)T the multiple error sources from all operations. The 

relationship between x and u can be represented by  

x = =1Σ + = + ,p
i i iΓ u ε Γu ε                       (1.1) 

where Γi’s are sensitivity matrices determined by process and product design and 

Γ= 1 2 p⎡ ⎤⎣ ⎦Γ Γ Γ . ε is the noise term. This line of research (Hu, 1997; Jin and Shi, 

1999; Mantripragada and Whitney, 1999; Djurdjanovic and Ni, 2001; Camelio, Hu, and 

Ceglarek, 2003; Agapiou, et al., 2003; Agapiou, et al., 2005; Zhou, et al., 2003; Huang, 

Zhou, and Shi, 2002; Zhou, Huang, and Shi, 2003; Huang, Shi, and Yuan, 2003; and 

Huang and Shi, 2004) provides a solid foundation for conducting further analysis of the 

error equivalence. 

      Based on the aforementioned research on process modeling, Wang et al., 2005, 

developed a multi-operational machining processes variation propagation model for 

sequential root cause identification and measurement reduction by imbedding the error 

equivalence mechanism, which helped to better understand and model the mechanism 

that different error sources result in the identical variation pattern on part features. The 

derived quality prediction model (causal model) embedded with error equivalence 

mechanism can reveal more physical insights into the process variation.  
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Summarizing the research on process error prediction and variation propagation 

modeling, we can see that causality modeling well connect the process errors and product 

feature quality. Moreover, integrating error equivalence into causality modeling can be a 

considerable benefit. Because introducing error equivalence to process modeling helps to 

shrink the dimension of input variables. The reduction design space is of great 

importance to early stage process design efficiency.     

 

1.2.2 Literature Review for Process Design and Optimization 

Design of a multistage machining process involves tolerance allocation at each 

stage and design of process layouts, in particular, the fixture layouts. Tolerancing strategy 

is therefore crucial to control of product/process inaccuracy and imperfection. 

Conventional tolerance synthesis has been carried out simultaneously in product design 

and process design. A major goal of tolerance synthesis at design stage is to reduce 

quality loss (Taguchi, 1989; Choi et al., 2000; and Pramanik et al., 2005), while tolerance 

synthesis for process design aims at manufacturing cost reduction. As an example, 

tolerance charting (Wade, 1967; Ngoi and Ong, 1993, 1999; and Xue and Ji, 2005) 

converted the designed tolerances of products to manufacturing tolerances. Optimal 

tolerance allocation for process selection has also been widely studied (Nagarwala et al., 

1994; Singh et al., 2004; and Wang and Liang, 2005). Recent research (Shiu et al., 2003; 

and Dong et al., 2005) considered deformations in manufacturing processes as well. 
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Simultaneous tolerance synthesis considers both design and manufacturing 

tolerances and has attracted more attentions in the past decade. Zhang et al., 1992, 

conducted optimization of design and tolerance allocation to select processes among 

alternatives. An analytical model (Zhang and Wang, 2003) was also reported to 

simultaneously allocate design and machining tolerances based on a criterion of 

minimum manufacturing cost. Zhang, 1997, further established tolerance stackup model 

for assembly process. Recent research (Ye and Salustri, 2003; and Wang and Liang, 2005) 

on simultaneous tolerance synthesis incorporated both manufacturing cost and quality 

loss into the optimization function. Reviews of tolerancing research are available in 

Bjørke, 1989, Chase and Greenwood, 1988, Jeang, 1994, Royal et al., 1991, Voelcker, 

1998, Ngoi and Ong, 1998, and Hong and Chang, 2002. 

Simultaneous tolerance synthesis is more challenging for a multistage 

manufacturing process. A commonly adopted approach is to model the impact of process 

parameters on tolerance stackup (Mantripragada and Whitney, 1999; Jin and Shi, 1999; 

Zhou et al., 2003; and Huang et al., 2003). Ding et al., 2005, concurrently allocated 

component tolerances and selected fixtures for assembly processes using a state space 

model. Huang and Shi, 2003, conducted a study on simultaneous tolerance synthesis and 

optimal process selection for multistage machining processes.  

Simultaneous tolerance synthesis, however, might generate a large design space. 

For example, in a milling or drilling process where parts are fixed under 3-2-1 locating 

scheme, the process variables involve tolerances of six fixture locators or six process 
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variables, machine tool paths (rotation and translation with six degrees of freedom), and 

datum surfaces. Thus, a multistage process will incur a large design space and makes it 

difficult to choose optimal and unique process design. One strategy is to prioritize the 

allocation of tolerances to different error sources at each stage through “proper” selection 

of cost functions. Since the cost function selection can be very subjective, especially 

when designing a new process where knowledge of cost structures is very limited, minor 

changes in cost functions could lead to dramatic changes in process design and tolerance 

allocation. 

 

1.2.3 Literature Review for Process Control: Root Cause Diagnosis 

Process control technology, which focuses on the detection, identification, 

diagnosis, and elimination of process faults, can help to reduce process downtime, and 

hence, the operation costs. The rapid advances in sensing and information technology that 

are currently being made mean that a large amount of data is readily available that 

requires process control methodologies to be developed for its interpretation. Statistical 

process control (SPC) (Montgomery, 2005, and the references therein) is the primary tool 

used in practice to improve the quality of manufacturing process. Although SPC can 

efficiently detect a departure from normal condition, it is unable to pin down the process 

fault that caused the alarm (root cause). And it is purely statistical data driven approach 

that inefficiently gives the process fault physical explanations. Therefore, the job of root 

cause identification is actually left to plant operators or quality engineers. In light of this 
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limitation of SPC, considerable research efforts have been expended on developing the 

approaches for root cause identification. Since process faults often manifest themselves 

as the shift of the mean values and the increase of variances, the root cause identification 

for process diagnosis can be categorized into two types: root cause identification of mean 

shift and of variation sources. The approaches developed for root cause diagnosis of 

variation sources include variation pattern mapping (Ceglarek and Shi, 1996, Jin and 

Zhou, 2006b, Li, et al., 2007), variation estimation based on physical models (Apley and 

Shi, 1998; Chang and Gossard, 1998; Ding, Ceglarek, and Shi, 2002; Zhou, et al., 2003; 

Camelio and Hu, 2004; Carlson and Söderberg, 2003; Huang, Zhou, and Shi, 2002; 

Huang and Shi, 2004; and Li and Zhou, 2006), and variation pattern extraction from 

measurement data (Jin and Zhou, 2006a).  

Ceglarek, Shi, and Wu, 1994, developed root cause diagnostic algorithm for 

autobody assembly line where fixture errors are dominant process faults. Principal 

component analysis (PCA) has been applied to fixture error diagnosis by Hu and Wu, 

1992, who make a physical interpretation of the principal components and thereby get 

insightful understanding of root causes of process variation. Ceglarek and Shi, 1996, 

integrated PCA, fixture design, and pattern recognition and have achieved considerable 

success in identifying problems resulting from worn, loose, or broken fixture elements in 

the assembly process. However, this method cannot detect multiple fixture errors. A PCA 

based diagnostic algorithm has also been proposed by Rong, Ceglarek, and Shi, 2000. 

Apley and Shi, 1998, developed a diagnostic algorithm that is able to detect multiple 
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fixture faults occurring simultaneously. Their continuing work in 2001 presented a factor 

analysis (Johnson, and Wichern, 1998) approach to diagnose root causes of process 

variability by using a causality model. Ding, Ceglarek, and Shi, 2002, derived a PCA 

based diagnostics from the state space model. 

However, the number of the simultaneous error patterns may grow significantly as 

more manufacturing operations are involved. The multiple error patterns are rarely 

orthogonal and they are difficult to distinguish from each other. Therefore, the 

manufacturing process may not be diagnosable. Ding, Shi, and Ceglarek, 2002, analyzed 

the diagnosability of multistage manufacturing processes and applied the results to the 

evaluation of sensor distribution strategy. Variation component analysis (Rao, 1972, Rao 

and Kleffe, 1988) and mixed models (McCullagh, and Nelder, 1989, Pinheiro, and Bates, 

2000) are also helpful to the diagnosability and diagnosis study. By using variance 

component analysis, Zhou, et al., 2003, developed a more general framework for 

diagnosability analysis by considering aliasing faulty structures for coupled errors in a 

partially diagnosable process. Based on state space model and linear mixed effects model, 

Zhou et al., 2004 developed a root cause estimation approach for manufacturing process. 

Further studies and research on root cause identification of multiple error sources have 

been achieved by Wang and Huang, 2006, utilizing the error equivalence concept and 

error cancellation modeling.  

We can see that methods for diagnosis of different/equivalent patterns of single 

error/variation sources and different patterns of error/variation sources have been 



 13

developed. However, for the situation in which identical variation patterns happen, efforts 

are still needed for an efficient method. Because in a manufacturing process, an identical 

product feature variation pattern from multiple error sources can possibly occur. 

 

1.2.4 Summary of the Literature Review 

The related research work in the literature is summarized as follows: 

 Process error prediction and variation propagation modeling. Previous research work 

has been done on causality modeling with analysis of individual errors as well as 

equivalent errors in manufacturing processes. Also, the error equivalence based 

process modeling has assisted in understanding the error cancellation modeling and 

its application in process error root cause diagnosis and compensation. However, 

there is still large room for using the physical model that described the error 

equivalence to help understand some other issues, such as early stage process design 

and process variation sources identification. 

 Process design and optimization. Traditional research on process tolerance design and 

optimization has extensively conducted the tolerance synthesis among different 

individual process errors. The optimization for design of process layout is also 

focusing on individual error sources. The design space and computation load will 

significantly increase as the number of manufacturing operation stages and process 

error sources increase. Therefore, previous research did not address a solution for an 

efficient method for the early stage process design.  
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 Root cause diagnosis for process control. Researchers have developed many 

methodologies of root cause identification for multistage manufacturing process 

diagnosis. These researches have involved in fault diagnosis for different variation 

patterns from single error sources, different variation patterns from different error 

sources. But no research work has been done on root cause identification for identical 

variation pattern from different error source, i.e., variation equivalence, while this 

phenomenon is an important engineering issue in manufacturing process. 

 

1.3 Thesis Outline 

In order to achieve an insightful understanding of manufacturing process variation 

and improve process quality, this thesis addresses the advances in: manufacturing process 

design and optimization strategy based on error equivalence methodology, and error 

equivalence analysis for root cause diagnosis of process variation. The following 

Chapters of this thesis are thus organized as follows:  

Chapter 2 presents the modeling of process variation propagation and tolerance 

stackup model based on error equivalence. It utilizes the error equivalence mechanism to 

develop an efficient tolerance synthesis method for early process design stage. In addition, 

a globally process layout optimization model is developed for searching the optimal 

tolerance allocation among all the possible process design alternatives. 

Chapter 3 studies the possible variation equivalence cases in a machining process 

and builds the equivalent variation patterns library. For process diagnosis, this Chapter 
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develops a new approach for root cause identification for identical variation pattern under 

multiple error sources. 

Chapter 4 concludes the thesis. We also point out prospects of future research in 

this Chapter.   
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Chapter 2 

 Error Equivalence Based Process Design and Optimization 

      This Chapter aims to improve the simultaneous process tolerance synthesis for 

multistage manufacturing process by incorporating an error equivalence mechanism 

(Wang, Huang, and Katz, 2005; Wang and Huang, 2006) into tolerance stackup modeling 

and tolerance design. We propose to reduce design space by transforming multiple error 

sources into equivalent amount of “base” errors. The reduction of design space will assist 

to achieve a unique solution and global optimization of process design. Furthermore, we 

also embed error equivalence with computer experiments method to reduce the 

computation load for searching optimal process design. 

      The Chapter is organized as follows. Section 2.1 introduces the methodology of 

error equivalence based tolerance synthesis and optimal process design over the 

allowable design region. In Section 2.2, we illustrate the methodology through a case 

study of multistage machining process. To evaluate the robustness of the optimal process 

design, Section 3 also conducts sensitivity analysis. Conclusions are given in Section 2.3. 
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2.1 The Error Equivalence Based Process Design and Optimization 

The proposed method consists of the following procedure illustrated by Fig. 2.1. 

First, we will generate a set of process layouts (design variables) si’s through space filling 

design. For a given process layout si, tolerance will be allocated to aggregated error 

sources (process variables) at each manufacturing stage (discussed in Section 2.1.1). The 

final tolerance stackup for all design variables si’s will be used as responses in a Kriging 

model to identify the optimal fixture layout (presented in Section 2.1.2). 

A given process layout si

Stage 1 Stage 2 Stage N

Allocate tolerances to each manufacturing stage 
Section 2.1.1

…

Generate design sites si’s

Predict tolerance stackup through a Kriging
model over all design region 

Identify the optimal process layout
Section 2.1.2

Final tolerance stackup

 

Figure 2.1 Procedure of Error Equivalence Based Process Design and Optimization 

 

2.1.1 Allocate Tolerance to Aggregated Error Sources at Each Manufacturing Stage  

Tolerance synthesis requires a thorough understanding on how the process 

variables impact the tolerance stackup. Therefore, the error equivalence based tolerance 

synthesis consists of tolerance stackup modeling and model based simultaneous tolerance 

allocation. We first present error equivalence based tolerance stackup modeling. 
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Tolerance stackup is mainly due to variation sources in each stage of a manufacturing 

process, e.g., machine tool error, datum error, and fixture error in a machining process. 

The objective of tolerance stackup modeling is to relate the stackup of tolerance in 

product features to all variation sources in a multistage manufacturing process. Existing 

tolerance stackup models roughly fall into three categories (Huang and Shi, 2003), 

namely, worst case model, root sum square model or interpolation of these two models, 

Monte Carlo simulation models, and physical models that study the impact of process 

variables on tolerance stackup. The tolerance stackup models in the third category 

provide a new opportunity of simultaneously allocating product and process tolerances 

(Ding et al., 2005; and Huang and Shi, 2003).  As discussed in Introduction, this 

approach unfortunately could generate a large design space as the number of processing 

stages increases.  

We aim to reduce the design space and improve the tolerance stackup models in 

the third category. The main idea is to explore the relationship among multiple error 

sources, in particular, the error equivalence. Two types of error sources are called 

equivalent if they result in identical dimensional deviation. Equivalent error sources at 

each manufacturing stage therefore could be aggregated together when predicting feature 

deviations. In more detail, multiple types of errors xi’s can be transformed into a common 

base error through transformation *
ix = Kixi, i=1,2,..,m (please refer to Appendix A for 

transformation matrices Ki’s). Since fixture error is easier to be controlled and monitored, 

we choose fixture error to be the base error in this paper and transform all the error 
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sources into equivalent amount of fixture error (EFE). The product dimensional deviation 

can thus be predicted through the following model (Wang, Huang, and Katz, 2005):  

)()()( kkk jj εuΓy += ,                     (2.1) 

where jy (k) describes the feature deviations caused by aggregated error sources u(k) 

=∑i i
*x (k) and process noise )(kε  at the kth stage. Note that in traditional error 

prediction model, the right hand side of  Eqn. (2.1) contains not just one aggregated 

equivalence error vector in each stage, but a high dimensional vector that consists of 

different individual error sources, (e.g., )()](|)(|)([)( kkkkk T
jj εxxxΓy 321 += , 

where[ )(k1x , )(k2x , )(k3x ] represent machine tool, datum and fixture errors, respectively). 

Aggregating error enables us to focus on the process with base errors only and thereby 

significantly reduces process and design variables in tolerance synthesis. The aggregated 

errors )(ku  and noise term )(kε  are all assumed to follow multivariate normal 

distribution. 

It should be noted that reducing model dimension can also be achieved by 

investigating the linear dependency among columns in the matrix Γj, e.g., thorough 

diagnosability analysis (Zhou et al., 2003). We adopt the error equivalence methodology 

because of two reasons. First of all, the machining process involves multiple types of 

errors as opposed to multiple error patterns from individual error sources (e.g., multiple 

fault patterns of the fixture error). Secondly, it is a more engineering driven approach, i.e., 

direct modeling the kinematic relationships among multiple error sources. The method 

assists more engineering insights, e.g., error cancellation effect discussed in Wang and 
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Huang, 2006. Using Eqn. (2.1), the variance-covariance matrix of the feature j can be 

derived as Eqn. (2.2). The )(kuΣ and  yΣ j
 are variance-covariance matrix for process 

variables and deviation of feature j, respectively. 

IΓ Σ ΓΣ u y
2

)( )()( εσ+= T
jkjj

.                     (2.2) 

Since diag(  yΣ j
) can be directly related with tolerance (e.g., ±3σ as a measure of 

tolerance range), final tolerance stackup can be obtained by extracting the diagonal term 

diag(  yΣ j
) from Eqn. (2.2).  

With the tolerance stackup model, we can conduct equivalence error based 

simultaneous optimal tolerance allocation. The objective of optimal tolerance allocation 

is to allocate tolerances for process variables that can meet the design specification with 

minimum manufacturing cost. Denote process variables TTT k )),...,)1(( (uu as Θ  and 

their standard deviations as T
k ),...,( )((1) uu σσσ =Θ . The variances of product features are 

linear combinations of 2
Θσ  from the result of diag(  yΣ j

), which can be denoted as 

2
ΘσCT . The variance of dimensions, denoted as 2

ΘσcT  can be derived from 2
ΘσCT . Since 

larger process tolerance for dimensions will reduce the manufacturing cost, we can 

maximize 2
ΘσcT  given design specifications for the product tolerance and physical 

constraints: 

                    Max 2
ΘσcT , maximize the component tolerance;   s.t.        

      1
2 bσC ≤Θ

T , constrains from design specification      (2.3) 

                     2Θ bσ0 ≤< , practical constraints of tooling       

                     Fc >0, static equilibrium constraint 
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where Fc is the reaction force between workpiece and locator and is determined by 

clamping forces. The static equilibrium constraint ensures the workpiece maintaining 

contact with all the locators (Cai, et al., 1997). It should be noted that the tolerances are 

assigned to aggregated error sources. We could further distribute tolerances to individual 

error sources based on the error equivalence model given in Appendix A. 

 

2.1.2 Error Equivalence Based Global Process Design Optimization 

The tolerance stackup is determined not only by the magnitudes of error sources 

(measured by standard deviations of process variables in Section 2.1.1), but also by the 

process design, in particular, spatial layout of process variables. In a machining process, 

the layout of fixture locators has been shown to impact tolerance stackup with a 2-D 

example in Huang and Shi, 2003. But global optimization of process design was not 

studied therein. The main reason is that there is no unique solution for allocating 

tolerances to all process variables.  

To overcome the challenge, we transform all error sources into equivalent amount 

of fixture locator errors. Then the process design variables are just positions of fixture 

locators (i.e., fi’s). To explore the response surface of tolerance stackup under process 

design alternatives, we adopt the methodology of computer experiments design. The main 

reason is that the tolerance synthesis involves heavy symbolic computational load if we 

explore all possible fixture layouts. The lacking of random error in the deterministic 

computer tolerance simulation also leads to the consideration of computer experiments 
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against the other traditional regression analysis. And the computer experiments design 

will assist to establish a surrogate prediction model and to search the optimal process 

design. 

We search the optimal tolerance allocation based on a Kriging model (Matheron, 

1963; Journel and Huibregts, 1978; Cressie, 1993, and Sacks, et al., 1989), which depicts 

the relationship between the input variables (e.g. fixture layout) and the tolerance stackup. 

Kriging model has advantage over other interpolation methods because it is more flexible 

and weights are not selected according to certain arbitrary rule (Li and Rizos, 2005). The 

Kriging model consists of a polynomial term βwf )(T  and a stochastic process )(wZ : 

      )()()( wβwfw ZY T += ,                   (2.4) 

where Y(w) is the response (in our study, it represents tolerance assigned to the features) 

at the scaled input site w = (w1,…, wd), and d is the number of design variables. Note here 

we denote the untried site by w, while the aforementioned si’s are tried sites. The 

stochastic process )(⋅Z  is assumed to be Gaussian with zero-mean and a covariance 

between )( 1wZ and )( 2wZ  at any two input sites w1 and w2, i.e., 

),(),( 21
2

21 wwww RCov σ= , where ),( 21 wwR  is a correlation function of the responses. 

A review of prediction and estimation of Kriging model is given in Appendix B. 

The structure of the polynomial term βwf )(T  and the correlation function in the 

stochastic process Z(w) should be determined first. According to Welch et al., 1992, more 

elaborate polynomial terms offer little advantage in prediction. So we set a constant β  

for the polynomial term. For the structure of the correlation function, we choose power 
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exponential family correlation function that is the most popular in the computer 

experiments literature. It is given by the product of stationary one dimensional 

correlations as )|| exp(),( 21
1

21
jp

jj

d

j
j wwR −−=∏

=

θww , where 20 ≤≤ jp , 0≥jθ . We 

choose pj=2 because the correlation function with pj=2 produces smoother stochastic 

processes (Sacks, et al., 1989). In a two-stage machining process, for instance, we have 

totally d=12 design variables. Then the unknown parameters in Kriging model include 

constant termβ , the variance 2σ of the stochastic process, and θ = (θ1,…, θ12). 

To construct a precise Kriging model, a “good” experimental design should be 

able to provide an overview of the response across the whole design region as well as 

precise response at certain input sites in which we are interested (e.g., the input site or 

fixture layout that yield the optimal tolerance stackup).  

Searching such an experimental design involves a sequential procedure (Bernardo, 

et al., 1992; William, et al., 2000; and Gupta et al., 2006). The sequential procedure is 

consisting of initial design and design and model refinement.  

To make the initial design spreading over the whole design region, we choose the 

latin hypercube sampling (LHS). It is one of the most frequently used space filling design 

and it was introduced by McKay et al., 1979. For each component of input sites, i.e., wj, 

we can use a uniform distribution across each interval. 

For high dimensional case, only some of the LHS designs are truly space filling 

(Santner, et al., 2003). Therefore, the initial model may not well predict true tolerance 
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responses at uncertain sites and must be refined. We first calculate the root mean square 

error of the predictor RMSE ( ŷ (w)) at some tested sites, which is square root of Eqn. 

(B5). If the RMSE turns out to be too large, we should include these sites into the 

experimental design sites. The selection of untried sites can be determined by LHS design 

following maximin criteria. Maximin design guarantees that no two tested points are too 

close the each other, so that all the tested points are spread over the allowable design 

region. It should be noted that Gupta et al., 2006, developed a zoom-in criteria to refine 

the Kriging model, whereby contour plot approach was used to show the mean square 

error (MSE) over the whole design region. The areas on the contour plot that have “too 

large” MSE will be zoomed in and added more design points. We choose to estimate the 

RMSE on a set of maximin-LHS design sites in each refinement iteration instead of 

contour plot for the reasons that firstly, the input sites may have higher dimension 

whereas contour plot is not efficient to explore the high dimensional design space; and 

secondly, maximin-LHS based test points selection can effectively search the tested 

points spreading over the whole design region. The iterative model refinement steps are 

stated as: 

 Kriging model fitting. In the ith iteration, construct the Kriging model   based on ni 

available experimental design },...,{ 1 inssS =  with response data },...,{ 1 inyy=sy , 

i.e., )ˆ()(ˆ)(ˆ -1
1 ββ

iiii nnnn
Ty eyRwrw s −+= ×× , where 

ine is the all-one vector of length ni. 

i=0, 1, 2,…. 
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 Model refinement. Calculate RMSE at test points generated by maximin-LHS design 

and add the points that yield large RMSE to the experimental design. Let i← i+1 and 

repeat these procedures.  

We can stop the model refinement when maximum response values do not vary 

significantly with iterations and the RMSE in the whole possible region is not too large 

(Gupta, et al., 2006). 

 

2.2 Case Study 

In this Section, we will use a two-stage machining process as an example to 

illustrate error equivalence based tolerance synthesis and global process design 

optimization. Since a multistage process consists of operations with and without datum 

changes (the latter is simpler case), the two-stage example can be easily extended to a 

general case. 

 

2.2.1 Illustrate the Approach Using a Multistage Machining Process  

Figure 2.2 shows the part with features Y1~Y7, where Y1 and Y4 are two planes, 

and Y2, Y3, Y5, Y6, Y7 are cylindrical holes. The center of Y6 is set to be the origin of 

global coordinate system (GCS). Part feature can be represented as, e.g., Y1 = (0, 1, 0, 0, 

131, 0)T, where the first and last three numbers represent the orientation and position of 

Y1, respectively. 
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Figure 2.2 Workpiece and Locating Scheme (Wang, et al., 2005)  

 

  

 

Figure 2.3 Operation Steps  

 

The part goes through two operations, which are shown in Fig. 2.3. Firstly, use Y4, 

Y5, and Y6 as datum surfaces to mill plane Y1 and drill two holes Y2 and Y3. After that, 

the plane Y1 and two holes from operation one as datum surfaces to drill hole Y7. In Fig. 

1, f1 ~f6 show the locating positions on datum surfaces in each operation. The coordinates 

of fixture locators in operation one, e.g., is f(1)1 = (f(1)1x, f(1)1y, f(1)1z)T = (-7,109,0)T. Let 

x1(k), x2(k), x3(k) denote machine tool, datum and fixture errors respectively. The base 

error in this case study is fixture error, which can be represented as fixture locator 
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deviations, e.g., (Δf(1)1z, Δf(1)2z, Δf(1)3z, Δf(1)4y, Δf(1)5y, Δf(1)6x)T in operation one. Next 

we will illustrate the whole procedure which contains two parts. 

The first part is tolerance synthesis under specific fixture locating setting. For the 

tolerance stackup modeling, we only consider fixture and machine tool errors in 

operation one. However, the errors generated from this operation may cause datum error 

in operation two. Denote *x1 (k) and *x2 (k) as EFE due to machine tool and datum errors 

in operation k, respectively. Then u(2) = *x1 (2) + *x2 (2) + 3x (2), where *x2 (2) is 

generated by u(1), as shown in Eqn. (A4). The final product feature deviation y is  

ε
u
u

Γy +⎥
⎦

⎤
⎢
⎣

⎡
=

)2(
)1(

 ,                     (2.5) 

where 
121266
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××

×
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⎦

⎤
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⎡
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7Γ0
0Γ
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1  y T
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By Eqn. (2.2), we obtain the final product features variance-covariance matrix 

 yΣ . Denote the deviation of feature j by jy (k) = (αj, βj, γj, xj, yj, zj )T (orientation 

deviation αj, βj, γj and position deviation xj, yj, zj in three directions). By extracting its 

diagonal term, we have the variances of features Y1 and Y7, i.e., 
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The cylindrical hole Y7 is critical for assembly in the subsequent operations. It is 

reasonable to set the tolerance for x and y positions of Y7 as the final product tolerance, 

which correspond to the fourth and fifth components of 2
7yσ in Eqn. (2.6), i.e.,

7

2σx and 2
7

σ y . 

The objective is to maximize  

0.5 2
7

σ x +0.5 2
7

σ y ,                      (2.7a) 

where we assume equal importance of tolerances along two directions and therefore equal 

weights are assigned. Based on the vectorial dimension and tolerancing (VD&T) scheme 

(2.6) 
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(Huang and Shi, 2003), the objective function (Eqn. (2.7a)) subjects to the constraints 

listed below: 

2
1

σα ≤
1

bα , 2
1

σγ ≤ 1
bγ , 2

1
σ y ≤ 1

b y for Y1,                   (2.7b) 

and 2
7

σα ≤
7

bα , 2
7

σβ ≤
7

bβ , 2
7

σγ ≤ 7
bγ , 2

7
σ x ≤ 7

b x , 2
7

σ y ≤ 7
b y , 2

7
σ z ≤ 7

b z for Y7. 

Here
1

bβ ,
1

b x and 
1

b z need not to be considered because the orientation component of 

plane Y1 is free in y direction, and the location component of the plane is free in x, z 

directions, respectively. As an example, we choose 0.1radian2 for
1

bα ,
1

bγ ,
7

bα ,
7

bβ ,
7

bγ , 

and assign 5mm2 to
1

b y ,
7

b x ,
7

b y ,
7

b z , respectively. Set 1.73mm for all elements of 2b in 

Eqn. (2.3). Then the tolerances or the maximum allowable standard deviations for the 

aggregated error sources are =Θσ  (0.01, 0.01, 0.01, 0.01, 1.415, 1.732, 1.732, 0.01, 

1.135, 0.01, 0.01, 1.327)Tmm, and 2T
Θσc =4.99mm2.  

When more information is available at late stage of process design, e.g., the cost 

ratio between fixture and machine tool, we could further distribute the tolerances for 

aggregated error sources. For example, we could allocate 80% of tolerance band for 

aggregated EFE to machine tool error to reduce the cost of the major equipment. In 

operation one (no datum error occurs), we allocate 80% of (1)uσ  to 
)1(1

*x
σ  , i.e., 

)1(1
*x

σ = (1)80 uσ. , where 
)1(3x

σ and 
)1(1

*x
σ  denote the standard deviation of fixture error and 

EFE due to machine tool error in operation one, respectively. Variance-covariance matrix 

for machine tool error in the first stage will be 

T)(1)((1) -1
2)1(

-1
2)1(

11
KΣKΣ *xx = ,                    (2.8)    

where 
)1(1

*x
Σ =diag(0.82 2

(1)uσ ). Appendix A gives the details of K1 and K2 matrices. 
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Solving Eqn. (2.8) and extracting diag( )1(1xΣ ), we have )1(1xσ = (1.3856mm, 0.008mm, 

0.0091mm, 2.7328×10-5radian, 8.1650×10-5radian, 0.0028radian), where the first three 

numbers represent the standard deviations of machine tool translational error, and the last 

three are corresponding to the standard deviations of the rotational error in three 

directions, respectively. Since the trajectory of machine tool head may vary significantly 

among different product features, we set the tightest tolerance for the machine tool error 

in all directions, i.e., )1(1xσ = (8μm, 8μm, 8μm, 2.7328×10-5radian, 2.7328×10-5radian, 

2.7328×10-5radian). For operation two, datum error is introduced from operation one. By 

Eqn. (A4), variance for EFE due to datum error is diag( TKKΣu(1) ) = diag(
)2(2

*x
Σ ) = 

2
)2(2

*x
σ = (0.069mm2, 1.1294mm2, 0.5988mm2, 0.00264mm2, 0.0095mm2, 1.7929mm2). 

Further allocation of tolerance for datum error can be found by 

diag( T)(2)((2) 1)2(1 2
KΣK x ) = diag(

)2(2
*x

Σ ).                (2.9) 

However, the solution for datum tolerances is not unique since K1 is a 6×18 matrix (Eqn. 

(A3)). Therefore, we can not simply obtain diag( )2(2xΣ ) by diag( 1
1(2)−K

)2(2
*x

Σ T)(2)( 1
1
−K ). 

Due to the characteristics of K1, it is necessary to first specify tolerance for one element 

of secondary datum surface and two elements of tertiary datum surface. Denote x2 = (vI, 

pI, vII, pII, vIII, pIII), where I, II, III represent primary, secondary and tertiary datum 

surfaces, respectively. The v and p represent rotational and translational error of the 

datum surfaces in three directions. (e.g., xv I)2( represents the rotational error of primary 

datum surface in x direction in operation 2). Assign 1×10-9 radian2 to 2
)2( yv ΙΙ

σ , 1×10-7radian2 

to 2
)2( yv ΙΙΙ

σ , and 1×10-6mm2 to 2
)2( xp ΙΙΙ

σ . Solving Eqn. (9) leads to )2(2xσ = (
xv Ι)2(σ , 

zv Ι)2(σ , 
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yp Ι)2(σ , 
xv ΙΙ)2(σ , 

yv ΙΙ)2(σ , 
zp ΙΙ)2(σ , 

yv ΙΙΙ)2(σ , 
zv ΙΙΙ)2(σ , 

xp ΙΙΙ)2(σ ) = (0.0035radian, 

1.3995×10-4radian, 7.5μm, 2.473×10-5radian,  3.1623×10-5radian,  3.2μm, 

3.1623×10-4radian, 0.0221radian, 1μm).   

To distribute tolerances to fixture and machine tool errors in operation two, we 

have 
)2(1

*x
σ = 0.8( (2)uσ -

)2(2
*x

σ ) =(1.1914mm, 0.00024mm, 0.4802mm, 0.0413mm, 

0.0004mm, 0.4368mm). To calculate tolerance for machine tool error in operation 2, we 

have 

T)(2)((2) -1
2)2(

-1
2)2( 11

KΣKΣ *xx
= .                (2.10) 

Thus, 2
)2(1x

σ = (0.4616mm2, 0.6356mm2, 4.0206mm2, 0.00023radian2, 1.8936×10-8radian2, 

0.0000158radian2). By setting equal tolerances for translational and rotational deviations 

in three directions, we obtain
)2(1x

σ = (0.6794mm, 0.6794mm, 0.6794mm, 0.000137radian, 

0.000137radian, 0.000137radian).  

Based on the work of first part, we can conduct global process design 

optimization within allowable fixture locating setting range. Recall that all the error 

sources have been transformed into EFE. Hence the input site w  is related to the fixture 

layout and can be obtained as follows. Under 3-2-1 locating scheme, only locators 1, 2, 3 

in the example can be movable over the allowable design region since the positions of 

locators 4, 5, and 6 are fixed with locating holes. Each of locators 1, 2, and 3 can move 

on the primary datum plane in two directions. Therefore, there are twelve design 

variables involved in total for two machining processes, i.e.,  Ω = (f(1)1x, f(1)1y, f(1)2x, 

f(1)2y, f(1)3x, f(1)3y, f(2)1x, f(2)1z, f(2)2x, f(2)2z, f(2)3x, f(2)3z). The allowable design region 
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for each design variables is summarized in Table 2.1. The input variables for Ω are 

usually coded into [0, 1]d. i.e., w, where, d=12, 10 ≤≤ iw , i = 1, 2, …, 12. Here we can 

choose uniform distribution within the [0, 1]d interval.   

 

Table 2.1 Design Variables Range under GCS (unit: mm) 

Operation 1 f(1)1x f(1)1y f(1)2x f(1)2y f(1)3x f(1)3y 

Range 0~400 -10~130 0~400 -10~130 0~400 -10~130 

Operation 2 f(2)1x f(2)1z f(2)2x f(2)2z f(2)3x f(2)3z 

Range 0~360 0~80 0~360 0~80 0~360 0~80 

 

Since three locators have same allowable ranges, they may overlap each other 

when we generate design sites, this can be prevented by checking deterministic locating 

condition, i.e., the Jacobian matrix of the fixture layout should be of full rank (Cai, et al., 

1997). As mentioned in Section 2, the reaction force should be non-negative (we choose 

>0.5kN here) at the locating points so that the locators contact the workpiece. 

Considering the feature dimensions of the workpiece and clamping limitations, we 

determine the resultant clamping force and torque at the origin as follow: for operation 

one, FA= (-52kN, -28kN, -25kN), TA= (-10136Nm, 18300Nm, -4489Nm); for operation 

two, FA= (-45kN, 294kN, 158kN), TA= (-149Nm, 302Nm, -51Nm). In addition, the static 

constraint can help to reduce the number of optimal fixture layouts that correspond to the 

maximum value of ŷ . 
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Before selecting the initial design sites, we should determine the number of design 

sites. Number of points n0 for initial experimental design should be chosen to balance the 

experiment running time and fidelity of Kriging model. It was suggested (Bernardo et al., 

1992) that n0 should be chosen at most three times the number of unknown parameters in 

the Kriging model. For our EFE based tolerance study, we have totally 14 unknown 

parameters (12 jθ ’s, 1 constantβ , and 1 process variance 2σ ). Thus, we should let n0 be 

at least 14 and no more than 42. 

Here, we choose 16 points, which give rise to a 16×12 maximin-LHS design. 

Unknown parameters in Kriging model can be estimated by maximum likelihood 

estimation (MLE) criterion, i.e., optimizing the objective function Eqn. (B1) in Appendix 

B. There are many searching algorithms available such as simplex search, pattern search 

methods, and Powell’s conjugate direction search method. In our study, we choose 

Torczon pattern search method, because Torczon, 1997, proved that pattern search 

methods can converge to stationary points. Furthermore, pattern search method can easily 

be extended for constrained optimization. After the initial design, we choose 52 

maximin-LHS design sites for model refinement iteration (at least three times number of 

unknown parameters in the Kriging model). We choose the extra design sites whose 

RMSE’s are larger than 85% of the largest RMSE of the total tested sites. In our 

experiment, the largest RMSE of tested sites is around 0.224, the RMSE test gives rise to 

another 7 points (where RMSE > 0.224*0.85 = 0.19) to be added to the design.  
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When maximum response values do not vary significantly with iterations (Gupta, 

et al., 2006) and the RMSE in the whole possible region is not too large, we can stop the 

refinement steps, and obtain a model with β̂ = 4.6957, θ̂ = (0.1, 0.85, 0.1, 0.1, 0.725, 0.1, 

1.6, 0.6, 0.1, 0.1, 0.6, 0.6). The optimal solution w* that yields maximum tolerance ŷ  in 

the Kriging model can be obtained by simplex search, i.e., *w = (0.4375, 0.4688, 0.1875, 

0.1016, 0.7344, 0.3438, 0, 0.4219, 0.7813, 0.7344, 0.4531, 0.5469)T. The corresponding 

fixture layout is Ω* = (175, 55.625, 75, 4.2188, 293.75, 38.125, 0, 33.75, 281.25, 58.75, 

163.125, 43.75)Tmm, with )(ˆ *wy  = 5.029mm2, and RMSE ( )(ˆ *wy ) = 0.0872mm2. The 

yielded reaction forces from six locators are Fc = (18.2633kN, 21.3421kN, 12.7536kN, 

22.0025 kN, 5.6110 kN, 25.3354 kN) for operation one, and Fc = (0.5672 kN, 0.6833 kN, 

0.8252kN, 0.6773kN, 0.7525kN, 0.6631kN) for operation two. Based on these optimal 

design variables, we can implement the tolerance synthesis by the similar approach 

presented in Section 2.1. 

 

2.2.2 Remark on Sensitivity Analysis of the Optimal Process Design 

The sensitivity analysis is to study the robustness of the optimal fixture layout 

obtained. The idea of the sensitivity analysis is to study impact of subtle perturbation at 

the optimal design point on the response, i.e., to evaluate sensitivity 

coefficients
 w 

w

variable desin Optimaliw
y

=
∂
∂ )(ˆ

, i = 1,…,12. Through analysis of these values, we can 

find out the sensitive direction along which small movement of locators has significant 
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impact on the tolerance stackup. Sensitivity directions could provide guidelines for 

fixture design, e.g., we should set tight tolerance for fixture locator assembly along these 

directions. After computation, at the optimal design point, the sensitivity coefficients are 

(0.005, 0.0164, 0.0119, 0.0056, -0.0272, 0.0030, 0.3202, -0.0119, -0.0043, -0.0216, 

0.0081, 0.0184). We can see that locator 1 in operation 2 has a relatively large sensitivity 

coefficient in x direction, and sensitivity coefficient is relatively large at locator 3 in x 

direction in operation 2. The assembly tolerance for these directions should be stricter 

than other directions. 

 

2.3 Chapter Summary 

This Chapter develops a new process design and optimization method to seek an 

efficient and optimal process tolerance design for multistage machining processes. The 

idea is to reduce the design space in optimization problem by developing a tolerance 

stackup model in which multiple error sources are aggregated into one base error through 

error equivalence transformation. The model based process tolerance design and 

optimization has a hierarchical structure, i.e., assign the tolerances to the 

aggregated/bundled error sources first and then distribute them to individual error sources 

at each stage through cost analysis. Compared with a flat structure by which tolerances 

are directly assigned to individual error sources, the hierarchical structure can avoid 

dramatic, complete change of tolerance allocation and process design due to subtle 

change of cost functions. 
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In the mean time, the proposed method also searches optimal tolerance stackup as 

well as process design by exploring all possible combinations of process design variables. 

Computer experiments method is employed to establish the surrogate model for tolerance 

stackup prediction and optimal process design. Space filling method (LHS along with 

maximin criterion) will first generate random design points and we obtain optimal 

tolerance stackup at each design point. A Kriging model is then derived and refined by 

sequentially adding more design points into the regions with high uncertainty. One can 

further distribute the assigned tolerance for base errors among individual error sources 

when more process information is available. We illustrate the approach through a 

two-stage machining process where all errors were transformed to equivalent fixture 

errors. It has been demonstrated that consideration of error equivalence mechanism could 

significantly relieve the computation load of tolerance optimization problem and Kriging 

model fitting. The robustness of optimal tolerance to process variation is evaluated by a 

sensitivity analysis. In the two-stage machining process, we analyze the sensitivity of 

tolerance stackup to the optimal layout of fixture locators. The sensitivity analysis shows 

that the optimal design is more sensitive along some direction. The results provide a 

guideline to design the manufacturing process. 
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Chapter 3 

Diagnose Multiple Variation Sources under Variation Equivalence 

      This Chapter aims to improve the root cause diagnosis by utilizing the variation 

equivalence phenomenon. There are deviational error equivalences among different 

individual error sources, i.e., the fixture error, machine tool error and datum error can 

generate the same deviation pattern on product feature. In the variation point of view, the 

equivalent phenomena also happen among the variations of different error sources under 

certain conditions. This makes the process diagnosis and root cause identification of 

multiple variation sources more challenging. Meanwhile, based on error equivalence, we 

can study the equivalent properties among different variation sources by connecting the 

physical equivalence phenomena to mathematical formulation. Moreover, through 

exploring possible equivalent variations cases, we can construct an equivalent variation 

patterns library, which are useful for variation patterns mapping in process fault diagnosis. 

All of these will help to improve root cause identification of process fault among multiple 

variation sources.  

      This Chapter is organized as follows. Section 3.1 introduces the concept of 

variation equivalence and constructs the equivalent variation patterns library. The 

diagnosis and root cause identification under variation equivalence is presented in 
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Section 3.2. The Section 3.3 verifies the approach by illustrating a case study. Conclusion 

is given in Section 3.4. 

 

3.1 Concept of Variation Equivalence and Equivalent Variation Patterns Library 

      Previous application of error equivalence methodology on process diagnosis and 

root cause identification has focused on diagnosing and distinguishing process deviation 

(mean shift). For instance, Wang et al., 2006 utilized the EFE concept and the error 

compensating error strategy to improve the process diagnosis and root cause 

identification. However, besides deviation, process faults also manifest themselves as 

variation increases. Thus, it is also possible that equivalence occur in terms of variation. 

We can call this phenomenon as variation equivalence, which concerns that different 

error sources may result in identical product feature variation pattern. This Section will 

give the definition of variation equivalence and explore the possible variation 

equivalence cases in machining process, which are used to construct the equivalent 

variation patterns library. 

 

3.1.1 Definition of Variation Equivalence 

The definition of variation equivalence is that an identical part feature variation 

pattern can be generated by different process variation sources.  

To understand the definition, we can use a simple machining process to explain. 

The operation is to mill the top surface of the block part, which is shown in Fig. 3.1. If 
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machine tool translational error in y direction has large variation, it will cause large 

variation of the part top surface position. The large variation of the top surface position 

can also be caused by large variation of the primary datum surface (the bottom surface) 

position. Similarly, if the two locators that are in touch with the primary datum surface 

are loose and have positive correlation, the part top surface would have the same 

variation pattern too. Denote the part feature as y (in this case it is the top surface 

position). And denote the part feature variation caused by variation source s as Var(ys), 

where s = f, m, and d, corresponding to fixture error, machine tool error and datum error, 

respectively. We will have Var(y) = Var(yf) = Var(yd) = Var(ym).    

 

Figure 3.1 A 2-D Machining Process Example of Variation Equivalence 

 

3.1.2 Equivalent Covariance Structure Analysis and Library 

Based on the variation equivalence concept, we can explore possible equivalent 

product feature variation patterns and link physical explanations of variation equivalence 
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to mathematical formulation and analysis. Recall that the error equivalence based 

causality process model yj(k) = Γju(k) + ε(k) (Wang, Huang, and Katz, 2005) presents the 

relationship between product feature deviation yj(k) and integrated process equivalent 

fixture errors (EFE) u(k) in kth stage. And u(k) =∑i i
*x (k). The *xi (k)’s are the 

equivalent fixture error transformed from different individual error sources, e.g., from 

datum error and machine tool error 121 xK x* = and 2 1 2
*x  K x= , (Wang, et al., 2005), 

where the K1 and K2 matrices are error equivalence modeling transformation matrices in 

Appendix A. Taking the covariance of this model, we can obtain the covariance structures 

of part feature and those of integrated process equivalent fixture error 

IΓ Σ ΓΣ u y
2

)( )()( εσ+= T
jkjj

.                   (3.1) 

The Eqn. (3.1) denotes the relationship between the covariance structure of 

process EFE and that of part feature. Thus we can connect the part feature variation 

patterns to the variation patterns of EFE. Since our task is to develop an efficient 

approach for root cause identification among multiple variation sources under variation 

equivalence, studying ( )uΣ k instead of y  Σ
j

will more helpful to our research. Thus we will 

explore possible equivalent product feature variation patterns that are connected to ( )uΣ k . 

Taking the covariance for both sides of the error equivalence transformation model (Eqns. 

(A1)~(A3)), we can obtain the covariance structures of EFE due to machine tool error 

and datum error as 
12 2xK Σ KT  and

21 1xK Σ KT . Specifically, the general covariance 

structures for 2-D case are:  
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where f1x, f2x and f3y denote the three locators coordinate under part coordinate system 

(PCS), with indices 1, 2 representing the two in touch with primary datum surface, and 3 

for the one on secondary datum surface. The σγγ is the variance of machine tool rotational 

error, σxx is the variance of machine tool translational error in x direction, and σyy is the 

variance of machine tool translational error in y direction. And σv1xx is the variance of 

primary datum normal vector error in x direction; σp1yy is the variance of primary datum 

surface position in y direction, σv2yy is the variance of secondary datum normal vector 

error in y direction, σp2xx is the variance of secondary datum surface position in y 

direction. The details with regarding to the derivation of Eqns. (3.2a) and (3.2b) are 

illustrated in the Appendix C.  

These two equations connect the physical meaning of variation patterns in 

machining processes to the mathematical explanations. By analyzing ΣM and ΣD under 

possible faulty/malfunction conditions, we may construct the equivalent covariance 

patterns library and obtain some information of how the covariance patterns change under 

different variation sources settings. For simplicity, we use a block part to explore all the 

possible variation equivalence cases between machine tool error and datum error. The 
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product feature here is the top surface of the block part, with the process of milling the 

top surface. The library patterns are listed as follows:  

 Faulty condition 1: product feature (top surface) has large normal vector variation. 

In this case, we can see from Fig. 3.2 that the block part top surface normal vector 

will have large variation. This product feature variation pattern can be generated from 

large variation of machine tool angle error as well as from large variation of primary 

datum surface normal vector error. The covariance matrices of EFE due to machine 

tool error and due to datum error are given by Eqn. (3.3a) and (3.3b). Those 

subscripts with letter “N” denote the normal condition values. 

 

Figure 3.2 Variation Equivalence of Faulty Condition 1 
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 Faulty condition 2: there is large positional variation in x direction. The Fig 3.3 

illustrates this case. There will be no negative impact on milling the top surface in this 

case. However, if the operation is to drill a hole in the top surface, the impact will be 

significant. The covariance matrices of EFE due to machine tool error and due to 

datum error are given by Eqn. (3.4a) and Eqn. (3.4b). 

 

Figure 3.3 Variation Equivalence of Faulty Condition 2 
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 Faulty condition 3: there is large positional variation in y direction. This faulty 

condition will significantly affect the product feature’s displacement, which is 

explained by Fig. 3.4. The covariance matrices of EFE due to machine tool error and 

due to datum error are given by Eqn. (3.5a) and (3.5b).  
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Figure 3.4 Variation Equivalence of Faulty Condition 3 
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 Faulty condition 4: part feature has large variations of both normal vector and 

position in y direction. The Fig. 3.5, Eqn. (3.6a) and (3.6b) explain this case 

physically and mathematically. 

 

Figure 3.5 Variation Equivalence of Faulty Condition 4 
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 Faulty condition 5: part feature has large variations of both normal vector and 

position in x direction. The Fig. 3.6 illustrates this case. We can see that this case is 

similar to Faulty condition 1. The covariance matrices of EFE due to machine tool 

error and due to datum error are given by Eqn. (3.7a) and (3.7b). 

 

Figure 3.6 Variation Equivalence of Faulty Condition 5 

 

ΣM =

2
1 1 2 1 3

2
1 2 2 2 3

2
1 3 2 3 3

yyN x yyN x x xy x y

yyN x x yyN x xy x y

xy x y xy x y xx y

f f f f f
f f f f f
f f f f f

γγ γγ γγ

γγ γγ γγ

γγ γγ γγ

σ σ σ σ σ σ
σ σ σ σ σ σ
σ σ σ σ σ σ

⎛ ⎞+ + −
⎜ ⎟

+ + −⎜ ⎟
⎜ ⎟− − +⎝ ⎠

,    (3.7a) 

ΣD =

2
1 1 1 1 1 2 1

2
1 1 2 1 1 2 1

2
2 3 2

p yyN x v xx p yy x x v xx

p yyN x x v xx p yy x v xx

p xx y v yy

f f f
f f f

f

εε

εε

εε εε

σ σ σ σ σ
σ σ σ σ σ

σ σ σ σ

⎛ ⎞+ +
⎜ ⎟

+ +⎜ ⎟
⎜ ⎟+⎝ ⎠

. (3.7b) 

 

x
y

o x
y

o

σγγ 
σp2xx

σv1xx 



 46

 Faulty condition 6: there are large variations of position in both x and y directions. 

This case has variations of displacements in two directions, which is explained by Fig. 

3.7, Eqn. (3.8a) and (3.8b). 

 

Figure 3.7 Variation Equivalence of Faulty Condition 6 
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Figure 3.8 Variation Equivalence of Faulty Condition 7 
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3.2 Diagnosis and Root Cause Identification under Variation Equivalence   

      Process root cause diagnosis usually contains two steps, with mapping the product 

feature variation patterns to the library patterns as first step, followed by distinguishing 

variation sources that cause the identified product feature variation patterns. The second 

step is more challenging under variation equivalence. Although some research work (e.g., 

Jin and Zhou, 2006b) has mentioned this case, there is still not an efficient approach 

developed in the literature. In this Section, we develop a so called excitation-response 

path approach that is able to distinguish multiple variation sources under variation 

equivalence. 
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      In this thesis, we will assume that there are only machine tool error and datum 

error in the machining process. To identify from which variation sources a product 

feature fault pattern is generated, it is equivalently to distinguish the variation sources 

between ΣM and ΣD. In ΣM and ΣD, we can see that given a specific fixture locator layout, 

the covariance structure will change according to changes of variation sources 

magnitudes. Therefore, in order to develop a variation sources identification approach, 

we can conduct some analysis of the covariance structures of ΣM and ΣD under different 

variation source magnitude settings. One way to represent the covariance structure is to 

use the eigenvectors of the covariance matrices. Denote ai(ΣM) and ai(ΣD) as ith 

eigenvectors of ΣM and ΣD. To analyze how ai(ΣM) and ai(ΣD) change as variation 

sources magnitudes change, we can compute the eigenvectors gestures under different 

variation sources values. Denote aref as reference vector. By computing the angles 

between the eigenvectors and aref, we can obtain the eigenvectors gestures information. 

Denote ψm, ψd as the angles set between aref and ai(ΣM), ai(ΣD), respectively; and σm, σd 

as the variation sources set for ai(ΣM) and ai(ΣD). The points set of (σm, ψm), (σd, ψd) will 

form two curve of eigenvectors angles VS variation sources values, for which we call 

excitation-response path.  

Given a fixture layout, the Γ matrix will be fixed. Furthermore, Var(yd) = Var(ym) 

under variation equivalence. We thus have ΣM ≈ ΣD. If take faulty condition 6 for 

example, we will have yyσ + 2
1x Nf γγσ  = 1p yyσ + 2

1 1x v xxNf σ , yyσ + 2
2x Nf γγσ  = 1p yyσ + 2

2 1x v xxNf σ , 

and xxσ + 2
3 y Nf γγσ  = 2p xxσ + 2

3 2y v yyNf σ , respectively. If Nγγσ  = 1v xxNσ  = 2v yyNσ , we will 
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see that under the same value setting of variation sources, i.e., yyσ = 1p yyσ , and xxσ = 

2p xxσ , the ψm, will be equal to ψd at each point. In this situation, the curve of (σm, ψm) 

and (σd, ψd) over lab each other, which makes the two variation sources 

undistinguishable. 

Therefore, to utilize the excitation-response path for variation sources 

identification, we must make some assumptions. First of all, the normal condition 

variation sources magnitudes are assumed to be different, e.g., σyyN ≠ σp1yyN. Besides, we 

assume that there is single product feature fault pattern for each product feature. The 

reason for first assumption has been aforementioned. It is also practical in that datum 

variation is usually larger than machine tool variation. This assumption will enable the 

curves of (σm, ψm) and (σd, ψd) to be different with a proper selected aref. We do not 

consider multiple product feature variation patterns, because that our key issue for this 

topic is to distinguish multiple variation sources from the same product feature variation 

pattern. Thus the second assumption is also necessary.  

Under these assumptions, we can conduct a sequential testing procedure to 

distinguish the variation sources. The root cause identification procedures will be:  

 Plot the excitation-response path for possible variation sources. Here we assume that 

there are variations of machine tool error and datum error, corresponding to two 

excitation-response paths. If the two variation sources simultaneously contribute to 

the detected part feature variation pattern, this will result in a mixture 

excitation-response path. For the mixture path, we can assume weight coefficients for 



 50

both variation sources, i.e., Σmixed = λMΣM +λDΣD, where λM + λD = 1. In this case, 

there will be totally three excitation-response paths in the plot.  

 Estimate two covariance matrices of process errors from two consecutive samples. 

The estimation ˆ
uΣi = ûSi  , with ûSi  denoting the sample covariance matrices, i = 1, 

2, and û = (ΓT Γ)-1ΓTy. 

 Calculate the first eigenvector angles of the two sample covariance matrices. By 

selecting a reference vector aref, we can obtain two eigenvectors angles ψi, i = 1, 2.  

 Estimate the variation sources values. Take faulty condition 3 for instance, ˆiyyσ = 

ûSi (1, 1) - 2
1x Nf γγσ , and 1ˆ p yyσ  = ûSi (1, 1) - 2

1 1x v xxNf σ , i = 1, 2. The ûSi (1, 1) denote 

the element of the intersection between the first row and the first column in ûSi . 

 Compare the slope of the line that connects the two sample points with the slope of 

excitation-response path and distinguish the variation sources. For example, if the 

two points ( 1ˆ yyσ , ψ1) and ( 2ˆ yyσ , ψ2) is close to the machine tool excitation-response 

path, and the slope of the line that connects the two points is similar two the slope on 

the excitation-response path, the variation sources will be identified as from machine 

tool error. It is vise versa for variation sources from datum error. 

The rationale behind these procedures is that the eigenvectors of different samples 

covariance matrices will be not the same and they usually have a deviate range. However, 

in general, if the sample size is large enough, the sample eigenvectors gestures should be 

very similar to the population eigenvector (i.e, the eigenvector on the excitation-response 

path). The two samples are corresponding to two points on the excitation-response path 
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graph. Thus the slope of the line segment that connects the two points thus will be similar 

to the slope of the tangent at the population curve point. The Fig. 3.9a and 3.9b illustrates 

this rationale. 
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3.3 Case Study 

      We will use a case study in this Section to verify this approach. In the case study, 

we use the block part shown in Fig. 3.1 as the example. The machining process is to mill 

the top surface. 

 

3.3.1 Illustration of the Root Cause Diagnosis Approach Using a Machining Process 

The fixture locaters layout are specified as f1x = 20, f2x = 400, f3y = 50. Suppose 

that the tolerance for translational error is ±0.55mm, and the tolerance for rotational error 

is ±0.0007radian (0.041degree). The machining process is still to mill the top surface of a 

block part. There are two possible variation sources in the process, machine tool error and 

datum error. Normally, the machine tool angular error has smaller variation than the 

datum error. Thus, we suppose that σxxN = 0.2mm2, σyyN = 0.2mm2, σxyN = 0.000001mm2, 
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σγγN = 0.0000008radian2, σv1xxN = 0.000001, σp1yyN = 0.3mm2, σv2yyN = 0.000001, σp2xxN = 

0.3mm2, white noise σεε = 0.00000001mm2. We choose aref = (0 0 1)T. Suppose that 

product feature variation pattern of faulty condition 3 is detected, no mixture of two 

variation sources, and the true variation source is machine tool error with σyy = 0.36mm2 

(but actually we do not exactly know this value and which variation source occurs in the 

process). Here we collect two consecutive samples, with size n1 = n2 = 200. The first 

eigenvector angles of first and second samples are ψ1 = 89.2007degree and ψ1 = 

88.3643degree. The estimated variation sources magnitudes are 1ˆ yyσ = 0.3731mm2 and 

2ˆ yyσ = 0.3458mm2, respectively. The results are summarized in Fig. 3.10.  
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Figure 3.10 Excitation-Response Path of Case Study Result 

 

In the excitation-response path plot, it is obvious that the sample data and its slope 

is more close to the population curve of machine tool. In light of this, we can determine 

that the variation source is from machine tool. 
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3.3.2 Remark on the Excitation-Response Path Approach 

In the case study, we choose (0 0 1)T as reference vector. The datum error curve is 

a horizontal line, which can be distinguished from machine tool error curve. However, if 

we choose (1 0 0)T and (0 1 0)T as reference vectors. The result will be different, and the 

root cause identification will be impossible. Because that the slopes of the two variation 

sources curve are the same, which makes the two curves parallel to each other. This is 

illustrated by Fig. 3.11 and Fig. 3.12. Therefore, for the excitation-response path 

approach, a reference vector that can distinguish the slopes of different variation sources 

curves is necessary. 
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Figure 3.11 Excitation-Response Path Using Reference Vector (1 0 0)T 
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Figure 3.12 Excitation-Response Path Using Reference Vector (0 1 0)T 

 

3.4 Chapter Summary 

      In this Chapter, the variation equivalence concept is presented and the equivalent 

variation patterns in machining process are explored. Based on the variation equivalence 

concept, we explore the possible product feature equivalent variation patterns among 

different variation sources, and construct the equivalent variation pattern library. By 

utilizing the library covariance structures and conducting some excitation-response path 

analysis, we find that different variation sources can be distinguished under variation 

equivalence. The case study well verifies this approach. 

      However, there is still limitation with regarding to this approach. For each faulty 

condition, a proper reference vector should be carefully selected. Otherwise, the root 

cause identification may fail if there is not a reference vector that can significantly 
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distinguish the slopes of different variation sources’ excitation-response paths. For faulty 

condition 4 to faulty condition 7, each variation source has more than one variation 

elements. In this case, the excitation-response paths will not be a curve, but a surface, or 

even a volume. This will makes the visualized testing procedure more challenge, 

especially for 3-D cases. 
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Chapter 4 

Conclusions and Future Work  

4.1 Conclusions 

Manufacturing process design and control relies not only on an efficient process 

variation modeling, but also on many other variation reduction strategies. For early 

manufacturing process design stage, the efficiency of the design strategy usually relies on 

the dimensionality of the design space. For a good process control strategy, a method for 

efficiently diagnosing different variation sources is a must. The work in this thesis aims 

to develop efficient process design and process control strategies based on improving the 

understanding of error equivalence and variation phenomena, that is, different types of 

process errors and variation can result in the identical product feature deviation and 

variation. The implication of error equivalence mechanism can greatly impact the early 

stage design and quality control in manufacturing processes. The major contributions of 

this thesis are summarized as follows: 

 Process design and optimization based on error equivalence concept. Due to the fact 

that different error sources can generate the same product feature deviation pattern, 

we can modeling the process variation propagation based on one error, i.e., the 

equivalent error or based error. An error equivalence based process tolerance stackup 
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model can thus be developed, and tolerance allocation can be conducted under a 

specified spatial layout. Meanwhile, embedding error equivalence into computer 

experiment design can assist us to search global optimal tolerance allocation among 

all the possible process tolerance design.  Introducing the error equivalence 

mechanism into the to the process design significantly reduces the design space and 

relieve us from the considerable symbolic computation load, which results in a 

cost-effective design strategies.  

 Process control: root cause identification of variation sources under variation 

equivalence. The variation equivalence phenomena expose the traditional 

manufacturing process diagnosis to the challenge that different variation sources may 

result in identical product feature variation patterns. Through exploring the possible 

product feature equivalent variation patterns among multiple error sources, we can 

construct the equivalent covariance structure library. Meanwhile, an 

excitation-response path orientation approach is developed to improve the variation 

sources root cause identification. The simulation study results show that this approach 

enables multiple variation sources to be distinguishable under variation equivalence.  

 

4.2 Future Work 

      This study aims to improve manufacturing process design and control by using 

error equivalence methodology. In addition to the results obtained in process tolerance 

design, optimization, and process root cause diagnosis of variation sources under 
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variation equivalence, we can further expand the diagnosis approach to the processes that 

contain random effects. Since in practical machining processes, large variation random 

effects may occur due to unknown factors. The mixing of random effects with variation 

equivalence will lead the root cause diagnosis to a more challenging situation. 

Furthermore, the limitations of the excitation-response path approach drive us to improve 

the testing procedures for higher dimensions of variation sources cases.   
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Appendix A: Review of EFE and Derivation of Δd 

Wang et al., 2006, gave the derivation of EFE 

T)( IIIIIIIIIIII12 pvpvpvK x* = ,                 (A1) 

and  

121 xK x* = ,                       (A2) 

where  
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For the specific form of K1 and K2, refer to Wang, Huang, Katz, 2006. If the 

coordinates are under GCS, the K1 and K2 matrices are changed accordingly in each 

operation. E.g., in our example, for operation 1 
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for operation 2 
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Appendix A: (Continued) 

To calculate )2(*
2x , using the feature deviation from operation 1 with the nominal 

fixture layout (the nominal location of six locators in operation 2), we can derive the 

relation between )2(*
2x  and u(1) after linearization as:  

)2(*
2x = Ku(1),                        (A4) 

where K is the coefficient matrix. Then the EFE due to datum errors will be linearly add 

to operation 2 in the stackup model. The EFE due to datum errors calculated thus 

obtained are: 
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Appendix B: Prediction and Estimation of Kriging Model 

After obtaining an experimental design },...,{ 1 nssS =  with corresponding 

responses },...,{ 1 nyy=sy , the unknown parameters in the correlation function have to 

be estimated, which is obtained by MLE criteria, and boils down to the minimization of 

the function 

                       )detlnˆln(
2
1 2 R+σn ,                     (B1) 

where R  is correlation coefficient matrix, and  
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Then, using generalized least square estimation (GLS), the unknown parameters 

β  and 2σ  can be estimated as 

syRFFRFβ -1-1 )(ˆ TT= ,                  (B2) 

and  

)ˆ()ˆ(1ˆ 1-2 βFyRβFy ss −−= T

n
σ ,               (B3) 

where T
n )](),...,([ 1 sfsfF = is the regression design matrix. As for these parameter 

estimations, the best linear unbiased predictor (BLUP) is:                                      

)ˆ()(ˆ)()(ˆ 1T βFyRwrβwfw s −+= −Ty ,              (B4) 

where T
n

T RR )],(...,),,([ 1 wswsr = is a column matrix of correlation between the 

stochastic processes at given experimental design sites and untried input site. The mean 

squared error (MSE) was given by Sacks et al., 1989, as:                                      
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Appendix C: Derivation of the Equivalent Covariance Structures 

      The derivation of the equivalent covariance matrices are based on the error 

equivalence model in Wang et al., 2005. For 3-D case, we can obtain the covariance 

matrices of EFE due to machine tool error and datum error as 
12 2xK Σ KT  and

21 1xK Σ KT , 

where 
1xΣ and 

2xΣ are the covariance matrices of individual machine tool error and 

datum error. The details of K1 and K2 matrices are presented in Appendix A. For 2-D 

case, the derivation can be based on 3-D derivation. We can suppose there is no error for 

primary datum surface in 3-D case, which will result in 2-D case K1, i.e.,  

x2 = [ 0 0 0 0 0 0 vIIx vIIy 0 pIIx pIIy 0 vIIIx vIIIy 0 pIIIx pIIIy 0]T.   (C1) 

Plug Eqn. (C1) into Eqn. (2.1), we can obtain the 2-D case product feature 

deviation yj(k), i.e., [0 0 0 -pIIy-vIIxf1x -pIIy-vIIxf2x -pIIIx-vIIIyf3y]T. Extracting the coefficients 

of individual datum error, we thus obtain K1 as 
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By setting 0 to the elements that are relevant to z direction, covariate terms 

between normal vector and position, or primary datum surface in 3-D case
2xΣ , e.g., 

IIzIIzpσ = 0, 
IIx IIyv pσ = 0, or 

Ixxvσ = 0, we can obtain Eqn. (3.2b). For equivalent covariance 

structure of machine tool error, the derivation is similar, and 
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