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ABSTRACT

During the DNA replication process, ribonucleotides, the building blocks of RNA, may be occasionally

incorporated in the newly synthesized DNA. DNA is primarily composed of deoxyribonucleotides and there

exist cellular mechanisms for removing ribonucleotides from DNA, which may indicate ribonucleotide incor-

poration being a replication error. Further, an excess of these ribonucleotides in the genome may lead to

genomic instability and has been implicated in human diseases. However, there are also hypotheses that

suggest that ribonucleotides may be beneficial in certain circumstances. In this study we examine ribonu-

cleotide incorporation in the human genome in several human cell types. While ribonucleotide incorporation

has been studied in yeast, there has yet to be a systematic study of this phenomenon in the human genome.

We analyze data obtained through a sequencing protocol that detects the positions of ribonucleotide in-

corporation in genome samples. We use mathematical analysis to detect hotspots and sequence patterns,

as well as biologically relevant regions where such ribonucleotide incorporation appears nonrandom. Our

analysis shows that the phenomenon is most commonly seen in regions that are GC rich and may be corre-

lated with some gene regulatory segments. Further study will be needed to ascertain whether ribonucleotide

incorporation has a specific biological function in the human genome.
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CHAPTER 1:

INTRODUCTION

In this thesis we analyze a form of genomic data obtained through an experimental protocol know as

ribose-seq [38]. Ribose-seq was designed to study a phenomenon known as ribonucelotide incorporation

in genomes. The analyses we describe here form part of the first comprehensive study of ribonucleotide

incorporation in human cells. The study is a collaboration between the Storici group (https://storicilab.

gatech.edu/) at the Georgia Institute of Technology, and the Math-Bio group (https://knot.math.usf.

edu/) at the University of South Florida. The work that formed the basis of this thesis was begun in spring

2022 and is ongoing.

The remainder of this thesis is organized as follows. We start with a brief description of sequencing

technology, ribonucleotide incorporation, and our datasets in this chapter. Then Chapter 2 gives an overview

of some of the major statistical tools that have been developed to analyze the type of genomic data studied

here. Chapter 3 describes the methods we use in our own analysis. Chapter 4 presents the results of our

analyses. Finally, Chapter 5 discusses our conclusions and proposes questions for further study.

1.1 The Human Genome and Sequencing

Physically, the human genome is a long, complicated molecule called DNA (deoxyribonucleic acid) that

resides in cell nuclei. Though our understanding is far from complete, we know that the genome carries

information for creating proteins that perform vital functions within cells. A fundamental characteristic of

DNA is that it is a chain composed of four basic nucleotides (a type of molecule): A (adenine), C (cytosine),

G (guanine), and T (thymine). Through a technology known as DNA-sequencing (or DNA-seq) we can take

DNAmolecules in biological samples and turn them into strings over the letters {A, C, G, T}, representing the

chain of nucleotides in the molecules. This technology allows us to view the human genome as a long string,

roughly three billion letters long. When referring to the length of genome segments, we interchangeably use

the terms nucleotides, base pairs, or bases. For example, the previous statement about the length of the

human genome may be equivalently stated as “three billion nucleotides”, “three billion base pairs”, or “three

billion bases”.
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In 2001, the first complete human reference genome was sequenced as the culmination of the Human

Genome Project, which was started in 1990 [40]. In this study, we use an updated reference genome know

as GrCh38 or hg38 [63]. Although the genome has been sequenced, the process of studying, annotating, and

discovering the biological function of different parts of the genome is an ongoing process. Aiding this process

have been the advances in sequencing technology. In particular, high-throughput sequencing technology was

introduced in the mid 2000s [58], and allowed large amounts of genomic material to be sequenced from

cell samples. The type of high-throughput sequencing technology studied here works by first physically

fragmenting DNA samples into short strands, then using a sequencing machine to translate the strands into

strings (i.e., a sequence of letters) known as reads. Thus, the raw output of the sequencing technology is

not the fully assembled genome of the specimen, but a long list (usually millions) of relatively short reads

(e.g., around 150 bases long for Illumina short-read sequencing [34]). The next stage is usually to map the

reads to the reference genome using alignment tools, such as Bowtie2 [41], which try to find the most likely

position in the genome that each read originated from. Although we use different cell types that may have

genetic differences from the reference genome, this process mapping to the reference is still generally valid

since any two human genomes are highly similar (less than 1% difference [1]). The output of this mapping

process is a sequence of genome positions that each read maps to.

1.2 Ribose-Seq and Ribonucleotide Incorporation

Though we described DNA sequencing above, there are several related sequencing technologies that are

similar and capture different genomic features of interest. We refer the reader to [58] for a review of high-

throughput sequencing technologies. The ribose-seq [38] [2] technology that we study here was developed

by the Storici Lab at Georgia Tech, and other collaborators. This protocol allows us to infer positions in

the cell sample’s genome that have been subject to ribonucletoide incorporation, which we describe in the

following. Thus, each read sequenced in the ribose-seq protocol, when mapped to the genome, gives us the

position of a single ribonucleotide.

A ribonucleotide is a molecule similar to a deoxyribonucleotide. Ribonucleotides are predominantly found

in RNA (ribonucleic acid) while deoxyribonucleotides are predominantly found in DNA (deoxyribonucleic

acid). Ribonucleotides are chemically different from deoxyribonucleotides, though the details are beyond

the scope of this exposition. During DNA replication, either ribonucleotides or deoxyribonucleotide can be

incorporated into the newly synthesized DNA strands. Ribonucleotides are far more infrequently incorpo-

rated than deoxyribonucleotides; several hundred or thousand time less frequently depending on the process

involved [62] [80]. There are several hypotheses as to why ribonucleotides are incorporated into the genome

2



and whether they are beneficial or detrimental to cells. An excess of ribonucleotides in the genome may lead

to genome instability [62] [80]. In fact, ribonucleotides have been implicated in the human disease Aicardi-

Goutières Syndrome, a serious genetic disorder with no known cure [62]. Further, there are mechanisms in

cells for removing ribonucleotides incorporated during replication [62] [80], suggesting that they may simply

be replication errors. However, there are also hypothesis of how ribonucleotides in the genome may serve a

beneficial role [83] [80]. Ribonucleotide incorporation has been comprehensively studied in species such as

yeast [3] [38] [14] [18] [57]. However, it has never been studied systematically in the human nuclear genome

(i.e., the primary genome consisting of the 23 chromosomes). This thesis is part of the attempt to fill this

gap in the literature by performing a study of several ribose-seq libraries of human nuclear DNA.

1.3 Data

The wet-lab part of the ribose-seq protocol, read mapping, and preprocessing is performed by the Storici

group. For the detailed protocol, we refer the reader to the original paper [38] introducing the method.

Simply stated, human cells are cultured in the laboratory and several steps are performed so that the

sequenced reads allow us to infer the location of ribonucleotides. As part of this process a substance known

as an enzyme is administered to the cell sample, which fragments the DNA into relatively short fragments

of average length 350bp [38]. Due to the nature of the process, each DNA fragment in the sample will only

be sequenced if it has a ribonucleotide at one of its ends. Once the DNA is fragmented, the samples are

sequenced using Illumina sequencing technology, resulting in a table of strings representing the sequenced

reads. As this is a bulk sequencing protocol, the reads, and thus the detected ribonucleotides, may come from

different cells in the sample (by constrast single-cell technologies allow grouping reads by the individual cells

they originated from). When the reads are mapped to the reference human genome, we get an indication of

the relative number of ribonucleotides at each position on the genome, within all cells in the sample.

We can abstract the output of this process as a single vector of integers y = {yi}Ni=1, where each i indexes

a distinct position on the genome, yi is the number of reads mapping to position i (alternatively, the number

of ribonucleotides detected at position i), and N is the size of the genome. Note, y represents the output

for a single sample. If there are multiple samples, we denote them with superscripts such as y(1) and y(2).

To reduce the computational expense, we focus on a subset of the genome here known as chromosome

1. The human genome in cells is physically separated into 23 molecules known as chromosomes, of which

chromosome 1 is the largest at approximately 249 million bases. The GRCh38 reference genome is likewise

separated into 23 separate strings. Further, a DNA molecule is a double helix with two physically connected

strings of nucleotides called the positive (or +) strand and the negative (or -) strand. Either strand contains

3



exactly the same information since they are reverse complements of each other. That is, the negative strand

is obtained from the positive strand by swapping A with T (and vice versa), C with G (and vice versa), and

reversing the orientation of the strand. Due to this duality, only the positive strand of the human genome

need be recorded in the reference genome. If a given read maps without modification to the reference genome,

it is considered to originate from the positive strand. However, if the reverse complement of the read maps

to the reference, then it is considered to originate from the negative strand. In addition to focusing on just

a single chromosome, we also focus on each strand separately since they have different biological functions

(e.g., different genes). Thus, each vector, y, will usually refer to the data for a single sample, chromosome,

and strand.

By itself, the vector y is a very general representation of the data. However, because i indexes a genomic

position, we have much additional information about this vector. For example, we may expect y to exhibit

spatial dependence, which means that values yi and yj will have some dependence if i and j are close. Since

we assume that y are observed counts for positions on a contiguous DNA molecule, the closeness of i and

j should be related to their physical distance on the molecule. Since we expect the biological properties

of physically near positions to be similar, it is reasonable to assume that ribonucleotide incorporation also

follows this rule. A further property of the genome position, i, is the nucleotide sequence around it in

the reference genome. Let s = {si}Ni=1 be the string of nucleotides in the reference genome corresponding

to the positions of {yi}Ni=1. We may be interested in quantifying the distribution of nucleotides in the

multiset {si|i = 1, . . . , N and yi > 0}, which are the nucleotides that occur at position with at least one

ribonucleotide. Similarly, we may be interested in whether there are certain nucleotide motifs that occur

in the neighborhood of ribonucleotide positions, since biological function may be related to these motifs.

Finally, there is a wealth of metadata associated with the GRCh38 reference genome known as annotations.

Annotations may include information such as regions on the genome that are genes (segments the genome

that are used as information for building proteins). Having such data will allow us to answer questions such

as whether the occurrence of such functional elements are associated with the positions of ribonucleotides.

Although more than twenty combinations of cell types and fragmenting enzymes have been used to obtain

ribose-seq libraries, we only focus on a subset of these here. Namely, we focus on six libraries that come from

five different cell types, but have all been prepared with the dsDNA Fragmentase enzyme. The rationale

behind focusing on Fragmentase is that it “provides random fragmentation, similar to mechanical methods”,

according to the manufacturer [9]. Thus we expect it to provide more complete read coverage across the

genome and reduce biases in downstream analyses. The libraries are listed in Table 1. Of note are the two

knockout (KO) samples: FS329 and FS327. These samples have been genetically engineered so that their

RNASEH2A gene is nonfunctional. RNASEH2A is one of the genes that code for the enzyme RNASE H2,
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which helps to remove ribonucleotides incorporated in the genome [16]. Mutations in this gene have been

implicated in Aicardi-Goutières syndrome (AGS) [16]. Thus, we expect the KO samples to have significantly

higher occurrence of ribonucleotides than the other samples.

1.4 Questions

There are several questions that guide our analyses:

• Is ribonucleotide abundance associated with the local nucleotide context?

• Can we identify hotspots where ribonucleotide abundance is relatively high?

• What statistical methods can we use to detect ribonucleotide hotspots on the genome?

• Can we identify any biological properties of the identified hotspots?

• What statistical methods can we use to verify the strength of our findings?

These questions are all aimed at revealing the biological function, or lack thereof, of ribonucleotide incorpo-

ration in human cells. In Chapter 2, we survey some of the answers to these questions in other organisms.

The use of statistically rigorous methods will be important in this study because genomic datasets tend to

be large and noisy, and have a danger of generating false positive findings.
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Table 1. The ribose-seq samples and cell types used in this study.

Sample Cell type Description
FS185 CD4T White blood cells (T lymphocyte)
FS197 hESC-H9 Human embryonic stem cell
FS198 hESC-H9 Human embryonic stem cell
FS326 HEK293T-WT Human embryonic kidney cell
FS329 HEK293T-RNASEH2A-KO-T3-17 Human embryonic kidney cell (RNASEH2A gene knockout)
FS327 HEK293T-RNASEH2A-KO-T3-8 Human embryonic kidney cell (RNASEH2A gene knockout)
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CHAPTER 2:

LITERATURE REVIEW

2.1 Previous Studies of Ribonucleotide Incorporation

As reviewed by Zhou et al. (2021) [83], ribonucleotide incorporation in whole genomes have previously

been previously mapped and studied in Clausen et al. (2015) [14], Daigaku et al. (2015) [18], Koh et

al. [38], and Reijns et al. (2015) [57]. These studies mapped ribonucleotide incorporation in different

yeast species. They each used different ribonucleotide-sequencing protocols introduced by their respective

publications (respectively, HydEnSeq, Pu-seq, ribose-seq, and emRiboSeq). The Python tool Ribose-Map

[25] was introduced to streamline the process of mapping and analyzing ribonucleotide sequencing data from

several protocols.

Previous studies have shown that ribonucleotide incorporation may have a biological preference for certain

nucleotide motifs. In a study of the yeast genome by Balachander et al. (2020) [3], it was shown that

ribonucleotide incorporation in yeast genomes has a preference for positions that have nucleotide C or G

rather than A or T. Likewise, other nucleotide motifs were found to be associated with ribonucleotide

incorporation, such as sequences made from short repeats, and dinucleotide (a sequence of two nucleotides)

motifs immediately adjacent to the ribonucleotide. It has also been shown that different mechanisms for

incorporating ribonucleotides may result in different nucleotide motifs being preferred for incorporation [83].

2.2 Multiple Change-Point Problem

The type of univariate, sequentially-ordered data that we study here has been studied before in other

contexts, such as time series. As described in Section 1.3, we assume that our data is a vector of the

form y = {yi}Ni=1, where yi is a real number and N is the number of measured data points in the sample.

Importantly, we assume that the index i is ordered in a meaningful way and that yi are not exchangeable.

This is a general form that encompasses, for example, time series data (where i is a discrete time index),

genomics data (where i is the position along the reference genome), and others. More specifically, we may

want to account for spatial dependence between the yi, meaning that values with nearby indices should be

similar to each other. Since y is experimentally measured, we may consider it as a realization of a random
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vector Y = {Yi}Ni=1 that describes the distribution of y under repeated data collection. One question

that arises when studying such data is whether we can partition the index set {1, . . . , N} into segments

{1, 2, . . . , i1}, {i1+1, i1+2, . . . , i2}, . . . , {in−1, in−1+1, in−1+2, in}, such that on the kth segment the values

{yik+1, yik+2, . . . , yik+1
} are relatively similar. In our case, we are interested in finding segments that are

ribonucleotide hotspots. The problem can equivalently be stated as finding the indices, {i1, i2, . . . , in}, where

the distribution of Yi changes. This is known as the multiple change-point problem and approaches to solving

this have been surveyed by Niu et al (2016) [48], which we follow here.

In the general multiple change-point problem, we are given a sequence of random variables {Yi}Ni=1 with

distribution functions {Fi}Ni=1. That is,

Pr(Yi ≤ y) = Fi(y) for y ∈ R

The goal is to discover the change points, i, such that the distributions changes. That is, we search for a set

of indices {ik}Kk=1 such that

i1 = 1, iK = N,

Fik = Fik+1 = · · · = Fik+1−1 for k = 1, . . . ,K − 1

Fik ̸= Fik+1
for k = 1, . . . ,K − 1

A common special case is to assume that the distributions are normal with equal variances but unknown

nonrandom means µ = {µi}Ni=1. That is, ∀i, Yi ∼ N(µi, σ
2). Two of the methods formulated in terms of the

multiple change-point problem are circular binary segmentation and sparse linear regression (also surveyed

in [48]).

2.3 Circular Binary Segmentation

Circular binary segmentation was introduced by Olshen et al. (2004) [49] to study genomic data and is

an extension of the binary segmentation algorithm introduced by Sen and Srivastava (1975) [64]. The binary

segmentation algorithm is a top-down procedure for recursively identifying change points until a stopping

criteria is met. The method assumes that the random variables {Yi}Ni=1 are independent and normally

distributed with constant known variance σ2. For any subinterval of indices, {a, . . . , b} ⊆ {1, . . . , N}, we try
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to determine whether a change point exists in {a, . . . , b} with the following hypothesis test:

H0 : µa = · · · = µb,

H1 : ∃i ∈ {a, . . . , b− 1}, µa = · · · = µi ̸= µi+1 = · · · = µb

Because the alternative is a union of b− a hypotheses, we first compute the individual Z-test statistics as

Zi =

1
i−a+1

(∑a
j=i Yj

)
− 1

b−i

(∑b
j=i+1 Yj

)
σ2
(

1
i−a+1 + 1

b−i

) for i = a, a+ 1, . . . , b− 1

The final test statistic is then the maximum of the b− a individual statistics:

Zmax
(a,b) = maxb−1

i=aZi

The null-hypothesis distribution of Zmax
(a,b) is estimated through Monte-Carlo simulation or other methods

[64]. If the null hypothesis is rejected, we identify i such that Zi = Zmax
(a,b) is the change point. Then we apply

the hypothesis test recursively to the index sets {a, . . . , i} and {i+1, . . . , b}. The process ends when we have

identified indices 1 ≤ i1 < · · · < iK < n as change points but fail to reject H0 for any of the subintervals

{1, . . . , i1}, {i1 + 1, . . . , i2}, …, {iK + 1, . . . , n}.

Circular binary segmentation extends the binary segmentation procedure by testing additional alternative

hypotheses at each stage of the change-point selection. Particularly, we test the union of the
(
b−a
2

)
alternative

hypotheses of the form

H1 : µa = · · · = µi−1 ̸= µi = · · · = µj ̸= µj+1 = · · · = µb = µa for a ≤ i < j ≤ b

Note, that the “circular” part of the test comes from the fact that the alternative hypothesis includes the

“wrap around” equality µb = µa. The motivation for this modification is that it allows greater sensitivity

in finding small segments (indices {i, . . . , j} above) that are nested within the overall segment (indices

{a, . . . , b}), but may have a different mean. There are additional heuristics specified by Olshen et al. [49] to

improve the practical usefulness of the algorithm.
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2.4 Sparse Linear Regression

The next method, introduced by Huang et al. (2005) [32], is based on the sparse linear regression method

know as the Lasso, introduced by Tibshirani (1996) [69]. The Lasso is a modification of the standard ordinary

least-squares fitting process, which allows the procedure to simultaneously perform variable selection. The

Lasso method seeks to minimize the loss function

Lλ(β|y) = ∥y −Xβ∥22︸ ︷︷ ︸
L2 error

+ λ∥β∥1︸ ︷︷ ︸
L1 penalization

,

where y = {y1, . . . , yN} is the observed response vector, X = {xij}N,M
i=1,j=1 is the model matrix, β =

{β1, . . . , βM} is the parameter vector, λ is a hyperparameter controlling the smoothness (or variance) of the

fitting procedure, and ∥·∥p is the Lp norm defined by ∥u∥p=
(∑N

i=1|ui|p
)1/p

for u = {u1, . . . , uN} ∈ RN . The

L1 penalization term constrains the optimal parameter vector β̂λ = argminLλ(β|Y) by shrinking it towards

0 (the M -dimensional zero vector). The larger the hyperparameter λ, the more dominant the penalization

term becomes and the more β̂λ is shrunk towards 0. The Lasso not only shrinks variables towards 0, but

also performs variable selection by shrinking a subset of parameters to exactly 0. The size of this subset will

again depend on λ, and thus λ can also be interpreted as controlling the sparsity of the solution, with larger

λ resulting in sparser solutions. Because the Lasso can be formulated as a convex optimization problem,

efficient algorithms exists for finding the solution.

To apply the Lasso for change-point detection with genomic data, the authors of [32] formulate the

problem first in terms of a linear model. We again let Y = {Y1, . . . , YN} be the random vector for the

observed signal at each position on the genome. We assume that Yi is distributed as

Yi = µi + εi

with unknown nonrandom mean µi and random error term εi ([32] does not specify assumptions on εi).

Note that this problem is trivial as a standard linear regression problem since the number of parameters

equals the sample size and so the ordinary least squares solution (with standard assumptions on {εi}Ni=1)

is simply µ̂i = Yi. However, to incorporate spatial dependence, we constrain the smoothness of the means,

where smoothness is measured by
∑N−1

i=1 |µi+1 − µi|. Thus, the linear regression problem becomes

µ̂ = argminµ

[
N∑
i=1

(Yi − µi)
2 + λ

N−1∑
i=1

|µi+1 − µi|

]
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This can be put into a more standard form for the Lasso by using the change of parameters given by

β1 = µ1,

βi = µi − µi−1 for 2 ≤ i ≤ N

Then we get

β̂ = argminβ

 N∑
i=1

Yi −
i∑

j=1

βj

2

+ λ

N∑
i=2

|βi|


This form with the penalization term, λ

∑n
i=2|βi|, is known as the Lagrangian form [29, p. 68]. However, it

is equivalently expressed in [32] as the constrained regression problem

β̂ = argminβ

N∑
i=1

Yi −
i∑

j=1

βj

2

subject to
N∑
i=2

|βi|≤ s,

where s is the hyperparameter that controls the sparsity of the solution rather than λ. In this form, smaller

s gives a sparser solution. Each term βi can be interpreted as the change in the mean from position i− 1 to

i. The L1 penalization shrinks some βi to 0 and thus the indices i such that β̂i ̸= 0 may be interpreted as the

change points. The sparsity of the solution induced by the hyperparameter λ or s can also be interpreted as

controlling the amount of spatial dependence between adjacent positions, with sparser solutions associated

with greater spatial dependence. This method was originally introduced for detecting DNA copy-number

variation and contains additional post-processing steps to fine tune the results and evaluate their statistical

significance [32].

2.5 Hidden Markov Model Classifier

Yet another approach to account for the spatial dependence is to use a hidden Markov model (HMM) as

proposed by Fridyland et al. (2004) [23]. As in Section 2.4, this approach was also developed for analyzing

DNA copy-number variation data and uses as input the vector of log2 fold changes of copy number between a

test and reference sample, which we denote y = {yi}Ni=1. Note, these are continuous values, which contrasts

with our ribonucleotide count values.

A HMM is a parametric probability distribution on a set YN×SN , where Y is any set and S = {1, . . . ,K}

is a set of K states for some K > 0. Potential choices for Y may be Rp with a multivariate normal

distribution, R with a continuous distribution, {0, 1, . . . , } with a count distribution, or a finite set with a
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categorical distribution. Let (Y,S) =
(
{Yi}Ni=1, {Si}Ni=1

)
denote a random vector representing this space.

The components of Y take on values in ∈ YN , and are known as the emissions of the HMM and are the

observed values of the model. The components of S take on values in Sn, and are unobserved latent variables

or hidden states. A key feature of the HMM is that it models dependence between the Yi. As we show below,

this is indirectly defined through the dependence between adjacent states Si, Si+1, and the dependence of

each emission Yi on the state Si that it is emitted from. We often want to use the observed emissions y to

make inferences about the most likely hidden states s.

Here, we follow the description of HMMs given by Rabiner (1989) [56]. The parameters of a HMM may

be specified as λ = {K,N,A,B,π}, described as follows.

• K: the number of distinct hidden states.

• N : the number of emissions observed. That is, the length of both y and s.

• A = {Aij}K,K
i=1,j=1: a K ×K transition matrix such that ∀t ∈ {1, . . . , n− 1}, ∀s ∈ Sn, Aij = Pr(St+1 =

j|St = i). A is properly defined if and only if ∀(i, j), Aij ≥ 0 and ∀i,
∑K

j=1 Aij = 1.

• B = {B1, . . . , BK}: emission distributions. Each Bk : Y → [0,∞) is a probability density function,

and is interpreted as the emission distribution when the HMM is in state k. That is, Pr(Yi = x|Si =

k) = Bk(x).

• π = {π1, . . . , πK}: the initial probabilities for each state. That is, πk = Pr(S1 = k). π is properly

defined if and only if ∀k, πk ≥ 0 and
∑K

k=1 πk = 1.

Two fundamental properties of HMMs are described in Yoon (2009) [82]. One is the Markov property of

HMMs, which states

Pr(Si+1 = si+1|Si = si, Si−1 = si−1, . . . , S1 = s1) = Pr(Si+1 = si+1|Si = si) = Asisi+1

This means that all the information for determining the value of Si+1 is contained in the value of Si. Another

property, is the conditional independence of the emissions, stated as

Pr(Yi = yi|Si = si, Si−1 = si−1, Yi−1 = yi−1, . . . , S1 = s1, Y1 = y1) = Pr(Yi = yi|Si = si) = Bsi(yi)
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This means that all the information for determining the value of Yi is contained in the value of Si. Using

these properties, we can derive the probability density function of the HMM as

Pr(Y = y,S = s) =

Pr(S1 = s1)

n−1∏
i=1

Pr(Si+1 = si+1|Si = si)Pr(Yi = yi|Si = si) =

πs1

(
n−1∏
i=1

Asisi+1

)(
n∏

i=1

Bsi(yi)

)

As a generative process, the HMM can be thought of as first choosing an initial state according to π,

transitioning to n− 1 new states according to A, and emitting elements according to B at each state.

In the application of HMMs to model DNA copy-number variation by [23], the states are interpreted

as different levels of variation in the log2 fold change yi between the test and control copy number. For

example, one state may capture copy numbers that are similar to the reference (yi ≈ 0), other states may

capture copy numbers that are less than the reference (yi < 0), and other states may capture copy numbers

that are greater than the reference (yi > 0). Several heuristics are used by the authors for model selection

(that is, choosing the number of states) and initializing the model parameters. For emission distributions,

the authors make use of normal distributions since their observations are continuous values. However, as we

model count data, we may employ distributions such as the Poisson and negative-binomial.

HMMs may be fit to observed data using an expectation-maximization (EM) algorithm. Once the fitted

models is obtained, we can use it to perform inferences, such as determining the most likely sequence of

states ŝ = {ŝ1, . . . , ŝN}. This allow us to infer the change points, where ŝi ̸= ŝi+1. It may also allow us to

assign an interpretable class to the segmented regions if the states themselves are interpretable. However, a

potential downside to the HMM approach is the need to specify the number K of hidden states beforehand.

However, procedures for selecting the initial number of hidden states, as well as pruning excess states from

a fitted model is discussed further in [23].

2.6 AIC/CV Window Width Selection

Another method proposed by Gusnanto et al. (2014) [28] seeks to determine a uniform window size

to partition a chromosome for aggregating (or binning) data and determining outlier (or hotspot) regions.

This method approaches the problem using the statistical model selection tools AIC (Akaike’s information

criterion) and CV (cross validation). Both criteria are ways to estimate the model log-likelihood on a new

dataset (rather than the dataset used to fit the model). Again, let y = {yi}Ni=1 be the observed data.

Also, assume that y is count data: ∀i, yi ∈ {0, 1, . . . }. Let Y =
∑N

i=1 yi. The model assumption is that
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y represents Y independent samples from a categorical distribution with N categories and probabilities

p = {pi}Ni=1. That is,

Pr(y|p) =
N∏
i=1

pyi

i

In our case, the ith category represents the ith position on the genome segment being considered. This gives

the following formulas for the likelihood, L, and log-likelihood, LL, given the probabilities p = {pi}Ni=1:

L(p|y) =
N∏
i=1

pyi

i , (2.1)

LL(p|y) =
N∑
i=1

yi log(pi) (2.2)

Since p are probabilities we also have the constraint

∀i, pi ≥ 0 and
N∑
i=1

pi = 1 (2.3)

The probability vector p are the parameters of our model that we make inferences about. To do so, an

additional assumption is made that a histogram will be a good approximation to p. This assumption can

be though of as a means to account for spatial dependence in the model, since histograms are piecewise

constant functions.

For a given window width w ∈ {1, . . . , N}, a histogram is simply a sequence that is constant on

each consecutive window of width w. More formally, it is the set of sequences Hw such that for all

p = {p1, . . . , pN} ∈ Hw, we have ∀i, pi = p⌈i/w⌉. Note, w controls the complexity of our model. In

fact, there are exactly ⌈N/w⌉ parameters since the values {pw, p2w, . . . , pmin(⌈N/w⌉w,n)} fully determine p.

At one extreme, w = 1, we have N parameters, one for every index. At the other extreme, w = N , we have

only one parameter. To find the optimal window width, denoted ŵ, that avoids overfitting or underfitting

the data, we use the AIC and CV log-likelihoods.

First, for any fixed w, we can determine the unique maximum-likelihood estimate (MLE) of p, denoted

p̂w. This estimate may be found by optimizing the right-hand side of Equation 2.2 with the constraint 2.3.

For ease of notation, we define the windows by Wi = {w(i− 1) + 1, . . . , wi} for i ∈ {1, 2, . . . }. Let the count
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in the ith window be given by

vi =
∑
j

j∈Wi
j≤N

yj

Then the explicit MLE, p̂w, is given by

∀i, p̂wi =
vi
Y w

Note, this solution is exact when N is a multiple of w and is an approximation otherwise. The AIC is defined

in terms of the log-likelihood (2.2) and number of parameters (⌈N/w⌉) in the model:

AICw = LL(p̂w|y)− ⌈N/w⌉

Note, this definition differs from that given by [28], since we use the form that estimates the log-likelihood

on new data rather than the conventional definition of AIC. To define the CV, we must introduce additional

notation. Let
{
y(i)
}Y
i=1

be the decomposition of y into Y independent observations. That is, for j = 1, . . . , N ,

for i =
(∑j−1

k=1 yk

)
+ 1, . . . ,

(∑j
k=1 yk

)
, define

y
(i)
l = 1{l = j} for l = 1, . . . , N

Let p̂(−i)
w be the MLE for the observations y−y(i) (all observations except the ith). Then the CV is defined

by

CV w =

Y∑
i=1

log Pr(y(i)|p̂(−i)
w )

The AIC and CV can be algebraically simplified into

AICw =

⌈N/w⌉∑
k=1

yk log(yk)

−N log(Nw)− ⌈N/w⌉ (2.4)

CV w =

⌈N/w⌉∑
k=1

yk log(yk − 1)

−N log((N − 1)w) (2.5)

However, the implemented formula is slightly different (see Section 3.3) to account for i such that yi ≤ 2,

which may make some values in the definitions above undefined. The corresponding optimal window width
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is given by minimizing these quantities over ŵ:

ŵ = argminwAICw

or

ŵ = argminwCV w

Gusnanto et al. (2014) [28] provide an implementation, which we referred to in our own implementation, of

their method in the R package NGSoptwin available at http://www1.maths.leeds.ac.uk/~arief/R/win/.

2.7 Smoothing Spline Method

A final method that we consider here, introduced by Beissinger et al. (2015) [5] is based on the idea of

smoothing the data using cubic smoothing splines. This method may also be considered a way of dealing

with spatial dependence by smoothing the data in a way that accounts for spatial position. In this method,

we assume that we observe points {(xi, yi)}Ni=1 from the model

yi = f(xi) + εi

where f ∈ C2([a, b]) is a function with continuous second derivative, −∞ < a < b < ∞, and ε = {εi}Ni=1 are

uncorrelated random errors with equal variance σ2. That is,

∀i,E(εi) = 0,

∀(i, j),E(εiεj) = σ21{i = j}

We also assume ∀i, xi ∈ [a, b] and ∀i, xi < xi+1. Unlike the other methods used here, the smoothing spline

approach explicitly accounts for potentially unequal spacing between the observed values, y = {yi}Ni=1, by

taking as input the position of each observation, x = {xi}Ni=1.

The goal of this approach is to use a good approximation to the unknown function f using the observed

points. To do so, a class of functions known as cubic splines are used. A cubic spline is a piecewise cubic

polynomial on an interval [a, b]. More precisely, it is a function g : [a, b] → R satisfying the following.

• There exists a partition, {ai}Ki=0, such that a = a0 < a1 < · · · < aK = b, and g is a cubic polynomial

on [ai, ai+1] for all i.

• g′ and g′′ exist and are continuous on [a, b].
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For any λ > 0, the solution, f̂λ, to the optimization problem

f̂λ = argming

[
N∑
i=1

(g(xi)− yi)
2 + λ

∫ b

a

(g′′(t))2 dt

]

for g ∈ C2([a, b]),

is a cubic spline, where C2([a, b]) is the set of all functions with continuous second derivative. The loss

function being minimized above has a natural interpretation. The term
∑N

i=1(g(xi)−yi)
2 captures how much

g deviates from the observed points {(xi, yi)}Ni=1. The term λ
∫ b

a
(g′′(t))2 dt captures the nonsmoothness of

g. That is, large values of g′′ indicates that g has higher curvature and deviates more significantly from a

straight line. The term λ is a hyperparameter that controls the tradeoff between how smooth the solution is

versus how close it comes to interpolating the points. In fact, as λ → +∞, f̂λ approaches the least-squares

line through the points {(xi, yi)}Ni=1. On the other hand, as λ → 0, f̂λ approaches the unique natural spline

that interpolates the points {(xi, yi)}Ni=1 [26]. Thus, λ must be chosen to balance overfitting and underfitting.

An efficient method for selecting the optimal λ is based on the idea of cross-validation, which uses the

data to both fit the model and evaluate the quality of the fit. For each i ∈ {1, . . . , N}, let f̂ (−i)
λ denote the

fitted cubic-spline with the observation i deleted. Formally, this is

f̂
(−i)
λ = argming

 N∑
j=1
j ̸=i

(g(xj)− yj)
2 + λ

∫ b

a

(g′′(t))2 dt


Then the cross-validation error is defined as

Vλ =
1

N

N∑
i=1

(
f̂
(−i)
λ (xi)− yi

)2

Since f̂
(−i)
λ has been fit without using the point (xi, yi), each of the terms

(
f̂
(−i)
λ (xi)− yi

)2
is an estimate

of the squared prediction error in the cubic spline fit. Then, Vλ is the average of these estimates. Thus, to

pick the values of λ with the smallest prediction error, we use λ̂ = argminλVλ. This procedure for selecting

λ was introduced by Wahba and Wold (1975) [71] [72].

To obtain stronger conditions of convergence, Craven and Wahba (1978) [15] introduced generalized

cross-validation (GCV) for selecting λ. To defined GCV, we first express the fitted values,
{
f̂λ(xi)

}N

i=1
, as

{
f̂λ(xi)

}N

i=1
= Aλ(x)y
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where Aλ(x) = {Aλ,ij(x)}N,N
i=1,j=1 is the N×N matrix of coefficients, dependent on x and λ, that determines{

f̂λ(xi)
}N

i=1
as a linear function of y. Such a matrix always exists [26, sec. 2.3]. Then the GCV error Gλ is

defined as

Gλ =
1

N
∥(I−Aλ(x)y∥2

/[
1

N
Tr(I−Aλ(x))

]2
,

where I is the N×N identity matrix and Tr(·) is the trace of a matrix. The GCV error can also be expressed

as

Gλ =

N∑
i=1

wλ,i(x)
(
f̂
(−i)
λ (xi)− yi

)2
where

wλ,i =

[
(1−Aλ,ii(x))

/
1

N
Tr(I−Aλ(x))

]2

Thus, the GCV error is a weighted version of the CV error with weights wλ,i(x) = {wλ,i(x)}Ni=1. The GCV

has been shown by [15] to have stronger convergence guarantees than CV, under certain assumptions.

Once we choose λ̂ and fit the smoothing spline to obtain f̂λ̂, we can use the fitted spline to segment the

interval [a, b]. To do so, we simply take the set of point {a, b} ∪ F , where F is the set of inflection points of

f̂λ. That is,

F =
{
x
∣∣∣f̂ ′′

λ̂
changes signs at x

}

The inflection points are used because the authors have observed that there is usually local minima or

maxima between two consecutive inflection points (although this is not guaranteed). Conversely, let a1, b1

be local extrema of f̂λ such that a ≤ a1 < b1 ≤ b. Then there must always be an inflection point in (a1, b1),

unless f̂λ is a straight line on [a1, b1]. The rationale is that segments capturing a local maxima will be of

interest, since a high peak could indicate a hotspot.

The authors of [5] implement their method in the R package GenWin [4], which we based our own

implementation on.
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CHAPTER 3:

METHODS

To detect ribonucleotide hotspots and study their association with nucleotide composition, we employ

several of the methods outlined in Chapter 2, as well as other custom approaches. For the methods used from

the literature, we describe our custom implementations and how they may differ from that of the original

authors.

3.1 Programming Tools and Packages

For all the analyses described in this thesis, we used the R programming language [54], the suite of

bioinformatics packages known as Bioconductor [33] (including Biostrings [50], GenomicRanges [43], IRanges

[43], annotatr [13], plyranges [45], and rtracklayer [42]) and the suite of data processing packages known as

tidyverse [79] (including lubridate [27], ggplot2 [74], forcats [73], dplyr [78], stringr [75], tidyr [76], readr [77],

purrr [31], and tibble [47]). Other miscellaneous packages include xtable [17] for generating tables. Additional

packages are cited in the following sections where appropriate.

3.2 Preliminary Processing and Binning

As described in Section 1.3, our raw data after mapping and filtering can be thought of as a sequence{(
x
(k)
i , y

(k)
i

)}N(k)

i=1
, where x

(k)
i ∈ {1, 2, . . . } are unique genome coordinates, y(k)i ∈ {1, 2, . . . } is the number

of reads mapping to coordinate x
(k)
i , N (k) is the number of unique coordinates that have at least one read,

and k is the index for each unique combination of sample, chromosome, and strand. In the following, we drop

the index k and assume that the sequence {(xi, yi)}Ni=1 represents the data for a single sample, chromosome,

and strand.

A complication of having both positions xi and read counts yi is the potentially uneven spacing of the

coordinates xi. These is also a lack of information of the explicit zeros in the data (i.e., positions on the

genome that are not mapped to by any reads) since ∀i, yi > 0. As we will see in Section 4.1, some of

the datasets were very sparse, with 10−3 or less ribonucleotides per base, meaning the vast majority of the

genome has zero reads mapping. To mitigate both of these concerns, we perform the following binning on

the data:
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• Pick a window size w ∈ {1, 2, . . . , C}, where C is the length of the chromosome.

• Compute the binned counts, ỹ = {ỹi}⌈C/w⌉
i=1 , as

ỹi =
∑
j,

w(i−1)+1≤xj≤wi

yj

• Define the corresponding coordinates, x̃ = {x̃i}⌈C/w⌉
i=1 , as

x̃i = (i− 1)w + 1

We usually do not explicitly use x̃ in our analyses.

Each ỹi can be interpreted as the aggregate count in the window {(i−1)w+1, . . . , iw}. Thus each ỹi represents

the number of ribonucleotides in equally spaced windows, and windows with zero reads are automatically

accounted for. By choosing a sufficiently large w, we may reduce the noise in our data by pooling nearby

observations, at the expense of loosing precision in the x-coordinates. As suggested by Gusnanto et al.

(2014) [28], the choice of window size should be balanced to improve the accuracy of read density in each

window without sacrificing too much precision in the downstream inferences. In Section 4.2, we implement

their method for estimating the optimal window size. In the following sections, the vector y = {yi}Ni=1

usually represents binned data (i.e., ỹ above), unless specifically mentioned.

Before binning, we also remove ribonucleotides that are in GRCh38 repeat regions. Repeats regions are

regions on the reference genome that are highly repetitive, making it difficult to uniquely identify the position

of reads originating from such positions (since such a read may map equally well to multiple regions). The

repeat region files, which have been created using the RepeatMasker [65] software, are obtained from the

University of California Santa Cruz website (https://genome.ucsc.edu/).

3.3 AIC and CV Windows Width Selection

The process for determining the optimal window width using the AIC and CV is implemented in the R

package NGSoptwin [28], which differs slightly from the method described by Gusnanto et al. (2014) [28]

(see Section 2.6). Assume the following definitions.

• Let w be the window width.

• Let Nw = ⌈C/w⌉ be the number of windows of width w, where C is the length of the chromosome.

• Let y = {yi}Nw
i=1 be the binned ribonucleotide counts using w-width windows (see Section 3.2).
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• Let N∗
w = |{i|yi ≥ 2}| be the number of entries of y with value greater than 1.

• Let y∗ = {y∗k}
N∗

w

k=1 = {yi(k)}
N∗

w

k=1 be the subvector of y consisting of indices {i(k)}N
∗
w

k=1 such that ∀k, yi(k) ≥

2.

• Let Y ∗ =
∑N∗

w
i=1 y

∗
i be the total number of ribonucleotides in windows with at least 2 ribonucleotides.

• Let h = 1/Nw be approximately proportional to the window width.

Then the AIC and CV log-likelihood are defined as

AICw =

N∗
w∑

i=1

y∗i (log(y
∗
i )− log(Y ∗h))

−Nw

CV w =

N∗
w∑

i=1

y∗i (log(y
∗
i − 1)− log((Y ∗ − 1)h))

We require the auxiliary definitions, N∗
w and y∗

w, because the definition of CV is undefined if any entries

have value less than 2. (Author’s note: It is not clear why the definition of AIC also uses N∗
w in NGSoptwin,

since AIC is well defined even if yi = 1 for any i). It is also not clear why h is used in place of w, though,

presumably, this should not affect the results too much.)

3.4 Distribution Fitting

One of our central question is whether the occurrence of ribonucleotides in the genome is “random” or

there is some “nonrandom” pattern to their occurrence. More precisely, we may ask whether the ribonu-

cleotides detected in our samples is modeled well by a simple random generative process, which may indicate

that there is no pattern. A basic null hypothesis we may make is that the ribonucleotides are uniformly

distributed throughout the genome. Though simple to state, such a hypothesis is difficult to test due to

various confounding factors that may occur in the data-gathering process. The first is that the GRCh38

reference genome is incomplete and contains gaps such as in the centromeres (the center of the “X” shape

a chromosome takes when coiled up in the nucleus) of nuclear chromosomes. These gaps are regions in the

reference genome that are filled with the letter N (indicating an unknown nucleotide) instead of A, C, G,

or T, which means that no reads can map to these regions. The windows that are wholly in a gap will

always have read count of zero. This may be partially resolved by ignoring such windows or simply ignoring

windows with zero reads. Another problem is that the enzymes used in the ribose-seq protocol to fragment

the genome do not fragment DNA uniformly, but select specific nucleotide patterns [81]. This may result in

biased estimates of the ribonucleotides distribution at different locations, though this may be less of an issue
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for the Fragmentase enzyme used in this study, since it is supposed to fragment DNA uniformly [9]. Finally,

as we explain in more detail in Section 3.9, the sequencing protocol may itself introduce biases for certain

regions of the genome. Despite these issues, we attempt to analyze the distribution of the raw binned reads

counts as a form of exploratory data analysis.

There are several types of distributions that we consider here. The first are simple parametric distribu-

tions, where were assume that each position is independent and identically distributed (iid). These include

the Poisson and negative-binomial distributions. These are common count distributions that have been used

to model genomic data in different contexts [22]. The Poisson distribution is especially appealing because it

has a simple interpretation: it approximates the expected distribution generated by uniform random sam-

pling across all positions. On the other hand, the negative-binomial is a generalization of the Poisson that

has an additional parameter to allow more flexibility. While this iid assumption may serve as a starting

point, in practice it may be highly unrealistic, even if we omit the gap regions.

Because of the difficulty in modeling the zeros in the data, we tried different variations of the distributions,

such as zero-truncated (nonzero values only) and zero-inflated. To define these distributions, assume that

fθ : {0, 1, . . . } → [0,∞) is the Poisson or negative-binomial probability mass function (PMF) with parameter

vector θ = {θ1, . . . , θK}. That is, fθ(x) = Pr(X = x), for a random variable X that follows the selected

distribution. The zero-truncated variant is the distribution with PMF

f
(ZT)
θ (x) =


fθ(x)

1−fθ(0)
if x > 0,

0 if x = 0

The zero-truncated Poisson distribution and an application has been described by Plackett (1953) [53]. This

distribution may be described as the standard Poisson conditioned on X > 0. Thus, by using it, we assume

that we are only able to observe nonzero values from the distribution and can only model the conditional

part.

The zero-inflated version is a mixture of a point-mass at zero and fθ. If p is the probability of observing

the zero point-mass, the zero-inflated distribution has PMF

f
(ZI)
θ,p (x) =


p+ (1− p)fθ(0) if x = 0,

(1− p)fθ(x) if x > 0

This zero-inflated Poisson has been described by Lambert (1992) [39]. The motivation behind using this

variant is that there may be a different process that governs the generation of the zeros due to the point-
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mass component and those due to fθ. For instance, there may be regions on the genome for which it is

impossible to observe ribonucleotides (zero point-mass component), while for the remaining regions there

may be a small constant probability of observing a ribonucleotide (Poisson component). This contrasts with

the zero-truncated distribution where we assume no knowledge of the zeros.

Finally, although we do not show the results here, a more complicated distribution is the hidden Markov

model (HMM). This model allows us to model each position on the genome as a mixture of distributions, using

latent states (or hidden states) that determine which distribution is observed. Moreover, the distributions

of the hidden states form a Markov chain. HMMs are described in more detail in Section 2.5.

To fit the distributions we use two R packages: gamlss [59] [67] [66] (non-HMM distributions) and

depmixS4 [70] (HMM distributions). We use the gamlssML function in the gamlss package to fit the Poisson

and negative-binomial models (or their zero-inflated or zero-truncated variants). We use the makeDepmix,

fit, and posterior functions from the depmixS4 package to fit HMM models and infer the most likely

hidden states in the fitted model.

3.5 Determination of Hotspots With Distributions

The determination of ribonucleotide hotspots in our data can be thought of as a hypothesis testing

problem. Our null hypothesis is that our data originated through a random process described by one of the

parametric iid models described in Section 3.4. Let fθ̂ : {0, 1, 2, . . . } → [0,∞) be a parametric distribution,

where θ̂ denotes the fitted parameters using the observed values {yi}Ni=1. We may then obtain p-values,

pi = Pr(Yi ≥ yi|θ̂) =
∑∞

x=yi
fθ̂(x), giving the probability of observing a value equal to or more extreme than

yi under the null hypothesis. To determine p-value cut-offs for classifying positions as hotspots (those that

would be highly unlikely under the null hypothesis) we may use a criteria for multiple hypothesis testing.

Let α be the chosen level of significance (e.g., α = 0.05). To control the familywise error rate (FWER) at α,

we may use the Bonferroni criteria pi < α/N . Alternatively, we could control the false-discovery rate (FDR)

by using the Benjamini-Hochberg [6] criteria pi ≤ p(i∗), where {p(i)}Ni=1 are the order statistics of {pi}Ni=1

and i∗ = max{i|p(i) < i
N α}.
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3.6 Smoothing-Spline Windows

To implement the smoothing-spline method introduced by Beissinger et al. (2015) [5], we start with the R

implementation provided by the authors in the R package GenWin [4]. In this package, the smoothing spline

is fit with the function smooth.Pspline from the R package pspline [35]. We use the argument method = 3

in this function to use the GCV criterion (see Section 2.7) for estimating the optimal smoothing parameter.

We use the argument norder = 2 to fit a cubic spline.

The raw input to the smooth.Pspline function is the vector of ribnucleotide counts, {yi}Ni=1, and posi-

tions, {xi}Ni=1. The initial window width, w, used to create these inputs is determined in terms of the total

number of ribonucleotides detected in the sample, Y =
∑N

i=1 yi. We define it by w =
⌈
rC
Y

⌉
, where C is the

length of the chromosome and r > 0. Equally-spaced windows of width w will contain r ribonucleotides

on average. We arbitrarily choose r = 5 in the actual analysis since it appeared to give reasonably-sized

windows. Since the windows are fixed width, we have ∀i, xi = w(i− 1) + 1.

The output from smooth.Pspline can be described as two vectors {vi}Ni=1, {v′′i }Ni=1, which are the fitted

value of the spline and its second derivative, respectively, at {xi}Ni=1. We then determine the roots of the

second derivative as the set R = {xi|i = 1, . . . , N and sign(v′′i ) ̸= sign(v′′i+1)}, where

sign(a) =


−1 if a < 0,

0 if a = 0,

1 if a > 0

The boundaries of the windows are then the set W = {1} ∪R ∪ {C}.

3.7 Similarity Metrics

We are also interested in whether there are features of the ribonucleotides counts that are conserved

across different samples and cell types. To make this question more precise, let y(s) =
{
y
(s)
i

}N

i=1
denote the

binned ribonucleotide counts, where the superscript s denotes the sample. We are interested in how similar

are a pair of samples
{
y(1),y(2)

}
are or even a larger collection of K samples

{
y(1), . . . ,y(K)

}
. To quantify

this, let T : RK×N → R be a function that maps the matrix
[
y(1), . . . ,y(K)

]
(here we assume each y(i)

is a column vector) to a real number. We define the different similarity (or dissimilarity) measures in the

following subsections.
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3.7.1 Spearman Correlation

This follows the definition of the function cor with method = "spearman" in the base R language [55].

We first define the rank function, R : RN → RN , by

R(y)i =

 N∑
j=1

1{yj < yi}

+
1

2
+

1

2

 N∑
j=1

1{yj = yi}


That is, R(y)i is rank of yi in the overall vector y, where ties are given the midpoint of the tied ranks (e.g.,

if ranks 3, 4, and 5 have the same value, they are all given a rank of 4). Then the Spearman correlation is

defined as

r(1) = R(y(1)) =
{
r
(1)
i

}N

i=1
,

r(2) = R(y(2)) =
{
r
(2)
i

}N

i=1
,

Tspear

(
y(1),y(2)

)
=

∑N
i=1

(
r
(1)
i − r

(1)
·

)(
r
(2)
i − r

(2)
·

)
√(∑N

i=1

(
r
(1)
i − r

(1)
·

)2)(∑N
i=1

(
r
(2)
i − r

(2)
·

)2)

where ā· =
1
N

∑N
i=1 ai denotes the vector mean for any vector a = {ai}Ni=1. The Spearman correlation is

equivalent to the Pearson correlation between the vectors
{
r
(1)
i

}N

i=1
and

{
r
(2)
i

}N

i=1
.

3.7.2 Lp Distance

The Lp distance, denoted ∥·∥p, where p > 0, is a pairwise dissimilarity measure defined by

∥y∥p=

(
N∑
i=1

|yi|p
)1/p

,

T (y(1),y(2)) =

∥∥∥∥ y(1)

∥y(1)∥p
− y(2)

∥y(2)∥p

∥∥∥∥
p

We normalize the vectors before subtracting to account for differences in the number of ribonucleotides

detected in different libraries. For example, if p = 1, normalizing the vectors ensures that each sums to 1,

making them probability mass functions.
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3.7.3 Hotspot Similarity

The purpose of the hotspot similarity measure is to check whether the regions of relatively high ribonu-

cleotides in each sample occur in similar locations on the genome. It can be considered as a means of

smoothing the data by ignoring the low-count regions, which may have lower signal-to-noise ratios. For a

given p ∈ [0, 1], the hotspot indicator of y = {yi}Ni=1 is defined by

Op(y)i = 1{yi ≥ quantile(y, 1− p)} (3.1)

The empirical quantile above is computed using the base R function quantile with the argument type = 7

(default). This function sets the empirical quantile of the p = k−1
N−1 to the kth order statistic of {y1, . . . , yN}

for k = 1, . . . , N , and linearly interpolates between these values for p ∈
(

k−1
N−1 ,

k
N−1

)
. Then the p-hotspot

similarity between y(1) and y(1) is defined as the Jaccard similarity of Op

(
y(1)

)
and Op

(
y(2)

)
, which is

T
(
y(1),y(2)

)
=

∑N
i=1 1

{
Op

(
y(1)

)
i
> 0 and Op

(
y(2)

)
i
> 0
}∑N

i=1 1
{
Op

(
y(1)

)
i
> 0 or Op

(
y(2)

)
i
> 0
}

This value is 1 if the two indicator functions are positive on identical sets and 0 if their positive sets are

disjoint.

3.7.4 Multiple-Sample Hotspot Indicators

In addition to the pairwise similarity measure, we also consider a measure of the overall similarity between

an arbitrary number of samples y(1), . . . ,y(K) for K ≥ 2. We define the individual hotspot sets Op(y) as in

Equation 3.1 and define the joint hotspot indicator by

O
(
y(1), . . . ,y(K)

)
i
=

K∑
k=1

Op

(
y(k)

)
i

(3.2)

Thus, O
(
y(1), . . . ,y(K)

)
i
indicates the number of samples that have a common hotspot at position i. To

summarize the overall degree of overlap, we may consider statistics such as the maximum value of this

function,

T
(
y(1), . . . ,y(K)

)
= maxNi=1O

(
(y(1), . . . ,y(K)

)
i
,
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or the number of indices where a value greater than a threshold, h, is reached,

T
(
y(1), . . . ,y(K)

)
=

N∑
i=1

1{O
(
y(1), . . . ,y(K)

)
i
≥ h}

3.8 Permutation Tests

To quantify the significance of the various properties, such as similarity between the sample, we use

Monte Carlo permutation tests. Permutation tests have been employed by tools such as the regioneR [24]

R package and others reviewed in [21]. While we have referred to these sources for the methodology, our

implementations are custom written.

In the traditional permutation test, we are given a vector of observations y = {y1, . . . , yN}, a test statistic

T : RN → R, and the set SN of all permutations of {1, . . . , N}. Then, as shown by Phipson and Smyth

(2010) [51], we may compute a one-sided p-value of the null hypothesis

H0 : yi are independent and identically distributed (iid)

by

p =

∑
σ∈SN

1{T (y ◦ σ) ≥ T (y)}
|SN |

where y ◦ σ = {yσ(1), . . . , yσ(N)} and |SN |= N ! is the number of elements in SN . In situations where it

may be infeasible to try every permutation in SN , they show that we may perform the test on a random

subsample of SN with K < |SN | elements. The subsample, S′ = {σ1, . . . , σK}, may be either chosen with

or without replacement from SN . Then the one-sided p-value can similarly be computed by

p =
1 +

∑K
k=1 1{T (y ◦ σk) ≥ T (y)}

1 +K

In all cases, [51] shows that this expression for the p-value properly controls the type-I error, though the test

may be overly conservative under certain conditions.

The work of Hemerik and Goeman (2018) [30] extends the permutation test to a more general setting that

we use here. Instead of considering all permutations of the indices, we consider only a subgroup G ⊆ SN .

That is, G is a subset of SN such that

• σid ∈ G (where σid is the identity permutation);
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• for any σ1, σ2 ∈ G we have σ1 ◦ σ2 ∈ G; and

• for any σ ∈ G we have σ−1 ∈ G.

Our motivation for using a restricted subgroup is to make our null hypothesis more restricted and thus more

conservative. Hemerik and Goeman (2018) [30] prove analogous expressions for the permutation p-values

when using permutations only in G. We assume K > 0 is fixed and G′ = {σ1, . . . , σK} is a subsample of G

chosen with replacement. Then the one-sided p-value can be calculated by

p =
1 +

∑K
i=1 1{T (y ◦ σk) ≥ T (y)}

1 +K
(3.3)

The null hypothesis is the more general

H0 : ∀σ ∈ G,T (y ◦ σ) d
= T (y) (3.4)

where d
=means identically distributed. Though we have shown only one-sided p-value formulas, the analogous

two-sided p-value to (3.3) can be calculated by

p =
2
[
1 + min

(∑K
k=1 1{T (y ◦ σk) ≥ T (y)},

∑K
k=1 1{T (y ◦ σk) ≤ T (y)}

)]
1 +K

(3.5)

We use these type of permutation tests to judge how strong the association between samples is. For the

multiple sample statistics, T : RN×S → R, explained in Section 3.7, we consider our observed values to be

the matrix y =
[
y(1), . . . ,y(S)

]
(each y(s) is assumed to be a column vector). Then we may consider the

group of permutations G that are invariant on the indices of each column. That is, for all σ ∈ G and all

s = 1, . . . , S, we have

σ
(
{(i, s)}Ni=1

)
= {(i, s)}Ni=1

The assumption is that for each sample s the observations, y(s) =
{
y
(s)
i

}N

i=1
, are identically distributed. We

may also consider more conservative tests that leave finer partitions of the index set invariant. For example,

we may find a partition {Pq}Qq=1 of the set {1, 2, . . . , N} and let G be the permutations that are invariant on

each Pq × {s} = {(p, s)|p ∈ Pq} for q = 1, . . . , Q and s = 1, . . . , S. A simple way to form the partition is to

select a positive integer h and let Pq be the consecutive indices {(q − 1)w + 1, (q − 1)h+ 2, . . . ,min(qh,N)}

for q = 1, . . . ,
⌈
N
h

⌉
. Note, in all the permutation results reported in Chapter 4, we use h = 2, which we

sometimes refer to as the adjacent swapping scheme. This means, for all s, for q = 1, . . . ,
⌈
N
2

⌉
, we allow each
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pair
{
y
(s)
2q−1, y

(s)
min(2q,N)

}
to be randomly swapped. The null hypothesis is then that for all s and all q, we

have y
(s)
2q−1 and y

(s)
2q are identically distributed.

Another way to restrict the permutations may be to only allow the nonzero elements of each sample to be

permuted, since we may be unable to judge whether the zeros are due to artifacts in the reference genome such

as gaps (i.e., the unknown regions on the genome) or variability in the data collection. However, the latter

methods selects the permutations in a data-dependent manner, which may invalidate the permutation test.

Thus, an alternative way may be to exclude the known gaps or repeat regions from consideration. In some

analyses we remove indices i such that the ith binning window (see Section 3.2), {w(i−1)+1, . . . ,min(wi,C)},

lies fully in a gap.

After selecting the subgroup G we perform a one-sided or two-sided permutation test to determine

whether the observed similarity measure between the samples is consistent with what would be observed

under the null-hypothesis (3.4). If the test is rejected, we hope to establish that there is a position-dependent

pattern in the observed ribonucleotides that holds across multiple independent cell types. However, it is

important to note that the validity of this conclusion relies on the null hypothesis (or, equivalently, the

chosen permutations) being a biologically realistic assumption. Here, we do not attempt to justify the

permutation approach on biological grounds but simply report the results. However, for future study it may

be important to use a permutation strategy that is more grounded in theory (see Chapter 5 for a discussion).

3.9 DNA-Seq Coverage

A potential bias that may affect our analyses is unequal read coverage of different parts of the genome.

When analyzing a sample, the coverage of a position on the genome refers to how many reads overlap that

position. Ross et al. (2013) [60] have observed that some sequencing technologies may exhibit bias for certain

regions of the genome. For example, this may occur due to a systematic bias for regions with an optimal GC

content. These biases in the DNA sequence coverage may translate into biases in the ribonucleotide counts,

since ribonucleotides are detected by sequencing DNA reads (after performing several additional steps to

ensure that the read represents a ribonucleotide). Thus, we would like to ensure that the regions detected as

ribonucleotide hotspots are not simply due to biased coverage in that part of the genome, but truly reflect a

higher quantity of ribonucleotides in that area. To determine whether there is biased coverage in the DNA

reads, we perform DNA sequencing experiments without the additional steps for detecting ribonucleotides.

When we map these reads to the genome, we obtain a vector of background coverage values, z = {zi}Ni=1,

where each zi is the average number of reads overlapping window i (or the average coverage). Then we

visually compare this with the ribonucleotide vector y = {yi}Ni=1 to determine whether appears to be any
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systematic association between the two vectors. This may be a linear relationship, where we expect y ≈ αz

for some scaling constant α, or it may be nonlinear, where we would expect there would be some other strictly

monotonic function f : R → R such that ∀i, yi ≈ f(zi). We quantify the strength of the relationship in the

same way we handled the pairwise comparisons of ribonucleotide vectors, by using a correlation coefficient

and testing the significance using a permutation test.

An alternative method to visualize the correlation between y and z is to plot the vector of fold changes

in the empirical densities. We first define the empirical densities by y∗ =
{
yi/
∑N

j=1 yj

}N

i=1
and z∗ ={

zi/
∑N

j=1 zj

}N

i=1
. Then we define the fold change of the densities by {y∗i /z∗i }Ni=1. Plotting these values

would then give us an indication of how similar the empirical densities y∗ and z∗ are at each position.

As some of raw values zi are outliers, we perform additional outlier removal. First, define µ̂ to be the

sample median and σ̂ to be the median absolute deviation:

µ̂ = medianNi=1zi,

σ̂ =
1

Φ−1(3/4)
medianni=1|zi − µ̂|

The definition for σ̂ above is the default used by the mad function in R [55]. The scaling constant 1
Φ−1(3/4)

is used to make it a consistent estimator for the standard deviation if z iid normally distributed. Outliers

are defined as windows i such that

zi − µ̂

σ̂
> 4

where the threshold 4 was chosen heuristically by trial and error as it removed the outliers when binning

with 100kb windows.

3.10 Kmer Correlation

We are also interested in examining the association of the ribonucleotides with the nucleotide composition

of the genome. From a computational standpoint, nucleotides are simply the string of letters over A, C,

G, and T that make up the genome. These letter do no occur with uniform frequency across the reference

genome GRCh38. For example, the GC content (frequency of the letters G and C) is around 40.9% [52]

in the human genome (making the AT content around 59.1%). Further, certain nucleotide motifs may be

associated with biological functions, such as to indicate regions that code for proteins.

To study the association of ribonucleotides with nucleotide motifs, we focus on motifs known as kmers.

Given a positive integer k, the length k kmers are the 4k strings of length k over the alphabet {A, C, G, T}.
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For example, the length 1 kmers are {A, C, G, T} and the length 2 kmers are {AA, AC, AG, AT, CA, CC,

CG, CT, GA, GC, GG, GT, TA, TC, TG, TT}. Any nucleotide sequence S = s1s2 · · · sn of length n can be

decomposed into n− k+1 overlapping kmers. For example, for k = 3 we get s1s2s3, s2s3s4, …, sn−2sn−1sn.

A simple way to summarize the kmers in S is to map S to a vector of counts of each kmer of length k. For

any kmer u, we define T (u)(S) =
∑n−k+1

i=1 1{sisi+1 · · · sn = u}, which counts the number of times u appears

in S.

Since we study the binned counts of ribonucleotides y = {yi}Ni=1, where w is the binning window size,

N = ⌈C/w⌉, and C is the chromosome length (see Section 3.2), we form an analogous sequence for the

kmers. Let the nucleotide sequence of the chromosome be S = s1s2 · · · sC . Then for a kmer u, we define the

count vector of u by z(u) =
{
z
(u)
i

}N

i=1
by

z
(u)
i = T (u)(sw(i−1)+1sw(i−1)+2 · · · swi)

Just as we examine the correlation between the ribonucleotides of different samples, we can also examine

the correlation of the ribonucleotides vectors with the kmer count vectors. We may also apply similar

permutation tests as described in Section 3.8, although in this case we only permute the sample y while

keeping z(u) fixed.

3.11 Annotation Correlation

Similarily to the kmer correlation analysis of Section 3.10, we also study the correlation of ribonucleotides

with existing annotations of the genome. For our purpose, an annotation can be considered a sequence of

genome intervals with labels. That is, a sequence of triples A = {(si, ei, li)}Mi=1, where si is a start position,

ei is an end position, and li is a label. The label will usually indicate something of biological importance

such as “gene”. These annotations have been previously discovered through a combination of computational

and experimental means and are now available on publicly available databases. The annotations we use

are available in the R packages TxDb.Hsapiens.UCSC.hg38.knownGene [68] and org.Hs.eg.db [11], and are

processed using the R package annotatr [12]. The annotations used from these databases are the CpG

islands, exons, and promoters, though we do not describe their biological meaning here.

We summarize the annotations in a similar way to the ribonucleotide and kmer data, by counting the

number of distinct annotations in windows of a fixed width (see Section 3.2). We obtain a vector of counts

z = {zi}Ni=1, where each zi is the number of the elements of A that overlap with window i. An annotated

interval (si, ei, li) is considered to overlap with a window if any of the coordinates in the interval {si, . . . , ei}

overlap with the window. This allows an annotated interval to overlap with multiple windows. We analyze
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a in an analogous way to the kmer vectors: by visualization, pairwise correlations with the ribonucleotide

vectors, and permutation tests.
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CHAPTER 4:

RESULTS

4.1 Data Summary

In this exposition we focus on the six ribose-seq libraries described in Section 1.3. Although our project has

involved additional libraries, we focus on these for brevity in the computations and exposition. We also focus

on the data for chromosome 1 in the GRCh38 reference genome. Again, this is to reduce the computational

expense although we plan to analyze the other chromosomes in the future. However, chromosome 1 is the

largest chromosome in the human genome with approximately 249 million base pairs.

Table 2 shows the summary statistics of each of the samples. We see that our datasets are generally quite

sparse, with between 10−4 and 10−2 reads per base. This motivates the use of binning with large windows

as described in Section 3.2. Table 4 shows the number of reads per window for different binning window

widths, though we mostly use the widths 100kb and 1mb in this study. Throughout this section we use the

abbreviations: “b” (bases), “kb” (kilobases or 1,000 bases), and “mb” (megabases or 1,000,000 bases).

One major distinction in the samples is the number of reads in the knockout (KO) samples versus the other

samples. Due to their nonfunctional RNASEH2A gene, the ability of these cells to remove ribonucleotides

from the genome is impaired. Thus, they are expected to have more ribonucleotides than the other samples.

As explained in Section 3.2, we have removed the repeat regions. For comparison, we also show the data

summaries with the repeat regions retained in Table 3. A substantial portion of the detected ribonucleotides

are removed when ignoring repeat regions because the repeat regions account for roughly half of the genome

(see Section 3.2).

Figure 1 shows the ribonucleotide distribution across the chromosome. We see that the distributions look

similar across each of the samples, indicating that ribonucleotide occurrence may be similar across different

human cell types.
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4.2 Window Width Selection

As described in Section 3.3, we use the AIC and CV criterion to determine reasonable window widths.

We use this method only as a suggestion, since our choice of window width is also based on other factors

such as computational cost (smaller window widths result in more data points), and ease of presentation and

interpretation. Figure 2 shows the plot of AIC and CV log-likelihood versus window width. The optimal

window width is indicated by the dotted line. We see that the AIC selects window widths of 1kb to 100kb,

with at least half of the samples selecting 100kb as optimal for both the + and - strands. The CV results

do not appear to be quite as informative since the curves are monotonically decreasing in most samples and

usually the smallest window width of 1kb is selected. This may indicate that the CV criteria would choose

much smaller window widths or that it is unsuitable for these datasets. Though we originally chose 100kb

windows arbitrarily to perform statistical analyses, the AIC results seem to suggest that 100kb is indeed an

appropriate choice. However, when presenting figures with chromosome position on the x-axis, we usually

use 1mb for greater clarity, since with 100kb windows there are too many data points. To get a rough idea

of the scale of these window widths, the average size of a gene on chromosome 1 is around 36kb (obtained

by author using the TxDb.Hsapiens.UCSC.hg38.knownGene [68] R package) and chromosome 1 is around

249mb.

4.3 Sample Similarity

Figure 3 shows the pairwise Spearman correlation between the samples. We choose to show the Spearman

correlation since it may better indicate nonlinear monotonic relationships between vectors compared to the

Pearson correlation. With the exception of sample FS326, all the coefficients are greater than 0.75 indicating

a strong positive correlation. Sample FS326 had the smallest number of ribonucleotides detected and thus

may also have the smallest signal-to-noise ratio. To check the significance of the correlations, we use the

adjacent swapping permutation scheme described in Section 3.8. One thousand permutations were used for

each pair. All correlations tested significant at at 1% level. In fact, in all pairs, none of the permuted samples

had correlations as large as the observed value.

Next, we look at the similarity of all six sample simultaneously using the hotspot indicators. In Figure

4 we see the 1%-hotspots (windows that are in the top 1% of ribonucleotides counts within a sample) along

chromosome 1. There are several regions where several samples have hotspots in the same position. To

quantify this, we show the number of samples (y-axis) that have a hotspot at each position (x-axis) in Figure

5. There are several positions where more than half the samples (≥ 3) have a hotspot in the same position.
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We again perform a permutation test to check the significance of the results in Figure 6. The test statistic

is the number of positions (in 100kb windows) such that at least half the samples (≥ 3) had a hotspot the

same position. The figure shows both the permutation distribution and the observed value. The adjacent

swapping permutation scheme is used (see Section 3.8). The p-value for the + strand is 0.09 and for - strand

is 0.03. This is moderate evidence that such shared hotspots could not have occurred by chance, though

further evidence may be needed.

4.4 Distribution Fitting

Figure 7 shows the zero-truncated Poisson distribution and Figure 8 shows the zero-truncated negative-

binomial fit to the data. As discussed in Section 3.4, we show the zero-truncated versions of the distributions

because of the challenge in determining the true frequency of zeros in the empirical distribution. We clearly

see that the negative-binomial provides a significantly better fit to the data, which is expected because the

negative-binomial is more flexible than the Poisson. Although the distributions appear to fit well for some of

the samples, formal goodness-of-fit tests (not shown here) indicate that the fit is poor. This may be because

the sample sizes are relatively large (> 2000 when binned into 100kb windows) and small deviations may

be statistically significant. However, a formal statistical analysis of the empirical distributions within each

sample may not be relevant as it is not clear whether the ribonucleotide counts in different windows can be

considered independent observations, since they come from the same physical specimen.

4.5 Kmer Correlation

Figure 9 shows the ribonucleotide frequency of sample FS185 versus the frequency of kmers A and C

along chromosome 1 (+ strand). We show only a single sample since, as observed in Section 4.3, most of the

samples are highly correlated. We only show A and C because A and T are highly correlated, and C and

G are highly correlated. Instead of showing the raw count of ribonucleotides and kmers, we use the rank

transformation on the y-axis, as described in Section 3.7.1. This means the window with the smallest count

is assigned a value of 1, next smallest 2, and so on (ties are assigned the median value of the tied ranks).

This allows us to more clearly see the similarity between the curves, such as when a nonlinear monotonic

relationship exists between them. Moreover, the Spearman correlation coefficient is a function of these rank-

transformed curves (see Section 3.7.1). The most striking feature is the strong positive correlation between

the C curve and the ribonucleotide curve, and the strong negative correlation between the A curve and the

ribonucleotide curve. This is confirmed by the pairwise Spearman correlations between the kmer vectors and

ribonucleotide vectors in Figure 10. We see that the ribonucleotides are positively correlated with C and
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G, and negatively correlated with A and T. This can be summarized as saying that the ribonucleotides are

positively correlated with the GC content, the sum of the frequencies of C and G.

4.6 Annotation Correlation

We first summarize the three types of annotated regions used in this analysis (CpG islands, exons, and

promoters) in Table 5. Figure 11 shows the line graphs of the ribonucleotides alongside the three annotation

count vectors. Like the kmer correlation analysis in Section 4.5, there appears to be a correlation between

the ribonucleotides and each of the annotated features. This is confirmed by Figure 12, which shows the

Spearman correlation between the ribonucleotide and annotation vectors. We again performed a permutation

test using the adjacent swapping permutation scheme (see Section 3.8) to obtain significant p-values at a 1%

significance level.

4.7 DNA-Seq Coverage

We obtained DNA-seq libraries for the four types of enzymes used in the ribose-seq library preparation

[38]: F (Fragmentase), RE1 (restriction enzyme set 1), RE2 (restriction enzyme set 2), and RE3 (restriction

enzyme set 3). For some figures and tables, we only show the Fragmentase DNA-seq data, since we only use

the six ribonucleotide libraries prepared with Fragmentase (see Section 1.3). Figure 13 shows the coverage

of all four of the DNA-seq samples across chromosome 1. Despite using different enzymes to fragment the

DNA, they are all remarkably similar, indicating that the DNA-seq coverage estimates have low sampling

variation (at least when using appropriately-sized windows). Figure 13 shows the DNA-seq coverage versus

the ribonucleotide samples. The figures are binned using 1mb windows. Visually, we see that there does

not appear to be a strong correlation between the ribonucleotides and the coverage. However, when we bin

with 100kb windows and compute the Spearman correlation, we see that the correlations are in the range

0.35-0.55 (Figure 14). Additionally, applying the adjacent-swapping permutation test (see Section 3.8) shows

that the correlations are significant. Assuming this permutation strategy is reasonable, this may suggest

that the ribonucleotide counts are biased by the nonuniform coverage in the sequencing process.
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4.8 Smoothing Spline Hotspots

Since the spline method for determining window boundaries results in unequally-sized windows, we

summarize the window widths for each sample in Figure 15 and Table 6. Notably, for many samples it

appears that the median spline window widths have comparable magnitudes to the window widths selected

by AIC (Section 4.2). Since the window widths are unequally sized, we compute the density by

density =
total ribonucleotides in window

width of window

The histogram of window densities are shown in Figure 16. We see some of the distributions have long

right tails, indicating possible hotspots with relatively high ribonucleotide densities. We define hotspots

quantitatively as the windows whose density falls in the top 1% for that sample. Again, since the windows

cover different widths, we summarize the number of hotspot windows in each window and the fraction of

the chromosome that they cover in Table 7. Not surprisingly, the percentage of the chromosome covered by

the hotspots is generally between 0.75% and 1.5% for all the libraries (except FS326, the outlier dataset).

However, we see that the corresponding percentage of ribonucleotides in the sample is around 2 to 7 times

the chromosome percentage, indicating that the hotpsot windows contain more ribonucleotides than would

expected based on their size. Finally, in Figure 17 we show the hotspot windows along the chromosome.

There appear to be certain regions, especially towards the 0mb end of the chromosome, that are shared

hotspots for multiple samples.

37



Table 2. Summary of ribonucleotide counts. Chromosome 1. + strand (A). - strand (B). Chromosome 1
size ≈ 249mb. RPB = “ribos per base” (ribonucleotides divided by chromosome length).

A
Sample Cell Enzyme Ribos RPB
FS185 CD4T F 26,950 1.08e-04
FS197 hESC-H9 F 19,589 7.87e-05
FS198 hESC-H9 F 28,097 1.13e-04
FS326 HEK293T-WT F 6,140 2.47e-05
FS327 HEK293T-RNASEH2A-KO-T3-17 F 145,266 5.83e-04
FS329 HEK293T-RNASEH2A-KO-T3-8 F 512,358 2.06e-03

B
Sample Cell Enzyme Ribos RPB
FS185 CD4T F 26,496 1.06e-04
FS197 hESC-H9 F 19,620 7.88e-05
FS198 hESC-H9 F 28,397 1.14e-04
FS326 HEK293T-WT F 6,228 2.50e-05
FS327 HEK293T-RNASEH2A-KO-T3-17 F 145,649 5.85e-04
FS329 HEK293T-RNASEH2A-KO-T3-8 F 510,854 2.05e-03

Table 3. Summary of ribonucleotide counts (with repeat regions retained). Chromosome 1. + strand (A).
- strand (B). Chromosome 1 size ≈ 249× 106bp). RPB = “ribos per base” (ribonucleotides divided by
chromosome length).

A
Sample Cell Enzyme Ribos RPB
FS185 CD4T F 54,281 2.18e-04
FS197 hESC-H9 F 40,686 1.63e-04
FS198 hESC-H9 F 62,011 2.49e-04
FS326 HEK293T-WT F 13,219 5.31e-05
FS327 HEK293T-RNASEH2A-KO-T3-17 F 282,862 1.14e-03
FS329 HEK293T-RNASEH2A-KO-T3-8 F 925,309 3.72e-03

B
Sample Cell Enzyme Ribos RPB
FS185 CD4T F 53,919 2.17e-04
FS197 hESC-H9 F 40,798 1.64e-04
FS198 hESC-H9 F 62,163 2.50e-04
FS326 HEK293T-WT F 13,406 5.38e-05
FS327 HEK293T-RNASEH2A-KO-T3-17 F 282,745 1.14e-03
FS329 HEK293T-RNASEH2A-KO-T3-8 F 925,503 3.72e-03
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Figure 1. Ribonucleotides vs. chromosome position. Chromosome 1. + strand (left). - strand (right).
Window width = 1mb.

Table 4. Mean ribonucleotides per window for different windows widths. Chromosome 1. + strand (A). -
strand (B).

A
Sample 1kb 10kb 100kb 1mb 10mb
FS185 0.12 1.17 11.66 116.16 1122.92
FS197 0.08 0.85 8.48 84.44 816.21
FS198 0.12 1.22 12.16 121.11 1170.71
FS326 0.03 0.27 2.66 26.47 255.83
FS327 0.63 6.30 62.86 626.15 6052.75
FS329 2.22 22.22 221.70 2208.44 21348.25

B
Sample 1kb 10kb 100kb 1mb 10mb
FS185 0.11 1.15 11.47 114.21 1104.00
FS197 0.09 0.85 8.49 84.57 817.50
FS198 0.12 1.23 12.29 122.40 1183.21
FS326 0.03 0.27 2.69 26.84 259.50
FS327 0.63 6.32 63.02 627.80 6068.71
FS329 2.22 22.15 221.05 2201.96 21285.58
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Figure 2. AIC and CV log-likelihood vs. window width. Optimal width indicated by dotted line.
Chromosome 1. + strand (A). - strand (B).

Table 5. Summary of annotated features. “N” is the total number of features. “Width median” is the
median width in bases. Strand “*” indicates a feature that exists on both strand of the chromosome. All
promoters in the dataset had width 1000b. Chromosome 1.

Strand Feature N Width median
* CpG islands 2535 583
+ Exons 79786 133
+ Introns 68169 1524
+ Promoters 11617 1000
- Exons 72089 130
- Introns 61313 1345
- Promoters 10776 1000

Table 6. Median window widths obtained using spline method. Chromosome 1. + and - strand indicated
in column name.

Sample Median width (+) AIC (+) Median width (-) AIC (-)
FS185 231kb 100kb 235kb 100kb
FS197 318kb 100kb 254kb 100kb
FS198 266kb 10kb 263kb 100kb
FS326 7.5mb 100kb 4.8mb 100kb
FS327 51kb 10kb 43kb 10kb
FS329 9.7kb 1kb 9.7kb 1kb
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Figure 3. Spearman correlation between pairs of samples (A, B). Two-sided permutation p-values with
1000 permutations (C, D). Chromosome 1. + strand (A, C). - strand (B, D).
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Figure 4. Each segment represents a 100kb hotspot window. A hotspot is a window whose ribonucleotide
count is in the top 1% of windows in the sample. Chromosome 1. + strand (A). - strand (B).
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Figure 5. Hotspot indicators. Each vertical bar is the number of samples with a hotspot in that position.
A hotspot is a window whose ribonucleotide count is in the top 1% of windows in the sample (see Figure
4). There are several positions where at least three out of the six samples share a hotspot. Chromosome 1.
+ strand (A). - strand (B). Window width = 100kb.
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Figure 6. Permutation analysis to check the significance of the shared hotspots in Figure 5. We permute
the data 1000 times using the adjacent swapping scheme (see Section 3.8) and evaluate the number of
positions with ≥ 3 samples sharing a hotspot. The permuted values are black bars and the observed value
is a red line. Chromosome 1. + strand (A). - strand (B). Window width = 100kb.
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Figure 7. Histograms of zero-truncated Poisson distributions (green) fit to the data (orange). Window
width = 100kb. Chromosome 1. + strand (A). - strand (B).
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Figure 8. Histograms of zero-truncated negative-binomial distributions (green) fit to the data (orange).
Window width = 100kb. Chromosome 1. + strand (A). - strand (B).
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Figure 9. Ranks of kmer counts and ribonucleotide counts. The orange curves show the ranks of A and C
counts in each window. The green curves show the ranks of ribonucleotide counts in each window.
Chromosome 1 (+ strand). Sample FS185 only. Window width = 1mb.
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Figure 10. Spearman correlation between the nucleotide frequencies and the ribonucleotide frequencies
(A, B). Two-sided permutation p-values of correlations using adjacent swapping scheme with 1000
permutations (see Section 3.8) (C, D). Chromosome 1. + strand (A, C). - strand (B, D). Window width =
100kb.
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Figure 11. Relative frequencies of ribonucleotides (green) vs. annotated features (orange). The annotated
features are: CpG islands (A, B), exons (C, D), and promoters (E, F). Sample FS185 only. Chromosome 1.
+ strand (A, C, E), - strand (B, D, F). Window width = 1mb.
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Figure 12. Spearman correlations of ribonucleotides with annotated feature counts (A, B). Two-sided
permutation p-values of correlations using adjacent swapping scheme (see Section 3.8) (C, D). Chromosome
1. + strand (A, C). - strand (B, D). Window width = 100kb. DNA-seq “depth” on y-axis title means
“coverage”.
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Figure 13. DNA-seq coverage vs. chromosome position. Chromosome 1. + strand (left). - strand (right).
Window width = 1mb.

46



A

0.42

0.42

0.48

0.35

0.52

0.43

FS185

FS197

FS198

FS326

FS329

FS327

F

−1 0 1
Spearman correlation

B

0.42

0.43

0.47

0.34

0.51

0.44

FS185

FS197

FS198

FS326

FS329

FS327

F

−1 0 1
Spearman correlation

C

−2

−2

−2

−2

−2

−2

FS185

FS197

FS198

FS326

FS329

FS327

F

Log10 P−value
−5

−4

−3

−2

−1

0

Permutations: 1000

D

−2

−2

−2

−2

−2

−2

FS185

FS197

FS198

FS326

FS329

FS327

F

Log10 P−value
−5

−4

−3

−2

−1

0

Permutations: 1000

Figure 14. Spearman correlations between ribonucleotide counts and Fragmentase (F) DNA-seq coverage
(A, B). Two-sided permutation test p-values for correlations using adjacent swapping permutation scheme
(see Section 3.8) (C, D). Chromosome 1. + strand (A, C). - strand (B, D). Window width = 100kb.
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Figure 15. Histogram of smoothing-spline window widths. Chromosome 1. + strand (A). - strand (B).
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Figure 16. Histogram of window densities for smoothing-spline windows. Chromosome 1. + strand (A). -
strand (B).

Table 7. Summary of the hotspot windows with smoothing-spline window selection. “Chromosome %” is
the percentage of the chromosome covered by the hotspot windows. “Ribos %” is the percentage of the
samples’ ribonucleotides in the hotspot windows. Chromosome 1. + strand (A). - strand (B).

A
Sample Chromosome % Windows Ribos mean Ribos % [Ribos %] / [Chrom. %]
FS185 0.89% 11 100 4.10% 4.61
FS197 1.25% 8 115 4.70% 3.76
FS198 0.68% 9 64 2.06% 3.05
FS326 0.49% 1 68 1.11% 2.27
FS327 0.98% 48 127 4.21% 4.29
FS329 0.90% 224 147 6.45% 7.15

B
Sample Chromosome % Windows Ribos mean Ribos % [Ribos %] / [Chrom. %]
FS185 1.04% 11 105 4.36% 4.20
FS197 1.17% 9 95 4.37% 3.73
FS198 1.06% 9 100 3.19% 3.02
FS326 0.16% 1 25 0.40% 2.50
FS327 0.75% 48 104 3.44% 4.60
FS329 0.89% 227 144 6.41% 7.21
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Figure 17. Hotspot windows using the smoothing-spline method. Hotspots are defined as windows with
the top 1% ribonucleotide density ([total ribos in window] / [window width]) in the sample. “Gaps” are
positions on the reference genome with incomplete information. Chromosome 1. + strand (A). - strand (B).
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CHAPTER 5:

CONCLUSIONS AND FUTURE WORK

In this study, we have analyzed a novel dataset obtained through the ribose-seq protocol in human cells.

Our goal was to determine biologically meaningful characteristics of ribonucleotide incorporation in human

cells. To do so, we employed a variety of exploratory data analysis techniques such as visualization, statistical

modeling, and hypothesis testing with permutations. We also studied the ribose-seq data across multiple

samples from different cell types to quantify the variability among genetically different cells. Broadly, we

identified the following characteristics of our datasets:

1. The ribonucleotide distribution across the genome appears to be highly conserved among the different

cell types. In particular, there appears to be ribonucleotide hotspots where multiple samples have an

abundance of ribonucleotides in the same genome position.

2. The local ribonucleotide frequency appears to be highly correlated with the local GC content on the

chromosome.

3. The ribonucleotide frequency appears to be moderately correlated with the occurrence of functional

elements of the genome such as promoters and genes.

These characteristics appear to point towards the systematic incorporation of ribonucleotides in the human

genome, rather than it occuring uniformly at random. However, as this study has been purely observa-

tional, further study will be required to determine specific mechanisms that contribute to ribonucleotide

incorporation. In the following, we interpret our results in more detail and indicate areas for future study.

A important finding of this study was that all the samples analyzed appear highly correlated with each

other. This is interesting given that they are different cell types obtained from different sources. This may

indicate that ribonucleotide incorporation is a highly conserved aspect of the human genome. Further study

will be needed to ascertain whether this is not simply a bias in our data preparation protocols. In the future,

the results obtained here by ribose-seq could be checked against other protocols for detecting ribonucleotides

such as emRibo-seq [57], HydEn-seq [14] [84], and Pu-seq [18] [37]. Another clear followup analysis would

be to examine all twenty-plus samples at our disposal. Since the samples prepared with the Fragmentase

enzyme looked very similar to each other, a natural question is whether there is significant variation when
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different enzymes are used. We may also repeat the analyses with our current datasets for the remaining

chromosomes (chromosome 2, 3, …, 22, and X). Finally, since we have obtained control DNA-seq datasets

that describe the background distribution of DNA reads from the genome, we may use these to perform

parallel analyses to our ribonucleotide datasets. Then, statistical tests may be used to determine whether

the results from the ribonucleotide datasets are significantly different from the control DNA-seq datasets.

Another central goal of our analysis was to determine criteria for classifying regions as ribonucleotide

hotspots. The main method employed here was to subdivide chromosome 1 into either equally spaced

windows (Section 4.3) or smoothing-spline inflection-point windows (Section 4.8), and take the windows

with top 1% of density. For an alternative approach using hypothesis testing, we explored potential null

distributions to describe ribonucleotide incorporation, such as the Poisson, negative binomial, and variants

thereof. These null models assume that the number of ribonucleotides, yi, detected at each position, i,

are independent and identically distributed (iid) and come from a specified parametric distribution. The

distributions were fit using using maximum likelihood estimation (MLE). For future work, the fitted null

distribution may be used to determine p-values, pi = Pr(Y ≥ yi), for each i, where Y is a random variable

with the null distribution. The p-values may then allow us to determine a set of hotspot indices that are so

large as to be unlikely under the null distribution. To determine specific p-value thresholds, we may use two

criteria: Bonferroni, which is more conservative (less loci detected) and controls the familywise error rate

(FWER); and Benjamini-Hochberg [6], which is less conservative (more loci detected) and controls the false-

discovery rate (FDR). For the parametric distributions, the most interpretable choice would be a Poisson

distribution, since then the null hypothesis has the simple interpretation that the counts are generated by

uniform random sampling on the genome. The next step would be to study these loci more finely, such

as by examining their nucleotide motifs or their overlaps with annotated regions. Also, since we have used

multiple methods for detecting hotspots, we may compare the results across methods to determine whether

they are consistent. Another avenue for further modeling would be to use the more complicated hidden

Markov model (HMM), which would allow modeling dependent observations as described in Section 2.5.

One of our original questions was whether we could identify nucleotide motifs that were correlated with

ribonucleotide abundance. We showed that indeed there appears to be a striking correlation between the

local GC content and the ribonucleotide abundance. However, it has been found that certain sequencing

technologies may be prone to biases, especially due to local GC content [60] [7]. We may be able to determine

whether the GC correlation is due to a sequencing artifact by performing a similar correlation analysis of

ribose-seq data in other organisms. If the same pattern holds consistently across multiple organisms, it may

indicate that the GC correlation in a sequencing artifact. Conversely, if the correlation is observed only

in the human nuclear genome, it may indicate that the correlation is a characteristic of ribonucleotides in
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the human nuclear genome. If we determine that the correlation is an artifact of the sequencing process, it

will be important to mitigate this bias by controlling for the GC content in future analyses. For example,

when determining hotspots via parametric distributions, we may add a covariate to the model quantifying

the local GC content. Further study could also involve looking at correlations with larger kmers such a di-

or tri-nucleotides. An alternative approach to quantifying how well nucleotide motifs are associated with

ribonucleotide incorporation would be to use a machine learning (ML) model. For example, Bonidia et al.

(2021) [10] outline several methods for extracting numerical features from DNA strings. This could be used

with supervised learning to see if a ML model could accurately classify DNA strings as containing or not

containing a ribonucleotide. Discovering such a classifier may indicate that nucleotide motifs are indeed

associated with ribonuleotide incorporation. However, reverse engineering the classifier to determine the

nature of the association may be difficult if the ML model is a “black box”.

One of the major drawbacks of our analysis was that we analyzed the whole of chromosome 1 with

either 1mb windows for the visualizations or 100kb windows for the statistical analyses. This may be too

coarse-grained for detecting finer patterns within our data. For example, in the annotation analysis we

showed that there may be potential correlations of the ribonucleotides with genetic elements such as exons

and promoters. However, promoter are usually between 100-1000b [44] and exons are usually less than 200b

[61]. Thus, we will not be able to precisely detect hotspots at such scales. To improve the precision, we may

simply use smaller window widths to bin the ribonucleotide counts. This may be effective for the knockout

(KO) samples, since their datasets were relatively dense compared to non-KO samples. We have also relied

almost entirely on correlation coefficients (Section 3.7) to assess the strength of relationships. However, more

sophisticated analyses can be done, some of which are outlined in Kanduri et al. (2019) [36] and De et al.

(2014) [20]. These may involve using different test statistics and permutation strategies. The regioneR [24]

R package implements some of these strategies, and could be used in future work.

Throughout this study we used permutation tests for testing the statistical significance of our conclusions.

However, the validity of these conclusions rests on the validity of the permutation test. All permutation

tests made use of the adjacent value swapping scheme described in Section 3.8. Since our window width is

100kb, this means that, roughly, we are testing the sensitivity of the correlations to a random shift of 100kb

in the ribonucleotide positions. Changing the window width or the permutation strategy may change the

conclusions. For future work we may explore the sensitivity of the correlations to smaller shifts. We also

note that the permutation strategy used here is a heuristic that, as far we know, does not have a precedent

in the literature or a biological basis. A more reasonable approach may be to use existing methods for the

same purpose, such as the bootRanges [46] R software based on the block bootstrap method introduced by

Bickel et al. (2010) [8]. A related method is the matchRanges [19] R package, which we may use to generate
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bootstrapped datasets from the original, while controlling specific characteristics in the bootstrap datasets

such as correlation with local GC content.

In summary, we have begun the work of exploring ribonucleotide incorporation in the human nuclear

genome. However, there is considerable work to do in terms of refining our analyses and applying them

to more datasets. The most important challenge will be to synthesize our observations into a biologically

plausible and testable hypothesis as to why ribonucleotides are distributed on the genome the way they are.

Ultimately, we hope this will lead to a better understanding of DNA replication and genome stability.
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