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Abstract 
 

                A newly developed, near real-time, well-performing and potentially universally applicable 

Automatic Modulation Recognition (AMR) technique for discrimination of numerous modern 

modulated waveforms found in commercial as well as military communication systems applicable 

to the new Air Force’s Advanced Battle Management & Surveillance (ABMS) framework as well 

as Versatile Depot Automatic Test Station (VDATS) Test Program Set (TPS) development is 

presented. It involves generating complex feature vectors composed of High-Order Direct 

Cumulant, Cyclostationary and Fourier of Wavelet Transform features created with the help of 

Principal Component Analysis and Variance Data Compression.     

           Twelve modulated waveforms are used to evaluate the performance of the expanded feature 

vectors: eight commercial modulated waveforms [Quaternary Amplitude Shift Keying (QASK), 

Quaternary Frequency Shift Keying (QFSK), Quaternary Phase Shift Keying (QPSK), 16-Point 

Quadrature Amplitude Modulation (QAM-4,4), Gaussian Minimum Shift Keying (GMSK), 

Frequency Quadrature Amplitude Modulation (FQAM), Filter Bank Multi Carrier (FBMC) and 

Universal Filtered Multi Carrier (UFMC)], (Cosine) Binary Offset Carrier - BOC(1,1) - waveforms 

used in the European Galileo Navigation System and three waveforms utilized in defense military 

systems [Quaternary Linear Frequency Modulation (QLFM), Quaternary Pulse Width and Pulse 

Position Modulations (QPWM and QPPM)]. Generated complex feature vectors are categorized 

with the help of a neural network and compared with corresponding library feature patterns.  

            The presented experimental results are rather unprecedented in the literature since to the 

best of the authors knowledge, no research team has considered such a varied and comprehensive 
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modulation format test set of waveforms in a single study. There have been some hierarchical 

modulation classifications schemes proposed in the earlier research dating to the early 2000s; 

however, their modulation format test sets were very limited and the classification performance 

for those that could be compared to the current research was dramatically lower. Also, there have 

been some attempts to generate the required probabilities for the other class of maximum-

likelihood techniques generating very complex mathematical formulas in numerous cases for a 

handful of modulation formats. The latest research also addresses some of the feature-based non-

hierarchical techniques but again the techniques presented are detached from one another and 

modulation format test sets are usually limited too. The research presented in this work gives a 

convenient and effective non-hierarchical method for modulation format classification that is 

potentially universally applicable to any conceivable modulated waveform that can be represented 

in the time domain while keeping the computational complexity reasonable so as to be applicable 

for real-time implementation in the future communications systems. The study described which 

feature-based techniques are broadly applicable and of these which are actually performing best 

and are readily suitable for easy implementation. 
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Chapter 1:  Introduction 

1.1  Background 

In the current era of ubiquitous communication signals coming from various sources and 

tremendous proliferation of personal, commercial and military devices it becomes increasingly 

difficult to manage these systems and appropriately allocate the necessary resources. The concept 

of Internet of Things (IoT), or Internet of Everything (IoE), puts a great strain on the modern 

communications networks and increasingly complex and clever methods must be implemented to 

allow for constantly growing data rate, bandwidth, capacity and speed requirements. The newest 

5th Generation (5G) New Radio communication systems may be one of the best examples. 

Additionally, the United States Air Force is creating its own communications framework 

to manage military’s forces in war. This emerging overarching system, planned to reach full 

maturity in the 2040s, is called Advanced Battle Management & Surveillance (ABMS) [1].  It is 

military equivalent of the commercial Internet of Things / Everything (IoT/IoE) and 5th Generation 

(5G) communications standards and is expected to replace the Air Force’s Airborne Warning and 

Control System (AWACS) E-3A and Joint Surveillance Target Attack Radar System (JSTARS) 

E-8C platforms and the Situational Awareness Data Link (SADL) inter-platform communications 

network currently implementing Joint All-Domain Command and Control (JADC2) functions [2].     

To address all of such communication systems demands, although on a much smaller scale 

than currently, the concept of Automatic Modulation Recognition (AMR) was started being 

implemented more than 3 decades ago in connection with Cognitive Software Radios research.  
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           The main paradigm of operation of cognitive radios is the cognition cycle based on model-

based reasoning [3]. AMR utilizes artificial intelligence to decide on the resources required by 

examining the available spectrum, network demand and numerous other parameters to help the 

intelligent communication receiver perform at its best.    

1.2  Applications of Automatic Modulation Recognition / Signal Detection  

         Potential applications of AMR and Signal Detection algorithms / techniques in the current 

connected world are tremendous. They are useful and quite often outright necessary whenever it 

is needed to determine the source and nature of the incoming received communications signals. 

Clearly, they are just as importantly applicable to both commercial and military signals whose 

multitude and complexity is only continuously increasing. Two particular applications this study 

focused on were the newly developed Air Force ABMS communications framework and VDATS 

TPS Development. 

1.2.1  Newly Developed U.S. Air Force ABMS Framework 

The U.S. Air Force is currently developing a brand-new Advanced Battle Management & 

Surveillance (ABMS) communications framework which will initially complement and eventually 

replace the currently operating SADL communications network utilizing Link 16 standard, a 

military tactical data link incorporating periodic time-slotted messaging scheme network as shown 

in the operational schematic of Figure 1.1, with a new and improved Multifunction Advanced Data 

Link (MADL). 
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Figure 1.1  Situational Awareness Data Link Operational Concept Schematic 

In addition, a new more secure data link standard is being developed by NATO nations, 

called Link 22, which is expected to initially complement Link 16 and eventually most likely 

replace it in the new developed ABMS system, an expected natural successor of SADL. The 

command-and-control aircraft currently performing the JADC2 functions, E-3A AWACS and E-

8C JSTARS, Figure 1.2, are also being gradually phased out and planned to be upgraded to newer 

platforms. In the case of E-3 the replacement may potentially be Boeing’s E-7 Wedgetail beginning 

in 2027.  
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Figure 1.2  Command & Control Aircraft: E-3A (Top),  E-8C (Bottom) 

1.2.2 VDATS Test Program Set Development 

Another application of AMR addressed was the Air Force (AF) Versatile Diagnostic 

Automatic Test Station (VDATS) TPS Development. The VDATS program has been around for 

about 15 years, having been started at Robins AFB, GA back in 2007 as a solution to the AF 

Automatic Test System (ATS) proliferation problem and also addressing the issues of 

obsolescence and supportability of numerous Test hardware systems [4]. Currently, approximately 

140 VDATS units have been fielded across the Air Force, with close to 5,000 Test Program Sets 

(TPSs) being implemented on the stations and the demand still growing with forecasts to surpass 

200 stations in the near future and associated re-hosted testing workloads becoming increasingly 

varied. The VDATS exists in two core variants: Digital-Analog (DA) and Radio Frequency (RF), 



5 
 

as shown in Figure 1.3. In addition, there are around a dozen portable support Roll-Up Racks, 

depending on particular TPS system being evaluated.  

 

 

Figure 1.3  VDATS Core Variants:  Digital-Analog (DA, Left) and Radio Frequency (RF, Right) 
 

            The AMR is undeniably applicable to the current SADL network and even more so to the 

newly developed MADL network. It can be utilized in any particular military system where signal 

identification is involved, such as for example, Identification Friend or Foe (IFF), Radar Warning 

Receivers (RWRs), Precision Navigation and Timing (PNT), Nuclear, Command, Control and 

Communications (NC3) VHF/UHF Radios utilized in the current SADL network as well as their 

planned replacements likely to make their way to the newly developed ABMS’s MADL network 

structure.  

           Most of TPS development work is classified. Thus, it is not easy to determine the exact 

number of TPSs dealing with signal detection and modulation recognition and the testing 

procedures addressing these tasks themselves. Some known examples of TPSs involving such 

functions are AN/ALR-69A RWR, LAK (Link 16 Alaska), AN/ARC-164/-169/-186/-190/-210/-
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222/-230 VHF/UHF Radios and AN/APX-113/-125/-126 IFF combined Interrogator and 

Transponder. 

1.3  Motivations and Research Objectives 

The motivation for this study has been the desire to find an Automatic Modulation 

Recognition / Signal Detection algorithm / technique that is potentially universally applicable and 

identifies most effectively and with a reasonable computational complexity, so as to be applicable 

for real-time operation, the largest number of signals received, both commercial and military, with 

a greater bias towards military applications though as to relate more closely with my professional 

interests in the Department of Defense: Air Force, Navy or Army.  

The two main objectives of this study were: 1) Perfecting an AMR technique that could be 

for certain implemented in the newly developed ABMS framework on various platforms that make 

up its overall structure, 2) Improving the VDATS and potentially also other testers Test Program 

Set execution flow to allow for effective implementation of the critical testing procedures 

supporting a wide variety of warfighter utilized hardware testing requirements. 

1.4  Contributions 

The contributions of this work were:  

1) Development of relatively simple and effective feature vectors readily applicable for 

discrimination of various modern modulated waveforms in particular those that are likely to be 

implemented in the newly developed ABMS framework.  

2) Implementation of individual CM, CS and FWT techniques, a 3-member CM-CS-FWT varied-

technique diversity Majority-Selection-Rule classifier as well as a same-type diversity distributed 

scheme with several (Up to 7) individual receivers showing performance of the compressed 

compound feature vectors.  
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3) Demonstration of the application of the individual and compound feature vectors for a large and 

varied 12-member set of modulated signals. The outstanding classification performance of these 

feature vectors as compared to other techniques found in the literature further supports their ability 

in future communications systems. 

4) Description of how the proposed AMR techniques are equally well suitable to be implemented 

in numerous Test Program Sets that are being executed on VDATS testers where modulation 

classification and signal detection are being addressed.  

1.5  Dissertation Organization 

            Chapter 2 gives a detailed review of signal detection algorithms: Maximum-Likelihood 

Based as well as Feature-Based Automatic Modulation Recognition Techniques.   

            Chapter 3 describes how the best AMR techniques were selected so as to be widely 

applicable and potentially universal in identifying the examined modulation formats present. An 

experimental evaluation of the selected techniques performance further justifies their selection. 

            Chapter 4 analyzes the development of best performing and computationally feasible 

techniques for near real-time operation. Initially all applicable AMR techniques are identified. 

Then based on their performance the best ones are singled out as being preferred. 

            Chapter 5 presents Neural Network training and classification algorithms for evaluation of 

the proposed AMR techniques. 

            Chapter 6 gives a comparison of the AMR classification performance of the proposed 

techniques with the results in the literature. In addition, the modulation format coverage is also 

addressed. 

            Chapter 7 provides a summary of this research project as well as any possible 

improvements and extensions of coverage plus tentative future directions.  
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      Chapter 2:  Review of Automatic Modulation Recognition Techniques1 

The body of research dealing with Automatic Modulation Recognition, sometimes also 

referred to as signal source detection, can be divided into two general classes: Maximum-

Likelihood based and Feature-based techniques. 

2.1  Maximum-Likelihood Based Techniques                         

         In a maximum likelihood technique, the classification is treated as a multiple-hypothesis 

testing problem, with a hypothesis  𝐻𝐻𝑖𝑖  arbitrarily assigned to the ith modulation type of m possible 

types with constellation sizes  𝑀𝑀𝑖𝑖 . 

          The Probability Density Function (PDF) of observed received point 𝑋𝑋𝑘𝑘 , conditioned on the 

received modulated signal  𝑚𝑚𝑖𝑖, contains all the information required for classification, that is [5,6]: 

                                                  𝑃𝑃(𝑋𝑋𝑘𝑘|𝐻𝐻𝑖𝑖) = ∑ 𝑃𝑃�𝑋𝑋𝑘𝑘�𝑎𝑎𝑗𝑗𝑖𝑖�
𝑀𝑀𝑖𝑖
𝑗𝑗=1 𝑃𝑃�𝑎𝑎𝑗𝑗𝑖𝑖�𝐻𝐻𝑖𝑖�                                         (1) 

where  𝑃𝑃�𝑋𝑋𝑘𝑘�𝑎𝑎𝑗𝑗𝑖𝑖�  is the probability density function that the received point was transmitted at jth 

constellation point of ith modulation type 𝑎𝑎𝑗𝑗𝑖𝑖, Conditional Likelihood Function (CLF), and    

𝑃𝑃�𝑎𝑎𝑗𝑗𝑖𝑖�𝐻𝐻𝑖𝑖�  is the a priori probability density function of constellation point  𝑎𝑎𝑗𝑗𝑖𝑖  given a modulation 

type  𝑚𝑚𝑖𝑖 .  Usually,  𝑃𝑃�𝑎𝑎𝑗𝑗𝑖𝑖�𝐻𝐻𝑖𝑖� = 1/𝑀𝑀𝑖𝑖 .  For observed received signal vector X = [𝑋𝑋1𝑋𝑋2⋯𝑋𝑋𝐿𝐿] , 

the pdf of modulation type 𝑚𝑚𝑖𝑖 , likelihood function (LF), is:  

                             𝐿𝐿𝐿𝐿𝑖𝑖=𝑃𝑃(𝑋𝑋|𝐻𝐻𝑖𝑖) = ∏ 𝑃𝑃(𝑋𝑋𝑛𝑛|𝐻𝐻𝑖𝑖)𝐿𝐿
𝑛𝑛=1   ≡  L(𝑋𝑋|𝐻𝐻𝑖𝑖)                                                (2) 

The Maximum Likelihood (ML) classifier reports the jth modulation type based on the observation 

 
1 Portions of this chapter were published in [22,27]. Permissions are included in Appendix A. 
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whenever  𝐿𝐿�𝑋𝑋�𝐻𝐻𝑗𝑗�> 𝐿𝐿(𝑋𝑋|𝐻𝐻𝑖𝑖) ,  𝑗𝑗 ≠ 𝑖𝑖,   𝑗𝑗, 𝑖𝑖 = 1,2, … . ,𝑚𝑚 , that is, chooses the modulation type with 

the largest likelihood function. 

         The classification decision is made, for two-hypothesis problem, as:  

                                                                 𝐿𝐿𝐿𝐿 =  𝐿𝐿𝐿𝐿𝑍𝑍
1

𝐿𝐿𝐿𝐿𝑍𝑍
2

:𝐻𝐻1 >
:𝐻𝐻2 < ƞ𝑧𝑧                                                          (3) 

where ƞ𝑧𝑧 is a threshold and the left side of the above inequality is referred to as the likelihood ratio 

and the test is called: average likelihood ratio test (Z = ALRT), generalized likelihood ratio test (Z 

= GLRT) or hybrid likelihood ratio test (Z = HLRT), depending on the method used to compute 

the LF, the model chosen for unknown quantities. The inequality can also be extended to multiple 

classes (hypotheses). 

2.1.1 Average Likelihood Ratio Test 

       The expression for Likelihood Function (LF) of ALRT in a compact notation can be written 

as [6]: 

                                                 𝐿𝐿𝐿𝐿𝐴𝐴𝐿𝐿𝐴𝐴𝐴𝐴𝑖𝑖 = ∑ 𝑃𝑃(𝑥𝑥(𝑡𝑡)|𝑣𝑣𝑖𝑖 ,𝐻𝐻𝑖𝑖)
𝑀𝑀𝑖𝑖
𝑖𝑖=1 𝑃𝑃(𝑣𝑣𝑖𝑖|𝐻𝐻𝑖𝑖)                                       (4) 

where  𝑣𝑣𝑖𝑖  is a vector of unknown quantities treated as random variables with certain pdf’s.  

2.1.2 Generalized Likelihood Ratio Test 

       The expression for LF of GLRT can be written as: 

                                                          𝐿𝐿𝐿𝐿𝐺𝐺𝐿𝐿𝐴𝐴𝐴𝐴𝑖𝑖 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑖𝑖  𝑃𝑃(𝑥𝑥(𝑡𝑡)|𝑣𝑣𝑖𝑖,𝐻𝐻𝑖𝑖)                                              (5) 

where   𝑣𝑣𝑖𝑖   is a vector of unknown parameters modeled as deterministic values.  

2.1.3 Hybrid Likelihood Ratio Test 

         For the HLRT, the combination of ALRT and GLRT approaches, the Likelihood Function is 

given by: 

                                     𝐿𝐿𝐿𝐿𝐻𝐻𝐿𝐿𝐴𝐴𝐴𝐴𝑖𝑖 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑖𝑖1
 ∑ 𝑃𝑃(𝑥𝑥(𝑡𝑡)|𝑣𝑣𝑖𝑖1, 𝑣𝑣𝑖𝑖2,𝐻𝐻𝑖𝑖)

𝑀𝑀𝑖𝑖
𝑖𝑖2=1 𝑃𝑃(𝑣𝑣𝑖𝑖2|𝐻𝐻𝑖𝑖)                                (6) 
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where  𝑣𝑣𝑖𝑖1 and  𝑣𝑣𝑖𝑖2  are vectors of unknown quantities modeled as deterministic values and random 

variables, respectively. Usually, 𝑣𝑣𝑖𝑖1 and  𝑣𝑣𝑖𝑖2  consist of parameters and data symbols, respectively.    

          The three maximum likelihood approaches described above using exact (ideal) values of 

pdf’s are said to be optimal, they maximize the probability of correct classification. When the 

expressions for the pdf’s are approximate and assume prior information like the symbol rate and 

SNR, the approaches are said to be sub-optimal. 

2.2  Feature-Based Techniques 

        In a Feature-based technique, the classification is performed by comparing the received 

modulated waveform with a pre-defined set in the existing library of waveforms (Feature vectors). 

Numerous specific techniques in this category have been devised in the literature, the most 

significant are the following. 

2.2.1 Signal Statistics Technique  

        In the Signal Statistics technique, the feature vectors are constructed from quantities 

computed directly from the modulated signal itself such as [7-9]: 

1) Standard deviation of normalized-centered instantaneous direct amplitude of waveform:  

                 𝜎𝜎𝑑𝑑𝑚𝑚 = �(1/𝑁𝑁)( ∑ 𝐴𝐴𝑐𝑐𝑛𝑛2 (𝑖𝑖)𝑁𝑁
𝑖𝑖=1 ) − �(1 𝑁𝑁⁄ ) ∑ 𝐴𝐴𝑐𝑐𝑛𝑛(𝑖𝑖)𝑁𝑁

𝑖𝑖=1 �
2
                                  (7) 

2) Standard deviation of normalized-centered instantaneous absolute amplitude:  

                       𝜎𝜎𝑚𝑚𝑚𝑚 = �(1/𝑁𝑁)( ∑ 𝐴𝐴𝑐𝑐𝑛𝑛2 (𝑖𝑖)𝑁𝑁
𝑖𝑖=1 ) − �(1 𝑁𝑁⁄ ) ∑ |𝐴𝐴𝑐𝑐𝑛𝑛(𝑖𝑖)|𝑁𝑁

𝑖𝑖=1 �
2
                          (8)                       

3) Kurtosis of normalized instantaneous amplitude:   

                                           𝜇𝜇42𝑚𝑚  = 𝐸𝐸[𝐴𝐴𝑛𝑛4(𝑖𝑖)]/{𝐸𝐸[𝐴𝐴𝑛𝑛2(𝑖𝑖)]}2                                                       (9)                                       

4) Standard deviation of absolute value of normalized instantaneous frequency of waveform:    

                       𝜎𝜎𝑚𝑚𝑎𝑎 = �(1/𝑁𝑁)( ∑ 𝑓𝑓𝑛𝑛2(𝑖𝑖)𝑁𝑁
𝑖𝑖=1 ) − �(1 𝑁𝑁⁄ ) ∑ |𝑓𝑓𝑛𝑛(𝑖𝑖)|𝑁𝑁

𝑖𝑖=1 �
2
                                   (10) 
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                  where      𝑓𝑓𝑛𝑛(𝑖𝑖) =  𝑓𝑓𝑐𝑐(𝑖𝑖)/𝐿𝐿𝑏𝑏     and     𝑓𝑓𝑐𝑐(𝑖𝑖) =  𝑓𝑓(𝑖𝑖) −𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑓𝑓)                     

5) Kurtosis of normalized instantaneous frequency:   

                                                 𝜇𝜇42
𝑎𝑎  = 𝐸𝐸[ 𝑓𝑓𝑛𝑛4(𝑖𝑖) ]/{𝐸𝐸[ 𝑓𝑓𝑛𝑛2(𝑖𝑖) ]}2                                                  (11)                                                  

6) Standard deviation of instantaneous direct phase of waveform:       

                      𝜎𝜎𝑑𝑑𝑑𝑑 = �(1/𝑁𝑁)( ∑ 𝜑𝜑2(𝑖𝑖)𝑁𝑁
𝑖𝑖=1 ) − �(1 𝑁𝑁⁄ ) ∑ 𝜑𝜑(𝑖𝑖)𝑁𝑁

𝑖𝑖=1 �
2
                                (12)                                   

7) Standard deviation of instantaneous absolute phase of waveform:       

                       𝜎𝜎𝑚𝑚𝑑𝑑 = �(1/𝑁𝑁)( ∑ 𝜑𝜑2(𝑖𝑖)𝑁𝑁
𝑖𝑖=1 ) − �(1 𝑁𝑁⁄ ) ∑ |𝜑𝜑(𝑖𝑖)|𝑁𝑁

𝑖𝑖=1 �
2
                                    (13)       

8) Standard deviation of instantaneous direct unwrapped phase of symbol in waveform  𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑   

9)  Standard deviation of instantaneous absolute unwrapped phase of symbol in waveform  𝜎𝜎𝑚𝑚𝑑𝑑𝑑𝑑  

10)   Maximum value of power spectral density of normalized-centered instantaneous amplitude:   

                                             𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑎𝑎𝑥𝑥 |𝐷𝐷𝐿𝐿𝐷𝐷(𝐴𝐴𝑐𝑐𝑛𝑛(𝑖𝑖))|2                                              (14) 

11)   Total normalized power from Power Spectral Density of the waveform  𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡_𝑛𝑛𝑡𝑡𝑛𝑛𝑚𝑚 

(Highest PSD amplitude = 1)  

2.2.2  Higher Order Statistics (Cumulants) Technique 

         The second Feature based technique is Higher Order Statistics, the most common of which 

are Cumulants of any order n [10-15]. They can be easily calculated from the following recursive 

Moment-to-Cumulant formula:   

                                                   𝐶𝐶𝑛𝑛 =  𝑀𝑀𝑛𝑛 − ∑ (𝑛𝑛−1)!
(𝑚𝑚−1)!∙(𝑛𝑛−𝑚𝑚)!

𝑛𝑛−1
𝑚𝑚=1 𝐶𝐶𝑚𝑚𝑀𝑀𝑛𝑛−𝑚𝑚                                            (15)                                                    

where a central moment M of order n (about mean µ ) is defined as: 

     𝑀𝑀𝑛𝑛 = ∫ (𝑥𝑥 − 𝜇𝜇)𝑛𝑛 ∙ 𝑝𝑝𝑚𝑚(𝑥𝑥)𝑑𝑑𝑥𝑥 = ∑ (𝑥𝑥 − 𝜇𝜇)𝑛𝑛[𝑘𝑘] ∙ 𝑝𝑝𝑚𝑚�𝑥𝑥(𝑘𝑘)� = 1
𝑁𝑁
∑ (𝑥𝑥 − 𝜇𝜇)𝑛𝑛[𝑘𝑘]𝑁𝑁
𝑛𝑛=1

𝑁𝑁
𝑛𝑛=1

+∞
−∞          (16) 
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2.2.3 Cyclostationary Features Technique 

          The third technique takes advantage of the fact that many time signal waveforms / processes 

can be modeled as cyclostationary rather than stationary due to the underlying periodicities of the 

signals [16-20]. For such processes both their means and autocorrelations are periodic. A Spectral 

Correlation Function (SCF), also known as Spectral Correlation Density (SCD), can be obtained 

from the Fourier transform of the cyclic autocorrelation.  

        Cyclic spectral analysis deals with second order transformations of a function and its spectral 

representation. A time waveform (process) x(t) is said to exhibit second order periodicity if spectral 

components of x(t) exhibit temporal correlation. A wide sense stationary process x(t) has time 

invariant autocorrelation function:   

                                   𝐿𝐿𝑚𝑚(𝑡𝑡, 𝜏𝜏) = 𝐸𝐸{𝑥𝑥(𝑡𝑡)𝑥𝑥(𝑡𝑡 − 𝜏𝜏)∗}     and      𝐿𝐿𝑚𝑚(𝑡𝑡, 𝜏𝜏) = 𝐿𝐿𝑚𝑚(𝜏𝜏)  ∀𝑡𝑡                          (17) 

The Wiener relationship relates autocorrelation and power spectral density:   

                                             𝑆𝑆𝑚𝑚(𝑓𝑓) = 𝐿𝐿{𝐿𝐿𝑚𝑚(𝜏𝜏)} =  ∫ 𝐿𝐿𝑚𝑚(𝜏𝜏)+∞
−∞ 𝑚𝑚−𝑗𝑗2𝜋𝜋𝑎𝑎𝜋𝜋𝑑𝑑𝜏𝜏                                            (18) 

                          
A cyclostationary process x(t) (in wide sense) has periodic mean and autocorrelation function for 

some period oT . The Wiener relationship can be established for cyclostationary processes too and 

is called cyclic Wiener relation: 

                                               𝑆𝑆𝑚𝑚𝛼𝛼(𝑓𝑓) = 𝐿𝐿{𝐿𝐿𝑚𝑚𝛼𝛼(𝜏𝜏)} =  ∫ 𝐿𝐿𝑚𝑚𝛼𝛼(𝜏𝜏)+∞
−∞ 𝑚𝑚−𝑗𝑗2𝜋𝜋𝑎𝑎𝜋𝜋𝑑𝑑𝜏𝜏                                     (19) 

                                     where       𝛼𝛼 = 𝑚𝑚 𝐷𝐷𝑡𝑡⁄ ,𝑚𝑚 =  ±1, ±2, ±3, ….          

This relation leads to discrete spectral correlation function (SCF) [19]:   
 

                                    𝑆𝑆𝑚𝑚𝛼𝛼(𝑓𝑓) =  1
𝑁𝑁
1
𝐴𝐴
∑ 𝑋𝑋𝐴𝐴 �𝑚𝑚,𝑓𝑓 + 𝛼𝛼

2
�𝑋𝑋𝐴𝐴∗𝑁𝑁

𝑛𝑛=0 �𝑚𝑚,𝑓𝑓 − 𝛼𝛼
2
�                                  (20) 

                                     where     𝑋𝑋𝐴𝐴(𝑚𝑚,𝑓𝑓) = ∫ 𝑥𝑥(𝑢𝑢)𝑚𝑚−𝑗𝑗2𝜋𝜋𝑎𝑎𝜋𝜋𝑑𝑑𝑢𝑢𝑛𝑛+𝐴𝐴/2
𝑛𝑛−𝐴𝐴/2            

which is normalized to obtain the Spectral Coherence (SC):  
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                                                           𝐶𝐶𝑚𝑚𝛼𝛼(𝑓𝑓) = 𝑆𝑆𝑥𝑥𝛼𝛼(𝑎𝑎)

�𝑆𝑆𝑥𝑥0(𝑎𝑎+𝛼𝛼 2⁄ )∗𝑆𝑆𝑥𝑥0(𝑎𝑎−𝛼𝛼 2⁄ )�1 2⁄                                         (20a) 

2.2.4 Multifractal Features Technique 

          The fourth feature-based technique utilizes multiple fractal dimensions of potentially non-

linearly generated modulated signals that can be treated as one-dimensional functions of time with 

statistically irregular waveforms [21]. Fractal theory has been widely used in signal processing to 

analyze voice, image and radar signals. A fractal describes the degree of roughness or meandering 

of a data sequence and constitutes a rough or fragmented shape that can be partitioned, with each 

of the parts being roughly a reduced-size copy of whole. Fractals are usually self-similar and 

independent of scale. Fractal dimensions extracted from signals contain information about 

magnitude, frequency and phase of signals and can discriminate numerous modulation formats. 

They are useful features for classification and are insensitive to noise. Single fractal dimension 

may not describe and discriminate signals because fractal dimensions can only characterize self-

similarity in perfect scenarios; real signals are merely semi-fractals and have inhomogeneous 

scaling properties. Thus, a set of fractal dimensions, not only one, must be used to describe 

modulated signals. The generalized fractal dimension 𝐷𝐷𝑞𝑞 is defined as [21]: 

                                                     𝐷𝐷𝑞𝑞 = �
1

𝑞𝑞−1
lim
𝛿𝛿→0

𝑡𝑡𝑛𝑛�𝑁𝑁(𝑞𝑞,𝛿𝛿)�
ln (𝛿𝛿)

, 𝑞𝑞 ≠ 1

lim
𝛿𝛿→0

∑𝑑𝑑𝑖𝑖∙𝑡𝑡𝑛𝑛(𝑑𝑑𝑖𝑖)
𝑡𝑡𝑛𝑛(𝛿𝛿) , 𝑞𝑞 = 1

                                                          (21) 

The modified correlation integral method is a convenient means to estimate generalized dimension 

qD . The qth order correlation integral for a discrete fractal set is defined as:    

                                           𝐶𝐶(𝑞𝑞, 𝑟𝑟) =  � 1
𝑁𝑁𝑚𝑚

∑ � 1
𝑁𝑁𝑚𝑚

∑ 𝐻𝐻�𝑟𝑟 − 𝑟𝑟𝑖𝑖𝑗𝑗�
𝑁𝑁𝑚𝑚
𝑗𝑗=1 �

𝑞𝑞−1𝑁𝑁𝑚𝑚
𝑖𝑖=1 �

1
𝑞𝑞−1

                                  (22)                                  
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In practice, the generalized dimension 𝐷𝐷𝑞𝑞 is calculated from the slope of approximately linear 

central segment of the curve ln�𝐶𝐶(𝑞𝑞, 𝑟𝑟)�~ ln(𝑟𝑟) . 

2.2.5  Fourier Transform of Continuous Wavelet Transform Technique 

         The fifth technique first determines the Continuous Wavelet Transform of each modulated 

data waveform and then uses the magnitude of the Fourier Transform of the result to generate a 

feature vector to be used in subsequent pattern recognition.   

           The continuous wavelet transform of a continuous, square-integrable function x(t) at a scale 

a > 0 and translational value  𝑏𝑏 ∈ 𝐿𝐿  is expressed by:  

                                                   𝑋𝑋𝑤𝑤(𝑎𝑎, 𝑏𝑏) = 1
�|𝑚𝑚|∫ 𝑥𝑥(𝑡𝑡)𝜓𝜓∗ �𝑡𝑡−𝑏𝑏

𝑚𝑚
� 𝑑𝑑𝑡𝑡+∞

−∞                                        (23)     

where )(tψ  is a continuous function in both the time domain and the frequency domain called the 

mother wavelet and * represents operation of complex conjugate. This technique was proposed by 

the authors of this study [22].  

2.2.6  Other Early Feature Based Techniques 

         Couple of other Feature-based techniques have been developed in the first dozen years of the 

AMR research, 1988-2000; however, as will be seen in later chapters they were not considered 

further due to their very limited applicability in identifying various modulation formats. The first 

of these was the Digital Wavelet Transform (DWT) technique with applicability only to MPSK 

and MFSK formats [23]. The second, Constellation Shape technique, only applicable to Digital 

modulation formats [24]. The third, Zero-Crossing technique, which did not have any waveform 

amplitude discrimination [25]. And finally, the Radon Transform technique which only applied to 

square or diamond shaped constellations [26].  
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       Chapter 3:  Selection of Widely Applicable Potentially Universal AMR Techniques 
 
           One of the main objectives of this study was to develop AMR techniques that were 

applicable to the largest possible set of modulation formats that could be conceived. This chapter 

addresses this objective. 

3.1 Selecting Large and Varied Set of Modulation Formats to Classify 

            A thorough literature survey has been performed in order to accomplish the task of 

identifying what modulation formats have been addressed in the body of research on AMR and 

source detection. Table 3.1 shows the formats used by various authors in this research area. From 

this listing an original modulation format set has been selected including these 5 formats: 

1)  Quaternary Amplitude Shift Keying (QASK or 4ASK) 

2) Quaternary Frequency Shift Keying (QFSK or 4FSK) 

3) Quaternary Phase Shift Keying (QPSK or 4PSK) 

4) 16-Point Quadrature Amplitude Modulation (16-QAM or QAM-(4,4) ) 

5) Gaussian Minimum Shift Keying (GMSK)   

  

Table 3.1 Listing of Modulation Formats Employed in Papers from Initial Literature Survey 

AMR Technique               Modulation Formats Covered 

Likelihood 
Function Based 

-  MPSK, MQAM [5] 
-  B/Q/8/16PSK, 16/32/64QAM, V.29-8/16 [6] 

Signal Statistics -  4ASK, 2/4FSK, 2/4PSK, 16/64QAM, [7] 
-  AM, FM, 2/4FSK, B/QPSK, 2/4ASK, DSB, USB, LSB, VSB [8] 
-  2/4ASK, 2/4PSK, 2/4FSK [9] 
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Table 3.1 (Continued) 
Higher 
Order Statistics 
(Cumulants, 
Kurtosis, etc) 

-  2/4/8/16-PSK, 8/32-QAMstar, 16/64/256-QAM,  
   16/32/64-QAM, 8/16-V.29 [10] 
-  2/4-PSK, 16/64-QAM [11] 
-  B/Q-PSK, 16/64-QAM [12] 
- 2/4/8/16-ASK, B/Q/8/16-PSK, 4/16/64/256-QAM, 
   8/16/32/64-QAMstar [13] 
-  4/8-ASK, B/Q/8-PSK, 16/64/256-QAM [14] 
-  MASK/MPAM, B/Q/8-PSK, MQAM, V.29/32 [15] 

Cyclostationary 
features 

- B/Q-PSK, BFSK, MSK [16] 
- B/QPSK, FSK, MSK [17] 
- AM, B/Q-PSK, FSK, MSK [18,19] 
- 1-carrier TDMA (GMSK), 1-carrier CDMA (QPSK DS/SS), 
   OFDM (MPSK, MQAM) [20] 

Multifractal 
features 

-  CW (Continuous Sine Wave), BFSK, BPSK, 4-ASK, 16-QAM [21] 

Digital Wavelet 
Transform 

-  MPSK, MFSK [23] 

Constellation 
shape 

-  8PSK, 8/16QAM, V.29, V.29-Fallback [24] 

Zero crossings - Single-Tone (CW/MPSK) & Multi-Tone (MFSK) – Constant 
   Envelope [25] 

Radon transform - MQAM (4/16/64/256) [26] 
 

In subsequent research, 3 additional modulation formats employed particularly in defense 

military communications systems have been added [22]: 

6) Quaternary Linear Frequency Modulation (QLFM) 

7) Quaternary Pulse Width Modulation (QPWM) 

8) Quaternary Pulse Position Modulations (QPPM) 

In the latest research, first the format utilized in the new European Navigation System 

GALILEO was added: 

9) Binary Offset Carrier  –  BOC(1,1)  

Then 3 additional formats used in the new 5G communications standard for a total of 12 

modulation formats [27-31]: 

10) Frequency Quadrature Amplitude Modulation (FQAM) 
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11) Filter Bank Multi Carrier (FBMC) 

12) Universal Filtered Multi Carrier (UFMC) 

3.1.1 Quaternary Amplitude Shift Keying Modulation Format 

           Amplitude Shift Keying (ASK) is a form of amplitude modulation which represents digital 

data as variations of amplitude of a carrier wave: 

        𝑥𝑥(𝑡𝑡) = ∑ 𝑣𝑣(𝑚𝑚) ∙ ℎ𝑡𝑡(𝑡𝑡 − 𝑚𝑚𝐷𝐷𝑑𝑑)∞
𝑛𝑛=−∞       where    𝑣𝑣𝑖𝑖 = 2𝐴𝐴

𝐿𝐿−1
𝑖𝑖 − 𝐴𝐴,     𝑖𝑖 = 0,1, … . , 𝐿𝐿 − 1               (24) 

A is the maximum amplitude and L is the number of levels. In the particular case of QASK (4ASK) 

there are 4 amplitude levels 𝑣𝑣𝑖𝑖. 

3.1.2 Quaternary Frequency Shift Keying Modulation Format 
 
            Frequency Shift Keying (FSK) is a form of frequency modulation scheme in which digital 

information is transmitted through discrete frequency changes of the carrier signal as in: 

                                                   𝑥𝑥(𝑡𝑡) = √2𝑃𝑃 ∙ 𝐴𝐴 ∙ 𝑚𝑚𝑥𝑥𝑝𝑝(𝑗𝑗(2𝜋𝜋𝑓𝑓𝑚𝑚𝑡𝑡))                                                            (25) 

where 𝑚𝑚 = 0,1, … . ,𝑀𝑀. Each bit or symbol duration has a frequency coming from a set of M 

frequencies. For QFSK (4FSK) there are 4 frequencies utilized. 

3.1.3 Quaternary Phase Shift Keying Modulation Format 

           Phase shift Keying is a digital modulation format which transmits data by changing the 

phase of constant frequency reference carrier wave. For Quadrature Phase Shift Keying (QPSK) 

the implementation is as follows:  

                               𝑥𝑥𝑛𝑛(𝑡𝑡) = �2𝐸𝐸𝑠𝑠
𝐴𝐴𝑠𝑠
𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + (2𝑚𝑚 − 1) 𝜋𝜋

4
� ,       n = 1,2,3,4                             (26) 

 
3.1.4 Quadrature Amplitude Modulation Format 

          Quadrature Amplitude Modulation (QAM) is a digital modulation format where two bit 

streams (In-Phase and Quadrature) are transmitted by changing the amplitudes of two carrier 
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waves using the ASK format previously described. The two carrier waves have the same frequency 

but are out of phase with each other by 90° (Orthogonality or quadrature) expressed as: 

                                           𝑥𝑥(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡)𝐼𝐼(𝑡𝑡) + 𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡 + 𝜋𝜋
2
�𝑄𝑄(𝑡𝑡)                            (27) 

For the particular case of 16-Point Quadrature Amplitude Modulation [16-QAM or QAM-(4,4)] 

there are a total of 16 amplitude and phase combinations for this format. 

3.1.5  Gaussian Minimum Shift Keying Modulation Format 

          Minimum Shift Keying (MSK) is a form of continuous-phase frequency shift keying where 

the bits are not encoded as square pulses but instead as half sinusoids expressed as: 

                           𝑥𝑥(𝑡𝑡) = 𝑎𝑎𝐼𝐼(𝑡𝑡)𝑐𝑐𝑐𝑐𝑐𝑐 �
𝜋𝜋𝑡𝑡
2𝐴𝐴
� 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡) − 𝑎𝑎𝑄𝑄(𝑡𝑡)𝑐𝑐𝑖𝑖𝑚𝑚 �𝜋𝜋𝑡𝑡

2𝐴𝐴
� 𝑐𝑐𝑖𝑖𝑚𝑚(2𝜋𝜋𝑓𝑓𝑐𝑐𝑡𝑡)                      (28) 

where 𝑎𝑎𝐼𝐼(𝑡𝑡) and 𝑎𝑎𝑄𝑄(𝑡𝑡) encode even and odd information with sequence of square pulses of 

duration 2T. For GMSK the MSK waveform is also passed through a Gaussian filter. 

3.1.6  Quaternary Linear Frequency Modulation Format 
 
         The first of the analog modulations is Linear Frequency Modulation which sweeps the 

frequency within a symbol duration according to formula:   

                                                         𝑥𝑥(𝑡𝑡) = 𝐴𝐴 ∙ 𝑚𝑚𝑖𝑖2𝜋𝜋��𝑎𝑎𝑜𝑜−
∆𝑓𝑓
2 �𝑡𝑡+

∆𝑓𝑓
2𝑇𝑇𝑡𝑡

2�                                                            (29) 

 
Here ∆𝑓𝑓 can be either positive or negative; thus, both increasing and decreasing frequency sweeps 

(chirps) are possible. For the case of Quaternary LFM, there can be two up-chirps and two down-

chirps. 

3.1.7  Quaternary Pulse Width Modulation Format  

        In this analog modulation, the pulse occupies either a quarter, a half, three quarters or full 

symbol duration.  
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3.1.8  Quaternary Pulse Position Modulation Format 

          Similar to the previous modulation format but here the quarter-width pulse occupies either 

of the four quadrants of the symbol duration. 

3.1.9  Binary Offset Carrier Modulation Format 

              Binary Offset Carrier is a digital square subcarrier modulation where a signal is multiplied 

by rectangular sub-carrier of frequency 𝑓𝑓𝑑𝑑𝑐𝑐 equal to or greater than chip rate as follows:  

                      𝑥𝑥(𝑡𝑡) = 𝑐𝑐(𝑡𝑡)𝑐𝑐𝑖𝑖𝑠𝑠𝑚𝑚[𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝑓𝑓𝑑𝑑𝑐𝑐𝑡𝑡)]      with     𝑐𝑐(𝑡𝑡) = ∑ 𝑐𝑐𝑘𝑘ℎ(𝑡𝑡 − 𝑘𝑘𝐷𝐷𝑐𝑐)𝑘𝑘                    (30) 

where 𝑐𝑐𝑘𝑘 is the code sequence and 𝑓𝑓𝑑𝑑𝑐𝑐 is the sub-carrier frequency. Thus, the spectrum of the signal 

is divided into two mirrored parts centered around the carrier. In cosine BOC(1,1) variant, ’+1’ is 

encoded as ‘+1 -1’ sequence and ‘0’ as ‘-1 +1’ sequence. 

3.1.10  Frequency Quadrature Amplitude Modulation Format 
 
         Frequency Quadrature Amplitude Modulation is a combination of Frequency Shift Keying 

and Quadrature Amplitude Modulation and can be expressed as: 

                                      𝑥𝑥𝑚𝑚,𝑘𝑘(𝑡𝑡) = √2𝑃𝑃 ∙ 𝐴𝐴𝑘𝑘 ∙ 𝑚𝑚𝑥𝑥𝑝𝑝(𝑗𝑗(2𝜋𝜋𝑓𝑓𝑚𝑚𝑡𝑡 + 𝜑𝜑𝑘𝑘)) ∙ 𝑝𝑝𝐴𝐴(𝑡𝑡)                                      (31) 

where 𝑚𝑚 = 0,1, … . ,𝑀𝑀𝐿𝐿𝑆𝑆𝐹𝐹 and 𝑘𝑘 = 1,2, … ,𝑀𝑀𝑄𝑄𝐴𝐴𝑀𝑀 . In this study a 16-ary FQAM was used which 

is a combination of 4-ary FSK (QFSK) and 4-ary QAM [QAM-(2,2)]. 

3.1.11  Filter Bank Multi Carrier Modulation Format 

         Filter Bank Multi Carrier (FBMC) modulation was one of the first modulations developed to 

overcome the limitations of Orthogonal Frequency Division Multiplexing (OFDM) which utilized 

multiple carriers instead of just one. In OFDM, filtering takes place on the entire band of 

frequencies; on the other hand, in FBMC individual carriers are filtered. 
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3.1.12 Universal Filtered Multi Carrier Modulation Format 

       Universal Filtered Multi Carrier (UFMC) Modulation is similar to FBMC but instead of  

performing filtering on individual carriers here it is done on groups of sub-carriers. In this study, 

the setups used involved 16-ary systems of carriers for FBMC and UFMC, with sub-bands of 4 in 

UFMC.  

3.2  Maximum-Likelihood vs. Feature-Based Techniques 
 
         It has been noted early in the research that the Feature-based techniques are the preferred 

class of AMR techniques due to its reliance on known library modulated waveforms which can be 

easily compared with the one being identified. On the other hand, Maximum-Likelihood 

techniques are not so great in practice since they are based only on probabilities. It is not easy if at 

all possible to know all the required probabilities that are needed for a given modulation format’s 

identification. 

3.3  Experimental Evaluation of Selected Techniques Performance 
 
            As stated earlier, this AMR study initially focused on 5 feature-based techniques due to 

their potentially universal applicability:  

1) Signal Statistics (SS) 

2) Higher Order Statistics – Cumulants (CM) 

3) Cyclostationary features (CS) 

4) Multifractal features (MF) 

5) Fourier Transform of Continuous Wavelet Transform (FWT) 

            As described in the next chapter, SS and MF techniques even though potentially universally 

applicable were only considered in the earlier part of this research study due to their current 

problems.  
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3.3.1 Signal Statistics Technique (SS) 

         For SS technique the feature vectors for each of the modulation formats consisted of 11 

elements as described in Section 2.2.1. In order to obtain all these values, first it was required to 

generate the modulated waveforms for each of the modulation formats as these quantities derived 

directly from the modulated waveforms. Examples in Figures 3.1-3.8 show the plots illustrating 

the calculated quantities for 2 modulation formats QFSK and QLFM. For QFSK the 4 frequencies 

selected were 2.5, 7.5, 12.5 and 17.5 GHz and for QLFM these were the up and down sweeps (Up-

Chirp / Down-Chirp) between 2.5 – 7.5 and 2.5 – 17.5 GHz. Figures 3.1 and 3.5 show In-Phase, 

Quadrature and Total Amplitude along with the Envelope of the QFSK and QLFM waveforms and 

are used to obtain features #1-3 listed in Section 2.2.1. Figures 3.2 and 3.6 illustrate determination 

of features #4 and 5 relating to waveform frequency. Figures 3.3 and 3.7 illustrate quantities 

pertaining to waveform phase and Figures 3.4 and 3.8 help with quantities #10 and 11 relating to 

power spectral density of the waveform. This is not a good technique in terms of performance as 

the shapes of the waveforms are easily distorted with increasing noise and its performance 

deteriorates quickly. The unavoidable band-limiting in practical communications systems also 

introduces some waveform distortion. 
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Figure 3.1 Instantaneous Amplitude of QFSK Modulation Format 

 

 

Figure 3.2 Instantaneous Frequency of QFSK Modulation Format 
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Figure 3.3 Instantaneous and Unwrapped Phase of QFSK 

 

 

Figure 3.4 Power Spectral Density of QFSK 
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Figure 3.5 Instantaneous Amplitude of QLFM Modulation Format 

 

 

Figure 3.6 Instantaneous Frequency of QLFM Modulation Format 
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Figure 3.7 Instantaneous and Unwrapped Phase of QLFM 

 

 

Figure 3.8 Power Spectral Density of QLFM 
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         Sample results for all 8 of the modulation formats that were considered for the SS technique 

appear in Table 3.2 [22]. The values differ considerably, a good property for potential classification 

discrimination. 

 
Table 3.2 Listing of Signal Statistics (SS) Features for 20 dB Modulated Waveforms Majority-
Selection-Rule Classifier 

  
 
3.3.2 Multifractal Features Technique (MF) 

          Figure 3.9 shows sample curves utilized in determination of the Fractal Dimensions 𝐷𝐷6 in 

the Multifractal technique (MF) [32].  In particular, for the case of BPSK modulation format, 𝐷𝐷6 is 

determined as follows from the middle linear part of the curve: 

                                                𝐷𝐷6 =  ∆𝑡𝑡𝑛𝑛�𝐶𝐶(6,𝑛𝑛)� 
∆ln (𝑛𝑛)

=  −0.528−(−2.112)
0−(−1.911)

= 0.829                                        (32) 

The authors have modified the multifractal feature vectors slightly to give them greater 

discrimination capability by spreading the multifractal set from  𝐷𝐷2,𝐷𝐷3,𝐷𝐷4,𝐷𝐷5,𝐷𝐷6,𝐷𝐷7,𝐷𝐷8,𝐷𝐷9 to  
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𝐷𝐷2,𝐷𝐷4,𝐷𝐷6,𝐷𝐷8,𝐷𝐷10,𝐷𝐷12,𝐷𝐷14,𝐷𝐷16 .  Thus, in this technique, the feature vectors consisted of 8 elements 

but more spread out in their values compared to original study in [21]. 

 
 

 
Figure 3.9  Curves for Determination of Fractal Dimension 𝐷𝐷6 . 

The 3 techniques considered further were Higher Order Statistics – Cumulants (CM), 

Cyclostationary features (CS) and Fourier Transform of Continuous Wavelet Transform (FWT).  
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cumulants: 𝐶𝐶20,𝐶𝐶40,𝐶𝐶60,𝐶𝐶80,𝐶𝐶100,𝐶𝐶120,𝐶𝐶140,𝐶𝐶160 . 
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Figure 3.10 Plots of 8 Element Cumulant Feature Vectors 

3.3.4 Cyclostationary Features Technique (CS) 

Determination of Cyclostationary feature vectors was accomplished in 2 steps: First the 

Spectral Coherence (SC), which is a 2-D surface obtained by normalizing Spectral Correlation 

Function (SCF), also known as Spectral Correlation Density (SCD), was calculated utilizing 

Equation (20a) and then First Principal Component of it was taken by using the Principal 

Component Analysis (PCA) [33,34]. Figure 3.11 shows a sample SCD surface for QPPM 

modulation format. Since the Spectral Correlation Density is a 2-D surface the PCA technique is 

utilized to reduce the dimension to just 1-D vector by selecting the First Principal Component of 

the original cyclostationary data which is its orthogonal linear transformation to produce the 

greatest variance (First Eigenvector):                                                   

                               𝑤𝑤(1) = 𝑎𝑎𝑟𝑟𝑠𝑠 𝑚𝑚𝑎𝑎𝑥𝑥‖𝑤𝑤=1‖ �∑ �𝑥𝑥(𝑖𝑖)𝑤𝑤�
2

𝑖𝑖 �                                               (33) 

         Figure 3.12 shows thus obtained First Principal Components for all 12 modulations are 

shown which are taken as 201 element feature vectors for the classification purpose. Examining 

these 12 curves, it can be noticed that they are significantly different from one another, a great 
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quality when the goal is using these waveforms for classification of the associated modulation 

formats. 

  

 
Figure 3.11  Sample SCD Surface for QPPM Modulation Format 
 
 
 

 
Figure 3.12 First Principal Components for All 12 Modulations 
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3.3.5 Fourier of Wavelet Transform Technique (FWT) 

        Finally, the 201 element feature vectors for Fourier Transform of Continuous Wavelet 

Transform (FWT) technique for all 12 modulation formats are shown in Figures 3.13 and 3.14.   

 
 

 
 
Figure 3.13 Scaled FT of CWT Feature Vectors (First Half) 
 
 
 

  
                                                                              
Figure 3.14 Scaled FT of CWT Feature Vectors (Second Half) 
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3.4  Summary 
 
        This chapter described the selection of a large 12-member modulation format set based on 

literature survey and current commercial and military market status as well as which techniques 

had the greatest potential for being potentially universally applicable for automatic modulation 

recognition and source detection. The next chapter will address the aspects of which techniques 

are best performing and currently most feasible in terms of computational complexity. 
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            Chapter 4:  Development of Best Performing and Computationally Feasible         

Techniques for Near Real-Time Operation 

4.1 Selection of Signal Statistics, Higher Order Statistics (Cumulant), Cyclostationary, 

Multifractal and Fourier of Wavelet Transform Techniques as the Most Widely Applicable 

for Modulated Signal Recognition 

            Table 4.1 displays clearly the applicability, complexity, classification performance and 

noise tolerance for all of the 9 considered feature-based techniques. As can be seen, only the first 

5 techniques are considered as potentially universally applicable for identification of various 

modulation formats while the last 4 are quite limited in coverage and thus were not simulated 

further. Of the first 5, the SS, CM, CS and MF techniques were identified in the literature survey 

and the last, FWT, was proposed by the authors of this study.  

Table 4.1 Comparison of Feature-Based AMR Techniques 
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4.2 Narrowing to HOS/Cum (CM), Cyclostationary (CS) and FWT Techniques as the 

Definitely Best Performing Techniques 

         As a result of extensive initial simulations of the 5 selected techniques it was learned that 

two of them, SS and MF, do not perform on par with the expectations. The SS technique had the 

quite uncorrectable issue of rapid signal features deterioration with noise as the SNR decreased. 

On the other hand, for the MF technique the computational complexity was about an order of 

magnitude greater than the next most complex ones, SS and CS. In addition, the MF technique in 

some cases produced feature vectors that were too similar to give satisfactory classification 

probabilities. As a result of these early findings, in subsequent research only the CM, CS and FWT 

were selected as the preferred techniques. Simulations of classification probability were performed 

for each of these 3 techniques (CM, CS, FWT) separately, as a Majority Selection Rule classifier 

utilizing these 3 and also in most recent research 410 element compound feature vectors generated 

as a concatenation of these 3 separate feature vectors were developed [27]. Figures 4.1 and 4.2 

show these compound feature vectors for all 12 modulation formats.  

  

Figure 4.1  Raw Compound 410-Element Feature Vectors (First Half) 



34 
 

 

Figure 4.2 Raw Compound 410-Element Feature Vectors (Second Half) 

          In order to decrease the size of these compound feature vectors and also at the same time 

increase their discrimination capability, these raw 410 vectors were decreased in size to 90 

elements, keeping roughly the same proportion of the 3 feature sub-vectors as in the original sizes 

(6, 42 and 42), as shown in Figure 4.3. 

 

Figure 4.3  Compressed Compound 90-Element Feature Vectors for All 12 Modulations 

        This size compression was accomplished with the help of variance data compression 

algorithm as shown in Figure 4.4 where an appropriate threshold for the variance across all 
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modulated waveforms feature vectors is set in order to obtain the desired number of elements 

[35,36]. The general equation for variance is as follows: 

                                     𝑉𝑉𝑎𝑎𝑟𝑟(𝑋𝑋) = 1
𝑁𝑁
∑ (𝑥𝑥𝑘𝑘 − 𝜇𝜇)2𝑁𝑁
𝑘𝑘=1              𝜇𝜇 = 1

𝑁𝑁
∑ 𝑥𝑥𝑘𝑘𝑁𝑁
𝑘𝑘=1                             (34) 

         Elements within each of the sub-vectors with variance higher than the determined threshold 

were kept in the compressed compound vectors. 

         The optimal compressed size of the compound vectors was experimentally determined to be 

about 90 elements, so that the probability of correct classification (Pcc) has not changed much 

from the one for the uncompressed vectors as seen in Figure 4.5.  

 

 

Figure 4.4 Selection of Variance Thresholds across All Modulation Formats in the Test Set  
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Figure 4.5  Pcc vs. SNR for QASK & QLFM as Function of Vector Length  

4.3 Performance of Majority Selection Rule Classifier for Individual CM, CS and FWT 

Techniques 

            In the results for the best CM, CS and FWT techniques, 3 experimental setups have been 

followed as shown in Figure 4.6. The first were single CM, CS and FWT feature vectors classified 

independently. The second was a Majority-Selection-Rule classifier utilizing single CM, CS and 

FWT feature vectors. Finally, the third was a distributed multi-receiver classifier making use of 

the combined CM-CS-FWT feature vectors.   

            For each of the setups, 100 feature vectors (single or combined) at varying levels of SNR 

ranging between -10 dB and +20 dB have been used in Neural Network Training and additional 

1000 such vectors were utilized in the Testing phase to calculate the resulting probabilities of 

correct classification (Pcc). All modulated waveforms used in the generation of feature vectors 

were 1000 symbols in length. For single carrier modulation formats, the carrier frequency of the 
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modulated waveforms was 10 GHz and for multi-carrier and frequency sweeps the frequencies 

utilized were 2.5, 7.5, 12.5 and 17.5 GHz.   

         

Figure 4.6 Experimental Setups for Analyzing Performance of CM, CS and FWT Feature Vectors 

            Sample plots of Pcc for the 3 experimental setups for QASK and QLFM modulation 

formats are shown in Figure 4.7. As can be seen performance of the Majority-Selection Rule 

classifier utilizing the 3 best feature-based techniques (CM, CS and FWT) is better than the 

individual techniques performances by about several percent and that for the compound vectors 

higher still, with the lowest performance for the stand-alone CM technique. 
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Figure 4.7 Pcc vs. SNR (dB) for 3 Setups [QASK & QLFM] 

4.4 Performance of Compound CM / CS / FWT Feature Vector Technique 
 
            Plots of Probability of correct classification for several modulation formats comparing 

performance of combined feature vectors with Majority-Selection Rule classifier utilizing the 3 

best feature-based techniques are shown in Figure 4.8.  As can be observed the improvement of 

the compound feature vectors is about 4-5 percent. 

 

Figure 4.8  Performance of Combined Feature Vectors vs. Majority-Selection Rule Classifier 
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4.5  Distributed Case up to 7 Receivers for Compound Vector Technique   
 
            Plots of Probability of correct classification as a function of the number of receivers in a 

distributed setup are shown in Figure 4.9 [37,38]. The improvement in performance between no 

diversity (Single receiver) and 7 receivers is about 6-7 percent. 

 

 
Figure 4.9  Performance as a Function of Number of Receivers (Diversity) 
 
4.6  Summary 
 
            This chapter confirmed that the 3 best-performing feature-based techniques CM, CS and 

FWT selected from among the 5 potentially universally applicable techniques (SS, CM, CS, MF 

and FWT) had good performance achieving high probabilities of correct classification values for 

most of the SNR range. The same could not be said about the SS technique whose performance 

degraded terribly for low SNR values. In the case of MF technique, the performance was also good 

but it required a considerably longer simulation time to achieve, in some runs more than an order 

of magnitude longer than the next most complex CS technique.  Most notably adding any kind of 

diversity improves the performance whether it be of the same type (Multiple identical receivers) 

or varied type (Different feature vectors although for the same modulation format). 
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            Chapter 5:  Neural Network (NN) Training and Classification for Evaluation 

of   Proposed AMR Techniques 

5.1 Selection of Classification Method for Assessing the Performance of Proposed AMR 

Techniques 

Assessment of the performance, that is pattern recognition classification, of the proposed 

AMR techniques was implemented with the help of a MaxNet Neural Network structure similar 

to that in [19] utilizing 12 separate feed-forward back-propagation multilayer linear perceptron 

networks (FF BP MLPN) processing 100 & 1000 sample feature vectors x(k), k = 8, 90 or 201, for 

training and testing, respectively, for each of the 12 modulation formats and SNR levels as shown 

in Figure 5.1.  The internal structure of each FF BP MLPN is shown in Figures 5.2 and 5.3, where 

the first figure shows the case of NN Training in order to obtain the necessary weights between 

the 3 layers using the generated feature vectors and the second of NN Testing, a special case of 

the first setup, where there is only one output from the NN, 𝑦𝑦𝜌𝜌,𝜌𝜌 = 1,2, … ,12 for each of the 

modulation formats separately. 
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Figure 5.1 MaxNet Structure Used in Neural Network Feature Vector Testing 

                          

 

Figure 5.2 The Internal Structure of Each FF BP MLPN Used for Training  
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Figure 5.3 The Internal Structure of Each FF BP MLPN Used for NN Testing 

5.2  NN Training Using Generated Modulation Format Patterns 

            The training algorithm for the NN structure of the MaxNet is as shown in Figure 5.4 [39]. 

In this stage, the Feed-Forward and Back-Propagation operations take place whereby the training 

weights 𝑣𝑣𝑖𝑖𝑗𝑗 and 𝑤𝑤𝑗𝑗𝑘𝑘 between the Input layer and Hidden layer and Hidden layer and Output layer 

are generated for the training vectors for all 3 techniques (CM, CS and FWT) and all 12 modulation 

formats. Examples of the weights for the simplest CM Technique that has the shortest xi=8 element 

feature vectors and thus easiest to visualize are shown in Figures 5.5 – 5.8 for the QPPM and 

QFSK modulation formats. The other two techniques CS and FWT have 201 element feature 

vectors in the raw and uncompressed case (Otherwise 42 elements as part of the 90-element 

combined compressed feature vectors). As can be seen from these figures the weights vary 

depending on the modulation format in order to adapt to the feature vector’s waveform pattern. In 

addition, some of the modulation formats were faster in converging their training weights, required 

less iterations, than others. For some 20 iterations were sufficient while others needed even close 

to 100 to be converged for certain. 
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______________________________________________________________________________                       

Figure 5.4   Training Algorithm for the NN Structure of the MaxNet 

 



44 
 

 

Figure 5.5 Neural Network Training Weights 𝑣𝑣𝑖𝑖𝑗𝑗 Calculated from QPPM Cumulants Feature 
Vectors Showing the Progression Through Multiple Iterations (Epochs) 

 

 

 

Figure 5.6 Neural Network Training Weights 𝑤𝑤𝑗𝑗𝑘𝑘 Calculated from QPPM Cumulants Feature 
Vectors   
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Figure 5.7 Neural Network Training Weights 𝑣𝑣𝑖𝑖𝑗𝑗 Calculated from QFSK Cumulants Feature 
Vectors   
 

 

 

Figure 5.8 Neural Network Training Weights 𝑤𝑤𝑗𝑗𝑘𝑘 Calculated from QFSK Cumulants Feature 
Vectors   
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5.3  NN Classification Utilizing Previously Stored Feature Vectors 

       To calculate the Probabilities of correct classification Pcc for each of the modulation formats 

by using the weights generated by the Training Algorithm, only the Feed-Forward phase of NN 

algorithm shown in Figure 5.9 is used as in Figure 5.10.   

 

Figure 5.9  NN Application Algorithm Used to Calculate Pcc for All Modulation Formats 

            Figure 5.10 illustrates the calculation of probability of correct classification (Pcc) for 

UFMC modulation format in 3-Receiver Majority-Selection-Rule (Identical type diversity) 

scheme. For each of the 20 trial runs shown in the figure, there are 12 outputs of the NN obtained 

by utilizing the application / testing algorithm in Fig. 5.9. Ideally, the highest output should come 

from the feature vector corresponding to modulation format that produced it. Any errors would be 

caused by noisy feature vectors, especially at lower SNR values. If the appropriate output is indeed 

highest that constitutes a correct count towards calculating probability of correct classification Pcc: 

Number of positive counts divided by total number of trial runs. Fig 5.10 shows just 20 runs for 

illustrative purpose; however, actually there were 1000 trials used in determination of Pcc. 
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Figure 5.10  Illustration of Probability of Correct Classification (Pcc) Calculation for UFMC 
Modulation Format 

 
The case pictured is for 3 receivers. In the case of 5 and 7 receivers there were additional 

2 and 4 Neural Network output sub-plots for the corresponding receivers. If a minimum of 2 out 

of 3 Neural Network outputs for the receivers gave the highest result that constituted a true count 

towards the Pcc calculation. For 5 receivers that was 3 out of 5 and for 7 receivers, 4 out of 7 

[37,38]. 

5.4 Summary 

The MaxNet Neural Network structure is a convenient way to perform the Neural Network 

training to obtain the weights which are subsequently utilized in the determination of Probabilities 

of correct classification for all 12 modulation formats. Usually 100 Epochs (Loops of the training 

algorithm) were sufficient to generate sufficient weights for the modulation format pattern 

recognition. Some feature vectors were quicker than others to reach training convergence. 
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            Chapter 6: Comparison of the AMR Classification Performance of Proposed 

Techniques with the Results in the Literature 

6.1 Modulation Format Coverage and Sizes of Evaluation Test Sets of Current Techniques 

         As mentioned in Chapter 3, the authors of this study have gathered one of the largest and 

most varied up do date modulation format test sets in the literature on this subject of AMR in 

comparison with the survey results in Table 3.1. 

6.2  Performance of the Proposed Technique Versus the Already Existing Ones 

         There is not much in the current literature to compare this study with directly since most 

likely nobody has considered such a comprehensive modulation format test set. In addition, quite 

many of the proposed techniques were describing awkward and inconvenient to implement in 

practice hierarchical classification schemes [8,9,13,15]. For example, in [13] there is one of such 

hierarchical setups. First, it utilizes Cumulant C42 to discriminate between 8,32-QAMstar, 16,64-

QAMstar, MQAM, BPSK, PSK (n>2) and ASK (n>2) and then again Cumulant C42 and C80 to 

fine tune the classification into appropriate modulation order. This is still, however, quite small 

and not very varied modulation format set. As can be seen in the performance comparison of this 

technique with the one proposed by the authors for compound feature vectors with 7 receiver 

diversity in Figure 6.1 the results are dramatic. The explanation for this performance discrepancy 

is the size of the feature vectors used in the classification, 1 vs. 90 applied 7 times and variance 

maximized for additional discrimination capability. 
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Figure 6.1 Comparison of Pcc vs. SNR for QASK, QPSK and QAM(4,4) Modulation Formats for 
Latest Combined Feature Vectors vs. Cumulant C42 Alone 

 
6.3  Summary 

        Looking at the potential applicability of the demonstrated 3 best feature-based technique 

scheme utilizing compound feature vectors and receiver diversity, it is quite certain it will find its 

way in some form to the newly developed DoD ABMS system and VDATS TPS Development as 

well as many numerous communications applications as the possibilities are essentially endless. 

The scheme proposed in this study avoids the multi-level hierarchical classification employed by 

some of the authors in the earlier research on AMR. There are communication signals everywhere 

and the need to recognize what they are is necessary for implementing many tasks and missions. 
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Chapter 7: Conclusion and Future Research 

7.1  Conclusion 

        As demonstrated in the previous chapters, the proposed 3 best feature-based AMR techniques 

(CM, CS and FWT) are very effective in distinguishing a large and varied modulation format set 

not previously addressed by any single research team to the best of the authors knowledge. These 

techniques potentially have universal applicability to any conceivable modulation format that has 

a waveform in the time domain which can then be also transformed to frequency and wavelet 

domains. As can be observed in Figures 4.6 – 4.8, adding any kind of diversity improves the 

classification performance over just the individual CM, CS and FWT techniques considered 

separately, with the several-receiver compound feature vectors performance being about 5% 

higher than the Majority-Selection-rule setup utilizing 3 individual CM, CS and FWT techniques. 

This is a significant improvement which is always welcomed.   

        The research presented in this study examined which feature-based techniques are readily 

applicable and which should be avoided due to their very limited coverage and gave a convenient 

and effective non-hierarchical method for modulation format classification with reasonable 

computational complexity in order to be suitable for real-time implementation. Most certainly 

some variant of the highest-performing compound feature vector AMR setup with distributed 

receivers described in this study will have numerous applications in the near future, both 

commercial and defense, as the communications systems are getting constantly more complicated 

with an increasing number and variety of modulation formats.   
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7.2  Future Research 

         Future research could attempt to address the performance of higher order (M > 16) of 

modulation techniques employed in FQAM, FBMC and UFMC by utilizing this feature-based 

AMR technique. In addition, performance in channels other than AWGN, such as Frequency 

Selective and Impulsive channels, may be studied [40]. 

        The authors also envision possibly adding the Multifractal technique to make the compound 

feature vectors even larger and possibly further increase their discrimination capability. This would 

require greater computational complexity though but as the technology advances this may not be 

an issue soon. Then there is also the possibility of fixing the Signal Statistics technique’s 

performance although creating an effective waveform equalization may not be an easy task. 

         In addition, there is a possibility of incorporating the Weighted Ensemble Testing scheme in 

the 2nd and 3rd diversity experimental setups shown in Figure 4.6 whereby the outputs from the 

Neural Network testing phase are assigned appropriate weights based on its particular capability 

or efficiency.  

         In order to speed up the execution of the AMR Technique on the VDATS test station the 

authors would like to improve the interfaces within the overall VDATS tester setup as shown in 

Figure 7.1. As can be seen, there are up to six basic interfaces: Between DA unit and computer 

(1), DA unit and RF unit (2), DA unit and roll-up rack (3) and RF unit and roll-up rack (4) are 

cables mainly of coaxial type. On the other hand, the interfaces between the DA unit and ITA (5) 

and ITA and UUT (6) are serial or parallel busses. ITA stands for Interface Test Adapter and UUT 

is the Unit Under Test. 
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_____________________________________________________________________________      

 

______________________________________________________________________________     

Figure 7.1  Interfaces Schematic Within Overall VDATS Tester Setup  

        Some of the other methods to increase the speed of TPS execution would be improving the 

efficiency of the compiled code on the Computer CPU and introduction of other test specific 

languages. For example, the Automatic Test Markup Language (ATML) defines the interfaces that 

streamline TPS development. The purpose of ATML is to support test program, test asset and Unit 

Under Test (UUT) interoperability within an automatic test environment. ATML accomplishes 

this through a standard medium for exchanging UUT, test and diagnostic information between 

components of the test system. ATML provides promise for future software standardization; 

however, it cannot be applied to legacy test systems.  
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