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Abstract

This dissertation develops several statistical methods to advance the techniques and ap-

plications in the fields of reliability test planning and data analysis as well as statistical

modeling and analysis in survival analysis.

The first project focuses on developing new demonstration test plans for lifetime data

based on considering multiple objectives. Reliability demonstration tests have been broadly

used for assuring reliability performance at the desired confidence level. We consider life-

time data that follows a Weibull distribution which has been broadly used for modeling

a variety of shapes of lifetime distributions. When planning a demonstration test, there

are often multiple aspects to be considered including the consumer’s risk, the producer’s

risk, the acceptance probability, and the cost. The natural trade-offs between these objec-

tives require a careful evaluation of their interrelationship with the planning parameters

and a systematic approach to making a tailored decision. We propose a Pareto front op-

timization approach for balancing the multiple objectives and offer a set of graphical and

numerical tools for comparing solutions and selecting the best test plan to match different

users’ priorities.

The second project focuses on advancing the statistical modeling and analysis of accel-

erated degradation test (ADT) data with interdependent multiple degradation measures.

In some ADTs, to assess and understand the different aspects of reliability performance,

multiple characteristics of how the product degrade are measured, which are often in-

terdependent within individual test units. A nonlinear multivariate general path model

with random effects and covariates was developed to capture the variation in the indi-
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vidual degradation paths from unit-to-unit while allowing to model the interdependence

among the multiple degradation measurements and also capture the correlation between

the initial degradation condition and the degradation rate. A full Bayesian approach for

estimation and inferential analysis is demonstrated. The method is evaluated and com-

pared to the stage-of-art practices via a simulation study and is also illustrated using

synthetic optical media ADT data from ISO [3].

The third project focuses on advancing the use of penalized regression based on Cox

Proportional Hazard models in survival analysis. It is a common challenge in the field of

reliability and survival analysis to select a subset of key variables for accurate estimation

and prediction of the reliability or survival experience when there are small data with a

large number of predictor variables. Penalized Regression models work well for effective

variable selection and reduce the complexity of the model. A new penalized regression

model based on the Cox partial likelihood and a modified minimax concave penalty is

proposed. The performance of the proposed penalized regression model compared with

existing methods is demonstrated through a simulation study and its application is il-

lustrated via two real-world examples for analyzing the heart failure data and the NKI

breast cancer data.

ix



Chapter 1: Introduction

1.1 Reliability Demonstration Test Plan

To deal with the special type of time-to-event random variables such as failure time,

lifetime, survival time, etc, specialized fields of mathematical statistics which are reliabil-

ity and survival analysis are developed [76]. The basis of reliability analysis is to model

the lifetime by a suitable probability distribution and through the selected distribution,

the life behavior will be characterized.

According to [32], with reliability analysis, we can answer questions, such as:

• What is the percentage of items that will last longer over a certain time?

• What is the probability that a test unit will fail before a given time?

• What is the expected lifetime of a component?

Reliability is the probability that a system will perform it’s required performance at a

certain time-point. Reliability of a product is a desirable property of great interest to both

manufacturers and consumers. It is the performance of an item under specified environ-

mental and operational conditions and over a given period of time [1]. The designing

of a good product should be based on what customers want (because customers have

higher expectations for more “reliable” product) and because of this, engineers have been

prompted to conduct extensive testing before the release of products (or services). In-

deed, testing represents a significant portion of the total product cost.
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Reliability demonstration tests have been broadly used for assuring reliability per-

formance at the desired confidence level. RDT is a test used to validate the design of a

product to know whether a certain reliability requirement is met at a given time with a

stated confidence level. In Reliability demonstration, products are tested under certain

design to show whether their reliability reach a pre-specified threshold, and many com-

panies and industries have used reliability demonstration tests to make decisions on the

design of their products.

1.2 Access to Reliability Using Degradation Data

Another area in reliability is reliability analysis based on degradation data. Many

researchers have access the reliability of a product using degradation data and this has

become a significant approach to evaluate the reliability and safety of critical systems.

Degradation data provide measurements on the physical degradation of the products

or systems, which could offer more direct information on the failure mechanism than

the lifetime data. Looking at a highly reliable product’s reliability, it is often dominated

by its performance degradation process in many engineering situations. Many indus-

tries and companies that produce modern products with many components (where most

of these products are designed to last for a long time) are facing a lot of demand from

the consumers. Some of these are the demand for excellent quality and high reliability

of these products. This is a big challenge to the producer because testing these prod-

ucts under the normal operating environments to obtain sufficient time-to-failure data is

hard [109]. To meet the consumer’s demands and for high reliability products, strategies

are needed to accelerate data acquisition to access the reliability of these products. So,

using degradation data itself may not be sufficient for reliability analysis because some of

the degradation process happen slowly over time, hence we are adding acceleration on

top of degradation in this work. The extraction can be done by accelerating the extraction

2



of the failure information in an efficient way, for example, by exposing the test specimens

to severe-than-normal conditions to accelerate the failure process [ [10], [52], and [96]]. We

can trace many of these failure mechanisms back to an underlying degradation process

such as corrosion, crack growth, cumulative wear, fatigue, etc [43]. To access reliability for

highly reliable products, Accelerated Life Tests (ALTs) and Accelerated Degradation Tests

(ADTs) have been commonly used. Our work focus on using ADT. To model the degra-

dation path and predict failure and/or assess reliability under the normal use conditions,

ADTs is used to measure the degradation of products under the accelerated conditions.

1.3 Variable Selection For Survival Analysis

Looking at the second field of mathematical statistics that was mentioned above. Sur-

vival analysis is a branch of statistics which incorporate statistical methods to analyze

survival data where the time that an event among living organisms occur is the outcome

of the variable. The occurrence of disease, death, recovery from disease, etc can be the

event. We can measure the survival time or the failure time in days, weeks etc. With

survival analysis, these following questions, can be answered:

• What proportion or percentage of a population will survive longer than a certain

time?

• What is the rate that those who survive will fail or die before a given time?

• Can a multiple causes of death or failure be considered?

It is a common challenge in the field of reliability and survival analysis to select a sub-

set of key variables for accurate estimation and prediction of the reliability or survival

experience when there are large number of predictor variables. Selecting a subset of key

variables for estimating the response of interest is crucial for understanding the under-

lying input-response relationship and producing precise prediction of the response. It is

necessary to improve the interpretability of a statistical model and to minimize variability

3



of predictions. Variable selection is vital to survival analysis and various variable selec-

tion criteria and procedures for linear regression models have been proposed by many

authors [16]. [39] discussed about an overview on variable selection for survival analysis.

In practice, a lot of covariates are often available as potential risk factors because a large

number of predictors are usually introduced at the initial stage of modeling by the data

analyst. Much attention has been received in the selection of variables for survival data

analysis in the recent literature because of its complicated data structure that poses many

challenges.
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Chapter 2: Review

2.1 Reliability Demonstration Test Methods

Different researchers have applied reliability demonstration test methods and there

are different reliability types of data. For example pass/fail data, Degradation test data,

Lifetime/failure time data and Accelerated lifetime data. Because there are different re-

liability data, we are developing different test plan to accommodate different types of

data. [44]. Binomial RDTs based on pass/fail data are more broadly studied and zero-

failure tests which is a pass/fail data have been popular due to cost consideration. When

planning an RDT, there are often multiple aspects to be considered including the cost, the

acceptance rate of the test, the producer’s risk, and the consumer’s risk.

To determine the sample size and the test duration for an RDT, different method have

been studied extensively. Some of which are in [5], [26], [81], [11], [22]. Degradation test-

ing is more efficient and informative than the zero-failure testing, as shown in [82]. Many

test plans have been developed by using various optimal degradation. These test plans

choose measurement frequency, the sample size, and test termination time to estimate the

product reliability [101], [100]. With these test plans, the statistical error of an estimate

subject to a cost constraint, and the require samples to use until the best time to terminate

is reached is being minimized. To assess the reliability and also to predict the remnant life

of systems, more information are often provided by using degradation data than using

failure time data.
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With some existing methods, there are two main types of statistical test plan to help

determine the sample size and the test duration for a reliability demonstration test (RDT):

• test designs based on fixed time /failure time [100], [99], [101], and

• test designs based on the number of failures [5], [26], [81], [11], [22], [74].

For some applications, it was shown that RDT designs based on the number of failures

which is also called a binomial test are easy to use and this makes it popular.

On the other hand, an underlying failure time distribution and its parameters are used

in the failure time method as ”planning information”. The RDT is then designed accord-

ing to the precision requirements for the estimated parameters or their functions.

2.2 Types of Accelerated Tests

Accelerated Life Tests (ALTs) measure the failure time of the products by putting them

under more stressful or harsher use conditions. Lifetime models are built under the ac-

celerated conditions which are then used to extrapolate and predict failure time and reli-

ability under the normal use conditions. The ALTs have been applied to provide timely

assessment of reliability for materials, components, and subsystems [15]. Trevisanello [42]

uses ALTs for high brightness light emitting diodes (LED).

The second type is the Accelerated Degradation Tests (ADTs) [64]. These tests mea-

sure the degradation of products under the accelerated conditions which are then used to

model the degradation path and predict failure and/or assess reliability under the nor-

mal use conditions. To ensure an effective assessment of the reliability of a product, ADTs

have been used to shorten the samples needed, reduce the duration of the test, and it pro-

vide sufficient data. This is a method used to extrapolate the lifetime of highly reliable

products under normal use conditions. Also, we have seen where accelerated degrada-

6



tion testing (ADT) have been used as an effective tool to verify the reliability, evaluate

lifetime modern products, and collect the degradation data by exposing the test speci-

mens to severe conditions.

Many scientists have applied ADT to extrapolate the lifetime of some highly reliable

products and some of which are Nelson [123], who describes the basic information on

accelerated degradation models by reviewing degradation survey applications and liter-

ature. [35] applied ADT to the reliability analysis of batteries, [43] applied ADT to the

super luminescent diode (SLD), and [7] applied ADT to the smart electricity meter, etc.

An example of a device designed to last long is the Optical media. This is because within

a test period of time and under normal use conditions, it is not possible to observe suffi-

cient failure data. The accelerated degradation test (ADT) was used by [3] to estimate and

predict the lifetime of optical media. It is also possible to apply the mixed-effects ADT

approach to the failure analysis of optical disk media. Degradation models are either

driven by data or derived from physical principles via stochastic processes. The data-

driven models are generally used to analyze degradation data. In some ADTs, to assess

and understand the different aspects of reliability performance, various characteristics of

how the product degrade are measured, which are often interdependent within individ-

ual test units.

Our motivation in modeling degradation data that has many degradation characteris-

tics (DCs) is to determine how long the information stored on a recordable optical disc is

going to last and this is inspired by using the degradation data that is obtained from an

ADT experiment.
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2.3 Penalized Regression

In the selection of variables as discussed in the previous chapter, a major drawback of

the best subset variable selection is its lack of stability as analyzed, by Breiman in [72].

Some penalized regression works by setting some coefficient to be equal to zero and

then select the remaining variables e.g., least absolute shrinkage and selection operator

(LASSO) penalty or regression [ [61], [13], [114]]. [106] applied LASSO to cox model.

Applying some other penalties tends to result in all small but non-zero regression co-

efficients e.g., ridge penalty or regression. Ridge regression was proposed by Hoerl and

Kennard in [31] and is an estimation procedure which is based on adding small positive

quantities to the diagonal of XTX to obtain a point estimate with a smaller mean square

error and also to help overcome many of the difficulties (biasness) associated with the

usual least squares estimates.

In statistics, we have two critical characteristics of estimators that are to be considered.

They are the variance and the bias. The bias is the difference between the expected estima-

tor and the true population parameter. It measures the inaccuracy of the estimates. The

variance measures the spread between them. If the variance and the bias are too large,

i.e., if there are many predictive features in the model, it can harm the model’s predictive

performance.

Ridge penalty being a continuous shrinkage method achieves better predictive per-

formance through a bias-variance trade-off. The ideal goal of ridge regression in terms

of bias and variance is to obtain a low bias and a low variance. This is near difficult or

impossible to achieve. Therefore, the need of the trade-off. This bias-variance trade-off fa-

vors ridge over LASSO if there is high correlation between predictors [105]. However, as

ridge produces coefficient values for each of the predictor variables, it does not perform
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variable selection and hence cannot produce a more parsimonious model (model with

good explanatory predictive power), [115]. Ridge regression was introduced to solve the

multicollinearity in multiple regression and ridge regression problem in multicollinear

data was investigated by [46]. [110] applied ridge to logistic regression. Using three well-

known microarray gene expression data sets, Bθvelstad [6] applied ridge to Cox’s model

to compare the prediction performance.

Tibshirani in [105] proposed a new method which is the LASSO for linear regression.

LASSO penalty reduces the residual sum of squares subject to the condition that the sum

of the absolute value of the coefficients being less than a constant. It then produces some

coefficients that are 0 (this is done by forcing the sum of the absolute value of the regres-

sion coefficients to be less than or equal to a fixed value (λ) i.e., |zj | ≤ λ) and also inter-

pretable models. LASSO has also been applied to generalized regression models [105].

The aim of LASSO regression is to identify the variables and corresponding regression

coefficients that minimizes the prediction error in a model. This is done by imposing a

constraint on the model parameters, which ‘shrinks’ the regression coefficients towards

zero. In a practical sense this reduces the complexity of the model. [ [117], [68]] applied

LASSO to Cox’s proportional hazards models commonly used for survival analysis. This

proposed model minimizes the log partial likelihood subject to the constraint that sum of

the absolute values of the parameters being bounded by a constant.

The disadvantage of using the LASSO approach is that it does not focuses on the ac-

curacy of the estimation and interpretation of the contribution of individual variables but

rather, it focuses on the best combined prediction. Due to this, the interpretation of the

regression coefficients may not be reliable in terms of independent risk factors because if

we have two or more highly collinear variables, LASSO will select them randomly and

this is not good for interpretation [68]. Another disadvantage of LASSO is that with a
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large regression coefficient, LASSO has large bias when shrinking the coefficient toward

0. This implies that LASSO is not a very satisfactory variable selection method if the num-

ber of variables is greater than the number of observations and this is because, at most n

predictors will be picked by LASSO as non-zero even if all predictors are relevant in the

model. Due to the bias-variance trade-off of ridge when correlation is low and LASSO not

being a very satisfactory variable selection method if the number of variables is greater

than the number of observations, elastic-net was proposed by Zou and Hastie [56].

Elastic net is a combination of ridge and LASSO penalty, and hence is also a variable

selection method. Using real world dataset and through simulation, it has been shown

that the elastic net often outperforms the LASSO (because it has both property of ridge

and LASSO i.e., because of its effective shrinkage of coefficients like ridge and because of

how it set coefficient to zero like LASSO) while enjoying a similar sparsity of representa-

tion. In addition, the elastic net encourages a grouping effect, in which strongly correlated

predictors will have similar estimated coefficients. This unique effect was inherited from

ridge regression. This penalty is useful when the number of predictors (p) is larger than

the number of observations (n). Liu and Li [121] applied elastic net to regression analysis

for spectrum data. Wu [129] developed a solution path algorithm using the least angle

regression (LAR) with the elastic net penalty in Cox’s proportional hazards model. This

was done in two steps: In the first step, the LAR was extended to optimize the log partial

likelihood plus a fixed small ridge term. After this, the path modification was defined

and this leads to the solution path of the elastic net regularized log partial likelihood.

In Chapter 3 an extensive discussion about demonstration test plan will be done, and

in Chapter 4, a more thorough explanation and application on how to analyze degrada-

tion data with multiple Degradation characteristics (Dc) will be done. In Chapter 5, a new

penalized log partial likelihood was developed.
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Chapter 3: Demonstration Test Plans For Lifetime Data Based on Considering

Multiple Objectives

3.1 Introduction

Some existing method focus on zero failure test which is widely used in industry [44],

[69], [122], [66], [126], [65] and the advantage of this test is that it minimizes cost. For this

test, we will pass the test only if we have no failure. i.e. if the maximum allowable failure

is 0. With the zero-failure test plan, there is a strong trade-off between the producer’s risk

and the consumer’s risk because this test allow us to choose a minimum test unit in order

to decrease the CR so as to ensure an acceptable CR. According to [80], the disadvantage

of the zero-failure test is that while trying to improve the consumer’s risk with minimal

sample size, we could dramatically increase the producer’s risk as well as reducing the

passing rate of the demonstration test. That means it can result in unacceptable: High PR

and low acceptance probability (AP): probability of passing the test. It’s advantage is that

it uses Minimum cost for testing.

Even if the design and structure of a system are the same, the time to failure or life-

time of that system will vary from system to the next system. The Life test methods for

reliability demonstration include the conventional life test and the sequential life test.

The sequential life test method [20, 28, 37, 67, 88] reduces sample size at the expense of

test time by varying the sample size and test duration because one sample is tested at a

time [44]. This implies that it only needs fewer samples during testing and the hypoth-

esis about the product reliability is then evaluated. This is done to find a test plan that

will meet the precision requirement on estimate of an interested reliability metric. When
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the samples are tested one at a time by trial-and-error efforts, the test duration of the se-

quential procedure may be longer. Testing for a longer duration and also testing more

test units will allow more information to be gathered about the underlying failure time

distribution. With this, the reliability estimate will be more precise.

The conventional life test method [14, 36, 47, 88, 118] is usually applied by the commer-

cial industry and they tests some or all samples to failure. The sample size is determined

in advance by conventional life test procedures, which generally require either many sam-

ples or a long test period. The hypothesis about the product reliability is then evaluated

at the end of the test, and decisions are made about accepting or rejecting it. This test

method is ineffective; It takes a long time to complete the test, or it require a large sample

size, or both.

To estimate the reliability at the required time, the life data is employed, and using

this estimated reliability, the confidence bounds will be estimated. After the estimation,

we can then say the designed reliability is successfully demonstrated if the lower bound

exceeds the reliability requirement. This test method is more informative than the zero-

failure test because it can provide estimates of the reliability. In spite of this, the test may

be too costly since units are run to failure at a reasonable rate.

Reliability demonstration can also be accomplished through degradation testing. Hav-

ing a specified threshold value and having some products whose performance character-

istics degrade over time, then these products will fail when their performance charac-

teristic reaches the threshold value. Testing these products allows measurement of per-

formance characteristics at different times. Measuring the product’s reliability contains

credible information, which is commonly used to estimate it. [44].
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3.2 Weibull Demonstration Test Plan

The Weibull distribution is the most popular parametric alternative to the exponential

distribution in reliability applications and it is used to model the behavior of a product

with time. Binomial test considers attribute test data that capture the survival or non-

survival of each of the test device, but the Weibull test focuses on lifetime data. An effec-

tive way to gain insight into your product’s lifetime performance is to conduct a Weibull

Analysis. For as few as two or three failures, Weibull analysis with the use of Weibull

works exceptionally well and this is critical when there are severe financial consequences

to failures and when prior engineering knowledge is sufficient. Weibull test plan is a plan

in which assumptions about Weibull distribution is made in other to incorporate the in-

formation about the failure time. The efficiency of a Weibull demonstration test plan is

completely determined by the experimental time, which depends on the unknown sam-

ple size and on the Weibull shape parameter.

As discussed earlier, with the zero-failure test plan, there is a strong trade-off between

the producer’s risk and the consumer’s risk because it focuses more on reducing con-

sumer’s risk which results in forcing the producer to take a big risk that is unacceptable.

Also, the probability of a test being successful will be small when the test plan is too

rigorous and to redesign and test the product again will incur an extra costs and efforts

in product development. Therefore, the probability of passing the test will be low if we

focus more on the cost of the test.

Since having too large of a demonstration test will lead to an increase in the cost of im-

plementing the test, then the best thing to do is that for different tests, the actual criteria

should be evaluated quantitatively by testing at a fixed time duration. After the evalua-

tion, we can now examine how much the test will cost, the difficulty of passing the test,

the test duration, and the trade-offs between producer’s and the consumer’s risks. With
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this information, it is now possible to balance our decision based on the user’s need and

the specific objectives.

According to [70], for optimization, the approach is to find a feasible solution and

compare it with others until it is not possible to find a better one. In multi-objective, op-

timizing the set of optima in general is much larger as it allows for a flexible trade-off

between the various objectives. Since there is no “most suitable” solution of achieving

the desirable outcome for all criteria, then we need to know and understand the trade-

offs between the objectives when we test the product at a fixed time duration. With this,

we will be able to make a balanced decision to match our goal using the Pareto front ap-

proach.

When planning a demonstration test, there are often multiple aspects to be considered

and this include the consumer’s risk, the producer’s risk, the acceptance probability, and

the cost. The natural trade-offs between these objectives require a careful evaluation of

their interrelationship with the planning parameters and a systematic approach to mak-

ing a tailored decision. We propose a Pareto front optimization approach for balancing

the multiple objectives and offer a set of graphical and numerical tools for comparing so-

lutions and selecting the best test plan to match different users’ priorities.

Given a Weibull test plan (n, t0, c), with n number of units at a particular t0 (test time

units) value and c units of failure (these are the parameters that must be specified to

determine a test plan). For us to develop this test plan, we must be able to answer the

question of “How many devices are we testing?”, “For how long are we testing each of

the device?”, or “What is the highest number of failures allowed for this test to be suc-

cessful?”. In other to determine the test plan to use, we need to specify the combination
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of (n, t0, c) values that will be allowed for the test to be accepted.

In this work, we will be considering the lifetime data. Having a probability that a

particular unit survive (i.e. the probability of surviving), our goal is to show that for this

unit to be reliable at a particular (fixed) test duration, the probability must be at or above

the desired level of confidence. We assume the failure time t follows Weibull(λ, β) dis-

tribution with λ being a scale parameter and β being a shape parameter. The probability

density function (PDF) is given as:

f (t|λ, β) = λβtβ−1exp(−λtβ), t,λ, β > 0,

and cumulative distribution function (CDF):

F (t|λ, β) = 1− exp(−λtβ), λ, β > 0.

Before we define the risk criteria, let us identify clearly the requirements on reliability

R(t∗),

where

R(t∗) = exp(−λt
β
∗ ).

According to [108] pg. 360, for a failure time distribution, the reliable life time, t∗, for

specified *, is the time beyond which 100 ∗% of the population will survive. The most

common types of risk that are used in determining the parameters of demonstration test

plan are the consumer’s risk and the producer’s risk. Let π be the actual reliability at

time t∗ = 2000, π0 be the minimum acceptable reliability level (smallest level at which

the reliability of a product will reach before it can be accepted) and π1 be the maximum

rejectable reliability level (highest level at which the reliability of a product will reach
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before it can be rejected). From [108], pg. 344, the region π ∈ (π1,π0) is called an indif-

ference. From the frequentist (classical) point of view, the risk from the consumer is the

probability that the test is passed when the actual reliability is at the maximum rejectable

reliability level (π = π1) i.e P(Test is passed |π = π1) and the frequentist producer’s risk

is the probability of failing the test when the actual reliability is at the minimum accept-

able reliability level π = π0 i.e P(Test is failed |π = π0). For a classical risk, if we have a

satisfactory device, then it will pass the test and unsatisfactory devices will fail the test.

The classical risk criteria can be a better choice when we have a particular desirable or

undesirable reliability value in mind. So, given a desired area of reliability values, the

conditional probability of getting a desired test is being measured.

Average risk criteria are also another risk criteria that are similar to the frequentist

criteria, but the only difference is that we condition on the events π ≥ π0 and π ≤

π1 for producer’s risk and consumer’s risk respectively. Doing this requires a suitable

prior distribution for π, which is specified by p(π). The Average Consumer’s Risk is the

probability of passing a test when π ≤ π1 i.e the actual reliability is less than or equal to

the maximum rejectable reliability. We denote this as:

Average Consumer ′s Risk = P(Test is passed |π ≤ π1) =

∫ π1

0 ∑c
0 m(y)p(π)dπ∫ π1

0 p(π)dπ
,

where

m(y) =
(
1− exp

(
− λt

β
0

))y(
exp
(
− λt

β
0

))(n−y) (3.1)

The Average Producer’s Risk is the probability of not passing a test when the actual reli-

ability π is in the acceptable region π0.

Average Producer ′s Risk = P(Test is failed |π ≥ π0) =

∫ 1
π0

∑c
0 m(y)p(π)dπ∫ 1
π0

p(π)dπ
,
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The average risk can be more suitable when considering the acceptability or unaccept-

ability of a range of value.

In reliability, Bayesian methods have been used more often. One of the reasons for

using Bayesian methods is that Bayesian analysis has the strongest features of combin-

ing many sources of information together to perform inference and using expert judg-

ment, Bayesian method for reliability develop informative prior distributions [119]. [75]

proposed a method to derive the Bayesian reliability demonstration test plan for series

systems with binomial subsystem data by using Mann’s approximately optimum lower

confidence bound model to derive the system prior based on binomial subsystem data.

With this, they derived the system Bayesian reliability demonstration test plan using ex-

isting methods for meeting posterior confidence requirements. The proposed method

used objective subsystem test data and this method is generally valuable for systems that

as of now have substantial subsystem test data before the reliability demonstration.

From the Bayesian version of the consumer’s risk, the posterior consumer’s risk (PCR)

is the probability that the actual reliability is at or lower than the maximum rejectable re-

gion (π ≤ π1) given that the test is passed while the posterior producer’s risk (PPR) is the

probability that the actual reliability is at or greater than the acceptable region (π ≥ π0)

given that the test is failed. The posterior risks provide accurately the assurance that if the

test is passed, then the consumer desires a maximum probability that the actual reliability

is equal or less than the maximum rejectable reliability. Also, if the test is failed, then the

producer desires a maximum probability that the actual reliability is equal or greater than

the minimum acceptable reliability.
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For Weibull testing, with t0 (time at which we put n units to test) and t∗ (the reliability

time), the criteria become:

Posterior Producer ′s Risk

= P(R(t∗) ≥ π0|Test is failed)

= P

(
e−λt

β
∗ ≥ π0|Test is failed

)

=

∫ ∞
0

∫ m0

0

(
1− ∑c

y=0m(y)

)
p(λ, β)dλdβ

∫ ∞
0

∫ ∞
0

(
1− ∑c

y=0m(y)

)
p(λ, β)dλdβ

(3.2)

where

m0 = − log(π0)t
−β
∗ ,m(y) is given in (3.1)

and

Posterior Consumer ′s Risk

= P(R(t∗) ≤ π1|Test is passed)

= P

(
e−λt

β
∗ ≤ π1|Test is passed

)

=

∫ ∞
0

∫ ∞
m1

(
1− ∑c

y=0m(y)

)
p(λ, β)dλdβ

∫ ∞
0

∫ ∞
0

(
∑c

y=0m(y)

)
p(λ, β)dλdβ

(3.3)

with

m1 = − log(π1)t
−β
∗ .

18



To define the risk criteria, there is no way we can specify the requirements on reliability

without specifying it at a particular time which is t∗.

Because of the disadvantage of zero-failure test stated earlier, instead of using the zero-

failure test, our actual criteria for different tests can be evaluated and we will then examine

the trade-offs between consumer’s and producer’s risks, the sample size, and the proba-

bility of passing the test. After doing this and getting the result or information, we can

now make our decision based on the desire goal of our test.

3.3 Pareto Front Optimization Based on Multiple Criteria

Here, we will introduce the Optimization criteria and the Pareto front approach used

for multiple objective optimizations. How the multiple criteria and their trade-offs are

related is also discussed. Some decisions were made by considering the multiple criteria

for different user priorities.

3.3.1 Multiple Optimization

Due to the time restriction, we set t0 = 100. We need to determine a test plan (n, c)

with c ∈ [0, 20], and n ∈ [c + 1, 400]. We construct a prior distribution of actual relia-

bility π = exp−λt
β
0 , where β ∼ Exponential and λ ∼ Inverse-gamma. M = 4000 draws of

possible π was obtained and M value was chosen to obtain more precise approximations

of the criteria values. We are using this prior distribution based on subject matter expert

knowledge about the expectation of the performance of the system. The subject matter

expert think the system reliability are likely in general to be about 0.6, so we use the prior

distribution to merge the anticipated range of the product reliability. Monte Carlo inte-

gration was used to calculate the posterior consumer and producer’s risks. The posterior

distribution can be evaluated and then the posterior consumer’s risk, the posterior pro-

ducer’s risk and the acceptance probability can then be estimated approximately. The
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approximations are given as follows:

PPR

= P(R(t∗) ≥ π0|Test is failed)

=

∑M
j=1

[
1− ∑c

y=0 (
n
y)(1− e−λt

β
0 )y ∗ e−(n−y)λt

β
0

]
I

[
eλt

β
∗ ≥ π0

]

∑M
j=1

[
1− ∑c

y=0 (
n
y)(1− e−λt

β
0 )y ∗ e−(n−y)λt

β
0

]

=

∑M
j=1

[
1− ∑c

y=0 (
n
y)(1− π(j))y (π(j))(n−y)

]
I

[
π∗(j) ≥ π0

]

∑M
j=1

[
1− ∑c

y=0 (
n
y)(1− π(j))y ∗ (π(j))(n−y)

] (3.4)

We also approximate the posterior consumer’s risk (PCR) by

PCR

= P(R(t∗) ≤ π1|Test is passed)

=

∑M
j=1

[
∑c

y=0 (
n
y)(1− e−λt

β
0 )y ∗ e−(n−y)λt

β
0

]
I

[
eλt

β
∗ ≤ π1

]

∑M
j=1

[
∑c

y=0 (
n
y)(1− e−λt

β
0 )y ∗ e−(n−y)λt

β
0

]

=

∑M
j=1

[
1− ∑c

y=0 (
n
y)(1− π(j))y (π(j))(n−y)

]
I

[
π∗(j) ≤ π1

]

∑M
j=1

[
∑c

y=0 (
n
y)(1− π(j))y ∗ (π(j))(n−y)

] (3.5)

The acceptance probability (AP) which is the probability of accepting the test is also ap-

proximated by:

AP = P(Testispassed) =
1

M

M

∑
j=1

[
c

∑
y=0

(
n

y

)
(1− π(j))y ∗ (π(j))(n−y)

]
(3.6)
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With the number of failure y = 0, . . . . . . ., c , where c is the maximum failure that occur.

3.4 Case Study

For all possible inputs with c , t0 and n, we carried out a comprehensive assessment

of all test plans in other to observe how related the four criteria are with the test plan

parameters (n, c , t0). We calculated these criteria values for each of the test plan (n, c , t0)

by using the approximated PPR and PCR together with the number of test units n.

3.4.1 Trade-Offs Between Design Factors and The Criteria

For each test plan (n, c , t0), and using formulas given in (3.4) - (3.6), we calculated

the four criteria values which are the PPR, PCR, the cost (number of test unit), and AP

at a fixed testing time. Using prior with Invgamma(8,0.7) and Exp(11) with the range

of parameters c ∈ [0, 20], t0 = 100 and n ∈ [c + 1, 400], we evaluated 8190 test plans

[(n, c , t0) = (1, 0, 100) ,..., (400, 0, 100), (2, 1, 100) ,..., (400, 1, 100)]. To illustrate the rela-

tionships between the four criteria at a particular test duration, Figure 3.1 is the plot that

highlight the different pairs of criteria. There are 4 trade-off plots between criteria that

we will be considering. Using Figure 3.1(a) which is the plot of the consumer’s risk (CR)

vs producer’s risk (PR) for all test plan tested and reliability value of 0.8 as an example.

Darker grey to light grey symbolizes smaller c value to higher c value.

From the curve, we see some specific test plans with n = 10, 20, 35, 60, and 100 to show

how changing the sample size affect the test plan. If we use zero failure test i.e c = 0 and

want to control the CR at 0.1, then the PR is close to 0.6 and this is extremely high. This

implies that there is a trade-off between the CR and the PR. Also, it implies that we have

more than 60% chance of rejecting something that is already meeting the requirement

and this is a huge risk from the producers side. So our work is important to consider PR.

As we move towards the bottom left corner in 3.1(a) by increasing the c value, we are
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simultaneously reducing both the CR and PR when the number of test (n) increases. So

testing more units also improve all other criteria. When we consider a zero-failure time,

we observe that the minimal PR is at 0.45 while the minimal CR is at 0.29. For a fixed n,

the CR decreases as the PR increases with a decrease in the maximum failures c . On the

other hand, if we increase the maximum failures c , the CR increases thereby resulting in

an increased in the PR. Furthermore, if we fix the maximum failures c and increase n to

reduce CR, the PR increases and likewise if we reduce the test unit n to increase CR, the

PR decreases. The main disadvantage of using sample size test plan is that it does not

protect against producer’s risk i.e., it will be difficult for producers to produce a test unit

with reliability lower than the required reliability range.

From Figure 3.1(b), the plot of the AP vs. n with different c , the CR level is at 0.05,

0.10, 0.15, 0.20, 0.25 and the PR level is at 0.05, 0.10, 0.15, 0.20, 0.25. We see that as we

increase the number of test units, we are also reducing the acceptance probability as we

reduce the CR and this makes it harder to pass the test. We also observed that as we allow

more failures, the probability of accepting the test increases for a fixed n. This happens

because if we stop testing more unit and we keep allowing more failure, then the chance

of passing the test will be high. On the other hand, if we reduce the maximum allowable

failure, the probability of accepting the test will decrease. Also, when c is fixed, the AP

decreases as n increases and vice versa.

Figure 3.1(c), is the plot of the PR vs. number of test unit for different c . From the plot,

the CR level is at 0.05, 0.10, 0.15, 0.20, 0.25. As we increase the number of test unit, we are

also increasing the PR very quickly. By fixing c , the PR increases and the CR decreases

as we test for more units. If CR is fixed, we see that as both n and c increases, the PR

reduced. Also, by fixing n, we can reduce the CR and increase the PR as c decreases.
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Figure 3.1(d) is the plot of consumer’s risk vs. the number of test for different c , where

PR levels are controlled at 0.05, 0.1, 0.15, 0.2, and 0.25. We see that as we test for more

units, the CR reduces if we try to increase the PR. If we fix the PR, then the CR will be

reduced by increasing c and n. For a fixed n, as the PR increases, the CR is reduced by

allowing fewer failures.

All the last three figures tells us that as we are testing more unit, we are only improving

the consumers risk and we are hurting both the PR and the AP. These explain the general

trade-off between CR and other two criteria.
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Figure 3.1: Interrelationships between the different criteria.

3.4.2 Pareto Front Optimization With Its Literature Review

Many fields have raised their attention to making the most optimal decisions based on

multiple objectives or responses lately because budgets and resources have become more

constrained and there is competition for resources when different objectives are consid-

ered concurrently in many applications. To make this decisions, many approach such as

in [71] has been used to find a single “outstanding” solution to optimize the multiple ob-
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jectives until the development of Pareto front approach [79].

In order to find competing solutions for all objectives under consideration, the Pareto

front approach became increasingly popular. Pareto dominance refers to a solution that

is better on at least one of the objectives and is as good as the other solution. Using the

utopia point is the best performance for all the criteria but those solution on the utopia

point can’t be obtained in reality as a real solution. So, the solutions that are reasonable

to focus on are the one on the Pareto front. The Pareto front approach finds a collection

of non-dominating test plans and eliminate all the non-contenders. That is a rational set

of solution to be focusing on. We then we proposed different strategies to further select

test plan from the Pareto front based on the users priority. A Pareto optimal solution is

one in which no other solution dominates it and whose corresponding criteria vector is

undominated. i.e., whenever one objective cannot be improved without deteriorating an-

other and a rational final choice was made from a complete set of superior solutions, then

we have a Pareto optimal set.

Pareto front can be constructed based on a finite collection of solutions, and using

search algorithms. The Pareto front approach was used by [79] to construct a polyno-

mial description of the Pareto set using simulation and high-performance computing. A

Pareto set member’s optimality was determined by the geometric relationships between

its members. Also, [113] used the Pareto-optimization to find stable folding peptides that

are still not known yet. To provide sustainable land uses from global to sub-global scales,

the optimization algorithms which include the Pareto Fronts and scenario analysis were

used [111]. [54] also determined a set of Pareto-optimal solutions using the desirability of

the objectives which reveal the preferences from an expert regarding different objective

regions. By simultaneously balancing multiple criteria, [74] applied the Pareto front ap-

25



proach to select a test plan that is optimal. [84] developed the Pareto front approach into

a two-stage to make decision.

3.4.3 Usefulness of Pareto Front in This Work

Based on taking into account the multiple criteria to remove non-contenders from

making decision, we used the Pareto front approach to find a collection of non-dominating

test plans. For a specified range of (n, c , t0) values we identified the Pareto optimal solu-

tions. After the identification, a graphical summary to determine the best demonstration

test for different strategies to further select test plan from the Pareto front based on the

users priority will then be highlighted.

3.4.4 Prioritizing the CR

The rest of the strategy is going to be based on which criteria we are going to con-

sider as the most important criteria for decision making. Since the producer’s aim is to

always satisfy the consumers, the priority of the consumer should come first but not at

the detriment of the producer. Assuming we want to focus on primarily controlling CR,

then Figure 3.2 is the threshold we are going to use to reduce the solution. After applying

this constraint, we will find the Pareto front of the remaining solution. Let us control the

CR at 0.20, We have 21 solutions corresponding to all the 21-c value. From the figure, the

cost is a square symbol (it’s scale is on the right axis), AP is a triangle symbol and PR is a

circle symbol with probability value on the y-axis (left axis) and the maximum allowable

failures on the x-axis.

After this step, how are we going to make decision?. This will depend on the available

resources and secondary criteria. Suppose we think among the remaining 3 criteria, PR is

the most important and we can’t accept more than 0.1 of PR, then we can see our natural

solution is n = 51, and AP at 0.80 with c = 10. Suppose we think the cost (test unit) is the
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most important after controlling the CR value, and we can’t test more than 60 unit, then

the natural design is at PR = 0.09, and AP is at 0.80 with c = 12. Suppose we can’t afford

more than 5 failures for our test after controlling CR, then we have n = 27, PR = 0.21,

and AP = 0.77.
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Figure 3.2: Plots of the Trade-Off for the 21 Choices on the Pareto Front Based on cost,
AP and PR using CR≤ 0.2

Next, we move on to prioritize the producer’s risk.
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3.4.5 Prioritizing the PR

If we prioritize PR, then we get a more busier Pareto front from Figure 3.3. The CR

has a circle symbol while the AP has a triangle symbol. The right axis is the AP scale,

and the left axis is the range of the CR on the Pareto front. The graphical summary help

us to see the trend. Suppose PR is the most important criteria to control, then we reduce

the solution by selecting all the subset that has PR less than or equal to 0.2, and we will

find the Pareto front. After this, if we think CR is the next criteria to control, then let’s

control the CR to be less than or equal to 0.15. From the region where CR ≤ 0.15 to the

top of the graph correspond to smaller CR value and higher AP value which is at the top

right corner and the better option choice close to that region is when c = 19, n = 72, and

AP = 0.89. Suppose the test unit is important and we can’t afford more than 60 unit with

low CR close to 0.13, the better option close to that line is when c = 18 and AP = 0.93.

.
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Figure 3.3: Plots of the Trade-Off for the 21 Choices on the Pareto Front Based on cost,
AP and CR using PR≤ 0.2

Next, we move on to prioritize the maximum allowable failures c . The number of

sample to test will determine the number of failure we will have. The more expensive the

test is, the lower the unit to be tested and this will affect the maximum allowable failure.

3.4.6 Prioritizing The Maximum Number of Failure ”c”

For some practitioners, controlling c is the most important criteria and then based on

their desire, we explore different choices of the c-value here and practitioners can pick the

best plot that fit their scenario. Using a specific fixed c values of 0, 5, 10, and 15, Figure
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3.4 is the trade-off plot when c is fixed. For each of this plot, the scale on the left is for

PR and CR and is different because zero which is the best performance is at the top of the

graph and 1 which is the worst performance is at the lowest (bottom) position. AP is on

the right scale. It has zero at the bottom for the worst performance and 1 at the top is the

best performance.

If we choose the zero failure test, the top left i.e c = 0, then basically, we can not find a

solution that perform reasonably well because the region where the CR starts to increase

is very small. For majority of the scenario, we have bad performance for two of the cri-

teria using this zero failure test. For example, as we control the CR, then the AP and PR

get worst using this zero failure test. So if we increase the c value, then in general, we are

allowing us to have more chance to get more balanced performance.

We are actually looking for solution that are near the top where all the criteria meet

for when c > 0 on the plot. So here are some of the choices: For c = 15, if the test unit

is 100, the CR will be 0.1 with AP being 0.7 and PR being 0.10. From this result, as we

increase the c value from 0 to 15, we are generally improving other criteria but the c to

choose depend on our actual scenario of how much maximum failure we can afford.
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Figure 3.4: Trade-Off Plot for Fixed c = 0, 5, 10, and 15

In summary, we have shown and discussed about the three strategies of making deci-

sion in choosing a best demonstration test plan. After controlling the maximum number

of failures, the CR, and the PR at a fixed testing time, it is now left to the users to decide

which plan to use. This decision will be based on fund, actual testing time and resources

available. Choosing a particular PR value or controlling PR based on Figure 3.3 can lead

to the users choosing from an enormous rich option. There are many trade-offs between

all four criteria under consideration when we focus on a particular c value and as a result

of that, we have many competing options to choose from. However, the interconnections

between the criteria are simple and clear from Figure 3.4. From Figure 3.2, we can see

a clear and straight forward result to make our decision when we control the CR. The
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Pareto front techniques can be effectively used to eliminate lesser solutions. So, since

controlling the CR leads to the simplest choices for reaching a final decision, we need to

do sensitivity analysis on different CR value.

3.5 Sensitivity Analysis

In this section, we want to discuss in detail the effect of the decision made by the user

based on their choices. Figure 3.5 is a plot for using three different CR values. For each

level, we have three curves that represent the criteria values for all test plans at same time

duration on the Pareto front based on the PR, AP, and cost criteria. The actual criteria

values are shown in Table 3.1. Based on Table 3.1 and Figure 3.5, we observe that when

the threshold value for the CR decreases (i.e. 0.20, 0.1, 0.05), more units will be tested for

a fixed c value. With this result, the PR increases with a decrease in the AP value. Going

for smaller value of PR will leads to an increase in c and n.

For example, if the producer can accept maximum of 0.29 risk, then using 0.20 thresh-

old for CR, we can only test for 18 units to achieve 0.73 for AP. With this, we must fail 3

units. If the user wants more units to be tested using the same PR value, then we must test

57 units with a threshold CR = 0.1 and fail 8 units with AP = 0.62 or we test n = 150 units

and threshold CR = 0.05. With this, we will have to fail 20 units with AP = 0.573. From

this, we see that as we increase the number of test unit and fix the PR, the CR decreases

and this results in a decrease in the AP.

As c increases for a fixed CR, the PR decreases and the AP value increases. By increas-

ing the sample size, the PR decreases and this leads to an increase in the AP. From Figure

3.5, it is impossible to improve the AP to above 0.573 and PR to below 0.2941 with CR =

0.05 regardless of the number of test units. Hence, to understand the impact of different

CR value on available choices, we need to determine the performance of the test.
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Table 3.1: Table for the Pareto Front Based on using different CR value

CR=0.20 CR=0.1 CR=0.05

PR AP n c PR AP n c PR AP n c

0.5304 0.4979 5 0 0.5970 0.2360 12 0 0.6242 0.1417 18 0

0.4455 0.5965 10 1 0.5349 0.3714 17 1 0.5906 0.2225 25 1

0.3626 0.6781 14 2 0.4884 0.4401 23 2 0.5604 0.2820 32 2

0.2944 0.7276 18 3 0.4489 0.4870 29 3 0.5337 0.3271 39 3

0.2552 0.7410 23 4 0.4040 0.5378 34 4 0.5031 0.3746 45 4

0.2093 0.7670 27 5 0.3751 0.5615 40 5 0.4820 0.4017 52 5

0.1849 0.7725 32 6 0.3501 0.5801 46 6 0.4560 0.4345 58 6

0.1647 0.7769 37 7 0.3283 0.5950 52 7 0.4394 0.4517 65 7

0.1378 0.7911 41 8 0.2997 0.6178 57 8 0.4175 0.4755 71 8

0.1245 0.7931 46 9 0.2834 0.6269 63 9 0.4045 0.4870 78 9

0.1132 0.7948 51 10 0.2689 0.6346 69 10 0.3927 0.4968 85 10

0.0964 0.8039 55 11 0.2560 0.6412 75 11 0.3755 0.5129 91 11

0.0886 0.8046 60 12 0.2444 0.6468 81 12 0.3661 0.5199 98 12

0.0817 0.8052 65 13 0.2266 0.6590 86 13 0.3513 0.5327 104 13

0.0757 0.8058 70 14 0.2175 0.6628 92 14 0.3437 0.5377 111 14

0.0657 0.8120 74 15 0.2093 0.6663 98 15 0.3308 0.5483 117 15

0.0613 0.8121 79 16 0.2018 0.6693 104 16 0.3246 0.5520 124 16

0.0574 0.8122 84 17 0.1949 0.6721 110 17 0.3134 0.5607 130 17

0.0539 0.8123 89 18 0.1828 0.6799 115 18 0.3083 0.5635 137 18

0.0474 0.8169 93 19 0.1773 0.6819 121 19 0.2983 0.5709 143 19

0.0447 0.8169 98 20 0.1721 0.6837 127 20 0.2941 0.5730 150 20

Now let’s consider another prior Invgamma(9,0.7) with Exp(11) and compare it with

our previous prior. Figure 3.6(a) is the plot of the consumer’s risk (CR) vs producer’s risk

(PR) for all test plan tested at a fixed time t0 of 100 hours and reliability value of 0.8. We
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are doing sensitivity analysis on prior distribution because prior distribution are subjec-

tive choices. Bayesian method generally is subjective to the choice of prior distribution.

So we want to look at choosing different prior distribution and how it affect our selective

test plan. From this plot, we noticed that the range of the CR is from 0 to 0.27 and the

range of the PR is from 0 to 0.72. Comparing this plot with the plot of when we use In-

vgamma(8,0.7) with Exp(11) in 3.1(a) (the range of the CR is from 0 to 0.37 and the range

of the PR is from 0 to 0.7), we noticed that increasing the shape parameter of inverse-

gamma parameter (i.e., by applying a more diffuse prior distribution. This can be seen in

Figure 3.8) leads to an increase in the PR and a decrease in CR.

In figure 3.6(b), the plot of the AP vs. n with different c at a fixed test duration t0 value,

we see that when we fix the CR at 0.05 and reduce the maximum number of failure, the

AP reduces from 0.68 to 0.2. Comparing this to 3.1(b), we see that if we fix the CR at 0.05

and reduce the maximum number of failure, the AP reduces from 0.56 to 0.12. This im-

plies that the AP increases when we apply more diffuse prior distribution. Figure 3.6(c) is

the plot of the PR vs. n with different c , we see that when we fix the CR at 0.1 and c = 0,

we test for less units compared to when we use a less diffuse prior in 3.1(c).

Finally, from 3.6(d), we observed that the CR reduces compared to when less diffuse

prior in 3.1(d) is used. In summary, we see that if we apply a less diffuse prior, the CR

will increase and the PR will decrease. Also, the AP decreases.

For this prior, we used different value for CR, and the detail effect of the decision made

by the user based on their choices is shown in the trade-off plot in Figure 3.7. For each of

these c values, we have best choice to choose. Based on this plot, we observe that when

the threshold value for the CR decreases (i.e. 0.20, 0.1, 0.05), more units will be tested for

a fixed value of c . If the producer can accept at most 0.29 risk, then using 0.20 threshold
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for CR, we can only test for 12 units to achieve 0.85 for AP. With this, we must fail 3 units.

If the user wants more units to be tested, then we must test 58 units with threshold CR =

0.1. We will have to fail 9 units with AP = 0.745 or we test n = 138 units with threshold

CR = 0.05 and fail 19 units. This will leave us with AP = 0.679. From this, we see that as

we increase the sample size, the CR decreases, and this result to a decrease in the AP.

In summary, having a prior distribution Invgamma (9, 0.7), Exp(11) which is a more

diffuse prior distribution results into testing less units with higher acceptance probabil-

ity and higher PR. Having higher information from Invgamma (9, 0.7), we observe that

the spread decreases compared to Invgamma (8, 0.7). Since we want higher reliability,

then prior with more information i.e. Invgamma (9, 0.7) should be used. Comparing our

two priors (Invgamma(8,0.7) with Exp(11) and Invgamma(9,0.8) with Exp(11)) results, we

observed that to quantify the different criteria using a Bayesian approach, the calculated

probability of accepting the test and the risk criteria can be affected by the prior distribu-

tion specified by the user. We observe that the acceptance probability and the risk criteria

calculated can be sensitive to the prior distribution selected by the user when we use the

Bayesian approach to measure the different criteria.
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Figure 3.6: Interrelationships between the different criteria using different prior.
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Figure 3.7: Plots for the Pareto Front Based on using different CR value
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Chapter 4: Bayesian Analysis For Accelerated Degradation Test Data With Multiple

Degradation Measurements and Covariates Using the General Path Model

4.1 Introduction

We can categorize degradation models into two broad classes, which are stochastic

process models and the general path models [132]. These two models were proposed to

capture the three sources of variation in a degradation process. These sources of variation

include variation from unit-to-unit, temporal variation, and variation based on measure-

ment [23]. Due to time-dependent structures properties and because it captures the tem-

poral variation within a unit, the stochastic process model is being used and this model

includes the Wiener process (i.e., Brownian motion) [7], Gamma process [62], and Inverse

Gaussian (IG) process ( [125], [133]).

Wiener process model with random drift-volatility has been proposed by Wang [124].

Ye [132] reviewed the cases involving random effects (which modeled a unit-to-unit vari-

ation), covariates, and measurement errors. Whitmore [45] used the Wiener process with

random drifts to estimate degradation. However, one of the obstacles faced is that we can-

not directly use the linear drift Wiener process to describe a nonlinear degradation process

and this is because of the mechanism behind the failure of the product and because of how

complex the structure is. To overcome this obstacle, we need to transform the degrada-

tion data. Some of the transformation methods include log transformation [9], [103], [18]

and time-scale transformation [17], [83], [90]. Si et al. [86] realized that we cannot prop-

erly transform all nonlinear degradation processes. Hence, there was a development of a

Wiener process model with a nonlinear drift coefficient to characterize the dynamics and
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nonlinearity of the degradation process. [40] focused on the RDT plan design problem for

long life products based on degradation test data. They assume the product fails due to

the degradation of some special performance and they modeled the degradation process

using Wiener process with shift.

A degradation process that is always strictly increasing and positive, can be modeled

using the Gamma and IG (Inverse Gaussian) processes. The Gamma process with ran-

dom scales was studied by Lawless and Crowder [62]. An uncomplicated way we can

model the Wiener process is by adding measurement errors, but this is not the case for

the Gamma or the IG processes. Stochastic model doesn’t utilize the physical knowledge

of the degradation process.

General path model is being used whenever we have a nonlinear degradation path

and when we have a physical understanding recommending a functional form of the

degradation path. A general path model is used in this work because it allow us to lever-

age the physical understanding of the process based on the formulation of the degrada-

tion path model. Using a mixed-effects regression and measurement errors, it is easier to

model the unit-to-unit variation using the general path models [63]. To understand differ-

ent aspects of the reliability performance, some degradation tests measured the multiple

characteristics of a degradation process and this type of data is called the degradation

data with multiple degradation characteristics (DCs).

In general, for ADT dataset, most of the existing work consider a single character-

istics but a new model that focuses on the modeling and analysis of degradation data

has been found to analyze multiple Dcs. This new method model the multiple DCs in-

terdependently. Since multivariate degradation data is more common recently, Hong et

al. [78] came up with the need to develop multivariate degradation models. Huang and
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Askin [120] discussed the analysis of electronic devices with multiple competing modes

of catastrophic failure and degradation failure by assuming the independence of multiple

degradation processes.

There are very little work that actually address correlation between the multiple degra-

dation measurement. That is where our work fit in. Some existing work used different

method such as copula method and (EM) Expectation Maximization algorithm but we

used full Bayesian approach which provide a straightforward structure for inference. For

copula method, adding random effects to it can be challenging and complicated when es-

timating the model because of how the number of model parameters increase. Some work

used multivariate model by using different estimation approach such as the EM which is

the Expectation Maximization algorithm. To estimate a time-to-failure distribution using

degradation measures, Lu and Meeker [63] developed more general statistical models

and data analysis methods. The frequentist approach was used by [30] fang et al. to

analyze the ISO dataset on hierarchical model using the maximum likelihood estimation

(MLE) method. Computation of frequentist approach is slow, and the parameters are not

modeled probabilistically unlike the Bayesian approach that model the data and the pa-

rameter probabilistically. To integrate over high dimensions, Bayesian approach is useful.

Huibing et al. [50] proposed a Bayesian framework to integrate the population degra-

dation information and individual degradation data using a Weiner process and used

the MCMC method to estimate the unknown parameters in the model. Soliman et al.

[91] used the MCMC sampling method for posterior inference of the reliability of the

stress–strength model. [58] also proposed a sequential MCMC model for reliability eval-

uation of the Offshore Wind Farm. The full Bayesian approach is easy to implement and

it provide straightforward structure for inference.
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As discussed in Chapter 2, Accelerated Degradation Tests (ADTs) measure the degra-

dation of products under the accelerated conditions. These are then used to model the

degradation path and predict failure and/or assess reliability under the normal use con-

ditions. ADTs method is used to extrapolate the lifetime of highly reliable products under

normal use conditions. ADT datasets have been used by different researchers to track

the degradation of products. [130] applied ADT dataset (outdoor weathering data that

contain degradation measurements and environmental covariates) to model degradation

paths and they proposed a class of nonlinear general path models with random effects

to incorporate dynamic covariates for modeling of degradation paths. This dataset has

single characteristic and the parameters were estimated using the outside iterations. [127]

also applied ADT dataset (NIST coating degradation data) to track the degradation of

products. This dataset has multiple DC measurements each with repeated measurements.

Their proposed model incorporate nonlinearity in the degradation path, physical under-

standing of the degradation process, unit-to-unit variation, and covariate effects by using

the Bayesian approach.

The Bayesian approach using Markov Chain Monte Carlo (MCMC) will be used in our

work to integrate the multivariate random effects over multiple dimensions. A simulated

and synthetic data (with multiple DC measurements) from ISO data (ADT dataset that

has repeated measurements) will be used to propose our model in order to incorporate

nonlinearity in the degradation path, physical understanding of the degradation process,

unit-to-unit variation, and covariate effects. Our model will capture the correlation be-

tween the initial condition and the degradation rate.

The remainder of this paper is organized as follows. We will discuss the ADT dataset

(ISO/IEC) and the multivariate nonlinear degradation path model to be used. We will

also talk about how the model parameters and associated uncertainty can be estimated
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using the MCMC method with the use of the Stan package. We will also talk about how

to plot the reliability curve. To demonstrate how our proposed multivariate nonlinear

degradation model performed together with when the multiple independent degrada-

tion models are being used, we will conduct a simulation study. We illustrated the imple-

mentation and performance of our method through the analysis of the synthetic ISO/IEC

degradation test data.

4.2 Data and Models

4.2.1 Overview

4.2.2 ISO/IEC Data and Application

The worldwide standardization system consists of both the International Electrotech-

nical Commission (IEC) and the International Organization for Standardization (ISO).

ISO 10995 is the international standard for the reliability testing and archival lifetime pre-

diction of optical media. The standard from the name implies the testing conditions in

terms of the combinations of stress variables—temperature and relative humidity. Fang,

et al. [30] used degradation test to predict the lifetime of ISO 10995. It is assumed by the

standard that the projected failure times are the actual failure times, which are then ana-

lyzed using the Eyring or Arrhenius model.

Providing guidance on current practice is ISO 10995:2011 [3] purpose, through acceler-

ated degradation test for optical media archival life products prediction and understand-

ing the underlying failure mechanisms. A high level of stress is thought to accelerate

chemical reactions, resulting in the degradation of the material that results in the fail-

ure of disk. Different types of optical media formats such as DVD-R/-RW/-RAM and

+R/+RW were tested in the ISO 10995:2011 experiment.
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The operation of reading or writing data from a disk is typically accomplished by al-

tering the transparency of an organic dye layer [49]. This brings about the degradation

of the transparent portion of the dye layer over an extended period of time due to the

organic nature of the dye. This process can take several years in a normal environmental

condition because it has its roots in chemical kinetics, but we can speed up (accelerate)

the process to a very great extent with higher temperature or humidity [34]. Using the

Eyring model and some other models, we can then model the effects of these stress vari-

ables, and this is derived from the study of chemical kinetics [98]. When the information

recorded on a disc cannot be recovered without significant loss, then that disc has reached

the end of its useful life, and to accelerate the degradation process in order to shorten the

lifetime of the disc, we will have to increase the temperature, duty cycle, voltage, relative

humidity, or particle induction. ISO 10995:2011 [3] uses the accelerated degradation tests

(ADTs) to estimate and predict the lifetime of optical media.

Periodically, the degradation measurements are recorded for every unit that is tested

in a variety of conditions by the experimenter in ISO 10995:2011 and the observed degra-

dation data to a regression model was fitted. The failure threshold value is at log(280).

For all the test units, the predicted time-to-failure were fitted in an accelerated failure time

model by assuming an exponential lifetime distribution [132]. Another problem with

ISO 10995:2011 is that the model completely ignores the unit-to-unit variation among the

test samples by assuming a homogeneous distribution across the population. ISO 10995

dataset has the relative humidity and temperature as the two stress variables. Each of

these stress variables have four stress conditions which can be seen in Table 4.1. The

dataset has n = 90 test unit with r = 2 covariates (Temperature and Humidity).

45



0 500 1000 1500 2000 2500

2
3

4
5

6
7

Time

D
eg

ra
da

tio
n 

(L
og

 S
ca

le
)

Temp=85&RH=85
Temp=85&RH=70
Temp=65&RH=85
Temp=70&RH=75

MAX PI SUM 8 = Log(280)

Figure 4.1: ISO 10995:2011 ADT Data Degradation Paths

Table 4.1: Stress Condition

Number Relative Humidity in % Temperature in 0C

1 85 85

2 70 85

3 85 65

4 75 70

Figure 4.1 is ISO ADT Data Degradation Paths that all 90 ISO accelerated degrada-

tion test units were measured on a log scale. The test units can be recognized under four

different test conditions with different colors. Different color represent different test con-

ditions. So, degradation rate changes with different test condition. Also, we can see for

unit with the same test condition (for the same color), there are differences that repre-

46



sent unit to unit variation. Also, the relative position of these lines on the plot are pretty

consistent and are preserved across each measurement. This indicate that most of the

measurement are highly correlated and that is why we need to consider correlation while

modeling multiple DC measurement.

From the plot, few patterns can be observed. First, across different test conditions, dif-

ferent rate of degradation exist such that the units with the highest relative humidity RH

(at 85%) levels and highest temperature (at 850C ) have the highest degradation rates (the

red color in the Figure). Also, units with the lowest RH (75%) and lowest temperature

(700C ) had lowest rate of degradation (blue color from the plot). Second point to consider

is that degradation rates are not necessarily constant over time because a curvature can

be observed on many paths, and it may not be possible to model the degradation of all

test units as a linear function of time. Therefore, because of this, a polynomial regres-

sion model or nonlinear regression model is necessary to model the variation of the trend

of the degradation. Third, both the initial degradation level and the rate of degradation

appear to vary from unit to unit and this can be seen in Figure 4.1 in which at time 0

in the study, the degradation paths all start with different starting values (ranging from

1.609438 to 3.555348 on the log scale and correspondingly 5 to 35 on the raw degradation

measures), which indicates a different starting condition for the test units at the begin-

ning of the study. Also, the degradation rates and initial degradation conditions show

a positive correlation, and this implies that the temporal degradation rate and the initial

condition are positively correlated and have a unit-to-unit variation. We can see that the

red paths from the plot have the highest initial degradation values and because of this, it

has higher degradation rates over time.

The temporal degradation rate, as well as the individual initial condition, needs to be

accounted for by multivariate random effects. From ISO 10995:2011, the performance of
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the threshold is log(280) [38] for Optical Media. The green horizontal line in Figure 4.1

is the threshold for soft failure for the media used. If the level of degradation crosses

this value of threshold, then the test unit is considered to fail. From the 4 test conditions

given in Figure 4.1, we can see that harshest test condition, which is the test at 850C for

temperature and 85% for the RH level failed because they pass across the threshold value.

Also, at 850C for temperature and 70% for the RH level, we see that part of this level also

failed by crossing the threshold value. With the remaining two levels, which are the one

with 650C for temperature, 85% for the RH levels and the one with 700C for temperature,

75% for the RH levels, no failure was observed while doing the test. Based on this obser-

vation, we can justify that both the RH and temperature are acceleration factors for this

optical media dataset and when it comes to studying high reliability products, the ADT

test is critical because it helps speed up or accelerate degradation process and also helps

to collect data quickly.

4.2.3 Degradation Data

In ISO 10995:2011 standard, they conducted the experiment in 4 testing conditions

with a combination of temperature and relative humidity and with different specimens.

There are 20 specimens each in condition 1 which is (850C , 85%), condition 2: (850C , 70%),

and condition 3: (650C , 85%). For condition 4: (700C , 75%), we have 30 specimens. The

specimen for the first two conditions are recorded from time 0 to 1000 hours with 250 in-

terval; for third condition, the specimens are recorded from 0 to 2000 hours with interval

of 500; and the fourth conditions are recorded from time 0 to 2500 hours with interval of

625.

In this experiment, a longer time period under less severe stress condition is used. Us-

ing this dataset, we created two synthetic data and part of the data are shown in Table 4.2

and 4.3. During this test period, not all the test units in this experiment have failed, and
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the degradation measurements was fitted into a nonlinear regression so as to calculate

the projected failure. We will propose a multivariate degradation path model that will

capture the correlation between multivariate measurements in the next subsection.

Table 4.2: 1ST D.C. FOR ISO DATA

Temp = 850C ,RH = 85% Temp = 850C ,RH = 70%

Hours Hours

Disk 0 250 500 750 1000 Disk 0 250 500 750 1000

A3 26 94 190 335 642 B1 10 20 67 112 156

A4 26 111 247 343 718 B4 20 43 120 166 219

A9 24 118 285 723 754 B6 21 37 104 222 368

A10 12 85 178 312 988 B7 21 30 89 155 221

A12 24 136 267 444 719 B11 28 58 88 120 268

Table 4.3: 2ND D.C. FOR ISO DATA

Temp = 850C ,RH = 85% Temp = 850C ,RH = 70%

Hours Hours

Disk 0 250 500 750 1000 Disk 0 250 500 750 1000

A1 16 78 116 278 445 B2 8 20 47 84 188

A2 25 64 134 342 532 B3 12 26 72 185 421

A5 27 89 185 246 466 B5 32 45 76 103 267

A6 21 111 207 567 896 B8 22 26 72 125 267

A7 26 121 274 589 781 B9 25 46 124 182 224

4.2.4 Hierarchical Degradation Path Model

Zipgq which is response variable in ISO data has a length of 450 because, each of the 90

test units repeated measures have 5 different time points. Using the original ADT dataset,
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we created two synthetic data with two DC measurements (i.e., P = 2) of n = 45 test unit

each in other to achieve a multivariate model. In developing this model, we fitted a non-

linear regression model of log-transformed error rate, and the time-to-failure is assumed

to follow a lognormal distribution. The stress level will only affect the location parameter

of the lognormal distribution.

Using the hierarchical degradation model, we want to get the correlation among the

multivariate measurements on the two DCs. In developing this model, we used two

levels structure to build the model. Having i = 1, ..., n, n is the number of test unit , the

first level log(yipgq) is the log scale of the response variable and this is defined as the sum

of degradation level for unit i on the pth DC under stress condition g at time tiq, where

g = 1, ...,G , p = 1, 2, q = 1, ...,wi , G = 4 and wi = 5 is the total number of measured time

points for unit i . This first level is assumed to be linear in measurement error and in the

transformed time variable t
γip
ipgq. The hierarchical degradation model is given as:

logyipgq = Zipgq + ϵipgq (4.1)

where the degradation path is given as

Zipgq = β0ip + β1ipg t
γip
ipgq (4.2)

The second equation is a nonlinear model of time. The coefficient is affected by the

accelerating factor like RH, Temperature. We are allowing the intercept which represent

the initial error rate and our degradation rate to be correlated together. β0ip (Initial error

rate) was measured prior to accelerated aging, β1ipg is the degradation rate and Zipgq is

the actual degradation path of unit i on the pth DC under stress condition g at time tiq.

The measurement error ϵipgq are i.i.d normally distributed with zero mean and unknown

variance i.e., ϵipgq N(0, σ2
rp). σ2

rp is the common variance for measurements on the pth DC
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with r = 2 random effects. Meeker and Escobar [64] talked about ADT modeling when

stress factors, such as temperature, humidity, and voltage are presence. The impact of

environmental stress on material properties are incorporated into the general path model

above (4.1) and Eyring model (which is given below) in (4.3) models the temperature and

another factor, such as humidity.

Acceleration Factor = AT αexp

[
∆H

kT
+

(
B +

C

T

)
logRH

]
(4.3)

where

T is the Temperature measured in degrees Kelvin,

∆H is the activation energy per molecule,

A is the pre-exponential time constant,

T α is the pre-exponential temperature factor,

RH is the relative humidity,

B and C are the RH exponential constants and

k is Boltzmann’s constant.

k = 1.38071.3807 ∗ 10−23(J/moleculedegreeK ).

In other to measure unit to unit variation, we will let β0ip and logAip be our random

effects that are associated with unit i for P DCs and using a reduced Eyring function, we

define β0ip, β1ipg and logAip as follow:

β0ip = µ1ip + ϵ1ip

logAip = µ2ip + ϵ2ip

β1ipg = exp(logAip + Bp logRHgp +∆Hp
11605

Tgp + 273.15
) (4.4)
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where µ1p, µ2p, Bp, ∆Hp and γp are the fixed effects.

We will denote Qp = (µ1p, µ2p, Bp, ∆Hp and γp)
′

to be a vector of fixed effect pa-

rameters and αip = (β0ip, logAip)
′

denotes the vector of a random effect related to P DCs.

The vector comprising of the random effect and the fixed effect related to the pth DC is

given to be Ψp = (Q
′
p, α

′
ip)

′
. Since for unit i , there are two random effects for P DCs, then

those two random terms ϵ1ip and ϵ2ip, follow a multivariate normal (MVN) distribution

with mean 0 and variance Σ, i.e., MVN(0, Σ) where Σ is a P x P dimensional variance-

covariance matrix for the random effects on P DCs measurements and each P has two

random effects. We are looking at the correlation between the two random effect.

[
ϵ1ip
ϵ2ip

]
∼ MVN

([
0
0
0
0

]
, Σ

)
and from this equation, we have

[
β0ip

logAip

]
∼
[ µ11

µ12
µ21
µ22

]
+MVN

([
0
0
0
0

]
, Σ

)
(4.5)

where

Σ =



σ2
11 σ1112 σ1121 σ1122

σ1211 σ2
12 σ1221 σ1222

σ2111 σ2112 σ2
21 σ2122

σ2211 σ2212 σ2221 σ2
22


(4.6)

and σ2
11, σ1112, ...., σ2

22 are the hyper-parameters from the var-covariance matrix.

4.2.5 Reliability Model

Let dp be the threshold value of the degradation for the pth DC, then we define a soft

failure as a failure that occurs when the degradation reaches a threshold value and denote

the associated soft-failure time as Tp, where p = 1, 2. The reliability of the system at time
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t is defined as

R(t) = Pr{T1 ≥ t,T2 ≥ t} = Pr{Zi1gq ≥ d1, . . . . . . ,Zipgq ≥ dp} (4.7)

Where Zipgq is given in (4.2), dp > 0.

The above equation (4.7) depends on the joint failure time distribution model for all

the P DC measurements. Calculating a closed-form expression for F (t) = 1−R(t) might

be easy in some cases, but in general, it is hard to get such a closed-form expression

especially in some practical path models due to how hard it is to get the integration for

random effect terms. Therefore, when more than one of the parameters is random, we

have to use simulation method to evaluate F (t).

4.2.6 Stan

Stan is a programming language based on C++, and it is used for Bayesian modeling

and inference. It is used for statistical modeling and for fitting models that are efficient,

robust and scalable. Given a user-specified model and data, Stan uses the No-U-Turn

sampler (NUTS) [77] to obtain posterior simulations. For the estimation of model param-

eters when random effect is present, we describe the Hamiltonian Monte Carlo (HMC)

which is a Markov chain Monte Carlo (MCMC) method. The techniques of the Stan’s

Markov chain Monte Carlo (MCMC) are based on the Hamiltonian Monte Carlo (HMC)

and the HMC is a robust and more efficient sampler. Stan provides interfaces to other

programming languages.

Stan can be used through R interface, through Python and command-line shell. In

this paper, the R interface was used to run our model. Stan has the advantage of exten-

sibility and flexibility, and the arbitrary target functions is supported. The compilation
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of the program is written by Stan, and it then uses the available dataset to run the model

thereby producing the posterior simulation process of the model parameters automati-

cally. Advantage of Stan is its ability to analyze large dataset and complex model fast.

From the Hamiltonian Monte Carlo (HMC) algorithm, the no-u-turn (NUTS) which is

a Stan’s built-in sampler is derived and it was first proposed by Hoffman and Gelman

(2014) [12].

4.3 Statistical Inference

As a random process, Markov chains from Markov Chain Monte Carlo (MCMC) have

the memoryless property which implies that it can only be influenced by the process cur-

rent state and not by its past. The Monte Carlo part from MCMC is a computational algo-

rithm that rely on repeated random samples to estimates the properties of a distribution to

obtain numerical results. The motivation for using MCMC simulation is that the MCMC

simulation approximate an uncompromising posterior distribution. With Bayesian ap-

proach using MCMC, the likelihood function conditional on the unobserved variables

is only considered, which makes the computation faster. The MCMC method uses the

derivatives of the sampled density function for the purpose of generating transitions ef-

ficiently across the posterior. Based on numerical integration, it uses an approximate

Hamiltonian dynamics simulation, and this is corrected by performing a Metropolis ac-

ceptance step. Stan doesn’t need more samples to get it’s posterior result. We used the

Stan package in R for the MCMC algorithm and we will describe the MCMC algorithm

for the estimation of the parameter.

4.3.1 Stan Fundamental Parts

Stan code will be used to fit our model in (4.1) using RStan. RStan has a structure that

consists of three fundamental parts. These three parts are the data block, the parameters

block and the model block. Using our model in (5.1), we can implement this and write
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this as follow in Stan:

yipgq ∼ lognormal(Zipgq, σ2
rp) (4.8)

where Zipgq is defined in (4.2). The degradation model can then be rewritten as

yipgq ∼ lognormal(β0ip + β1ipg t
γp
ipgq, σ2

rp) (4.9)

The above model (4.9) can be written in the model block using Stan. Also, equation

(4.5) and (4.6), will be written in the transformed parameters block before entering the

model block.

4.3.2 Parameter Estimation

4.3.2.1 Estimation of Parameters

Here we want to discuss about the estimation of the model parameters. To estimate

these parameters, we will need the degradation data together with the hierarchical degra-

dation model discussed using (4.1). The vector of the model parameters Ψp which was

discussed in the previous chapter will be estimated and this vector includes the fixed

effects and the random effects. Each of the parameters will be assigned a prior distribu-

tion to obtain an estimate and this is according to the Bayesian approach. The approach

used by the Bayesian is as follows: Given a likelihood function of some data, Bayesian

method will introduce a probability distribution to an uncertain parameter and update

the parameter estimate based on the newly introduced information. For the frequentist

approach, probabilities will not be assigned to any parameter value instead, it uses the

point estimates of unknown parameter to predict the new data point.
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4.3.2.2 MCMC Sampling Technique

Let yipg = (yipg1, ......, yipgwi
)
′
, yip = (y

′
ip1, ...., y

′
ipG )

′
, and yi = (y

′
i1, ....., y

′
iP)

′
. Then y =

(y
′
1, ....., y

′
n)

′
serves as the vector of degradation measurements for all n test units. We de-

note Γ = (Ψ
′
1; σ2

11, ...., Ψ
′
P ; σ2

2P)
′

as the model parameters’ vector. The probability density

function (PDF) of a standard normal distribution is given as:

f (Γ) = Φnormal

[
logyipgq − β0ip − β1ipg t

γp

ipgq

σ

]

For the multivariate normal distribution, the Probability Density Function (PDF) is

given as

f (β0ip, logAip) =
1

2π|Σ|1/2 exp

(
− 1

2
(β − µ)TΣ−1(β − µ)

)
where

β =

 β0ip

logAip


and

µ =

µ1p

µ2p



with Σ given in (4.6)

In other to get the marginal likelihood, we develop the degradation path, Zipgq, as a

function of random effect coefficients, β0ip and logAip, to be

f (yi |β0ip, logAip; Γ) =
1√
2πσ

exp

(
− 1

2σ2

(
logyipgq − β0ip − β1ipg t

γp

ipgq

)2)
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If we integrate the two random effects (β0ip, logAip) out, we will have the marginal

likelihood to be

L1(Γ, Σ|y ; β0ip, logAip) =
∫ ∫

f (yi |β0ip, logAip; Γ) ∗ f (β0ip, logAip) dβ0ip dlogAip (4.10)

Drawing from a density f (Γ) for parameters Γ is simply the goal of sampling and this

is typically a Bayesian posterior f (Γ|y) given data y .

4.3.2.3 The Hamiltonian and The Auxiliary Momentum

Hamiltonian Monte Carlo (HMC) is a method of MCMC and it was applied to lattice

field theory simulations of quantum chromodynamics by Duane, et al [59]. HMC create

efficient developments spanning the posterior by using the derivatives of the sampled

density function. The application of HMC in statistics started in 1996 by Neal and it was

applied to neural network models [85]. There have been other applications of HMC to

statistical problems (e.g., [51], [89]).

As stated earlier, Stan was used for the MCMC algorithm and like most other HMC

implementations, Stan uses the leapfrog integrator. In other to give a stable result for

Hamiltonian systems of equations, leapfrog integrator which is a numerical integration

algorithm was used. The leapfrog algorithm takes discrete steps of some small-time in-

terval ϵ and using the leapfrog integrator with number of steps L and discretization time

ϵ for a given number of iterations, the HMC algorithm starts by sampling a new momen-

tum and the new parameter value Γ is updated according to Hamiltonian dynamics.

In Stan, some interfaces set the step size ϵ and an approximate integration time t. Us-

ing the no-U-turn sampling (NUTS) algorithm [12]. Stan is able to automatically optimize

ϵ to match an acceptance-rate target using the dual averaging [128]. This warmup opti-
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mization procedure is extremely flexible and using the notation of Hoffman and Gelman

in [12], Stan exposes each tuning option for dual averaging for completeness.

4.3.3 Posterior Analysis

For full Bayesian inference, Stan uses Markov chain Monte Carlo (MCMC) methods

to generate samples from the posterior distribution. At different positions in the chain,

the transition probabilities of the Markov chain do not change so that for u, u
′ ≥ 0, the

probability function f (Γ(u+1)|Γ(u)) is the same as f (Γ(u
′
+1)|Γ(u

′
)). The target density f (Γ)

defined by a Stan program is the equilibrium distribution f (Γ(u)) and this is typically a

proper Bayesian posterior density f (Γ|y) defined on the log scale up to a constant.

4.3.4 Prior Distribution Used

To fit degradation model for this analysis in Stan, scaling of the dataset should be done

because the features vary in units, magnitudes, and range. This should be followed by

pre-processing to scale the dataset because Euclidean distance between two data points

is being used by most MCMC algorithms to bring all features to the same level of mag-

nitude. With the synthetic ISO data, the temperatures and relative humidity were scaled

using Min-Max Scaling [3] so that the value will be between 0 and 1. With Stan, we can

generate MCMC posteriors draws for each parameter.

For the model parameters, denoted as Qp, each of these parameters µ1p, µ2p,Bp,Hp,

and γp follows Normal (0,10). From (4.6), we see that Σ is a covariance matrix and since it

has a scale and a location, prior distribution will be assigned to it. The only way to do the

assigning is to assign the prior distribution to a correlation matrix instead. This is because

the correlation matrix is a standardized version of a covariance matrix. Lewandowski,

Kurowicka, and Joe [27] which is shorten to LKJ, developed a correlation called LKJ prior

(LKJcorr) and this can be assigned to the correlation matrix. Having Σ to be a symmetric

58



matrix where the unit is diagonal and positive-definite, (Σ|ω) ∝ det(Σ)(ω−1), where ω is

the shape parameter and ω can be 1 (ω = 1), or ω > 1, or 0 < ω < 1. For the LKJ prior,

values closer to 1 are less skeptical of strong correlations (-1, +1), and higher values (e.g., 2,

4) are more skeptical of strong correlation coefficients. An implicit parameterization of the

LKJ correlation matrix density was provided by Stan in terms of its Cholesky factor and

this is denoted as lkj corr cholesky in Stan. For example, given S ∼ lkj corr cholesky(1.0),

this implies that S ∗ S ′ ∼ lkj corr(1.0).

For the random effects parameters, the prior distribution is assigned as follows:

Σ∗ =



σ2
11 0 0 0

0 σ2
12 0 0

0 0 σ2
21 0

0 0 0 σ2
22


Ω



σ2
11 0 0 0

0 σ2
12 0 0

0 0 σ2
21 0

0 0 0 σ2
22


(4.11)

where σ2
11, σ2

12, σ2
21, σ2

22 follows Exponential(1.0) and Ω follows lkj corr cholesky(2.0).

This sign Ω which follows lkj corr cholesky(2.0) are copies of the same diagonal matrix

containing variances on the diagonal. If we multiply eqn (4.11) together, we will get a

covariance matrix.

4.3.5 Stan Convergence

In Stan, to know if your MCMC chain converges or if the posterior draws are station-

ary distributed, you must do a diagnostic test. This diagnostic test includes checking the

trace plot of the MCMC chain, checking the density plot, checking for the Rhat value,

and checking the Autocorrelation Function Plots (ACF). We will talk about each of these

diagnostic tests as follows.
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MCMC Trace plot is a time series plot of the Markov chains. The x-axis of the trace

plot represents time, and the y-axis represents the posterior values of the draws. If the

sample drawn from MCMC chains becomes stationary, then we say the trace plot is well

mixed and there are no apparent anomalies. MCMC chains can be stationary if there is

an increase in the number of warm-up period (burn-in period). MCMC chains can be

iterated more often by increasing the number of iterations to improve the trace plot. By

doing this, you are increasing the sample size drawn from the MCMC run and this will

allow the chains to explore the sample space many times. Figure 4.2 shows the trace plot

of some of the parameters.

Another way to know whether the MCMC simulation chains have been reached for a

stationary state and have already converged, is by plotting the density Plot. This plot has

a bell shape among all the parameters. Figure 4.3 is the density plot for some parameters.

60



sigma_p[1] sigma_p[2]

logA gamma0 sigma

B delta_H beta0

6000 8000 10000 12000 6000 8000 10000 12000

6000 8000 10000 12000 6000 8000 10000 12000 6000 8000 10000 12000

6000 8000 10000 12000 6000 8000 10000 12000 6000 8000 10000 12000
2.6

2.8

3.0

3.2

0.175

0.200

0.225

0.250

0.275

−0.7

−0.6

−0.5

0.70

0.75

0.80

0.85

0.1

0.2

0.3

1.5

2.0

2.5

3.0

3.5

0.0

2.5

5.0

7.5

10.0

0.3

0.4

0.5

0.6

0.7

chain

1

2

Figure 4.2: Trace Plots for Parameters that Converged
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Figure 4.3: Density Plots for Parameters that Converged
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Other way to show the convergence of the MCMC chain (diagnostic) is by looking at

the R-hat value. R-hat compares the between and within chain estimates for model pa-

rameters and other univariate quantities of interest. If R-hat is greater than 1, then the

MCMC chains have not mixed well. It is recommended to use R-hat that is less than 1.05.

To explain the relationship between lags and autocorrelations, we will need the Auto-

correlation Function Plots (ACF). Using ACF plot is also another way to check for conver-

gence. Using this plot, if the autocorrelation reduced quickly from lag 1, then the MCMC

chain has converged. A good ACF plots should show that at large autocorrelation, there

is a short lag, but the autocorrelation goes to zero quickly as the lag increases. Thinning

the MCMC chain will help to improve the ACF plots. Figure 4.4 is the ACF plot for some

parameters.
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Figure 4.4: ACF Plots for Parameters that Converged
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4.3.5.1 Monte Carlo Simulation to Draw Degradation Paths

F(t) can be evaluated by using Monte Carlo simulation in most practical reliability

cases and the idea is this, from an assumed degradation path model, a large number of

degradation paths are generated after which we use proportion of the path which crosses

the threshold dp at each time t to evaluate R(t). The algorithm to do this is as follow:

1. From Stan, given a large number of A, generate A simulated realizations of the

parameters.

2. For each path, find the number of crossing times at all time points based on the

computed failure time for A realization of the parameters based on the simulated

failure time

3. Whatever t value we desired, use

F (t) ≈ Number of First Crossing Times of the Simulation ≤ t
A to evaluate F(t). For each time

point t, we can generate i = A sample draws with 500 degradation paths using the

above method.

4.3.6 Procedure For Plotting the Reliability Curve

The term reliability is the probability that an object of interest or a system will work

under some operating conditions for any specified time. Using the optical media dataset,

this dataset has short lifespan of 30 years but from previous study, this can be extended to

between 30 years and 300 years. To fit the reliability model of the Optical media dataset,

the parameter estimation derived using Stan will be used. In this work, a more detailed

prediction will be done to provide summaries of the reliability together with its uncer-

tainty bounds as this will help companies and manufacturers. The detailed procedures

on how to plot reliability plot is given below: Using the results obtained from Stan and

using j = 500 degradation paths for each i = 3000 MCMC draws with k = 259 time
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interval, we will summarize over 500 paths within each draw over time. After this, the

proportion of the number of degradation measurements that are greater than log(280)

(threshold value) at each time point will be taken as the proportion of the failure rate at

each time point. With the result, the failure rate curve for each draw will be plotted, and

we will have 3000 different curves for failure rate in total. Since R(t) reliability function

has a relationship with F (t) failure rate function i.e., R(t) = 1− F (t), we can then have

the projected reliability curve with its 95% credible interval.

4.4 Simulation Settings

In this section, we are going to simulate a new dataset under the same data struc-

ture of ISO and under the same problem setting so as to assess the performance of the

proposed methodology. Having a normal used condition at 50% for RH and 250C for

temperature, we aim to predict reliability at this normal used condition. The ISO data

have just one DC measurement. Two DC measurements was created synthetically to cre-

ate a multivariate model. Two random effects are used in our model and since we have

two datasets, then the correlation between these two datasets will be 4 x 4 matrix. For

each of the two degradation measurements, if any of these two-fail using the degradation

thresholds of log(280), then the material will fail. In our simulation study, as given in the

ISO data, for the simulation, we choose this setting of an equal sample size of ten (i.e.,

n = 10) with four (b = 4) test conditions. This implies that we have 2n test units in total

at each Temperature and relative humidity level. For each sample size, we simulated two

degradation measurements with the two datasets we have, using the multivariate degra-

dation model given in (4.1). Also in our study, we used c = 5 repeated measurements as

seen in the ISO data with time points that were measured and equally spread throughout

the duration of the test. A varying correlation level at Corr(vp; v
′
p) = r = 0, 0.9 for all

p ̸= p
′
ϵ 1, 2 was used to understand the effect of using low and high correlation, and we

allowed the same correlation coefficient between the two DCs. We did this in other to
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assess the performance across the two levels.

By using just one sample size level of ten (n = 10) given in the ISO data, one repeated

measurement level of five (c = 5), one (b = 4) test conditions level of four and two

(r = 0, 0.9) correlation levels that we are using for comparison, we evaluated 2 different

scenarios. For each of these scenarios, we simulated A = 100 data sets from the model

(4.1). To estimate the model parameters, the MCMC approach using the Stan package was

used for each dataset that we simulated. In addition, at the normal use condition of 50%

RH and 250C Temperature, we estimated the reliability as a function of time by applying

the method explained in section 4.3 and for each simulation scenario, we summarized

the estimates across A = 100 simulated data sets. This helps to evaluate the performance

based on accuracy and precision. With the two simulation settings, we will know the

performance of the method used in this study across the two different choices in the cor-

relation level. The independent degradation model which has no correlation between the

two multiple DCs will be compared with the multivariate degradation model which uses

the correlation of the two DCs.

4.5 The Performance of the Model Estimation

For all the model parameter estimates, for all A = 100 simulations, the root of mean

squared error was calculated to measure how precise the estimated model parameters

are across multiple DCs. Let βp be the coefficient parameter of Relative Humidity (RH)

for pth DC measurement, the root mean square error for β̂p is calculated as, RMSE(β̂p) =√
∑A

a=1
(β̂pa−βp)2

A where β̂pa is the estimate of β̂p using the MCMC algorithm (using Stan)

from the ath simulation. We use the average root of mean square error Ave.RMSE (β̂p) =

∑P
p=1 RMSE (β̂p)

P to quantify the average precision across the P DC measurements. Figure 4.5

below is the Ave.RMSE error of β̂p’s for the coefficient of delta H and the measurement

error. In this figure, we compare both the independent degradation model which has no
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correlation between the two multiple DCs and which also estimates parameters by sepa-

rate models with the multivariate degradation model given in (4.1). In this figure, the left

plot uses the multivariate model with r = 0 and 0.9 and the right plot uses the indepen-

dent model with r = 0 and 0.9. The first two points on the left panel plot are the points

of the Ave.RMSE of delta H for r = 0 and 0.9 respectfully and the last two points on the

left panel plot are the points of the Ave.RMSE of sigma (σ) for r = 0 and 0.9 respectfully

using multivariate model.

With these plots, we observed some few patterns. First, for different correlation levels,

the average RMSE of each estimated β(delta H , σ) does not change, and this implies that

the correlation among the two DCs with the estimated model coefficient has not much

significant impact on its accuracy. Also, using both the independent and multivariate

models, there is similarity between the Ave.RMSE of estimated β and this implies that

if correlation is not present among the two DC measurements, the bias of the coefficient

of the parameter estimate will not increase. This same pattern was observed for other

parameters such as the logA, B and β0 except for Σ.
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Figure 4.5: RMSE plot for the average of model parameter βp across the two degradation
characteristics using the independent together with the multivariate degradation

models.

Figure 4.6 is the RMSE plot for the average of all the units (i.e. the variance with the

covariance) in Σ over the two degradation characteristics for different correlation choices

when the independent together with the multivariate degradation models is being used.

We noticed that when we use a multivariate degradation model with different correlation

levels, the average RMSE of that estimate remain unchanged. This implies that the ac-

curacy for the estimated variance-covariance of the random effects will remain the same

even if we use the right model that captures the correlation structure regardless of the

size of the correlation. On the other hand, in contrast to other parameters, when we use

the independent degradation model for degradation characteristic measurements that are

correlated, there is an increase in the average RMSE of the estimated Σ as the correlation

level increases.

Furthermore, compare to the multivariate model with r = 0 correlation among mul-

tiple DC measures. For independent model, we see that the Ave. RMSE is smaller. This

implies that the independent model for when r = 0 produces little more accurate esti-
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mates of Sigma compared to the multivariate model for when r = 0. On the other hand,

when the correlation increases i.e., r = 0.9, we notice that the average RMSE of the multi-

variate model produces more accurate estimate of Σ compared to the independent model.

For example, we can see that for multivariate model, when correlation is 0.9 (r = 0.9), the

Ave.RMSE is around 0.1 and when correlation is 0.9 (r = 0.9) for independent model, the

Ave.RMSE is around 0.38. Hence, we can see in the estimated correlation parameter that

there is huge difference between the multivariate and the independent model when there

is high correlation. Independent model is 4 times bigger in the estimated correlation coef-

ficient than the Multivariate model. Considering the multivariate structure, it will allow

us to get much more precise estimation of the correlation.
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Figure 4.6: RMSE plot for average of all the units in Σ over the two degradation
characteristics when the independent together with the multivariate degradation models

is being used.

4.6 Reliability Estimation Comparison

In this section, at 50% RH and 250C Temp. normal use condition, we calculate the

predicted system reliability based on the method described in the previous section and

we compared the results between the independent degradation and multivariate models
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using different correlation values. Figure 4.7 shows the predicted reliability for both the

multivariate and independent models and for individual DC measurements using the

two simulated datasets with n = 10 test units, m = 4 repeated measurements for each

test unit. This plot is to show how related the estimated system reliability of the indepen-

dent model is with the multivariate model. From this plot, the system reliability that was

predicted using the multivariate model is the olympic curve that is solid, the apricot and

violet dash curves correspond to reliability using the first data and second data respec-

tively and the independent model is the solid red curve.

From Figure 4.7, the time point is in log scale, and this means we need to convert

it back to hours. By comparing reliability functions of the two datasets, the reliability

using the 1st data is higher than the reliability using the 2nd data before time point 12.40

which is 242,801 hours (30 years) and then becomes lower than the other 2nd data after

242,801 hours. Given the two DC measurements, the DC measurements that fail first

among the two DC measurements will jointly determine the reliability of the system.

The reliability curve then observes the two DC measurements with the lowest reliability

function. From the plot, we see that the independent model from the predicted system

reliability was lower than each of the individual reliability functions. This is because the

independent model was derived from the product of the individual reliability functions.

Looking at the independent model from our plot, we noticed that the reliability of the

system is underestimated because the interdependence of the two DC measurements is

not accounted for.
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Figure 4.7: The reliability plot functions predicted at normal use condition using a single
simulation for individual degradation characteristics measurements and systems

utilizing an independent together with a multivariate degradation models at n = 10,
r=0.9.

We want to predict the reliability of the system at the normal use condition at 50% RH,

and 250 C Temp. Figure 4.8 is the plot for comparing the reliability estimate based on a

single simulation scenario. Using the multivariate model (point estimate is the solid blue

curve and it’s 95% CI is the dash blue curves) together with the independent model (solid

red curve and dash red curves for it’s 95% CI), we compared the predicted reliability. This

plot is showing the range where the reliability drops from 1 at 2042 days to 0 at 82,614

days and it’s 95% pointwise CI.
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Figure 4.8: Comparing the reliability between an independent and multivariate
degradation model at a normal condition of 50% RH, and 250 C Temp using the

reliability curves together with their 95% confidence intervals based a single simulation.

The general pattern here is that the red is to the left. So that means that the inde-

pendent model are under-estimating the reliability i.e. the predicted reliability of the

independent model is smaller than that of the multivariate model. There is similarity

in the precision of the predicted reliability when the two models are used. Therefore,

the independent model predict the earlier failure of the system than when we use the

multivariate model. Due to this, a lot of resources can be saved using the multivariate

degradation model because it avoids taking unnecessary early action when this informa-

tion is used for system management.
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Figure 4.9 is the RMSE plot of the reliability using multivariate and the independent

models respectively for r (two) correlation levels. The first two plots at the top are the

plots of when there is no correlation (r = 0) for both multivariate and independent model

while the lower two plots are when correlation is high (r = 0.9) for the two model. From

the two plots at the top panel, we can see that when there is no correlation, the two meth-

ods perform very similarly. Also, for r = 0.9, from the two plots at the bottom panel, we

see that the multivariate model is lower than the independent model. So, ignoring the

correlation will lead to severely inflated RMSE.

For example, we see that the RMSE for the independent model for r = 0.9, is 0.3 while

the RMSE for the multivariate model for r = 0.9 is 0.18. This implies that the multi-

variate degradation model predicted more accurate reliability using the RMSE than the

independent model for when r = 0.9. Also, as the correlation value i.e. r increases for

independent model, we observe an increase in the predicted reliability RMSE. The plots

show that there is an increase in the RMSE value for when r = 0.9 for the independent

model compared to when r = 0. From this plot, we also noticed that for the first 30,000

hours, the predicted reliability RMSE is close to 0 and as it reaches its maximum at 370,000

hours, it increases when multivariate degradation model is used. After this, it starts drop-

ping to around 1,200,000 hours. This looks like what we observed in. Figure 4.7 where

the disparity between the multivariate (olympic) and independent (red) models contin-

ues to increase between 30000 [time point 10.30 in log scale] and 370000 hours [time point

12.8 in log scale] then after that it starts to decrease until it reaches 0 at 1,200,000 hours

[time point 14 in log scale]. In summary, when high correlation is being used, the pre-

dicted reliability accuracy is improved by the multivariate model than when we use the

independent model.
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Figure 4.9: A plot that describes the RMSE under normal use condition for the predicted
reliability when using an Independent with multivariate degradation models.

4.6.1 Application to ISO 10995:2011 Dataset

In this chapter, we used the ISO 10995:2011 dataset shown in Figure 4.2 and 4.3 to illus-

trate our proposed method by fitting the multivariate nonlinear degradation model given

in (4.2). The MCMC method (The Hamiltonian Markov chain (HMC)) described in sec-

tion 4.3 from Stan package was used to estimate the model parameters. The original ISO

data have only one DC measurement. By grouping measurements from the independent

sample units, we generate the two DC measurements and because of this, the correlation
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between the two DCs using the multivariate and the independent models should be small

thereby producing the same results. The threshold of the failure is log (280) for p = 1, 2,

and for this device, the normal use condition is at 50% for RH and 250C for tempera-

ture. The summary of the multivariate and independent parameter estimates and their

standard errors can be seen in Table 4.4.
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Figure 4.10: ISO degradation data plot with artificial DCs for 45 units.

Due to grouping method which was done manually, we can see that the estimate co-

variance and the parameter values that we got using the independent model are similar

to the multivariate model. Using two DCs given in Figure 4.11, the curves of the 95%

pointwise CIs of the estimated reliability is given. There is high reliability before 345,000

hours which drops gradually to 0 at around 420,000 hours. The multivariate and inde-

pendent model of the predicted reliability are similar to each other by looking at the plot

in Figure 4.11.
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Table 4.4: Estimated parameters and their standard errors (in parentheses) when
multivariate and independent models for ISO data are being used

Multivariate Model Independent Model

DC 1st dataset 2nd Dataset 1st dataset 2nd Dataset

beta0
2.859 2.876 2.857 2.871

(0.0010) (0.0010) (0.0011) (0.0011)

deltaH
-0.613 -0.617 -0.614 -0.625

(0.0006) (0.0005) (0.0006) (0.0005))

logA
3.571 4.245 3.573 4.260

(0.0202) (0.0198) (0.0206) (0.0222)

B
2.749 2.623 2.748 2.627

(0.0054) (0.0054) (0.0054) (0.0058)

gamma0
0.801 0.824 0.797 0.822

(0.0004) (0.0004) (0.0004) (0.0004)

σ
0.245 0.243 0.245 0.244

(0.0002) (0.0002) (0.0002) (0.0002)

Σ beta0[1] beta0[2] logA[1] logA[2] beta0[1] logA[1] beta0[2] logA[2]

beta0[1]
0.193 0.051 -0.050 -0.003 0.196 -0.055 0.201 -0.060

(0.0008) (0.0019) (0.0018) (0.0025) (0.0008) (0.0012) (0.0008) (0.0017)

beta0[2]
0.051 0.198 -0.013 -0.053

(0.0019) (0.0007) (0.0025) (0.0020)

logA[1]
-0.050 -0.013 0.036 0.017 -0.055 0.038 -0.060 0.039

(0.0018) (0.0025) (0.0004) (0.0022) (0.0012) (0.0005) (0.0017) (0.0005)

logA[2]
-0.003 -0.053 0.017 0.036

(0.0025) (0.0020) (0.0022) (0.0004)

77



11 12 13 14 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Reliability at Use Condition

time (in log scale)

R
el

ia
bi

lit
y

Multivariate Point Est

Independent Point Est

Multivariate 95% CI

Independent 95% CI

Multivariate Point Est

Independent Point Est

Multivariate 95% CI

Independent 95% CI

Multivariate Point Est

Independent Point Est

Multivariate 95% CI

Independent 95% CI

Figure 4.11: Curves of the predicted reliability and their 95 percent confidence intervals
of Multivariate and Independent degradation models at Temp = 250C , RH=50% normal

use condition of two DC’s.
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Chapter 5: Penalized Regression for Survival Analysis

Stepwise regression [8] and subset selection [4] have been broadly used to choose im-

portant variables and improve predictability. [114] carried out a procedure for stepwise

regression analysis and [13] discussed about variable and subset selection. Although they

are practically useful in many applications, these selection procedures ignore inherited

stochastic errors, and their theoretical properties are not fully understood. To achieve

an adequate smaller subset of important variables will require searching through subsets

of potential predictors and doing this can be unstable (Having q which is a minimum

least-squares predictor in a collection of predictors. If a small change in the data used to

derive the sequence of q can cause large changes in q, then we say the procedure is unsta-

ble) [72]. To avoid this drawback, penalized regression methods have been developed in

recent years that perform subset selection.

Based on the dimension of microarray data (high dimension), partial least square was

introduced by some researchers to reduce the dimension [117]. To utilize penalized re-

gression, an optimized set of guidelines has been published to deal with gene expression

data [21]. Some authors have proposed different penalties to remove the biasness in the

selection of features in their model. To get less biased regression coefficients in sparse

model (some coefficients being exactly zero) and to have a consistent variable selection

by reducing bias in LASSO, Minimax Concave Penalty (MCP) penalty was proposed by

Zhang [24].
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Also, an alternate to the LASSO penalty with less biased estimates for nonzero regres-

sion coefficients was proposed by Jianqing and Runze in [60] and this is called Smoothly

Clipped Absolute Deviation (SCAD) penalty. These two penalties are nonconvex, and

they have the oracle property i.e. the penalized estimator is asymptotically equivalent to

the oracle estimator on only the true support. This implies that the penalty will perform

well as if the true underlying model were given or known in advance. According to [24],

MC+ penalty which include MCP and PLUS (penalized linear unbiased selection) was

derived. Focusing on the MCP, by minimizing the maximum concavity provides sparse

convexity to a large extent. According to [24], a larger γ values affords less unbiasedness

and more concavity.

To select the exact variables to be included in the model as we increase γ, a new penal-

ized regression model based on the Cox partial likelihood and a modified minimax con-

vex penalty is proposed. This model will identify the important variables by retaining the

good features. The performance of the proposed penalized regression model compared

with existing methods will be demonstrated through a simulation study and its applica-

tion is illustrated via two real-world dataset examples for analyzing the heart failure data

and the NKI breast cancer data.

Consider the linear regression model

y = X β + ϵ (5.1)

Where y which is an n x 1 vector is the response variable that depends on predictors X

which is an n x j matrix with β being an j x 1 matrix and ϵ ∼ N(0, σ2In).
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If we have a small number of covariates i.e., m is small, then it will be easy to use

the forward and backward selection to select the best variables to use. Using the above

equation in (5.1), we see that y −X β = ϵ , and letting X β = δ, we have the penalized least

square function to be,

W (β;λ) ≡ 1

2n

n

∑
i=1

(yi − δi )
2 +

m

∑
j=1

ρ(|βj |;λ) (5.2)

where ρ(|βj |;λ) is the penalty function (it can be SCAD, MCP or any penalty function)

with a parameter indexed by λ ≥ 0 , and λ controls the tradeoff between the loss function

and the penalty function.

Let’s look at ridge regression. To avoid over-fitting issue, ridge techniques works well

because if λ value in ridge is very large, it will add too much weight (and lead to under-

fitting). Also, if λ value in ridge is 0, this will lead to ordinary least square regression.

When we have a large multivariate data with larger number of predictors (p) than the

number of observations (n), the ridge regression performs better than the ordinary least

square method. Ridge penalty is given as:

ρ(β;λ)) = λβ2

and its derivative is

ρ′(β;λ) = 2λβ

As discussed earlier in Chapter 2, the purpose of ridge which is also known as shrinkage

or regularization methods is to shrink the coefficient values towards zero and this shrink-

ing requires the selection of λ value (which is a tuning parameter that determines the

amount of shrinkage). The main purpose of this shrinkage is to let the less contributive

81



variables have a coefficient close to zero or equal zero but while doing this, it will include

all the predictors in the final model. This is a disadvantage of the ridge regression.

Talking about LASSO penalty, as stated earlier in Chapter 2, the disadvantage of using

LASSO is the biasedness when the number of variables n is lower than the number of

predictors p (p > n) and this biasedness interferes with how variables are accurately

selected. Unlike ridge, LASSO forces some of the coefficient estimates to zero in order

to reduce the complexity of the model. It penalizes the regression model with a penalty

term called L1-norm (the sum of the absolute coefficients) by shrinking the regression

coefficients toward zero. The advantage of ridge over LASSO is that ridge regression

perform better than LASSO when we have many predictors than number of variables.

LASSO penalty is given as

ρ(β;λ)) = λ|β| (5.3)

and its derivative is given as

ρ′(β;λ) = λ

What the derivative does is to show us how the algorithm is being penalized to avoid

overfitting. Penalizing implies that you do not want your algorithm to be overfitted to

your dataset.

Elastic-net is the combination of LASSO and ridge regression. It effectively shrink co-

efficients like the way ridge regression does and set some coefficients to zero as in LASSO.

Elastic net penalty is given as

ρ(β;λ)) = λ1|β|+ λ2|β|2 (5.4)

and its derivative is given as

ρ′(β;λ) = λ + 2λβ

82



SCAD penalty which is a nonconvex penalty was proposed to reduce the large bias in

LASSO penalty towards 0 when we have large regression coefficient. The SCAD penalty

corresponds to a quadratic spline (piecewise polynomials) function with knots (where the

splines are joined together) at λ and γλ (we can see this in the derivative equation below).

SCAD penalty is given as:

ρ(β;λ)) = λ
∫ β

0
min

{
1,
(γ − t

λ )+
γ − 1

}
dt; γ > 2, t > 0. (5.5)

=


λβ |β| ≤ λ

2γλ|β|−β2−λ2

2(γ−1)
λ < |β| < γλ

λ2(γ+1)
2 |β| ≥ γλ

In the above equation, the subscript + implies that all quantities that are not positive will

be equal to zero. The derivative is given below:

ρ′(β;λ)) =


λ |β| ≤ λ

γλ−|β|
(γ−1)

λ < |β| < γλ

0 |β| ≥ γλ

(5.6)

At a universal penalty level λuniversal = σ
√

2
n logp, the probability of selecting the

right variable is high for MCP without us requiring that the minβj ̸=0|βj |/λuniversal must

be greater than a quantity of the order
√
r0, where r0 is the rank i.e., r0 ≡ number

j : βj ̸= 0 [73]. Using the conditions which are unbiasedness and selection features placed

on MCP, the MCP penalty provides the best convexity for the penalized loss in sparse

regions by minimizing the maximum concavity. The MCP penalty selection consistency
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applies to the case of p > n. The MCP penalty is given as

ρ(β;λ)) = λ
∫ β

0

(
1− t

λγ

)
+

dt; γ > 1, t > 0.

=


λβ − β2

2γ |β| ≤ λγ

λ2γ
2 otherwise

(5.7)

The derivative of MCP penalty is:

ρ′(β;λ)) =


(λ − |β|

γ )sign(β) |β| ≤ λγ

0 otherwise
(5.8)

where sign(β) denotes the sign of the coefficients.

The role of parameter γ in MCP is to control how fast the penalization rate goes to

zero. This applies to SCAD also. Below is the plot of the derivative of LASSO, SCAD and

MCP.
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Figure 5.1: Derivative plot of MCP (γ = 3), SCAD (γ = 3.7) and LASSO penalty.

Rate of penalization is the rate of penalizing your model to prevent overfitting and

relaxing the rate of penalization means your model is being penalized. SCAD first applied

LASSO penalization rate and then starts to smoothly relaxes the rate of penalization as the

absolute value of the coefficient is increasing. We can observe this through the derivative

of SCAD penalty (5.6) and Figure 5.1. Compared to the SCAD penalty, as the absolute

value of the coefficient increases (as |β| increases), MCP immediately relaxes the rate of

penalization down to zero
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5.0.1 Survival Analysis

Survival analysis is a branch of statistics that analyzes time-to-event-data to learn and

estimate the survival experience of objects of interest. The time-to-event data measures

the length of time from a time origin to the occurrence of an event of interest (e.g., failure

of a product or death of a patient). We can analyze survival data using different methods.

The parametric approaches rely on assumptions of a certain lifetime distribution (e.g.,

Weibull, Gamma, Lognormal, etc.). The non-parametric methods which include the com-

monly used Kaplan-Meier product limit estimator [95], are used to estimate the survival

function based on the time to the occurrence of the event. There are three assumptions

of Kaplan Meier. Kaplan Meier assumed that the survival probabilities are the same for

subjects recruited early and late in the study.

Also, for Kaplan Meier, every patient who are censored are assumed to have the same

survival prospects as those who continue to be followed. Lastly, using Kaplan Meier,

events are assumed to happen at the specified time. The semi-parametric methods are

the method in which the distribution of the outcome remain unknown even if the regres-

sion parameters (β) are known (e.g., the Cox proportional hazards model). This paper

considers the Cox proportional hazards model which does not rely on an assumption of

the lifetime distribution and allows us to leverage the covariates for regression analysis.

However, the proposed method is also applicable to parametric analysis.

5.0.1.1 Cox Proportional Hazards Model

Cox proposed the Cox proportional hazards model which has been widely used in the

analysis of survival data [102]. In Cox regression model, the hazard function, which is the

risk of death at time t for an individual is given by

h(t|X ) = h0(t)exp(β
′
X ) (5.9)
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where h0(t) is called the baseline hazard, X is the vector of covariates and β is the vector

of coefficients of the covariates.

Let N(t) = {i : Zi ≥ t} denote the set of individuals who are “at risk” for failure

at time t, (risk set). The partial likelihood is defined as the product of the conditional

probabilities of seeing the observed deaths over the set of observed death times, given the

set of individuals at risk at those times. At each failure time Zt , a risk set N(Zt) usually

consists of individuals who have been followed up till that particular time and have not

yet experienced the event of interest just before that time point [104]. Using (5.9), and at

each failure time Zn, the contribution to the likelihood is:

Ln(β) = P(individual n fails | one failure from N(Zn))

=
P(individual n fails |at risk at Zn)

Σl∈N(Zn)P(individual l fails |at risk at Zn)
Ln(β)

=
h(Zn|Xn)

Σl∈N(Zn)h(Zn|Xl )

In cox regression model, there is a log-linear relationship between the covariates and

the hazard function. Also, the Cox proportional hazards model can be considered as a

modified “simple” linear regression model [102].

Under the proportional hazard assumption and using (5.9), the Cox partial likelihood

is given as

L(β) =
w

∏
n=1

h(Zn|Xn)

Σl∈N(Zn)h(Zn|Xl )

=
w

∏
n=1

h0(Zn)exp(β
′
Xn)

Σl∈N(Zn)h0(Zn)exp(β
′
Xn)

Taking the logarithm of the Cox partial likelihood gives
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l(β) =
w

∑
n=1

(
β
′
Xn − log ∑

l∈N(Zn)

exp(β
′
Xn)
)

In other to estimate the regression coefficients β, we will need to maximize the log par-

tial likelihood function over β. Due to high dimensional space of some dataset especially

gene dataset, [61], [53] indicated that we cannot apply Cox proportional hazards model

directly to predict survival time because it was designed for small datasets and does not

scale well to high dimensions. To overcome this challenge of high dimensionality, differ-

ent type of penalized regression model such as SCAD, MCP, LASSO should be applied to

Cox partial likelihood function so as to control over-fitting. These three above penalties

set some coefficients estimates to zero in order to reduce the complexity of the model.

By doing this, the function becomes a penalized log partial likelihood function. We will

then estimate β by maximizing the penalized log partial likelihood function. When we

apply MCP penalty to this Cox partial likelihood function, the MCP penalized log partial

likelihood function will be written as

W (β) = l(β) +
m

∑
j=1

ρ(|βj |;λ)

Where ρ(|βj |;λ) is given in eqn (5.7), λ is the tuning parameter of the penalty and

m is the number of covariates. For other different penalties, we will apply the Cox par-

tial likelihood function to them before minimizing the objective function to obtain β. To

maximize the objective function, we take the derivative of the objective function with re-

spect to β and set it to zero. Since LASSO, SCAD and MCP have absolute value, then the

derivative of the vector norm will be applied to obtain β.

Using LASSO as an example, and using the penalized least square function in (5.2),

the objective function is given as,
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W (β) =
1

2
(y − X β)

′
(y − X β) + λ

m

∑
j=1

|βj | (5.10)

Let X−j denote the matrix consisting of columns of X after removing the jth column

and Xj denote the jth columns of X where X
′
jXj = I

Setting the derivative of (5.10) to zero with respect to βj gives us

dW (β)

dβj
= −X

′
j (y − X−jβ−j ) + X

′
j (Xjβj ) + λδ(|βj |)

= −zj + I βj + λδ(|βj |) = 0 (5.11)

Where zj = X
′
j (y − X−jβ−j ) and it doesn’t depend on βj .

Using the vector norm,

Case 1: When βj ̸= 0,

λδ(|βj |) = λ
βj

|βj |

and substituting this into (5.11) to solve for βj gives us

βj = zj

(
1+

λ

|βj |

)−1

(5.12)

We will need to replace |j | that is on the right-hand side and note that

|βj | = |zj |
(
1+

λ

|βj |

)−1

(5.13)
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Substituting eqn (5.13) into eqn (5.12) gives

βj =
zj
|zj |

(|zj | − λ) (5.14)

Case 2: When βj = 0,

Since the vector norm is not differentiable at zero, the subdifferential and the Karush-

Kuhn-Tucker (KKT) conditions states that

0 ∈ −zj + I βj + λυ (Stationarity condition)

Since |υ| ≤ 1, where υ is any vector, this implies that |zj | ≤ λ.

Hence,

βj =
zj
|zj |

fLASSO(z ,λ),

where

fLASSO(z ,λ) =


S(z ,λ); |z | > λ

0; |z | ≤ λ

(5.15)

and

S(z ,λ) =


z − λ; |z | > λ

0; |z | ≤ λ

z + λ; |z | < −λ

(5.16)

S(z ,λ) is the soft-thresholding operator defined for λ ≥ 0 (5.14).

From (5.15), whenever |zj | ≤ λ that is whenever |X ′
j (y − X−jβ−j ))| ≤ λ, β will be zero

and when |zj | > λ, β will not be zero.
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The lasso univariate solution in (5.15) is closely related to wavelet soft-thresholding

method. Soft thresholding works by first setting the coefficients whose absolute values

are lower than the threshold λ to zero and then shrink the nonzero coefficients toward

zero. With this, it provides smoother results [131]. We can understand the rationale be-

hind the SCAD and MCP, by looking at their univariate solution which is a solution of βj .

SCAD univariate solution can be solved as follow.

Using the first formula of SCAD in (5.5), we see that the univariate solution will be the

same as the univariate solution of LASSO in (5.15). Using the second formula of SCAD in

(5.5) and using the penalized least square function in (5.2), the objective function is given

as,

W (β) =
1

2
(y − X β)

′
(y − X β) +

m

∑
j=1

2γλ|β| − β2 − λ2

2(γ − 1)
(5.17)

Setting the derivative of (5.17) to zero with respect to βj gives us

dW (β)

dβj
= −X

′
j (y − X−jβ−j ) + X

′
j (Xjβj ) + δ

(
2γλ|β| − β2 − λ2

2(γ − 1)

)

= −zj + I βj +

(γλ
βj

|βj |
− βj

γ − 1

)
= 0 (5.18)

Where zj = X
′
j (y − X−jβ−j ) and it doesn’t depend on βj .

Using the vector norm,

Case 1: When βj ̸= 0,

Solving for βj gives us

βj = zj

(
1−

1− γλ 1
|βj |

γ − 1

)−1
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|βj | = |zj |
(
1−

1− γλ 1
|βj |

γ − 1

)−1

= |zj |
(
1− 1

γ − 1
+

γλ

|βj |(γ − 1)

)−1

(5.19)

We will need to solve for |βj |

|βj | =
|zj | − γλ

(γ−1)

1− 1
γ−1

(5.20)

Substituting eqn (5.20) into eqn (5.19) gives

|βj | =

zj
|zj |

(
|zj | − γλ

(γ−1)

)
1− 1

γ−1

(5.21)

Case 2: When βj = 0,

Using the subdifferential with |υ| ≤ 1, where υ is any vector and the Karush-Kuhn-

Tucker (KKT) condition 0 ∈ −zj + I βj + υγλ(γ − 1), we have

|zj | ≤
γλ

(γ − 1)
(5.22)

Joining (5.22) and (5.21) together gives us

βj =


zj
|zj |

(
|zj |− γλ

(γ−1)

)
1− 1

γ−1

|zj | > γλ
(γ−1)

0 |zj | ≤ γλ
(γ−1)

Using the third formula of SCAD in (5.5) and using the penalized least square function

in (5.2), the objective function is given as,

W (β) =
1

2
(y − X β)

′
(y − X β) +

m

∑
j=1

λ2(γ + 1)

2
(5.23)
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Setting the derivative of (5.23) to zero with respect to βj gives us

dW (β)

dβj
= −X

′
j (y − X−jβ−j ) + X

′
j (Xjβj ) + 0

= −zj + I βj + 0 = 0

This implies that zj = βj

The final solution of SCAD is then given as

βj =
zj
|zj |

fSCAD(z ,λ,γ),

where,

fSCAD(z ,λ,γ) =



S(z ,λ); |z | ≤ 2λ

S(z , γλ
γ−1 )

1− 1
γ−1

; 2λ < |z | ≤ γλ

z ; |z | > γλ

(5.24)

where and S(z ,λ) is given in (5.16) and

S(z ,
γλ

γ − 1
) =


z − γλ

γ−1 ; |z | > λ

0; |z | ≤ λ

z + γλ
γ−1 ; |z | < −λ

Based on the definition of soft thresholding given above, hard thresholding works

by setting the coefficients whose absolute values are lower than the threshold λ to zero.

Compared to the soft thresholding, hard thresholding provides better edge preservation

than the soft threshold. The SCAD univariate solution given in (5.24) converges to soft

thresholding as λ → ∞. However, as λ → 2, (5.24) does not converge to hard threshold-

ing; but it converges to
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
S(z ,λ); |z | ≤ 2λ

z ; |z | > 2λ

Hence, as γ approaches its minimum value, fSCAD converges to discontinuous func-

tions and the solution moves from λ to 2λ as z exceeds 2λ.

MCP univariate solution is given below. Using the first formula of MCP in (5.7) and

using the penalized least square function in (5.2), the objective function is given as,

W (β) =
1

2
(y − X β)

′
(y − X β) +

m

∑
j=1

λ|β| − β2

2γ
(5.25)

Setting the derivative of (5.25) to zero with respect to βj gives us

dW (β)

dβj
= −X

′
j (y − X−jβ−j ) + X

′
j (Xjβj ) + δ

(
λ|β| − β2

2γ

)
= −zj + I βj +

(
λ

βj

|βj |
− βj

γ

)
= 0 (5.26)

Where zj doesn’t depend on βj .

Using the vector norm,

Case 1: When βj ̸= 0 and solving for βj gives us

βj = zj

(
1− 1

γ
+ λ

1

|βj |

)−1

|βj | = |zj |
(
1− 1

γ
+ λ

1

|βj |

)−1

(5.27)

Solving for |βj | gives us

|βj | =
|zj | − λ

1− 1
γ

(5.28)
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Substituting eqn (5.28) into eqn (5.27) gives

βj =

zj
|zj |
(
|zj | − λ

)
1− 1

γ

(5.29)

Case 2: When βj = 0,

Using the subdifferential with |υ| ≤ 1, where υ is any vector and the Karush-Kuhn-

Tucker (KKT) condition 0 ∈ −zj + I βj + υλ, we have

|zj | ≤ λ (5.30)

Joining (5.30) and (5.29) together gives us

βj =


zj
|zj |

(
|zj |−λ

)
1− 1

γ

; |zj | > λ

0; |zj | ≤ λ

(5.31)

Using the second formula of MCP in (5.7) and using the penalized least square function

in (5.2), the objective function is given as,

W (β) =
1

2
(y − X β)

′
(y − X β) +

m

∑
j=1

λ2γ

2
(5.32)

Setting the derivative of (5.32) to zero with respect to βj gives us

dW (β)

dβj
= −X

′
j (y − X−jβ−j ) + X

′
j (Xjβj ) + 0

= −zj + I βj + 0 = 0

The final solution of MCP is then given as

βj =
zj
|zj |

fMCP(z ,λ,γ)
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fMCP(z ,λ,γ) =


S(z ,λ)

1− 1
γ

; |z | ≤ λγ

z ; |z | > γλ

(5.33)

where S(z ,λ) is same as (5.16).

The MCP univariate solution given in (5.33) turn to a firm threshold as we change

γ value. It (5.33) converges to soft thresholding as γ → ∞ and as γ → 1, it becomes

equivalent to hard thresholding. The name “firm thresholding” comes from the solution

bridging the gap between soft thresholding and hard thresholding as we change γ. As γ

approaches its minimum value, fMCP also converges to discontinuous functions and as z

exceeds λ, the solution jumps from 0 to λ.

5.0.2 MMCP Penalty

Here, we propose a penalty function by modifying the MCP penalty. We will give

a brief description, conditions and some concepts of MMCP method alongside with our

main results.

The MMCP penalty is given as

ρ(β;λ) = λ
∫
0

β

(
1− t

γλα

)
+

dt

=


λ|β| − β2

2αγ ; β ≤ λαγ

λ2γα
2 ; otherwise

(5.34)

The derivative of (5.34) is given as

ρ
′
(β;λ) =


λ − |β|

αγ ; β ≤ λαγ

0; otherwise

(5.35)
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where λ ≥ 0 is the penalty term, 0 < α ≤ 1, and γ > 0 is a parameter that controls how

fast the penalization rate goes to zero. Its value needs to be specified to get the best λ

value. According to [24], a larger γ values affords less unbiasedness and more concavity.

So, if we introduce α to the equation, it will help to reduce the rate at which γ is increas-

ing so as to afford more unbiasedness and less concavity i.e. more sparse convexity to the

broadest extent. Since MCP is nonconvex, there will be numerical challenges in fitting

the model but because we are adding α to the model to make it more sparse convex, then

there won’t be a lot of numerical challenge in fitting the model compare to using MCP.

Also, this will help our model to select the exact variables to be included in the model as

we increase γ.

For the MMCP penalty at each λ level, when α = 1, the penalty changes to MCP

penalty, as α = 1 and γ → ∞, the penalty changes to the “L1 penalty”. We will assume

that ρ(β;λ) is non-decreasing in t and its derivative given in (5.35) is continuous. Also,

as α = 1 and γ → 0+, the penalty changes to the “L0 penalty
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Figure 5.2: Derivative plot of MCP (γ = 3), SCAD (γ = 3.7), MMCP (γ = 3, α = 0.5), and
LASSO penalty.

For the minimizers of (5.1) to have variable selection features with zero components

[29], we will assume that in t, the penalty ρ(t;λ) has a continuous derivative in (0,∞)

represented as ρ
′
(t;λ) and is nondecreasing. We will also assume that ρ

′
(0+;λ) > 0 so

that the minimizers of (5.10) will have features of selecting variables with zero compo-

nents [29].

Also, whenever ρ
′
(0+;λ) < ∞, we will assume ρ

′
(0+;λ) = λ so that there is an

interpretation for λ as the threshold level for individual coefficient βj under the stan-

dardization |xj |2 = n
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The penalty given in (5.10) minimizes the maximum concavity which is:

η(ρ) ≡ η(ρ;λ) ≡ sup0<x1<x2

ρ
′
(x1;λ)− ρ

′
(x2;λ)

x2 − x1
(5.36)

This is subject to the following unbiasedness in selection and selection features of vari-

ables:

ρ
′
(x ;λ) = 0 ∀ x ≥ λαγ, ρ

′
(0+;λ) = λ. (5.37)

Where ρ
′
(x ;λ) = 0 for all x ≥ λαγ determine the unbiasedness and ρ

′
(0+;λ) = λ deter-

mines the selection of variables.

For the MCP, η(ρ;λ) = 1
γ , for the SCAD, η(ρ;λ) = 1

(γ−1
), and for the MMCP,

η(ρ;λ) =
1

αγ
(5.38)

Looking at the univariate solution of MMCP, let us consider a simple linear regression

of y upon x . The rationale behind the MMCP can also be understood by considering its

univariate solution. For this simple linear regression problem, the MMCP estimator has

the following closed form:

Using the first formula of MMCP in (5.34) and using the penalized least square func-

tion in (5.2), the objective function is given as,

W (β) =
1

2
(y − X β)

′
(y − X β) +

m

∑
j=1

λ|β| − β2

2γα
(5.39)
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Setting the derivative of (5.39) to zero with respect to βj gives us

dW (β)

dβj
= −X

′
j (y − X−jβ−j ) + X

′
j (Xjβj ) + δ

(
λ|β| − β2

2γα

)
= −zj + I βj +

(
λ

βj

|βj |
− βj

γα

)
= 0 (5.40)

zj doesn’t depend on βj .

Using the vector norm,

Case 1: When βj ̸= 0 and solving for βj gives us

βj = zj

(
1− 1

γα
+ λ

1

|βj |

)−1

|βj | = |zj |
(
1− 1

γα
+ λ

1

|βj |

)−1

(5.41)

Solving for |βj | gives us

|βj | =
|zj | − λ

1− 1
γα

(5.42)

Substituting eqn (5.42) into eqn (5.41) gives

βj =

zj
|zj |
(
|zj | − λ

)
1− 1

γ

(5.43)

Case 2: When βj = 0,

Using the subdifferential with |υ| ≤ 1, where υ is any vector and the Karush-Kuhn-

Tucker (KKT) condition 0 ∈ −zj + I βj + υλ, we have (5.30).

Joining (5.43) and (5.30) together gives us
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βj =


zj
|zj |

(
|zj |−λ

)
1− 1

γα

; |zj | > λ

0; |zj | ≤ λ

(5.44)

Using the second formula of MMCP in (5.34) and using the penalized least square func-

tion in (5.2), the objective function is given as,

W (β) =
1

2
(y − X β)

′
(y − X β) +

m

∑
j=1

λ2γα

2
(5.45)

Setting the derivative of (5.45) to zero with respect to βj gives us

dW (β)

dβj
= −X

′
j (y − X−jβ−j ) + X

′
j (Xjβj ) + 0

= −zj + I βj + 0 = 0

This implies that zj = βj . The final solution of MMCP is then given as

βj =
zj
|zj |

fMMCP(z ,λ,γ, α)

fMMCP(z ,λ,γ, α) =


S(z ,λ)

1− 1
γα

; |z | ≤ λγ

z ; |z | > γλ

(5.46)

For λ ≥ 0 and 0 < α ≤ 1, where S(z ,λ) is same as (5.16). Note that S(z ,λ) is the univari-

ate solution in (5.16).

The MMCP univariate solution given in (5.46) turn to a firm threshold as we change

γ and α value. It converges to soft thresholding as γ → ∞, and α → ∞. As γ → 1 and

α → 1, it becomes equivalent to hard thresholding. As γ approaches its minimum value
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and α approaches 1, fMMCP also converges to discontinuous functions and as z exceeds λ,

the solution jumps from 0 to λ.

Due to MCP, MMCP and SCAD being nonconvex, although our new penalty provides

more sparse convexity that the rest, we will demonstrate the potential of coordinate de-

scent algorithms for fitting MCP model and other penalty. It will also be demonstrated

that this approach is faster than other approach based on theoretical convergence prop-

erties. Optimizing a function with coordinate descent algorithms involves optimizing

each of the parameters one at a time, cycling through them until convergence is achieved.

According to [93], using convexity diagnostics, we will also determine areas of the pa-

rameter space where the objective function is locally convex, even when the penalty is

not convex. SCAD and MCP regression models with nonconvex penalties were investi-

gated by [93] using coordinate descent algorithms. Next, we will describe the algorithms

for fitting linear regression models penalized by MMCP, as well as its convergence.

5.0.3 Coordinate Descent Algorithms

In this section we will describe coordinate descent algorithms for least squares regres-

sion penalized by MMCP, and also investigate the convergence of this algorithm. Using

equation (5.2) , to find the value β that optimizes this equation, the local linear approxi-

mation (LLA) algorithm [55] (which was proposed for nonconvex penalty) makes a linear

approximation to the penalty. The solution will then be computed by using the least an-

gle regression [57] (LARS) algorithm. LARS is efficient for computing the entire path of

a convex penalty solutions. For each value of λ, the process is repeated iteratively until

convergence occurs over a grid. We can see its implementation in [55].

The idea of coordinate descent algorithms is simple and efficient. To pass over each

parameter only requires O(np) operations. So, by reducing the number of iterations to
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less than p, the computation burden can be reduced by getting the solution faster even

further than the np2 operations needed to solve a linear regression problem. Coordinate

descent algorithms also prove useful when dealing with problems of extremely high di-

mensionality because the computational burden increases only linearly with p. The coor-

dinate descent algorithm uses the univariate solution of a penalty function to obtain the

coordinate-wise minimizer of the objective function [24].

For j in 1, ...,m, we will partially optimize the penalty function W in (5.2) with respect

to βj while fixing the rest of β (i.e., βk) at its most recently updated values. Using LASSO

as an example, the algorithm of the coordinate descent is as follows:

We will minimize the penalty function W in (5.2) with respect to βj while fixing the

rest of βk

W (βj |βk ;λ) =
1

2n

n

∑
i=1

(yi − ∑
j ̸=k

xijβj − xikβk)
2 + λ|βj | + constant

Then taking the derivative with respect to βk gives

dW (βj |βk ;λ) =
1

n

n

∑
i=1

(yi − ∑
j ̸=k

xijβj − xikβk)xik + λd |βj |

=
1

n

n

∑
i=1

(yi − ∑
j ̸=k

xijβj )xik − x2ikβk + λd |βj |

Using

l̂ij = yi − ∑
j ̸=k

xij β̂j

Here, l̂ij (i = 1 : n) are the partial residuals with respect to the jth predictor.
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From equation (5.11), we see that

ẑj =
1

n

n

∑
i=1

l̂ikxik

Where ẑj is the ordinary least square estimator.

Since the soft threshold is given in (5.16) as S(z ,λ), if we let β̂j to denote the minimizer

of W (βj |β̂k ;λ), then

β̂j = S(ẑj ,λ)

Hence, we have the following algorithm.

At step j of iteration c ,

repeat

for j = 1, 2, . . . , p

ẑj =
1
n ∑n

i=1 lixij + β̂c
j

After the calculation, β̂j j = S(ẑj ,λ) will be updated so as to obtain β̂c+1
j

For all i , we will obtain li − (β̂c+1
j − β̂c

j )xij in other to obtain li

Do this until convergence.

Using this update, the coordinate descent algorithms will then iterate until conver-

gence is reached. With this, a path of solutions is produced by repeating this process

across a grid of values for λ, where λ determines the selection of variables. [93]. In

essence, minimizing the penalty function W using the coordinate descent algorithms will

produce a path of solution when we repeat the above process across a grid of values for

λ thereby selecting or minimizing the features or variables (β).

Having a target function, what a coordinate descent algorithm does is that it opti-

mizes this function with respect to a single parameter at a time. Iteratively, it then cycles
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through all parameters until there is convergence (when the cost function cannot be de-

creased anymore when we apply the coordinate descent, then we say it has converged).

This algorithm is efficient because if a continuous path solution is to be computed, few

iterations will be needed for the solution to be close to our initial values. Also, the update

will be obtained quickly due to the minimization of W with respect to βj being obtained

from the univariate regression of the current residuals ϵ = y − X β on xj at a cost of O(n)

operations.

According to the lemma proposed by [93], MMCP is not convex, neither the proposed

LLA algorithm nor the coordinate descent algorithms are guaranteed to converge to a

global minimum in general. While W may contain a nonconvex penalty component, it

can still be convex with respect to β. [24] stated that if a∗ represent the minimum eigen-

value of X
′
X
n , then from (5.14), the MCP objective function is convex if γ > 1

a∗
. Applying

this to MMCP, the MMCP objective function is convex if γ > 1
αa∗

. In this case, the coor-

dinate descent algorithms converge to the global minimum. Our interest is to obtain the

estimate of β i.e., β̂ for a range of values of λ starting from when λ is maximum (when the

penalized coefficients are zero) to when λ is zero (when the model is excessively large).

A path of solutions regularized by λ is produced because the estimated coefficients vary

continuously with λ ∈ [λmin,λmax ] based on the convexity of the objective function. Due

to the continuous nature of the coefficient paths, one can make a reasonable decision to

pick initial values by starting from one extreme of the path and using the estimate β

from the previous value of λ as the initial value for the next value of λ. From (5.16), the

λmax = zmax , where zmax = maxj{
x
′
j y

n }. Starting from the maximum λ value with β0 = 0

and move to the minimum λ value, the initial values will never be far from the solution.

The solutions along a grid of 100 λ values will be computed.
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5.0.4 Diagnostics

5.0.4.1 Diagnostic of Local Convexity.

When p > n, global convexity is neither possible nor relevant in high-dimensional

setting. We can still obtain stable estimates and smooth coefficient paths in the parameter

space if the objective function is convex in the local region that contains these sparse solu-

tions. It is desirable to use sparse solutions for which the number of nonzero coefficients

is much lower than p in high-dimensional setting.

Diagnostics would determine which regions of MMCP penalty are locally convex and

which region are not. This cutoff γ > λ
αa∗

will be modified so that only active covariates

i.e. the covariates with nonzero coefficients are included in the calculation of a∗. These

active covariates will increase as λ decreases, hence for large value of λ, there will be no

problem for local convexity of the objective function.

According to [93], for a certain value of λ, let β̂(λ) denote the minimizer of (5.2), A0(λ)

= {j : β̂j (λ) ̸= 0} be the set of nonzero coefficient for a certain value of λ, and A0(λ )

be the set of coefficient that are zero but will be nonzero after reducing λ value to a

very small amount, then A(λ) = A0(λ)
⋃
A0(λ ) and a∗(λ) is the minimum eigenvalue of

x
′
A(λ)xA(λ)

n , where xA(λ) is the design matrix obtained from only the covariates for which

j ∈ A(λ). The λ interval over which the objective function is “locally convex” is defined

to be (λ∗,∞). We obtain this by letting

λ∗ = inf {λ : γ >
1

αa∗(λ)
} (5.47)

The objective function is locally nonconvex in the region [0,λ∗]. λ∗ must be a value of

λ for which A0(λ) ̸= A0(λ ) because a∗(λ) changes only when the composition of A(λ)

changes.
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5.0.4.2 How to Select γ, α and λ.

Choosing the best tuning parameters γ, α and λ will help in the estimation of MMCP

model and we can achieve this by using an information criterion such as the Akaike Infor-

mation criteria (AIC) [48], the Bayesian Information Criteria (BIC) [41], The risk inflation

criterion (RIC) [94], Cp [87] or by using cross-validation. Each of this method has its dis-

advantage. The Akaike Information criteria (AIC) [48], the Bayesian Information Criteria

(BIC) [41] can be used to select the best lambda value to use after applying a penalty

function. So, in the nonconvex region of the objective function, the AIC and BIC have a

chance to select local minima in some settings. Continuous penalized methods are com-

monly used because subset selection is not computationally feasible for large covariates.

For cross-validation, there is a considerable amount of computation involved, particu-

larly when it is applied to a three-dimensional grid of values for γ, α and λ, among which

some may lack convex objective functions, causing a slow convergence. This prevents

practitioners from fully evaluating the choice of γ. Thus, the combination of BIC/AIC,

cross-validation and convexity diagnostics could be used. If γ is given for a path of so-

lutions, then the BIC/AIC method should be used to select the best λ and α value and

convexity diagnostics should be used next to determine the locally convex regions of the

solution path. If γ is not given for a path of solutions, then the BIC/AIC method should

be used to select the best γ and the cross-validation should be used to select the best λ

and α value and convexity diagnostics should be used next to determine the locally con-

vex regions of the solution path. To make the penalty more convex, γ should be increased

if the solution chosen lies in the region below λ∗ and if it lies above λ∗, we can reduce

γ. We can now use cross-validation to choose the best λ and to know the best α for this

value of γ chosen after iterating the process of finding the best value of γ for some time.
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5.0.5 Package

The package (ncvreg) [92] which is the regularization paths for SCAD and MCP pe-

nalized regression models [93] was adopted and we added the code of the solution path

of MMCP to the package. Under this package, ncvsurv (Fit an MCP- or SCAD- penalized

survival model) and cv-ncvsurv (Cross validation to fit an MCP- or SCAD- penalized

survival model) was used in this project. Before using the cross-validation to choose the

best λ, we first used the AIC/BIC to select the best γ by using different α value. In the

package, the summary of the output has the Marginal false discovery rate (mFDR), Av-

erage mFDR, the Expected nonzero coefficients, and the Nonzero coefficients. In using

Penalized regression for variable selection, we have to be confident about the selections

of the variables. There has been difficulty in quantifying how confident we are with the

variables selected due to the complexity of defining a “false discovery” in the penalized

regression setting. In the orthogonal cases, the mFDR is calculated thus:

From equation (5.15), we see that |(Xj )
′
(y − X−jβ−j )| = zj > λ, where

zj = (Xj )
′
(y − X−jβ−j ) = −(Xj )

′
(y − X β) + β

(m)
j

Thus, the probability that the jth variable is selected is given as

P

(
1

n
|(Xj )

′
(y − Xjβj )| > λ

)

This implies that we can estimate the number of selections that are false in the model if

we can characterize the distribution of 1
n (Xj )

′
(y − Xjβj ) under the null. This is easy to do

in the case of orthonormal design:

E (∪̂ ∩ ζ) = 2|ζ|Φ(−λ
√
n/σ),
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Where ∪̂ is the set of the selected variables and σ2 can be estimated by (y−X β)T (y−X β)
(n−|∪̂|) .

Also, |ζ| is the set of null variables which can be replaced by q using the total number of

variables as the upper bound for the null variables. The false discovery is then given as

ˆFD = 2qΦ(−λ
√
n/σ̂).

Also, the false discovery rate is given as

ˆFDR =
ˆFD
|∪̂|

According to the path wise approaches definition, let us denote κj as the set of vari-

ables with non-zero coefficients in the model at the point in the path where feature j is

selected, in these approaches a feature j is considered a false discovery if Xj⊥Y |{Xk : k ∈

κj}. According to [97], False discovery is one that is independent of the outcome, and he

considers a marginal perspective in which a selected feature j is false if it is marginally

independent of the outcome.

This definition used in single-feature testing: Xj⊥Y . Using a simpler definition makes

it possible to estimate the expected number of false discoveries as well as their rate, which

is called the marginal false discovery rate (mFDR).

The mFDR estimates the marginal false discovery rate of a penalized regression model.

With highly correlated predictor, the estimate tends to be slightly conservative, but it is

accurate in most settings. This implies that it is much more powerful when two vari-

ables are correlated because it is challenging to distinguish between which of the vari-

able (or none, or both) is driving changes in Y and which is merely correlated with Y .

Miller, [97], [33] talked more about mFDR. Average mFDR is the mean of all the mFDR

from each variable. If the Average mFDR (Ave. mFDR) is small, then it implies that the
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nonzero variable(s) selected are infact the right variable(s) to be used in the model. For the

cross-validation method, one of the summaries of the output from the package is cross-

validation error (c.v.e.). Cross-validation error is the deviance obtained while running

the cross-validation. Intuitively, the validation error estimates test error by checking the

model’s performance on a dataset not used for training.

5.0.6 Simulation Setting

Here, we simulated dataset on four scenarios to show the performance of the new

penalty function compared to other existing penalty functions. To simulate cox propor-

tional hazards models, we generated a survival time. According to [112], using the in-

verse probability method, we can generate event times from the proportional hazards

model. Having a conditional hazard function given in (5.9),

We obtain a conditional survival function:

S(t|x) = exp(h(t|x)) (5.48)

Where (h(t|x)) is given in (5.9).

Using Weibull baseline hazard built-in R function and using equation (5.25), the con-

ditional hazard function with shape parameter τ and scale parameter ω is given as

h(t|x) =
(

t

ω

)τ

; τ > 0,ω > 0

Using the above equation, we obtain the conditional survival function to be

S(t|x ,ω) = exp

(
t

ω

)τ

Using rweibull with a scaled scale ω
′
(β), where
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ω
′
=

ω

exp( β
′x

τ )′
,

its conditional hazard function will be given as

h(t|x ,ω
′
) =

(
t

ω
′

)τ

=

(
t
ω

exp(
β
′x
τ )

)τ

(5.49)

Using (5.49), the conditional survival function will be

S(t|x ,ω
′
) = exp

(
t
ω

exp(
β
′x
τ )

)τ

(5.50)

Using equation (5.50) as the scale parameter of the Weibull distribution in r-package and

using different τ as shape parameter, we simulated dataset of 200 observations with right

censoring time (with fixed censoring rate of 200). To know the effect of the number of

variables and how changing the shape parameter will affect our result, we simulated

the dataset using 17 variables and 27 variables (including the event indicator and the

censoring time for each). For each of the 17 variables used, we simulated the variables

from different distributions. Five active variables that affect the survival function were

simulated from different distributions (we can see the summary statistics of each of these

distributions in Table A.1 and Table A.2 of the appendix) and additional 12 variables were

included as noise variables (we used different distribution to simulate these noise vari-

ables). Also, the 27 variables include 5 active variables and 22 noise variables. Five active

covariates from each scenario are used in the simulation study using Weibull distribu-

tion, lognormal distribution, Exponential distribution, and Logistic distribution. Differ-
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ent numbers of noise variables (about 70% or 80% of total variables) are explored in the

simulation.

The shape parameter of Weibull distribution has effect on the failure rate. Weibull

distribution with τ < 1 has a failure rate that decreases with time (early-life failure) and

Weibull distribution with τ > 1 have a failure rate that increases with time (wear-out fail-

ure). In our simulation studies, we used three different number for the shape parameter

i.e., τ = 0.8, 1, 1.3. From MMCP penalty, different α parameter value between 0 and 1 will

be used to show the effect of α value in the penalty.

Using the coordinate descent algorithms technique from (ncvreg package [92]) as used

by [93] and using our simulated dataset, we will compare our derived penalty with dif-

ferent existing penalties. For each of this penalty, we will use different γ value.

5.0.7 The Performance of the Penalty Estimation

5.0.7.1 Performance of the Penalty Estimation Using Simulated Dataset

We compared the existing penalties with our proposed penalty based on the simu-

lated dataset. Increasing the shape parameter from Weibull distribution bring about an

increase in the number of events in the dataset. From Table 5.1 with the BIC method, us-

ing different shape parameter value from Weibull distribution and using the BIC to select

the γ value for the penalty, we observed that when the shape parameter from Weibull

distribution increases to 1 (i.e. when τ increases from 0.8 to 1) and using α = 0.5, the

Cox partial likelihood function with MMCP, MCP and SCAD penalty selected the correct

nonzero coefficients with 0 Ave. mFDR (they selected the 5 active variables from the total

of 27 covariates). Still using the penalties mentioned above, when τ = 1.3, all three meth-

ods (MMCP, MCP and SCAD) picked 7 nonzero coefficients which include all the 5 true
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active variables, but SCAD has the worst Ave. mFDR among the three penalties (Ave.

mFDR of 0.255). For each of the three shape parameters used, LASSO picked the greatest

number of nonzero coefficients and the highest Ave. mFDR value among all the penal-

ties, which indicates LASSO tends to overfit and selects more variables than necessary. In

summary, using BIC method to select γ variable, as the number of events increases (by

changing the shape parameter of Weibull distribution), the number of nonzero variables

selected at each penalty increases. This implies that higher failure rate suffers more from

over-fitting. Comparing all the penalties, Figure 5.3 is a plot showing the convexity of

each of the four penalties. This shows whether the objective function is convex or not.

The shaded region (except for LASSO) is where the objective function is convex and the

solution in this shaded region may only be local optima and not global optimal of the

objective function. The top left panel corresponds to the MMCP penalty, and the top right

plot is based on the MCP penalty. The bottom left plot utilizes the SCAD penalty, and the

bottom right plot is based on the LASSO penalty.
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Figure 5.3: Plot to check the local convexity diagnostic for all penalties using the BIC
method.

Based on the plot in Figure 5.3, for each penalty when Shape τ = 1.3, we can see

that each λ value chosen falls under the convex region. To use the cross validation (C.V)

method, γ value selected from the first method (using BIC), will be used using the ncv-

surv package. The cross-validation method will then select the best c.v.e. using the best

λ value. Table 5.1 with the cross-validation method compared each penalty using 10-fold

cross validation, where one-fold serves as test dataset and the remaining 9 folds serve

as training set. Different λ values were applied to the loss function with different penal-

ties. The best λ value is the one that offers the lowest c.v.e. As the shape parameter from

Weibull distribution increases, both MMCP and MCP selected 5 nonzero coefficients for

all the shape parameters (τ) used. SCAD selected 5 nonzero variables when τ = 0.8, 6

variables when τ = 1, and 7 variables when τ = 1.3. LASSO has the worst selection

among the penalties. It selected 11 variables (which includes the 5 exact variables) when
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τ = 0.8, 16 variables when τ = 1, and 19 variables when τ = 1.3.

For dataset with 17 variables (as seen in Section 2, Table A.3 of appendix, with the

BIC method), only Cox partial likelihood function with MMCP penalty selected the cor-

rect nonzero coefficient (5 variables) for all the shape parameter used when BIC method

is applied. Using the cross-validation method (as seen in the appendix, Table A.3 with

the cross-validation method), the Cox partial likelihood function with MMCP, MCP, and

SCAD selected 5 nonzero coefficients with the same c.v.e., when τ = 1.3, and when

τ = 0.8, these three penalties selected 4 nonzero variables. Comparing this with Table

5.1, using the C.V method with the 27 variables dataset, the Cox partial likelihood func-

tion with MMCP and MCP selected the exact number of nonzero coefficients (5 variables)

for all the shape (τ) parameters. These penalties also have the same c.v.e. This implies

that if we increase the number of variable (p), the Cox partial likelihood function with

MMCP and MCP will give a better selection but when we compared these two tables to-

gether using the BIC method and focus on MMCP and MCP, MMCP performed better

than MCP.

Table 5.1: Comparison of different penalties with BIC and cross validation method using
three different shape values

Shape (τ) = 0.8 has 40 events Shape (τ) = 1 has 53 events Shape (τ) = 1.3 has 61 events

BIC method using three different shape values

Penalty MMCP MCP SCAD LASSO MMCP MCP SCAD LASSO MMCP MCP SCAD LASSO

λ 0.0475 0.0475 0.0475 0.0179 0.0635 0.0635 0.0635 0.0194 0.0389 0.0389 0.0447 0.0363

Nonzero Coef 5 5 5 8 5 5 5 13 7 7 7 9

γ 3 2 4 - 3 2 4 - 4 2 4 -

Avg.mFDR 0 0 0 0.365 0 0 0 0.602 0.204 0.204 0.255 0.431

Cross Validation method using three different shape values

λ 0.0774 0.0774 0.0475 0.0135 0.0965 0.0965 0.0592 0.0128 0.1034 0.1034 0.0592 0.0168

Nonzero Coef 5 5 5 11 5 5 6 16 5 5 7 19

γ 4 2 4 - 3 2 4 - 4 2 4 -

C.V.E 4.84 4.84 4.87 4.96 4.78 4.78 4.79 4.91 4.99 4.99 5 5.24
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Since including α in our model should help our model to select the exact variables to

be included in the model as we increase γ, we compared MCP with MMCP penalty by

using different γ value. Table 5.2 with BIC method is the table showing the difference

between when we apply Cox partial likelihood function with MMCP and MCP penalty

as γ increases with a fixed α = 0.1 value and τ = 0.8 using BIC method. Based on our

previous result with dataset of 27 variables being better than 17 variables, we will only

focus on dataset with 27 variables and τ = 0.8 and 1. We observed that as γ increases, the

Cox partial likelihood function with MMCP penalty chose only the correct 5 nonzero co-

efficients with zero Ave. mFDR for each γ value while the number of nonzero coefficients

selected by MCP increases from 5 to 8 as γ increases with increase in the Ave. mFDR from

0 to 0.362. Based on this result, we can see that as γ increases, the number of nonzero co-

efficient chosen by MCP increases compared to when we use MMCP penalty. From our

derived penalty, as γ increases, α counter the increase in γ since 0 < α < 1 thereby select-

ing the right variables. We also used different alpha value to know the effect of α as we

reduce it to a number close to zero.

Still on Table 5.2 with cross-validation method when we use τ = 0.8 and α = 0.1

value. This plot shows the difference between when Cox partial likelihood function is

used with MMCP and MCP as γ increases with cross-validation method. From the ta-

ble, Cox partial likelihood function with MMCP penalty selected the correct number of

nonzero coefficient (5 variables) as γ increases with the lowest c.v.e as compared with

Cox partial likelihood function with MCP penalty. For instance, when γ = 30, MMCP

penalty selected 5 nonzero coefficients with c.v.e of 4.89 which is lower than the c.v.e of

MCP (5.01) when γ = 30 and 8 nonzero coefficient were selected. Also, we can see that

the C.V.E. of our new model increased at γ = 40, hence γ = 30 should be the maximum

γ to consider here. We also observed that increasing γ value also increases the c.v.e. We

compared when α = 0.1 with when α = 0.2 with same τ value using the C.V. method
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and we noticed that increasing α value will also increase the c.v.e. at each γ value. Since

smallest c.v.e gives a better result (better variable selection), then smaller α value will

result in having a good variable selection. In order to show the implementation of Cox

partial likelihood function with MMCP using real dataset, we applied it to two different

data sets.

Table 5.2: Comparison of MMCP and MCP penalties with BIC and cross-validation
method using four different gamma values with α = 0.1 and 0.2

α = 0.1, τ = 0.8 γ = 10 γ = 20 γ = 30 γ = 40

Penalty MMCP MCP MMCP MCP MMCP MCP MMCP MCP

BIC method

λ 0.0475 0.0475 0.0475 0.0335 0.0475 0.0220 0.0475 0.0206

Nonzero Coef 5 5 5 6 5 8 5 8

Avg.mFDR 0 0 0 0.160 0 0.361 0 0.362

Cross Validation method

λ 0.0830 0.0335 0.0774 0.0385 0.0628 0.0272 0.0475 0.0291

Nonzero Coef 5 7 5 6 5 8 5 7

Cross validation error 4.83 5.06 4.83 5.10 4.83 5.01 4.89 4.92

α = 0.2, τ = 0.8 γ = 10 γ = 20 γ = 30 γ = 40

Penalty MMCP MCP MMCP MCP MMCP MCP MMCP MCP

BIC method

λ 0.0475 0.0475 0.0475 0.0335 0.0475 0.0220 0.0475 0.0206

Nonzero Coef 5 5 5 6 5 8 5 8

Avg.mFDR 0 0 0 0.160 0 0.361 0 0.362

Cross Validation method

λ 0.0475 0.0335 0.0475 0.0385 0.0359 0.0272 0.0335 0.0291

Nonzero Coef 5 7 5 6 7 8 7 7

Cross validation error 4.89 5.06 4.89 5.10 4.89 5.01 5.04 4.92
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5.0.7.2 Performance of the Penalty Estimation Using Heart Failure Dataset

We applied the Cox partial likelihood function with each of the four penalties to the

heart failure dataset. One of the subgroups of all cardiovascular diseases (CVDs) that

comprehend cerebrovascular diseases (which is stroke), coronary heart attacks and other

pathologies are heart failure. These altogether kill approximately 17 million people every

year. This accounts for 31% of all the deaths worldwide. This dataset contains 13 features

which can be used to predict death rate by heart failure. We can prevent most of these

CVDs by addressing the behavioral risk factors such as unhealthy diet, smoking, and so

on. In other to detect which factor is contributing more to the failure of the heart early

and how to manage these factors, we will apply the Cox partial likelihood function with

different penalties. The reason for using different penalties is to know the best penalty

that will detect the right factor contributing to heart failure. The dataset includes the age

of the heart failure patient, their sex, whether they have diabetes, anaemia, high blood

pressure and so on.

Table 5.3 with BIC method is a table showing the result obtained when Cox partial

likelihood function with different penalties were being used with heart failure dataset.

Small α = 0.1 was used with BIC method. From the table, both MMCP and MCP selected

3 nonzero coefficients which are age, ejection-fraction and serum-creatinine with Ave.

mFDR of 0 while SCAD selected 4 nonzero coefficients (age, ejection-fraction, high-blood

pressure and serum-creatinine) with 0.173 Ave. mfdr and LASSO selected 7 nonzero coef-

ficients (age, ejection-fraction, high-blood pressure, serum-sodium, anaemia, creatinine-

phosphokinase and serum-creatinine) with the highest (worst) Ave. mfdr of 0.406. The

nonzero coefficients chosen by MMCP and MCP looks like the best variables based on the

Ave. mFDR. To confirm this selection, we applied the C.V. method with the same γ value

used for the BIC method.
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In Table 5.3 with cross-validation method, the C.V. method was used with a fix α = 0.1

and the γ value obtained using BIC to compare all the four penalties. From the result,

both Cox partial likelihood function with MMCP and MCP selected the same number of

nonzero coefficients that BIC method selected. Comparing these two penalties, the c.v.e.

for MMCP penalty (10.03) is smaller than that of MCP which is 10.04. Also, the R-square

value obtained using MMCP penalty is higher (0.52) than the R-square for MCP penalty

(0.44). SCAD and LASSO penalties selected 5 and 7 nonzero coefficients respectively.

From this result, we can conclude that MMCP with the minimum c.v.e and highest R-

square value performed better although MCP also selected the same number of non-zero

coefficient as MMCP but higher c.v.e. So, age, ejection-fraction and serum-creatinine are

the right factors contributing to heart failure in this analysis.

Figure 5.4 is the cross-validation plot for each of the penalties using the C.V method.

It shows how each objective function chose their nonzero coefficient. The top left plot

is for the MMCP objective function plot, the top right plot is the MCP objective plot,

the bottom left plot is the SCAD objective function plot, and the bottom right plot is

the LASSO objective function plot. Also, Figure 5.5 is the R-square plot for each of the

penalties. The top left plot is for the MMCP objective function plot, the top right plot is

the MCP objective plot, the bottom left plot is the SCAD objective function plot, and the

bottom right plot is the LASSO objective function plot.
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Table 5.3: Comparison of different penalties with BIC and cross validation method using
heart failure dataset

Using α = 0.1

Penalty MMCP MCP SCAD LASSO

BIC method

λ 0.0701 0.0701 0.0569 0.0200

Nonzero Coef 3 3 4 7

Avg.mFDR 0 0 0.173 0.406

γ 16 2 3

Cross Validation method

λ 0.0864 0.0752 0.0495 0.0230

Nonzero Coef 3 3 5 7

γ 16 2 3

Cross validation error 10.03 10.04 10.06 10.05

R-Square 0.52 0.44 0.42 0.42

Figure 5.4: Cross validation error plot for each penalties using the C.V method
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Figure 5.5: R-square plot for each penalties using the C.V method

Table 5.4: Comparison of MMCP and MCP penalties with BIC and cross validation
method using two different gamma values for heart failure dataset

Using α = 0.1

γ = 10 γ = 20

Penalty MMCP MCP MMCP MCP

BIC method

λ 0.0701 0.0230 0.0701 0.0214

Nonzero Coef 3 7 3 7

Avg.mFDR 0 0.421 0 0.414

Cross Validation method

λ 0.0927 0.0325 0.0752 0.0303

Nonzero Coef 3 7 3 7

Cross validation error 10.03 10.09 10.04 10.07

R-Square 0.52 0.40 0.44 0.41
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5.0.7.3 Performance of the Penalty Estimation Using NKI Breast Cancer Dataset

The relationship between gene expression profiles and survival data has so far been

explored such as the breast cancer therapy [19], prediction of outcome of the origins of

cancer in lung [116], and so on. Many articles have used Cox regression model with hi-

erarchical clustering, to categorize patients according to their risk levels [107] and genes

that are significant are selected using this regression model [2]. The nonlinear relation-

ships between the gene expression level and survival time need to be accounted for in a

flexible way and Bayesian approach was applied by some researchers. [25].

We will analyze a disparate dataset of gene expression profiling data (breast cancer

gene expression data set) by applying the Cox partial likelihood function with MMCP

penalty and other penalties discussed before. Breast cancer data sets, NKI will be used to

know how effective the new penalty (MMCP) works. The NKI dataset, consists of gene

expression levels extracted from 272 tumors (breast cancer patients) and is analyzed us-

ing about 1570 most varying genes. Using this dataset, since the number of variables is

higher than the number of observations (p > n), then, we expect MMCP, MCP and SCAD

to perform better than LASSO since LASSO works best when p < n. The Cox partial

likelihood function with each of the four penalties was applied to the NKI dataset.

From Table 5.5 with BIC method, the Cox partial likelihood function with different

penalties was used with the NKI dataset and using the BIC method, with α = 0.3 we were

able to get our result. From the table, both MMCP and MCP selected 11 nonzero coeffi-

cients which include the gene expression and one other variable (grade). These variables

are NM-016359, grade, NM-003430, NM-001333, NM-006096, NM-000926, Contig23211-

RC, NM-003981, Contig56390-RC, NM-003258, NM-016109 with Avg. mFDR of 0.098 for

MMCP and 0.097 for MCP while SCAD and LASSO have no nonzero coefficients. To con-

firm this selection, we applied the C.V. method with the same γ value used for the BIC
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method.

In Table 5.5 with cross validation method, the C.V. method was used with a fix α = 0.3

to compare all the four penalties. From the result, Cox partial likelihood function with

MMCP selected the smallest number of non-zero coefficients compared to the remaining

penalties. Also, MMCP has c.v.e. of 9.93 and this is the smallest c.v.e. when we compare

this with the c.v.e. obtained from other penalties. Although MMCP selected the smallest

number of coefficients which is 14, (NM-016359, grade, AF201951, AL117638, NM-003430,

NM-001333, NM-006096, NM-000926, Contig23211-RC, Contig42011-RC, Contig56390-

RC, NM-003258, NM-016109, L27560) and also has the smallest c.v.e., it has the same

R-square value of 0.43 as the one obtained when MCP was used. SCAD and LASSO penal-

ties selected the same number of nonzero coefficients (16 coefficients). From this result,

we can conclude that MMCP with the minimum c.v.e value performed better. So, NM-

016359, grade, AF201951, AL117638, NM-003430, NM-001333, NM-006096, NM-000926,

Contig23211-RC, Contig42011-RC, Contig56390-RC, NM-003258, NM-016109, L27560 are

the factor contributing to NKI breast cancer in this analysis.

123



Table 5.5: Comparison of different penalties with BIC and cross validation method using
NKI breast cancer dataset

Using α = 0.3

Penalty MMCP MCP SCAD LASSO

BIC method

λ 0.0948 0.09481 - -

Nonzero Coef 11 11 - -

Avg.mFDR 0.098 0.097 - -

Cross Validation method

λ 0.0840 0.0840 0.0840 0.0840

Nonzero Coef 14 15 16 16

γ 350 250 150 -

Cross validation error 9.93 9.94 9.94 9.94

R-Square 0.43 0.43 0.42 0.42

We reduced the NKI dataset by removing all the gene expressions and we analyzed

the remaining 12 variables (age, chemo, hormonal, amputation, histtype, diam, posnodes,

grade, angioinv, lymphinfil) using the Cox partial likelihood function with the four penal-

ties. Table 5.6 is the table showing the comparison between different penalties using the

reduced NKI dataset by using both BIC and C.V method with BIC and cross validation

method. From Table 5.6 with BIC method, Cox partial likelihood function with MMCP

and MCP selected 1 non-zero coefficient (grade) with zero Average mFDR. This shows

that the performance of all the penalties is similar because p < n. From Table 5.6 with

cross validation method, MMCP and MCP selected 1 non-zero coefficient with the small-

est c.v.e and the highest R-square value. SCAD on the other hand, selected 2 nonzero

coefficients while LASSO selected 4 nonzero coefficients with the highest c.v.e. From our

observation, both MMCP and MCP performed better than other penalties for the reduced

NKI dataset.
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Table 5.6: Comparison of different penalties with BIC and cross validation method using
reduced NKI breast cancer dataset

Using α = 0.3

Penalty MMCP MCP SCAD LASSO

BIC method

λ 0.0942 0.0665 0.0665 0.0764

Nonzero Coef 1 1 1 1

Avg.mFDR 0 0 0 0

γ 3 2 3 -

Cross Validation method

λ 0.0879 0.0879 0.0620 0.0437

Nonzero Coef 1 1 2 4

γ 3 2 3 -

Cross validation error 10.03 10.03 10.05 10.09

R-Square 0.36 0.36 0.35 0.32

Table 5.7 is the table showing the comparison between MMCP and MCP as we change

γ value using the reduced NKI dataset with BIC and cross validation method. From this

table, as γ increases for the BIC method, both MMCP and MCP selected 1 non-zero co-

efficient (grade) with zero Average mFDR. From Table 5.7 with cross validation method,

for γ = 10, MMCP has the smallest c.v.e of 10.06 and the highest R-square value of 0.34.

With this, Cox partial likelihood function with MMCP selected the smallest non-zero co-

efficient which is 1. As γ increases to 30, both MMCP and MCP selected 4 nonzero co-

efficients with the same c.v.e. and same R-square value. This shows that when γ is at

10, MMCP performed better than MCP and as we increase γ to 30, they both performed

similar. In this case, The α value and the γ value with the best c.v.e and the smallest Avg.

mFDR was used for the final model selection.
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Table 5.7: Comparison of MMCP and MCP penalties with BIC and cross validation
method using two different gamma values for reduced NKI dataset.t

Using α = 0.2

γ = 10 γ = 30

Penalty MMCP MCP MMCP MCP

BIC method

λ 0.0665 0.0713 0.0713 0.0764

Nonzero Coef 1 1 1 1

Avg.mFDR 0 0 0 0

Cross Validation method

λ 0.0927 0.0325 0.0752 0.0303

Nonzero Coef 1 4 4 4

Cross validation error 10.06 10.09 10.09 10.09

R-Square 0.34 0.32 0.32 0.32
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Chapter 6: Conclusion and Contribution

6.1 Demonstration Test Plans For Lifetime Data Based on Considering Multiple Ob-

jectives

For conducting a demonstration test, it is important to choose a plan that is the best

and using a zero-failure test with low test units can cause a trade-off between the CR and

PR. When we control the CR, it leads to a decrease in the AP. We focused on the producer’s

risks, the consumer’s risk, the acceptance probability, the testing time and the test unit for

a successful test. Having given the contending goals for advancing a demonstration test

plan, we recommend utilizing a Pareto front to remove choices that are non-contending

so as to guide us in making justifiable decisions. With the three scenarios that we ex-

plored, if we first control the consumer’s risk using prior Invgamma(8,0.7), it will result

in a simple set of excellent solutions with a great plan to simultaneously improve the rest

of the criteria for each possible c value. After finding the best solutions with the trade-

offs summarized in Table 3.1, the user can then make a decision by using their AP and

PR requirement, their requirement on the sample test and how long they want to test the

units for. Finally, the choice of the prior distribution and the threshold of the user in a

Bayesian analysis can substantially affect our ultimate choice.

We explored the impact of t0 and found out that it has small impact on the selective

test plan. For our future work, we will try and explore different test unit to see the effect

of the cost (test unit).
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6.2 Bayesian Analysis For Accelerated Degradation Test Data With Multiple Degra-

dation Measurements and Covariates Using the General Path Model

In this chapter, the multivariate degradation path model with two random effect was

proposed. Based on the correlation between the two random effects, this model cap-

tures the unit-to-unit variation between them. The MCMC algorithm from Stan package

was used to obtain the model parameters and system reliability estimate and we demon-

strated this by analyzing the synthetic ISO dataset. The ISO dataset was divided into

equal size of two groups and using the measurements from the two units from both

groups, a multivariate model was created. The result obtained shows similarity in the

multivariate and the independent model due to low correlation between the degradation

measurement. The product reliability was estimated by simulating new data with two

correlation level using ISO dataset with our degradation model. From these two appli-

cations, the multivariate degradation path models of same structures can be estimated

using the developed model (MCMC). Advantage of using the MCMC is that samples

from some probability distributions can be drawn with MCMC and also computation of

the inference is fast when estimating the MCMC parameter. Stan was used for the MCMC

algorithm and like most other HMC implementations, Stan uses the leapfrog integrator

which is a numerical integration algorithm. Leapfrog was used by Stan to give a stable

result for Hamiltonian systems of equations. Based on our more detailed prediction, it

would help manufacturers to have a better understanding of their products’ reliability

performance for a whole service life.

6.3 Penalized Regression For Survival Analysis

In this work, in order to solve the challenges faced in selecting variables in survival

analysis when there is a large number of predictor variables relative to the number of ob-

served data, the Modified Minimax Concave penalty (MMCP) was introduced and dis-
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cussed extensively. We modified the Minimax Concave penalty (MCP) to achieve this

our newly derived penalty by applying α variable to the penalty to slow down the rate

at which unbiasedness reduced. We demonstrated the applicability of Cox partial like-

lihood function with MMCP penalty by using simulated dataset with 200 observations

and two real life data sets, namely, the heart failure dataset and the NKI breast cancer

dataset. We also fitted these datasets to other existing penalties through cox loss func-

tion. The Bayesian Information Criteria and the cross-validation (using cross-validation

error with R-square) were used to select the best penalty (penalty that choose the right

non-zero coefficient). We also compared our derived penalty (MMCP) with MCP penalty

as γ increases. The result obtained in Table 5.4 through Table 5.7 shows that our new

penalty performs better than other existing penalties when p < n and when p > n. Our

believe is that this new penalty will be used to select many significant variables present

in many real-life data. For future work, we will try and apply the full Bayesian approach

as a criterion-based method for the selection of variables.
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Appendix A: Supplementary Materials

A.1 Penalized Regression For Survival Analysis

A.1.1 Additional Results For the Simulation Study

Table A.1 and A.2 are the tables showing the summary statistics of each of the dis-

tributions used in the simulation study. Table A.1 is the table for the summary statistics

of when 27 variables are used while Table A.2 is the table for the 17 variables used in

the simulation study. Table A.3 is the table showing the Comparison between different

penalties with BIC and cross validation method when we have 17 variables by using three

different shape values of 0.8, 1.1 and 1.3.

Table A.4 (27 variables) is the table showing the Comparison between MMCP and

MCP penalties with BIC and cross validation method using four different gamma values

for when alpha=0.2 and τ = 0.8, and α = 0.2 and τ = 1.1 respectively. While table A.5

shows the difference between MMCP and MCP penalties with BIC and cross validation

method using four different gamma values for when α = 0.1 and τ = 1.1.

A.2 Additional Results For the NKI Breast Cancer Data Example

Table A.6 compares the MMCP and MCP penalties using the BIC and cross validation

method by applying four different gamma values of 10, 20, 30 and 40 with α = 0.3 while

Table A.7 compares the MMCP and MCP penalties with cross validation method using

four different gamma values with α = 0.3.
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Table A.1: Summary statistics for each of the 27 variables used for the simulation study.

The 5 active variables from the 22 variables Summary Statistics

Distributions minimum mean maximum

Weibul (1,2.9) 0.0037 2.9572 13.5050

Normal (1,3.2) -9.3461 1.3134 10.7401

Lognormal (0.4,1) 0.0500 2.6074 36.4485

Exponential (0.7) 0.0021 1.3910 8.6044

Logistics (3,2.9) -13.0807 3.1644 19.7402

Noise from the remaining 27 variables

Negativebinomial (2,0.4) 0.0000 3.0300 14.0000

Beta (0.03,1,4) 0.0000 0.6057 0.9970

Binomial (2,0.7) 0.0000 1.365 2.0000

Cauchy (3, 1.5) -19.1060 3.8710 156.4460

Gamma (2, 0.3) 0.2529 6.4927 33.2214

Geometric (0.3) 0.0000 2.2300 17.0000

Hypergeometric (2, 12,8) 0.0000 1.1250 2.0000

Negativebinomial (5,0.4) 0.0000 7.2800 19.0000

Uniform (-1, 7) -0.9906 2.9662 6.9085

Poisson (9) 2.0000 8.7500 18.0000

Negativebinomial (3,0.4) 0.0000 4.4650 21.0000

Uniform (-1, 5) -0.9064 2.1536 4.9533

Binomial (5, 0.7) 1.0000 3.6800 5.0000

Cauchy (4, 1.5) -144.4820 3.0330 101.2290

Gamma (3, 0.3) 1.3970 10.2130 30.3590

Geometric (0.5) 0.0000 0.9850 5.0000

Hypergeometric (12,12,8) 1.0000 3.9900 7.0000

Negativebinomial (6,0.4) 1.0000 9.5100 29.0000

Hypergeometric (11,11,8) 1.0000 4.0450 7.0000

Poisson (10) 3.0000 9.8100 19.0000

Negativebinomial (5,0.4) 0.0000 7.6050 27.0000

Beta (0.07, 3, 4) 0.0000 0.3550 0.9244
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Table A.2: Summary statistics for each of the 17 variables used for the simulation study.

The 5 active variables from the 27 variables Summary Statistics

Distributions minimum mean maximum

Weibul (1,2.9) 0.0037 2.9572 13.5050

Normal (1,3.2) -9.3461 1.3134 10.7401

Lognormal (0.4,1) 0.0500 2.6074 36.4485

Exponential (0.7) 0.0021 1.3910 8.6044

Logistics (3,2.9) -13.0807 3.1644 19.7402

Noise from the remaining 17 variables

Negativebinomial (2,0.4) 0.0835 2.4205 33.3964

Beta (0.03,1,4) 0.0000 0.5947 0.9961

Cauchy (7, 1.5) -166.4080 5.8520 81.9100

Cauchy (3, 1.5) -69.2060 2.9700 77.3120

Gamma (5, 0.3) 2.6390 16.7360 49.4790

Geometric (0.1) 0.0000 8.0450 57.0000

Hypergeometric (10, 12,8) 1.0000 3.7150 7.0000

Negativebinomial (5,0.4) 0.0000 7.2850 24.0000

Uniform (-1, 7) -0.9822 3.0411 6.9240

Poisson (9) 2.0000 9.1400 17.0000

Negativebinomial (3,0.4) 0.0000 4.2200 21.0000

Uniform (-1, 5) -0.9811 1.9902 4.9923
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Table A.3: Comparison of Different Penalties with BIC and Cross Validation Method
using 17 variables with Three Different Shape Value

α = 0.2,Shape(τ) = 0.8 has 38 events Shape (τ) = 1.1 has 50 events Shape (τ) = 1.3 has 63 events

BIC method using three different shape values

Penalty mmcp mcp scad LASSO mmcp mcp scad LASSO mmcp mcp scad LASSO

λ 0.0413 0.0385 0.0335 0.0728 0.0728 0.0550 0.0193 0.0757 0.0757 0.0757 0.0163

Nonzero Coef 5 6 7 - 5 5 6 8 5 5 5 8

γ 4 4 4 - 5 3 3 - 5 3 3 -

Avg.mFDR 0 0.161 0.277 - 0 0 0.155 0.360 0 0 0 0.366

cross validation method using three different shape values

λ 0.1262 0.0890 0.0774 - 0.0479 0.0479 0.0479 0.0090 0.1073 0.1000 0.0811 0.0115

Nonzero Coef 4 4 4 - 7 7 7 13 5 5 5 11

g 4 4 4 - 5 3 3 - 5 3 3 -

Cross validation error 4.74 4.74 4.74 4.76 4.76 4.76 4.81 4.90 4.90 4.91 5.07
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Table A.4: Comparison of MMCP and MCP penalties (27 variables) with BIC and
cross-validation method using four different gamma values with α = 0.2 and, τ = 1.1

and 0.2

α = 0.2, τ = 0.8 γ = 10 γ = 20 γ = 30 γ = 40

Penalty MMCP MCP MMCP MCP MMCP MCP MMCP MCP

BIC method

λ 0.0475 0.0475 0.0475 0.0335 0.0475 0.0220 0.0475 0.0206

Nonzero Coef 5 5 5 6 5 8 5 8

Avg.mFDR 0 0 0 0.160 0 0.361 0 0.362

Cross Validation method

λ 0.0830 0.0335 0.0774 0.0385 0.0628 0.0272 0.0475 0.0291

Nonzero Coef 5 7 5 6 5 8 5 7

Cross validation error 4.89 5.06 4.89 5.10 4.98 5.01 5.04 4.92

α = 0.2, τ = 1.1 γ = 10 γ = 20 γ = 30 γ = 40

Penalty MMCP MCP MMCP MCP MMCP MCP MMCP MCP

BIC method

λ 0.0635 0.0316 0.0635 0.0448 0.0635 0.0316 0.0635 0.0256

Nonzero Coef 5 5 5 7 5 9 5 10

Avg.mFDR 0 0 0 0.272 0 0.427 0 0.481

Cross Validation method

λ 0.0965 0.0363 0.0635 0.0339 0.0448 0.0339 0.0418 0.0275

Nonzero Coef 5 9 5 9 9 9 9 10

Cross validation error 4.78 4.82 4.80 4.92 4.81 4.94 4.80 4.95
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Table A.5: Comparison of MMCP and MCP penalties (27 variables) with BIC and cross
validation method using four different gamma values with α = 0.1 and τ = 1.1

α = 0.1, τ = 1.1 γ = 10 γ = 20 γ = 30 γ = 40

Penalty MMCP MCP MMCP MCP MMCP MCP MMCP MCP

BIC method

λ 0.0635 0.0316 0.0635 0.0448 0.0635 0.0316 0.0635 0.0256

Nonzero Coef 5 5 5 7 5 9 5 10

Avg.mFDR 0 0 0 0.272 0 0.427 0 0.481

Cross Validation method

λ 0.1035 0.0363 0.0965 0.0339 0.0783 0.0339 0.0635 0.0275

Nonzero Coef 5 9 5 9 5 9 5 10

Cross validation error 4.78 4.82 4.78 4.92 4.79 4.94 4.80 4.95

Table A.6: Comparison of MMCP and MCP penalties with BIC and cross validation
method using four different gamma values with α = 0.3 for NKI dataset

α = 0.3 γ = 350 γ = 450 γ = 550 γ = 650

Penalty MMCP MCP MMCP MCP MMCP MCP MMCP MCP

BIC method

λ 0.0948 0.0840 0.0948 0.0948 0.0948 - 0.0948 -

Nonzero Coef 11 11 11 11 11 - 11 -

Avg.mFDR 0.098 0.096 0.098 0.096 0.097 - 0.097 -

Cross Validation method

λ 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840

Nonzero Coef 14 16 15 16 15 16 15 16

Cross validation error 9.93 9.94 9.94 9.94 9.94 9.94 9.94 9.94

R-square 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.42
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Table A.7: Comparison of MMCP and MCP penalties with cross validation method
using four different gamma values with α = 0.3 for NKI dataset

α = 0.1, τ = 0.8 γ = 350 γ = 450 γ = 550 γ = 650

Penalty MMCP MCP MMCP MCP MMCP MCP MMCP MCP

BIC method

λ 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840

Nonzero Coef 14 16 15 16 15 16 15 16

Cross validation error 9.93 9.94 9.94 9.94 9.94 9.94 9.94 9.94

R-square 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.42
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