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ABSTRACT 

 

Poor methodological and statistical practices can lead to unreliable results. The 

collaboration between statisticians and researchers can remedy this. Early education intervention 

research rarely uses advanced statistical techniques. Within early education, vocabulary 

instruction has been well-studied, yet outcomes continue to be underwhelming. The specialized 

knowledge and expertise statisticians possess has the potential to enhance word learning research 

by applying sophisticated analyses not commonly used.  

Choosing vocabulary words for instruction can be a daunting task and is highly 

subjective. In an effort to aid in the selection process, researchers use a word selection 

framework that groups words into three tiers. Even with words organized into these tiers, there is 

still considerable variability when selecting words for instruction. There could be other factors 

related to word learning, and these, combined with a word’s tier, would better organize words for 

instruction.  Recent research has been done to examine the lexical characteristics that influence 

children’s word learning and recognition. Multivariate linear regression and stepwise regression 

are two common statistical analyses used to model these relations. These models can be 

appropriate in certain situations, but the assumptions they rely on may not be satisfied in the 

context of word learning models. Interdisciplinary collaboration between statisticians and word 

learning researchers could lead to more appropriate modeling approaches that better-describe the 

influence of lexical characteristics on word learning.  

The purpose of this three-part dissertation is to advance word learning research by 

implementing sophisticated statistical techniques that are not commonly used. (i) First, we 



xi 

introduced and compare the theoretical framework of statistical and machine learning techniques 

that would be applied to word learning data such as shrinkage methods and ensemble learning. 

(ii) The performance of these advanced techniques are compared using fit measures and an 

example subset of the data. We demonstrated why multivariate adaptive regression splines 

(MARS) is a better choice for a robust word learning model by comparing it to advanced 

statistical and machine learning techniques, as well as typically used methods by education 

researchers, such as multivariate linear regression and stepwise regression. (iii) Three word 

learning datasets were modeled using MARS to examine the relations among lexical 

characteristics and children’s word learning. This was done to see if results were consistent with 

the first analysis and to determine the differential effects lexical characteristics had on word 

learning across grade levels.  

Words were characterized by various lexical factors including age of acquisition, word 

frequency, level of concreteness, neighborhood density and phonotactic probability. Compared 

to multivariate linear regression and stepwise regression results, the different statistical and 

machine learning techniques performed well, but MARS proved to be superior for its balance of 

accuracy and interpretability. Results indicated age of acquisition and level of concreteness were 

the most relevant predictors of word learning. Children had difficulty learning words that were 

rated older than their age and that were highly abstract. The points at which learning declined 

appeared to shift as children aged. Examining hinge data, we can determine the threshold for 

learning words based on this information. Using final models for each grade level, we can 

predict the number of students expected to learn a given word based on the lexical 

characteristics. This information can be used to systematically organize vocabulary targets into 

an optimal sequence for instruction.  
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CHAPTER ONE: 

INTRODUCTION 

 Statistical errors are common in many fields of research, which has led to calls for action 

to remedy poor methodological and statistical practices (Sainani et al, 2021; Veldkamp et al, 

2014). Sainani and colleagues (2021) make the case for an increase in collaboration between 

researchers and statisticians, as well as an increase in statistical training for researchers. 

Statisticians have a variety of tools and skills at their disposal that would be a boon to all manner 

of research but requires outreach and collaboration. Even when statisticians consult with other 

departments, it is often beset by challenges due to a lack of direction (Khamis & Mann, 1994). 

Interdisciplinary research has become more common and statistical rigor has increased for many 

disciplines, but questionable research practices are still prevalent (John et al, 2012). Fields such 

as psychology and medicine have made great strides in becoming more statistically rigorous but 

other research areas are lagging behind (Open Science Collaboration, 2015). 

Early education intervention research rarely employs advanced statistical techniques 

(Snyder et al., 2002). Interventions focused on vocabulary instruction often use simpler analytic 

methods, such as linear or stepwise regression, which can be inappropriate given the correlated 

nature of the data. When studying the impact educational interventions have on children’s 

learning, results are typically “messy.” Individual differences in children’s language and literacy 

abilities, variability in classroom environments, and the limited ability for experimental control 

can all lead to data that is heavily skewed. Furthermore, when examining special populations 

(i.e., children with language impairments), results cannot always be generalized to the greater 
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population. Understanding data is important for determining the models most appropriate based 

on certain factors (e.g., linearity and normality, multicollinearity, or homoscedasticity). 

Advanced statistical methods that do not rely on such assumptions may reveal important 

information that would be missed otherwise. This means researchers need to know when and 

how to use these techniques, and understand the underlying assumptions, advantages, 

disadvantages, and a priori knowledge associated with each technique. 

The purpose of this dissertation is to consider statistical learning and machine learning 

techniques to determine the appropriate method to identify the relevant impact lexical 

characteristics have on word learning. First a review of relevant literature examining the status 

quo of word learning will be presented. Second, data from a longitudinal study examining the 

effects of a supplemental vocabulary intervention on children’s word learning will be explored 

and described. Third, the theoretical frameworks for advanced statistical techniques are 

introduced and compared to methods commonly used in word learning research. Next, we will 

compare various advanced statistical techniques used to analyze the influence of lexical 

characteristics on children’s word learning. Finally, we will identify the lexical characteristics 

predictive of word learning using data from studies investigating the effects of two different 

vocabulary interventions. 

Vocabulary knowledge is crucial for reading comprehension. However, there are 

considerable differences in children’s vocabulary size; those from families with lower 

socioeconomic status tend to have smaller vocabularies compared to their peers from families 

with middle and high socioeconomic statuses. These differences are evident as early as four-

years-old (Hart & Risley, 1995; 2003). Children with smaller vocabularies are at greater risk for 
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developing reading disabilities upon entering school. Vocabulary instruction has the potential to 

reduce the prevalence of reading disabilities.  

Vocabulary instruction varies greatly, especially in early education classrooms 

(Greenwood et al., 2013) and is almost non-existent in classrooms serving children from low-

income families (Wright, 2012). Additionally, word selection is a challenging task and relies 

heavily on teachers to determine the words used for instruction (Gray & Yang, 2015). Several 

researchers have created word selection frameworks (Beck, McKeown, & Kucan, 2013; 

Biemiller, 2010; Marzaon & Sims, 2013). Beck and colleagues (2013) organized words into 

three tiers. Tier 1 words are the basic building blocks of language and commonly used in 

conversation (i.e., mine, sad, run). Tier 2 words are words that have high academic utility; they 

are not domain-specific and are words children will encounter while reading and thus impact 

comprehension (i.e., absurd, construct). Tier 3 words are content specific. While they require 

instruction, they have very little application outside of that subject area (i.e., hypothesis or 

biome). Biemiller (2010) organized words in a similar fashion; words that are learned without 

instruction, words worth teaching, and words to be learned later on. He also distinguished words 

appropriate for primary and upper-elementary grades. Marzano and Simms (2013) organized 

words into Tiers 2 and 3. While the Tier 3 words are grouped by grade level, the Tier 2 words are 

not because these words appear in texts across grade levels making it more challenging to assign 

these words to a specific grade level. Instruction should focus on Tier 2 words. 

While these efforts aid in the selection of words to teach, these frameworks lack a 

systematic method to identify appropriate instructional targets. In a systematic review of word 

selection in early childhood vocabulary instruction, Hadley and Mendez (2021) found that, of the 

studies that used Beck and colleagues’ tiered system for word selection, only 41% of the words 
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were categorized as Tier 2 based on their coding criteria. They also found that several words fell 

within gray areas, fitting into more than one tier. They also found that the application of the 

tiered system varied greatly. To this point Hadley and Mendez posed an interesting question: 

how do word tiers vary by age? Would a Tier 2 word for a preschooler also be a Tier 2 word for 

a child in fifth grade? A word’s tier cannot be the only deciding factor used to select targets for 

instruction.  

There may be other factors that influence word learning that could be used to better-

organize words for instruction. Researchers have examined the lexical characteristics that may 

facilitate word learning, but the methods used to model these relations may under- or 

overestimate their contributions to children’s vocabulary acquisition. Increased collaboration 

between statisticians and educational researchers is needed. By interacting with researchers, 

statisticians can provide the tools and understanding needed to reveal important relations 

between lexical characteristics and word leaning. 

By demonstrating the value of using advanced methods to analyze word learning, 

researchers will be better equipped to interpret results that have the potential to impact 

vocabulary instruction. Outcomes illustrate the importance of promoting collaboration between 

statisticians and vocabulary intervention researchers by increasing the statistical rigor in this 

area. This will lead to an enhanced understanding of word learning outcomes which can be used 

to develop a systematic method for selecting instructional vocabulary targets. This would lead to 

the development of an algorithm used for word selection. This algorithm will be based on 

relevant predictors and allow for a flexible approach to selecting words that are developmentally 

appropriate for children. Better-organized vocabulary targets would lead to an increase in 
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learning, potentially closing the vocabulary gap and reducing the prevalence of literacy 

disabilities among vulnerable populations.  
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CHAPTER TWO: 

LITERATURE REVIEW 

Advanced Techniques in Educational Research 

 While the majority of educational intervention researchers make limited use of advanced 

statistical techniques, two recent meta-analyses highlighted the few studies that used advanced 

analytic techniques. Kormaz and Correia (2019) performed a review of machine learning in 

education research with a focus on methods such as support vector machines, Bayesian 

networks, fuzzy logic, and decision trees. They found that the use of machine learning 

techniques was trending upwards but were still relatively small in comparison. Nájera and Mora 

(2017) reviewed education applications of data mining and machine learning. Because 

educational research is still very reliant on simpler analysis methods, such as regression, their 

goal was to show how machine learning methods can solve difficult and interesting problems. 

They found examples using decision trees, neural networks, naïve Bayes, k-nearest neighbors, 

logistic regression, and support vector machines and gave a brief overview of how to choose a 

machine learning model.  

Beyond basic linear regressions, mixed effects models and multilevel modeling have 

been used to test the nested interaction between parameters. Kelley and colleagues (2020) used a 

2 × 2 × 9 multilevel model to examine the extent to which a vocabulary program impacted 

preschoolers’ sophisticated word learning. Results revealed significant interactions between 

condition (treatment vs. control), time (pre-intervention vs. post-intervention), and instructional 

book. 
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 Lindl and colleagues (2020) introduced mixed effects modeling and multilevel models as 

well as structural equation models (SEM) and random forests. Structural equation models look 

for latent connections that are represented with a path model. Each of the models were 

introduced with a simple dataset and demonstrated using an example. Harlaar and colleagues 

(2007) used Cholesky decomposition and compared it to the variance-covariance matrices to 

determine the factors among twins that impacted word learning. They suggested that SEM would 

serve as an alternative model that would perform equally well. 

 Some researchers have adopted random forests for modeling educational data. One such 

study was to use survey data completed by 30 English as a second language instructors who rated 

the complexity of 7,000 words. The survey data was combined with word frequencies from a 

database of 50,000 words and was modeled with a random forest to rate their complexity 

(Sohsah et al, 2015). One issue they ran into was the unbalanced nature of word usage, which 

made modeling accurately difficult. Random forests have also been used to model student 

achievement using demographic survey data to predict outcomes based on the Programme for 

International Student Assessment (PISA; Güre et al, 2020).  

The prior two studies also used neural networks to analyze their data. Sohsah and 

colleagues (2015) used a 2-layer feed forward neural network and Güre and colleagues (2020) 

used an artificial neural network (ANN), as well as a multilayer artificial neural network 

(MLANN). Neural networks have been used to predict student’s GPA, academic retention, and 

degree completion based on a variety of measures such as: Attention Network Test (ANT; Fan et 

al, 2002), Learning Strategies Questionnaire (LASSI; Weinstein & Palmer, 2002), and many 

others (Musso et al, 2020).  
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Support vector machines (SVM) is another technique that has been used in educational 

research. Again, Sohsah and colleagues (2015) modeled their word frequency data with support 

vector machines to classify the complexity of English words. SVM was used by researchers to 

take 49 context factors from student surveys for 2,646 high achieving students and 1,369 low 

achieving students and classify students based on the 2015 PISA reading literacy test (Dong & 

Hu, 2019). The data from students participating in the Progress in International Reading Literacy 

Study (PIRLS) from 2016 was modeled using SVM to classify and predict high and low 

proficiency readers (Chen et al, 2020). 

The prior study also used logistic regression to classify the students based on PIRLS. 

Another study took 986 words and performed dimensional reduction using principal component 

analysis on the words and then performed logistic regression using information about child 

participants (i.e., sex, age, quantifiers of vocabulary) and a created a numeric representation that 

described specific words children knew to predict whether they would learn a given word 

(Beckage et al, 2015). Principal component analysis for dimensional reduction has been used by 

other researchers, including Yap and colleagues (2012) who reduced the dimension of their data 

on visual word recognition before modeling it with multivariate linear regression. 

Gradient boosting is rarely used in educational research. During this literature review, 

two studies were found to employ this technique. Fifty-one lexical features among eight 

groupings were used to model the complexity of words using gradient boosting trees (Agarwal & 

Chatterjee, 2021). The PIRLS 2016 research by Chen and colleagues (2020) used extreme 

gradient boosting as one of the methods to classify and predict high and low proficiency readers.  
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They also modelled their data using decision trees. Another study used decision trees to predict 

student’s performance from the PIRLS data to model the influence on reading ability (Alivernini, 

2013). 

Classification and regression trees (CART) were used with data from PISA, Trends in 

Mathematical and Science Study (TIMSS), and PIRLS to compare student achievements from 

different countries and determine where countries could improve student education (Depren, 

2018). This study also used multivariate adaptive regression splines (MARS) to model datasets 

and compared them to CART. They found that MARS outperformed CART. 

From the literature it can be seen that some advanced techniques like gradient boosting, 

random forests, and MARS are being implemented in educational research. Though it exists, the 

scale is limited and is mostly used to classify student achievement based on large scale 

international testing. Specifically, those techniques are not being used in early childhood 

research. In a review of early intervention studies conducted over a ten-year time span, the 

majority of studies used univariate parametric analyses (Snyder et al., 2002). Only 23 studies out 

of 450 included in this review used advanced techniques. Additionally, these advanced 

techniques are not used to analyze vocabulary acquisition. Many researchers examining the 

impact lexical characteristics have on children’s word learning use both multivariate linear 

regression and stepwise regression (Gray, 2004; Morrison & Ellis, 2000; Stoel-Gammon, 2010; 

Storkel, 2009). While these methods are well-known and commonly used, results may not be 

reliable and can over- or under-estimate the effects of lexical characteristics on word learning. 

Advanced statistical techniques could better-describe word learning data. 
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Importance of Vocabulary Instruction 

Oral language, including children’s vocabulary knowledge, is an essential prerequisite for 

reading comprehension (Anderson & Nagy, 1991; Elleman et al., 2009; Snow, Burns, & Griffin, 

1998; Taffe et al., 2009).  Early childhood is a critical time in children’s oral language 

development, but language development varies greatly among children. Those from families 

with a low socioeconomic status tend to have smaller vocabularies compared to their peers from 

families with middle and high socioeconomic statuses, and these differences are evident as early 

as four-years-old (Hart & Risley, 1995; 2003). Children with limited oral language skills are at 

greater risk for developing later reading disabilities (Catts, Fey, Zhang, & Tomblin, 1999; 

Scarborough, 1998; Sénéchal, Oullette, & Rodney, 2006). Vocabulary instruction is key to 

closing this achievement gap. 

Despite the well-established role of vocabulary instruction in children’s development of 

oral language and reading skills, little is known about what words to teach and when. Vocabulary 

instruction has been well-studied (Beck & McKeown, 2007; Coyne et al., 2007; Goldstein et al., 

2017; Kelley et al., 2020; Justice et al., 2005; McKeown & Beck, 2014; Storkel et al., 2017). 

Researchers have identified instructional practices that promote word learning including explicit 

instruction, using child-friendly definitions, providing multiple contexts for the words, and 

connecting vocabulary words to real-world examples (Beck, McKeown, & Kucan, 2013). Even 

though vocabulary acquisition is of great interest, results continue to be underwhelming (Wasik 

et al., 2016). Additionally, there is great variability in vocabulary instruction and word selection, 

especially in early childhood classrooms (Greenwood et al., 2013). Several researchers have 

attempted to organize vocabulary words for instruction (Beck, McKeown & Kucan, 2013; 

Biemiller, 2010; Marzano & Pickering, 2005), but these systems for grouping words lack a 
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standardized, systematic approach to word selection. There may be other factors that influence 

word learning outside of instructional methods that could be used to organize words into a 

developmentally appropriate sequence for instruction. Individual characteristics like part of 

speech, imageability, or frequency of use may contribute to the learnability of a word.  

Lexical Characteristics 

Word frequency measures a word’s frequency of use in a given language, in this case 

American English. Words with a high frequency are used more often than words with a lower 

frequency. There are several measures for word frequency for American English (i.e., Francis & 

Kučera, 1982). The SUBTLEXUS word frequency measure is a corpus that can be accessed 

online and provides frequencies for spoken language that approximates everyday language use 

(Brysbaert & New, 2009). The values represent the frequency per million words. The corpus 

contains 51 million words and is based on American English subtitles from movies and 

television shows. 

Age of acquisition is the age at which a person learns a particular word. Kuperman and 

colleagues (2012) compiled age of acquisition (AoA) ratings for 30,000 words selected from the 

SUBTLEXUS corpus. The ratings were obtained by asking 1,960 individuals to rate the age at 

which they learned each word, defined by understanding the word feature when used by others 

but not necessarily used by themselves. While this may seem like a difficult task, researchers 

have found that adult ratings of age of acquisition are accurate (Gilhooly & Gilhooly, 1980; 

Gilhooly & Logie, 1980).  

Level of concreteness is defined by Brysbaert and colleagues (2014) as imageable or 

abstract. Imageable words are things that can experienced through the five senses (e.g., rock, 

jump). Abstract words cannot be experienced, and their meanings must be defined by other 
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words (i.e., freedom, justice). Ponari and colleagues (2018) examined how children learn abstract 

words and found that young children rely heavily on emotional valence to learn abstract words 

until approximately ages eight or nine, then shifts to relying more on linguistic information. As 

children age, their capacity to learn more abstract words increases, utilizing earlier acquired 

words that may be more concrete as a foundation to build upon. 

Phonological neighborhood density describes the organization of phonetically similar 

words in the mental lexicon. The neighborhood for a word is made up of a group of words that 

differ by one sound substitution, deletion, or addition. For example, the word “aid” has a 

neighborhood density of 21634.85 meaning that it has over 20,000 phonetically similar 

neighbors (i.e., aim, paid, maid) whereas the word “appearance” had a neighborhood density of 0 

meaning that it does not have any other phonetically similar neighbors. According to Luce and 

Pisoni’s (1998) Neighborhood Activation Model, the frequency with which words are used, and 

the density of the neighborhood, effect spoken word recognition, discrimination, and the amount 

of time needed to find and produce a word. 

Phonotactic probability is the frequency of phonological segments and sequences of 

phonological segments that occur in words in a given language (Vitevitch & Luce, 2004). To 

accomplish this, the sum of the log token frequency of words containing position-specific 

phonemes in that segment is divided by the log token frequency of all words containing the 

segment. Common sound sequences have a higher phonotactic probability than those with 

combinations not as common. Phonotactic probability and neighborhood density are significantly 

correlated with one another (Vitevitch et al, 1999). 

Prior research has examined the effect these lexical characteristics have on word learning 

in both children and adults (Newman & German, 2002; Hadley et al., 2021; Hoover et al., 2010; 
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McDonough et al., 2011; Storkel, 2001; Storkel et al., 2006). Newman and German (2002) found 

words with typical stress patterns (i.e., 13ormal1313), high in frequency, and low in 

neighborhood density and age of acquisition (words learned at a younger age) were easier for 

children to name. Hoover and colleagues (2010) found preschoolers learned words with common 

sound sequences in dense neighborhoods, and words that contained infrequent sound sequences 

in sparse neighborhoods. McDonough and colleagues (2011) found a relation between age of 

acquisition and word imageability (or concreteness). Words that were more concrete were 

learned earlier. Similarly, Hadley and colleagues (2021) found a word’s imageability 

significantly predicted preschool children’s word learning. Results from their mixed-effects 

models found that imageability explained 34% of variance across words. Storkel (2001) 

examined the effect phonotactic probability had on preschoolers’ word learning and found that 

preschool children acquired words with common sound sequences faster than words with rare 

sound sequences. Furthermore, in a study of adult word learning, Storkel and colleagues (2006) 

found phonotactic probability contributed to word learning in adults and neighborhood density 

promoted the integration of new and existing lexical representations. It is important to note that 

the researchers in these studies controlled for phonotactic probability and neighborhood density 

by creating pseudo-words, and because of this, the results may over generalize the effects these 

characteristics have on word learning compared to alternative word learning studies where these 

are not controlled (Hoover et al, 2021; Storkel, 2001; Storkel et al., 2006). 

Identifying the lexical characteristics most relevant to children’s word learning can 

facilitate the selection of vocabulary targets used for instruction. Using these relevant factors, we 

can create a systematic approach to word selection. By utilizing these lexical characteristics for 

word organization, it is possible to create a more unified, developmentally appropriate sequence 



14 

of vocabulary targets used for instruction. This will facilitate the selection process when planning 

vocabulary instruction. Enhancing vocabulary instruction has the potential to reduce the 

prevalence of reading disabilities especially among children from vulnerable populations closing 

the achievement gap.  
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CHAPTER THREE: 

DATA DESCRIPTION AND EXPLORATORY ANALYSIS 

Description of Data 

Participants 

Word learning outcomes were collected for approximately 350 students from first, 

second, and third grade classrooms who took part in a longitudinal study investigating the effects 

of a supplemental intervention that taught academic vocabulary words. Students attended two 

elementary schools that served primarily low-income families. Over 90% of students qualified 

for free or reduced lunch.  

Supplemental Vocabulary Intervention 

 The Independent Lexical Instruction and Development (ILIAD) supplementary Tier 2 

vocabulary program (Goldstein et al., 2017) was a longitudinal study spanning three years. The 

intervention occurred four days a week and was set up as a listening center where students would 

follow along with a pre-recorded lesson that included a read aloud from books used in the core 

curriculum, the Open Court series. Lessons were scripted and included opportunities to interact 

and respond and provided multiple opportunities for students to interact with the target words.  

Across each grade level a total of six Tier 2 words: two nouns, two verbs, and two 

adjectives were taught each week. In first and second grades an additional Tier 1 anchor word 

from the Open Court series was included to connect the lesson to the classroom curriculum. Tier 

2-word selection for the intervention followed the criteria set forth by Beck and colleagues 
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(2002). The Academic Word List (Coxhead, 2000) included a list of words derived from a 

variety of college-level texts could be categorized as Tier 2 words. A total of 377 words were 

included. Each of the words chosen for instruction had to be illustrated, defined, and fit into 

existing stories. Because of these constraints researchers were running out of words for third 

grade. The Living Word List (Dale & O’Rourke, 1976) was used to supplement word selection.  

Learning Outcome Measures 

The learning outcomes were derived from two subtests of a researcher-made measure that 

was administered every 4-5 weeks and included an expressive labeling probe that required 

students to identify the target word when presented with a trained picture stimulus along with or 

without the definition. The decontextualized definition probe required students to provide the 

meaning of the target word without additional contextual support (Goldstein et al., 2017). 

Students were prompted with “Tell me everything you know about ___.” If they responded with 

one attribute of the word, they were prompted a second time with “Tell me something else 

about___.” A correct response included a definition, a synonym or brief description of the word. 

Originally, this measure was scored on a three-point scale, 0 for not learned, 1 for partial 

knowledge, and 2 for full knowledge. Because we were interested in the number of children who 

learned each word, we collapsed partial and full knowledge into a binary scale. The revised scale 

for this secondary analysis was 0 for not learned and 1 for learned. 

Coding of Lexical Characteristics of Words 

A total of 377 target vocabulary words were characterized for analysis based on available 

database estimates of their individual word frequency, age of acquisition, phonological 

phonotactic probability, neighborhood density, and level of concreteness (see Table 3.2 for 

mean, standard deviations, and ranges for each lexical characteristic). Word frequency values, 
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phonotactic probability, and phonological neighborhood density counts were obtained from the 

Irvine Phonotactic Online Dictionary version 2.0 (Vaden, Halpin & Hickok, 2009), which reports 

frequency measures from the SUBTLEXus corpus. Concreteness level ratings were derived from 

a database of 37,058 English words developed by Brysbaert et al. (2014). Age of acquisition 

ratings for 30,121 English content words were reported by Kuperman et al. (2012). In some 

instances, the targeted vocabulary word was a derivation and not included in the databases. 

When this occurred the values for the base or root word were used instead.   

Each database was either available for download as or was converted to Excel files to 

streamline data collection. Using the search and retrieval functions in Excel, the various 

databases were searched for all 377 target words. A secondary matching function and random 

searches by the researcher were done to ensure correct words and values were reported from 

each database.  

Data Analysis 

When determining which statistical methods are appropriate for analysis, it is important 

to consider the data. Exploratory data analysis was performed for the total dataset and for each of 

the grade levels. Descriptive statistics for word learning outcomes based on decontextualized 

learning and expressive labeling tasks can be found in Table 3.1. The percentages in the table 

represent the percentage of students that learned each vocabulary word. This preliminary look at 

the data shows that the average word learning ranges from 22% to 38% for both 

decontextualized learning and expressive labeling but the medians are below the mean for every 

case. For both learning outcomes, grade 3 has a lower maximum learning and standard deviation 

for the words than other grade levels.  
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Table 3.1. Descriptive Statistics for Word Learning 

  Expressive  Decontextualized 

 M SD m Min Max M SD m Min Max 

Combined 29% 23% 23% 0% 99% 29% 26% 19% 1% 99% 

1st grade 22% 24% 13% 0% 98% 26% 29% 14% 1% 99% 

2nd grade 38% 24% 32% 7% 99% 38% 28% 27% 3% 97% 

3rd grade 27% 13% 26% 3% 61% 22% 15% 18% 3% 74% 
Note. M= mean, SD= standard deviation, m= median, min= minimum value, max= maximum value. 

 

Descriptive statistics for model variables can be found for decontextualized learning and 

expressing tasks for the full dataset, first grade, second grade, and third grade in Table 3.2. 

Neighborhood density and word frequency are highly right skewed for every grade level, for 

both decontextualized and expressive learning. Boxplots for these lexical characteristics are in 

Figure 3.1. Because the scales for the variables are very different, each variable was standardized 

for comparison. 

 Before any inferences were considered, exploratory data analysis was completed for the 

ILIAD dataset for the full dataset and each respective grade. Figure 3.2 shows the word learning 

in descending order for each subset of the data for decontextualized learning and expressive 

tasks, that is, the y-axis represents the percentage of students that learned a given word and the x-

axis is the thi  word ordered by the percentage of students that learned the word. By ordering the 

words based on learning, the graphs illustrate the level the learning that is occurring and we can 

observe that the upper threshold for learning is much lower for the third graders based on both 

learning outcome measures. The full dataset, first grade, and second grade have similar learning 

trends with each other. As different methods model the data, this will be important to keep in 

mind as the influence of lexical characteristics are being tested as predictors of the word learning 

outcomes. 
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Table 3.2. Descriptive Statistics for Model Variables (Lexical Characteristics) 
Full Dataset M SD m Min Max Skew 

AoA 9.14 2.18 9.33 2.6 14.5 -.58 

N_Den 1115.78 6184.45 4.32 0 69210.62 8.08 

Conc_Mean 2.78 .93 2.54 1.43 5 .87 

Phon_Prob .23 .13 .21 .02 .66 .85 

SUBTLwf 19.29 71.82 5.16 .02 801.82 8.26 

First Grade (n= 143)      

AoA 8.80 2.17 9.06 3.25 13.61 -.46 

N_Den 1845.32 8474.12 6.49 0 69210.62 6.23 

Conc_Mean 2.96 .97 2.76 1.50 5 .64 

Phon_Prob .22 .12 .21 .03 .52 .57 

SUBTLwf 19.29 57.94 6.90 .27 509.37 6.67 

Second Grade (n= 126)      

AoA 8.63 2.29 8.63 3 13.41 -.23 

N_Den 1106.11 5560.46 8.53 0 45721.92 6.92 

Conc_Mean 2.89 1.00 2.63 1.46 4.97 .72 

Phon_Prob .24 .15 .21 .02 .66 .76 

SUBTLwf 31.37 105.91 7.63 .02 801.82 6.07 

Third Grade (n= 108)      

AoA 10.30 1.41 10.25 6.75 14.5 .15 

N_Den 771.50 6666.04 1.41 0 69210.62 10.02 

Conc_Mean 2.39 .62 2.29 1.43 4.15 .81 

Phon_Prob .24 .14 .21 .03 .72 1.37 

SUBTLwf 4.82 6.39 2.46 .08 35.65 2.57 
Note: M= mean, SD= standard deviation, m= median, min= minimum value, max= maximum value, n= number 

of words, AoA= age of acquisition, N_Den= neighborhood density, Conc_Mean= level of concreteness, 

Phon_Prob=phonotactic probability, SUBTLwf= word frequency. 
 

One of the central assumptions of most models is homoscedasticity. This assumes that the 

error terms, or noise, is the same across the same independent variables. Homoscedasticity was 

tested for the datasets using the Breusch and Pagan technique (1979) that uses Lagrangian 

multipliers to find a test statistic. This was calculated in R using the lmtest package (Zeileis & 

Hothorn, 2002). The full dataset and first grade dataset were found to be heteroscedastic with 

Breusch-Pagan test scores of 28.16 and 24.96, respectively. The second grade and third grade 

datasets were found to be homoscedastic with scores of 6.20 and 10.85. This may impact some 

models that rely on homoscedasticity as an assumption. 
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Figure 3.1. Box Plots for Model Variables (Lexical Characteristics) 

 

 

 

Note. WF= Word Frequency, AoA= Age of Acquisition, C= Concreteness, ND= Neighborhood Density, PP= 

Phonotactic Probability. 
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Figure 3.2. Decontextualized and Expressive Word Learning by Grade (Descending) 

 

Multicollinearity 

Multicollinearity was checked for the data to determine if it would impact model 

creation. There are several methods to check collinearity such as checking the signs of 

coefficients, comparing coefficients to prior knowledge, test deletion of data to check impact on 

models, check correlations between all predictor variables, or calculating variance inflation 

factors (Draper, N. R., & Smith, H., 1998). The simplest approach is generally to produce the 

correlation matrix R between the predictor variables (Tamhane, A., & Dunlop, D., 2000).  

 The Pearson correlation coefficient, or Pearson’s r, was used to find the linear 

correlations between the lexical characteristics. The correlation matrix is defined as 

𝑅𝑟 = (𝑟𝑖𝑗) = (

1 𝑟12 ⋯ 𝑟1𝑝
𝑟21 1 ⋯ 𝑟2𝑝
⋮
𝑟𝑝1

⋮
𝑟𝑝2

⋱
⋯

⋮
1

), 

Note. Word learning in descending order for each subset. The y-axis represents the percentage of students 

that learned a given word and the x-axis is the ith word ordered by the percentage of students that learned the 

word. 
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where 𝑟𝑖𝑗 = 𝜎𝑖𝑗/𝜎𝑖𝜎𝑗  (Rencher & Schaalje, 2008). If 

𝐷𝜎 = [𝑑𝑖𝑎𝑔(Σ)]1/2 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, … , 𝜎𝑝) 

then 𝑃𝜌 can be found using 

𝑅𝑟 = 𝐷𝜎
−1Σ𝐷𝜎

−1, 

where  

Σ = 𝑐𝑜𝑣(𝑦) = (

1 𝜎12 ⋯ 𝜎1𝑝
𝜎21 1 ⋯ 𝜎2𝑝
⋮
𝜎𝑝1

⋮
𝜎𝑝2

⋱
⋯

⋮
1

). 

Table 3.3 shows the correlations between independent variables for the full data, first 

grade, second grade, and third grade, respectively. The correlations were calculated in Rstudio 

using the base R language (R Core Team, 2019) For the full data, there exists some correlation 

between all the variables, which stronger negative correlations between age of acquisition and 

word frequency (𝑟 = −.4) and between age of acquisition and level of concreteness (𝑟 = −.56). 

For the first-grade data, age of acquisition has a strong negative correlation with level of 

concreteness (𝑟 = −.62) and a moderate negative correlation with word frequency (𝑟 = −.36). 

Age of acquisition has a strong negative correlation with word frequency (𝑟 = −.44) and level 

of concreteness (𝑟 = −.51), word frequency has a strong correlation with neighborhood density 

(𝑟 = .53), and moderate correlation for most other variable combinations. The third-grade data 

is mostly uncorrelated other than age of acquisition and word frequency which are negatively 

correlated (𝑟 = −.51). The correlation among the variables was expected because prior studies 

have shown a link between lexical characteristics (Hoover et al, 2010; Vitevitch et al, 2004; 

Storkel, 2004). These strong correlations for the lexical characteristics may be important while 
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selecting the best model, but Pearson correlations are not reliable with skewed data (Zou et al, 

2003), which ILIAD is, so other measurements were considered. Figure 3.3 displays graphical 

representation of the correlations among the variables for each subset of the data. 

Table 3.3. Correlation between Variables 

Full Dataset W Freq AoA Concrete Nden Phon Prob 

W Freq 1     

AoA -.4 1    

Concrete .24 -.56 1   

Nden .24 -.18 .13 1  

Phon Prob -.15 .20 -.17 -.22 1 

First Grade 

SUBTLwf 1     

AoA -.36 1    

Concrete .27 -.62 1   

Nden -.02 -.06 .08 1  

Phon Prob -.13 .29 -.17 -.26 1 

Second Grade 

SUBTLwf 1     

AoA -.44 1    

Concrete .21 -.51 1   

Nden .53 -.36 .20 1  

Phon Prob -.20 .14 -.19 -.24 1 

Third Grade 

SUBTLwf 1     

AoA -.51 1    

Concrete .06 -.01 1   

Nden -.06 .01 -.13 1  

Phon Prob -.05 .16 -.06 -.04 1 

Note. SUBTLwf= word frequency, AoA= age of acquisition, Concrete= level of concreteness, N_Den= 

neighborhood density, Phon_Prob= phonotactic probability 

 

 

Next multicollinearity was tested using variance inflation factors (VIF) using the olsrr 

package using R (Hebbali, 2020). Multicollinearity is tested by considering the extent of its 

singularity 𝑋′𝑋, or how close the determinant is to zero. Here (𝑛 − 1)−1𝑋′𝑋 = 𝑅 will be the 
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correlation matrix if the 𝑥𝑗′𝑠 are suitably standardized. VIF uses the diagonal elements of 𝑅−1 

and as these elements increase, the associated variance increases for �̂�𝑗.  

Figure 3.3. Correlation between Variables (Lexical Characteristics) 

 

𝑉𝐼𝐹𝑗 =
1

1 − 𝑟𝑗
2 =

1

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒
,         𝑗 = 1, 2, … , 𝑘, 

where 𝑟𝑗
2 is the multiple correlation coefficient obtained when the jth predictor variable column 

𝑋𝑗 is regressed against all other predictors 𝑋𝑖 with 𝑖 ≠ 𝑗. 𝑟𝑗
2 will be close to 1 and VIF will be 

large if 𝑋𝑗 is approximately linearly dependent on the other predictor variables. Based on this, 

Note. Graphical representation of correlation between variables. SUBTLwf= word frequency, 

AoA= age of acquisition, Conc_Mean= level of concreteness, N_Den= neighborhood density, 

Phon_Prob= phonotactic probability. 

Full First 

Second Third 
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lower VIF values means that the data has lower multicollinearity (Tamhane & Dunlop, 2000). 

Values between 1 and 5 are considered small to moderate but VIF is unable to distinguish among 

several coexisting near dependencies and a lack of a meaningful boundary between levels of 

multicollinearity (Belsley et all, 2005). The variance inflation factor for each variable by dataset 

can be found in Table 3.4 and based on the results, there will likely be a moderate impact due to 

correlation and multicollinearity. 

Table 3.4. Variance Inflation Factors 

Variable Full First Grade Second Grade Third Grade 

W Freq 1.24 1.16 1.55 1.37 

AoA 1.70 1.83 1.63 1.39 

Concrete 1.48 1.63 1.37 1.03 

Nden 1.11 1.08 1.46 1.02 

Phon Prob 1.09 1.17 1.10 1.04 

 

Nonlinear Relationships and Normality 

After finding the linear relationships between parameters, nonlinear relationships were 

considered because of the data skewness and for the sake of being thorough. One such method 

used was using information theory to calculate the mutual information between variables. Mutual 

information 𝐼(𝑋; 𝑌) can be rewritten as 

𝐼(𝑋; 𝑌) =∑𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑥,𝑦

= 𝐻(𝑌) − 𝐻(𝑋|𝑌) 

where 𝐻(𝑋) represents the entropy of X (Cover, 1999). Mutual information was calculated 

between variables and does not show much of a relationship between variables. The maximal 

information coefficient (MIC) belongs to a larger class maximal information-based 
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nonparametric exploration (MINE) and was calculated by finding when 𝐻(𝑋) = 𝐻(𝑌) =

𝐻(𝑋, 𝑌). MIC is an equitable statistic, meaning it can give similar scores to equally noisy 

relationships regardless of the type of relationship (Reshef et al, 2014). The MIC values will 

always fall between 0 and 1 (Reshef et all, 2011) with 0 representing statistically independent 

variables. These values were computed using the ‘minerva” package in the R environment 

(Albanese et al, 2013). 

 Table 3.5 shows the MIC values for the mutual information between each variable for the 

full dataset, first grade, second grade, and third grade, respectively. For the full dataset, age of 

acquisition shares a moderate amount of information with word frequency (MIC=.39), level of 

concreteness (MIC=.31), and neighborhood density (MIC=.31). For the first grade data age of 

acquisition shares a moderate amount of information with word frequency (MIC=.35), level of 

concreteness (MIC=.40), and neighborhood density (MIC=.35) and word frequency with 

neighborhood density (MIC=.33). Age of acquisition shares a moderate amount of information 

with word frequency (MIC=.43), level of concreteness (MIC=.34), and neighborhood density 

(MIC=.35) for the second-grade data. In the second-grade data there is also moderate mutual 

information between word frequency and neighborhood density (MIC=.39) and phonotactic 

probability and neighborhood density (MIC=.30). For the third-grade data, word frequency is 

moderately related to age of acquisition (MIC=.45), neighborhood density (MIC=.41), and 

phonotactic probability (MIC=.31). Age of acquisition shares moderate information with 

neighborhood density (MIC=.30) and phonotactic probability (MIC=.31). 

 This shows that there is a moderate amount of mutual information between variables for 

each subset of the ILIAD dataset. Mutual information has been demonstrated to be a strong 

statistic that can be used for feature selection and can be used for split decisions in regression 
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trees (Zaffalon & Hutter, 2002; Fleuret, 2004; Hoque et al, 2014). Mutual information is not 

reliant of any particular model, as much as the assumptions of normality, or needing to reorder or 

rank the outcomes. Mutual information can take a moderate amount of data to feel confident in 

the MIC measurements. To be more confident in determined relationships between variables, 

more tests were done to verify the findings. 

 

Table 3.5. Maximal Information Coefficients (MIC) 

MIC Full W Freq AoA Concrete Nden Phon Prob 

W Freq 1     

AoA .39 1    

Concrete .18 .31 1   

Nden .34 .31 .21 1  

Phon Prob .18 .21 .17 .22 1 

First      

W Freq 1     

AoA .35 1    

Concrete .25 .40 1   

Nden .33 .35 .27 1  

Phon Prob .22 .24 .25 .28 1 

Second      

W Freq 1     

AoA .43 1    

Concrete .27 .34 1   

Nden .39 .35 .26 1  

Phon Prob .26 .28 .23 .30 1 

Third      

W Freq 1     

AoA .45 1    

Concrete .25 .25 1   

Nden .41 .30 .23 1  

Phon Prob .31 .31 .19 .24 1 

 

The next approach for testing the relationship between the variables was to consider a 

nonparametric ranked correlation measure. To do this, normality of the data was first tested. 

Using Shapiro-Wilk test for normality and quantile-quantile (Q-Q) plots the data was determined 

to be nonparametric, specifically neighborhood density and word frequency. To compute the 
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Shapiro-Wilks test for normality, the denominator D for the test statistic must first be calculated 

(Conover, 1998) 

𝐷 =∑(𝑋𝑖 − �̅�)
2

𝑛

𝑖=1

 

and order the sample from smallest to largest. 

𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛). 

�̅� is the sample mean for the data and 𝑋(𝑖) denotes the ith order statistic. The test statistic for this 

method is  

𝑇 =
1

𝐷
[∑𝑎𝑖(𝑋

(𝑛−𝑖+1) − 𝑋(𝑖))

𝑘

𝑖=1

]

2

. 

This test statistic is commonly referred to as the W test. 

 The results for the Shapiro Wilk’s tests for each variable based on the associated dataset 

are in table 3.6. The W scores displayed within the table describe how closely the data follows a 

normal distribution, with values closer to zero being less normally distributed. The significance 

for each statistic represents the hypothesis test that the variable follows a normal distribution. 

Based on this, age of acquisition was found to be normal for the second and third grade data 

subsets and all others were non-normal. Age of acquisition, level of concreteness, and 

phonotactic probability were generally close to being normal for each dataset but word frequency 

and neighborhood density differed considerably. This can be verified visually by Figures 3.4 – 

3.8 display the quantile-quantile (QQ) plots for each dataset for age of acquisition, neighborhood 
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density, level of concreteness, phonotactic probability, and word frequency, respectively. 

Graphically, the plots agree with what was found using the Shapiro Wilk test. 

 

Table 3.6. Shapiro-Wilk’s W 

 W Freq AoA Concrete Nden Phon Prob 

Full Model .22* .97* .91* .17* .94* 

First Grade .28* .98* .93* .23* .95* 

Second Grade .27* .98 .90* .20* .93* 

Third Grade .69* .99 .94* .09* .88* 

 

 

 

Figure 3.4. Quantile-Quantile Plot for Age of Acquisition  
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Figure 3.5. Quantile-Quantile Plot for Neighborhood Density 

 

 

Figure 3.6. Quantile-Quantile Plot for Concreteness 
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Figure 3.7. Quantile-Quantile Plot for Phonotactic Probability 

 

 

Figure 3.8. Quantile-Quantile Plot for Word Frequency 
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The Shapiro Wilk tested the data for univariate normality, so multivariate normal tests 

were then conducted to determine if the combined data were normal. Multiple tests were 

considered for thoroughness. There exist a variety of tests for determining if a dataset is 

multivariate normal using different techniques. One of the approaches that has been suggested 

for testing a multivariate normal distribution is to consider skewness and kurtosis. For general 

multivariate data, Mardia suggested statistics for these measurements (Mardia, 1970). For 

skewess the test statistic is  

𝑀𝑆 =
1

6𝑛
∑(𝑌𝑖

𝑇𝑌𝑗)
3

𝑛

𝑖,𝑗=1

 

 

 

and for kurtosis the test statistic is 

𝑀𝐾 = √
𝑛

8𝑝(𝑝 + 2)
{
1

𝑛
∑ ∥ 𝑌𝑖 ∥

4−
𝑝(𝑝 + 2)(𝑛 − 1)

𝑛 + 1

𝑛

𝑖=1

}. 

The hypothesis of multivariate normality is rejected if skewness MS is too large or if the 

absolute value of the centralized kurtosis |MK| is large and exceeds a critical value. These tests 

of simple and informative, providing specific information about the non-normality of the data. 

One of the drawbacks of this method is that it is not consistent for testing general alternatives 

and can have low power against many alternatives. 

The Doornik-Hansen test expands on Mardia’s test for skewness and kurtosis by 

transforming the multivariate normal to independent standard normal (Doornik and Hansen, 
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2008). To begin, let 𝑋′ = (𝑥1, … , 𝑥𝑛) be the 𝑝 × 𝑛 matrix of 𝑛 observations of p-dimensional 

vectors. The data has a sample mean 

�̅� = 𝑛−1∑𝑥𝑖

𝑛

𝑖=1

 

and the covariance matrix 

𝑆 = 𝑛−1∑(𝑥𝑖 − �̅�)(𝑥𝑖 − �̅�)′

𝑛

𝑖=1

. 

With 𝑉 = 𝑑𝑖𝑎𝑔(�̂�1
2, … , �̂�𝑝

2), the correlation matrix 𝐶 = 𝑉−
1

2𝑆𝑉−
1

2 can be formed and the 𝑝 × 𝑛 

matrix 𝑌′ = (𝑦1, … , 𝑦𝑛)  is defined for the transformed observations: 

𝑦𝑖 = 𝐻Λ
−
1
2𝐻′𝑉

−
1
2(𝑥𝑖 − �̅�). 

Λ = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑝) is the matrix of eigenvalues on the diagonal of C. The columns of H 

correspond to the eigenvectors such that 𝐻′𝐻 = 𝐼𝑝 and Λ = 𝐻′𝐶𝐻, as well as 𝑛−1𝑌′𝑌 = 𝐼𝑝. A 

multivariate normal can be transformed into independent standard 33ormal using population 

values of C and V. Sample values can be used to approximate this. 

Now the univariate skewness and kurtosis can be computed for each of the transformed vectors 

by defining 𝐵1
′ = (√𝑏11, … , √𝑏1𝑝) and 𝐵2

′ = (𝑏21, … , 𝑏2𝑝). The test statistic is 

𝐸𝑝
𝑎 =

𝑛𝐵1
′𝐵1
6

+
𝑛(𝐵2 − 3𝑙)′(𝐵2 − 3𝑙)

24
 ≅ 𝜒2(2𝑝) 

where 𝑙 is a p-vector of ones. The multivariate statistic is 

𝐸𝑝 = 𝑍1
′𝑍1 + 𝑍2

′𝑍2 ≅ 𝜒
2(2𝑝) 
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where 𝑍1
′ = (𝑧11, … , 𝑧1𝑝) and 𝑍2

′ = (𝑧21, … , 𝑧2𝑝). As with Mardia’s test, this test is informative 

about the normality of the multivariate distribution. 

The Henze-Zirkler test for multivariate normal is based on the empirical characteristic 

function and known for having good power and being a consistent test (Henze & Zirkler, 1990). 

This is based on a nonnegative function that uses characteristic functions to measure the distance 

between a hypothesized function and an empirical function. For the test to be consistent, the 

function will equal zero if the data is from a multivariate normal distribution. 

This nonnegative function is given by 

𝐷𝛽(𝑃, 𝑄) = ∫ |�̂�(𝑡) − �̂�(𝑡)|
2
𝜑𝛽(𝑡)𝑑𝑡

ℜ𝑝
 

where �̂�(𝑡) is the characteristic function of the proposed function and �̂�(𝑡) is the empirical 

characteristic function being compared with a weighting function 𝜑𝛽(𝑡) and the smoothing 

function 𝛽 =
1

√2
{
𝑛(2𝑝+1)

4
}
𝑝+4

 is a smoothing parameter. The test statistic for this is 

𝐷𝑛,𝛽 =
1

𝑛2
∑ exp(−

𝛽2

2
∥ 𝑌𝑗 − 𝑌𝑘 ∥

2) + (1 + 2𝛽2)−
𝑝
2

𝑛

𝑗,𝑘=1

−
2

𝑛
(1 + 𝛽2)−

𝑝
2∑exp(−

𝛽2 ∥ 𝑌𝑗 ∥
2

{2(1 + 𝛽2)}
) .

𝑛

𝑗=1

 

Normality is tested with 𝐻𝑍𝛽 = 𝑛(4𝐼𝐸 + 𝐷𝑛,𝛽𝐼𝐸𝐶) where 𝛽 ∈ 𝑅, 𝐼𝐸 , 𝑎𝑛𝑑 𝐼𝐸𝐶 are indicator 

functions with 𝐸 = {𝑆2 𝑖𝑠 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟} and in terms of 𝑌𝑖. If 𝐻𝑍𝛽 is too large, multivariate 

normality is rejected. One shortcoming of this test is that it is not informative about why the data 

fails the normality test. 



35 

Royston’s H test is an expansion of the Shapiro-Wilk W univariate normality test for 

multivariate data (Royston, 1992). To set this up, let 𝑊𝑗 denote the value of the jth variable in a 

p-variate distribution for Shapiro-Wilk W. Next, the test statistics is defined as 

𝑅𝑗 = {Φ
−1 [

1

2
Φ{−

((1 −𝑊𝑗)
𝜆
− 𝜇)

𝜎
}]}, 

with 𝜆, 𝜇, 𝑎𝑛𝑑 𝜎 being calculated from polynomial approximations and Φ(∙) is the standard 

normal cdf. For multivariate normal data, 𝐻 = 𝜉 ∑
𝑅𝑗

𝑝
 is approximately 𝜒

�̂�
2 distributed with 𝜉 =

𝑝

[1+(𝑝−1)𝑐̅]
 and 𝑐̅ is an estimate of the average correlation among 𝑅𝑗′𝑠. The 𝜒

�̂�
2 distribution is used 

to obtain the critical values for this test. The Royston’s H test for multivariate normality has 

good power against many alternative distributions. 

The energy test for multivariate normal is a goodness of fit test that has been shown to 

often outperform common tests such as Mardia’s test or Henze-Zirkler (Székely and Rizzo, 

2005). To begin, suppose that 𝑋1, … , 𝑋𝑛 be a random sample from a d-variate population with 

distribution F and 𝑥1, … , 𝑥𝑛 are the observed values of the random sample. The test statistic 

testing 𝐻0: 𝐹 = 𝐹0 𝑣𝑠 𝐻1: 𝐹 ≠ 𝐹0 is  

ℰ𝑛,𝑑 = 𝑛(
2

𝑛
∑𝐸 ∥ 𝑦𝑗 − 𝑍 ∥ −𝐸 ∥ 𝑋 − 𝑋

′ ∥ −
1

𝑛2
∑ ∥ 𝑥𝑗 − 𝑥𝑘 ∥

𝑛

𝑗,𝑘=1

𝑛

𝑗=1

), 

where X and X’ are independent and identically distributed with distribution 𝐹0. 

 Table 3.7 has the results for Mardia skewness and kurtosis, the Doornik-Hansen test, 

Henze-Zirkler test, Royston test, and energy E test for multivariate normality for each data 

subset. These were calculated in R using the mvn package (Korkmaz et al,). Each of the results is 
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significant, meaning that every subset was found to be non-normal by every chosen test. Each 

test rejected the null hypothesis that the data follows a normal distribution. 

 

Table 3.7. Multivariate Normality 

 Full Model First Grade Second 

Grade 

Third Grade 

Mardia 

Skewness 

9050.76* 2130.57* 1869.63* 2063.24* 

Mardia 

Kurtosis 

166.92* 62.00* 74.20* 65.53* 

Doornik-

Hansen 

8031.62* 1751.04* 1389.05* 907.94* 

Henze-Zirkler 9.55* 7.27* 6.31* 4.37* 

Royston 1.14* 231.68* 235.93* 191.65* 

Energy 475783835104* 11.87* 10.43* 2484.60* 

 

Because of the non-normal nature of the data, a nonparametric ranked correlation test 

might be appropriate (Conover, 1998). The two rank correlation tests considered for this are 

Spearman’s rho and Kendall’s Tau. For Spearman’s rho the data is ranked from 1 to n, with 1 

being the smallest data point and n being the largest, or 𝑅(𝑋𝑖) = 1 if 𝑋𝑖 is the smallest. The 

measurement of correlation is given by 

𝜌 =
∑ 𝑅(𝑋𝑖)𝑅(𝑌𝑖) − 𝑛 (

𝑛 + 1
2 )

2
𝑛
𝑖=1

(∑ 𝑅(𝑋𝑖)2 − 𝑛 (
𝑛 + 1
2 )

2
𝑛
𝑖=1 )

1
2

(∑ 𝑅(𝑌𝑖)2 − 𝑛 (
𝑛 + 1
2 )

2
𝑛
𝑖=1 )

1
2

. 

The results for Spearman’s rho ranked correlation test are found in Table 3.8, for the full dataset, 

first grade, second grade, and third grade. Both ranked correlation tests are included as part of 

base R (R Core Team, 2019). 
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Kendall’s tau compares two observations and is concordant if both higher values come 

from the same observation. Let 𝑁𝑐 be the number of concordant pairs of observations and 𝑁𝑑 be 

the number of discordant pairs when the two numbers of on observation differ in direction. There 

are (
𝑛
2
) =

𝑛(𝑛−1)

2
 total possible pairs which accounts for pairs 𝑁𝑐, 𝑁𝑑, and ties. The test statistic 

for Kendall’s tau is 

𝜏 =
𝑁𝑐 − 𝑁𝑑
𝑛(𝑛 − 1)/2

. 

If all observations are concordant 𝜏 = 1 and if all observations are discordant 𝜏 = −1. The 

results for Kendall’s tau ranked correlation test are found in Table 3.9 for the full dataset, first 

grade, second grade, and third grade. 

 

Table 3.8. Spearman’s Rho Ranked Correlation 

Full Model W Freq AoA Concrete Nden Phon Prob 

W Freq 1     

AoA -.62* 1    

Concrete .25* -.44* 1   

Nden .49* -.46* .28* 1  

Phon Prob -.10 .21* -.16* -.30* 1 

First Grade 

W Freq 1     

AoA -.52* 1    

Concrete .32* -.56* 1   

Nden .41* -.41* .36* 1  

Phon Prob -.03 .31* -.18* -.37* 1 

Second Grade 

W Freq 1     

AoA -.65* 1    

Concrete .16 -.44* 1   

Nden .54* -.44* .23* 1  

Phon Prob -.18* .14 -.18* -.30* 1 

Third Grade 

W Freq 1     

AoA -.54* 1    

Concrete -.03 .00 1   

Nden .39* -.42* .06 1  

Phon Prob .07 .21* -.07 -.25* 1 
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Both Spearman’s and Kendall’s ranked correlation tests agree with the previous tests. 

Every dataset has moderate correlation, mutual information, multicollinearity, and ranked 

correlation among the variables. While performing these tests, it was also determined that the 

data does not follow univariate normal distributions for the variables and is not normally 

distributed for the multivariate data. Based on the exploratory data analysis, some basic linear 

models may not be applicable. Advanced statistical learning and machine learning can be used to 

account for these data conditions. 

 

Table 3.9. Kendall’s Tau Ranked Correlation 

Full Model W Freq AoA Concrete Nden Phon Prob 

W Freq 1     

AoA -.45* 1    

Concrete .16* -.31* 1   

Nden .35* -.32* .19* 1  

Phon Prob -.05 .14* -.11* -.21* 1 

First Grade 

W Freq 1     

AoA -.37* 1    

Concrete .21* -.40* 1   

Nden .28* -.29* .26* 1  

Phon Prob -.02 .21* -.11* -.26* 1 

Second Grade 

W Freq 1     

AoA -.48* 1    

Concrete .10 -.31* 1   

Nden .39* -.31* .16* 1  

Phon Prob -.13* .09 -.11 -.20* 1 

Third Grade 

W Freq 1     

AoA -.40* 1    

Concrete -.02 .00 1   

NDen .27* -.30* .04 1  

Phon Prob .58 .14* -.05 -.16* 1 
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CHAPTER FOUR: 

STATISTICAL METHODS USED TO ANALYZE WORD LEARNING DATA 

Introduction 

Investigators have examined the effects of lexical characteristics, such as word 

frequency, age of acquisition (AoA), neighborhood density, and phonological phonotactic 

probability on word learning in children using both multivariate linear regression and stepwise 

regression (Gray, 2004; Morrison & Ellis, 2000; Stoel-Gammon, 2010; Storkel, 2009). For 

example, Morrison and Ellis (2000) used multivariate linear regression to examine factors that 

impacted children’s word naming speed and found that AoA, word length, word frequency, and 

orthographic neighborhood density significantly predicted naming speeds. 

 Multivariate linear regression and stepwise regression models are well-known by 

researchers and are easy to implement and interpret. However, they rely on certain assumptions, 

and if these assumptions are not satisfied results can be unreliable (Osborne & Waters, 2002). 

Multivariate linear regression models assume that there is a linear relationship between the 

dependent and independent variables. It assumes that independent variables do not interact with 

each other, that the data is normally distributed, and that the residuals are normally distributed 

with a mean of 0 and common variance of 𝜎 (homoscedasticity). When many of these 

assumptions are not met its applicability is limited and it may not account for ambiguous data 

such as unplanned data, latent variables, or correlation (Draper & Smith, 1998).  

 Stepwise regression is similar to multivariate linear regression; it is based on the same 

foundations and relies on the same assumptions. But stepwise regression differentiates itself 
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from multivariate linear regression by performing variable selection that is faster than other auto-

selection models. This procedure begins with an empty model and may add one variable at each 

step or begins with a full model and may delete one variable at each step. Variable selection will 

fine tune the model by adding or removing variables, until it has chosen the best predictor 

variables while excluding insignificant ones. This provides valuable information based on the 

order the variables are added or removed. However, the most accurate model may not be chosen 

because it does not consider every possible combination of variables because it uses greedy 

selection criteria. The variable selection process of stepwise regression requires a larger sample 

size and is sensitive to multicollinearity and redundant predictors.  

Resulting multiple and stepwise regression models are easy to interpret. Both provide a 

regression plane that represents a positive, negative, or neutral trend. Higher dimensional trends 

are difficult to visualize but individual trend lines can be viewed by holding all other variable 

constant, but again only the trend of the data is displayed. This can lead to a generalized 

description of the data, but finer details could be lost. For example, age of acquisition is related 

to word learning; words learned earlier are easier to use than those learned later (Kupperman et 

al., 2012), but this association may not be a one-to-one linear relationship. There could be 

periods of rapid lexical growth followed by prolonged periods of growth (Goldfield & Reznick, 

1990). Regression models would show this growth as a steady incline but would not differentiate 

between these accelerated or slowed periods of learning. Valuable information about when and 

how children learn words would be missed.  

Additionally, insignificant variables may remain in the models leading to inflated R2 

values compared to the model without the insignificant variables (Tamhane & Dunlop, 2000).  

Linear models offer simplicity at the cost of making numerous assumptions about the data that 
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may not be accurate. More advanced models using statistical learning and machine learning may 

offer stronger results while being more reliable based on the conditions of the data.  

When determining which statistical methods are appropriate for analysis, it is important 

to consider the data being analyzed. Exploratory data analysis was performed for the data to 

determine which models would best describe the data. The ILIAD data was found to be 

nonlinear, have moderate multicollinearity, skewed parameters, the variables were not univariate 

normal, the overall data was not multivariate normal, and had variable heteroscedasticity. Each 

of these conditions can cause difficulty with many models, so it is vital to choose a model that 

limits reliance on assumptions about these conditions. 

When selecting analytic techniques, it is important to consider the level of expertise 

needed to implement and interpret results. Model selection should balance choosing an 

appropriate model given the aspects of the ILIAD data with the ability to interpret results to 

provide meaningful outcomes relevant to educational researchers. There is no need to use 

complex models for fitting data when simpler, linear techniques are adequate.  

Models were selected to get progressively more complex while addressing conditions of 

the data. Linear shrinkage methods were selected to handle the multicollinearity of the data. 

While they rely on many of the same assumptions as simpler models, such as linearity and 

homoscedasticity, their ability to deal with multicollinearity is an intermediate step between v 

and those that are more complex. The data has moderate variable collinearity, including ranked 

correlations, and prior studies have indicated a connection between lexical characteristics, to 

justify the consideration of shrinkage methods (Hoover et al, 2010; Storkel, 2004; Vitevitch et al, 

2004). 
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Discrete variable selection methods, such as stepwise regression, retain a subset of the 

predictors and discard the rest. This subset selection can model the data with lower prediction 

error than the full model and may lead to a more interpretable model but because of its discrete 

nature, the variance is often higher than continuous variable selection methods. This is caused by 

the “all-or-nothing” approach of deleting variables for discrete variable selection so more 

continuous methods do not have such high variability. Shrinkage methods are more continuous 

and can decrease variability. The shrinkage methods included in our analysis are ridge regression 

(Hoerl & Kennard, 1970), least absolute shrinkage and selection operator (LASSO; Tibshirani, 

1996), principal components regression (PCR; Massy, 1965), and partial least squares (PLS; 

Wold, 1975). These models were chosen because of their ability to deal with multicollinearity, 

which the ILIAD dataset exhibits. 

Shrinkage methods of regression are penalized models with the aim to lessen variance. 

These methods tune the parameters to ordinary least squares, keeping the model interpretable. 

The tuning parameters for ridge regression and LASSO vary over a continuous range while PLS 

and PCS tune to the best subset in discrete steps. Ridge regression shrinks in all directions but 

shrinks low variance directions more than higher variance directions never eliminates variables 

(Friedman et al, 2001). LASSO can eliminate variables, as can PCR which leaves 𝑀 high 

variance directions alone and ignores the rest. PLS, like ridge regression, shrinks low-variance 

directions but can also inflate some higher variance directions. PLS can be viewed as a 

supervised alternative to PCR (James et al, 2013) that seeks directions with high variance and 

high correlation while PCR focuses only on high variance (Stone & Brooks, 1990). Ridge 

regression, PLS, and PCR often behave similarly with LASSO as an intermediate, but ridge 

regression is preferred for minimizing prediction error because it shrinks smoothly (Frank & 
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Friedman, 1993). Generally, shrinkage methods are considered weak for skewed data, but 

researchers have shown that ridge regression and LASSO can do well with skewed data and 

partial least squares is robust to skewed data (Cao et al, 2021; Shutes & Adcock, 2013; Cassel et 

al, 1999).  Elastic net regularization and variable selection is a method that often outperforms 

LASSO while enjoying similar sparsity of representation (Zou & Hastie, 2005). This is done by 

combining the 𝐿1 and 𝐿2 penalties from LASSO and ridge regression, respectively (Mol et al, 

2009). In general, the accuracy and bias for elastic nets falls between ridge regression and 

LASSO.  Empirically, ridge regression and LASSO regression performed equally for the ILIAD 

data, so it was unlikely that elastic nets would offer improvement to regressing the data. Because 

of this, elastic nets were not included in the comparison of shrinkage methods.   

Support vector regression (SVR) is a robust machine learning model that relies on very 

few assumptions. SVR is adaptable based on kernel selection, which must be determined for the 

data being considered. The selection of different kernels will determine the strength of this model. 

Support vector regression was chosen because of its power and flexibility, as well as its ability to 

work with nonlinear data. Support vector regression splits the data with a hyperplane to split the 

data and find the best fit using support vectors. The kernels that determine how the hyperplane is 

created give SVR the capability to handle nonlinear data. Choosing the correct kernel is very 

important and often requires some prior knowledge about the data or thorough exploratory data 

analysis. The choice of kernel and inclusion of a cost function can make support vector 

regressions difficult without some expertise. 

Neural networks were considered for fitting the data, but prior studies have shown that 

SVR can often match it (Were et al, 2015; Cortes & Vapnik, 1995). Neural networks can 

approximate real-valued functions (Song et al, 2017) require more data as their grown in 
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complexity, which would be necessary for the ILIAD data (Hagan et al, 1997). With the limited 

data within grade levels, this would lead to questionable results. With this consideration, neural 

networks were not included in the analysis for the ILIAD word learning data. Additionally, in 

order to create a robust, adaptable neural networks, researchers would need a level of expertise 

that limits its usefulness in the field of education, a priori knowledge and optimally tuned 

parameters would be required (Smola & Schölkopf, 2004), and the models are computationally 

complex (Šima & Orponen, 2003).  

Ensemble tree-based models were chosen because they are robust to most data and have 

strong predictive performance (Caruana & Niculescu-Mizil, 2006). We decided to focus on tree-

based methods such as regression trees, random forest, gradient boosting machines, and 

stochastic gradient boosting machines. Random forest and gradient boosting are considered to be 

very strong “out-of-the-box” or “off-the-shelf” models because of their predictive performance, 

relatively little hyperparameter tuning, and few assumptions (Boehmke & Greenwell, 2019). 

Regression trees were included because of the fundamental nature of tree building being a part of 

random forest. Random forests are a tree-based ensemble method for modeling that performs 

bagging, or bootstrapping the sample data, and then creates numerous non-pruned trees. These 

trees are creates with binary splits where a subset of the parameters is randomly chosen. This cut 

point is chosen to reduce RSS when splitting the feature space. The random subset of parameters 

inputs randomness which decorrelates the individual trees. Gradient boosting is an iterative tree 

building method that uses the results of a fitted model to update the next recursively until some 

threshold is met, usually a set number of iterations. Stochastic gradient boosting machines are the 

same as gradient boosting machines but where a random subset is chosen for each iteration to 

introduce randomness. 
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Model Descriptions 

Ridge Regression 

Ridge regression is a method for estimating the coefficients for multivariate linear 

regression using shrinkage. It does this by imposing a penalty on the size of the coefficients. 

Unlike stepwise regression, ridge regression shrinks parameter estimates towards 0 but never hits 

0, which would eliminate the variable from the model. Ridge regression does not perform feature 

selection, though the estimates may become negligibly small (Kuhn & Johnson, 2013). 

For multivariate linear regression, the estimates for 𝛽1, 𝛽2, … . , 𝛽𝑝 are found by 

minimizing  

𝑅𝑆𝑆 =∑(𝑦𝑖 − 𝛽𝑜 −∑𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

 

in the least squares fitting procedure. Similarly, ridge regression performs the same step with an 

included penalty. The coefficients are found by minimizing a penalized sum of squares, 

�̂�𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑚𝑖𝑛𝛽 {∑(𝑦𝑖 − 𝛽𝑜 −∑𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2
𝑛

𝑖=1

+ 𝜆∑𝛽𝑗
2

𝑝

𝑗=1

} 

where 𝜆 ≥ 0 is a complexity parameter that controls the amount of shrinkage (Friedman et al., 

2001). This is because 𝜆 ∑ 𝛽𝑗
2

𝑗 , the shrinkage penalty, is small when 𝛽1, 𝛽1, … . , 𝛽𝑝 approach 

zero. The shrinkage penalty is only applied to 𝛽1, 𝛽1, … . , 𝛽𝑝 to shrink the associated variables 

with respect to the dependent variable and not the intercept. It is assumed that the variables have 

been standardized, that is, centered to have a mean of 0. 

The complexity parameter 𝜆 controls the relative impact of the coefficients, shrinking the 

coefficients as 𝜆 increases. When 𝜆 = 0, the shrinkage penalty has no impact and it is ordinary 



46 

least squares. As 𝜆 → ∞ the coefficient estimates will approach 0, as the shrinkage penalty grows 

(James et al., 2013). Because this is reliant on the complexity parameter, there exists different 

coefficient estimates �̂�𝜆
𝑟𝑖𝑑𝑔𝑒

 for each value of 𝜆. It is important to find a good value for 𝜆 to 

produce the best mode but choosing an appropriate 𝜆 is one of the main challenges with using 

ridge regression. This is done for a bias and variance tradeoff. By inputting a small amount of 

bias as 𝜆 increases, a larger amount of variance can be removed. 

 When ridge regression was created, Hoerl and Kennard (1970) suggested using a graphic 

called the ridge trace. A ridge trace has the standardized betas on the vertical axis and 𝜆 levels on 

the horizontal axis. This allows the researcher to determine how the changes in 𝜆 effect the 

coefficients for each parameter. Similarly, the vertical axis of the ridge trace can be replaced 

with other metrics such as VIF. The smallest ridge constant where the coefficients have 

stabilized is preferred. By limiting the size of the ridge constant, the amount of bias introduced 

should be small. Because this approach is graphical in nature, the results will rely on the 

expertise of the researcher. The basic graphical approach also suffers from only showing bias 

directly and ignores the multidimensional nature of the problem (Friendly, 2013). 

 It is common for researcher to choose a value that is too large using the ridge trace, so 

Hoerl and Kennard proposed an analytic method for choosing 𝜆 (Hoerl and Kennard, 1976). This 

approach does not necessarily converge, so other methods may be preferable such as using 

singular value decomposition (Bair et al, 2006). Ridge regression can be a considered a “smooth 

case” of principal component regression 

The assumptions of ridge regression are similar to that of linear regression: linearity, 

constant variance, and independence. One of the main strengths of ridge regression is the 

tradeoff between variance and bias. When a regression model has many correlated variables, the 
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resulting coefficients may have high variance and be poorly selected. As one variable changes, 

others will likewise change leading to an unstable model that fluctuates significantly given small 

changes. With shrinkage methods, a large coefficient for one variable can be offset or cancelled 

out with a similarly small coefficient. The shrinkage of the model will also prevent overfitting. 

The increase in bias that is introduced is one of the shortcomings of ridge regression. 

Because of the shrinkage of the model, it may be hard to interpret the results when compared to 

simpler regression methods. This is not a problem for the ILIAD data, since the number of 

variables is not overly large. The model is completely reliant on the best complexity parameter 

being chosen. Ridge tracing can lead to an incorrect choice because it relies on expertise and 

analytic selection methods may rely on assumptions about the prior distribution. There are many 

papers claiming that ridge regression estimates are better than least squares estimates when 

judged using mean square error but these should be viewed with caution (Draper &Smith, 1998).  

Least Absolute Shrinkage and Selection Operator (LASSO) 

Generally, there are two reasons that ordinary least square estimates are inadequate, 

prediction accuracy and interpretation. OLS often has low bias but large variance, where 

shrinking or setting some of the coefficients to zero can lower variance but introduce a small 

amount of bias, therefore increasing the prediction accuracy. If there exists a large number of 

predictor variables, interpretation may be unfeasible unless a smaller subset is selected that 

accounts for most of the effects. This is exactly what the least absolute shrinkage and selection 

operator (LASSO) was introduced to do (Tibshirani, 1995). While ridge regression shrinks 

coefficients as well and is very stable, it is unable to set them to 0, which LASSO can. LASSO 

attempts to keep the strengths of both subset selection and ridge regression. 



48 

 Like ridge regression, LASSO solves an ordinary least squares with a penalty. The subtle 

difference is the penalty term the model is subjected to. LASSO is defined by 

�̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽∑(𝑦𝑖 − 𝛽0 −∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑|𝛽𝑗| ≤ 𝑡,

𝑝

𝑗=1

 

or equivalently 

�̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 {
1

2
∑(𝑦𝑖 − 𝛽0 −∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2
𝑁

𝑖=1

+ 𝜆∑|𝛽𝑗|

𝑝

𝑗=1

}. 

As with ridge regression, 𝛽0 is reparametrized by standardizing the predictors. With this 

formulation, if t is sufficiently small some coefficients will shrink to 0. This penalty will, 

increases (or decreases) the coefficient of the first variable only as long as its correlation with the 

residual is larger than that of the inactive predictors (Lockhart et al, 2014).” Subsequent steps 

will follow the same way iteratively. 

 LASSO has the same assumptions for modeling the data as ridge regression. Its ability to 

shrink the data and eliminate variables can create a simpler, more interpretable model. This 

shrinkage will  fitting. By limiting the number of parameters included in the model, they will be 

more biased than before shrinkage. If there is a group of correlated features, LASSO will select 

the ones to keep arbitrarily. The performance is generally slightly worse that ridge regression as 

a result of the simpler model. 

 There is no direct way to test the significance for the coefficients chosen by LASSO but 

“The lasso, on the other hand, increases (or decreases) the coefficient of the first variable only as 

long as its correlation with the residual is larger than that of the inactive predictors” (Lockhart et 
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al, 2014, p. 34). The major advantage of LASSO over ridge regression is that it can produce 

simpler, more interpretable models that only rely on a subset of the variables, but there is no 

universal “better model” between the two (James et al, 2013). 

Partial Least Squares (PLS) 

It is often the case with real world data like ILIAD, predictors can be correlated and 

contain similar predictive information. If there is a high amount of correlation among the 

predictor variables, then ordinary least squares for multivariate linear regression will become 

unstable (Kuhn & Johnson, 2013), meaning it may not be possible to find a unique set of 

regression coefficients. PLS can be viewed as a supervised method similar to principal 

component regression, which is unsupervised, that focuses on the directions with highest 

variance and high correlation, while PCR only focuses on high-variance directions.  Ordinary 

least squares may also be unable to find a unique set of regression coefficients if the number of 

predictors is higher than the number of observations. The underlying assumption of partial least 

squares is that data is generated by a process that is driven by a smaller number of latent factors 

(Wold, 1975).   

Partial least squares (PLS) is a supervised method of dimensional reduction, that is, it 

uses 𝑦 in addition to 𝑋 during creation. Partial least squares is not scale invariant, meaning it is 

assumed that 𝑥𝑗 is standardized with a mean of 0 and variance of 1 (Friedman et al, 2001). The 

first step of PLS is to identify a new set of features 𝑍1, … , 𝑍𝑀 that are linear combinations of the 

original features 𝑋1, … , 𝑋𝑝. A linear regression model is then fit with these 𝑀 new features. 

 The first step is to standardize the variables and compute �̂�1𝑗 = 〈𝑋𝑗, 𝑌〉 for each 𝑗, that is, 

to compute the first direction 𝑍1 by setting each �̂�1𝑗 equal to the coefficient from a linear 

regression of 𝑌 onto 𝑋𝑗. The coefficient will be proportional to the correlation between 𝑌 and 𝑋𝑗 
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which means the inputs have a weight associated with their univariate effect on 𝑌. Deriving the 

first partial least squares direction 𝑍1 = ∑ �̂�1𝑗𝑋𝑗𝑗  puts the highest weight on variables that are 

most strongly associated with the response.  

 Next each variable will be adjusted for 𝑍1 by regressing each variable onto it, getting 𝜃1 

and finding the residuals, representing the amount of information not explained by the first PLS 

direction. The second PLS direction 𝑍2 is computed using this orthogonalized data and 

completing the same steps as for 𝑍1. This process is continued until 𝑀 ≤ 𝑝 directions have been 

obtained, where 𝑀 is obtained using cross validation. If 𝑀 = 𝑝 directions, PLS would be the 

same as ordinary least squares, while 𝑀 < 𝑝 produces a regression that has been reduced. This 

process is described in table 4.1.  

Partial least squares is an extension of multivariate linear regression, so it has many of the 

same underlying assumptions but they are generally not as concrete. The method struggles with 

outliers and nonlinear data relationships. There is an assumption of some underlying system that 

the latent variables represent, but no particular distribution is assumed. This makes testing the 

significance of the resulting coefficients difficult without other steps such as bootstrapping. Even 

with bootstrapping, the results may not be reliable with a small sample size as it is likely to fit 

the noise instead of the true distribution.   

It is able to model multiple dependent and independent variables, called PLS1 for single 

dependent variable and PLS2 for multiple (Rosipal & Krämer, 2005). One of the major strengths 

of it as a shrinkage method is that it can handle multicollinearity in the independent variables 

very well and it is robust to noise and missing data. The original method has been expanded with 

various techniques to allow for modeling nonlinear relationships without the loss of 

interpretability (Rosipal, 2011). By focusing on latent variables with the highest impact, it often 
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leads to stronger predictions. The model is distribution free and can handle a variety of variables 

(categorical, ordinal, interval). 

 

Table 4.1. Partial Least Squares Algorithm (Friedman et al, 2001) 

1. Standardize each 𝑥𝑗 to have mean 0 and variance 1. Set �̂�(0) = �̅�𝟏 and 𝑥𝑗
(0) = 𝑥𝑗,  

𝑗 = 1,… , 𝑝. 

2. For 𝑚 = 1,… , 𝑝 

a. 𝑧𝑚 = ∑ �̂�𝑚𝑗𝑥𝑗
(𝑚−1)𝑝

𝑗=1 , where �̂�𝑚𝑗 = 〈𝑥𝑗
(𝑚−1), 𝑦〉. 

b. 𝜃𝑚 = 〈𝑧𝑚, 𝑦〉/〈𝑧𝑚, 𝑧𝑚〉. 

c. �̂�(𝑚) = �̂�(𝑚−1) + 𝜃𝑚𝑧𝑚. 

d. Orthogonalize each 𝑥𝑗
(𝑚−1) with respect to 𝑧𝑚: 𝑥𝑗

(𝑚)
= 𝑥𝑗

(𝑚−1) −

[〈𝑧𝑚, 𝑥𝑗
(𝑚−1)〉/〈𝑧𝑚, 𝑧𝑚〉]𝑧𝑚, 𝑗 = 1,… , 𝑝. 

3. Output the sequence of fitted vectors {�̂�(𝑚)}
1

𝑝
. Since the {𝑧ℓ}1

𝑚 are linear in the original 

𝑥𝑗, so is the �̂�(𝑚) = 𝑿�̂�𝑝𝑙𝑠(𝑚). These linear coefficients can be recovered from the 

sequence of PLS transformations. 

 

 Partial least squares works well on small datasets, though it makes it difficult to test the 

significance without knowledge of the underlying distribution. One of the biggest weaknesses for 

the method is the lack of model test statistics. It can be difficult to interpret the loadings of 

independent latent variables. 

 Partial least squares is a discrete least squares solution that can be a little bit unstable, 

causing it to have slightly higher prediction error compared to ridge regression (Frank & 

Friedman, 1993). PLS is and PCR both roughly track the ridge path but their discrete nature 

makes them more extreme (Friedman et al, 2001). Principal components regression leaves M 

high-variance directions alone and discards the rest while PLS focuses on high-variance 

directions with high correlation.  

Principal Component Regression (PCR) 

Principal component regression was originally formulated by Massy to bring together the 

ideas of regression and principal component analysis (Massy, 1965). He argued that by 
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transforming a set of variates into principal components, their relations with another variable 

may be explored more easily. If the independent variables are highly collinear or there are a large 

number of predictors, it may be beneficial to simplify the sample space to principal components. 

The dependent variable could then be regressed on the resulting principal components. It is an 

unsupervised machine learning model but can be altered to be semi-supervised or supervised 

(Bair et al, 2006). 

 In principal component regression (PCR), the first 𝑀 ≤ 𝑝 principal components 

𝑍1, … , 𝑍𝑀 are constructed and these are used as the predictors in a linear regression fit with 

ordinary least squares. The derived input columns 𝑧𝑚 = 𝑋𝑣𝑚 and then 𝑦 is regressed on 

𝑧1, … , 𝑧𝑀. This will form a sum of univariate regressions 

�̂�(𝑀)
𝑝𝑐𝑟 = �̅�𝟏 + ∑ 𝜃𝑚𝑧𝑚

𝑀

𝑚=1

, 

where 𝜃𝑚 = 〈𝑧𝑚, 𝑦〉/〈𝑧𝑚, 𝑧𝑚〉, since the 𝑧𝑚 are orthogonal. The solution to this can be expressed 

in terms of the coefficients of the original 𝑥𝑗 since the 𝑧𝑚 are linear combinations of them.  

�̂�𝑝𝑐𝑟(𝑀) = ∑ 𝜃𝑚𝑣𝑚

𝑀

𝑚=1

 

Principal components depend on scaling the inputs as with ridge regression. In fact, ridge 

regression and PCR are both scaling operations that operate based on principal components but 

where ridge regression shrinks the coefficients for principal components, PCR discards the 𝑝 −

𝑀 smallest components. 

 This approach assumes that the directions in which 𝑋1, … , 𝑋𝑝 show the most variation are 

the directions most associated with 𝑌. This is not always true but generally is correct enough to 

justify the assumption (James et al, 2013). If this assumption is true, then the least squares model 
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fitted to 𝑍1, … , 𝑍𝑀 will be better than the least squares model fitted to 𝑋1, … , 𝑋𝑝. This is because 

most of the data is contained in 𝑍1, … , 𝑍𝑀 and will prevent overfitting.  

 The model contains some of the assumptions that are the same as with regular 

multivariate linear regression. PCR assumes the data is linear, there is constant variance, there 

are no outliers, and independence. The model does not assume that the data is normally 

distributed. It is assumed that the latent features are independent and identically distributed (i.i.d) 

and that many large singular values do not exist (Agarwal et al, 2021). Because the ILIAD data 

does not contain a large number of variables, there will not be a large number of latent variables 

found. While shrinking the model, it will minimize overfitting and may make it easier to 

visualize by lowering high dimensional data. This can lead to a loss in interpretability and there 

will be some amount of information loss. 

Support Vector Regression (SVR) 

Support vector machines are a powerful, flexible model that was originally created to 

work for classification problems. The goal of support vector machines is to find a hyperplane to 

separate the classes by maximizing the margin between the groups. The points on these margins 

are known as support vectors. If the hyperplane can perfectly separate the classes, then an 

infinite number of such hyperplanes will exist. To choose the best hyperplane, using the maximal 

margin hyperplane is an option that is furthest from the training observations by computing the 

perpendicular distance of each training observation from a given hyperplane, known as the 

margin. 

 To adapt the support vector machines from classification, consider the linear regression 

model 

𝑓(𝑥) = 𝑥𝑇𝛽 + 𝛽0. 
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In order to handle nonlinear data, we estimate 𝛽 by minimizing 

𝐻(𝛽, 𝛽0) =∑𝑉(𝑦𝑖 − 𝑓(𝑥𝑖)) +
𝜆

2
‖𝛽‖2,

𝑁

𝑖=1

 

where 

𝑉𝜖(𝑟) = {
0                𝑖𝑓 |𝑟| < 𝜖,
|𝑟| − 𝜖,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Here 𝑟 is the distance from the output to the target, 𝜆 is the regularization parameter, and 𝜖 is the 

error. This method uses an “𝜖-insensitive” error measure that assumes under the conditions 

where 𝑦 is the result of a function with normal additive noise, it will be the best approximation 

for the regression (Vapnik, 2013). The algorithm can be modified so that 𝜖 does not need to be 

specified a priori by specifying an upper bound 𝜈 (Smola & Schölkopf, 1998). If the additive 

noise is from another distribution, another optimal approximation may be more appropriate to 

use. 

 One of the drawbacks of minimizing sum of square errors is that the parameter estimates 

can be influenced by just one observation which is far away from the general trend. A more 

robust error measure to use is a loss function that only depends on the density describing the 

noise (Huber, 1964). This takes the form 

𝑉𝐻 =

{
 

 
𝑟2

2
                𝑖𝑓 |𝑟| ≤ 𝑐,

𝑐|𝑟| −
𝑐2

2
        |𝑟| > 2.

 

This is a function similar to a Huber function where the contributions from observations are 

reduced from quadratic to linear. This is done using the absolute residual greater than some 

constant c that is chosen beforehand (Friedman et al, 2001). This causes fitting to be less 
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sensitive to outliers by not using squared residuals and samples with small residuals no effect on 

the regression equation (Kuhn & Johnson, 2013).  

 The function will have the form 

�̂� =∑(�̂�𝑖
∗ − �̂�𝑖)𝑥𝑖,

𝑁

𝑖=1

 

and 

𝑓(𝑥) =∑(�̂�𝑖
∗ − �̂�𝑖)

𝑁

𝑖=1

〈𝑥, 𝑥𝑖〉 + 𝛽0, 

if �̂� and �̂�0 are minimizers of 𝐻. Here �̂�𝑖
∗ 𝑎𝑛𝑑 �̂�𝑖 are positive values that solve the quadratic 

programming problem 

𝑚𝑖𝑛�̂�𝑖
∗,�̂�𝑖
𝜖∑(�̂�𝑖

∗ − �̂�𝑖) +
1

2
∑𝑦𝑖(�̂�𝑖

∗ − �̂�𝑖) +
1

2
∑ (�̂�𝑖

∗ − �̂�𝑖)(�̂�𝑖′
∗ − �̂�𝑖′)〈𝑥𝑖, 𝑥𝑖′〉

𝑁

𝑖,𝑖′=1

𝑁

𝑖=1

𝑁

𝑖=1

. 

This is subject to the constraints 

0 ≤ 𝛼𝑖, 𝛼𝑖
∗ ≤ 1/𝜆 

∑(�̂�𝑖
∗ − �̂�𝑖) = 0

𝑁

𝑖=1

 

𝛼𝑖𝛼𝑖
∗ = 0. 

 The solution values for (�̂�𝑖
∗ − �̂�𝑖) will generally only be nonzero for a subset (Bishop, 

2006). The associated data values are called the support vectors and the solution only depends on 

the inner products 〈𝑥𝑖 , 𝑥𝑖′〉. This is where the choice of kernels determines the outcome of the 

model. The kernel function 

𝐾(𝑥, 𝑥′) = 〈ℎ(𝑥), ℎ(𝑥′)〉 
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computes the inner products in the transformations ℎ(𝑥) and ℎ(𝑥′). By changing the convolution 

of the dot product, we can implement different networks (Cortes & Vapnik, 1995). Many kernels 

exist to choose from, such as linear, Gaussian, polynomial, radial and sigmoid. Table 4.2 

contains some commonly used kernels that may be used for support vectors but is not exhaustive. 

 

Table 4.2. Kernels (Smola & Schölkopf, 1998) 

Kernel Transformation 

Linear 〈𝑥, 𝑥′〉 

Polynomial 〈𝑥, 𝑥′〉𝑑 

Gaussian 
exp (

‖𝑥 − 𝑥′‖2

2𝜎2
) 

Sigmoid tanh(𝜅〈𝑥, 𝑥′〉 + Θ) 

Radial Basis Function 𝑓(𝑑(𝑥, 𝑥′)) 

Note. 𝑑 ∈ ℕ and 𝜎, 𝜅, Θ ∈ ℝ, 𝑑 is a metric on 𝜒 and 𝑓 is a 

function on ℝ. 
 

 When solving the quadrative programming problem, a loss function or cost function can 

give better results by being a regularization parameter, especially when the outputs are not 

clearly split. This regularization parameter C or 𝜆 is a common difficulty for many practitioners 

(Hastie et al, 2004). Many software packages will have default C values that are often used 

without any further consideration. Hastie, Rosset, Tibshirani, and Zhu (2004) were able to 

develop a method for testing each value of the cost function while maintaining computational 

complexity. The loss functions are part of the flexibility of support vector regression. Loss 

functions can be combined into a local loss function, and one may define it pointwise for each 

sampling point (Smola, 1996). 

 Support vector regression is a strong, flexible method for modeling data, especially when 

there are higher dimensional spaces. It excels when the number of dimensions is greater than the 
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sample size and when there are clear margins of separation in the outputs. It can, however, 

overfit the data is p is large and the hyperplane is sensitive to single observations that cannot be 

separated (outliers), which may lead to overfitting. 

Regression Trees 

 Regression trees are a part of classification and regression trees (CART) which partition 

or stratify the feature space into a set of simple regions and then fits a simple model in each one 

(Friedman et al, 2001). Trees are created that start with a split in one of the predictors called a 

node that branches to further nodes called internal nodes. At each internal node, another split 

occurs for one of the predictors that is based on which split of the feature space causes the 

greatest decrease in RSS. The branches end at a terminal node or leaves of the tree. Generally, 

the splits closer to the base of the tree are considered the most important.  

 The regions can have any shape, but for a simple case consider dividing the space into 

high-dimensional rectangles (boxes).  Boxes 𝑅1, 𝑅2, … , 𝑅𝑗  need to be found that minimize the 

residual sum of squares (RSS), 

∑∑(𝑦𝑖 − �̂�𝑅𝑗)
2

𝑖∈𝑅𝑗

𝐽

𝑗=1

 

where �̂�𝑅𝑗 is the mean response for the training observations within the jth box. Calculating 

every possible partition of the feature space is computationally infeasible so a greedy approach 

or recursive binary splitting is used. The greedy algorithm is a top down because it begins with a 

single region with all possible observations and then a split occurs. Each region is successively 

split until some minimum number of observations at each terminal node. The approach is called 

greedy because it looks for the best solution for the current step, with no consideration for future 

steps that may lead to a better overall tree. 
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 Binary recursive splitting selects the predictor 𝑋𝑗 and a cut point 𝑠 that splits the feature 

space into two regions, {𝑋|𝑋𝑗 < 𝑠} and {𝑋|𝑋𝑗 ≥ 𝑠}, that has the greatest decrease in RSS. For 

any j and s, two half-planes will take the form 

𝑅1(𝑗, 𝑠) = {𝑋|𝑋𝑗 < 𝑠} 𝑎𝑛𝑑 𝑅2(𝑗, 𝑠) = {𝑋|𝑋𝑗 ≥ 𝑠} 

where j and s are chosen to minimize 

∑ (𝑦𝑖 − �̂�𝑅1)
2
+ 

𝑖:𝑥𝑖𝜖𝑅1(𝑗,𝑠)

∑ (𝑦𝑖 − �̂�𝑅2)
2
.

𝑖:𝑥𝑖𝜖𝑅2(𝑗,𝑠)

 

For the training observations in 𝑅1(𝑗, 𝑠), �̂�𝑅1 is the mean response �̂�𝑅2 is the mean response for 

the training observations in 𝑅2(𝑗, 𝑠). This is performed iteratively for each region and continues 

until some ending criterion is met. 

 Generally, the resulting tree will be too large and complex which leads to overfitting. A 

smaller tree, with fewer splits may have lower variance and better interpretations with minimal 

input of bias. There are different approaches to accomplish this. Having a high threshold for 

minimizing RSS when splitting the feature space is one option. This is a shortsighted approach 

though because a relatively weak split may lead to a significantly better split afterwards. Instead 

pruning can be used to grow a large tree, 𝑇0, and then prune it back to some subtree with the 

lowest test error rate. 

 One of the options for doing this is cost complexity pruning, or weakest link pruning. 

This is done by considering a sequence of trees indexed by a nonnegative tuning parameter α, 

rather than every subtree. For each value of α there will be a subtree 𝑇 ⊂ 𝑇0 such that 

∑ ∑ (𝑦𝑖 − �̂�𝑅𝑚)
2
+  𝛼|𝑇|

𝑥𝑖∈𝑅𝑚

|𝑇|

𝑚=1

. 
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|T| is the number of terminal nodes in tree T, Rm is the subset of predictor space 

corresponding to the mth terminal node, and �̂�𝑅𝑚 is the predicted response associated with Rm. 

The tuning parameter 𝛼 controls the tradeoff between a subtree’s complexity and the fit of the 

data. As α increases, the there is a cost for having more terminal nodes on a tree. When 𝛼 =  0, 

the subtree of T is 𝑇0 and branches will be pruned in a predictable, nested way as 𝛼 increases 

from 0. The algorithm for building a regression tree can be found in Table 4.3. 

Regression trees are robust and flexible models that do not require standardization or 

normalization. It is easy to implement and does not need a large amount of data to create. It is 

not impacted by missing values and the final model is easy to visualize with useful graphical 

representations. The results are easy to explain and is often analogous to human decision making 

compared to other models. The model does not work well with variables that are highly 

correlated and does not create a model with smooth boundaries. The greedy approach used will 

cause the models to have higher variance but helps to minimize what can become a complex 

model with high training. Trees are unstable, meaning small changes to the input can have large 

effects on the structure of the tree. Due to the hierarchical nature for tree growth, errors near the 

base effect the rest of the tree. 

 

Table 4.3. Building a Regression Tree Algorithm (James et al, 2013) 

1. Use recursive binary splitting to grow a large tree on the training data, stopping only 

when each terminal node has fewer than some minimum number of observations. 

2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best 

subtrees, as a function of 𝛼. 

3. Use K-fold cross-validation to choose 𝛼. That is, divide the training observations into 

K folds. For each 𝑘 = 1,… , 𝐾: 

a. Repeat Steps 1 and 2 on all but the kth fold of the training data. 

b. Evaluate the mean squared prediction error on the data in the left-out kth fold, 

as a function of 𝛼. 

Average the results for each value of 𝛼, and pick 𝛼 to minimize the average 

error. 

4. Return the subtree from Step 2 that corresponds to the chosen value of 𝛼. 
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Random Forest 

 Random forest is a bagging tree method for building a regression model. Bagging, short 

for bootstrap aggregation, is a method to reduce variance in prediction errors. Bagging trees, or 

any high variance, low bias technique, improves predictive performance when compared to 

single trees. A random component is introduced when generating bootstrap samples. The general 

idea is to average many noisy but approximately unbiased models will lower variance and trees 

are a good choice because they can capture complex interactions in the data. If the trees are 

sufficiently deep, bias should be relatively low. When bagging, the trees are not completely 

independent because every parameter is used for each split and the bias will be the same as 

individual trees (Friedman et al, 2001). Reducing correlation among predictors can be done by 

adding randomness into the tree construction process (Kuhn & Johnson, 2013). 

 Random forest is a significant modification of bagging which decorrelates the trees 

created and then averages the outcomes. This is done through random selection of the input 

variables during the tree growing process. When growing a tree on the bootstrapped dataset, 

before each split a selection of 𝑚 ≤ 𝑝 of the variables are randomly selected as candidates. The 

general rule of thumb is 𝑚 = √𝑝 for classification and 𝑚 =
1

3
𝑝 for regression problems (Kuhn 

& Johnson, 2013). After some number of trees 𝐵 are grown {𝑇(𝑥; Θ𝑏)}1
𝐵 the predictor for the 

random forest regression is 

𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵
∑ 𝑇(𝑥; Θ𝑏)

𝐵

𝑏=1
. 

 

 

Tables 4.4 and 4.5 are two algorithms that represent how random forests are created. 

Random forests are very accurate for many datasets where no feature scaling is required. It can 

handle many observations efficiently and handle many variables without variable deletion. The 
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model decorrelates the data and has lower variance than single trees. Missing data is also not a 

problem for random forests. 

Random forests are often very accurate but are a hard to interpret black box approach, 

since they cannot be easily visualized like decision trees. Datasets with high amounts of noise 

can often be overfit. For data that includes categorical variables with different levels, the model 

will be biased in favor of attributes with more levels. While it may be an efficient model, it can 

be computationally intensive based on the size of the dataset and number of trees being created.  

 

 

 

Table 4.5. Random Forest Algorithm 2 (Friedman et al, 2001) 

1. For 𝑏 = 1 to 𝐵: 

a. Draw a bootstrap sample 𝑍∗ of size 𝑁 for the training data. 

b. Grow a random-forest tree 𝑇0 to the bootstrapped data, by recursively repeating 

the following steps for each terminal node of the tree, until the minimum node 

size 𝑛𝑚𝑖𝑛 is reached. 

i. Select 𝑚 variables at random from the 𝑝 variables. 

ii. Pick the best variable/split-point among the 𝑚. 

iii. Split the node into two daughter nodes. 

2. Output the ensemble of trees {𝑇𝑏}1
𝐵. 

3. To make a prediction at a new point 𝑥: 

Regression: 𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵
∑ 𝑇𝑏(𝑥)
𝐵
𝑏=1 . 

 

 

Table 4.4. Random Forest Algorithm 1 (Kuhn & Johnson, 2013) 

1. Select the number of models to build, m 

2. for 𝑖 = 1 to 𝑚 do 

a. Generate a bootstrap sample of the original data 

b. Train a tree model on this sample 

for each split do 

i. Randomly select 𝑘 (< 𝑃) of the original predictors 

ii. Select the best predictor among the 𝑘 predictors and partition the data 

c. end 

3. Use typical tree model stopping criteria to determine when a tree is complete (but do 

not prune) 
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Gradient Boosting Machines (GBM) 

Boosting models were originally created for classification problems and were later 

adapted for regression problems. Boosting assumes that there exists some base or weak learning 

algorithm which will create a weak classifier when given labeled training data. The goal is to 

take a weak learning algorithm and improve the performance. The assumption is that the base 

learner will produce a weak hypothesis that is at least better than a random guess. This is called 

the weak learning assumption that is the foundation of boosting (Schapire & Freund, 2013). 

These weak classifiers are combined, or boosted, to create an ensemble classifier. This ensemble 

classifier should have improved generalized error rate and can outperform stronger learners 

(Schapire, 1990). If the base learner is repeated on the same data, the results would not end up 

being interesting or different through iterations. This means the data being fed to the algorithm 

must be manipulated. 

 The initial success of the model, especially AdaBoost, led to many advances which 

eventually led to connecting the AdaBoost algorithm to statistical concepts such as loss 

functions, additive modeling, and logistic regression (Freidman et al, 2000). It was shown that 

boosting can be interpreted as a forward stepwise additive model that minimizes exponential loss 

and enabled the method to expand the approach to regression problems (Kuhn & Johnson, 2013).  

The boosting approach learns slowly to prevent overfitting, as can happen with large 

decision trees, and simple classifiers have been shown to perform better (Freund & Schapire, 

1996). The current tree is fit using the residuals from the previous model as the response instead 

of the outcome Y. The decision tree is included into the fitted function and the residuals are 

updated to repeat this process. Trees can be kept small to slow the learning process as well as the 

shrinkage parameter 𝜆 to limit overfitting (Friedman et al, 2000). While it is generally accepted 
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that a simpler classifier should limit generalized error rate, boosting methods can perform 

equally well as the combined classifier becomes more complex (Bartlett et all, 1998). 

 Gradient boosting machines is a highly adaptable algorithm for both classification and 

regression problems. The basic principles for the approach, seen in Table 4.7, is that given a loss 

function (e.g. squared error) and a weak learner (e.g. regression trees), the algorithm will find an 

additive model to minimize the loss function. A general guess, such as the mean, is selected to  

 begin and the gradient (e.g. residual) is calculated and then a model is created to fit the residuals 

while minimizing the loss function. This model is added to the previous model and the steps are 

repeated until a set number of iterations have occurred. Because GBM is tasked with finding the 

optimal fit for each stage, it can lead to overfitting, so a greedy algorithm is applied to limit it. 

The greedy algorithm may not find the global optimal model, but this can be countered with 

regularization, or shrinkage. 

 

 

 

 

 

Table 4.6. Boosting Algorithm (James et al, 2013) 

1. Set 𝑓(𝑥) = 0 and 𝑟𝑖 = 𝑦𝑖 for all 𝑖 in the training set. 

2. For 𝑏 = 1,2, … , 𝐵, repeat: 

a. Fit a tree 𝑓𝑏 with 𝑑 splits (𝑑 + 1 terminal nodes) to the training data (𝑋, 𝑟). 

b. Update 𝑓 by adding in a shrinken version of the new tree: 

𝑓(𝑥) ← 𝑓(𝑥) + 𝜆𝑓𝑏(𝑥). 
c. Update the residuals 

𝑟𝑖 ← 𝑟𝑖 − 𝜆𝑓
𝑏(𝑥𝑖). 

3. Output the boosted model, 

𝑓(𝑥) = ∑𝜆𝑓𝑏(𝑥)

𝐵

𝑏=1

. 
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Table 4.7. Simple Gradient Boosting for Regression Algorithm (Kuhn & Johnson, 2013) 

1. Select tree depth D, and number of iterations, K 

2. Compute the average response, �̅�, and use this as the initial predicted value for each 

sample 

3. For 𝑘 = 1 to K dp 

a. Compute the residual, the difference between the observed value and the 

current predicted value, for each sample 

b. Fit a regression tree of depth, D, using the residuals as the response 

c. Predict each sample using the regression tree fit in the previous step 

d. Update predicted value of each sample by adding the previous iteration’s 

predicted value to the predicted value generated in the previous step 

4. End 

 

  

Steepest descent is used in gradient boosting machines. This chooses ℎ𝑚 = −𝜌𝑚𝑔𝑚 where 

𝜌𝑚 is a scalar and 𝑔𝑚 ∈ ℝ𝑁. This is the gradient of 𝐿(𝑓) evaluated at 𝑓 = 𝑓𝑚−1 with the 

components of the gradient 

𝑔𝑖𝑚 = − [
𝜕𝐿(𝑦𝑖, 𝑓(𝑥𝑖))

𝜕𝑓(𝑥𝑖)
]
𝑓(𝑥𝑖)=𝑓𝑚−1(𝑥𝑖)

. 

 

This is used to find the step length 𝜌𝑚 

𝜌𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜌𝐿(𝑓𝑚−1 − 𝜌𝑔𝑚) 

 

and the solution is updated 

𝑓𝑚 = 𝑓𝑚−1 − 𝜌𝑚𝑔𝑚. 

The negative gradient −𝑔𝑚 defines the steepest descent, called the line search along the direction 

(Friedman, 2001). This is repeated for each iteration. This is a greedy method because −𝑔𝑚 is 

the local direction of steepest descent. Given some given loss function 𝐿(𝑦, 𝑓) and a base learner 

ℎ𝑚, the solution may be difficult to determine. To deal with this, we choose a new function that 

is the most parallel to the gradient with the observed data. This allows for the replacement of a 
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potential hard optimization problem with a classic least squares minimization (Natekin & Knoll, 

2013; Friedman, 2002). Table 4.8 contains the algorithm for gradient boosting. Some common 

gradients can be found in Tables 4.9 and 4.10. To specify an arbitrary loss function, a function to 

calculate the corresponding negative gradient is required.  

 

Table 4.8. Gradient Boosting Algorithm (Friedman et al, 2001) 

1. Initialize 𝑓0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖, 𝛾)
𝑁
𝑖=1 . 

2. For 𝑚 = 1 to 𝑀: 

a. For 𝑖 = 1,2, … , 𝑁 compute 

𝑟𝑖𝑚 = −[
𝜕𝐿(𝑦𝑖, 𝑓(𝑥𝑖))

𝜕𝑓(𝑥𝑖)
]
𝑓=𝑓𝑚−1

. 

b. Fit a regression tree to the targets 𝑟𝑖𝑚 giving terminal regions 𝑅𝑗𝑚, 𝑗 =

1,2, … , 𝐽𝑚. 

c. For 𝑗 = 1,2, … , 𝐽𝑚 compute 

𝛾𝑗𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖) + 𝛾)

𝑥𝑖∈𝑅𝑗𝑚

. 

d. Update 𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + ∑ 𝛾𝑗𝑚
𝐽𝑚
𝑗=1 𝐼(𝑥 ∈ 𝑅𝑗𝑚). 

3. Output 𝑓(𝑥) = 𝑓𝑀(𝑥). 
 

Gradient boosting machines are a powerful method for solving real world problems and 

can effectively work with complex non-linear data. They are flexible and can be adapted to many 

situations based on the chosen loss function and base learner. With this robust capability, the 

method is generally memory intensive because the model depends on the number of boosting 

iterations used to learn and build the model. Finding the optimal shrinkage parameter and 

working with a large number of parameters can make the model computationally difficult. This 

leads to a slower evaluation speed making online learning difficult without tradeoffs in accuracy. 

Because of the sequential nature of boosting, parallelization is not possible other than evaluation 

of already learned models. The computational difficulties are the tradeoff for such a powerful 

model that is highly applicable.  

 



66 

Table 4.9. Gradients (Natekin & Knoll, 2013) 

1. Continuous response, 𝑦 ∈ ℝ: 
a. Gaussian 𝐿2 loss function 

b. Laplace 𝐿1 loss function 

c. Huber loss function, 𝛿 specified 

d. Quantile loss function, 𝛼 specified 

2. Categorical response 𝑦 ∈ {0,1}: 
a. Binomial loss function 

b. AdaBoost loss function 

3. Other families of response variable: 

a. Loss functions for survival models 

b. Loss functions counts data 

c. Custom loss functions 

 

 

Table 4.10. Loss Functions 

Setting Loss Function 𝜕𝐿(𝑦𝑖, 𝑓(𝑥𝑖))/𝜕𝑓(𝑥𝑖) 

Regression 1

2
[𝑦𝑖 − 𝑓(𝑥𝑖)]

2 
𝑦𝑖 − 𝑓(𝑥𝑖) 

Regression |𝑦𝑖 − 𝑓(𝑥𝑖)| 𝑠𝑖𝑔𝑛[𝑦𝑖 − 𝑓(𝑥𝑖)] 
Regression Huber 𝑦𝑖 − 𝑓(𝑥𝑖) 𝑓𝑜𝑟 |𝑦𝑖 − 𝑓(𝑥𝑖)| ≤ 𝛿𝑚 

𝛿𝑚𝑠𝑖𝑔𝑛[𝑦𝑖 − 𝑓(𝑥𝑖)] 𝑓𝑜𝑟 |𝑦𝑖 − 𝑓(𝑥𝑖)| > 𝛿𝑚 
𝑤ℎ𝑒𝑟𝑒 𝛿𝑚 = 𝛼𝑡ℎ − 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒{|𝑦𝑖 − 𝑓(𝑥𝑖)|} 

Classification Deviance kth component: 𝐼(𝑦𝑖 = 𝒢𝑘) − 𝑝𝑘(𝑥𝑖) 
 

Stochastic Gradient Boosting Machines 

Stochastic gradient boosting is a modification of gradient boosting that incorporates 

randomness as part of the procedure. During each iteration a subset is drawn at random without 

replacement instead of using the entire dataset. This subset is used to fit the base learner and 

computes the current iteration. As before, {𝑦𝑖, 𝑥𝑖}1
𝑁 represents the entire training data sample and 

we will consider a random permutation of the integers {1, … ,𝑁} written as {𝜋(𝑖)}1
𝑁. Based on 

this, there will be a subsample of size �̃� < 𝑁 is written as {𝑦𝜋(𝑖), 𝑥𝜋(𝑖)}1
�̃�

. If �̃� = 𝑁, then no 

randomness will be included, and it will be the same as gradient boosting. As the fraction of the 

data that is included decreases, the randomness will increase, but limits the amount of available 

data to the learner at each iteration. This will increase the variance associated with the estimates 
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by base learners. Including the randomly selected subsets in the gradient boosting algorithm, 

Table 4.11 is the algorithm adapted for stochastic gradient boosting. 

 

Table 4.11. Stochastic Gradient Boosting Algorithm (Friedman, 2002) 

1. 𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖, 𝛾)
𝑁
𝑖=1  

2. For 𝑚 = 1 to M do: 

a. {𝜋(𝑖)}1
𝑁 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚{𝑖}1

𝑁 

b. �̃�𝜋(𝑖)𝑚 == −[
𝜕𝐿(𝑦𝜋(𝑖),𝑓(𝑥𝜋(𝑖)))

𝜕𝑓(𝑥𝜋(𝑖))
]
𝑓(𝑥)=𝑓𝑚−1(𝑥)

, 𝑖 = 1, �̃� 

c. {𝑅𝑙𝑚}1
𝐿 = 𝐿 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑛𝑜𝑑𝑒 𝑡𝑟𝑒𝑒 ({�̃�𝜋(𝑖)𝑚, 𝑥𝜋(𝑖)}1

�̃�
) 

d. 𝛾𝑙𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝜋(𝑖), 𝑓𝑚−1(𝑥𝜋(𝑖)) + 𝛾)𝑥𝜋(𝑖)∈𝑅𝑙𝑚
 

e. 𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + 𝜐 ∙ 𝛾𝑙𝑚1(𝑥 ∈ 𝑅𝑙𝑚) 
3. endFor 

 

Choosing a Model 

 Various models have been introduced here and it is important to consider which model 

may be the best choice. To do this, a comparison of assumptions, strengths, and weaknesses 

should be considered. The ILIAD data has moderate multicollinearity, which the shrinkage 

methods deal well with. Of the shrinkage methods, Ridge regression does not perform variable 

deletion. The data contains a limited number of lexical characteristics, so variable deletion likely 

won’t have a large impact. All of the shrinkage methods have many of the assumptions of linear 

regressions, which we have demonstrated the ILIAD data does not follow. Because of this, the 

shrinkage methods are unlikely to perform as well as the other advanced methods. 

 Support vector regressions are very adaptable based on the kernel selection. The kernel 

chosen will determine the assumptions for the model and some prior expertise may help with its 

selection. Support vectors assume the data are independent and identically distributed, which not 

true for the ILIAD data so may impact the final model. Regression trees are similarly adaptable 

but the greedy nature may not lead to the best model based on the multicollinearity of the data. 
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 Random forests, gradient boosting machines, and stochastic gradient boosting machines 

rely of very few assumptions. Like support vectors, gradient boosting is reliant on the choice of 

gradient or descent method. Some expertise aids in this decision and the choice of gradient can 

input some assumptions about the data. Random forest has no formal distributional assumption 

and decorrelates the data, make it a very strong model. Stochastic gradient boosting machines 

takes the strengths of gradient boosting and augments them by including randomness. This 

randomness decorrelates the variables, much like random forest. While certain models may be 

significantly stronger based on the underlying theory, the most important factor in choosing a 

model is what it demonstrates for researchers. Sometimes the best model is not the most accurate 

model, if no understanding can be gained from the results. 

 In this chapter, we have contributed to word learning research by introducing alternative 

modeling techniques to analyze educational data. This survey of models included a brief 

overview of each method to explain the theory and limitations, as well comparing their strengths 

for word learning research. The comparisons were made using the limitations found exploring 

the ILIAD data as an example dataset. 
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CHAPTER FIVE: 

CHOOSING MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS): 

A MODEL COMPARISON 

Multivariate Adaptive Regression Splines (MARS) 

In the previous chapter we introduced advanced statistical learning and machine learning 

models that are more robust and can improve the understanding of the ILIAD word learning data. 

Based on the ILIAD data and its underlying conditions (multicollinearity, skew, 

heteroscedasticity, non-normal parameters), another method may be a better alternative by 

balancing being robust and adaptable while also being interpretable and easier to implement.  

Multivariate adaptive regression splines (MARS) does not rely on the same assumptions 

as linear models like multiple and stepwise regressions, such as a linear relationship or 

homoscedasticity, and provides nuanced information about the relationships modeled. MARS is 

a general additive model (GAM) that was first introduced by Friedman (1991). It uses recursive 

partitioning of the data with hinges or splines, motivated by classification and regression trees 

(CART), that can capture higher order interactions with more power and flexibility (Friedman & 

Roosen, 1995). MARS handles nonlinearity well, whereas multivariate linear regression, 

stepwise regressions, and shrinkage methods assume linearity. Through adaptive and automatic 

variable selection and iterative partitioning, MARS does particularly well when dealing with 

high dimensional data by partitioning the data into smaller subsections. This can be viewed as a 

geometrical procedure or a generalization of stepwise linear regression. It does this by additively 

using piecewise linear basis functions. MARS was considered for modelling the ILIAD data 
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because it was believed the hinged data would more accurately describe word learning than 

linear models and its adaptable nature for the complexities of data from young children. 

The recursive partitioning for regression model is made up of {𝑅𝑚}1
𝑀 disjoint subregions 

representing a partition of D, the domain of the independent variables. The goal is to split the 

data into subregions and estimate the parameters associated with the separate functions for each 

individual subregion. The starting region is the entire domain D, which is then recursively split 

among subregions. These subregions allow us to more precisely measure word learning by 

determining thresholds where significant changes occur, such as the age of acquisition where 

word learning begins to decrease for students in first grade. MARS is an expansion of basis 

functions and the associated coefficients {𝑎𝑚}1
𝑀. These basis functions, 𝐵𝑚, take the form 

𝐵𝑚(𝑥) = 𝐼[𝑥 ∈ 𝑅𝑚], 

where the indicator function 𝐼 has a value of one if the argument is true and zero otherwise. This 

is a generalization of stepwise regression where the step function takes the form 

𝑓(𝑥) = ∑ 𝑎𝑚

𝑀

𝑚=1

𝐵𝑚(𝑥). 

MARS differentiates itself from stepwise regression at this stage and adapts to 

nonparametric data by dividing subregions using hinges. These subregions are disjoint, so only 

one basis function may be nonzero for any point 𝑥. Subregions are optimally split into two linear 

functions called reflected pairs, 𝑅𝑙 and 𝑅𝑟. These piecewise linear basis functions are split at the 

hinge 𝑡 and take the form (𝑥 − 𝑡)+ and (𝑡 − 𝑥)+, where + is the positive part.  

(𝑥 − 𝑡)+ = {
𝑥 − 𝑡,                 𝑖𝑓 𝑥 > 𝑡
0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  and (𝑡 − 𝑥)+ = {
𝑡 − 𝑥,                 𝑖𝑓 𝑥 < 𝑡
0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 
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Optimal hinge placement is achieved by minimizing root mean square error (RMSE), where 

𝑅𝑀𝑆𝐸(𝜃) = √𝐸(𝜃 − 𝜃)
2
, 

where 𝜃 represents the parameter of interest and 𝜃 is the associated estimate. A collection of the 

basis functions of the form 

𝐶 = {(𝑋𝑗 − 𝑡)+, (𝑡 − 𝑋𝑗)+
} where 𝑡 ∈ {𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑁𝑗} and 𝑗 = 1,2, … 

is created with the input vector of interest 𝑋𝑗 and a given spline t that cuts the data at a given 

observation 𝑥𝑖𝑗. A spline or knot is created at each point 𝑥𝑖𝑗 and reflected pairs are formed at 

each observed value for that input to build the collection of possible basis functions. Functions 

from the set 𝐶 and their products will be used instead of the original inputs where each input can 

appear at most in one product. With this in mind, the model has the form 

𝑓(𝑋) = 𝛽0 + ∑ 𝛽𝑚ℎ𝑚(𝑋),

𝑀

𝑚=1

 

where ℎ𝑚(𝑋) is a function in 𝐶, or a product of such functions and 𝑋 is the data made up of the 

input vectors 𝑋𝑗. 

With the choice of ℎ𝑚(𝑋), the coefficients 𝛽𝑚 can be estimated by minimizing the 

residual sum-of-squares of linear regressions in each candidate subregion. The product of a 

function ℎ𝑚 and one of the reflected pairs in 𝐶 is considered for a new basis function pair at each 

step. This term can be added to the model ℳ and the term that produces the largest decrease in 

training error is chosen. The algorithmic steps for splitting the data and choosing the coefficients 

for each subregion are repeated until a predetermined maximum number of terms in the model 

ℳ𝑚𝑎𝑥. 
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To limit overfitting, backwards deletion is a procedure to remove the term that causes the 

smallest increase in residual squared error. This is done to produce an estimated best model 𝑓𝜆 of 

each number of terms 𝜆, contingent on the total number of variables being considered for the 

model. Cross validation can be used to determine the optimal 𝜆 and saves computational time. 

The MARS procedure uses generalized cross validation defined as 

𝐺𝐶𝑉(𝜆) =
∑ (𝑦𝑖 − 𝑓𝜆(𝑥𝑖))

2
𝑁
𝑖=1

(1 − 𝑀(𝜆)/𝑁)2
 

where 𝑀(𝜆) is the effective number of parameters in the model. This accounts for both the 

number of parameters used in selecting the optimal positions of knots and the number of terms in 

the model (Hastie, Tibshirani, & Friedman, 2001).  

The data being analyzed is split between first, second, and third graders. A categorical 

variable for grade was included to represent these groups. For categorical variables, another set 

of basis functions need to be used. As with the original formulation, a set of basis functions are 

derived by taking the tensor product over all of the variables of the univariate basis functions  

𝐼(𝑥𝑗 ∈ 𝐴ℓ𝑗),    1 ≤ 𝑗 ≤ 𝑛.  

An adaptive strategy must be applied that would consider all basis functions in the 

complete tensor product as candidate variables similarly to ordinal subsets, but the truncated 

power splines will be replaced by indicator functions over the categorical variable subsets 

(Friedman, 1991) 

[+(𝑥𝑣 − 𝑡)]+
𝑞 ←  𝐼(𝑥𝑣 ∈ 𝐴)

[−(𝑥𝑣 − 𝑡)]+
𝑞 ← 𝐼(𝑥𝑣 ∉ 𝐴)

 

One of the major strengths of MARS is that it does not begin with any distributional 

assumptions. It is a non-parametric regression model, so it does not rely on data from a normal 

distribution. It handles correlated variables relatively well and works well with a large number of 
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predictor variables. The iterative nature of MARS allows it to handle both linear and non-linear 

data. The additive nature of the model allows the effect of each variable 𝑋𝑗 on 𝑌 can be examined 

while keeping all other variables fixed (James et al., 2013). Because of the nature of its hinges, 

MARS is robust to outliers because it can place a hinge at the outlier to limit the impact. When 

compared to other advanced modeling techniques, MARS is a fast, efficient algorithm given its 

complexity and can automatically detect interactions between variables.  

While MARS has many strengths, some limitations do exist. It is slower to train than 

some simpler models because generalized linear models can be computationally expensive with 

high dimensional inputs (Murphy, 2012). While it handles correlated predictors well, this can 

make model interpretation difficult. If two variables are highly correlated, the first one 

encountered by the model will be chosen using a greedy method (Boehmke & Greenwell, 2019). 

MARS can be sensitive to multicollinearity, but tests have shown that it performs well when 

compared to many other statistical methods (Dormann et al., 2013). Overfitting can be a 

problem, though a backward algorithm can limit this. It does not do well with missing data. 

Another issue that can be a shortcoming is the selection of candidate basis functions. The default 

basis functions for the model are linear, while others are available (e.g., polynomial basis 

functions), they must be manually selected by the researcher. Basis functions and knot locations 

can be computed automatically with advanced methods, such as an empirical Bayes method 

(Sakamoto, 2007), and the determining knot locations can be optimized with hill climbing 

methods (HCM, Ju et al, 2021). 

MARS has been used to examine academic achievement (Kilc Depren, 2018; Martis et 

al., 2015) and to determine factors that impact early childhood development (Kolyshkina et al., 

2013). It has not been applied to word learning and word recognition research. The purpose of 
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this study is to examine the relations between different lexical characteristics and word learning 

using MARS. We compare the results produced by MARS with multivariate linear regression 

and stepwise regression to demonstrate the added benefit of using a more adaptable statistical 

model like MARS. 

The steps for creating a regression using multivariate adaptive regression splines are split 

into three algorithms. The first, found in Table 5.1, is a recursive partitioning algorithm that sets 

up how the data will be partitioned and the optimal split position is made. The forward stepwise 

algorithm, in Table 5.2, shows how the regression model is made. After the initial regression, a 

backward algorithm, found in Table 5.3, removes partitions and fills the gaps in order to create a 

simpler model and limit overfitting. For the algorithm in Table 5.1, the 𝐿𝑂𝐹(𝑔) is a procedure 

that computes the lack-of-fit of a function 𝑔(𝑥) to the data, for example minimizing residual sum 

of squares in linear piecewise regression. The following algorithm outlines the recursive 

partitioning strategy. The algorithm starts with the first line setting the initial region to the entire 

domain. The next step is a loop that iterates a splitting procedure with 𝑀𝑚𝑎𝑥 as the final number 

of basis functions. The next three loops perform an optimization procedure to select the basis 

function 𝐵𝑚∗, a predictor variable 𝑥𝑣∗ , and a split point 𝑡∗. The lack-of-fit is minimized for the 

model with 𝐵𝑚∗ replaced by its product with the step function 𝐻[+(𝑥𝑣∗ − 𝑡
∗)] and an additional 

term that is the product of 𝐵𝑚∗  and the reflected step function 𝐻[−(𝑥𝑣∗ − 𝑡
∗)]. This means it 

splits the corresponding region 𝑅𝑚∗  on variable 𝑣∗ at split point 𝑡∗. The minimization of 𝐿𝑂𝐹(𝑔) 

is a linear regression of the response on the current basis function set with respect to the 

expansion coefficients. 

 

 



75 

Table 5.1. Recursive Partitioning Algorithm (Friedman, 1991) 

𝐵1(𝑥) ← 1 
 𝐹𝑜𝑟 𝑀 = 2 𝑡𝑜 𝑀𝑚𝑎𝑥  𝑑𝑜: 𝑙𝑜𝑓

∗ ← ∞ 
   𝐹𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 − 1 𝑑𝑜: 
     𝐹𝑜𝑟 𝑣 = 1 𝑡𝑜 𝑛 𝑑𝑜: 

       𝐹𝑜𝑟 𝑡 ∈ {𝑥𝑣𝑗|𝐵𝑚(𝑥𝑗) > 0} 

        𝑔 ← ∑ 𝑎𝑖𝐵𝑖(𝑥) + 𝑎𝑚𝐵𝑚(𝑥)𝐻[+(𝑥𝑣 − 𝑡)] + 𝑎𝑚𝐵𝑚(𝑥)𝐻[−(𝑥𝑣 − 𝑡)]𝑖≠𝑚  
        𝑙𝑜𝑓 ← 𝑚𝑖𝑛𝑎1,…,𝑎𝑀  𝐿𝑂𝐹(𝑔) 

        𝑖𝑓 𝑙𝑜𝑓 < 𝑙𝑜𝑓∗, 𝑡ℎ𝑒𝑛 𝑙𝑜𝑓∗ ← 𝑙𝑜𝑓;𝑚∗ ← 𝑚; 𝑣∗ ← 𝑣; 𝑡∗ ← 𝑡 𝑒𝑛𝑑 𝑖𝑓 
      𝑒𝑛𝑑 𝑓𝑜𝑟 
   𝑒𝑛𝑑 𝑓𝑜𝑟 
   𝐵𝑀(𝑥) ← 𝐵𝑚∗(𝑥)𝐻[−(𝑥𝑣∗ − 𝑡

∗)] 
   𝐵𝑚∗(𝑥) ← 𝐵𝑚∗(𝑥)𝐻[+(𝑥𝑣∗ − 𝑡

∗)] 
 𝑒𝑛𝑑 𝑓𝑜𝑟 
 𝑒𝑛𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

 

 

Table 5.2. MARS Forward Stepwise Algorithm (Friendman, 1991) 

𝐵1(𝑥) ← 1;𝑀 ← 2 
 𝐿𝑜𝑜𝑝 𝑢𝑛𝑡𝑖𝑙 𝑀 > 𝑀𝑚𝑎𝑥: 𝑙𝑜𝑓

∗ ← ∞ 
   𝐹𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 − 1 𝑑𝑜: 
     𝐹𝑜𝑟 𝑣 ∉ {𝑣(𝑘,𝑚)|1 ≤ 𝑘 ≤ 𝐾𝑚} 

       𝐹𝑜𝑟 𝑡 ∈ {𝑥𝑣𝑗|𝐵𝑚(𝑥𝑗) > 0} 

         𝑔 ← ∑ 𝑎𝑖𝐵𝑖(𝑥) + 𝑎𝑀𝐵𝑚(𝑥)[+(𝑥𝑣 − 𝑡)]+ + 𝑎𝑀+1𝐵𝑚(𝑥)[−(𝑥𝑣 − 𝑡)]+
𝑀−1
𝑖=1  

         𝑙𝑜𝑓 ← 𝑚𝑖𝑛𝑎1,…,𝑎𝑀+1𝐿𝑂𝐹(𝑔) 

         𝑖𝑓 𝑙𝑜𝑓 < 𝑙𝑜𝑓∗, 𝑡ℎ𝑒𝑛 𝑙𝑜𝑓∗ ← 𝑙𝑜𝑓;𝑚∗ ← 𝑚; 𝑣∗ ← 𝑣; 𝑡∗ ← 𝑡 𝑒𝑛𝑑 𝑖𝑓 
       𝑒𝑛𝑑 𝑓𝑜𝑟 
     𝑒𝑛𝑑 𝑓𝑜𝑟 
   𝑒𝑛𝑑 𝑓𝑜𝑟 
 𝐵𝑀(𝑥) ← 𝐵𝑚∗(𝑥)[+(𝑥𝑣∗ − 𝑡

∗)]+ 
 𝐵𝑀+1(𝑥) ← 𝐵𝑚∗(𝑥)[−(𝑥𝑣∗ − 𝑡

∗)]+ 
 𝑀 ← 𝑀 + 2 
 𝑒𝑛𝑑 𝑙𝑜𝑜𝑝 
 𝑒𝑛𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

 

After the forward stepwise algorithm found in Table 5.2 is initiated, a backward stepwise 

algorithm is necessary. This is to limit overfitting in the model which would likely occur if only 

forward stepwise was completed. This backward stepwise algorithm can be found in Table 5.3. 
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Table 5.3. MARS Backwards Stepwise Algorithm (Friedman, 1991) 

𝐽∗ = {1,2, … ,𝑀𝑚𝑎𝑥}; 𝐾
∗ ← 𝐽∗ 

 𝑙𝑜𝑓∗ ← 𝑚𝑖𝑛{𝑎𝑗|𝑗∈𝐽∗}𝐿𝑂𝐹(∑ 𝑎𝑗𝐵𝑗(𝑥)𝑗∈𝐽∗ ) 

 𝐹𝑜𝑟 𝑀 = 𝑀𝑚𝑎𝑥  𝑡𝑜 2 𝑑𝑜: 𝑏 ← ∞; 𝐿 ← 𝐾∗ 
   𝐹𝑜𝑟 𝑚 = 2 𝑡𝑜 𝑀 𝑑𝑜: 𝐾 ← 𝐿 − {𝑚} 
     𝑙𝑜𝑓 ← min{𝑎𝑘|𝑘∈𝐾}𝐿𝑂𝐹(∑ 𝑎𝑘𝐵𝑘(𝑥)𝑘∈𝐾 ) 

     𝑖𝑓 𝑙𝑜𝑓 < 𝑏, 𝑡ℎ𝑒𝑛 𝑏 ← 𝑙𝑜𝑓; 𝐾∗ ← 𝐾 𝑒𝑛𝑑 𝑖𝑓 
     𝑖𝑓 𝑙𝑜𝑓 < 𝑙𝑜𝑓∗, 𝑡ℎ𝑒𝑛 𝑙𝑜𝑓∗ ← 𝑙𝑜𝑓; 𝐽∗ ← 𝐾 𝑒𝑛𝑑 𝑖𝑓 
   𝑒𝑛𝑑 𝑓𝑜𝑟 
 𝑒𝑛𝑑 𝑓𝑜𝑟 
 𝑒𝑛𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

 

After the algorithm from Table 5.2 is used, the initial model is comprised of the basis 

function set 𝐽 ∗. During each iteration of the outer For loop in the algorithm from Table 5.3, one 

basis function is deleted from the model. The inner For loop chooses which basis function is 

selected for deletion. This selection is the basis function whose removal improves the fit most or 

degrades it the least. During these For loops, the basis function 𝐵1(𝑥) = 1 is never removed. The 

algorithm constructs a sequence of 𝑀𝑚𝑎𝑥 − 1 models, with each step in the sequence having one 

less basis function. The best model in the sequence is returned when the algorithm is complete. 

Model Comparison Results 

The ILIAD dataset was used to model the relation between lexical characteristics and 

students’ word learning. This data consisted of 350 students’ decontextualized word learning and 

expressive labeling outcomes for 377 words and their respective lexical characteristics across 

grade levels. Each word was characterized by its lexical characteristics for individual word 

frequency, age of acquisition, level of concreteness, phonological neighborhood density, and 

phonotactic probability. Preliminary data analyses determined the data did not follow a normal 

distribution, the data was right skewed, and moderate multicollinearity existed among the 

independent variables. 
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Each model examined the influence of lexical characteristics on decontextualized word 

learning and expressive labeling for each grade level (first, second, and third grades) and a full 

model that included all grade levels and a categorical variable for grade level. The RStudio 

environment was used to create the models in R. Base R was used for multivariate linear 

regression, and the MASS package was used to complete the stepwise regression analysis 

(Venables and Ripley, 2002). For the shrinkage methods, ridge regression and LASSO were 

completed using the glmnet package (Friedman et al, 2010) and partial least squares and 

principal component regression used the pls package (Wehrens & Mevik, 2007). Support vector 

regression was done using the e1071 package (Meyer et al, 2019). MARS is a trademarked 

name, so the package used in R is called Earth (enhanced adaptive regression through hinges) for 

the research (Milborrow, 2011). For tree-based methods, regression trees were created using the 

rpart package (Therneau & Atkinson, 2019), random forest using the randomForest package 

(Liaw & Wiener, 2002), and gradient boosting machines using the gbm package (Greenwell et 

al, 2020). 

To determine how well MARS regresses the data and why it is a great choice for 

researchers, the ILIAD data needed to be modeled by each technique and compared. 

Comparisons between models were completed using measures of accuracy including R2, mean 

absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). These 

metrics were chosen to aid in comparison with the MARS model by mimicking prior analysis in 

educational methods. Any other fit metrics that the models rely on were also included for the 

sake of thoroughness, such as ridge traces, variable importance, and graphs of accuracy as more 

trees are included in an ensemble method. 
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Each model was compared using R2, mean absolute error (MAE), mean square error 

(MSE), and root mean square error (RMSE). These fit metrics were chosen for ease of 

comparison for model performance based on the variety of models being considered. While 

creating each model, other fit metrics were used to create the strongest models. These include 

model specific steps and metrics such as ridge tracing, cross validation, or parameter tuning. 

Each individual model discusses the special metrics but for uniformity comparisons were based 

on R2 and error metrics for fit. 

R2, the coefficient of multiple determination, represents the proportion of variance in the 

dependent variables, 𝑦𝑖′𝑠, which is accounted for by the independent variables, 𝑥1, … , 𝑥𝑘 

(Johnson & Wichern, 2014). This means it acts as a goodness of fit indicator where values range 

from 0 to 1 with higher values indicating a larger effect. If the R2 values are close to 1, the model 

can be considered a good fit (Rencher & Schaalje, 2008).  R2 is the proportion of the sum of 

squares of deviations of the output values, which represent the linear relationship between 

independent and dependent variables (Ramachandran & Tsokos, 2020). R2 is not designed to 

work with nonlinear data meaning it may not be reliable as the sole metric for model fit but it is a 

commonly reported metric that can still serve as a useful summary statistic for measuring model 

accuracy (Kvålseth, 1985). The coefficient of determination can be calculated with 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�𝑖)2
𝑛
𝑖=1

=
�̂�1
′𝑋𝑐

′𝑋𝑐�̂�1
∑ (𝑦𝑖 − �̅�𝑖)2
𝑛
𝑖=1

=
𝑆𝑆𝑅

𝑆𝑆𝑇
. 

Mean absolute error, mean square error, and root mean square error are all measures to 

compare the error between predicted results and the true outcomes. Because they are error 

measures, values that are closer to zero indicate a stronger model (Tamhane & Dunlop, 2000). 

Mean absolute error can be found with 
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𝑀𝐴𝐸 =
∑ |𝜀|𝑛
𝑖=1

𝑛
=
∑ |𝑦𝑖 − �̂�𝑖|
𝑛
𝑖=1

𝑛
, 

mean square error with 

𝑀𝑆𝐸 =
∑ (𝜀2)𝑛
𝑖=1

𝑛
=
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

𝑛
, 

and root mean square error with 

𝑅𝑀𝑆𝐸 = √
∑ (𝜀2)𝑛
𝑖=1

𝑛
= √

∑ (𝑦𝑖 − �̂�𝑖)2
𝑛
𝑖=1

𝑛
, 

where 𝜀 is the error, which represents the difference from the observations from the predicted 

values. All three of these methods measure the error, or distance of the predicted values from the 

true values, by measuring the distance and making all outcomes positive through the absolute 

value or squaring the values. These are then summed over the number of observations. It has 

been argued that MAE is a better alternative to RMSE because it is “a more natural” measure of 

average error and is unambiguous (Willmott & Matsuura, 2005). 

Multivariate linear regression and stepwise regression were included because they are 

often used by educational researchers and act as a baseline. Ridge regression, LASSO, PLS, and 

PCR were included to determine to impact multicollinearity had on regular regression methods. 

Support vector regression was used to model the data because it has similar capability to model 

nonlinear data to MARS but may be harder to interpret the resulting model (Drucker et al, 1997). 

Regression trees were included because they are building blocks of ensemble tree-based methods 

and are readily interpretable. The ensemble tree-based methods were included because they do 

not rely on data having a normal distribution, but the results are difficult to interpret and are 

often seen as “black box” models. 
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Model results for word learning measured by the decontextualized and expressive tasks 

are listed in Tables 5.4, and 5.5, respectively. The tables have subsections for the full model, first 

grade, second grade, and third grade. Each model is compared using fit metrics to determine how 

accurately the data was explained.  

 Generally, the shrinkage methods performed as well as multivariate linear regression and 

stepwise regression according to the error measurements and 𝑅2, for both decontextualized 

learning and expressive labeling. Ridge regression, LASSO, and PCR had error measures 

comparable to multivariate linear regression but accounted for less of the variance 

(𝑅𝑟𝑖𝑑𝑔𝑒
2 = .14, 𝑅𝐿𝐴𝑆𝑆𝑂

2 = .26, 𝑅𝑃𝐶𝑅
2 = .20). This was true for the third-grade model with 

expressive labeling outputs (𝑅𝑟𝑖𝑑𝑔𝑒
2 = .06, 𝑅𝐿𝐴𝑆𝑆𝑂

2 = .22, 𝑅𝑃𝐶𝑅
2 = .22). Partial least squares 

maintained an 𝑅2 value close to multivariate linear regression. 

 Support vector regression and regression trees performed comparable to MARS. This is 

true across all grade levels for both decontextualized learning and expressive tasks. By every 

metric considered, SVR is slightly better than regression trees. MARS explains more of the 

variance in most models compared to SVR, but SVR often have slightly better error measures. 

One exception was the second-grade model for expressive labeling, where SVR had a higher 𝑅2 

than any other method. This was expected because prior experiments have compared support 

vector regression to MARS and found that MARS has a higher modeling error than SVR more 

often than not, but prediction error was similar (Drucker et al, 1997). They determined that the 

test data may have been too simple, so it seemed appropriate to make a similar comparison with 

data that is not as streamlined. Support vector regressions are more restrictive for word learning 

analysis because it assumes that the data is independent and identically distributed (i.i.d., Awad 

& Khanna, 2015). 
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Gradient boosting machines and stochastic gradient boosting machines explained more of 

the variance in the dependent variable than the other models. According to fit metrics, the 

gradient boosting methods fit the data better compared to other methods with the exception of 

random forest. Random forest had a similar R2 to regular regression but significantly better fit. 

For first-grade models, stochastic gradient boosting had the highest R2 for 

decontextualized learning and gradient boosting had the highest R2 for expressive labeling. 

Random forest had the best fit metrics for both models and had an R2 similar to MARS. For the 

second-grade models, the results for decontextualized were similar to the first-grade model for 

model fits. For expressive, support vector regression had a higher R2 other models, including 

gradient boosting machines. Random forest continued to have the strongest fit error metrics and 

the shrinkage methods did as well as multivariate regression. Stochastic gradient boosting 

machines performed the best by every metric for the third-grade model using decontextualized 

word learning. For expressive, gradient boosting had the highest R2 and random forest performed 

the best according to MAE, MSE, and RMSE. Overall, stochastic gradient boosting, gradient 

boosting machines, and random forest performed better than the other methods considered. 

The shrinkage models were the weakest across all grade levels for both decontextualized 

and expressive learning. Ridge regression, LASSO, partial least squares, and principal 

component regression consistently fit the data as well as multivariate linear regression for both 

R2 and the error measures. This does not mean these models are bad. The shrinkage methods’ 

strength is the ability to handle multicollinearity. Having similar results to multivariate linear 

regression shows that while the data had some multicollinearity, the impact from it is not overly 

great. It is interesting to note that the shrinkage methods performed comparably to each other 

except for third grade. The third-grade learning results were the most inconsistent, so the 
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variability explained by each model deviated from each other. Partial least squares did the best 

under those circumstances. 

Regression trees consistently outperformed shrinkage models across each grade for both 

decontextualized learning and expressive task labeling. The regression trees were generally close 

in fit the MARS, with MARS doing slightly better overall. Support vector regression explained 

the dataset as well as regression trees overall but explained the most variability for the expressive 

second and third grade models.  

Random forest had the best error metrics for every grade level for both decontextualized 

learning and expressive labeling tasks, except for the third-grade decontextualized model. For the 

third-grade models, random forest explained less variability than regression trees and support 

vector regression and far less than gradient boosting machines for decontextualized learning 

which had an R2 of .91. For error metrics is performed the best overall for the third-grade 

expressive model but slightly less than gradient boosting machines for decontextualized learning. 

Gradient boosting machines explained the most variability for all decontextualized models and 

the full and first grade models for expressive labelling.  For the second-grade expressive model 

support vector machines had a higher R2 and for the third-grade model gradient boosting was one 

of the lowest performing models. 

To explain some of the variability in the models’ performances, it is important to 

consider the differences between learning measures. Both assessed children’s word knowledge, 

but in different ways. The decontextualized measure assessed their ability to define vocabulary 

words without any other context provided, and the expressive measure assessed children’s ability 
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Table 5.4. Model Comparison for Decontextualized Word Learning 

 MARS MR SR Ridge  LASSO PLS PCR SVR CART RF GBM SGBM 

Full Model           

R2 .43 .31 .31 .30 .30 .31 .30 .39 .41 .31 .42 .52 

MAE .15 .17 .17 .14 .14 .17 .17 .13 .15 .07 .15 .13 

MSE .04 .05 .03 .04 .04 .05 .05 .04 .04 .01 .04 .03 

RMSE .20 .22 .22 .19 .19 .22 .22 .20 .20 .10 .20 .18 

First Grade         

R2 .84 .69 .69 .69 .68 .69 .63 .81 .77 .81 .88 .90 

MAE .09 .13 .13 .13 .13 .13 .13 .08 .10 .04 .07 .07 

MSE .01 .03 .03 .03 .03 .03 .03 .02 .02 .00 .01 .01 

RMSE .12 .16 .16 .16 .16 .16 .17 .13 .13 .06 .10 .09 

Second Grade        

R2 .72 .58 .57 .53 .57 .58 .58 .69 .66 .60 .73 .84 

MAE .12 .15 .15 .16 .15 .15 .15 .11 .12 .06 .12 .09 

MSE .02 .03 .03 .04 .03 .03 .03 .02 .03 .01 .02 .01 

RMSE .15 .18 .19 .19 .19 .18 .18 .16 .17 .08 .15 .11 

Third Grade         

R2 .42 .33 .31 .14 .26 .32 .20 .41 .35 .28 .94 .91 

MAE .08 .09 .09 .10 .10 .09 .10 .08 .09 .04 .03 .03 

MSE .01 .02 .01 .02 .02 .01 .02 .01 .01 .00 .00 .00 

RMSE .11 .12 .12 .14 .13 .12 .13 .11 .12 .06 .04 .04 
Note. MARS= Multivariate Adaptive Regression Splines, MR= multivariate linear regression, SR= Stepwise Regression, LASSO= Least Absolute 

Shrinkage & Selection Operator, PLS= Partial Least Squares, PCR= Principal Component Regression, SVR= Support Vector Regression, CART= 

Classification & Regression Tree, RF= Random Forest, GBM= Gradient Boosting Machines, SGBM= Stochastic Gradient Boosting Machines, MAE= 

Mean Absolute Error, MSE= Mean Square Error, RMSE= Root Mean Square Error. 
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Table 5.5. Model Comparison for Expressive Word Learning 

 MARS MR SR Ridge  LASSO PLS PCR SVR CART RF GBM SGBM 

Full Model           

R2 .42 .30 .30 .31 .31 .30 .30 .41 .38 .30 .44 .53 

MAE .12 .14 .17 .17 .17 .14 .14 .12 .13 .06 .12 .11 

MSE .03 .04 .05 .05 .05 .04 .04 .03 .03 .01 .03 .02 

RMSE .17 .19 .22 .22 .22 .19 .19 .17 .18 .09 .17 .15 

First Grade         

R2 .86 .68 .68 .68 .68 .68 .67 .83 .86 .83 .91 .90 

MAE .07 .11 .13 .11 .11 .11 .11 .07 .07 .03 .05 .06 

MSE .01 .02 .03 .02 .02 .02 .12 .01 .01 .00 .01 .01 

RMSE .09 .14 .17 .14 .14 .14 .14 .10 .09 .05 .07 .08 

Second Grade        

R2 .64 .50 .49 .48 .48 .50 .50 .68 .59 .48 .58 .62 

MAE .11 .14 .16 .14 .14 .14 .14 .10 .12 .06 .12 .11 

MSE .02 .03 .04 .03 .03 .03 .03 .02 .02 .01 .02 .02 

RMSE .14 .17 .19 .17 .17 .13 .17 .13 .15 .08 .15 .15 

Third Grade         

R2 .40 .33 .32 .06 .22 .30 .22 .41 .38 .29 .70 .18 

MAE .08 .08 .11 .10 .09 .09 .09 .07 .08 .04 .05 .09 

MSE .01 .01 .02 .02 .12 .01 .01 .01 .01 .00 .01 .01 

RMSE .10 .11 .13 .13 .12 .11 .12 .10 .10 .05 .07 .12 
Note. MARS= Multivariate Adaptive Regression Splines, MR= multivariate linear regression, SR= Stepwise Regression, LASSO= Least Absolute 

Shrinkage & Selection Operator, PLS= Partial Least Squares, PCR= Principal Component Regression, SVR= Support Vector Regression, CART= 

Classification & Regression Tree, RF= Random Forest, GBM= Gradient Boosting Machines, SGBM= Stochastic Gradient Boosting Machines, MAE= 

Mean Absolute Error, MSE= Mean Square Error, RMSE= Root Mean Square Error. 
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to use the vocabulary word to label a picture (Goldstein et al., 2017). While each measure taps 

into a different level of knowledge, decontextualized learning results may be more reliable for 

the models because it requires children to use higher-order processing skills to demonstrate 

comprehension of words (McKeown & Beck, 2014). Looking at the data itself, the third-grade 

results were the most inconsistent and were the biggest challenge for the models. Gradient 

boosting of regression trees is especially appropriate for mining less than clean data (Friedman, 

2001) but ensemble methods often require more data to perform well, though bootstrapping can 

help. The third-grade dataset contains outcomes for 108 words, which may be too small to create 

robust ensemble models. 

Based on the model comparisons, support vector regression, regression trees, random 

forest, and gradient boosting machines performed well overall. Gradient boosting machines 

explained the variability in the response well and random forest consistently had minimal error. 

While random forest and gradient boosting outdid other models most of the time, when they 

failed, they dropped well below more consistent models. This may be due to the requirement for 

more data to maintain reliability when using ensemble methods. Support vectors and regression 

trees performed well overall, and the results are more interpretable than ensemble methods. 

Comparing the results with multivariate adaptive regression splines, MARS slightly 

outperformed support vector regression and regression trees, was more consistent than the 

ensemble methods, and is more interpretable than the tree-based methods. 

Computation Time 

 The computational complexity of algorithms is an important factor when considering 

which to use. Alan Turing investigated the computability of sequences and showed that a set of 

sequences can be partitioned into computable and non-computable sequences (Turning, 1937). 
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The computable sequences, which may be easy to compute or very complex, are classified based 

on computational complexity (Hartmanis & Stearns, 1965). As the scale of data grows, the 

chosen model can become increasingly time consuming. There are different formulations to 

compare the computational complexity of algorithms, such as big omicron (or big O), big omega, 

and big theta. Big O, the most commonly used, is an upper bound on the computational 

complexity based on the required steps. That is, |𝑓| is bounded above by g (a constant factor) 

asymptotically. 𝑓(𝑛) = Ο(𝑔(𝑛)) where 

lim 𝑠𝑢𝑝𝑛→∞
|𝑓(𝑛)|

𝑔(𝑛)
< ∞. 

Big omega is a lower bound on the computational complexity 𝑓(𝑛) = Ω(𝑔(𝑛)) where 

lim 𝑖𝑛𝑓𝑛→∞
𝑓(𝑛)

𝑔(𝑛)
> 0. 

Big theta is bounded above and below asymptotically, where 𝑓(𝑛) = Θ(𝑔(𝑛)) falls between 

Ο(𝑔(𝑛)) and Ω(𝑔(𝑛)) (Knuth, 1976).  

 Many problems that machine learning and artificial intelligence systems are applied to 

are extremely complex and poorly understood, to the point of being beyond mathematical 

formalization (Kearns, 1990). This is because the formal definitions rely on specific operations 

while many machine learning algorithms have an undefined number of operations until some 

convergence criteria is met. Because of this, an operation like support vector regression will fall 

somewhere between Ο(𝑛2) and Ο(𝑛3) based on the kernel chosen (Bottou & Lin, 2007). This 

may not be a problem for smaller datasets but support vector machines scale rather badly due to 

the quadratic optimization algorithm and kernel transformation (Meyer & Wien, 2021). 

Another way to consider the problem is through computational time. While 

computational complexity considers the set operations and their theoretical complexity, 
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computational time is based on empirical results that take into account efficiency of the 

algorithm and its implementation. The computational times for the compared methods can be 

found in Table 5.6. The computational time was based on the time to train each model and time 

to make a prediction based on the model. 

For the training times, each model creation was replicated 20 times and the total time in 

seconds was documented and relative times were computed based on the fastest algorithm. For 

total elapsed time, multivariate linear regression took .03 seconds and was the fastest training 

model. Setting that to 1, the time of every other method was used to find the relative speed of the 

algorithm. The methods with the lowest computation time after multivariate linear regression 

were support vector regression (𝑡𝑟𝑒𝑙 = 1.33), regression trees (𝑡𝑟𝑒𝑙 = 4.67), MARS (𝑡𝑟𝑒𝑙 =

5.67), and principal component regression (𝑡𝑟𝑒𝑙 = 6.33). Support vector regression is very 

dependent on the chosen kernel and Gaussian, polynomial, and sigmoid are not very 

computationally complex. MARS was one of the faster models because it is a very efficient 

algorithm given the complexity of its operations. 

Prediction times were based on 1,000 replications and the total time and relative time to 

the fastest prediction were similarly documented. The fastest predictions were ridge (𝑡𝑟𝑒𝑙 = 1), 

LASSO (𝑡𝑟𝑒𝑙 = 1.03), multivariate linear regression and support vector regression (𝑡𝑟𝑒𝑙 =

2.52), and gradient boosting machines (𝑡𝑟𝑒𝑙 = 3.26). MARS was the fourth slowest method for 

prediction, only being faster than stochastic gradient boosting machines (𝑡𝑟𝑒𝑙 = 6.58), stepwise 

regression (𝑡𝑟𝑒𝑙 = 23.65), and random forest (𝑡𝑟𝑒𝑙 = 61.74). Prediction times are very small 

compared to training time, so they are not as consequential for model selection.  
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Table 5.6. Computational Time 

Algorithm Training Time 

(Seconds) 

Training Time 

(Relative) 

Prediction Time 

(Seconds) 

Prediction Time 

(Relative) 

MR .03 1 .78 2.52 

SR 30.05 1001.67 7.33 23.65 

MARS .17 5.67 1.63 5.26 

Ridge 1.8 60 .31 1 

LASSO 1.53 51 .32 1.03 

PLS .2 6.67 1.06 3.42 

PCR .19 6.33 1.08 3.48 

SVR .04 1.33 .78 2.52 

CART .14 4.67 1.25 4.03 

RF 8.89 299.33 19.14 61.74 

GBM 343.04 11,434.67 1.01 3.26 

SGBM 1,215.03 40,501 2.04 6.58 

Note. MR= multivariate linear regression, SR= Stepwise Regression, MARS= Multivariate Adaptive Regression 

Splines, LASSO= Least Absolute Shrinkage & Selection Operator, PLS= Partial Least Squares, PCR= Principal 

Component Regression, SVR= Support Vector Regression, CART= Classification & Regression Tree, RF= 

Random Forest, GBM= Gradient Boosting Machines, SGBM= Stochastic Gradient Boosting Machines 

 

Detailed Example of Model Performance: First Grade Word Learning 

The model comparisons contain information about how well each model explained the 

data, but not how interpretable or applicable the models are. First grade word learning data was 

used to demonstrate the differences in results produced by each model for this purpose. Each 

model was created for both decontextualized word learning and expressive labeling.  

Multivariate Linear Regression  

Multivariate linear regression results are presented in Table 5.7. Word frequency 

(𝛽 = 8.04 × 10−4, 𝑝 = 1.97 × 10−3), age of acquisition (𝛽 = −7.30 × 10−2, 𝑝 < .001), and 

level of concreteness (𝛽 = 8.03 × 10−2, 𝑝 < .01) significantly predicted children’s 

decontextualized word learning. These three lexical characteristics explained 69% of the 

variance in word learning (R2= .69, F(5,137)= 60.97, p < .001). For expressive labeling, two 
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lexical characteristics were significantly predictive of expressive labeling, age of acquisition 

(𝛽 = −5.72 × 10−2, 𝑝 < .01) and level of concreteness (𝛽 = 1.55 × 10−2, 𝑝 < .01).  

These lexical characteristics explained 68% of the variance in expressive labeling 

(𝑅2 = .68, 𝐹(5,137) = 58.28, 𝑝 < .001).  

 

Table 5.7. Multivariate Linear Regression Results for First Grade Word Learning 

 Decontextualized Expressive 

 β SE β p-value β SE β p-value 

Intercept .66 .12 < .001* .47 .10 < .001* 

Word Frequency .0008 .0003 < .01* .0004 .0002 .10 

Age of Acquisition - .073 .009 < .001* - .0572 .0074 < .001* 

Concreteness .08 .02 < .001* .09 .0155 < .001* 

Neighborhood Density 6.43E-7 1.68E-6 .70 7.50E-7 1.50E-6 .61 

Phonotactic Probability - .0636 .12 .60 - .081 .11 .44 

 R2 = .69 R2 = .68 

 

Trends for the individual predictor variables are displayed in Figures 5.1 and 5.2 with all 

other predictor variables held constant for models of decontextualized word learning and 

expressive labeling, respectively. For both regressions, word frequency and level of 

concreteness, are positively associated with children’s word learning. Words with higher 

frequencies and words that are more concrete are easier for children to learn. The trend line for 

age of acquisition is negatively associated to word learning; words learned at a later age are more 

difficult for children to learn. Neighborhood density and phonotactic probability had a neutral 

effect on word learning. 
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Figure 5.1. Multivariate Linear Regression Results for First Grade Decontextualized Word 

Learning 

 
 

 

Figure 5.2. Multivariate Linear Regression Results for First Grade Expressive Word Learning 

 

 

Stepwise Regression  

Neighborhood density and phonotactic probability were removed from the final models. 

Results are presented in Table 5.8. Age of acquisition (𝛽 = −.07, 𝑝 < .001;  𝛽 =

−5.87 × 10−2, 𝑝 < .001) and level of concreteness (𝛽 = .08, 𝑝 < .001;  𝛽 = 8.83 × 10−2, 𝑝 <

.001) significantly predicted children’s decontextualized word learning and expressive labeling. 

Note. Scale for each x-axis differ based on lexical characteristic values.  

Note. Scale for each x-axis differ based on lexical characteristic values.  
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These predictors explained 68 – 69% of the variance in word learning (𝑅2 = .69, 𝐹(3,139) =

102.5, 𝑝 < .001; 𝑅2 = .68, 𝐹(3,139) = 97.34, 𝑝 < .001).  

 

Table 5.8. Stepwise Regression Results for First Grade Word Learning 

 Decontextualized Expressive 

 β SE β p-value β SE β p-value 

Intercept .65 .11 <.001* .47 .10 <.001* 

Word Frequency .0008 .0003 <.01* .0004 .0002 .10 

Age of Acquisition - .07 .0083 <.001* - .059 .0071 <.001* 

Level of Concreteness .08 .018 <.001* .0883 .0154 <.001* 

 R2 = .69 R2 = .68 

 

Figures 5.3 and 5.4 show the trends for each variable as all others are held constant for 

decontextualized and expressive learning, respectively. For both, word frequency and level of 

concreteness have a positive trend. Words with higher word frequencies and words that are more 

concrete were easier for children in first grade to learn. Age of acquisition had a negative trend, 

words with older ages of acquisition had lower rates of learning. Words learned later in 

childhood (e.g., AoA rating of 12 years old) were difficult for children in first grade to learn 

compared to words with earlier AoA ratings (e.g., 6 years old). 

Ridge Regression 

 Figure 5.5 shows the ridge traces for the ridge regression models for decontextualized 

learning and expressive learning. As the ridge constant increases to the right, the variables shrink 

closer to zero. Using the ridge trace to find the optimal complexity parameter requires expertise 

to find a balance of stability and shrinkage. Variables that change the most have a higher 

variance, which ridge regression aims to limit by having higher shrinkage (Hoerl & Kennard, 

1970; Friendly, 2013). Age of acquisition has the highest variance, followed by level of 

concreteness. Generally, the goal is to find where shrinkage has slowed, and variables are 
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visually stable. Visually, around 200 may be a good option but the vertical line represents the 

estimated location of k through analytic methods. Various analytic methods exist to determine 

the optimal shrinkage value (Gisela & Kibria, 2009) and minimization of the standard error of 

the cross-validation residuals was used for modeling the ILIAD data. 

 

Figure 5.3. Stepwise Regression Results for First Grade Decontextualized Word Learning  

 

Ridge regression results are presented in Table 5.9. Standard errors for the coefficients 

have not been including because they are misleading in penalized estimation methods (Casella et 

al, 2010). Standard errors are not very meaningful for strongly biased estimates and the penalized 

estimation procedure reduces variance in the estimators by introducing bias (Goesman et al, 

2018). While significance is hard to directly measure, ridge regression is a penalized regression 

method that shrinks coefficients that do not contribute to explaining the response variable. 

Unlike LASSO, ridge regression cannot eliminate variables but only shrink them. For both 

decontextualized and expressive measures, neighborhood density (𝛽 = 5.90 × 10−7, 𝛽 =

7.20 × 10−7) has been shrunk significantly from other lexical characteristics, followed by word 

Note. Scale for each x-axis differs based on lexical characteristic. 
values.  
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frequency (𝛽 = 8.099 × 10−4, 𝛽 = 3.90 × 10−4). It can therefore be surmised that the the 

model found age of acquisition (𝛽 = −6.69 × 10−2, 𝛽 = −5.31 × 10−2), level of concreteness 

(𝛽 = 8.17 × 10−2, 𝛽 = 8.63 × 10−2), and phonotactic probability (𝛽 = −8.71 × 10−2, 𝛽 =

−9.64 × 10−2) to be the most significant lexical characteristics to influence word learning. 

These predictors explained 68-69% of the variance of word learning. 

 

Figure 5.4. Stepwise Regression Results for First Grade Expressive Word Labeling 

 

Figure 5.5. Ridge Trace for Ridge Regression 

 

Note. Scale for each x-axis differs based on lexical characteristic values.  
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Table 5.9. Ridge Regression Results for First Grade Word Learning 

 Decontextualized Expressive 

 β β 

Intercept .605 .443 

Word Frequency 8.099 × 10−4 3.90 × 10−4 

Age of Acquisition −6.69 × 10−2 −5.31 × 10−2 

Concreteness 8.17 × 10−2 8.63 × 10−2 

Neighborhood Density 5.90 × 10−7 7.20 × 10−7 

Phonotactic Probability −8.71 × 10−2 −9.64 × 10−2 

 𝑅2 = .69 𝑅2 = .68 

 

Trends for the individual predictor variables are displayed in Figures 5.6 and 5.7 with all 

other predictor variables held constant for models of decontextualized word learning and 

expressive labeling, respectively. For both regressions, word frequency and level of concreteness 

are positively associated with children’s word learning. Words with higher frequency and that 

are more concrete are easier for children to learn, but word frequency has very little weight to 

word learning based on the shrinkage of the variable. Age of acquisition is negatively associated 

with children’s word learn meaning that as the age of acquisition rating increases, a drop in 

learning is expected. Neighborhood density and phonotactic probability had a neutral effect on 

word learning, though neighborhood density has very little weight overall according to the 

models. These models follow closely with the results from multivariate linear regression. 
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Figure 5.6. Variable Plot for Decontextualized Learning using Ridge Regression 

 

 

Figure 5.7. Variable Plot for Expressive Learning using Ridge Regression 

 
 

Least Absolute Shrinkage and Selection Operator (LASSO) 

The results for the regressions of decontextualized word learning and expressive labeling 

using LASSO are presented in Table 5.10. While LASSO shrinks or penalizes variables similar 

to ridge regression, LASSO can eliminate variables as well. Neighborhood density and 

Note. Scale for each x-axis differs based on lexical characteristic values.  

Note. Scale for each x-axis differs based on lexical characteristic values.  
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phonotactic probability have been eliminated from the final models. Significance values are 

inappropriate for LASSO but based on shrinkage and elimination, age of acquisition (𝛽 =

−6.97 × 10−2, 𝛽 = −5.59 × 10−2) and level of concreteness (𝛽 = 6.65 × 10−2, 𝛽 =

7.94 × 10−2) are the most significant variables, followed by word frequency (𝛽 =

5.07 × 10−4, 𝛽 = 1.73 × 10−4 ). According to these models, the lexical characteristics 

explained 68% of the variance in word learning. 

 

Table 5.10. LASSO Results for First Grade Word Learning 

 Decontextualized Expressive 

 β β 

Intercept .663 .473 

Word Frequency 5.07 × 10−4 1.73 × 10−4 

Age of Acquisition −6.97 × 10−2 −5.59 × 10−2 

Concreteness 6.65 × 10−2 7.94 × 10−2 

Neighborhood Density   

Phonotactic Probability   

 𝑅2 = .68 𝑅2 = .68 

 

Figures 5.8 and 5.9 show the trends for each variable with all others held constant for 

decontextualized and expressive learning, respectively. Neighborhood density and phonotactic 

probability were eliminated from both models. Word frequency and level of concreteness both 

have a positive effect on word learning, though word frequency was shrunk giving it less weight. 

Age of acquisition has a negative trend, meaning that as the age of acquisition rating increases, it 

is expected that less children will learn the word at the first-grade level. 
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Figure 5.8. Variable Plot for Decontextualized Learning using LASSO 

 

Figure 5.9. Variable Plot for Expressive Learning using LASSO 

 

Partial Least Squares (PLS) 

 With partial least squares, a choice must be made for the number of components to 

project the variables onto. Figure 5.10 shows the impact the number of components has on the 

root mean square error and R2 for decontextualized learning and expressive learning, 

Note. Scale for each x-axis differs based on lexical characteristic values.  

Note. Scale for each x-axis differs based on lexical characteristic values.  
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respectively. Based on the graphs, both models are optimal with two components, though 3 is 

also applicable for the expressive model. Analytic methods comparing the impact the number of 

components had on square error were used to confirm the selection for each model. 

 

Figure 5.10. Partial Least Squares Model Fit by Number of Components 

 

The results for the partial least squares regressions are presented in Table 5.11. As with 

other shrinkage methods, partial least squares shrinks the less impactful predictor variables. This 

is done by projecting the variables onto a latent structure that is not directly observed, by 

creating orthogonal score vectors by maximizing the covariance between different sets of 

variables (Rosipal & Krämer, 2005). For both models, age of acquisition (𝛽 = −1.38 ×

10−1, 𝛽 = −1.13 × 10−1) has the most influence on children’s word learning. This is followed 

by level of concreteness (𝛽 = 9.68 × 10−2, 𝛽 = 9.57 × 10−2) and word frequency 

(𝛽 = 5.30 × 10−2, 𝛽 = 2.58 × 10−2). The smallest contributions are made by phonotactic 

probability (𝛽 = −9.28 × 10−3, 𝛽 = −1.05 × 10−2) and neighborhood density 
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(𝛽 = −3.40 × 10−3, 𝛽 = 7.88 × 10−4). These lexical characteristics explained 68-69% of the 

variance in each model. 

 

Table 5.11. Partial Least Squares Regression Results for First Grade Word 

Learning 

 Decontextualized Expressive 

 β β 

Intercept .520 .394 

Word Frequency 5.30 × 10−2 2.58 × 10−2 

Age of Acquisition −1.38 × 10−1 −1.13 × 10−1 

Concreteness 9.68 × 10−2 9.57 × 10−2 

Neighborhood 

Density 
−3.40 × 10−3 7.88 × 10−4 

Phonotactic 

Probability 
−9.28 × 10−3 −1.05 × 10−2 

 𝑅2 = .69 𝑅2 = .68 

 

Figures 5.11 and 5.12 contain the trends for the individual predictor variables while all 

others are held constant for decontextualized learning and expressive tasks, respectively. Age of 

acquisition has a negative trend with first grader’s word learning for both models. Predictors are 

ordered based on their importance, so age of acquisition has the largest impact, followed by level 

of concreteness, word frequency, neighborhood density, and phonotactic probability. Level of 

concreteness and word frequency have positive trends, meaning as the concreteness of a word 

increases and the word’s frequency increases, higher word learning occurs. Neighborhood 

density has a positive trend and phonotactic probability a negative trend, but both have a smaller 

influence than other predictors. 
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Figure 5.11. Variable Plot for Decontextualized Learning using Partial Least Squares 

 

 

 

Figure 5.12. Variable Plot for Expressive Learning using Partial Least Squares 

 

 

 

 

 

Note. Scale for each x-axis differs based on lexical characteristic values.  

Note. Scale for each x-axis differs based on lexical characteristic values.  
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Principal Component Regression (PCR) 

With principal component regression, a choice must be made for the number of latent 

factors to project the variables onto. Figure 5.13 shows the impact the number of components has 

on the root mean square error and R2 for decontextualized learning and expressive learning. For 

the decontextualized model, one latent factor was used based on the graphs and analytic 

assessments. For expressive labeling, the graphs indicate three or four latent factors is optimal. 

Analytic methods indicate three latent factors is the best choice for this dataset. 

 

Figure 5.13. Principal Component Regression Model Fit by Number of Components 

 

 

Principal component regression results are presented in Table 5.12. PCR was chosen to 

analyze the ILIAD data because of the well-known collinear nature of lexical characteristics. It 

overcomes multicollinearity by using the principal components of the parameters as the 

regressors and selecting a subset of the latent factors. For decontextualized learning, one latent 

factor was used and for expressive labelling, three latent factors were used.  
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Table 5.12. Principal Component Regression Results for First Grade Word Learning 

 Decontextualized Expressive 

 β β 

Intercept .457 .311 

Word Frequency 6.60 × 10−2 2.48 × 10−2 

Age of Acquisition −9.76 × 10−2 −9.82 × 10−2 

Concreteness 8.98 × 10−2 1.07 × 10−1 

Neighborhood Density 2.72 × 10−2 3.25 × 10−3 

Phonotactic Probability −5.89 × 10−2 −1.66 × 10−2 

 𝑅2 = .63 𝑅2 = .67 

 

Trends for the individual predictor variables are displayed in Figures 5.14 and 5.15 with 

all other predictor variables held constant for models of decontextualized word learning and 

expressive labeling, respectively. With the projection onto principal components, new insights 

can be seen from the graphs. Age of acquisition and phonotactic probability have negative trends 

while level of concreteness, word frequency, and neighborhood density have positive trend lines. 

What is special is the associated impact from lexical characteristics that have been smaller in 

other models. By considering latent space, we may be seeing the impact of lexical characteristics 

on word learning while limiting age of acquisition overwhelming the results. Because principal 

component regression is an unsupervised technique, we would need to do further analysis to 

determine more and validate the results. 

Multivariate Adaptive Regression Splines (MARS) 

Because MARS uses recursive partitioning, variable selection is automatically considered 

during the backwards pass. Three criteria were used to determine variable importance: number of 

subsets (nsubsets), generalized cross validation (GCV), and residual sum of squares (RSS). 

Nsubsets is the number of model subsets that included that variable during the backward pass. 

During the backwards deletion step each variable was separately removed and the impact on the 

model was compared. This was repeated until ending at a model with one variable. MARS kept 
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Figure 5.14. Variable Plot for Decontextualized Learning using Principal Component 

Regression 

 

 

Figure 5.15. Variable Plot for Expressive Learning using Principal Component Regression 

 

track of each “best model” during each step and which variables were included. A variable 

included in more subsets was ranked higher in importance. Residual sum of squares was 

calculated for each subset relative to the prior subset during the backwards deletion phase. A 

score of 100 is always given to the most important variable and each preceding variable is scored 

Note. Scale for each x-axis differs based on lexical characteristic values.  

Note. Scale for each x-axis differs based on lexical characteristic values.  
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relative to that. The decreases in RSS for each variable across each subset that contained the 

variable are summed and ranked. The most important variable based on the summed decreases is 

scaled to 100. Generalized cross validation described in the model section works in a similar 

manner to RSS but using cross validation instead of RSS. The most important variable is scored 

as 100 and each preceding variable was ranked relative to that. Any of these criteria may be used 

as a threshold for inclusion in the final model. 

By summarizing the number of subsets, GCV, and RSS values for variable selection, 

variables are ranked by the level of importance. As illustrated in Table 5.13, all variables were 

included in the final model for decontextualized word learning. The lexical characteristics in 

order of importance were age of acquisition, level of concreteness, neighborhood density, word 

frequency, and phonotactic probability. In contrast, variable selection for the final model for 

expressive learning removed neighborhood density, word frequency, and phonotactic probability. 

The remaining variables ranked by importance were age of acquisition and level of concreteness. 

 

Table 5.13. MARS Variable Selection for first Grade Word Learning 

 Decontextualized Expressive 

Variable nsubsets GCV RSS nsubsets GCV RSS 

Age of Acquisition 7 100 100 4 100 100 

Level of Concreteness 5 22.1 26 3 27 28.5 

Neighborhood Density 4 16 20.3 0 0 0 

Word Frequency 2 8.1 12.1 0 0 0 

Phonotactic Probability 1 5.5 8.3 0 0 0 

 

Results for MARS is presented in Table 5.14. For decontextualized word learning and 

expressive labeling, the MARS analyses selected eight basis functions and five basis functions, 

respectively. The basis functions for each variable indicate hinge location, whether the regression 

coefficient is to the right or left of the hinge, and the direction of the local trend (positive or 

negative). Each hinge acts a local interval boundary within the global model. For example, in the 
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decontextualized model, age of acquisition has hinges at 5.37, 7.81, and 8.45. During the pruning 

process (backwards step), some local regressions were removed because other variables better-

predicted word learning for that global region. The predictor variables explained 84 – 86% of the 

variance in decontextualized word learning (𝑅2 = .84) and expressive labeling (𝑅2 = .86). 

 

Table 5.14. MARS Results for First Grade Word Learning 

Decontextualized Expressive 

Predictor Type Hinge 

Location 

Coefficient Predictor Type Hinge 

Location 

Coefficient 

(Intercept)   0.91 (Intercept)   0.14 

Word Freq Left 32.22 -0.003 AoA Left 7.33 0.16 

AoA Right 5.37 -0.27 AoA Right 7.33 -0.015 

AoA Right 7.81 0.42 Concrete Right 2.55 0.05 

AoA Right 8.45 -0.17 Concrete Right 3.97 0.18 

Concrete  Right 3.00 0.07     

N Den Left 126.04 -0.001     

Phono Prob Left 0.08 -3.05     

Note. Word Freq= Word Frequency; AoA= Age of Acquisition; Concrete= Level of 

Concreteness; N Den= Neighborhood Density; Phono Prob= Phonotactic Probability 

  

It is difficult to visualize a higher dimensional model, so the above regression may be 

difficult to interpret. The models for decontextualized and expressive learning are composed of 

the predictor variable, the location of a hinge (spline), and the coefficient for the local regression 

within the variable and its location relative to the hinge (i.e., type). For example, in the 

decontextualized model for first grade learning, word frequency has a hinge at 32.22 with a 

coefficient of -.003 to the left of the hinge. To understand the relationship between significant 

lexical characteristics and children’s word learning, individual variable plots were used. Figures 

5.16 and 5.17 show the regression of each variable with all other variables held constant for both 

decontextualized word learning and expressive labeling. Graphical representations of multiple 

and stepwise regressions are represented by static linear relations that have an overall positive, 

negative, or neutral trend. With MARS, a more precise relationship is represented because hinges 
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created local intervals. These interval trends can vary from hinge to hinge allowing for a 

dynamic representation of relations among word learning and lexical characteristics.  

For example, in the model of decontextualized word learning, age of acquisition had 

negative and positive associations with word learning. There was a slow downward trend until 

the hinge at 5.37 meaning that 80% of children learned words with an age of acquisition starting 

at 2.6. From this point learning decreased as AoA increased. Learning dropped from 

approximately 70% to 15% in the next interval between hinges at 5.37 and 7.81 years old. A 

small upward trend showed that learning increased from 15% to 20% for words with AoA 

ratings ranging from 7.81 to 8.45. Finally, another slow decrease in learning occurred for words 

with AoA ratings older than 8 and a half years. 

 

Figure 5.16. Variable Plot for Decontextualize Learning using MARS 

 

Note. Scale for each x-axis differs based on lexical characteristic values.  
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Figure 5.17. Variable Plot for Expressive Learning using MARS 

 

When compared to the decontextualized model, age of acquisition in the model of 

expressive learning had an overall negative association with word learning with fewer hinges. 

Age of acquisition had a rapid downward trend until the hinge at 7.33 years old. The percentage 

of children learning words dropped from 80% to approximately 15% as age acquisition ratings 

increased from 3.25 to 7.33 years old. After this interval, the rate of learning still decreases, but 

at a slower rate, from 15% to 0% of children learning words with an AoA rating older than 7.33 

years old. A step-by-step guide modeling with MARS can be found in Appendix I. 

Support Vector Regression (SVR) 

The parameter influence with all other parameters held constant for support vector 

regression for decontextualized learning and expressive labeling can be found in Figures 5.18 

and 5.19, respectively. Prior distribution data was not known, so a grid search was performed 

across parameters and kernels to determine the optimal model for the data. A radial basis 

function was used as the kernel for decontextualized and expressive models. Hyperparameters 

were also found at this step for decontextualized learning (𝜀 = 0.1, 𝛾 = 0.2, 𝑐 = 2, 𝑠𝑣 = 117) 

and expressive learning (𝜀 = 0.1, 𝛾 = 0.2, 𝑐 = 3, 𝑠𝑣 = 115), where 𝜀 is the margin of 

Note. Scale for each x-axis differs based on lexical characteristic values.  
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tolerance, 𝛾 controls soft margins, c is the cost parameter, sv is the number of support vectors 

used in the model. There is no traditional regression output for support vector regressions, so it is 

important to consider what the model shows for the individual influence of each variable. For 

both models, word learning increases positively with word frequency until it hits a threshold 

where gains become neutral. This is around 400 for decontextualized learning and 200 for 

expressive labeling. As the age of acquisition rating of words increases, the word learning 

decreases. This occurs steadily until a rating of 8 and then becomes neutral, likely because nearly 

no words are being learned by first graders with higher ratings. Level of concreteness has a 

positive trend with word learning after a concreteness score of 2.5. Neighborhood density has a 

positive trend with word learning until a rate of 30,000. After that, the word learning drops as 

neighborhood density scores increase. Phonotactic probability does not appear to have much 

impact on word learning and is neutral with a small positive trend after a phonotactic probability 

of 0.4. 

 

Figure 5.18. Variable Plot for Decontextualized Learning using Support Vector Regression 

 

 

Note. Scale for each x-axis differs based on lexical characteristic values.  
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Figure 5.19. Variable Plot for Expressive Learning using Support Vector Regression 

 

Regression Trees 

 In order to limit overfitting, pruning is often required for tree regression. The optimal tree 

depth can be determined by calculating the complexity parameter that minimizes error while 

keeping the tree depth minimal. Figure 5.20 display the impact of the complexity parameter on 

the error rate and its associate tree depth for decontextualized learning and expressive labeling, 

respectively. The complexity parameters were found analytically, giving final model for the tree 

the regress the predictors. 

 

Figure 5.20. Tree Regression Depth Selection 

 

Note. Scale for each x-axis differs based on lexical characteristic values.  
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Figures 5.21 and 5.22 shows the dendrogram for the pruned tree modeling 

decontextualized word learning and the associated variable plots, with all other variables held 

constant. The two variables it chose to keep are age of acquisition and word frequency. During 

each node, the split that minimized RSS the most was chosen. The first split is at age of 

acquisition rating of 6.725. If the word has a higher age of acquisition, it follows the left branch 

to the next node. If it is less than 6.725 it follows the right path. On the left path, it again splits 

based on age of acquisition, this time at 9.225. If the word has a higher rating, it follows the left 

path to a terminal node. If it is less, it follows the right path to a node that splits based on word 

frequency of 25.2. These branches can be seen in the variable plot, where the word frequency 

split at 25.2 and higher age of acquisition lowering children’s word learning. 

 

Figure 5.21. Tree Diagram for Decontextualized Learning 

 



 
 

111 
 

Figure 5.22. Variable Plot for Decontextualized Learning using Regression Trees 

 

Figures 5.23 and 5.24 display the expressive tree model dendrogram and variable plots 

respectively. This model determined two variables explain word learning, age of acquisition and 

level of concreteness. The first split occurs at age of acquisition rating 6.57, with greater than or 

equal values taking the left path. At the resulting node, a split occurs at level of concreteness 

2.845. These splits can be seen in the associated predictor plots with one positive shift for level 

of concreteness at 2.845 and drops in word learning at each split as age of acquisition increases. 

 

Figure 5.23. Tree Diagram for Exppressive Labeling 

 

Note. Scale for each x-axis differs based on lexical characteristic values.  
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Figure 5.24. Variable Plot for Expressive Learning using Regression Trees 

 

Random Forest 

 Figure 5.25 shows the error rate based on the number of trees created for random forest 

models for decontextualized learning and expressive labeling respectively. From the 

decontextualized figure, the error rate begins around 0.5 for error with one tree and the error rate 

increases as more trees are added. Once a threshold of around 15 trees is reached, error begins to 

quickly lower as more trees are added. The error rate continues to decrease as more trees are 

included at a slower rate. Each model was run with 500 trees, though comparable error was 

possibly with 200-300 trees. 

Because of the ensemble nature of random forest regression, there is no simple model to 

consider. Instead, there are many regression trees with an aggregate vote for the outcome based 

on the lexical characteristics. This allows for precise results because every tree has equal impact 

on the vote and the random nature of choosing predictors when creating the trees can help 

eliminate noise and the impact of outliers. Figures 5.26 and 5.27 show the trends for each lexical 

characteristic’s impact on word learning with other predictors held constant. For both models 

Note. Scale for each x-axis differs based on lexical characteristic values.  



 
 

113 
 

word frequency increases positively with word learning until around 80 for decontextualized 

learning and 280 for expressive labeling, then plateaus. Age of acquisition has a negative trend in 

relation to word learning, with the largest drop between age ratings of 6 and 8. First graders are 

generally 6 years old, so this shows that words above their age rating become more difficult to 

learn at their age. Level of concreteness has a positive trend with word learning for both models, 

increasing more quickly as concreteness increases. Neighborhood density agrees with other 

models that it increases until around 25 and then plateaus for decontextualized learning and 

slowly increases for expressive labeling. Phonotactic probability appears to be neutral, and the 

movement is likely due to noise.  

 

 Figure 5.25. Optimal Number of Trees for Random Forest 
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Figure 5.26. Variable Plot for Decontextualized Learning using Random Forest 

 

 

Figure 5.27. Variable Plot for Expressive Learning using Random Forest 

 
 

Gradient Boosting Machines (GBM) 

Figure 5.28 displays the variable importance according to the gradient boosting machines 

for decontextualized learning and expressive labeling. For both models, age of acquisition is the 

variable with the largest impact on explaining word learning. Following age of acquisition level 

of concreteness is a distant second most important lexical characteristic for decontextualized 

Note. Scale for each x-axis differs based on lexical characteristic values.  

Note. Scale for each x-axis differs based on lexical characteristic values.  
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learning and a closer second for expressive labeling. Neighborhood density, word frequency, and 

phonotactic probability follow but do little explain word learning for the ILIAD data. 

Trends for the individual predictor variables are displayed in Figures 5.29 and 5.30 with 

all other predictor variables held constant for models of decontextualized word learning and 

expressive labeling, respectively. Gradient boosting machines can perform variable selection 

based on the trees built during its creation and the graphs are ordered by importance allowing the 

focus to be on parameters that impact word learning most. Age of acquisition has a pronounced 

drop starting just before the age of 6 years until around 7 years. This supports what would be 

expected based on the ages of the students in first grade. Level of concreteness has a positive 

trend that rapidly increases between a rating of 4 and 4.5. Word frequency, neighborhood 

density, and phonotactic probability have a small upward trend but are mostly neutral. 

Stochastic Gradient Boosting Machines 

Figure 5.31 displays the variable importance according to the stochastic gradient boosting 

machines for decontextualized learning and expressive labeling. For both models, age of 

acquisition was the variable with the largest impact on explaining word learning followed 

distantly by level of concreteness. Neighborhood density, word frequency, and phonotactic 

probability follow but do little explain word learning for the ILIAD data. 

Trends for the individual predictor variables are displayed in Figures 5.32 and 5.33 with all other 

predictor variables held constant for models of decontextualized word learning and expressive 

labeling, respectively. The iterative learning of stochastic gradient boosting machines allows the 

model to focus on the predictors with the largest impact. Because of this, age of acquisition has a 

pronounced drop starting just before the age of 6 years until around 7 years. This is a strong 

indication that the age of acquisition lexical characteristic is incredibly precise at predicting word 
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learning. Level of concreteness has a slight positive trend until it has a quick increase between a 

rating of 4 and 4.5. Word frequency, neighborhood density, and phonotactic probability have a 

small upward trend but are mostly neutral. 

 

Figure 5.28. Variable Importance for Gradient Boosting Machines

 
  

Figure 5.29. Variable Plot for Decontextualized Learning using Gradient Boosting Machines 
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Figure 5.30. Variable Plot for Expressive Learning using Gradient Boosting Machines 

 

 

 

Figure 5.31. Variable Importance for Stochastic Gradient Boosting Machines 

 

 

Note. Scale for each x-axis differs based on lexical characteristic values.  
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Figure 5.32. Variable Plot for Decontextualized Learning using Stochastic Gradient Boosting 

Machines 

 

Figure 5.33. Variable Plot for Expressive Learning using Stochastic Gradient Boosting 

Machines 

 

 

 

Note. Scale for each x-axis differs based on lexical characteristic values.  
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Discussion 

Data from first grade was used to demonstrate the differences in results produced by the 

three modeling methods and supports the argument for adopting MARS as an alternative 

modeling method as opposed to other simpler regression models. Each model presented useful 

information used to make conclusions about the impact of the relevant lexical characteristics on 

word learning for the ILIAD study. Regression analyses revealed different relevant predictors of 

word learning. Multivariate linear regression analysis indicated word frequency, age of 

acquisition, and level of concreteness were significantly related to both decontextualized word 

learning and expressive labeling. This model accounted for 68 – 69% of the variance in word 

learning. It is important to note that insignificant variables remained in the model. Often the 

simplest model that accurately describes the data is most desired. In the case of our data, 

multivariate linear regression did not create the simplest model because it included extraneous 

variables. Variable selection methods are used to compensate for this. 

Stepwise regression is a variable selection method that attempts to find the optimal 

model. Results for this analysis indicated word frequency, age of acquisition, and level of 

concreteness were significant predictors of decontextualized word learning and dropped both 

neighborhood density and phonotactic probability from the model completely. For expressive 

learning, the model the same variables, but word frequency was not a significant predictor of 

word learning. This model accounted for 68 – 69% of variance in word learning and 

demonstrated positive associations between word learning and word frequency and level of 

concreteness, and a negative association between age of acquisition and learning. Words that 

occur more frequently, had higher ratings of concreteness (words that are more concrete) and 

words with lower age of acquisition (words learned earlier) were easier for first graders to learn. 
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This is all we can say about lexical characteristics and word learning because that is all this 

analysis is telling us, anything beyond this would be speculative at best. A more sophisticated 

modeling method is needed to further investigate the nuanced relationship between lexical 

characteristics and word learning.  

Ridge regression and LASSO performed equally well by the metrics MAE, MSE, RMSE, 

and 𝑅2 in most instances. For the full models and first-grade models, both decontextualized 

learning and expressive learning, they performed equally well. For the second-grade model, they 

performed the same for expressive labeling but LASSO outperformed ridge regression by a small 

amount for each metric. For the third-grade model, LASSO had much higher 𝑅2, while still small 

overall, but the error measures were similar for both decontextualized learning and expressive 

labeling. 

 For the first-grade example, both methods performed the same according to the error 

measures and 𝑅2. Looking at the ridge regression, it shrunk the neighborhood density parameter 

significantly, as well as word frequency for both decontextualized and expressive learning 

outcomes. Ridge cannot eliminate variables, so it may shrink some until they are insignificant to 

the model. Based on this, ridge had the most weight associated with the parameters age of 

acquisition, level of concreteness, and phonotactic probability. LASSO, on the other hand, can 

eliminate variables from the regression. For both decontextualized and expressive outcomes, it 

eliminated neighborhood density and phonotactic probability, and assigned word frequency a 

smaller weight by shrinking the coefficient relative to the others. The regression found age of 

acquisition and level of concreteness to be the most impactful of the lexical characteristics on 

word learning, followed by word frequency. 
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 Both ridge regression and LASSO generally performed equally for the ILIAD data, 

especially first grade. Their performance was equivalent to multivariate linear regression and 

stepwise regression outcomes for the full models, first grade models, and second grade models. 

Both had similar error measures to multivariate linear regression and stepwise regression for 

third grade but explained less of the variance (𝑅2). This means that they shrinkage did not have 

much of an impact on understanding the data. Both ridge regression and LASSO are linear 

methods that were chosen to account for the multicollinearity, and this demonstrates that while 

some multicollinearity exists, it did not have much impact on model building. 

 Similarly, partial least squares and principal component regression performed equally to 

ridge regression and each other on most datasets. For first grade decontextualized and third grade 

decontextualized and expressive models, they performed similarly for error metrics but PLS 

explained more of the variance than PCR. The performance of these two shrinkage regression 

methods supports that the multicollinearity does not have a very strong influence on modeling 

the data. PLS and PCR would have been stronger candidates with more variables and were not 

appropriate for the ILIAD dataset. Overall, shrinkage methods performed equally or worse than 

multivariate linear regression. 

MARS is designed to adaptively use a combination of basis functions and hinges to 

balance precision with simplicity to create robust models. MARS error metrics were slightly 

better than the error metrics of multivariate linear regression and stepwise regression. However, 

MARS explained more of the variance in word learning (𝑅𝐷𝑒𝑐𝑜𝑛
2 = .84, 𝑅𝐸𝑥𝑝𝑟𝑒𝑠𝑠

2 = .86) than 

multivariate linear regression and stepwise regression (𝑅𝐷𝑒𝑐𝑜𝑛
2 = .69, 𝑅𝐸𝑥𝑝𝑟𝑒𝑠𝑠

2 = .68). MARS 

provided nuanced information about the predictive nature of lexical characteristics on word 

learning using information based on hinges and local intervals. These intervals are adaptive to 
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variability in learning and can change as a function of the predictors. Hinge placement creates 

local regressions that combine to form a complete regression model and these localized trends 

may vary for each lexical characteristic.  

Support vector regression is a flexible method for modeling a variety of data based on the 

selection of a kernel. It outperformed all the shrinkage methods considered based on every error 

measure and 𝑅2 for all models. For the second-grade model based on expressive tasks, it 

explained more of the variance than any other model. SVR is an adaptable method that can work 

with nonlinear data. This gives a better picture of what the impact lexical characteristics have on 

children’s word learning. For age of acquisition, instead of steadily dropping we can see that 

word learning drops sharply between AoA ratings of 4 and 8 and because neutral. This may 

support that words become more difficult for children to learn as the rating goes up until a 

threshold where it becomes too difficult in general for children in first grade. Word frequency 

influences word learning sharply in a positive way and then becomes neutral at a frequency score 

of 400 for decontextualized word learning and 200 for expressive labeling. Higher word 

frequency leads to higher word learning up until a point, but then ceases to improve. These types 

of insights can give researchers a better, more nuanced view of how lexical characteristics 

influence word learning. 

 Support vector regressions did as well as MARS by each metric for all models. This 

supports that it is a strong alternative candidate for describing the influence of lexical 

characteristics on word learning. The weakness of SVR as a model is that it does not have an 

easy to interpret regression like prior methods that have been considered. Because of the nature 

of practitioners in the field, it may be hard to interpret the results because of the “black box” 

nature of the model. Support vector regression relies on the parameter’s proximity to a 
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hyperplane and support vectors and may be difficult for researchers to comprehend. MARS 

performed equally well and is more interpretable, including having a more traditional regression 

model. 

 Regression trees performed nearly as well as SVR for all models, other than the first 

grade expressive model where it did slightly better. Based on the splits chosen, the model 

performs variable selection and for the first-grade example only age of acquisition and level of 

concreteness were included for both decontextualized and expressive tasks. While the method 

did well overall by the metrics of comparison, its discrete nature does not make it as applicable 

in practice. The dendrograms for the model can assist researchers in understanding the outcomes 

for each set of lexical characteristics, which could be useful for building a word learning decision 

framework for future studies.  

 Random forests, gradient boosting machines, and stochastic gradient boosting machines 

were the tree-based ensemble methods considered. Overall, they outperformed the other models 

including MARS. Random forest had the best error measures for 
7

8
 of the models with GBM and 

stochastic GBM outperforming it for the third-grade decontextualized model. Gradient boosting 

and stochastic gradient boosting explained the highest amount of the variance in 
7

8
 of the models, 

with SVR outperforming both for the second-grade expressive model. As with many of the 

models, random forest had a low 𝑅2 for the third grade models and stochastic gradient boosting 

had a low 𝑅2 for the third grade expressive model. These are adaptable and robust models that 

better explained the influence of lexical characteristics on children’s word learning than the other 

models considered. Their biggest shortcoming is their “black box” nature and that they are not 

easily interpretable. The advanced nature of the models makes their implementation more 
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difficult and some level of apriori knowledge is needed, such as the proper number of trees to 

include or the best loss function. 

Educational researchers examining word learning are interested in identifying the ways in 

which children learn words, the instructional programs that facilitate vocabulary acquisition, and 

the lexical features that may impact learning. It is imperative that researchers have results that 

are interpretable and actionable. Therefore, multivariate adaptive regression splines is the better 

model to interpret the influence of lexical characteristics on children’s word learning based on 

the ILIAD data. It has stronger performance than linear models and shrinkage methods. SVR 

explains the influence comparably to MARS but it not as interpretable. Support vector 

regression, random forest, gradient boosting, and stochastic gradient boosting are “black box” 

models that are difficult to implement and interpret for researchers without expertise in them. 

The ensemble methods did not outperform MARS enough to justify the loss of interpretability. 

MARS is a flexible and robust method of regression that can deal with some level of 

multicollinearity and works well with nonlinear data. It is interpretable and does not take too 

much prior knowledge to implement, as linear splines work for most situations. Variable 

selection is automatically done during model building so it can deal with a large number of 

parameters and continuous variable selection is performed so it is even more adaptable the 

discrete variable selection methods. Based on the exploration of the ILIAD data and comparison 

of regression models, MARS is an excellent choice for behavioral health researchers studying 

children’s word learning. MARS has the potential to advance the field and bring new insights by 

giving researchers a robust, adaptable tool that can handle most types of data. 

 In this chapter, a strong candidate model, MARS, was proposed to analyze 

children’s word learning. This comparison followed the same criteria for comparing models in 
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chapter 4 based on the assumptions, strengths, and weaknesses. A subset of the data was used to 

compare the models and validate the choice for selecting MARS as the strongest candidate 

method to regress the data.  
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CHAPTER SIX: 

USING MARS TO PREDICT THE RELATION BETWEEN LEXICAL 

CHARACTERISTICS AND WORD LEARNING 

Note to Reader 

This chapter presents a manuscript that has been submitted to Journal of Speech, 

Language, and Hearing Research for publication and is currently under review. 

Introduction 

In the previous chapter we considered advanced statistical learning and machine learning 

models that are more robust and can improve the understanding of the ILIAD word learning data. 

The shrinkage methods performed well but did not stand out which may mean that the 

multicollinearity was not as impactful as believed or their own assumptions were too restrictive. 

Multivariate adaptive regression splines, support vector machines, random forest, gradient 

boosting, and stochastic gradient boosting all performed very well at modeling the data based on 

model fit metrics. Of these, MARS stands out because it is more interpretable than the other 

methods for regressing the data. It is not a “black box” model like random forest, gradient 

boosting, and stochastic gradient boosting, which do not include an underlying model that can be 

considered. Support vector regression is difficult to interpret because it is dependent on the 

support vectors and similarly does not have a tradition model. MARS does not require much a 

priori knowledge about the distribution of the data and works well in most situations using linear 

basis functions. We chose MARS to model children’s word learning because it is a robust, 
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adaptable method for regression that has a strong balance of precision while being interpretable 

and relatively simple to implement. 

The preceding chapters have demonstrated the merits for using MARS as an alternative 

to other commonly used statistical techniques to examine word learning studies. Based on the 

promising results of applying MARS to the ILIAD dataset, other analytic problems may be 

pursued this way. We have explained why MARS was a strong choice to model the data using the 

first-grade dataset as an example. The next step is to apply MARS to other word learning datasets 

to determine if it performs similarly. This chapter consists of two studies. In the first study two 

additional word learning datasets will be used to compare performance of different modeling 

techniques to validate previous findings using outcomes from a study examining Story Friends, a 

preschool vocabulary program, and outcomes from a study examining a kindergarten vocabulary 

program. In the second study, MARS will be used to predict the influence of lexical 

characteristics on word learning. In the preschool study, there was only one measure of word 

learning, a decontextualized measure. In order to compare model results between the three 

datasets, only the decontextualized word learning was used for analysis. The detailed model 

information about the most relevant characteristics will be used in a comparative analysis to 

explore trends found in word learning.  

Outcomes that corroborate the findings in this study may have important educational 

implications for vocabulary instruction. If we can model similar results with word learning 

outcomes from studies with new participants and different words, it would strengthen our 

argument for using the relevant predictors to create a developmentally appropriate sequence of 

targets for instruction. This sequence would aid in the reduction of variability in word selection. 
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Study 1: Model Comparison to Validate MARS 

Story Friends Preschool Data Description 

Story Friends, a supplemental preschool vocabulary program (Goldstein & Kelley, 2016). 

Story Friends was created as a result of the ILIAD study. Many of the instructional components 

are similar including explicit, embedded instruction, providing multiple contexts for the words 

and opportunities to respond to instruction. The explicit instruction included a child-friendly 

definition, a contextual example of the word (related directly to the story) and decontextualized 

examples of the word (related to something outside of the story).  

The measurement tool used to assess word learning was similar to the decontextualized 

measure used in the ILIAD study. Children were asked “Tell me, what does __ mean?” If the 

child did not provide a correct response a secondary contextual prompt from the story was 

provided (e.g., “Ellie is enormous. Enormous means…”). Children’s responses were scored on a 

three-point scale, 0 for an incorrect response, 1-point for partial knowledge, and 2-points for a 

correct definition. Just as with the ILIAD data, the partial and full knowledge scores were 

collapsed into one category: learned. Thus, the outcomes for Story Friends were binary, 0-points 

for not learned and 1-point for learned.  

The Story Friends dataset includes word learning outcomes for 72 words learned by 112 

preschool children. Each vocabulary word was characterized for the following lexical 

characteristics: word frequency, age of acquisition, level of concreteness, neighborhood density, 

and phonotactic probability. 

As with the ILIAD dataset, an exploratory data analysis was performed. The average 

percentage of preschool children who learned words was 57% (SD 19%) with a median of 56% 

(ranging from 19% – 89%). Descriptive statistics including mean, standard deviation, median, 
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range, and skew for the lexical characteristics are listed in Table 6.1. This can be visualized in 

Figure 6.1, the boxplot for the lexical characteristics for Story Friends words, standardized for 

comparison. Neighborhood density and word frequency were heavily skewed. The data was then 

checked for linearity, normality, multicollinearity.  

Table 6.1. Descriptive Statistics of Model Variables for Story Friends 

 M SD m Min Max Skew 

AoA 7.01 1.08 6.92 4.91 9.5 0.31 

Neighborhood 

Density 
1,424.23 6,244.15 36.84 0 4,9799.94 6.73 

Concreteness 2.84 .76 2.81 1.25 4.67 0.39 

Phonotactic 

Probability 
.27 .12 .24 .08 .62 0.85 

Word Freq 45.65 87.44 17.75 0.20 590.69 4.14 

 

Figure 6.1. Box Plot for Story Friends Model Variables (Lexical Characteristics) 

 

Note. WF= Word Frequency, AoA= Age of Acquisition, C= Concreteness, ND= Neighborhood Density, PP= 

Phonotactic Probability 
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The data was first checked for correlations between variables and the results can be found 

in Table 6.2. Word frequency and AoA are correlated according to Pearson, Kendall, and 

Spearman tests (𝑟 = −.48, 𝜏 = −.40, 𝜌 = −.53). Word frequency was also correlated with level 

of concreteness for each test (𝑟 = −.33, 𝜏 = −.29, 𝜌 = −.42) and with neighborhood density 

according to Kendall and Spearman (𝜏 = .18, 𝜌 = .26). Neighborhood density is correlated with 

every parameter for the Kendall test and Spearman test. Overall, there is a moderate amount of 

correlation, which is similar to the ILIAD dataset. This strengthens the argument for continuing 

to use MARS over multiple and stepwise regression methods. 

Tables 6.2. Correlation between Variables for Story Friends 

Pearson W Freq AoA Concrete NDen Phon Prob 

W Freq 1     

AoA -.48* 1    

Concrete -.33* .11 1   

NDen .00 -.10 .11 1  

Phon Prob -.05 .14 -.18 -.24* 1 

Kendall 

W Freq 1     

AoA -.40 1    

Concrete -.29* .09 1   

NDen .18* -.22* .19* 1  

Phon Prob .08 .13 -.13 -.41* 1 

Spearman 

W Freq 1     

AoA -.53* 1    

Concrete -.42* .15 1   

NDen .26* -.31* .27* 1  

Phon Prob -.11 .18 .18 -.58* 1 

 

 Variance inflation factors were calculated for the Story Friends data and can be found in 

Table 6.3. Using the rule of thumb that values between 1 and 5 represent moderate 

multicollinearity, the table shows that there exists low to moderate multicollinearity within the 

data. Homoscedasticity was checked using the Breusch-Pagan test and a test statistic of 5.36 was 
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calculated. This test statistic was not significant, therefore the data is homoscedastic. This differs 

from the ILIAD dataset. 

Table 6.3. Variance Inflation Factor (VIF) Test for Multicollinearity 

Variables Tolerance VIF 

Word Frequency .6912568 1.446640 

Age of Acquisition .7510978 1.331385 

Concreteness .8461178 1.181868 

Neighborhood Density .9334652 1.071277 

Phonotactic Probability .8968779 1.114979 

Note. Lower VIF values indicate the data has lower multicollinearity. 

 

 Univariate normality was checked using the Shapiro-Wilk W test and the results can be 

found in Table 6.4. All of the scores were significant, meaning that none of the parameters 

follow a normal distribution. Looking at the W test statistics, neighborhood density and word 

frequency differ from normal drastically. AoA, level of concreteness, and phonotactic probability 

are closer to a normal distribution. These are the results that were expected based on the skew in 

the descriptive statistics. 

Table 6.4. Shapiro-Wilk W Test for Univariate Normal  

Parameter W Score p-value 

Age of Acquisition .97457 .1525 

Neighborhood Density .22523 < .001 

Level of Concreteness .9652 .0437 

Phonotactic Probability .93638 .0013 

Word Frequency .49676 < .001 

Note. W scores can range from 0 to 1, values closer to 1 indicate data is normally distributed. 
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Multivariate normality was checked and the results are in Table 6.5. The Mardia 

skewness and kurtosis, Doornik-Hansen, Henze-Zirkler, Royston, and Energy E tests all agreed 

that the Story Friends data is not multivariate normal. The Story Friends data follows the ILIAD 

data based on the exploration of correlation, multicollinearity, univariate normality, and 

multivariate normality. It was found to be homoscedastic, which differs from the ILIAD first 

grade and full dataset which were found to be heteroscedastic. These conditions for the data 

justify the continued implementation of MARS for modeling the data. 

Table 6.5. Multivariate Normal Tests 

Test Test Statistic Multivariate Normal 

Mardia Skewness MS = 847.19* NO 

Mardia Kurtosis MK = 32.36* NO 

Doornik-Hansen E = 656.48* NO 

Henze-Zirkler HZ = 3.24* NO 

Royston HZ = 145.88* NO 

Energy E=5.15 NO 

 

Kindergarten Data Description 

A study examining a supplemental vocabulary program was implemented with 174 

kindergarteners and taught 98 vocabulary words. This program was the precursor to the 

vocabulary program implemented in the ILIAD study and included word learning outcomes for 

an expressive and decontextualized learning measures. For decontextualized learning, the 

average percentage of kindergarten children who learned words was 28% (SD 29%) with a 

median of 15% (ranging from 0% – 94%). For expressive tasks, the average percentage of 

kindergarten children who learned words was 23% (SD 27%) with a median of 13% (ranging 

from 0% – 97%). Descriptive statistics including mean, standard deviation, median, range, and 

skew for the lexical characteristics are listed in Table 6.6. This can be visualized in Figure 6.2, 
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the boxplot for the lexical characteristics for kindergarten words, standardized for comparison. 

Neighborhood density and word frequency were heavily skewed. The data was then checked for 

linearity, normality, multicollinearity. 

 

Table 6.6. Descriptive Statistics of Model Variables for Kindergarten 

 M SD m Min Max Skew 

AoA 8.06 2.07 8.28 3.11 11.78 -.57 

Neighborhood 

Density 
1421.19 8140.46 8.65 0 76818.95 8.26 

Concreteness 3.15 .90 2.99 1.66 5 .51 

Phonotactic 

Probability 
.30 .14 .26 .02 .74 .88 

Word Freq 36.61 127.99 8.82 .31 1102.98 6.61 

 

 

Figure 6.2. Box Plot for Kindergarten Model Variables (Lexical Characteristics) 

 

Note. WF= Word Frequency, AoA= Age of Acquisition, C= Concreteness, ND= Neighborhood Density, PP= 

Phonotactic Probability 
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The correlations between variables for the kindergarten dataset can be found in Table 6.7. 

Word frequency and AoA are correlated according to Pearson, Kendall, and Spearman tests 

(𝑟 = −.43, 𝜏 = −.48, 𝜌 = −.65). Word frequency was also correlated with level of concreteness 

for each test (𝑟 = −.31, 𝜏 = −.23, 𝜌 = .33) and with neighborhood density according to Kendall 

and Spearman (𝜏 = .36, 𝜌 = .52). Neighborhood density is correlated with every parameter for 

the Kendall test and Spearman test. Overall, there is a moderate amount of correlation, which 

agrees well with the ILIAD and Story Friends datasets. This strengthens the argument for 

continuing to use MARS over multiple and stepwise regression methods. 

 

Tables 6.7. Correlation between Variables for Kindergarten 

Pearson W Freq AoA Concrete NDen Phon Prob 

W Freq 1     

AoA -.43* 1    

Concrete .31* -.62* 1   

NDen .03 -.29* .27* 1  

Phon Prob -.18 .36* -.25* -.24* 1 

Kendall 

W Freq 1     

AoA -.48* 1    

Concrete .23* -.33* 1   

NDen .36* -.34* .26* 1  

Phon Prob .20* .26* -.15 -.23* 1 

Spearman 

W Freq 1     

AoA -.65* 1    

Concrete .33* -.47* 1   

NDen .52* -.49* .37* 1  

Phon Prob -.31* .39* -.21* -.33* 1 

 

 

Variance inflation factors for the kindergarten data can be found in Table 6.8. The table 

shows that there exists low to moderate multicollinearity within the data. Homoscedasticity was 

checked using the Breusch-Pagan test resulting in a test statistic of 4.39 for decontextualized 
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learning and 17.2 for expressive tasks. The decontextualized test statistics was not significant, 

meaning the data is homoscedastic. 

 

Table 6.8. Variance Inflation Factor (VIF) Test for Multicollinearity (Kindergarten) 

Variables Tolerance VIF 

Word Frequency .7980841 1.253001 

Age of Acquisition .5040246 1.984030 

Concreteness .5970255 1.674970 

Neighborhood Density .8693382 1.150300 

Phonotactic Probability .8492778 1.177471 
Note. Lower VIF values indicate the data has lower multicollinearity. 

 

 Univariate normality was checked using the Shapiro-Wilk W test and the results can be 

found in Table 6.9. None of the parameters follow a normal distribution based on the 

significance for each test. Looking at the W test statistics, neighborhood density and word 

frequency differ from normal drastically, while AoA, level of concreteness, and phonotactic 

probability are closer to a normal distribution. These are the results that were expected based on 

the skew in the descriptive statistics. 

 

Table 6.9. Shapiro-Wilk W Test for Univariate Normal  

Parameter W Score p-value 

Age of Acquisition .95963 .0043 

Neighborhood Density .16607 < .001 

Level of Concreteness .93852 < .001 

Phonotactic Probability .94674 < .001 

Word Frequency .26036 < .001 

Note. W scores can range from 0 to 1, values closer to 1 indicate data is normally distributed. 

 

Multivariate normality was checked, and the results are listed in Table 6.10. The Mardia 

skewness and kurtosis, Doornik-Hansen, Henze-Zirkler, Royston, and Energy E tests all agreed 

that the kindergarten data is not multivariate normal. The kindergarten data is very similar to the 
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Story Friends and ILIAD dataset based on the exploration of correlation, multicollinearity, 

univariate normality, and multivariate normality. It was found to be homoscedastic, which differs 

from the ILIAD first grade and full dataset which were found to be heteroscedastic, but agrees 

with the second grade data and Story Friends data. These conditions for the data justify the 

continued implementation of MARS for modeling the data. 

Table 6.10. Multivariate Normal Tests (Kindergarten) 

Test Test Statistic Multivariate Normal 

Mardia Skewness MS = 2001.19* NO 

Mardia Kurtosis MK = 68.28* NO 

Doornik-Hansen E = 872.70* NO 

Henze-Zirkler HZ = 5.30* NO 

Royston HZ = 192.51* NO 

Energy E=8.52* NO 

 

Results 

Two new datasets were modeled to compare the performance and validate the decision to 

choose MARS for modeling children’s word learning. Each technique was used to model the 

Story Friends preschool data and the kindergarten dataset without expressive tasks and 

decontextualized learning outcomes. Each model was compared using the coefficient of 

determination (R2), mean absolute error (MAE), mean squared error (MSE), and root mean 

squared error (RMSE). The results for this comparison can be found in Table 6.11. As with the 

ILIAD data comparison, MARS better describes the data than multivariate linear regression, 

stepwise regression, and the shrinkage methods. Regression trees and support vector regression 

had similar performance to MARS for each of the datasets. Random forests did not explain as 

much of the variance as MARS for each dataset but had smaller error measures. Gradient 

boosting machines slightly outperformed MARS for each dataset and stochastic gradient 

boosting machines outperformed MARS for the Story Friends data but were similar for the 

kindergarten data. 
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Discussion 

 The results from the comparison are similar to the performance for each model using the 

ILIAD dataset. MARS outperforms multivariate linear regression and stepwise regression based 

on every fit metric. Based on the exploration of the data, this was expected because many of 

assumptions they rely on are not true for the data. Similarly, the shrinkage methods had weaker 

results than MARS. Support vector regression was originally chosen because it has comparable 

adaptability and robustness to MARS. This is supported by the results of the comparison, 

performing equally well to MARS for every dataset. While support vector regression would be a 

strong choice for modeling children’s word learning, the lack of an easy to interpret model and 

the complexity of choosing hyperparameters makes MARS strong alternative. 

 Regression trees performed well and the resulting tree diagrams give a novel 

interpretation of the data. The nature of tree diagrams leaves many gaps in the outputs for 

prediction and regression trees do not have an easily interpretable model. Because of this, 

analysis of lexical characteristics makes discrete jumps and some information for decision 

making may be lost. The more advanced tree based methods all outperformed MARS to some 

degree. As with the ILIAD comparison, their “black box” nature means the results will be less 

interpretable for researchers. Random forest and stochastic gradient boosting machines often 

require larger datasets, so their performance may be more variable.  

 Multivariate adaptive regression splines continues to be a strong choice for modeling 

children’s word learning. It is adaptable and robust, balancing performance with interpretability. 

While some models may have less error or explain more of the variance, the results may not be 

as actionable as MARS and simpler models. The consistent performance of MARS validates it as 

the best model for children’s word learning research. 
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Table 6.11. Model Comparison for Kindergarten and Story Friends 

 MARS MR SR Ridge  LASSO PLS PCR SVR CART RF GBM SGBM 

Story Friends           

R2 .30 .14 .09 .12 .09 .14 .14 .31 .30 .12 .71 .88 

MAE .13 .15 .16 .15 .16 .15 .15 .12 .13 .07 .08 .05 

MSE .03 .03 .03 .03 .03 .03 .03 .03 .03 .01 .01 .00 

RMSE .16 .18 .18 .18 .18 .18 .18 .16 .16 .09 .10 .07 

Kindergarten Decontextualized  

R2 .84 .71 .71 .68 .70 .71 .66 .81 .76 .75 .91 .85 

MAE .09 .12 .12 .13 .12 .12 .13 .09 .10 .05 .06 .08 

MSE .01 .02 .02 .03 .02 .02 .03 .02 .02 .00 .01 .01 

RMSE .11 .15 .15 .16 .16 .15 .17 .12 .14 .06 .09 .11 

Kindergarten Expressive 

R2 .81 .63 .63 .63 .62 .63 .63 .78 .64 .71 .83 .83 

MAE .09 .12 .12 .12 .12 .12 .12 .08 .08 .05 .08 .08 

MSE .01 .03 .13 .03 .03 .03 .03 .02 .01 .00 .01 .01 

RMSE .11 .16 .16 .16 .16 .16 .16 .13 .11 .07 .11 .11 
Note. MARS= Multivariate Adaptive Regression Splines, MR= multivariate linear regression, SR= Stepwise Regression, LASSO= Least Absolute 

Shrinkage & Selection Operator, PLS= Partial Least Squares, PCR= Principal Component Regression, SVR= Support Vector Regression, CART= 

Classification & Regression Tree, RF= Random Forest, GBM= Gradient Boosting Machines, SGBM= Stochastic Gradient Boosting Machines, MAE= 

Mean Absolute Error, MSE= Mean Square Error, RMSE= Root Mean Square Error. 
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Study 2: Using Multivariate Adaptive Regression Splines (MARS) to Examine the 

Influence of Lexical Characteristics on Word Learning 

The aim for study 2 was to use MARS to model the influence of lexical characteristics on 

children’s decontextualized word learning from the ILIAD, Story Friends, and kindergarten 

datasets.  

ILIAD Results 

Table 6.12 lists the descriptive statistics for each grade level. For each of the grade-level 

models, the following results are presented: variable importance and selection criteria, the final 

model including regressions and associated hinges for the statistically significant lexical 

characteristics related to word learning, and the graphs associated with each model. Each graph 

represents the effect of each variable on word learning while all others were held constant. The 

graphs are ordered by calculated importance. 

First Grade 

For the first-grade model, the percentage of children who learned the target vocabulary 

words (n= 143 words) taught in first grade were entered into the model. The resulting model 

identified five lexical characteristics as relevant predictors of word learning listed in Table 6.13 

by order of importance. The most important variable was age of acquisition followed by level of 

concreteness, neighborhood density, word frequency, and finally phonotactic probability. The 

final model included seven basis functions listed in Table 6.14.  

Using the graphical representation of model results in Figure 6.3, we can examine the relation 

between word learning and each characteristic while all others are held constant. Age of 

acquisition remained steady until the hinge at 5.37 years old where the percentage of children 

who learned words decreased rapidly until the age of 7.81. There was a slight jump in learning 

between age of acquisition ratings of 7.81 and 8.45 years old, and then slowly decreased as age 

of acquisition goes up. The percent of children who learned words remained steady for words 

with concreteness ratings from 1.5 to 3, and then slowly increased after the hinge at 3. Words 

that were more concrete were learned by more first graders. Trends for neighborhood density, 
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word frequency, and phonotactic probability remained neutral indicating these variables did not 

seem to impact the number of words learned by children. The variability in learning was mostly 

accounted for by age of acquisition and level of concreteness. 

 

Table 6.12. Descriptive Statistics for ILIAD Model Variables (Lexical Characteristics) 

First Grade (n= 143) M SD m Min Max Skew 

Word Learning 26% 29% 14% 1% 99% – 

AoA 8.80 2.17 9.06 3.25 13.61 -.46 

N_Den 1845.32 8474.12 6.49 0 69210.62 6.23 

Conc_Mean 2.96 .97 2.76 1.50 5 .64 

Phon_Prob .22 .12 .21 .03 .52 .57 

SUBTLwf 19.29 57.94 6.90 .27 509.37 6.67 

Second Grade (n= 126)      

Word Learning 38% 28% 27% 3% 97% – 

AoA 8.63 2.29 8.63 3 13.41 -.23 

N_Den 1106.11 5560.46 8.53 0 45721.92 6.92 

Conc_Mean 2.89 1.00 2.63 1.46 4.97 .72 

Phon_Prob .24 .15 .21 .02 .66 .76 

SUBTLwf 31.37 105.91 7.63 .02 801.82 6.07 

Third Grade (n= 108)      

Word Learning 22% 15% 18% 3% 74% – 

AoA 10.30 1.41 10.25 6.75 14.5 .15 

N_Den 771.50 6666.04 1.41 0 69210.62 10.02 

Conc_Mean 2.39 .62 2.29 1.43 4.15 .81 

Phon_Prob .24 .14 .21 .03 .72 1.37 

SUBTLwf 4.82 6.39 2.46 .08 35.65 2.57 
Note: M= mean, SD= standard deviation, m= median, min= minimum value, max= maximum value, n= number 

of words, AoA= age of acquisition, N_Den= neighborhood density, Conc_Mean= level of concreteness, 

Phon_Prob=phonotactic probability, SUBTLwf= word frequency. Skew is not reported for word learning. 

 

Table 6.13. Importance of Explanatory Variables in the First Grade MARS Model 

Variable nsubsets GCV RSS 

Age of Acquisition 7 100 100 

Level of Concreteness 5 22.1 26 

Neighborhood Density 4 16 20.3 

Word Frequency 2 8.1 12.1 

Phonotactic Probability 1 5.5 8.3 
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Table 6.14. MARS Results for First Grade Decontextualized Word Learning 

Predictor Type Hinge 

Location 

Coefficient 

(Intercept)   0.91 

AoA Right 5.37 -0.27 

AoA Right 7.81 0.42 

AoA Right 8.45 -0.17 

Concrete  Right 3.00 0.07 

N Den Left 126.04 -0.001 

Word Freq Left 32.22 -0.003 

Phono Prob Left 0.08 -3.05 
Note. Word Freq= Word Frequency; AoA= Age of Acquisition; Concrete= Level of Concreteness; N Den= 

Neighborhood Density; Phono Prob= Phonotactic Probability` 

 

 

Figure 6.3. Variable Plot for First Grade Decontextualized Learning using MARS 

 

Second Grade 

For the second-grade model, the percentage of children who learned the target vocabulary 

words (n= 126 words) taught in second grade were entered into the model. In Table 6.15, the 

most important variable was age of acquisition followed by level of concreteness, word 

frequency, neighborhood density, and finally phonotactic probability. The final model included 

nine basis functions listed in Table 6.16 and is depicted in Figure 6.4. Based on age of 

acquisition, the percentage of children who learned words decreased slowly until age 9.35 where 

Note. Scale for each x-axis differs based on lexical characteristic values.  
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learning seemed to remain neutral until 11.44. Learning began to increase for words with age of 

acquisition ratings older than 11.44. Learning steadily increased as words became more concrete 

(values closer to 5). Word frequency remained neutral; learning did not seem to vary for words 

as frequency rates increased. The percent of children who learned words steadily declined as 

neighborhood density values increased, that is why there is no hinge present in the figure. Words 

in denser neighborhoods were more difficult for children to learn compared to words in sparser 

neighborhoods. Phonotactic probability had a slightly varied impact on the percent of children 

who learned words; learning drops rapidly as probabilities increased to .07 and then remained 

mostly neutral with minimal increases and decreases between hinges at probabilities .22 and .45. 

 

Table 6.15. Importance of Explanatory Variables in the Second Grade MARS Model 

Variable nsubsets GCV RSS 

Age of Acquisition 9 100 100 

Level of Concreteness 8 35.8 44.8 

Word Frequency 7 26.8 37.2 

Neighborhood Density 6 16.3 29.6 

Phonotactic Probability 5 16.9 27.8 

 

Table 6.16. MARS Results for Second Grade Decontextualized Word Learning 

Predictor Type Hinge 

Location 

Coefficient 

(Intercept)   -3.62 

AoA Left 9.35 .09 

AoA Right 11.44 .10 

Concrete Left 4.44 -.09 

Word Freq Left 12.35 -.02 

N Den Right  -.00001 

Phono Prob Right .07 11.60 

Phono Prob Right .22 -1.41 

Phono Prob Left .45 10.62 

Phono Prob Right .45 -9.48 
Note. Word Freq= Word Frequency; AoA= Age of Acquisition; Concrete= Level of Concreteness; N Den= 

Neighborhood Density; Phono Prob= Phonotactic Probability` 
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Figure 6.4. Variable Plot for Second Grade Decontextualized Learning using MARS  

 

Third Grade 

For the third-grade model, word learning data for 108 words taught in third grade and the 

lexical characteristics describing those words were entered into the model. MARS identified age 

of acquisition as the most important variable, followed by neighborhood density, word 

frequency, and finally level of concreteness, listed in Table 6.17. Results of the third-grade 

model are listed in Table 6.18 and depicted in Figure 6.5. The percentage of children who 

learned words remained constant until an AoA rating of 9.67, then slowly decreased as AoA 

increased. Learning steadily increased as neighborhood density values increase, as words in 

denser neighborhoods were easier for children to learn compared to words in sparser 

neighborhoods. As the word frequency measures increased, so do the percentage of children who 

learned words. Words that were more abstract were slightly more difficult for children to learn, 

but once words reached a concreteness rating of 2.3 learning remained neutral. It appears that 

level of concreteness may have had a small impact on third grade students’ word learning. 

 

 

 

Note. Scale for each x-axis differs based on lexical characteristic values.  
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Table 6.17. Importance of Explanatory Variables in the Third Grade MARS Model 

Variable nsubsets GCV RSS 

Age of Acquisition 7 100 100 

Neighborhood Density 5 62.4 68.8 

Word Frequency 4 55.5 61.8 

Level of Concreteness 4 53 59.3 

 

 

 

 

Figure 6.5. Variable Plot for Third Grade Decontextualized Learning using MARS 

 

 

Table 6.18. MARS Results for Third Grade Decontextualized Word Learning 

Predictor Type Hinge 

Location 

Coefficient 

(Intercept)   .12 

AoA Right 9.67 -.05 

N Den Right  .001 

N Den Right 82.79 -.001 

Word Freq Left 11.84 .007 

Word Freq Right 11.84 .01 

Concrete Right 2 .31 

Concrete Right 2.3 -.30 
Note. Word Freq= Word Frequency; AoA= Age of Acquisition; Concrete= Level of Concreteness; N Den= 

Neighborhood Density; Phono Prob= Phonotactic Probability` 

Note. Scale for each x-axis differs based on lexical characteristic values.  
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Story Friends Preschool Results 

The percentage of children who learned each target word was entered into the model. 

Through variable selection, the most important characteristics related to preschoolers’ word 

learning were level of concreteness, age of acquisition, and word frequency, listed in Table 6.19. 

Age of acquisition and word frequency were both 71% - 75.4% as important relative to level of 

concreteness. Neighborhood density and phonotactic probability were not found to be important 

and thus not included in the model.  

 

Table 6.19. MARS Variable Selection for Story Friends 

Variable nsubsets GCV RSS 

Level of Concreteness 5 100 100 

Age of Acquisition 3 71 75.4 

Word Frequency 3 71 75.4 

 

The final model includes six basis functions reported in Table 6.20. Level of concreteness 

was the most related to word learning. Words that were more concrete were easier for children to 

learn than words that were more abstract. Up until the hinge at 2.43, level of concreteness did not 

impact learning and then an interesting artifact can be seen where learning changes rather 

quickly for words with concreteness levels between 2.6 and 2.9. Learning then slowly increased 

as words became more concrete (concreteness ratings > 2.9). Age of acquisition was negatively 

related to preschoolers’ word learning. There was a steady decline in learning as age of 

acquisition ratings got older until the hinge at approximately 8 years, where AoA did not seem to 

further impact learning. Word frequency also had a negative impact on word learning; as 

frequency ratings increased, learning decreased until the hinge at 81.03. Frequency measures 



 
 

146 
 

greater than 81 did not seem to impact word learning. The partial dependency plot for the 

variables can be found in Figure 6.6, where all other variables are held constant. 

Table 6.20. MARS Results for Story Friends 

Predictor Type Hinge 

Location 

Coefficient 

(Intercept)   .33 

Concrete Right 2.43 1.83 

Concrete Right 2.6 -5.84 

Concrete Right 2.75 6.41 

Concrete Right 2.9 -2.36 

AoA Left 8.05 .07 

Word Freq Left 81.03 .002 

Note. Word Freq= Word Frequency; AoA= Age of Acquisition; Concrete= 

Level of Concreteness; N Den= Neighborhood Density; Phono Prob= 

Phonotactic Probability` 

 

Figure 6.6. Variable Plot for Story Friends Decontextualized Learning using MARS 

 

Kindergarten Results 

The percentage of children who learned each target word was entered into the model. 

Through variable selection, the most important characteristics related to kindergarteners’ word 

learning were age of acquisition, level of concreteness, and word frequency, listed in Table 6.21. 

Note. Scale for each x-axis differs based on lexical characteristic 

values.  
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Neighborhood density and phonotactic probability were not found to be important and thus not 

included in the model.  

Table 6.21. MARS Variable Selection for Kindergarten 

Variable nsubsets GCV RSS 

Age of Acquisition 7 100 100 

Level of Concreteness 6 20.5 28.3 

Word Frequency 3 9.1 16.8 

 

The final model includes seven basis functions reported in Table 6.22. Age of acquisition 

was the most related to word learning. Words that were rated as younger were easier for children 

to learn than words that were rated as learned later. Up until the hinge at 5.37, age of acquisition 

did not impact learning and then rapidly declines until the hinge at 6.65 where a short increase in 

learning occurs until the hinge at 7.58 where learning again slowly declines. Level of 

concreteness had a neutral impact on word learning until the hinge at 4.31 where learning rapidly 

increased. Words that were more concrete were easier for kindergarteners to learn. Word 

frequency did not seem to impact word learning after the hinge at 2.59. The partial dependency 

plot for the variables can be found in Figure 6.7, where all other variables are held constant. 

 

Table 6.22. MARS Results for Kindergarten 

Predictor Type Hinge 

Location 

Coefficient 

(Intercept)   .70 

AoA Right 5.37 -.35 

AoA Right 6.65 .44 

AoA Right 7.58 -.58 

AoA Right 8 .45 

Concrete Right 3.61 -.23 

Concrete Right 4.31 1.00 

Word Freq Left 2.59 .05 

Note. Word Freq= Word Frequency; AoA= Age of Acquisition; Concrete= 

Level of Concreteness; N Den= Neighborhood Density; Phono Prob= 

Phonotactic Probability 
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Variable Importance 

Table 6.23 shows what variables were most important for each MARS model. The 

preschool model found level of concreteness to be the most important variable, while the 

kindergarten, first-, second-, and third-grade models all determined the most important lexical 

characteristic was age of acquisition. For three out of the four models, level of concreteness was 

the second most important variable. Interestingly, the third-grade model indicated neighborhood 

density as the second most important variable. Phonotactic probability was included in the first 

and second grade models, but it had almost no impact on learning. 

 

Figure 6.7. Variable Plot for Kindergarten Decontextualized Learning using MARS 

 

 

 

 

 

 

 

 

 

 

 

Goodness of Fit 

The outcome of the MARS models can be critiqued using goodness of fit measures listed 

in Table 6.24. Based on the results of the error analyses the grade level models performed well 

according to the error measures. For the first and second grade models the variables did very 

well explaining the variance in word learning (𝑅1𝑠𝑡
2 = 0.84, 𝑅2𝑛𝑑

2 = 0.72) but the third-grade 

model did not (𝑅3𝑟𝑑
2 = 0.42). 

Note. Scale for each x-axis differs based on lexical characteristic 

values.  
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Table 6.23. Variable Importance Across Grade Levels 
Importance Preschool Kindergarten 1st Grade 2nd Grade 3rd Grade 

1 

Level of 

Concretenes

s  

Age of 

Acquisition 

Age of 

Acquisition 

Age of 

Acquisition 

Age of 

Acquisition 

2 
Age of 

Acquisition 

Level of 

Concreteness 

Level of 

Concreteness 

Level of 

Concreteness 

Neighborhood 

Density 

3 
Word 

Frequency 

Word 

Frequency 

Neighborhood 

Density 

Neighborhood 

Density 

Word 

Frequency 

4 
 

 
Word 

Frequency 

Word 

Frequency 

Level of 

Concreteness 

5 
 

 
Phonotactic 

Probability 

Phonotactic 

Probability 
 

 

 

Table. 6.24. Goodness of Fit Results 
Error Metric Preschool Kindergarten 1st Grade 2nd Grade 3rd Grade 

R2 0.30 0.84 0.84 0.72 0.42 

Mean Absolute Error (MAE) 0.13 0.12 0.09 0.12 0.08 

Mean Standard Error (MSE) 0.03 0.02 0.01 0.02 0.01 

RMSE 0.16 0.15 0.12 0.15 0.11 

General Cross Validation (GCV) 0.04 0.02 0.01 0.03 0.01 

 

Discussion 

Lexical Characteristics & Word Learning 

A secondary data analysis of three investigations examining the effects of supplemental 

vocabulary interventions were conducted using MARS to identify the relations between lexical 

characteristics of vocabulary words and the word learning outcomes from preschool, 

kindergarten, first, second, and third grade students. The lexical characteristics examined were 

age of acquisition, neighborhood density, level of concreteness, phonotactic probability, and 

word frequency. 

Age of Acquisition. The MARS analysis revealed significant relations between age of 

acquisition and students’ vocabulary learning in the preschool, kindergarten, first-, second-, and 

third- grade models. We found that words with a younger age of acquisition rating were easier 

for children to learn than words with older age of acquisition ratings. Our findings support the 

results of a lexical access study by Newman and German (2002) who found children had an 

easier time naming words with lower age of acquisition. Although this seems rather intuitive, and 
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somewhat circular, this is an interesting factor to discuss. The level of importance attributed to 

age of acquisition is surprising considering the nature in which these ratings were obtained. 

Adults were asked to recall the age at which they learned a word. Learned was defined as 

understanding the word if others used it, but that they did not necessarily use it themselves. This 

can be a difficult task, especially when trying to recall learning at a very young age. Yet 

researcher have examined the validity of this and found that adult ratings of age of acquisition 

are valid (Gilhooly & Gilhooly, 1980; Gilhooly & Logie, 1980). Findings from this study 

reinforce age of acquisition as a reliable metric.  

In second grade there was an increase in learning at the 11.44 hinge. This increase is an 

interesting artifact. It could be that the word(s) had other contributing factors, like a higher level 

of concreteness, that lead to increased learning. The definition and/or the contexts used for 

instruction may have also contributed to the increase in learning. As children progressed through 

grade levels (got older) the AoA at which learning began to decrease seemed to progress as well, 

from AoA ratings of 5 years-old in preschool up to almost 10 years-old in third grade.  

Now that we know age of acquisition was strongly related to sophisticated vocabulary 

learning of children from a range of grade levels, additional analyses and studies are warranted to 

discover the range of AoA ratings that lead to optimized learning for each grade level. Because 

of the way MARS models data, we have detailed information about how age of acquisition 

impacts learning using hinges. When designing future studies, the hinge data could help when 

selecting words for instruction by pinpointing the exact age range most appropriate for each 

grade level. This selection of words would be more precise than using general linear trends. It 

may be that teachers should focus instruction on words acquired later (within reason given the 

age of students) because they are more difficult for children to learn than words that are acquired 

at an earlier age. 

Level of Concreteness. MARS modeled level of concreteness as the second most 

important lexical characteristic related to word learning in the kindergarten, first and second 

grade-level models. Our results indicate, that for children in preschool, kindergarten, first, and 
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second grades, words that were more concrete, or high in imageability, were easier to learn than 

words that were more abstract, meaning they were more difficult to explain and picture. The 

third-grade model selected concreteness as the least important variable, it did not seem to 

significantly impact word learning. Interestingly, MARS modelled level of concreteness as the 

most important variable related to preschoolers’ word learning. Descriptive statistics were 

examined to determine if the average concreteness level of the words taught in preschool, first, 

second, and third grades differed significantly. If there were differences, it could explain the 

differences in the model’s selection of important variables. The average concreteness levels did 

not differ greatly across grade levels, so there may be something innately different about the age 

of children, how they acquire new vocabulary terms, and what lexical characteristics influence 

learning the most.   

The hinge data provided insightful information about the underlying process of word 

learning in regard to abstract and concrete concepts taught in preschool, kindergarten, first, and 

second grades. Our findings are supported by prior research that found imageability predicted 

preschoolers’ word learning (Hadley et al., 2021). Also, more imageable words were learned 

earlier and more easily than words that were less imageable (McDonough et al., 2011). Again, 

this finding is rather intuitive. Words that are more concrete have specific meanings, whereas 

words that are more abstract often have nuanced meanings that depend on context. Children can 

acquire more abstract terms, but if they have no referent to associate the word with, it can be 

difficult to retain the word’s meaning. It could be that as children age, their life experiences 

make them well-suited to understand and describe more abstract concepts. This could explain 

why concreteness did not impact word learning in third grade. Further research is warranted to 

explore this phenomenon to better understand word learning across a larger group of children to 

determine if there are underlying processes that facilitate the acquisition of abstract terms. This 

characteristic coupled with age of acquisition could facilitate the creation of a developmental 

sequence for vocabulary instruction.  
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Word Frequency. Word frequency was included as an important variable in all of the 

grade models. However, when examining level of variable importance, word frequency was 71% 

to 75% as important to preschoolers’ word learning as level of concreteness but had little impact 

on kindergarten word learning (9% - 17% relative importance) and first grade word learning (8% 

- 12% relative importance). In the other grade levels, word frequency’s level of importance 

increased from 26% in second grade to 55% in third grade. For preschool, kindergarten, first, and 

second grades, it appeared that as word frequency increased, learning mostly remained the same. 

It is important to remember that word frequency, when combined with other more important 

variables like age of acquisition and level of concreteness, the majority of the variability in 

learning was accounted for by these variables and less by the frequency of a word.  

The words in this study did not include words with very high measures of word 

frequency, so our findings must be interpreted carefully due to the restricted range of 

frequencies. In all three studies, words were selected using Beck and colleagues’ (2002) 

framework for word selection. They recommend choosing target vocabulary words children will 

not likely hear in everyday conversation, but ones that would have high utility and appear later in 

academic texts. Other researchers have found that words that occur more frequently were easier 

for children to name in a lexical access study (Newman & German, 2002). 

Word frequency values ranged from .02 to 801 and were heavily skewed for all grade 

levels. While the words chosen may not seem to have a lower frequency among adults, they may 

have infrequent use by young children. Further analyses should investigate word frequency 

norms for children by examining childhood literature or television shows and movies made for 

children. Either of these methods would mirror popular adult word frequency norms derived 

from print or television and movies (Brysbaert & New, 2009; Francis & Kučera, 1982). If 

differences existed between the frequency norms of children and adults, it would allow for a 

more robust measure used to examine the relations between frequency and young children’s 

vocabulary learning. 
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Phonotactic Probability & Neighborhood Density. MARS included neighborhood 

density and phonotactic probability in the first- and second-grade models. Both variables were 

included in the first and second grade models, and only neighborhood density was included in 

the third-grade model. Neither variable was included in the preschool or kindergarten models. In 

the first and second grade models, just like word frequency, it could be that when grouped with 

other more influential lexical characteristics, such as age of acquisition and level of concreteness, 

the impact of neighborhood density and phonotactic probability on word learning was minimal. 

Interestingly, in the third-grade model, neighborhood density was the second most important 

variable related to word learning. There was a sharp learning increase until the hinge at 82.79, 

and then a steady increase in learning as neighborhood density measures increased. 

Previous research has found a relation between phonotactic probability and neighborhood 

density (Hoover et al., 2010). However, results of this analysis did not reveal a relationship 

between the two. Additionally, there was little-to-no relation among these factors and word 

learning in the preschool, kindergarten, first- and second- grade models. These findings are 

similar to that of Storkel and colleagues (2006) who were unable to demonstrate an interaction 

between phonotactic probability and neighborhood density in a study examining adult word 

learning. Our findings could be attributed to the correlation between word length and these 

lexical characteristics, since most of the words in our analysis varied in length and were 

multisyllabic. When words vary in length, problems in analysis and interpretation can occur 

(Storkel, 2004). This could explain why we did not find significant relations between word 

learning and phonotactic probability and neighborhood density. 

Phonotactic probability is directly affected by word length. It is calculated using the sum 

of log values, which is equivalent to the log of the values multiplied. When multiplied together, 

values in this range will always decrease. This leads to a decrease in phonotactic probability as 

word length increases. Word length was not a factor controlled for in this study. Phonotactic 

probabilities for the words in our analysis ranged from 0.01-0.08. These small probabilities were 

not significantly related to word learning nor to neighborhood density.  
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Neighborhood density is negatively correlated to word length. The density increases for 

shorter words that have more similar neighbors, and decreases in density as word length 

increases, where longer words have fewer similar neighbors. Because our words varied in length, 

we had a large range of density measures, from 0 to 69,210.62. About half of the words (53%) 

had a neighborhood density of 0-5, and only 17% of the words had density measures over 100. In 

practice, when vocabulary targets are chosen for instruction, words taught at the same time 

should be semantically and phonetically distinct from one another to avoid confusion. Because of 

this, phonotactic probability and neighborhood density are unlikely to be important factors when 

selecting sophisticated vocabulary targets.   

Multivariate Adaptive Regression Splines (MARS) 

Although MARS is not a popular method for analysis in educational research, it is a 

better option compared to other well-established analyses. This is especially important when 

considering the nature of the data being analyzed. Data that are nonlinear, have multicollinearity, 

mixed variables, and other factors like lack of homoscedasticity can be a problem for most 

simpler methods. Student data tend to be messy, and while linear models will give results, they 

may be less reliable.  

Given the ILIAD, Story Friends, and kindergarten datasets, MARS was a better model 

compared to other linear methods. The ILIAD data were shown to be piecewise and multivariate 

non-normal, skewed, and had some multicollinearity. Likewise, the Story Friends and 

kindergarten data do not follow a normal distribution, is skewed, and has multicollinearity. The 

weaknesses of most approaches are the assumptions they depend on to work properly. MARS 

does not rely on base assumptions, which is one of its strengths. Other complex methods may 

perform equally well but MARS is beneficial for its interpretable nature. Alternatives such as 

ensemble methods (e.g., random forest regression and gradient boosting machines) may be more 

accurate but are considered a “black box” approach. These provide outcomes, but not insight into 

how the decisions were made. Another major consideration is computational complexity for 

modeling the data. MARS is a robust and adaptable method for modeling that also very efficient.  
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The ILIAD, Story Friends, and kindergarten data are an important example of why it is 

imperative to check for non-linearity in data before deciding on a method for analysis. Many 

tools are tried and true but may not be as reliable based on their starting assumptions, specifically 

the assumption that all data are normally distributed and linearly dependent. Similarly, the 

metrics used to consider how well a model fits the data are reliant on certain assumptions, like 

with R2. With this in mind, MARS is a strong alternative to linear methods for analyzing word 

learning data and minimizing error was the appropriate goodness of fit metric to test the results. 

 In this chapter, our contribution to children’s word learning was analyzing the influence 

of lexical characteristics on children’s word learning using MARS. This expands on prior 

research on the subject by more precisely modeling the impact for each lexical characteristic. 

This allows us to more accurately explain the effect each lexical characteristic has on children’s 

word learning, as well as finding interesting artifacts in the word selection missed by ordinary 

linear regressions. To aid researchers with implementing MARS in future research, a step-by-

step guide was included in the Appendix. 
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CHAPTER SEVEN: 

CONCLUDING DISCUSSION 

Statistical rigor and collaboration are lacking in many fields of research. The 

collaboration of interdisciplinary fields with statisticians can help limit poor methodological and 

statistical practices (Sainani et al, 2021; Veldkamp et al, 2014). While guidelines for statistical 

consulting are lacking and there are many challenges (Khamis & Mann, 1994), it is vital to work 

with researchers to increase statistical training. While there exists a push for cross collaboration, 

certain fields of research are often not considered and left out. Early education intervention is 

one such field that is overlooked and therefore lacks the use of advanced statistical techniques 

(Snyder et al., 2002). This work is result of such collaboration. 

While advanced statistical techniques have begun to show up in educational research, 

educational intervention research focusing on vocabulary acquisition has remained reliant on 

simpler methods to analyze word learning. These methods, such as multivariate linear regression 

and stepwise regression, are easy to implement and interpret, but make many assumptions about 

the data. These assumptions can lead to unreliable results. Their simplicity can overlook finer 

details that are missing from the final model, making it challenging to interpret results. This does 

not mean these results are not relevant, but alternative methods may provide additional 

information about relations modeled.  

The purpose of this dissertation was to examine statistical and machine learning methods 

that deal with the types of data that may be encountered during word learning research. Word 
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learning data can be “messy,” and issues such as skew, multicollinearity, and non-normal 

distributions can impact the ways in which models are selected. An effort was made to focus on 

aspects of data that may cause simpler models to be unreliable. Shrinkage methods were first 

examined to deal with multicollinearity and variable selection, while not deviating far from 

familiar concepts like multivariate linear regression. These methods are not as predictive 

compared to other advanced techniques and did as well as multivariate linear regression. This 

means that the multicollinearity is likely not the cause for poor model main effects, but that the 

skew of the data is.  

More advanced models such as support vector regression, random forest, and gradient 

boosting machines were examined to handle aspects like skew and the non-normal nature of the 

data. While these models performed well, they have their own shortcomings. They are harder to 

interpret and understand and requires a priori knowledge and expertise when making decisions 

about modeling, like implementing hyperparameter tuning. Compared to these other methods, 

multivariate adaptive regression splines are a strong balance of model performance and 

interpretability for most “real world” data. It is not reliant on any starting assumptions and can be 

adapted with minimal prior knowledge. MARS uses variable selection when building models. 

This creates simpler, more interpretable models. MARS is computationally efficient compared to 

most other methods, so it can be applied to larger datasets without becoming an unreasonably 

time-consuming endeavor.  

Results of this dissertation indicate age of acquisition and level of concreteness were the 

most influential factors related to word learning. These results were consistent across several 

grades, from preschool to third grade. MARS provided hinge data that indicated changes in word 

learning relevant to lexical characteristic values. Age of acquisition confirmed that children 
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learned words at their age and then dropped rapidly as AoA ratings increased. Words that were 

more abstract were harder for children to learn, but as children got older, they were able to learn 

more abstract words.  

By implementing sophisticated analyses, results have the potential to elucidate additional 

relations among lexical characteristics and word learning to strengthen outcomes from 

vocabulary instruction and intervention studies. The outcomes from this dissertation have the 

potential to identify the lexical characteristics that contribute to the overall likelihood vocabulary 

words will be learned by children. Using lexical factors, we can create a systematic approach to 

word selection. By utilizing these lexical characteristics for word organization, it is possible to 

create a more unified, developmentally appropriate sequence of vocabulary targets used for 

instruction. This will improve vocabulary learning and has the potential to close the achievement 

gap among from vulnerable populations. 

Future Directions 

 While outcomes from this dissertation are promising, the amount of data used was small. 

Additionally, results examined were from three very-related intervention programs. To test the 

robustness of MARS, additional datasets are required. Larger datasets would limit the variability 

in the data and possibly lessen bias. Additionally, word learning data from other studies that 

examine different instructional methods would further solidify our findings if results mirrored 

the results from this dissertation. This would include more collaboration between statisticians 

and researchers from various disciplines. By creating a symbiotic relationship, statisticians 

would have access to more “real” data (i.e., not simulated) and researchers would have access to 

expertise when selecting robust analytic methods. 
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 Once relevant lexical characteristics have been identified, an algorithm will be developed 

to sequence words for instruction. This algorithm would allow for a systematic approach to 

vocabulary selection for both teachers and researchers. Users would be able to indicate grade 

level or age of students, and a list of targets would be provided. Other educationally relevant 

information could be accessed, such as child-friendly definitions, or examples, and related 

contexts to use during instruction. This line of research is the first of its kind and has the 

potential to impact the ways in which we select words for instruction.  

In the interim, the MARS word learning regressions can be used to predict the number of 

students that will learn a given word based on its lexical characteristics. This has the potential to 

be a powerful tool for researchers and educators to select appropriate words to teach. For 

example, the words advise, illegal, and space were selected. Their lexical characteristics are 

listed in Table 7.1. Based on the regressions, we predict that 2% of kindergartners, 21% of first 

grades, 22% of second graders, and 23% of third graders will learn the word advise. For the word 

illegal, we predict 11% of kindergartners, 20% of first graders, 34% of second graders, and 40% 

of third graders will learn the word. We predict 60% of kindergartners, 77% of first graders, 76% 

of second graders, and 90% of third graders will learn the word space. This information can be 

used to select vocabulary words appropriate for instruction based on grade level. While it is not 

the full algorithm, using the MARS regressions provides a basic framework to select vocabulary 

targets based on grade level. This is the first step in using the relevant lexical characteristics to 

select vocabulary words for instruction and warrants additional investigation. 

Table 7.1. Example Words with their Lexical Characteristics 
 Age of 

Acquisition 

Level of 

Concreteness 

Word 

Frequency 

Neighborhood 

Density 

Phonotactic 

Probability 

advise 8.89 2.03 12.20 69.83 .09 

illegal 9.21 2.37 23.51 38.42 .26 

space 5.67 3.54 66.06 32.03 .19 
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 Existing lexical characteristic datasets could be improved upon. For example, word 

frequency measures do not contain frequency counts for words directly related to children. Using 

adult frequency measures may not be the most accurate benchmarks when examining children’s 

word learning. Machine learning techniques like natural language processing (NLP) can be used 

to create a more accurate dataset of word frequencies for children. This can be achieved by 

focusing on children’s literature or subtitle of children’s television and movies, mirroring 

Brysbaert and New’s (2009) frequency measures. Once this is created, it can inform the 

development of other databases relating to lexical characteristics specific to the words children 

are exposed to. There could be differential effects between adult and child-based norms on 

children’s word learning.  
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APPENDIX I: 

STEP BY STEP GUIDE FOR APPLYING MARS 

Introduction and Descriptive Statistics 

Before applying multivariate adaptive regression splines, the data needs to be loaded and 

tested for multicollinearity, homoscedasticity, univariate normality, and multivariate normality. 

The packages that will be used are “e1071” to test skewness, “olsrr” for VIF, “minerva” for 

MIC, “MVN” for multivariate normal tests, “stats” for correlations, “corrplot” to plot 

correlations, “earth” to build the MARS model, and “Metrics” to check model fit. 

The first step is to load the data. Begin by setting the working directory with the setwd() 

command. In the example given, the default file location will be D:/Research. If the data is in 

CSV form, we use read.csv to load the data from the filepath 

D:/Research/ILIAD/1stGrade/ILIAD1stGradeClean.csv for this example and name the dataset 

data1. 

setwd("D:/Research") 
 
#load data - Example uses ILIAD first-grade data 
data1 <- read.csv(file="D:/Research/ILIAD/1stGrade/ILIAD1stGradeClean.csv", h
eader=TRUE) 
data1 <- data1[complete.cases(data1), ] 

Next we will check the descriptive statistics for each independent variable. For the ILIAD 

data, these include word frequency (SUBtLwf), age of acquisition (AoA), level of concreteness 

(Conc_Mean), neighborhood density (N_Den), and phonotactic probability (Phon_Prob). Mean, 
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standard deviation, median, minimum value, maximum value, and skewness will be measured 

for each parameter. 

Word Frequency 

#load library 
#If the package needs to be installed use the install.packages command 
#install.packages("e1071", dep=TRUE) 
library(e1071) #Skewness 
 
#descriptives for word frequency 
mean(data1$SUBTLwf) #mean 

## [1] 19.28967 

sd(data1$SUBTLwf) #standard deviation 

## [1] 57.93981 

median(data1$SUBTLwf) #median 

## [1] 6.9 

min(data1$SUBTLwf) #minimum value 

## [1] 0.27 

max(data1$SUBTLwf) #maximum value 

## [1] 509.37 

skewness(data1$SUBTLwf) #skew 

## [1] 6.672805 

Age of Acquisition 

#age of acquisition 
mean(data1$AoA) 

## [1] 8.799706 

sd(data1$AoA) 

## [1] 2.172357 

median(data1$AoA) 

## [1] 9.06 

min(data1$AoA) 

## [1] 3.25 
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max(data1$AoA) 

## [1] 13.61 

skewness(data1$AoA) 

## [1] -0.4591858 

Level of Concreteness 

#level of concreteness 
mean(data1$Conc_Mean) 

## [1] 2.955245 

sd(data1$Conc_Mean) 

## [1] 0.9725028 

median(data1$Conc_Mean) 

## [1] 2.76 

min(data1$Conc_Mean) 

## [1] 1.5 

max(data1$Conc_Mean) 

## [1] 5 

skewness(data1$Conc_Mean) 

## [1] 0.6379685 

Neighborhood Density 

#neighborhood density 
mean(data1$N_Den) 

## [1] 1845.324 

sd(data1$N_Den) 

## [1] 8474.12 

median(data1$N_Den) 

## [1] 6.49 

min(data1$N_Den) 

## [1] 0 

max(data1$N_Den) 
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## [1] 69210.62 

skewness(data1$N_Den) 

## [1] 6.232289 

Phonotactic Probability 

#phonotactic probability 
mean(data1$Phon_Prob) 

## [1] 0.2211839 

sd(data1$Phon_Prob) 

## [1] 0.1217351 

median(data1$Phon_Prob) 

## [1] 0.2058 

min(data1$Phon_Prob) 

## [1] 0.0332 

max(data1$Phon_Prob) 

## [1] 0.5176 

skewness(data1$Phon_Prob) 

## [1] 0.5657482 

A boxplot for the parameters can be created using the boxplot command. The scale() will 

scale the data so that it can be compared more easily; otherwise neighborhood density will 

overshadow the other variables because it has such a wide range of large values. Within scale() 

the data is selected, columns 3 through 7 in this case. For the ILIAD data, column 1 is the 

decontextualized learning as a decimal, and column 2 is the expressive task learning as a 

decimal. ylim controls the upper and lower limits for the y-axis. 

boxplot(scale(data1[,3:7]), main="Boxplot for First Grade Parameters", ylim=c
(-3.5,12)) 
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Exploring the Data 

For the ILIAD data, the descriptive statistics have shown that neighborhood density and 

word frequency are highly skewed. This can lead to unreliable models. Next we will perform an 

exploratory data analysis. We will begin by looking at variance inflation factor and maximal 

information coefficient. Both of these are measurements of multicollinearity. There is no 

definitive threshold for multicollinearity using VIF, but generally anything larger than 4 is 

considered to have moderately high multicollinearity and above 10 is very high multicollinearity. 

MIC is an information theory technique that can find both linear and non-linear relationships 

within the data. 

#VIF and MIC 
#instell.packages("olsrr", dep=TRUE) 
library(olsrr) #VIF 
#instell.packages("minerva", dep=TRUE) 
library(minerva) #MIC 
lmMod1 <- lm(Decon ~ SUBTLwf+AoA+Conc_Mean+N_Den+Phon_Prob, data=data1) #line
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ar model for VIF calculations 
ols_vif_tol(lmMod1) #Calculate VIF 

##   Variables Tolerance      VIF 
## 1   SUBTLwf 0.8625632 1.159335 
## 2       AoA 0.5452588 1.833991 
## 3 Conc_Mean 0.6119911 1.634011 
## 4     N_Den 0.9251188 1.080942 
## 5 Phon_Prob 0.8527566 1.172668 

mine(data1[,3:7], measure="mic") #MIC 

## $MIC 
##             SUBTLwf       AoA Conc_Mean     N_Den Phon_Prob 
## SUBTLwf   0.9999647 0.3514268 0.2540276 0.3328488 0.2210946 
## AoA       0.3514268 0.9999647 0.4018248 0.3530997 0.2438121 
## Conc_Mean 0.2540276 0.4018248 0.9999647 0.2681356 0.2541717 
## N_Den     0.3328488 0.3530997 0.2681356 0.9999647 0.2776106 
## Phon_Prob 0.2210946 0.2438121 0.2541717 0.2776106 0.9999647 
##  
## $MAS 
##              SUBTLwf        AoA  Conc_Mean      N_Den  Phon_Prob 
## SUBTLwf   0.00000000 0.06660012 0.02707641 0.05348317 0.03832547 
## AoA       0.06660012 0.00000000 0.05967042 0.08537223 0.02396344 
## Conc_Mean 0.02707641 0.05967042 0.00000000 0.04618807 0.02385355 
## N_Den     0.05348317 0.08537223 0.04618807 0.00000000 0.06236391 
## Phon_Prob 0.03832547 0.02396344 0.02385355 0.06236391 0.00000000 
##  
## $MEV 
##             SUBTLwf       AoA Conc_Mean     N_Den Phon_Prob 
## SUBTLwf   0.9999647 0.3514268 0.2540276 0.3328488 0.2210946 
## AoA       0.3514268 0.9999647 0.4018248 0.3530997 0.2438121 
## Conc_Mean 0.2540276 0.4018248 0.9999647 0.2681356 0.2541717 
## N_Den     0.3328488 0.3530997 0.2681356 0.9999647 0.2776106 
## Phon_Prob 0.2210946 0.2438121 0.2541717 0.2776106 0.9999647 
##  
## $MCN 
##           SUBTLwf      AoA Conc_Mean    N_Den Phon_Prob 
## SUBTLwf         2 2.000000         2 2.000000         2 
## AoA             2 2.000000         2 2.584963         2 
## Conc_Mean       2 2.000000         2 2.000000         2 
## N_Den           2 2.584963         2 2.000000         2 
## Phon_Prob       2 2.000000         2 2.000000         2 
##  
## $MICR2 
##                 SUBTLwf           AoA     Conc_Mean         N_Den     Phon
_Prob 
## SUBTLwf   -3.527573e-05  2.203353e-01  1.813489e-01  3.325425e-01  2.05180
7e-01 
## AoA        2.203353e-01 -3.527573e-05  1.880936e-02  3.494168e-01  1.58174
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3e-01 
## Conc_Mean  1.813489e-01  1.880936e-02 -3.527573e-05  2.616560e-01  2.24882
0e-01 
## N_Den      3.325425e-01  3.494168e-01  2.616560e-01 -3.527573e-05  2.09067
9e-01 
## Phon_Prob  2.051807e-01  1.581743e-01  2.248820e-01  2.090679e-01 -3.52757
3e-05 
##  
## $GMIC 
##             SUBTLwf       AoA Conc_Mean     N_Den Phon_Prob 
## SUBTLwf   0.9999647 0.2611213 0.1722910 0.2489660 0.1320849 
## AoA       0.2611213 0.9999647 0.3204352 0.2569411 0.1744159 
## Conc_Mean 0.1722910 0.3204352 0.9999647 0.1991796 0.1739194 
## N_Den     0.2489660 0.2569411 0.1991796 0.9999647 0.2059763 
## Phon_Prob 0.1320849 0.1744159 0.1739194 0.2059763 0.9999647 
##  
## $TIC 
##             SUBTLwf       AoA Conc_Mean     N_Den Phon_Prob 
## SUBTLwf   22.999105  5.084633  3.523779  4.868565  2.737394 
## AoA        5.084633 22.998965  6.595474  4.662306  3.761417 
## Conc_Mean  3.523779  6.595474 22.999105  3.703152  3.678444 
## N_Den      4.868565  4.662306  3.703152 22.999105  3.902378 
## Phon_Prob  2.737394  3.761417  3.678444  3.902378 22.999105 

Univariate Normality 

Next, we will check univariate normality (whether each variable follows a normal 

distribution) using Q-Q plots and Shapiro Wilk W Test for Univariate Normal. 

#qqplots for each variable 
qqnorm(data1$AoA, pch = 1, frame = FALSE, main="AoA") 
qqline(data1$AoA, col = "steelblue", lwd = 2) 
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qqnorm(data1$Conc_Mean, pch = 1, frame = FALSE, main="Concreteness") 
qqline(data1$Conc_Mean, col = "steelblue", lwd = 2) 
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qqnorm(data1$N_Den, pch = 1, frame = FALSE, main="Neighborhood Density") 
qqline(data1$N_Den, col = "steelblue", lwd = 2) 

 

qqnorm(data1$SUBTLwf, pch = 1, frame = FALSE, main="Word Frequency") 
qqline(data1$SUBTLwf, col = "steelblue", lwd = 2) 
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qqnorm(data1$Phon_Prob, pch = 1, frame = FALSE, main="Phonotactic Probability
") 
qqline(data1$Phon_Prob, col = "steelblue", lwd = 2) 
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#Shapiro Wilk W Test for Univariate Normal for each variable 
shapiro.test(data1$AoA) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  data1$AoA 
## W = 0.97709, p-value = 0.01682 

shapiro.test(data1$Conc_Mean) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  data1$Conc_Mean 
## W = 0.92973, p-value = 1.587e-06 

shapiro.test(data1$N_Den) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  data1$N_Den 
## W = 0.22723, p-value < 2.2e-16 

shapiro.test(data1$Phon_Prob) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  data1$Phon_Prob 
## W = 0.95288, p-value = 8.65e-05 

shapiro.test(data1$SUBTLwf) 

##  
##  Shapiro-Wilk normality test 
##  
## data:  data1$SUBTLwf 
## W = 0.28031, p-value < 2.2e-16 

Multivariate Normality 

The normality of the entire dataset, or multivariate normality, can be tested in multiple 

ways. Using the “MVN” package, we will test this using Mardia Skewness and Kurtosis, Henze-

Zirkler test, Royston’s H test, Doornik-Hansen’s test, and the energy E-statistic. 

#library.packages("MVN", dep=TRUE) 
library(MVN) #Multivariate Normal Tests 
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#Multivariate Normal Tests 
mvn(data1[,3:7], mvnTest = "mardia") 

## $multivariateNormality 
##              Test        Statistic p value Result 
## 1 Mardia Skewness 2130.56804492719       0     NO 
## 2 Mardia Kurtosis 61.9953944148249       0     NO 
## 3             MVN             <NA>    <NA>     NO 
##  
## $univariateNormality 
##           Test  Variable Statistic   p value Normality 
## 1 Shapiro-Wilk  SUBTLwf     0.2803  <0.001      NO     
## 2 Shapiro-Wilk    AoA       0.9771  0.0168      NO     
## 3 Shapiro-Wilk Conc_Mean    0.9297  <0.001      NO     
## 4 Shapiro-Wilk   N_Den      0.2272  <0.001      NO     
## 5 Shapiro-Wilk Phon_Prob    0.9529   1e-04      NO     
##  
## $Descriptives 
##             n         Mean      Std.Dev Median    Min        Max    25th     
75th 
## SUBTLwf   143   19.2896709   57.9398068 6.9000 0.2700   509.3700 2.38000 1
4.50912 
## AoA       143    8.7997064    2.1723573 9.0600 3.2500    13.6100 7.57000 1
0.33500 
## Conc_Mean 143    2.9552448    0.9725028 2.7600 1.5000     5.0000 2.17500  
3.61500 
## N_Den     143 1845.3240559 8474.1200704 6.4900 0.0000 69210.6200 0.70000 5
8.48000 
## Phon_Prob 143    0.2211839    0.1217351 0.2058 0.0332     0.5176 0.12875  
0.29375 
##                 Skew    Kurtosis 
## SUBTLwf    6.6728053 48.30658409 
## AoA       -0.4591858 -0.03939961 
## Conc_Mean  0.6379685 -0.62283930 
## N_Den      6.2322893 41.77014477 
## Phon_Prob  0.5657482 -0.53091382 

mvn(data1[,3:7], mvnTest = "hz") 

## $multivariateNormality 
##            Test       HZ p value MVN 
## 1 Henze-Zirkler 7.273224       0  NO 
##  
## $univariateNormality 
##           Test  Variable Statistic   p value Normality 
## 1 Shapiro-Wilk  SUBTLwf     0.2803  <0.001      NO     
## 2 Shapiro-Wilk    AoA       0.9771  0.0168      NO     
## 3 Shapiro-Wilk Conc_Mean    0.9297  <0.001      NO     
## 4 Shapiro-Wilk   N_Den      0.2272  <0.001      NO     
## 5 Shapiro-Wilk Phon_Prob    0.9529   1e-04      NO     
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##  
## $Descriptives 
##             n         Mean      Std.Dev Median    Min        Max    25th     
75th 
## SUBTLwf   143   19.2896709   57.9398068 6.9000 0.2700   509.3700 2.38000 1
4.50912 
## AoA       143    8.7997064    2.1723573 9.0600 3.2500    13.6100 7.57000 1
0.33500 
## Conc_Mean 143    2.9552448    0.9725028 2.7600 1.5000     5.0000 2.17500  
3.61500 
## N_Den     143 1845.3240559 8474.1200704 6.4900 0.0000 69210.6200 0.70000 5
8.48000 
## Phon_Prob 143    0.2211839    0.1217351 0.2058 0.0332     0.5176 0.12875  
0.29375 
##                 Skew    Kurtosis 
## SUBTLwf    6.6728053 48.30658409 
## AoA       -0.4591858 -0.03939961 
## Conc_Mean  0.6379685 -0.62283930 
## N_Den      6.2322893 41.77014477 
## Phon_Prob  0.5657482 -0.53091382 

mvn(data1[,3:7], mvnTest = "royston") 

## $multivariateNormality 
##      Test        H      p value MVN 
## 1 Royston 231.6819 2.441715e-48  NO 
##  
## $univariateNormality 
##           Test  Variable Statistic   p value Normality 
## 1 Shapiro-Wilk  SUBTLwf     0.2803  <0.001      NO     
## 2 Shapiro-Wilk    AoA       0.9771  0.0168      NO     
## 3 Shapiro-Wilk Conc_Mean    0.9297  <0.001      NO     
## 4 Shapiro-Wilk   N_Den      0.2272  <0.001      NO     
## 5 Shapiro-Wilk Phon_Prob    0.9529   1e-04      NO     
##  
## $Descriptives 
##             n         Mean      Std.Dev Median    Min        Max    25th     
75th 
## SUBTLwf   143   19.2896709   57.9398068 6.9000 0.2700   509.3700 2.38000 1
4.50912 
## AoA       143    8.7997064    2.1723573 9.0600 3.2500    13.6100 7.57000 1
0.33500 
## Conc_Mean 143    2.9552448    0.9725028 2.7600 1.5000     5.0000 2.17500  
3.61500 
## N_Den     143 1845.3240559 8474.1200704 6.4900 0.0000 69210.6200 0.70000 5
8.48000 
## Phon_Prob 143    0.2211839    0.1217351 0.2058 0.0332     0.5176 0.12875  
0.29375 
##                 Skew    Kurtosis 
## SUBTLwf    6.6728053 48.30658409 
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## AoA       -0.4591858 -0.03939961 
## Conc_Mean  0.6379685 -0.62283930 
## N_Den      6.2322893 41.77014477 
## Phon_Prob  0.5657482 -0.53091382 

mvn(data1[,3:7], mvnTest = "dh") 

## $multivariateNormality 
##             Test        E df p value MVN 
## 1 Doornik-Hansen 1751.036 10       0  NO 
##  
## $univariateNormality 
##           Test  Variable Statistic   p value Normality 
## 1 Shapiro-Wilk  SUBTLwf     0.2803  <0.001      NO     
## 2 Shapiro-Wilk    AoA       0.9771  0.0168      NO     
## 3 Shapiro-Wilk Conc_Mean    0.9297  <0.001      NO     
## 4 Shapiro-Wilk   N_Den      0.2272  <0.001      NO     
## 5 Shapiro-Wilk Phon_Prob    0.9529   1e-04      NO     
##  
## $Descriptives 
##             n         Mean      Std.Dev Median    Min        Max    25th     
75th 
## SUBTLwf   143   19.2896709   57.9398068 6.9000 0.2700   509.3700 2.38000 1
4.50912 
## AoA       143    8.7997064    2.1723573 9.0600 3.2500    13.6100 7.57000 1
0.33500 
## Conc_Mean 143    2.9552448    0.9725028 2.7600 1.5000     5.0000 2.17500  
3.61500 
## N_Den     143 1845.3240559 8474.1200704 6.4900 0.0000 69210.6200 0.70000 5
8.48000 
## Phon_Prob 143    0.2211839    0.1217351 0.2058 0.0332     0.5176 0.12875  
0.29375 
##                 Skew    Kurtosis 
## SUBTLwf    6.6728053 48.30658409 
## AoA       -0.4591858 -0.03939961 
## Conc_Mean  0.6379685 -0.62283930 
## N_Den      6.2322893 41.77014477 
## Phon_Prob  0.5657482 -0.53091382 

mvn(data1[,3:7], mvnTest = "energy") 

## $multivariateNormality 
##          Test Statistic p value MVN 
## 1 E-statistic  11.86507       0  NO 
##  
## $univariateNormality 
##           Test  Variable Statistic   p value Normality 
## 1 Shapiro-Wilk  SUBTLwf     0.2803  <0.001      NO     
## 2 Shapiro-Wilk    AoA       0.9771  0.0168      NO     
## 3 Shapiro-Wilk Conc_Mean    0.9297  <0.001      NO     
## 4 Shapiro-Wilk   N_Den      0.2272  <0.001      NO     
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## 5 Shapiro-Wilk Phon_Prob    0.9529   1e-04      NO     
##  
## $Descriptives 
##             n         Mean      Std.Dev Median    Min        Max    25th     
75th 
## SUBTLwf   143   19.2896709   57.9398068 6.9000 0.2700   509.3700 2.38000 1
4.50912 
## AoA       143    8.7997064    2.1723573 9.0600 3.2500    13.6100 7.57000 1
0.33500 
## Conc_Mean 143    2.9552448    0.9725028 2.7600 1.5000     5.0000 2.17500  
3.61500 
## N_Den     143 1845.3240559 8474.1200704 6.4900 0.0000 69210.6200 0.70000 5
8.48000 
## Phon_Prob 143    0.2211839    0.1217351 0.2058 0.0332     0.5176 0.12875  
0.29375 
##                 Skew    Kurtosis 
## SUBTLwf    6.6728053 48.30658409 
## AoA       -0.4591858 -0.03939961 
## Conc_Mean  0.6379685 -0.62283930 
## N_Den      6.2322893 41.77014477 
## Phon_Prob  0.5657482 -0.53091382 

Correlation Between Variables 

Correlation between variables will be checked using the Pearson correlation coefficient, 

Kendall rank correlation, and Spearman’s rank correlation. 

#instell.packages("stats", dep=TRUE) 
library(stats) #Correlations 
corrPearson <- cor(data1[,3:7], method = "pearson") 
round(corrPearson,2) 

##           SUBTLwf   AoA Conc_Mean N_Den Phon_Prob 
## SUBTLwf      1.00 -0.36      0.27 -0.02     -0.13 
## AoA         -0.36  1.00     -0.62 -0.06      0.29 
## Conc_Mean    0.27 -0.62      1.00  0.08     -0.17 
## N_Den       -0.02 -0.06      0.08  1.00     -0.26 
## Phon_Prob   -0.13  0.29     -0.17 -0.26      1.00 

corrKendall <- cor(data1[,3:7], method = "kendall") 
round(corrKendall,2) 

##           SUBTLwf   AoA Conc_Mean N_Den Phon_Prob 
## SUBTLwf      1.00 -0.37      0.21  0.28     -0.02 
## AoA         -0.37  1.00     -0.40 -0.29      0.21 
## Conc_Mean    0.21 -0.40      1.00  0.26     -0.11 
## N_Den        0.28 -0.29      0.26  1.00     -0.26 
## Phon_Prob   -0.02  0.21     -0.11 -0.26      1.00 
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corrSpearman <- cor(data1[,3:7], method = "spearman") 
round(corrSpearman,2) 

##           SUBTLwf   AoA Conc_Mean N_Den Phon_Prob 
## SUBTLwf      1.00 -0.52      0.32  0.41     -0.03 
## AoA         -0.52  1.00     -0.56 -0.41      0.31 
## Conc_Mean    0.32 -0.56      1.00  0.36     -0.18 
## N_Den        0.41 -0.41      0.36  1.00     -0.37 
## Phon_Prob   -0.03  0.31     -0.18 -0.37      1.00 

The correlations can be visualized by plotting them with corrplot. This can be altered to 

use a specific correlation test using method=“” as done above. 

#install.packages("corrplot", dep=TRUE) 
library(corrplot) #Create correlation plot 
correlations1 <- cor(data1[,3:7]) 
corrplot(correlations1, method="circle") 

 

Homoscedasticity 

Finally, we will test homoscedasticity or the homogeneity of variance using the “lmtest” 

package. That is, this tests whether the noise or error is the same across all variables. If the 
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results are significant, we fail to reject the null hypothesis that the data is homoscedastic, 

otherwise it is heteroscedastic. 

#install.packages("lmtest", dep=TRUE) 
library(lmtest) 
lmtest::bptest(lmMod1) #Test for homoscedasticity 

##  
##  studentized Breusch-Pagan test 
##  
## data:  lmMod1 
## BP = 24.957, df = 5, p-value = 0.000142 

Multivariate Adaptive Regression Splines 

Once the data has been thoroughly explored, an informed decision can be made about an 

appropriate model for the data. Multivariate adaptive regression splines (MARS) is an adaptable 

and robust model that is a strong choice in many cases. It does not rely on many of the 

assumptions of other models such as homoscedasticity, normally distributed data, or low 

multicollinearity. 

The earth command within the “earth” package is used for creating a MARS model. The 

pmethod argument controls the method for pruning and the options are “none”, “backward”, 

“forward”, “exhaustive”, “seqrep”, and “cv”. The penalty argument is the generalized cross 

validation penalty per knot. If penalty=0 is used, only terms will be penalized, not knots. More 

details for model options can be found at https://cran.r-project.org/web/packages/earth/earth.pdf. 

#install.packages("earth", dep=TRUE) 
library(earth) #MARS 
mars1 <- earth(Decon ~ SUBTLwf+AoA+Conc_Mean+N_Den+Phon_Prob, data=data1,pmet
hod = "exhaustive", penalty=1);mars1 

## Selected 8 of 16 terms, and 5 of 5 predictors (pmethod="exhaustive") 
## Termination condition: Reached nk 21 
## Importance: AoA, Conc_Mean, N_Den, SUBTLwf, Phon_Prob 
## Number of terms at each degree of interaction: 1 7 (additive model) 
## GCV 0.0157487    RSS 1.904409    GRSq 0.8117328    RSq 0.8385457 

https://cran.r-project.org/web/packages/earth/earth.pdf
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Once the model is created, summary() will display the model, generalized cross 

validation, residual sum of squares, and the R square value. The evimp() command will show the 

variable importance and the number of nodes each variable occurs in during model creation, 

generalized cross validation relative to the most important term, and RSS relative to the most 

important variable. Root mean square error, mean square error, mean absolute error, and R 

square values are calculated using the script below. 

#install.packages("Metrics", dep=TRUE) 
library(Metrics) #Fit Metrics 
summary(mars1) 

## Call: earth(formula=Decon~SUBTLwf+AoA+Conc_Mean+N_Den+Phon_Prob, data=data
1, 
##             pmethod="exhaustive", penalty=1) 
##  
##                     coefficients 
## (Intercept)           0.90511303 
## h(32.22-SUBTLwf)     -0.00270751 
## h(AoA-5.37)          -0.27390410 
## h(AoA-7.81)           0.41768409 
## h(AoA-8.45)          -0.17155726 
## h(Conc_Mean-3)        0.06923017 
## h(126.04-N_Den)      -0.00092140 
## h(0.0791-Phon_Prob)  -3.04793995 
##  
## Selected 8 of 16 terms, and 5 of 5 predictors (pmethod="exhaustive") 
## Termination condition: Reached nk 21 
## Importance: AoA, Conc_Mean, N_Den, SUBTLwf, Phon_Prob 
## Number of terms at each degree of interaction: 1 7 (additive model) 
## GCV 0.0157487    RSS 1.904409    GRSq 0.8117328    RSq 0.8385457 

evimp(mars1) 

##           nsubsets   gcv    rss 
## AoA              7 100.0  100.0 
## Conc_Mean        5  22.1   26.0 
## N_Den            4  16.0   20.3 
## SUBTLwf          2   8.1   12.1 
## Phon_Prob        1   5.5    8.3 

rmse(data1$Decon,as.vector(mars1$fitted.values)) 

## [1] 0.1154017 

mse(data1$Decon,as.vector(mars1$fitted.values)) 
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## [1] 0.01331754 

mae(data1$Decon,as.vector(mars1$fitted.values)) 

## [1] 0.08576472 

pred1 <- predict(mars1, newdata=data1) 
 
rss <- sum((pred1 - data1$Decon) ^ 2)  ## residual sum of squares 
tss <- sum((data1$Decon - mean(data1$Decon)) ^ 2)  ## total sum of squares 
rsq <- 1 - rss/tss;rsq 

## [1] 0.8385457 

To visualize the model, plotmo() will display the variable plots with all other variables 

held constant. It is valuable to determine the impact of each variable on word learning. The ylim 

argument sets the scale of the y-axis so all individual plots are similar. If degree2=FALSE is 

included, no interaction plots will be included. Only variables chosen by the model will be 

included in the plot, but all1=TRUE may be included to force all plots to be displayed. 

#install.packages("plotmo", dep=TRUE) 
library(plotmo) 
plotmo(mars1, ylim=c(0,1), caption="Decontextual First Grade Model") 

##  plotmo grid:    SUBTLwf  AoA Conc_Mean N_Den Phon_Prob 
##                      6.9 9.06      2.76  6.49    0.2058 
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The plotmo graphs will be ordered based on the order of the variables during model 

creation, not variable importance. On each graph, a change in the direction indicates the location 

of a hinge, which corresponds to hinges in the model. 
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