
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

June 2022

Computational Methods for Solving the Combinatorial Computational Methods for Solving the Combinatorial

Optimization Problems in Transportation Optimization Problems in Transportation

Xufei Liu
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Industrial Engineering Commons

Scholar Commons Citation Scholar Commons Citation
Liu, Xufei, "Computational Methods for Solving the Combinatorial Optimization Problems in
Transportation" (2022). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/10321

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F10321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.usf.edu%2Fetd%2F10321&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Computational Methods for Solving the Combinatorial Optimization Problems in

Transportation

by

Xufei Liu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Industrial and Management Systems Engineering

College of Engineering
University of South Florida

Major Professor: Changhyun Kwon, Ph.D.
Ankit Shah, Ph.D.

Hadi Charkhgard, Ph.D.
He Zhang, Ph.D.

Xiaopeng Li, Ph.D.

Date of Approval:
June 5, 2022

Keywords: Vehicle Routing, Network Design, Car Sharing, Cutting Plane, Metaheuristic

Copyright © 2022, Xufei Liu

Dedication

This dissertation is dedicated to my parents Yingge Liu and Lihong Xu, and my dear

grandparents for their endless love and support.

Acknowledgments

There are many people that I would like to express my heartfelt thanks to. First of all,

I would like to express my greatest gratitude to my advisor Dr. Changhyun Kwon for his

guidance and patience throughout my PhD. I am also grateful to my committee members,

Dr. Changhyun Kwon, Dr. Ankit Shah, Dr. Hadi Charkhgard, Dr. He Zhang and Dr.

Xiaopeng Li for their advice and guidance through my doctoral study.

Table of Contents

List of Tables... iv

List of Figures ... vi

Abstract ... vii

Chapter 1: Introduction ... 1

Chapter 2: Exact Robust Solutions for the Combined Facility Location and
Network Design Problem in Hazardous Materials Transportation 5

2.1 Introduction .. 5
2.2 Literature Review ... 8

2.2.1 Hazmat Facility Location Problems 8
2.2.2 Hazmat Network Design Problems 9
2.2.3 Combined Facility Location and Network Design Prob-

lem in Non-hazmat Context .. 9
2.2.4 Robust Optimization Approaches in Hazmat Transportation 10

2.3 The Robust Combined Facility Location-Network Design Problem 11
2.4 An Exact Solution Method ... 14

2.4.1 Cutting Plane Algorithm.. 15
2.4.2 Cut Generation .. 19
2.4.3 Benders Decomposition for Solving C-Master 23

2.5 A Single-Level Reformulation .. 25
2.5.1 Replacing the Lower-Level Problem by Optimality Conditions ... 26
2.5.2 Dualizing and Linearizing the Inner Maximization Problem 28

2.6 Numerical Experiments.. 30
2.6.1 Analysis on the Small-Size Instances 30
2.6.2 Analysis on the Large-Size Instances..................................... 32
2.6.3 Combined Model versus Sequential Model.............................. 35

2.7 Concluding Remarks ... 37

Chapter 3: An Adaptive Large Neighborhood Search Method for Rebalancing
Free-Floating Electric Vehicle Sharing Systems... 40

3.1 Introduction .. 40
3.2 Literature Review ... 43
3.3 Problem Statement ... 45

3.3.1 Mathematical Model for EV Relocation................................. 48

i

3.3.2 Mathematical Model for Shuttle Routing 50
3.3.3 Synchronizing EV Relocation and Shuttles Routing Decisions 51

3.4 Benchmark Methods ... 52
3.4.1 Exchange-Based Neighborhood-Search Method 52
3.4.2 Reinforcement Learning Method .. 53

3.5 Adaptive Large Neighborhood Search ... 54
3.5.1 Finding an Initial Solution.. 56
3.5.2 Destroy Methods .. 57

3.5.2.1 Random Removal ... 57
3.5.2.2 Worst Route Removal .. 57
3.5.2.3 Cluster Removal ... 58

3.5.3 Repair Methods.. 58
3.5.3.1 Repair Rules for EV Relocation 59
3.5.3.2 Repair Rules for Routes Insertion............................. 60

3.5.4 Adaptive Probability Update Procedure 61
3.6 Modification of ALNS in Problem Variants .. 62

3.6.1 Routing with Personal Mobility Options 62
3.6.2 EV Relocation and Routing in Dynamic Environments 63

3.7 Numerical Experiments.. 65
3.7.1 Randomly Generated Instances.. 65
3.7.2 Case Study: Car2go in Amsterdam....................................... 68

3.7.2.1 Scenario 1 ... 70
3.7.2.2 Scenario 2 ... 71

3.7.3 Routing with Personal Mobility Vehicle 72
3.7.3.1 Analysis on Total Operation Cost 72
3.7.3.2 Analysis on Wait Times ... 74

3.7.4 EV Relocation and Routing in Dynamic Environment 75
3.8 Concluding Remarks ... 76

Chapter 4: An Adaptive Large Neighborhood Search Method for Drone-
Truck Arc Routing Problem ... 79

4.1 Introduction .. 79
4.2 Literature Review ... 82
4.3 Problem Statement ... 84

4.3.1 Transformation ARP to VRP .. 86
4.3.1.1 Pearn et al. (1987) Transformation........................... 86
4.3.1.2 Longo et al. (2006) Transformation 88

4.3.2 MIP Formulation for Drone-Truck VRP 89
4.4 Adaptive Large Neighborhood Search ... 93

4.4.1 Decoding and Encoding ... 94
4.4.2 Initial Solution ... 96
4.4.3 Destroy Methods .. 97

4.4.3.1 Random Removal ... 97
4.4.3.2 Worst Route Removal .. 97
4.4.3.3 Cluster Removal ... 98

ii

4.4.4 Repair Methods.. 98
4.4.4.1 Random Insertion ... 99
4.4.4.2 Greedy Insertion... 99
4.4.4.3 Regret Insertion ... 99

4.4.5 Adaptive Probability Update .. 100
4.5 Numerical Experiments.. 100

4.5.1 One Truck and One Drone.. 101
4.5.1.1 Analysis on the Small-Size Instances 101
4.5.1.2 Analysis on the Large-Size Instances 103

4.5.2 One Truck and Multiple Drones... 105
4.5.2.1 Analysis on the Small-Size Instances 105
4.5.2.2 Analysis on the Large-Size Instances 107

4.5.3 Analysis on Speed and Drone Range 108
4.5.4 Analysis on Robustness of Adaptive Large Neighbor-

hood Search versus Tabu Search .. 110
4.6 Concluding Remarks ... 110

Chapter 5: Conclusion and Future Work ... 113

References ... 117

Appendix A: Copyright Permissions ... 129

Appendix B: Mathematical Models of Chapter 2 ... 132
B.1 Single-Level Robust Facility Location Problem 132
B.2 Single-Level Robust Network Design Problem..................................... 133

iii

List of Tables

Table 2.1 Mathematical Notation ... 13

Table 2.2 Comparison Between the Solutions by the Cutting Plane Algo-
rithm and Gurobi for the Single-Level Reformulation on Small-
Size Ravenna Instances ... 31

Table 2.3 Comparison Between the Solutions by the Cutting Plane Algo-
rithm and Gurobi for the Single-Level Reformulation on Large-
Size Ravenna Instances ... 33

Table 2.4 Comparison Between the Objectives for Combined and Sequen-
tial Model on Small-Size Ravenna Instances 36

Table 2.5 Comparison Between the Objectives for Combined and Sequen-
tial Model on Large-Size Ravenna Instances 38

Table 3.1 Mathematical Notation ... 46

Table 3.2 Types of Random Instances ... 66

Table 3.3 Average Objective Values of ALNS, EBNSM, and RL on Ran-
dom Instances ... 67

Table 3.4 Average Computational Times of ALNS, EBNSM, and RL on
Random Instances (Unit: Second) ... 68

Table 3.5 Average Makespan (Unit:Min) and Computational Times (Unit:Sec)
in Scenario 1 for 143 Days Instances .. 70

Table 3.6 Average Objective Values and Computational Times in Scenario 2 71

Table 3.7 Average Objective Values and Computational Times of ALNS
Using Scooters .. 72

Table 3.8 Results on Amsterdam Data in Dynamic Environment 76

Table 4.1 Mathematical Notation ... 85

Table 4.2 One-Drone-One-Truck Results on Randomly Generated Data
N = 10 .. 102

iv

Table 4.3 One-Drone-One-Truck Results on Randomly Generated Data
N = 15 .. 103

Table 4.4 Characteristic of Undirected Rural Postman Problem UR500 104

Table 4.5 One-Drone-One-Truck Results on Large-Size Instances 104

Table 4.6 Two-Drones-One-Truck Results on Randomly Generated Data
with N = 10 ... 105

Table 4.7 Two-Drones-One-Truck Results on Randomly Generated Data
with N = 15 ... 106

Table 4.8 Two-Drones-One-Truck Results on Large-Size Instances....................... 107

Table 4.9 Number of Randomly Generated Instances Solved to Optimality 109

v

List of Figures

Figure 2.1 Flow Chart for the Cutting Plane Algorithm Combined with
Benders Decomposition ... 15

Figure 2.2 Conversion to a Pure Network Design Problem 20

Figure 2.3 Results on Small-Size Ravenna Instances .. 32

Figure 2.4 Results on Large-Size Ravenna Instances .. 34

Figure 2.5 The Running Time Performance Profile of the Cutting Plane
Algorithm and Gurobi for the Single-Level Reformulation 35

Figure 3.1 FFEVSS Example .. 47

Figure 3.2 Relocation Decision .. 48

Figure 3.3 Example Solutions for |N | = 23 and W = 3 66

Figure 3.4 Amsterdam Network .. 69

Figure 3.5 Total Cost for Using Shuttles and Scooters.. 73

Figure 3.6 Average Wait Time Percentage ... 75

Figure 4.1 An Example for Arc Routing Problem with New Nodes 87

Figure 4.2 Transformation Arc Routing Problem to Node Routing Problem 89

Figure 4.3 An Example for Node Category in One Flight Trip 91

Figure 4.4 Percentage of Solutions Solved to Optimality over Randomly
Generated Instances with |R| = 10 .. 110

Figure 4.5 Standard Deviation of Objective Values by ALNS and TS over
Randomly Generated Instances... 111

vi

Abstract

This dissertation discusses three transportation problems. The first problem is a bi-level

optimization problem that simultaneously optimizes facility locations and network design

in hazardous materials transportation. In the upper level, the leader intends to reduce

the facility setup cost and the hazmat exposure risk, by choosing facility locations and

road segments to close for hazmat transportation. When making such decisions, the leader

anticipates the response of the followers who want to minimize the transportation costs.

A robust optimization approach with multiplicative uncertain parameters and polyhedral

uncertainty sets is applied to deal with the uncertain risk and demand.

The second problem comes from the Free-floating electric vehicle sharing systems. It

allows users to pick up and return an electric vehicle at any permissible parking location

within a service area. Such service flexibility can drive a severe spatial imbalance between

vehicle availability and trip demands. We consider the operations to relocate the EV fleet to

meet the next day’s demand with sufficient battery levels. This relocation operation involves

a complicated routing problem for a fleet of shuttles to transport the staff drivers who relocate

the EVs to proper demand locations. We devise an efficient algorithm, which adapts the

Adaptive Large Neighborhood Search framework. The experimental results validate the

efficiency and effectiveness of our proposed algorithm and prove it is quite flexible to adapt

to a dynamic environment.

The third problem is arc routing problem with the truck and the drones which coop-

eratively service the required edges. While the trucks follow road networks, drones can fly

directly between any two points and off the network. The cooperation of the truck and the

drone extends the traditional arc routing problem. We consider routing the truck and the

drone with the limited flight range. An Adaptive Large Neighborhood Search is devised to

vii

solve the Drone-Truck Arc Routing Problem. The experimental results on the small-size and

large-size instances validate the efficiency and effectiveness of the proposed method.

viii

Chapter 1: Introduction

For the combinatorial problems in transportation, vehicle routing aims to find an optimal

route that wants the minimum total cost, the minimum risk, or the minimum completion

time. The routing is mainly decision in transportation problems. Three problems are con-

sidered in the dissertation: the combined facility location and network design problem in

hazardous materials transportation, rebalancing free-floating electric vehicle sharing systems,

and Drone-Truck arc routing problem.

The first problem is a leader-follower decision problem in the form of bi-level optimiza-

tion. In the upper level, the leader aims to minimize the total facility construction costs

and hazmat exposure risks by determining facility locations and available roads for hazmat

transportation. The leader affects the followers who intend to minimize their transporta-

tion costs when designing the road network. We apply a robust optimization approach with

multiplicative uncertain parameters and polyhedral uncertainty sets to deal with the un-

certainty in the exposure risk and the demand. A bi-level integer programming model is

formulated where the upper level is a min-max problem and the lower level is a shortest-

path problem. We devise an exact algorithm that combines a cutting plane algorithm with

Benders decomposition and derive a single-level reformulation. Comparisons between two

approaches are made on the Ravenna city data, in terms of objectives and the running time.

The analysis on small and large size instances demonstrates that the proposed cutting plane

algorithm performs much better than Gurobi as the problem size increases. The proposed

cutting plane algorithm is an effective exact method for solving the robust combined facility

location-network design problem.

1

The second problem considers the EV relocation and shuttle routing for the rebalancing

operation of free-floating EV sharing systems (FFEVSS). One of the key operational de-

cisions for the carsharing company is how to relocate the EV fleet to meet the next day’s

demand with sufficient battery levels. We develop a metaheuristic based on an adaptive large

neighborhood search for this problem that determines where to relocate each EV and how

to route the shuttles that transport the staff drivers synchronously. We apply our method

to conduct numerical experiments using both randomly generated data and actual FFEVSS

data in Amsterdam. We found that ALNS outperforms EBNSM both in the solution quality

and the computational time. ALNS also produces better solutions than the RL approach but

requires much longer computational time than RL. The experiments reveal that providing

the RL solution as the initial solution for ALNS is an effective and efficient solution strategy

that can take advantage of both approaches, achieving the best solution quality and reducing

the computational time significantly. We also demonstrate how ALNS can be modified to

solve the problem where staff drivers carry a personal mobility vehicle such as a scooter. The

further analysis provides practical recommendations on which mode of transportation will

be more efficient—i.e., a small number of shuttles with large capacity or a large number of

shuttles with small capacity (or even personal mobility)—in terms of total operational cost

as well as wait times. Lastly, we show that our ALNS is quite flexible to be applied to a

dynamic environment when it destroys an incumbent solution partially and repairs to a new

solution in each iteration. Specifically, our numerical results highlight the usefulness of our

flexible ALNS method for an environment where some EV demands are removed or added

in the course of EV relocation operations.

The third problem is Drone-Truck arc routing problem. Arc routing problems are widely

used in many fields, including traffic monitoring, infrastructure inspection, and security. The

drone and the truck cooperatively service all required edges at least once. Since the drone

can fly off the road network, the DT-ARP extends the traditional ARP. With a limited

battery capacity, the drone needs to fly from and to vehicles for a replacement of battery.

2

The key challenge is how to determine the truck and drone routes to minimize the completion

time. In order to get the optimal solution, we transform the ARP into VRP with two kinds

of rules and formulate a mixed-integer programming. The experiments reveal that MIP

formulation can solve the problem well for the small-size network. However, for a large-

size network, an efficient and effective metaheuristic is necessary. A metaheuristic method

based on Adaptive Large Neighborhood Search (ALNS) is proposed to solve the Drone-

Truck Arc Routing Problem. The effectiveness of ALNS is evaluated over the small-size

randomly generated instances and large-size undirected rural postman problem instances.

The experimental results show the advantage of ALNS in the solution quality and run time

for two cases: One Truck-One Drone and One Truck-Two Drones. Further analysis on the

truck/drone speed and the drone’s maximum flight range reveals the difficulty to solve the

problem. The robustness of ALNS is also discussed and evaluated by the standard deviation

of multiple repeated solutions on the same instance.

In summary, the goal of this dissertation is to answer the following questions:

• How to design the network and choose locations to construct facilities by the administrator

decisions and to choose the transportation routes by the truck drivers in the hazmat

material transportation?

• How to route shuttles to distribute staff drivers to relocate EVs for rebalancing the free-

floating EV sharing systems?

• How to efficiently route drone and truck to service all required edges cooperatively with

the aim of minimizing the completion time?

The dissertation can be summarized as follows: In Chapter 2, we propose an exact method

that combines the cutting plane algorithm with Benders Decomposition for the combined

facility location and network design problem. Chapter 3 proposes a metaheuristic method,

named Adaptive Large Neighborhood Search, to relocate EVs and route shuttles. In Chapter

3

4, an adaptive large neighborhood search method is devised to solve Drone-Truck arc routing

problem. Chapter 5 summarizes three problems.

4

Chapter 2: Exact Robust Solutions for the Combined Facility Location and

Network Design Problem in Hazardous Materials Transportation

Portions of this chapter have been previously published in IISE Transactions (2020),

52(10), 1156-1172. The copyright permissions for the reuse of previously published material

in this chapter can be found in Appendix A.

2.1 Introduction

Hazardous materials (hazmat) are “solids, liquids, or gases that are harmful to people,

property, and the environment” (United Nations, 2009). A large amount of hazmat is gen-

erated in industrial production and transported over various transportation modes. Trucks

are the most popular mode of transporting hazmat (Erkut et al., 2007). For example, in

the U.S., more than 2.4 billion tons of hazmat were transported by trucks in 2012 (U.S.

Department of Transportation, 2015). Accidents involving hazmat can create catastrophic

consequences; hence the road system is facing pressure on the constantly increasing amount

of hazmat shipments. Managing risk in hazmat transportation is important in any industrial

society.

In most cases, the hazmat producers are responsible to carry hazmat to an appropriate

processing facility. The hazmat carriers make their choices about the transportation route,

usually, aiming to minimize the shipment cost. The local route decision of hazmat carriers

is beyond the control of the government, who considers the impact of hazmat transportation

from a global perspective of managing the entire road network and other infrastructure

systems. The government wants to minimize the total shipment exposure risk and total

facility construction costs. To achieve this goal, the government may consider road-ban

5

policies to specify the available and unavailable roads for hazmat shipments. Such policies

prohibit hazmat carriers from choosing a route with small transportation costs but with

great hazmat exposure risk. The problem to determine such road-ban policies is called a

hazmat network design problem in the literature.

In this chapter, we consider a combined hazmat facility locations and network design

problem. We assume that origin points where hazardous materials are produced are known,

but destination points (disposal facility location) are not. Instead, hazmat carriers are as-

sumed to choose the nearest facility if multiple facilities are available within the network;

therefore, the route decision of hazmat carriers is dependent on the location decision of the

government. When the government determines the locations of hazmat processing facili-

ties, we assume that the government also considers a road-ban policy to design the hazmat

network, upon which the route decision of hazmat carriers also depends. This structure of

hierarchical decision-making has been considered in a bi-level optimization framework in the

literature (Kara and Verter, 2004; Erkut and Alp, 2007; Gzara, 2013; Berglund and Kwon,

2014; Marcotte et al., 2009; Sun et al., 2015). We will present our problem as a bi-level

optimization problem as well.

We consider uncertain hazmat transportation demands and uncertain hazmat accident

risks. By assuming data for the demands and risks are available as intervals, we consider

the worst-case scenario using a robust optimization approach. We will consider polyhedral

uncertainty sets as considered in Bertsimas and Sim (2003). In our problem, the two uncer-

tain parameters form a product in the objective function, for which we adopt the approach

of Kwon et al. (2013).

Our work is closely related to Berglund and Kwon (2014) and Gzara (2013). Berglund

and Kwon (2014) have considered a robust hazmat facility location problem. Our modeling

approach for the robust combined facility location and network design problem extends the

work of Berglund and Kwon (2014). The computational method proposed by Berglund and

Kwon (2014), however, is a genetic algorithm, which does not produce an exact optimal

6

solution in general. In this chapter, for the combined problem, we devise an exact algo-

rithm by adopting the cutting plane algorithm of Gzara (2013) and combining with Benders

decomposition.

Gzara (2013) has devised a cutting plane algorithm for solving the bi-level hazmat net-

work design problem. The model of Gzara (2013), however, only considered a network design

decision without considering data uncertainty. Our problem is a robust optimization problem

that considers the facility location decision and the network design decision jointly. As we

adopt the cutting plane algorithm of Gzara (2013) to the robust combined problem, we have

revised the cut generation method for the joint decision. We also simplify the inequalities

in the cuts and eliminate the need for additional binary variables. In our problem, the mas-

ter problem is significantly harder to solve, mainly due to the robustness consideration; we

devise a Benders decomposition (Benders, 1962) approach for solving the master problem.

While a Benders decomposition approach has been used to solve a single-level reformulation

of the deterministic hazmat network design problem (Fontaine and Minner, 2018), we use

Benders decomposition to solve the robust master problem involving uncertainty within the

cutting plane algorithm framework for the joint decision of facility location and network

design.

The contributions of this chapter are summarized as follows. We consider a combined

facility location and network design problem for hazmat transportation. By assuming data

uncertainty, we formulate a robust optimization problem as a bi-level mixed-integer opti-

mization problem, where the upper-level problem has a min-max structure. We propose a

cutting plane algorithm incorporated with Benders decomposition to solve the robust com-

bined problem.

The remainder of this chapter is as follows. In Section 2.2, more related works are

summarized and the relevance to our work is discussed. In Section 2.3, a bi-level location-

network design mathematical optimization model is formulated. In Section 2.4, we present

a cutting plane algorithm, combined with Benders decomposition, to solve the optimization

7

problem. In Section 2.5, we provide a single-level reformulation of the bi-level robust problem.

Results from numerical experiments are discussed in Section 2.6. Finally, conclusions and

future researches are provided in Section 2.7.

2.2 Literature Review

In this section, we review the literature in the four categories: hazmat facility location,

hazmat network design, combined facility and network design in non-hazmat context, and

robust optimization approaches in hazmat transportation.

2.2.1 Hazmat Facility Location Problems

There are a variety of methods for facility location problems in hazmat transportation.

The related studies assume that facility locations are not given and need to solve a routing

problem. Carotenuto et al. (2007) propose two greedy algorithms to select the path which

minimizes the total risk. Xie et al. (2012) study multi-objective hazmat model that optimizes

facility locations and routes in the long-distance transportation and solve the mixed integer

linear program by CPLEX. Jarboui et al. (2013) propose various neighborhood search (VNS)

heuristics for solving location-routing problem. Samanlioglu (2013) studies a location-routing

problem and proposes a lexicographic weighted Tchebycheff formulation to minimize multi-

objectives of total cost, transportation risk, and site risk. Ardjmand et al. (2015) apply a

novel genetic algorithm for location-routing problem in facilities and disposal sites. Romero

et al. (2016) analyze location-routing decisions considering equity based on Gini coefficient

and propose a method that combines Lagrangian relaxation with column generation. Rab-

bani et al. (2018) emphasize on hazmat formulation restriction, i.e., incompatibility between

different kinds of waste with multi-objectives of minimizing total cost, transportation risk,

and site risk. They use Nondominated Sorting Genetic Algorithm (NSGA-II) and Multi-

Objective Particle Swarm Optimization (MOPSO) to solve the problem. For earlier works,

see Berglund and Kwon (2014) and references therein.

8

2.2.2 Hazmat Network Design Problems

There are also some research papers related to network-design problem. The routing is

also considered when the locations of origin-destination pairs are given. Verter and Kara

(2008) provide a path-based formulation for network design hazmat shipment problem and

compromise between exposure risk and economic viability. Garrido (2008) and Marcotte

et al. (2009) study a network-design problem where origin-destination pairs are given and

aim to minimize exposure risk. They design the network by road pricing method, and Wang

et al. (2012) improve the method and propose a dual-toll pricing policy. Bianco et al. (2009)

provide a linear bi-level programming formulation for the hazmat transportation network de-

sign that considers minimizing total risk and risk equity. They propose a heuristic algorithm

to find a stable solution. Gzara (2013) proposes a family of valid cuts and incorporates

with an exact cutting plane algorithm for solving a bi-level network flow model. Bianco

et al. (2015) study a novel toll setting policy and formulate a mathematical programming

with equilibrium constraints where the government aims to minimize total risk and carriers

intend to minimize travel cost. Taslimi et al. (2017) propose a bi-level network design model

with the aim to minimize the maximum zone total risk and propose a greedy heuristic ap-

proach for large-size problems. Esfandeh et al. (2017) formulate the time-dependent network

design problem based on altering carriers’ departure times and route choices and extend the

model that can consider consecutive time-based road closure policies and allow carriers to

stop at the intermediate nodes.

2.2.3 Combined Facility Location and Network Design Problem in Non-hazmat Context

To the best of our knowledge, there are few papers related to combined facility location

and network design problem in hazmat transportation; we review some relevant papers in

non-hazmat context. The main difference between hazmat and non-hazmat problems is that

hazmat problems usually need to be in the bi-level form with hierarchical decision-making.

9

Melkote and Daskin (2001b) investigate a generalized model that optimizes facility loca-

tion and transportation network. Then they extend the model when facilities have a capacity

constraint and present several classes of valid inequalities to strengthen its LP relaxation

(Melkote and Daskin, 2001a). Ravi and Sinha (2006) propose an approximation algorithm

for combined facility location and network design problem with minimizing facilities opening

costs and transportation costs. Gelareh and Pisinger (2011) formulate a mixed integer linear

programming for deep-sea liner service providers’ locations and network design and propose

a primal decomposition method. Contreras et al. (2012) present two mixed integer program-

ming formulations which generalize the classical p-center problem in order to minimize the

maximum customer-facility travel time. Ghaderi and Jabalameli (2013) present a model for

the budget-constrained facility location–network design healthcare problem with minimiz-

ing multi-objectives of total travel costs and operating costs for facilities and network arcs.

And a greedy heuristic is proposed based on simulated annealing and cutting plane method.

Rahmaniani and Ghaderi (2013) propose a fix-and-optimize heuristic to solve bi-objective

combined facility location and network design problem with capacitated arcs. Ghaderi (2015)

studies a facility location-network design problem over several different time periods in order

to minimize the maximum travel time between each pair of origin-destination and proposes

an improved Variable Neighborhood Search.

2.2.4 Robust Optimization Approaches in Hazmat Transportation

In hazmat transportation problems, considering data uncertainty is necessary (Kwon

et al., 2013). Stochastic programming methods are, however, less effective, because historical

data are often insufficient to construct probability distributions for the risk exposure. When

probability distributions of uncertain parameters are unknown, robust optimization is a

useful technique (Bertsimas and Sim, 2003). Killmer et al. (2001) study a noxious facility

location problem involving uncertainty by a robust optimization method. Sharma et al.

(2009) formulate and solve the multi-objective robust network design problem with uncertain

10

demand. Berglund and Kwon (2014) consider a robust facility location and routing problem

for hazardous materials management with the objective of minimizing the total cost and also

analyze the impact of uncertainty in the demand and exposure risk. Xin et al. (2015) use

robust optimization method to formulate a bi-level model under risk values uncertainty for

designing hazmat transportation network. Sun et al. (2015) study a robust hazmat network

design problem considering risk uncertainty and devise a heuristic method with Lagrangian

relaxation. Sun et al. (2017) consider behavioral uncertainty from hazmat carriers and

formulate a robust optimization problem, for which a cutting plane algorithm is devised.

2.3 The Robust Combined Facility Location-Network Design Problem

We consider a graph G (N ,A) where N is the set of nodes and A is the set of directed

arcs. We assume that the sources of hazmat are at the known subset of nodes in the network,

but the destinations (disposal facility) are not. We let S denote the set of hazmat shipments

and o(s) denote the origin node of shipment s ∈ S. We want to determine the proper number

and locations for constructing facilities from a set of candidate facility sites. Note that we

assume disposal facilities do not generate hazmat; i.e.,
⋃

s∈S o(s)∩M = ∅, whereM denotes

the set of candidate facility locations. At the same time, we will consider a road-ban policy

by network designer. The upper level objective function is to minimize a linear combination

of fixed facility cost and the worst-case exposure risk. The lower level objective function is to

minimize the transportation cost for hazmat carriers. We assume that the hazmat carriers

choose the least cost route to the nearest hazmat facility.

For shipment s, the expected number of trucks required is N s . We let the anticipated

risk induced by each truck for shipment s on arc (i , j) is R s
ij . While the population exposure

is a popular choice for the risk measure R s
ij , one may use other metrics such as the accident

probability and the environmental impact. We require the risk measure R s
ij to hold linearity

and additivity properties that ensures risk being measurable as the linear combination of

metrics.

11

While one can estimate N s and R s
ij based on a survey and the national averages, the

values of these two critical parameters are hardly known exactly (Berglund and Kwon, 2014).

To address such data uncertainty, we employ a robust optimization approach. Following

Berglund and Kwon (2014), we assume that the demand is given as an interval [N s ,N s +K s]

and the risk as [R s
ij ,R

s
ij + Qs

ij].

We denote the routing variable of hazmat carriers by x, where x sij = 1 if arc (i , j) is chosen

for shipment s and x sij = 0 otherwise. The worst-case total risk can be modeled as follows:

max
u∈U ,v∈V

∑
(i ,j)∈A

∑
s∈S

(N s + K sus)(R s
ij + Qs

ijvij)x
s
ij

where the uncertainty sets U and V are bounded. The uncertain variables u and v are

constrained to stay within a specific range, and the total deviation from nominal values is

limited by a budget of uncertainty. In particular, we define the uncertainty sets with the

budget of uncertainty, Γu and Γv , as follows:

U =

{
u :
∑
s∈S

us ≤ Γu, 0 ≤ us ≤ 1

}
V =

{
v :

∑
(i ,j)∈A

vij ≤ Γv , 0 ≤ vij ≤ 1

}
.

Using the notation introduced in Table 2.1, we formulate the robust combined location-

network design problem as the following bi-level optimization problem:

minimize
y,z

[
w1

∑
i∈M

Fiyi + w2 max
u∈U ,v∈V

∑
(i ,j)∈A

∑
s∈S

(N s + K sus)(R s
ij + Qs

ijvij)x
s
ij

]
(2.1)

subject to yi ∈ {0, 1} ∀i ∈M (2.2)

zij ∈ {0, 1} ∀(i , j) ∈ A (2.3)

where x solves

minimize
x

∑
(i ,j)∈A

∑
s∈S

cijx
s
ij (2.4)

12

Table 2.1: Mathematical Notation

Sets
N the set of nodes
A the set of arcs
S the set of hazmat shipments
M the set of candidate facility locations
K the set of chosen facility locations

Parameters
cij the cost of transportation though arc (i , j) ∈ A
R s
ij the measure of exposure risk of shipment s ∈ S through arc (i , j) ∈ A

o(s) the node where hazmat are generated for shipment s ∈ S, o(s) ∩M = ∅
Fi the cost of constructing a hazmat processing facility at node i ∈M
N s the number of trucks required for shipment s ∈ S
Γu the budget of uncertainty in the number of trucks
Γv the budget of uncertainty in exposure risk
K s the width of the uncertainty in the number of trucks required by shipment s ∈ S
Qs

ij the width of the uncertainty in the exposure risk through arc (i , j) ∈ A

Variables
x sij 1, if arc (i , j) ∈ A is chosen for shipment s ∈ S; 0, otherwise.
yi 1, if a facility is located at node i ∈ N ; 0, otherwise.
zij 1, if arc (i , j) ∈ A is available for shipments; 0, otherwise.
us the uncertainty variable for the number of trucks required for shipment s ∈ S.
vij the uncertainty variable for the exposure risk through arc (i , j) ∈ A.

subject to
∑

j :(i ,j)∈A

x sij −
∑

j :(j ,i)∈A

x sji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S (2.5)

x sij ≤ zij ∀(i , j) ∈ A, s ∈ S (2.6)

x sij ∈ {0, 1} ∀(i , j) ∈ A, s ∈ S (2.7)

Note that since facilities construction cost and exposure risk are not directly comparable,

we will make a trade-off between these two parts of the objective function, i.e., set a dollar

amount equal to a unit of exposure risk. If the decision maker is prone to avoid risk, he/she

can set a higher dollar cost equal to a unit of risk, and vice versa. In the upper level objective

13

function (2.1), w1 and w2 represent the weights for cost and risk. The first part is the total

facility construction cost and the second part represents the worst-case risk. Without loss

of generality, we assume (w1,w2) = (1, 1) for the rest of this chapter.

The lower level objective function (2.4) is to minimize the carriers’ own shipment cost.

Constraint (2.5) ensures that origin nodes must have net outflow of 1; when node i is selected

as a facility (yi = 1), node i can have net outflow of either −1 if node i is chosen as a

destination or 0 otherwise; when node i is not selected as a facility (yi = 0), node i is same

as an intermediate node with zero net outflow; and all other intermediate nodes must have a

zero balance. Constraint (2.6) means that selecting arc (i , j) is constrained by whether it is

available (zij = 1) or not (zij = 0). Constraints (2.2), (2.3), and (2.7) represent that routing

variable x, location variable y, and network design variable z are binary variables.

The bi-level optimization problem, where the upper-level problem is a min-max problem,

can be formulated as a single-level optimization problem, shown in Section 2.5. The result-

ing single-level problem may be solved by off-the-shelf optimization solvers such as Gurobi

and CPLEX, when the problem instance is small. For large problems, optimization solvers

struggle with computational difficulty as shown in Section 2.6. There is also an issue with

big-M in the single-level problem.

2.4 An Exact Solution Method

To solve the bi-level mixed integer program problem, we propose a cutting plane algorithm

based on the cuts in Gzara (2013) and the idea of transforming location-network design

problem into a pure network design problem from Melkote and Daskin (2001b). The nature

of the cutting plane algorithm is to compare upper level objective (the Government’s global

goal) path and lower level objective (carrier’s goal) path. When these two paths are same,

an optimal solution is obtained. While the cutting plane algorithm can separate the lower-

level problem as a subproblem from the upper-level master problem, the master problem is

a computationally challenging problem, mainly due to the worst-case consideration in the

14

Start

C-Master B-Master

Dual of
B-Sub

UB = LB?

Benders
cut

C-Sub

x = x̂?

Stop

generate
cuts

(x, y, z)

x̂

yes

no

(x̃, ỹ, z̃) LB

UB

yes

(x, y, z)
= (x̃, ỹ, z̃)

no

Figure 2.1: Flow Chart for the Cutting Plane Algorithm Combined
with Benders Decomposition

upper-level objective. To tackle such difficulty, we use a Benders decomposition approach

for solving the master problem. To distinguish master and subproblem from the cutting

plane algorithm and Benders decomposition, we use C-Master/C-Sub and B-Master/B-Sub,

respectively. We illustrate the entire computational framework in Figure 2.1. The dotted

line represents the original flow in the cutting plane algorithm of Gzara (2013), which is

replaced by Benders decomposition in this paper. Note that generated cuts in C-Master are

carried over to B-Master, while Benders cuts are not carried over to C-Master.

2.4.1 Cutting Plane Algorithm

The master problem obtains the minimization of facility construction cost and the total

shipment risk. The valid cuts (Section 2.4.2) will be added to C-Master iteratively. By

adding cuts, network design variables zij can be changed to ensure carriers not to choose a

certain arc. C-Master is firstly formulated as follows:

15

minimize
x,y,z

[∑
i∈M

Fiyi + max
u,v

∑
(i ,j)∈A

∑
s∈S

(N s + K sus)(R s
ij + Qs

ijvij)x
s
ij

]

subject to
∑

j :(i ,j)∈A

x sij −
∑

j :(j ,i)∈A

x sji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

x sij ≤ zij ∀(i , j) ∈ A, s ∈ S

x sij ∈ {0, 1} ∀(i , j) ∈ A, s ∈ S

yi ∈ {0, 1} ∀i ∈M

zij ∈ {0, 1} ∀(i , j) ∈ A∑
s∈S

us ≤ Γu

∑
(i ,j)∈A

vij ≤ Γv

0 ≤ us ≤ 1 ∀s ∈ S

0 ≤ vij ≤ 1 ∀(i , j) ∈ A

additional cuts (2.23) (Section 2.4.2) added

Note that the above problem is a robust optimization problem for combined facility

location-network design decisions, with additional cuts generated from the lower-level sub

problem. To reformulate this problem as a single-level problem, we use dualization and

linearization techniques introduced in Kwon et al. (2013). The inner maximization part can

be expanded as follows:

max
u∈U ,v∈V

∑
(i ,j)∈A

∑
s∈S

(N s + K sus)(R s
ij + Qs

ijvij)x
s
ij

16

=
∑

(i ,j)∈A

∑
s∈S

N sR s
ijx

s
ij + max

u∈U ,v∈V

∑
(i ,j)∈A

∑
s∈S

(N sQs
ijvij + K sR s

iju
s + K sQs

iju
svij)x

s
ij

For any give x, the inner maximization problem is equivalent as follows:

maximize
u,v

∑
(i ,j)∈A

∑
s∈S

(N sQs
ijvij + K sR s

iju
s + K sQs

iju
svij)x

s
ij

∑
s∈S

us ≤ Γu, 0 ≤ us ≤ 1

∑
(i ,j)∈A

vij ≤ Γv , 0 ≤ vij ≤ 1

By letting w s
ij represent the quadratic term usvij for each (i , j) ∈ A, s ∈ S, the above

model can be linearized as follows:

maximize
u,v

∑
(i ,j)∈A

∑
s∈S

(N sQs
ijvij + K sR s

iju
s + K sQs

ijw
s
ij)x

s
ij

subject to us ≤ 1 ∀s ∈ S (ρs)

vij ≤ 1 ∀(i , j) ∈ A (ξij)

− us + w s
ij ≤ 0 ∀(i , j) ∈ A, s ∈ S (ηsij)

− vij + w s
ij ≤ 0 ∀(i , j) ∈ A, s ∈ S (πs

ij)∑
s∈S

us ≤ Γu (θu)

∑
(i ,j)∈A

vij ≤ Γv (θv)

us ≥ 0 ∀s ∈ S

vij ≥ 0 ∀(i , j) ∈ A

17

The dual variables ρs , ξij , η
s
ij , π

s
ij , θu and θv are introduced. The dual problem of the

above problem becomes:

minimize
ρ,ξ,η,π,θu ,θv

∑
s∈S

ρs +
∑

(i ,j)∈A

ξij + Γuθu + Γvθv

subject to ρs −
∑

(i ,j)∈A

ηsij + θu ≥
∑

(i ,j)∈A

K sR s
ijx

s
ij ∀s ∈ S

ξij −
∑
s∈S

πs
ij + θv ≥

∑
s∈S

N sQs
ijx

s
ij ∀(i , j) ∈ A

ηsij + πs
ij ≥ K sQs

ijx
s
ij ∀(i , j) ∈ A, s ∈ S

ρs , ξij , η
s
ij , π

s
ij , θu, θv ≥ 0 ∀(i , j) ∈ A, s ∈ S

We present the single-level linear optimization problem for C-Master:

minimize
x,y,z,ρ,ξ,η,π,θu ,θv

∑
i∈M

Fiyi +
∑

(i ,j)∈A

∑
s∈S

N sR s
ijx

s
ij +

∑
s∈S

ρs +
∑

(i ,j)∈A

ξij + Γuθu + Γvθv

subject to
∑

j :(i ,j)∈A

x sij −
∑

j :(j ,i)∈A

x sji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S (2.8)

x sij ≤ zij ∀(i , j) ∈ A, s ∈ S (2.9)

x sij ∈ {0, 1} ∀(i , j) ∈ A, s ∈ S (2.10)

yi ∈ {0, 1} ∀i ∈M (2.11)

zij ∈ {0, 1} ∀(i , j) ∈ A (2.12)

ρs −
∑

(i ,j)∈A

ηsij + θu ≥
∑

(i ,j)∈A

K sRijx
s
ij ∀s ∈ S (2.13)

ξij −
∑
s∈S

πs
ij + θv ≥

∑
s∈S

N sQs
ijx

s
ij ∀(i , j) ∈ A (2.14)

ηsij + πs
ij ≥ K sQs

ijx
s
ij ∀(i , j) ∈ A, s ∈ S (2.15)

18

ρs , ξij , η
s
ij , π

s
ij , θu, θv ≥ 0 ∀(i , j) ∈ A, s ∈ S (2.16)

additional cuts (2.23) (Section 2.4.2) added

Let x, y, z be the solution of the C-master problem. The C-master problem is still difficult

to solve; we use Benders decomposition to solve it. C-Master is divided into an integer

Benders Master problem (B-Master) and a continuous Benders Sub problem (B-Sub). The

decision variables are divided into two parts: binary variables x sij , yi , zij and continuous

variables ρs , ξij , η
s
ij , π

s
ij , θu, θv . The B-Sub problem generates a cut that is added to B-Master

problem in every iteration. When the objectives of B-Master and B-Sub are same, the

solutions x, y, and z are obtained.

Fixing y = y and z = z, we write the C-Sub problem as follows:

minimize
x

∑
(i ,j)∈A

∑
s∈S

cijx
s
ij

subject to
∑

j :(i ,j)∈A

x sij −
∑

j :(j ,i)∈A

x sji


= 1 if i = o(s)

≥ −y i if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

x sij ≤ z ij ∀(i , j) ∈ A, s ∈ S

x sij ∈ {0, 1} ∀(i , j) ∈ A, s ∈ S

Let x̂ be the solution of the C-Sub problem, which represents the path which minimizes

the transportation costs with the given facility location and network design.

2.4.2 Cut Generation

While Gzara (2013) has provided effective cut generation methods for the hazmat network

design problem, our problem involves both network design and facility location variables.

To apply the method of Gzara (2013) to our problem, we first transform the combined

19

1 2

7

Dummy
Node

0
5

3 4 6

8

(risk, cost)

(2,1)

(2,2)

(3,4
)

(3,5)

(4,2)

(1,3)
(0,0)

(0,0)

(0,
0)

Du
mm

y A
rcs

Subpath p0 =2-3-4-6-0

Subpath p̂0 =2-5-7-0

Candidate Facility
Locations

Figure 2.2: Conversion to a Pure Network Design Problem

facility location and network design problem to a pure network design problem (Melkote and

Daskin, 2001b). As shown in Figure 2.2, all facility candidate locations are first connected

to a dummy node via dummy arcs. Since the risk and transportation cost are zero in all

dummy arcs, constructing a facility in a candidate location is equivalent to opening the

corresponding dummy arc for traveling. By adding the dummy node, labeled as ‘0’, and

dummy arcs, labeled as (k , 0) for each candidate location k ∈ M, we obtain new sets of

nodes and arcs as follows:

N0 = N ∪ {0}

A0 = A ∪ {(k , 0) : k ∈M}

As a result, we obtain an augmented graph G0(N0,A0), in which new “network design”

variable zk0 for each k ∈M corresponds to location variable yk .

For each shipment s, two solutions x and x̂ utilize different paths. Among such two

different paths, we obtain two distinct subpaths p and p̂ from x and x̂, respectively. Adding

the dummy node to p and p̂, we obtain subpaths p0 and p̂0 defined in G0(N0,A0), respectively.

When the cuts suggested by Gzara (2013) are applied in G0(N0,A0), we obtain:

∑
(i ,j)∈p0

x sij ≤ |p0| − 1 + unew (2.17)

20

unew ≤ x sij ∀(i , j) ∈ p0 (2.18)∑
(i ,j)∈p̂0

zij ≤ |p̂0| − unew (2.19)

unew ∈ {0, 1} (2.20)

where |p| means the number of arcs in path p. We first show that the above cuts can be

simplified.

Proposition 1. Inequalities in (2.17)–(2.20) hold if and only if

∑
(i ,j)∈p̂0

zij ≤ |p̂0|+ |p0| − 1−
∑

(i ,j)∈p0

x sij (2.21)

holds.

Proof. We consider each direction separately.

[=⇒] Summing inequalities (2.17) and (2.19), we obtain

∑
(i ,j)∈p0

x sij +
∑

(i ,j)∈p̂0

zij ≤ |p0| − 1 + |p̂0|,

which is (2.21).

[⇐=] We now show that (2.21) implies (2.17)–(2.20). We consider two cases:

• When
∑

(i ,j)∈p0
x sij = |p0|. Then x sij = 1 for all (i , j) ∈ p0. Also (2.21) implies that

∑
(i ,j)∈p̂0

zij ≤ |p̂0| − 1.

For such x and z, we can set unew = 1 so that (2.17)–(2.20) hold.

• When
∑

(i ,j)∈p0
x sij ≤ |p0|−1. Then x sij = 0 for some (i , j) ∈ p0. Observe that the right-hand-

side of (2.21) is greater than or equals to |p̂0|. Since zij is binary, we have
∑

(i ,j)∈p̂0
zij ≤ |p̂0|

by definition. Therefore by setting unew = 0, we find that (2.17)–(2.20) hold.

21

Note that (2.21) can be written as

∑
(i ,j)∈p̂0

(1− zij) ≥ 1− |p0|+
∑

(i ,j)∈p0

x sij , (2.22)

which has the following simple interpretation. If we want to flow x through subpath p0, i.e.∑
(i ,j)∈p0

x sij = |p0|, then at least one arc (i , j) ∈ p̂0 must be closed or
∑

(i ,j)∈p̂0
(1− zij) ≥ 1.

Then we write the cut (2.22) in the original network G (N ,A).

Proposition 2. Let

δ̂k =


1 if p̂ includes node k

0 otherwise

for each k ∈M. Then the cut in (2.22) is equivalently written as

∑
(i ,j)∈p̂

(1− zij) +
∑
k∈M

δ̂k(1− yk) ≥ 1− |p|+
∑

(i ,j)∈p

x sij (2.23)

for the original network G (N ,A).

Proof. If subpath p includes any facility location, we observe that

|p0| = |p|+ 1∑
(i ,j)∈p0

x sij =
∑

(i ,j)∈p

x sij + 1

since every shipment must flow to the dummy node. If subpath p does not involve a facility

location, then

|p0| = |p|

22

∑
(i ,j)∈p0

x sij =
∑

(i ,j)∈p

x sij .

Therefore, in both cases, we have

|p0| −
∑

(i ,j)∈p0

x sij = |p| −
∑

(i ,j)∈p

x sij .

With similar consideration, we also observe that

∑
(i ,j)∈p̂0

(1− zij) =
∑

(i ,j)∈p̂

(1− zij) +
∑
k∈M

δ̂k(1− yk).

Hence, we obtain a proof.

2.4.3 Benders Decomposition for Solving C-Master

To solve the C-Master problem, we consider Benders Decomposition. The Benders Master

(B-Master) problem contains binary variables x sij , yi , and zij and constraints that restrict the

binary variables; namely, (2.8)–(2.12) and the cuts added in C-Master. We define the B-

Master problem as follows:

minimize
x,y,z,d

∑
i∈M

Fiyi +
∑

(i ,j)∈A

∑
s∈S

N sR s
ijx

s
ij + d

subject to
∑

j :(i ,j)∈A

x sij −
∑

j :(j ,i)∈A

x sji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

x sij ≤ zij ∀(i , j) ∈ A, s ∈ S

x sij ∈ {0, 1} ∀(i , j) ∈ A, s ∈ S

yi ∈ {0, 1} ∀i ∈M

zij ∈ {0, 1} ∀(i , j) ∈ A

23

cuts (2.23) (Section 2.4.2) carried over from C-Master

additional Benders cuts (2.24) added

where d represents the remainder of the objective function that will be computed by sub-

problems and constrained by Benders cuts. Let x̃, ỹ, z̃, and d̃ denote the optimal solutions

of B-Master. Then B-Master gives a lower bound for C-Master. We let

LB =
∑
i∈M

Fi ỹi +
∑

(i ,j)∈A

∑
s∈S

N sR s
ij x̃

s
ij + d̃ .

The Benders Sub (B-Sub) problem contains continuous variables ρ, ξ,η,π, θu, θv and

constraints (2.13)–(2.16). The B-Sub problem is given by fixing x, y, and z with a solution

of x̃, ỹ, and z̃ by solving the B-Master problem. The B-Sub problem is defined as follows:

minimize
ρ,ξ,η,π,θu ,θv

[∑
s∈S

ρs +
∑

(i ,j)∈A

ξij + Γuθu + Γvθv

]
subject to ρs −

∑
(i ,j)∈A

ηsij + θu ≥
∑

(i ,j)∈A

K sRij x̃
s
ij ∀s ∈ S (αs)

ξij −
∑
s∈S

πs
ij + θv ≥

∑
s∈S

N sQs
ij x̃

s
ij ∀(i , j) ∈ A (βij)

ηsij + πs
ij ≥ K sQs

ij x̃
s
ij ∀(i , j) ∈ A, s ∈ S (γsij)

ρs , ξij , η
s
ij , π

s
ij , θu, θv ≥ 0 ∀(i , j) ∈ A, s ∈ S

Because the optimality and valid cuts of B-Master problem can be defined by the dual

variables of B-Sub problem, we formulate the dual for B-Sub. The dual variables αs , βij , and

γsij are introduced. The dual problem for B-Sub is presented as follows:

maximize
α,β,γ

∑
(i ,j)∈A

∑
s∈S

(K sR s
ij x̃

s
ijα

s + N sQs
ij x̃

s
ijβij + K sQs

ij x̃
s
ijγ

s
ij)

subject to αs ≤ 1 ∀s ∈ S

24

βij ≤ 1 ∀(i , j) ∈ A

− αs + γsij ≤ 0 ∀(i , j) ∈ A, s ∈ S

− βij + γsij ≤ 0 ∀(i , j) ∈ A, s ∈ S∑
s∈S

αs ≤ Γu

∑
(i ,j)∈A

βij ≤ Γv

αs , βij , γ
s
ij ≥ 0 ∀(i , j) ∈ A, s ∈ S

Let α̃s , β̃ij , and γ̃sij be the optimal solution of the Dual of the B-Sub problem. The

following valid cut is added to the B-Master problem:

∑
(i ,j)∈A

∑
s∈S

(K sR s
ij α̃

s + N sQs
ij β̃ij + K sQs

ij γ̃
s
ij)x

s
ij ≤ d . (2.24)

We also obtain an upper bound for C-Master as follows:

UB =
∑
i∈M

Fi ỹi +
∑

(i ,j)∈A

∑
s∈S

N sR s
ij x̃

s
ij +

∑
(i ,j)∈A

∑
s∈S

(K sR s
ij x̃

s
ij α̃

s + N sQs
ij x̃

s
ij β̃ij + K sQs

ij x̃
s
ij γ̃

s
ij).

If UB = LB, then an optimal solution for C-Master is obtained.

2.5 A Single-Level Reformulation

We provide a single-level reformulation of the robust combined location-network design

problem given in (2.1)–(2.7). We first replace the lower-level problem by its optimality

conditions using techniques similar to the methods used by Arslan et al. (2018). Then we

dualize and linearize the inner maximization problem for the worst-case consideration as

done in Berglund and Kwon (2014). The resulting single-level reformulation involves a big-

M like constant bounded by
∑

(i ,j)∈A cij . We will use this single-level reformulation as a

benchmark for the cutting-plane method developed in Section 2.4.

25

2.5.1 Replacing the Lower-Level Problem by Optimality Conditions

Since the lower-level shortest path problem has the property of totally unimodular ma-

trices (Kara and Verter, 2004), the binary variable x sij can be relaxed to a nonnegative real

number. We also introduce a dummy node 0 to transform the problem into a pure network

design problem as done in Section 2.4.2. The lower-level problem can be written equivalently

as follows:

minimize
x

∑
(i ,j)∈A

∑
s∈S

cijx
s
ij

subject to
∑

j :(i ,j)∈A

x sij −
∑

j :(j ,i)∈A

x sji



= 1 if i = o(s)

+xi0 = 0 if i ∈M

= −1 if i = 0

= 0 otherwise

∀i ∈ N , s ∈ S (−λsi)

(1− zij)x
s
ij ≤ 0 ∀(i , j) ∈ A, s ∈ S (−µs

ij)

(1− yi)x
s
i0 ≤ 0 ∀i ∈M, s ∈ S (−µs

i0)

x sij ≥ 0 ∀(i , j) ∈ A, s ∈ S

x si0 ≥ 0 ∀i ∈M, s ∈ S

The dual variables −λsi and −µs
ij are introduced. The dual problem is:

maximize
λ,µ

∑
s∈S

(
λs0 − λso(s)

)
(2.25)

subject to − λsi + λsj − (1− zij)µ
s
ij ≤ cij ∀(i , j) ∈ A, s ∈ S (2.26)

− λsi + λs0 − (1− yi)µ
s
i0 ≤ 0 ∀i ∈M,∀s ∈ S (2.27)

µs
ij ≥ 0 ∀(i , j) ∈ A, s ∈ S (2.28)

µs
i0 ≥ 0 ∀i ∈M, s ∈ S (2.29)

26

Using an approach similar to Arslan et al. (2018), we obtain the following result:

Proposition 3. Let µ =
∑

(i ,j)A cij . There exists an optimal solution for (2.25)–(2.29) with

µs
ij = µs

i0 = µ for all s ∈ S, (i , j) ∈ A and i ∈M.

Proof. By letting λso(s) = 0 without loss of generality, we obtain:

maximize
λ,µ

∑
s∈S

λs0

subject to λsj ≤ λsi + cij + (1− zij)µ
s
ij ∀(i , j) ∈ A, s ∈ S

λs0 ≤ λsi + (1− yi)µ
s
i0 ∀i ∈M,∀s ∈ S

µs
ij ≥ 0 ∀(i , j) ∈ A, s ∈ S

µs
i0 ≥ 0 ∀i ∈M, s ∈ S

Note that µ does not contribute to the objective function; therefore we can make (1 −

zij)µ
s
ij and (1 − yi)µ

s
i0 arbitrarily large to maximize λs0. Since λs0 represents a label for node

d , we can bound µs
ij and µs

i0 by µ.

Therefore, the dual feasibility becomes:

λsj ≤ λsi + cij + (1− zij)µ ∀(i , j) ∈ A, s ∈ S

λs0 ≤ λsi + (1− yi)µ ∀i ∈M, ∀s ∈ S.

Note that µ behaves like big-M constants. For the optimality condition, instead of the

strong duality, we can use the reverse weak duality (Amaldi et al., 2011; Arslan et al., 2018)

in the following form: ∑
s∈S

(
λs0 − λso(s)

)
≥
∑

(i ,j)∈A

∑
s∈S

cijx
s
ij

27

Therefore, the robust combined location-network design problem becomes:

minimize
x,y,z,λ

[∑
i∈M

Fiyi + max
u∈U ,v∈V

∑
(i ,j)∈A

∑
s∈S

(N s + K sus)(R s
ij + Qs

ijvij)x
s
ij

]

subject to
∑

j :(i ,j)∈A

x sij −
∑

j :(j ,i)∈A

x sji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

x sij ≤ zij ∀(i , j) ∈ A, s ∈ S∑
s∈S

(
λs0 − λso(s)

)
≥
∑

(i ,j)∈A

∑
s∈S

cijx
s
ij

λsj ≤ λsi + cij + (1− zij)µ ∀(i , j) ∈ A, s ∈ S

λs0 ≤ λsi + (1− yi)µ ∀i ∈M,∀s ∈ S

x sij ∈ {0, 1} ∀(i , j) ∈ A, s ∈ S

yi ∈ {0, 1} ∀i ∈M

zij ∈ {0, 1} ∀(i , j) ∈ A

λsi ≥ 0 ∀i ∈ N ∪ {0}.

2.5.2 Dualizing and Linearizing the Inner Maximization Problem

The inner maximization problem can be dualized and linearized as done in Section 2.4.1.

Finally, we obtain the single-level reformulation of the robust combined location-network

design problem as follows:

minimize
x,y,z,λ,ρ,ξ,η,π,θu ,θv

[∑
i∈M

Fiyi +
∑

(i ,j)∈A

∑
s∈S

N sR s
ijx

s
ij +

∑
s∈S

ρs +
∑

(i ,j)∈A

ξij + Γuθu + Γvθv

]

28

subject to
∑

j :(i ,j)∈A

x sij −
∑

j :(j ,i)∈A

x sji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

x sij ≤ zij ∀(i , j) ∈ A, s ∈ S∑
s∈S

(
λs0 − λso(s)

)
≥
∑

(i ,j)∈A

∑
s∈S

cijx
s
ij

λsj ≤ λsi + cij + (1− zij)µ ∀(i , j) ∈ A, s ∈ S

λs0 ≤ λsi + (1− yi)µ ∀i ∈M,∀s ∈ S

ρs −
∑

(i ,j)∈A

ηsij + θu ≥
∑

(i ,j)∈A

K sR s
ijx

s
ij ∀s ∈ S

ξij −
∑
s∈S

πs
ij + θv ≥

∑
s∈S

N sQs
ijx

s
ij ∀(i , j) ∈ A

ηsij + πs
ij ≥ K sQs

ijx
s
ij ∀(i , j) ∈ A, s ∈ S

x sij ∈ {0, 1} ∀(i , j) ∈ A, s ∈ S

yi ∈ {0, 1} ∀i ∈M

zij ∈ {0, 1} ∀(i , j) ∈ A

λsi ≥ 0 ∀i ∈ N ∪ {d}

ρs , ξij , η
s
ij , π

s
ij , θu, θv ≥ 0 ∀(i , j) ∈ A, s ∈ S

The above problem is a mixed integer linear program (MILP) where all integer variables

are binary. Off-the-shelf optimization solvers such as Gurobi and CPLEX can be used to

solve small-size problem. As the size increases, however, the amount of time required by

solvers grows rapidly.

29

2.6 Numerical Experiments

The experiments are done on the computer which runs 64-bit Windows 10 with 2.60GHz

Intel Core (TM i5-7300U) CPU and 8 GB RAM. The cutting plane algorithm is coded in

Julia 0.6.4 (Bezanson et al., 2012) and JuMP.jl optimization modeling package (Dunning

et al., 2017) is used. The single-level reformulation in Section 2.5 is solved by calling Gurobi

7.5.2 solver with default setting.

Numerical analysis is performed on a set of data from Ravenna city in Italy (Erkut and

Alp, 2007). The road network in Ravenna consists of 111 nodes and 143 arcs. The risk R s
ij

on arc (i , j) is calculated as the summation of exposure risk from all four types of hazmat

(methanol, chlorine, gasoline, and LPG). The transportation cost cij for arc (i , j) is measured

as the actual distance in meters. The demand for each shipment s is measured as truckloads,

i.e., the number of trucks N s .

The experiments are done on two sets of instances, small size and large size. In the

small-size problems, there are 9 origins and the set size of candidate facility locations M is

5 and 10. In the large-size problems, there are 20 origins of hazmat shipment. We randomly

choose 5, 10 and 15 as the set of candidate facility locations M.

The comparison between objectives and running time of the cutting plane algorithm and

Gurobi for the single-level reformulation are calculated as follows:

%Obj =
Objective of Gurobi−Objective of cutting plane

Objective of cutting plane
× 100 (2.30)

%Time =
Running time of Gurobi− Running time of cutting plane

Running time of cutting plane
× 100 (2.31)

2.6.1 Analysis on the Small-Size Instances

The objectives and running time on the small-size instances are shown in Table 2.2.

For instances 3, 4, and 9, Gurobi fails to obtain a proven optimal solution in 3600s. The

gaps between the incumbent solution and the best bound are 1.27%, 2.13%, and 0.71%,

30

respectively. The cutting plane algorithm can take less running time to get the proven

optimal solutions except instances 5, 10, 15, and 20. Γu and Γv are much larger than those

in other instances. As a result, the worst-case in the inner maximization problem happens

when almost all u and v variables are set to 1. This makes the problem easier to solve for

larger Γu and Γv values. So, for these instances, the optimal solution can be obtained in

less running time by Gurobi than the cutting plane algorithm. The cutting plane algorithm

performs better than Gurobi on 80% small-size instances in terms of running time. The

average %Obj is 0.00% and the average %Time is 476.37%. The cutting plane algorithm

and Gurobi can get optimal solution values for all small-size instances.

Table 2.2: Comparison Between the Solutions by the Cutting Plane Algorithm and Gurobi
for the Single-Level Reformulation on Small-Size Ravenna Instances

Instance Cutting-Plane Single-Level Comparison

No. |M| (K s ,Qs
ij) (Γu, Γv) Objective Time(s) Objective Time(s) %Obj %Time

1 5 (Ns ,Rs
ij) (1, 1) 19390 1.2 19390 2.9 0.00 141.7

2 (3, 5) 28966 43.0 28966 495.8 0.00 1053.0
3 (5, 5) 31222 66.5 31222a 3600.0 0.00 5313.5
4 (5, 10) 36221 1764.5 36221a 3600.0 0.00 104.0
5 (10, 20) 41814 1559.8 41814 655.4 0.00 -58.0

6 (0.5Ns , 0.5Rs
ij) (1, 1) 15628 1.1 15628 1.7 0.00 54.5

7 (3, 5) 19783 7.5 19783 36.8 0.00 390.7
8 (5, 5) 20779 11.3 20779 94.1 0.00 732.7
9 (5, 10) 22754 221.1 22754a 3600.0 0.00 1528.2

10 (10, 20) 24893 242.5 24893 96.3 0.00 -60.3

11 10 (Ns ,Rs
ij) (1, 1) 11783 1.4 11783 1.9 0.00 35.7

12 (3, 5) 19491 2.6 19491 4.7 0.00 80.8
13 (5, 5) 20377 3.4 20377 5.3 0.00 55.9
14 (5, 10) 22678 5.0 22678 5.3 0.00 6.0
15 (10, 20) 25470 29.4 25470 6.0 0.00 -79.6

16 (0.5Ns , 0.5Rs
ij) (1, 1) 9424 1.3 9424 1.4 0.00 7.7

17 (3, 5) 12770 1.3 12770 1.6 0.00 23.1
18 (5, 5) 13158 1.4 13158 5.4 0.00 285.7
19 (5, 10) 13953 1.4 13953 1.4 0.00 0.0
20 (10, 20) 15251 20.1 15251 2.4 0.00 -88.1

Average 0.00 476.37

a The algorithm stopped in 3600s and the solution is not proven optimal.

31

5000 10000 15000 20000 25000 30000

-15000

-10000

-5000

0

5000

Road Network

Routes

Road Ban

Origins

Facilities

(a) Instance 1
5000 10000 15000 20000 25000 30000

-15000

-10000

-5000

0

5000

Road Network

Routes

Road Ban

Origins

Facilities

(b) Instance 11

Figure 2.3: Results on Small-Size Ravenna Instances

The results for Instance 1 and 11 are illustrated in Figure 2.3. The circles denote origins

where hazmat is generated. The triangles represent chosen facilities sites. The green lines

denote the routes which truck drivers choose. The red lines denote the roads which are not

available for hazmat transportation.

2.6.2 Analysis on the Large-Size Instances

The objectives and running time on the large-size instances are shown in Table 3.3.

The cutting plane algorithm and Gurobi can obtain optimal solutions for 100% and 58.33%

large-size instances in 10800s, respectively. For instances 2 and 11, Gurobi obtains the

incumbent solution that is equal to the value of the optimal solution. But the optimality of

the incumbent solution can’t be proven. The gaps between the incumbent solution and the

best bound are 0.16% and 0.66%, respectively. For all instances, the cutting plane algorithm

can take much less running time to get the proven optimal solutions. The average %Obj

is 5.00% and the average %Time is 820.32%. The cutting plane algorithm outperforms the

single-level reformulation solved by Gurobi in solution quality and running time. The results

for Instance 1, 13, and 25 are illustrated in Figure 2.4.

The performance profile (Dolan and Moré, 2002) is used to compare different algorithms

on the running times. The running time performance file for different algorithms is created

32

Table 2.3: Comparison Between the Solutions by the Cutting Plane Algorithm and Gurobi
for the Single-Level Reformulation on Large-Size Ravenna Instances

Instance Cutting-Plane Single-Level Comparison

No. |M| (K s ,Qs
ij) (Γu, Γv) Objective Time(s) Objective Time(s) %Obj %Time

1 5 (Ns ,Rs
ij) (1, 1) 90089 8.4 90089 155.4 0.00 1750.00

2 (3, 5) 137010 279.8 137010a 10800.0 0.00 3759.90
3 (5, 5) 143015 41.9 143015 389.0 0.00 828.40
4 (5, 10) 168512 148.4 168512 717.3 0.00 383.36
5 (10, 20) 200155 4832.4 200296a 10800.0 0.10 123.49
6 (20, 20) 266569 652.0 266569 893.6 0.00 37.06

7 (0.5Ns , 0.5Rs
ij) (1, 1) 74187 12.5 74187 38.0 0.00 204.00

8 (3, 5) 93607 22.6 93607 2695.3 0.00 11826.11
9 (5, 5) 96609 13.8 96609 194.8 0.00 1311.59

10 (5, 10) 106437 46.3 106437 122.1 0.00 163.71
11 (10, 20) 119942 1233.6 119942a 10800.0 0.00 775.49
12 (20, 20) 124410 994.2 124660a 10800.0 0.20 986.30

13 10 (Ns ,Rs
ij) (1, 1) 50908 993.0 59432a 10800.0 16.74 987.61

14 (3, 5) 67665 1723.9 85216a 10800.0 25.94 526.49
15 (5, 5) 71346 1878.0 89698a 10800.0 25.72 475.08
16 (5, 10) 80241 1111.5 97450a 10800.0 21.45 871.66
17 (10, 20) 95987 3621.7 98472a 10800.0 2.59 198.20
18 (20, 20) 104626 1804.6 104626 2485.5 0.00 37.73

19 (0.5Ns , 0.5Rs
ij) (1, 1) 39968 1203.2 46563a 10800.0 16.50 797.61

20 (3, 5) 46879 1704.6 56822a 10800.0 21.21 533.58
21 (5, 5) 48655 2464.6 58829a 10800.0 20.91 338.20
22 (5, 10) 52257 998.5 62170a 10800.0 18.97 981.62
23 (10, 20) 58732 3709.4 63444a 10800.0 8.02 191.15
24 (20, 20) 72117 1406.2 73233a 10800.0 1.55 348.84

25 15 (Ns ,Rs
ij) (1, 1) 48717 3.4 48717 16.8 0.00 394.12

26 (3, 5) 65921 66.2 65921 100.8 0.00 52.27
27 (5, 5) 70251 128.2 70251 223.7 0.00 74.49
28 (5, 10) 77221 14.1 77221 19.8 0.00 40.43
29 (10, 20) 92991 136.9 92991 175.2 0.00 27.98
30 (20, 20) 100673 129.1 100673 225.4 0.00 74.59

31 (0.5Ns , 0.5Rs
ij) (1, 1) 38090 45.1 38090 66.7 0.00 47.89

32 (3, 5) 45218 225.6 45218 713.0 0.00 216.05
33 (5, 5) 47211 166.5 47211 204.5 0.00 22.82
34 (5, 10) 50117 78.1 50117 134.7 0.00 72.47
35 (10, 20) 56673 31.6 56673 42.4 0.00 34.18
36 (20, 20) 59772 26.4 59772 36.2 0.00 37.12

Average 5.00 820.32

a The algorithm stopped in 10800s and the solution is not proven optimal.

33

5000 10000 15000 20000 25000 30000

-15000

-10000

-5000

0

5000

Road Network

Routes

Road Ban

Origins

Facilities

(a) Instance 1
5000 10000 15000 20000 25000 30000

-15000

-10000

-5000

0

5000

Road Network

Routes

Road Ban

Origins

Facilities

(b) Instance 13

5000 10000 15000 20000 25000 30000

-15000

-10000

-5000

0

5000

Road Network

Routes

Road Ban

Origins

Facilities

(c) Instance 25

Figure 2.4: Results on Large-Size Ravenna Instances

by calculating the ratios of the running time of each algorithm and the minimum running

time of all algorithms. The horizontal axis shows the ratios. The vertical axis shows the

percentage of instances with a ratio that is less than or equal to the ratio on the horizontal

axis. This indicates that the method has better performance when its profile is drawn in the

upper left-hand graph. The running time performance profiles of the proposed cutting plane

algorithm and Gurobi for the single-level reformation on small-size and large-size Ravenna

instances are shown in Figure 2.5. Figure 2.5 indicates that the cutting plane algorithm

has better running time performance than the single-level reformulation solved by Gurobi

on small-size and large-size Ravenna Instances. In Figure 2.5(b), the profile of large-size

instances is a straight line, that means the running times of the cutting plane algorithm are

34

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Ratio

30

40

50

60

70

80

90

100

P
er
ce
nt
ag
e

Cutting Plane

Gurobi

(a) Small-Size Ravenna Instances

0 20 40 60 80 100 120

Ratio

0

20

40

60

80

100

P
er
ce
nt
ag
e

Cutting Plane

Gurobi

(b) Large-Size Ravenna Instances

Figure 2.5: The Running Time Performance Profile of the Cutting Plane Algorithm and
Gurobi for the Single-Level Reformulation

less than those by Gurobi for all instances. Compared large-size instances 5, 11, 17, and

23 with small-size instances 5, 10, 15, and 20, the difficulty caused by increasing problem

size is more than the simplicity caused by large Γu and Γv values. Besides, the cutting

plane algorithm takes less time in large-size instances 6, 12, 18, 24, 30, and 36, which have

larger parameters values (Γu, Γv) = (20, 20). Therefore, the advantage of the cutting plane

algorithm becomes obvious as the problem size increases, especially in the running time.

2.6.3 Combined Model versus Sequential Model

We consider the combined robust model that optimizes facility locations and network

design problem simultaneously. If we use techniques proposed in the previous papers in the

literature review, the problem has to be solved in two phases. In Phase 1, robust facility

locations problem is solved, and facility setup locations are determined. In Phase 2, robust

network design problem is solved. We call this two-phase model the sequential model.

In this section, we use the single-level reformulation of bi-level robust facility location

problem proposed by Kwon et al. (2013), shown in Appendix B.1. We obtain the optimal

solution of facility location variables y∗. When y ∗i = 1 for i ∈ M, facility i is chosen to

open. We let K be the set of chosen facility locations. Sun et al. (2015) considered a robust

35

Table 2.4: Comparison Between the Objectives for Combined and Sequential Model on
Small-Size Ravenna Instances

Instance Objective

No. |M| (K s ,Qs
ij) (Γu, Γv) Combined Model Sequential Model %Deviation

1 5 (Ns ,Rs
ij) (1, 1) 19390 20417 5.30

2 (3, 5) 28966 30720 6.06
3 (5, 5) 31222 33193 6.31
4 (5, 10) 36221 36764 1.50
5 (10, 20) 41814 42591 1.86

6 (0.5Ns , 0.5Rs
ij) (1, 1) 15628 15959 2.12

7 (3, 5) 19783 20391 3.07
8 (5, 5) 20779 21451 3.23
9 (5, 10) 22754 22791 0.16

10 (10, 20) 24893 25072 0.72

11 10 (Ns ,Rs
ij) (1, 1) 11783 12171 3.29

12 (3, 5) 19491 20709 6.25
13 (5, 5) 20377 21594 5.97
14 (5, 10) 22678 23818 5.03
15 (10, 20) 25470 25817 1.36

16 (0.5Ns , 0.5Rs
ij) (1, 1) 9424 9549 1.33

17 (3, 5) 12855 12770 0.67
18 (5, 5) 13158 13243 0.65
19 (5, 10) 13953 13964 0.08
20 (10, 20) 15251 15758 3.32

Average 2.91

network design problem only with the uncertainty in exposure risk. Based on their model,

we revise a single-level form of robust network design model that considers uncertainty both

in exposure risk and the number of shipment demand, shown in Appendix B.2. We obtain

the optimal solution of routing variables x∗ and network design variable z∗.

To prove the benefits of the combined model, we compare it with the sequential model

in the terms of objective function value
∑

i∈M Fiy
∗
i +

∑
(i ,j)∈A

∑
s∈S N

sR s
ijx

s∗
ij +

∑
s∈S ρ

s∗ +∑
(i ,j)∈A ξ

∗
ij + Γuθ

∗
u + Γvθ

∗
v . The comparison between objectives for combined model and

sequential model is calculated as follows:

36

%Deviation =
Objective of Sequential Model−Objective of Combined Model

Objective of Combined Model
× 100

(2.32)

The single-level reformulation models in Appendices B.1 and B.2 are solved by calling

Gurobi 7.5.2 solver with default setting. Big-M is set as a constant bounded by
∑

(i ,j)∈A cij .

The objectives of sequential model and %Deviation are shown in Tables 2.4 and 2.5. For

small-size and large-size Ravenna city instances, the average %Deviation are 2.91 and 3.87,

respectively. The objectives of the combined model are less than those of sequential model

and the difference can be as large as 10.39%. In Table 2.5, we can observe that the difference

is more obvious when |M| is smaller. When |M| is 5, 10, and 15, the average %Deviation

are 6.52, 2.36, and 2.73, respectively.

This result indicates that when there are fewer choices of potential facility candidates, the

value of combined decision-making becomes more significant. When there are more choices

available for locations, there may exist a location that leads to a safe network even without

network design policy. On the other hand, with fewer choices available for locations, such a

favorable option may be unavailable; hence one needs to consider both location and network

design decisions at the same time. When considering facility location and network design

problem jointly, the leader can make a better decision with the aim of reducing the facility

setup costs and hazmat exposure risk.

2.7 Concluding Remarks

In this chapter, a leader-follower decision problem is considered in the form of bi-level

optimization. In the upper level, the leader aims to minimize the total facility construction

costs and hazmat exposure risks by determining facility locations and available roads for

hazmat transportation. The leader affects the followers who intend to minimize their trans-

37

Table 2.5: Comparison Between the Objectives for Combined and Sequential Model on
Large-Size Ravenna Instances

Instance Objective

No. |M| (K s ,Qs
ij) (Γu, Γv) Combined Model Sequential Model %Deviation

1 5 (Ns ,Rs
ij) (1, 1) 90089 99445 10.39

2 (3, 5) 137010 148392 8.31
3 (5, 5) 143015 157416 10.07
4 (5, 10) 168512 176718 4.87
5 (10, 20) 200155 211719 5.80
6 (20, 20) 266569 273800 2.71

7 (0.5Ns , 0.5Rs
ij) (1, 1) 74187 79259 6.84

8 (3, 5) 93607 100067 6.90
9 (5, 5) 96609 103821 7.47

10 (5, 10) 106437 111429 4.69
11 (10, 20) 119942 125868 4.94
12 (20, 20) 124410 130981 5.28

13 10 (Ns ,Rs
ij) (1, 1) 50908 51377 0.92

14 (3, 5) 67665 68255 0.87
15 (5, 5) 71346 72974 2.28
16 (5, 10) 80241 80628 0.48
17 (10, 20) 95987 100021 4.20
18 (20, 20) 104626 109641 4.79

19 (0.5Ns , 0.5Rs
ij) (1, 1) 39968 40750 1.96

20 (3, 5) 46879 47554 1.44
21 (5, 5) 48655 49624 1.99
22 (5, 10) 52257 52940 1.31
23 (10, 20) 58732 61058 3.96
24 (20, 20) 72117 75046 4.06

25 15 (Ns ,Rs
ij) (1, 1) 48717 50474 3.61

26 (3, 5) 65921 66827 1.37
27 (5, 5) 70251 71624 1.95
28 (5, 10) 77221 78262 1.35
29 (10, 20) 92991 95298 2.48
30 (20, 20) 100673 103216 2.53

31 (0.5Ns , 0.5Rs
ij) (1, 1) 38090 39847 4.61

32 (3, 5) 45218 46124 2.00
33 (5, 5) 47211 48098 1.88
34 (5, 10) 50117 51048 1.86
35 (10, 20) 56673 58208 2.71
36 (20, 20) 59772 63602 6.41

Average 3.87

38

portation costs when designing the road network. We apply a robust optimization approach

to deal with the uncertainty in the exposure risk and the demand. A bi-level integer pro-

gramming model is formulated where the upper level is a min-max problem and the lower

level is a shortest-path problem. We devise an exact algorithm that combines a cutting plane

algorithm with Benders decomposition and derive a single-level reformulation. Comparisons

between two approaches are made on the Ravenna city data, in terms of objectives and the

running time. The analysis on small and large size instances demonstrates that the proposed

cutting plane algorithm performs much better than Gurobi as the problem size increases.

The proposed cutting plane algorithm is an effective exact method for solving the robust

combined facility location-network design problem.

A couple of directions for future research are suggested. First, uncertainty on origin

locations can be considered. In this chapter, we assume that all origin nodes are exactly

known. Since the hazmat facility location problem is for long-term decision, considering

new hazmat origins in the future will lead to an important problem. Second, hazmat trips

to locations other than the hazmat facilities can be incorporated. Although we consider

hazmat trips to hazmat facilities only in this chapter, there are also hazmat trips to other

destinations. Hazmat network design policies will certainly impact not only trips to hazmat

facilities, but also all other general hazmat trips. Therefore, incorporating both types of

hazmat trips within a single modeling framework is a valuable research direction.

39

Chapter 3: An Adaptive Large Neighborhood Search Method for Rebalancing

Free-Floating Electric Vehicle Sharing Systems

3.1 Introduction

Electric vehicle (EV) sharing systems are a promising solution for smarter and more

sustainable urban mobility. Vehicle sharing systems have the potential to become a viable

alternative to private car ownership, leading to more efficient utilization of vehicles and park-

ing sites. Moreover, the use of EVs in vehicle sharing systems can offer an effective solution

to curbing greenhouse gas emissions in urban transportation. Accordingly, many vehicle

sharing companies, such as Zipcar and car2go, are developing rapidly with the traction of

increasing vehicle rental demands. As of 2019, the global carsharing market exceeded USD

2.5 billion and is estimated to reach up to USD 9 billion in 2026 (Preeti and Prasenjit, 2019).

Unlike traditional carsharing systems that are based on fixed stations, free-floating car-

sharing systems allow users to pick up any available vehicle wherever and whenever they

need it and return them at any permissible parking location within a designated service

area. As of 2016, free-floating EV sharing systems (FFEVSS) are being operated in about

34 cities across nine countries (Kortum et al., 2016). An important feature of such vehicle

sharing systems is that they allow users to make a customized one-way trip with the mobile

apps, providing more flexible service (Wielinski et al., 2015). It is reported that this type

of carsharing system reduces traffic congestion in urban areas (Becker et al., 2018; Le Vine

and Polak, 2019). In North America, it is estimated that 11–19% of carsharing participants

have sold their private vehicles after joining a carsharing program (Shaheen and Cohen,

2007). Moreover, carsharing improves the quality of mobility service compared to public

transportation (Mattia et al., 2019).

40

Despite such clear benefits of FFEVSS, they also pose multiple operational challenges.

First, the vehicles should be available at the right location at the right time based on the

customers’ demand patterns, as one-way trip demands can cause a severe spatial imbalance

between vehicle availability and trip demands. Second, the low charging level of EVs may

trigger customers’ range anxiety and lower the service demand, and hence, the EVs should be

frequently and sufficiently charged (Weikl and Bogenberger, 2015; Noel et al., 2019). Indeed,

for a successful operation of FFEVSS, it is essential to develop an efficient EV relocation

plan to resolve the imbalance and charging issues.

There are two key decisions in the FFEVSS rebalancing problem: (1) EV relocation and

(2) shuttle routing. EV relocation decides which EV should be relocated from its origin (i.e.,

supply location) to which demand location, and also, whether and where it has to be charged.

This operation can be particularly complex and costly, because EVs cannot be moved in a

batch on one carrier, unlike other shared mobility systems such as bikes or scooters. In

addition, an EV relocation operation requires a driver to drive the vehicle to its destination,

and therefore, supporting vehicles, which we call shuttles, are employed to drop off and pick

up the drivers. Hence, a shuttle routing problem arises. Specifically, the shuttle routing

problem determines how such shuttles pick up and drop off drivers to satisfy the planned EV

relocations. For an efficient operation, these two decisions should be made simultaneously

rather than sequentially, which creates additional layers of computational challenge.

In this chapter, we develop an adaptive large neighborhood search (ALNS) algorithm

to solve the FFEVSS rebalancing problem. ALNS, first proposed by Ropke and Pisinger

(2006), is a well-known iterative metaheuristic framework that has been popularly applied

to solving various vehicle routing problems. One of the key characteristics of ALNS is that it

partially destroys an incumbent solution and repairs it to construct a better solution in each

iteration. Normally, a small number of destroy and repair methods are used, and the choice

of the method is determined adaptively as the algorithm proceeds. Applying ALNS to our

problem setting is not at all trivial or straightforward. As two decisions of EV relocation

41

and shuttle routing are tangled in one problem, the destroy and repair methods should also

be able to handle such complexity. We propose multiple destroy and repair methods that

are adequate to the problem setting that we focus in this chapter. We then propose a way

to modify our ALNS algorithm to demonstrate how it can accommodate various operational

environments. For instance, we demonstrate how our ALNS algorithm can be adopted for the

case where each driver carries a small personal mobility vehicle such as a scooter or Segway

instead of being transported by a shuttle. In this case, our method routes the drivers directly,

rather than routing the shuttles. We present how we may modify our main algorithm to

create a variant.

One important strength of our ALNS algorithm, compared to other types of compu-

tational methods available for the FFEVSS rebalancing problems in the literature, is its

flexibility to be applied in a dynamic environment. Because ALNS algorithm continuously

improves the current route by destroying and repairing solutions, any change in the current

system can be easily considered within the destroy and repair procedures. However, the

ALNS framework applied to the EV relocation and shuttle routing problem should consider

the hierarchy and interdependency of the two decisions to be made. Our key methodological

contributions include developing efficient methods to handle such hierarchy and interdepen-

dency within the popular ALNS framework.

We also conduct numerical experiments for which we use randomly generated instances

of several sizes as well as actual data from an FFEVSS operated in the city of Amster-

dam. Haider et al. (2019) and Bogyrbayeva et al. (2021) proposed an exchange-based

neighborhood-search method (EBNSM) and a Reinforcement Learning (RL) approach to

solve the same problem, respectively. With EBNSM and RL being benchmark methods, we

demonstrate the effectiveness and efficiency of our ALNS algorithm.

The remainder of the chapter is organized as follows. In Section 3.2, the related lit-

erature is reviewed. In Section 3.3, the problem statement and mathematical formulation

are presented in detail. Two benchmark methods are described briefly in Section 3.4. The

42

computational method based on ALNS, our main methodological contribution, is presented

in Section 3.5. The modification of ALNS in problem variants are presented in Section 3.6.

In Section 3.7, the experimental results validate the performance of ALNS. We conclude this

chapter in Section 3.8.

3.2 Literature Review

Since the inception of car2go operation, who started a free-floating carsharing system

in Ulm, Germany in April 2009 (Firnkorn and Müller, 2011), many models and approaches

have been proposed to optimize the operations in FFEVSS. In this section, we review the

literature in this stream within the past decade.

Some papers focused only on vehicles relocation and did not take personnel allocation

into account. Cepolina and Farina (2012) developed a random search algorithm to optimize

the vehicles number and their distribution in the operating region with minimizing vehicle

costs and waiting times. The method tried to narrow the difference between the number

of available vehicles and users’ demands in a time period. Weikl and Bogenberger (2013)

implemented the online optimization module to collect and measure the current demand and

vehicle distribution and predicted the future demand in regards to an offline module. Then,

they proposed a mesoscopic relocation algorithm to relocate vehicles on two levels (macro-

scopic segment level and microscopic individual vehicle level) in the free-floating carsharing

system. Herrmann et al. (2014) investigated different relocation strategies to balance cars

distribution for the increasing customers’ acceptance in the free-floating carsharing system

and proposed a discrete-event simulation model that was evaluated by testing on car2go real

case data. Jorge et al. (2014) developed a mathematical model to relocate vehicles to maxi-

mize the profit and a simulation model to discuss different real-time relocation policies. The

results showed that the profit increased after operating vehicles relocations. Wielinski et al.

(2015) proposed a practice-ready model for free-floating carsharing systems combined with

the charging of electric cars and the refueling of conventional vehicles. They used two types

43

of relocation: intra-zone relocation, where vehicles move within them, and inter-zone relo-

cation, where vehicles move between them. Boyacı et al. (2015) developed a multi-objective

MILP model for one-way EV sharing systems that considered EV relocation and recharg-

ing requirements. A branch-and-bound approach was used to analyze the trade-off between

operators’ and customers’ benefits.

Nevertheless, an inevitable practical problem in vehicle relocation is that each vehi-

cle movement requires one worker who drives from the supply node to the demand loca-

tion. Thus, EV relocation assignment requires a simultaneous personnel assignment. More

recently, some researchers considered the integration of vehicles relocation and personnel

assignment. Di Febbraro et al. (2012) used a discrete event systems model to represent

carsharing system and proposed a user-based approach on an optimal relocation policy in a

rolling horizon framework; the aiming was to maximize the operator’s profit by the minimum

number of required staff and relocate the least number of vehicles. Nourinejad and Roorda

(2015) integrated two models of multi-traveling salesman problem for jointly optimizing ve-

hicle relocation and personnel allocation. Nourinejad et al. (2015) further formulated two IP

models for the hybrid system that has both one-way and two-way trips. The first model was

built for tactical planning and calculated the number of required cars. The second model

decided to accept user requests who profit the most for the service provider. For minimizing

the total cost, Santos and Correia (2015) developed a MIP model for the real-time one-

way carsharing system, which considered the maintenance, vehicle relocation, and personnel

operation. Boyacı et al. (2017) further considered some hard constraints, such as parking

station numbers and vehicle capacity limitation, and the service quality. A multi-objective

MIP model was proposed and involved three sub mathematical models: station clustering,

operations optimization, and personnel flow. The simulation framework was developed to

balance the cost of vehicle relocation, workers relocation, and service level. In order to max-

imize the total profit, Bruglieri et al. (2017) proposed a Ruin-and-Recreate metaheuristic

to solve the free-floating electric vehicle relocation problem where the workers use folding

44

bicycles to relocate vehicles. Zhao et al. (2018) formulated a MILP model to describe the

EV rebalancing and workers relocation with spatial-time-dependent customers’ reservations.

A three-phase implementing algorithm was developed based on Lagrangian relaxation com-

bined with dynamic programming and a greedy algorithm. Kypriadis et al. (2018, 2020)

studied the minimum walking car repositioning problem where the workers walk to under-

take relocation assignments. The charging of EVs and refueling of conventional cars were

taken into account. The vehicle relocation approach aimed to minimize the relocation cost

by minimizing the walking distance. Bruglieri et al. (2019) also proposed another meta-

heuristic, Adaptive Large Neighborhood Search metaheuristic, for the same problem. And

ALNS method was proved to perform better than Tabu Search, Ruin and Recreate meta-

heuristic, and Mixed Integer Linear Programming. Haider et al. (2019) formulated a MIP

model for the relocation operations in the sequential and synchronized approach and pro-

posed the exchange-based neighborhood-search method (EBNSM) for large-scale problems.

Bogyrbayeva et al. (2021) proposed a reinforcement learning approach for rebalancing EVs

by considering charging in the free-floating electric vehicle sharing systems (FFEVSS). They

focused on the shuttle routing problem and formulated the shuttles routes using a multi-

agent reinforcement learning framework. EVs are relocated to the nearest available charger

or demand node.

As stated above, a variety of methods have been proposed for solving the rebalancing

free-floating carsharing system. To the best of our knowledge, only a few papers discussed

EV relocation and personnel allocation jointly for the free-floating EV sharing system with

the consideration of charging EVs, shuttles routing of transporting workers.

3.3 Problem Statement

We introduce our problem formally with the notation listed in Table 3.1. The service

area is constrained in a region with |N | nodes. One node means a parking lot for an EV.

The supply nodes are the places where the excess available EVs park and no customers will

45

Table 3.1: Mathematical Notation

Sets
N Set of all original nodes, N = S ∪ D ∪ C
N ′ Set of all nodes including depot start node {0}, end node {N+1} and

dummy charge nodes, N ′ = N ∪ {0} ∪ {N + 1} ∪ C ∪ C+

S Set of supply nodes, S = Sn ∪ Sc

Sn Set of supply nodes where EVs do not require charging
Sc Set of supply nodes where EVs require charging
D Set of demand nodes
C Set of real charge nodes
C ′ Set of real and paired dummy charge nodes
C+ Set of dummy charge process nodes
K Set of shuttles
P Set of all feasible EV relocation paths
φ(i) Set of paths that contain node i , {p ∈ P : i ∈ p}

Parameters
ve Average EV speed
vs Average shuttle speed
Is Initial battery percentage of EV at supply s
β Charging time for one battery percentage
K Number of shuttles K = |K|
P Number of all workers
W Capacity of workers onboard one shuttle (exclude the workers who

drive shuttles)
dij Distance of arc (i , j)
M A sufficient large positive number
H A sufficient large positive number for creating dummy charge nodes

Variables
xp 1, EV is relocated along path p ∈ P ; Otherwise, 0.
yij 1, if a shuttle comes through arc(i , j) as part of route; Otherwise, 0.
zi The number of workers onboard a shuttle after this shuttle leaves node

i .
τi The time when a shuttle arrives node i
ei The time when an EV arrives node i

pick up EVs at those nodes on the next day. Based on the booking orders, the customers will

pick up EVs at the demand nodes. Now there are no available EVs at these nodes. Thus,

the sharing system company is required to relocate EVs from supply nodes to demand nodes

to satisfy the customers’ needs.

46

In this problem, two decisions are made: EV relocation and shuttles routing. EV relo-

cation is divided into two cases: (1) EV can move directly from a supply node s ∈ Sn to a

demand node when it has sufficient battery energy (more than the minimum battery level);

and (2) When an EV does not have enough battery energy (less than minimum battery

level). EV at supply node s ∈ Sc is required to go to a charge station c ∈ C to be charged

fully before going to the demand node d ∈ D. Shuttles routing determines the sequence of

visiting nodes. Shuttles transport workers to supply nodes and charge stations. The workers

will be picked up at the demand nodes and charge stations. Since the charging process takes

a long time, it is assumed that the worker has two choices: 1) To be picked up by one shuttle

to do other EV relocation assignments. Another worker will come to this charge station

and drive EV to the demand node. 2) To stay at the charge station and wait for charging.

Then the worker drives this EV to the demand node. The number of shuttles is K , and the

capacity of workers onboard one shuttle is W . All shuttles leave the depot with a full load

and return to the depot with all workers. The objective function is to minimize the total

time spent in the system, i.e., makespan. The makespan is calculated as the time between

shuttles leaving and all returning to the depot.

1 2 3

4 5

6 7

Depot

Figure 3.1: FFEVSS Example. (Circles, triangles, and squares represent supply nodes,
charge stations, and demand nodes, respectively. Red circle means that EV requires

charging; green circle means EV does not require charging; The solid lines represent EV
relocation; the dotted lines represent a single shuttle route)

For example, in Figure 3.1, there is one shuttle and two workers. EV relocation contains

1-2-3, 4-5, and 6-7. The shuttle route is depot-1-6-2-4-7-2-5-3-depot. The shuttle starts

from the depot and drops off 1st worker at supply 1. Then it goes to supply 6 and drops off

47

2nd worker. It picks up 1st worker at charge station 2 and transports him to supply 4. It

continues to pick up 2nd worker at demand 7. The shuttle returns to charge station 2 and

dispatches 2nd worker to drive the EV from node 2 to demand 3. Then, it picks up 1st and

2nd workers at demand 5 and 3. Finally, the shuttle carries all workers back to the depot.

3.3.1 Mathematical Model for EV Relocation

The dummy charge node-set C ′ is introduced to deal with multiple visits to each charge

station. Because charge stations can serve many EVs and can be visited many times, each

charge station needs sufficient enough dummy nodes. These dummy nodes have the same

location coordinates as the real charge station. Define H as the number of dummy charge

nodes for each real charge node. The depot end node is labeled as N + 1, so the dummy

charge nodes are labeled starting from N + 2. For example, the dummy charge node for

the first charge node is {N + 2,N + 3, ..,N + 1 + H}. Let the total charge nodes set be

C ′ = C ∪ {N + 2,N + 3, ...,N + 1 + |C| × H}.

The paired dummy charge process node-set C+ = {c+ : c ∈ C ′} is introduced to deal

with the charging process, where c+ represents a copy of c . The charge time for EV at s

is calculated from the initial battery percentage Is% to 100% and is assumed to equal to

β × (100− Is). Because the charging takes a long time, the workers can be dispatched to do

other tasks. The charging process is described in Figure 3.2, EV goes to charge station c for

charging, and after finishing charge, it goes to a dummy charge process node c+. The pairs

of charger-dummy charge process nodes c ∈ C ′, c+ ∈ C+ are designated to receiving workers

and dispatching shuttles.

i c c+ j

Figure 3.2: Relocation Decision. In a relocation with charge model, one relocation
operation involves a stopover at a pair of charger-dummy charge process nodes

48

We can enumerate all the possible EV relocation paths. If an EV does not require

charging, the path is defined as directly from any supply node to any demand node p =

{s → d : s ∈ Sn, d ∈ D} and the number of paths is |S| × |D|. If an EV requires charging,

the path is defined as p = {s → c → d : s ∈ Sc , c ∈ C ′, d ∈ D} and the number of paths is

|S| × |C ′| × |D|. The set of all possible EV relocation paths P is defined as

P = {s → d : s ∈ Sn, d ∈ D} ∪ {s → c → d : s ∈ Sc , c ∈ C ′, d ∈ D}

The mathematical formulation of EV relocation is described as follows:

∑
p∈φ(i)

xp = 1 ∀i ∈ D (3.1)

∑
p∈φ(i)

xp ≤ 1 ∀i ∈ S ∪ C ′ (3.2)

xp ∈ {0, 1} ∀p ∈ P (3.3)

ed ≥ es +
dsd
ve

∀p = {s → d} ∈ P : s ∈ Sn (3.4)

ec ≥ es +
dsc
ve

∀p = {s → c → d} ∈ P : s ∈ Sc (3.5)

ec+ ≥ ec + β(100− Is) ∀p = {s → c → d} ∈ P : c ∈ C ′ (3.6)

ed ≥ ec+ +
dcd
ve

∀p = {s → c → d} ∈ P (3.7)

ei ≥ 0 ∀i ∈ N ′ (3.8)

Each demand node is visited exactly once, so the inflow of each demand node i ∈ D is

equal to 1 (Constraint (3.1)). Each supply node and charge station is visited less than or

equal to 1 (Constraint (3.2)). If EV is assigned from s to d , the time when EV arrives node

d is more than or equal to EV’s arrival time at node s plus the movement time (Constraint

(3.4)). If EV moves along the path s → c → d , EV’s arrival time at node c is the arrival

time at node s plus movement time from s to c (Constraint (3.5)); EV arrives at dummy

49

charge node c+ after adding a charging time β(100 − Is) (Constraint (3.6)); EV’s arrival

time at demand d is arrival time at dummy charge node c+ plus movement time from c to

d (Constraint (3.7)). Constraints (3.3) and (3.8) restrict that EV relocation path decision

variable xp is binary and EV arrival times ei are nonnegative continuous variables.

3.3.2 Mathematical Model for Shuttle Routing

The shuttles routing problem is described as follows:

∑
(0,j)∈A

y0j =
∑

(i ,N+1)∈A

yi ,N+1 = K (3.9)

∑
(i ,j)∈A

yij −
∑

(j ,i)∈A

yji = 0 ∀j ∈ N ′ \ {0,N + 1} (3.10)

nj ≥ ni + |N ′|yij − (|N ′| − 1) ∀(i , j) ∈ A (3.11)∑
(i ,j)∈A

yij ≤ 1 ∀j ∈ S ∪ C ′ (3.12)

∑
(i ,j)∈A

yij = 1 ∀j ∈ D (3.13)

∑
(i ,c)∈A

yic =
∑

(i ,c+)∈A

yic+ ∀c ∈ C ′ (3.14)

yij ∈ {0, 1} ∀(i , j) ∈ A (3.15)

τj ≥ τi +
dij
vs
−M(1− yij) ∀(i , j) ∈ A (3.16)

τi ≥ 0 ∀i ∈ N ′ (3.17)

z0 = W (3.18)

0 ≤ zi ≤ W ∀i ∈ N ′ (3.19)

zj = zi − yij ∀(i , j) ∈ A, j ∈ S ∪ C+ (3.20)

zj = zi + yij ∀(i , j) ∈ A, j ∈ D ∪ C ′ (3.21)

zi ∈ Z+ ∀i ∈ N ′ (3.22)

50

Constraint (3.9) makes sure that K shuttles leave depot start node 0 and enter depot

end node N + 1. Constraint (3.10) ensures the flow balance between intermediate nodes.

Constraint (3.11) eliminates subtours. Except for the depot node, supply nodes and charge

stations can be visited once or not (Constraint (3.12)), and demand nodes must be visited

once (Constraint (3.13)). If a charge node c ∈ C ′ is visited by a shuttle, its paired dummy

charge process node c+ ∈ C+ must be visited by a shuttle (Constraint (3.14)). Constraint

(3.16) restricts the times when a shuttle arrives at node j . All shuttles leave the depot with

W workers (Constraint (3.18)). The number of workers on a shuttle must be nonnegative

and less than or equal to the capacity W (Constraint (3.19)). Constraints (3.20) and (3.21)

show that one shuttle drops off one worker on a supply node or a dummy charge process node

and picks up one worker on a demand node or a charge node. Constraints (3.15), (3.17), and

(3.22) restrict that routing decision y is binary variable, shuttle arrival time τ is nonnegative

continuous variable and the number of drivers onboard shuttles is integer variable.

3.3.3 Synchronizing EV Relocation and Shuttles Routing Decisions

The following part is to synchronize EV relocation and shuttle routing problems.

∑
(i ,s)∈A

yis =
∑

p∈φ(s)

xp ∀s ∈ S (3.23)

∑
(i ,c)∈A

yic ≤
∑

p∈φ(c)

xp ∀c ∈ C ′ (3.24)

es ≥ τs −M(1−
∑

p∈φ(s)

xp) ∀s ∈ S (3.25)

τc ≥ ec −M(1−
∑

(i ,c)∈A

yic) ∀c ∈ C ′ (3.26)

ec+ ≥ τc+ −M(1−
∑

(i ,c+)∈A

yic+) ∀c+ ∈ C+ (3.27)

τd ≥ ed ∀d ∈ D (3.28)

51

Constraint (3.23) shows that when an EV at node s is assigned to relocate to node d , the

shuttle must pass through node s. Constraint (3.24) shows that the shuttle passes through

charge station c (the worker is picked by this shuttle) or does not pass charge station node

c (the worker chooses to wait for EV to be charged). The shuttles routes restrict EVs’ time

window. Assume the times of getting on and off shuttles are not considered. When a shuttle

drop off a worker at supply s or a dummy charge process node c+ ∈ C+, EV starts to leave

(Constraints (3.25) and (3.27)). Constraints (3.26) and (3.28) show that the shuttle picks

up a driver and leaves charge station c or demand d after EV has already arrived.

The mathematical model for the FFEVSS is formulated as follows.

minimize τN+1

subject to (3.1)− (3.8) [EV Relocation]

(3.9)− (3.22) [Shuttle Routing]

(3.23)− (3.28) [Synchronize both]

3.4 Benchmark Methods

In this section, two benchmark methods, exchange-based neighborhood-search method

(EBNSM) (Haider et al., 2019) and reinforcement learning approach (RL) (Bogyrbayeva

et al., 2021) are introduced in brief.

3.4.1 Exchange-Based Neighborhood-Search Method

Haider et al. (2019) create a sequential approach. In the first stage, it gets the best

EV relocation paths. In the second stage, given the best EV relocation paths, the initial

shuttles routes are obtained by a greedy approach. Given the initial shuttles routes, a 2-

interchange method is used to get the best shuttles routes. Then, EBNSM improves the

52

initial solution that is obtained from the sequential method by iteratively creating EV paths

and updating the shuttle route. Exchange procedures of suppliers and chargers are added

to update shuttles routes. When a pair of old EV relocation paths are replaced by a new

pair, their supplier and charger nodes are exchanged, respectively. The route update step

swaps the positions of the pair of exchanged nodes in the shuttle route based on the new

EV relocation path. Meanwhile, the precedence feasibility of visiting nodes and the capacity

feasibility of shuttles are also maintained.

The main difference between EBNSM and ALNS is that in EBNSM, each charge station

is allowed to visit exactly once, while ALNS allows them to visit multiple times. Thus,

EBNSM enables to get a feasible solution based on requesting that the number of available

charge stations is more than the number of pairs of EV relocation which requires a charge.

However, in reality, the number of charge stations is probably less than the number of EVs

which require a charge. It is realistic for EVs to wait in a queue at one charge station.

Moreover, the time window is also a variant value as the pairs of EV relocation and shuttles

routes change. So, another heuristic method is necessary to develop with consideration of

multiple visiting of charge stations.

3.4.2 Reinforcement Learning Method

Bogyrbayeva et al. (2021) formulate a reinforcement learning framework and deploy a

policy gradient method for training recurrent neural networks. The problem is formulated

as a finite horizon Markov Decision Process with the state, the action, the transition prob-

abilities, and the reward function. The state represents the network that shows each node

location, the distance, the number of EVs, the number of drivers, the battery level, and

indicators for the expected transitions. The action indicates a node number to be visited

next by which shuttle. The reward is defined as the negative of the total time spent in the

system that is measured from the time when shuttles leave a depot to the time when all

shuttles return. The reward function is to maximize the total expected reward. A simu-

53

lator is proposed to describe the dynamics caused by shuttles routes. This simulator also

ensures the precedence feasibility of visiting nodes and the capacity feasibility of drivers on

a shuttle by following a masking scheme. Bogyrbayeva et al. (2021) focus on solving the

shuttle routing and making a decision on EV relocation by using the nearest rule. When an

EV at the supplier has a driver, the EV is relocated to the nearest available charge station

or demand node. On average computational time, RL outperforms EBNSM, but requires

lengthy training.

The main difference between RL and ALNS is that ALNS can search more further neigh-

borhoods of both EV relocation and shuttles routes, while RL only uses the nearest location

rule to find EV relocation decisions. Thus, ALNS may obtain a better solution than RL.

3.5 Adaptive Large Neighborhood Search

In this section, we develop an Adaptive Large Neighborhood Search (ALNS) for the free-

floating EV sharing system. Ropke and Pisinger (2006) developed ALNS as an extension

of the Large Neighborhood Search method (Shaw, 1998). The idea of ALNS is to search in

a large neighborhood using multiple destroy and repair methods and to choose the destroy

and repair methods based on their adaptive probabilities.

To the best of our knowledge, this is the first paper using ALNS on the free-floating

carsharing system problem that considers EV relocation and shuttle routing jointly. In the

original ALNS (Ropke and Pisinger, 2006), the feasible solution only has one decision (request

routes). However, in this paper, the feasible solution has two decisions: EV relocation X

and shuttle routes Y . The main challenge is to jump from one solution to a new solution

in the neighborhood. Because two decisions affect each other, the processes of destroy and

repair become more complicated. So, the repair methods are divided into two stages. In the

first stage, greedy and probabilistic methods are proposed to match suppliers and demanders

to repair EV relocations. In the second stage, greedy and regret methods are presented to

reconstruct shuttle routes.

54

Algorithm 1: Pseudocode for ALNS

Input: D, S, C, DM, RM, Nmax,Zmax

Output: Xbest,Ybest

1 Initialize EV relocation X0 and shuttle routes Y0 (Sec 3.5.1);

2 Initialize destroy methods probability P0
D and repair methods probability P0

R (Sec
3.5.4);

3 Xbest ← Xcurrent ← X0, Ybest ← Ycurrent ← Y0;
4 Calculate the makespan of current best solution tbest ← f (Xbest,Ybest);
5 N ← 1,Z ← 0;
6 while N ≤ Nmax, Z ≤ Zmax do
7 Select a destroy method d ∈ DM with probability PN

D ;
8 Select a repair method r ∈ RM with probability PN

R ;
9 Let Xnew and Ynew be the new solution obtained by apply destroy d and repair r ;

10 if f (Xnew,Ynew) < tbest then
11 Xbest ← Xnew, Ybest ← Ynew, tbest ← f (Xnew,Ynew), Z ← 0;
12 else
13 Z ← Z + 1;

14 v = e−(f (Xnew,Ynew)−f (Xcurrent,Ycurrent))/T ;
15 Generate a random number ε ∈ [0, 1];
16 if ε < v then
17 Xcurrent ← Xnew, Ycurrent ← Ynew;

18 T ← hT ;

19 Update PN
D and PN

R (Sec 3.5.4);
20 N ← N + 1;

The procedure of the proposed ALNS is shown in Algorithm 1. In each iteration, the

neighborhood of a solution is produced by destroy and repair. We let DM and RM denote the

sets of the destroy and repair methods, respectively. The destroy process is to remove part

of EV relocation solution X and shuttle routes Y . Next, the repair process can reconstruct

the partially incomplete solution. The destroy and repair methods are chosen according

to their past successes. When a better solution is obtained by applying the methods, the

counts of the corresponding methods are added by one, and their probabilities will increase,

as described in detail in section 3.5.4. The roulette-wheel selection principle is used for the

selection of destroy and repair. In this paper, a simple acceptance rule is applied: the new

best solution is accepted if its objective value is better than the current best solution. The

new solution with a higher objective value is accepted by a simulated annealing acceptance

55

criterion. T denotes the value of the temperature and gradually decreases at each iteration

by a rate h ∈ [0, 1]. The stop criteria are the maximum iterations Nmax and non-improving

iteration Zmax.

3.5.1 Finding an Initial Solution

The nearest neighborhood (NNH) search (Algorithm 2) is applied to generate an initial

solution as follows. We randomly select a demand node d in undecided demand node-set UD

and match its nearest supply node s in undecided supply node-set US. If EV at the node s

requires being charged, then insert the nearest charge station c in the middle. Then, delete

s and d in the undecided set US and UD. The EV relocation ω is assigned on the shuttles

in sequence.

Algorithm 2: Pseudocode for NNH

Input: D,S,Sc , C
Output: X ,Y

1 Initialize EV relocation set: X1 ← ∅, X2 ← ∅, X ← X1 ∪ X2;
2 Initialize shuttle routes: Yk ← ∅ ∀k ∈ K, Y ← ∪k∈KYk ;
3 Initialize search sets: UD← D, US← S;
4 k ← 1;
5 while UD 6= ∅ do
6 ∀d ∈ UD, find the nearest supplier s = arg min{dsd ,∀s ∈ US};
7 if s ∈ Sc , then
8 Create a EV relocation ωsd ← {s → c → d}, where

c = arg min{dsc + dcd ,∀c ∈ C};
9 X2 ← X2 ∪ {ωsd};

10 else
11 Create a EV relocation ωsd ← {s → d};
12 X1 ← X1 ∪ {ωsd};
13 US← US \ {s}, UD← UD \ {d};
14 Add s and d to the end of kth shuttle route list Yk ;
15 if k = K then
16 k ← 1;
17 else
18 k ← k + 1;

56

An initial solution consists of two decisions: EV relocation denoted as X and shuttle

routes denoted as Y . EV relocation decision X comprises of two distinct types: (1) an

EV directly moves from a supply node to a demand node, and (2) an EV moves to a charge

station and then goes to a demand node. Shuttle routes serve these EV relocation operations,

and the corresponding shuttle route set Y consists of K lists, namely Y1,Y2, ...,YK . The list

Yk means the sequence nodes visited by the k-th shuttle.

3.5.2 Destroy Methods

Three destroy methods are applied to destroy a complete feasible solution into a partial

one. The destroy methods consist of Random Removal, Worst Route Removal, and Cluster

Removal, are presented as follows.

3.5.2.1 Random Removal

Randomly remove bα% × |D|c EV relocation ωsd in X , where α is the destroy percent-

age. Put these supply nodes and demand nodes into the undecided supplier set (US) and

undecided demand set (UD). Meanwhile, delete them in shuttle routes Y .

3.5.2.2 Worst Route Removal

Given a solution (X ,Y), a demand d is matched with the supply s in EV relocation

solution X . we define the cost for EV relocation pair ωsd as

cost(ωsd ,X ,Y) = f (X ,Y)− f−ωsd
(X ,Y) (3.29)

where f−ωsd
(X ,Y) is the objective value without EV relocation pair ωsd in (X ,Y). It is

reasonable to remove the supply-demand pair with the high cost and perhaps create new

EV relocation to obtain a better solution. Sort all supply-demand pairs ω in descending

costs. Remove first bα% × |D|c EV relocation ω with larger costs. Put these supply nodes

57

and demand nodes into the undecided supplier set (US) and undecided demand set (UD).

Meanwhile, delete them from shuttle routes Y .

3.5.2.3 Cluster Removal

The idea of cluster removal is to remove the similar demand nodes (Shaw, 1998). Since a

new and better solution is expected to be created, the current solution needs to be destroyed

more heavily. This allows the farther neighborhood to be searched.

The relatedness between node i and j is used to measure how node j is close to node i .

For any demand node i , the measure of relatedness is calculated as the following equation.

R(i , j) = w1
dij

max{dik , ∀k ∈ D}
+ w2

|ei − ej |
max{ek ,∀k ∈ D} −min{ek ,∀k ∈ D}

∀j 6= i ∈ D

(3.30)

where w1 and w2 are weights with sum of 1. dij is the distance between node i and j . ei is

the time when an EV arrives at demand node i . The smaller R(i , j) is, the more related the

demands i and j are.

The following steps are to randomly select a demand node d ∈ D and calculate R(d , j),∀j 6=

d ∈ D. Sort all R(d , j) in descending order. Remove demands with the first bα% × |D|c in

the sequence and their corresponding supply nodes. Put these supply nodes and demand

nodes into undecided supplier (US) and undecided demand sets (UD). Meanwhile, delete

them from shuttle routes Y .

3.5.3 Repair Methods

The following repair process must conform to two constraints:

• Sequence constraint: supply s must be visited before demand d , when supply s is paired

with demand d in EV relocation. Charge station c must be visited between s and d . Its

paired dummy charger c+ must be visited after c .

58

• Personnel constraint: Since there are a limited number of workers (capacity) onboard each

shuttle, in any shuttle route Yk , the difference between the numbers of visiting supply

and demand nodes must stay within [0,W]. For example, given a shuttle route Yk =

{a1, a2, a3, ...}.

For each positive integer n = 1, 2, ..., |Yk |, we enforce

0 ≤
n∑

i=1

1[ai ∈ S ∪ C+]−
n∑

i=1

1[ai ∈ D ∪ C] ≤ W

where 1[·] equals one if the condition inside the bracket holds and equals zero otherwise.

We have two repair rules for EV relocation and two repair rules for routes insertion. Four

repair methods are formed by combining these repair rules.

• Sequential Greedy: Greedy s-d matching with Greedy routes insertion

• Sequential Regret: Greedy s-d matching with Regret routes insertion

• Probabilistic Greedy: Probabilistic s-d matching with Greedy routes insertion

• Probabilistic Regret: Probabilistic s-d matching with Regret routes insertion

3.5.3.1 Repair Rules for EV Relocation

Two repair rules for EV relocation are applied to match a supply node with a demand

node, and are described as follows:

• Greedy s-d matching: For ∀d ∈ UD, demand d is matched with an undecided supply s

where s = argmin{dsd , s ∈ US}. If s ∈ Sc , ωsd = {s → c → d}, where c = argmin{dsc +

dcd , c ∈ C}; else ωsd = {s → d}. The new supply-demand pair ωsd is formed by the

nearest-neighbor rule.

59

• Probabilistic s-d matching: s and d are matched as a new pair based on the probability

that is related to their distance. The s-d matching probability is expressed as

P(ωsd) =
exp(−λdωsd

)∑
ωsd∈U exp(−λdωsd

)
(3.31)

where U is the set of all combinations of undecided s ∈ US and undecided d ∈ UD. λ

is a constant within [0, 1]. If s ∈ Sc , each charge station is inserted in the middle of s

and d . There are |C| combinations for s and d . For each ωsd = {s → c → d}, we set

dωsd
= dsc + dcd . If s ∈ Sn, we set dωsd

= dsd .

3.5.3.2 Repair Rules for Routes Insertion

Two repair rules for routes insertion are applied to insert supply-demand pair into the

shuttle routes, and are described as follows.

• Greedy routes insertion: A concept of Insertion Cost is introduced. Let ∆f (n, p,Y) denote

the change in the objective value when inserting node n into partial shuttle routes Y at

position p. The insertion cost is expressed as

I (n, p,Y) = ∆f (n, p,Y) (3.32)

For any new supply-demand ωsd , insert s and d into the current partial shuttle routes Y ,

separately. Select the position p to insert s with the least insertion cost I (s, p,Y). The

new partial shuttle routes are formed after inserting s, denoted as Y+s . Then, insert d at

the position with the least insertion cost I (d , p,Y+s) and get the new partial routes Y . If

s ∈ Sc , insert c and c+ with the least insertion cost sequentially. Repeat the above steps

until all demands are satisfied.

• Regret routes insertion: The regret routes insertion is improved by incorporating look-

ahead information when selecting the supply-demand pair to insert.

60

For any supply-demand pair ωsd , the regret-k cost is defined as

R(ωsd ,Y) =
k∑

j=1

{∆fj(ωsd ,Y)−∆f1(ωsd ,Y)} (3.33)

where ∆f (ωsd ,Y) is the increased value in the objective value after inserting s and d .

Sort ∆f (ωsd ,Y) for all possible insertion positions in the increasing order. The best

insertion position has the least ∆f1(ωsd ,Y). Note that ∆fk(ωsd ,Y) means the increased

value in the objective for the k-th best insertion position. The regret routes insertion is

the reconstruction heuristic that chooses to insert the supply-demand pair ωsd with the

maximum R(ωsd ,Y). The ωsd is inserted at its minimum cost position. If s ∈ Sc , insert c

and c+ with the least insertion cost sequentially. Repeat the above steps until all demands

are satisfied.

3.5.4 Adaptive Probability Update Procedure

The adaptivity of ALNS is achieved by selecting the destroy and repair methods based

on their previous successes. The initial probabilities of destroys and repairs are set to 1

divided by the number of available destroy and repair methods; that is, 1
|DM| and 1

|RM| . In

each iteration i , if destroy method d and repair method r create a new best solution Xbest, the

count nid and nir of destroy d and repair r is increased by 1, respectively. Then, the probability

values of destroy and repair methods in iteration N are updated by multiplication of two

sets of ratios σd and σr as follows:

PN
D =

(
σdn

N
d∑

d∈DM σdn
N
d

: d ∈ DM

)
(3.34)

PN
R =

(
σrn

N
r∑

r∈RM σrn
N
r

: r ∈ RM

)
(3.35)

The destroy and repair methods are adaptively chosen based on the new probabilities by

using the roulette-wheel selection principle.

61

3.6 Modification of ALNS in Problem Variants

We consider two variants of the rebalancing problem. First, we consider the case when

EV drivers use their own personal mobility option instead of shuttles. Second, we consider

the dynamic environments wherein EV supply or demand locations change while shuttles

and drivers are already executing an operational plan. In both cases, we show that ALNS

can be easily modified.

3.6.1 Routing with Personal Mobility Options

In some cases, the workers can be moved not only by shuttles but also by personal

mobility vehicles such as scooters. Each worker has one personal mobility vehicle. When

a worker arrives at a supply node, this worker puts the scooter in the back and drives the

EV to the demand node or a charge station. When the EV arrives at a charge station, the

worker can ride his mobility tool to another node to accomplish other tasks. In the sequence

constraint, s → c and c → d are bound as one unit. Also, s → c must be inserted before

c → d in the routes. The personnel constraint is necessary to be taken into account.

EV relocation is same as stated in Section 3.5. It has two types: ωsd = {s → d} and

ωsd = {s → c → d}. The destroy and repair methods for EV relocation do not change.

The repair rules for routes insertion need some changes as follows. Because the scooters

and workers move synchronously with the EVs, the worker routing is consistent with EV

relocation from s → d , s → c and c → d . We can regard s → d , s → c and c → d as

one unit and insert them into the partial routes. For an example, some EV relocations are

s1 → d4, s2 → c3, and c5+ → d6. One worker route can be described as (1 → 4) → (2 →

3)→ (5+ → 6). That means that this worker drives an EV from supply 1 to demand 4 and

then goes to node 2 by riding his scooter; he drives the EV from supply 2 to charge station

3; Finally, he rides the scooter to dummy charge station 5+ and drives the EV to demand 6.

62

3.6.2 EV Relocation and Routing in Dynamic Environments

In dynamic environment, the number of EV relocation assignments can change in the

middle of the relocation operations. It happens in the cases when some of the current

available EVs are assigned to the arriving customers or some additional demands are added

into the system. Instead of solving the new routing problem from scratch, we can use

the ALNS algorithm to destroy and repair the current solution to adapt to the dynamic

environment. When we repair, we just ignore those EVs which have been already served.

Remove the decreased demands (or suppliers) or add the additional demands (or suppliers)

to the undecided demand set UD (or the undecided supply set US).

The shuttles have departed the depot, and some EV relocation demands D̃ have been

served already. The changes in demand and supply sets are described as sets themselves and

denoted as D∗ and S∗. There are two cases.

• When the number of EV demands decreases: The decreased demand nodes and corre-

sponding supply nodes are removed from the current solution. Then, partial EV relocation

X and partial shuttle routes Y are obtained. This process is just like a destroy operation.

The next step is to repair the current partial sets X and Y by four repair methods in

Section 3.5.3.

• When additional EV demands are added in the middle of relocation operations: The

additional EV demands and supply sets D∗ and S∗ are added to the undecided demand

set UD, and the undecided supply set US. Then a new solution is obtained after repairing

based on the new demand and supply nodes.

The process to create a new solution in the dynamic environment is described in Al-

gorithm 3. We let X 0 and Y 0 denote current EV relocation and shuttle routing solutions,

respectively. D̃ and S̃ are defined as the finished demands and suppliers, respectively.

63

Algorithm 3: Pseudocode for ALNS in Dynamic Environment

Input: D, D̃,D∗,S, S̃,S∗,X 0,Y 0

Output: Xbest,Ybest

1 The partial EV relocation X ← X 0 \ {ωsd ,∀ωsd ∈ X 0 : d ∈ D̃};
2 The partial shuttle routing Y ← Y 0 \ {s, d ,∀s ∈ S̃, d ∈ D̃};
3 Initialize undecided demand set UD← D \ D̃ ∪ D∗ and undecided supply set

US← S \ S̃ ∪ S∗;
4 Initialize destroy methods probability P0

D and repair methods probability P0
R (Sec

3.5.4);
5 Apply a repair method r ∈ RM with probability P0

R on X ,Y and Xnew,Ynew are
obtained;

6 Xbest ← Xcurrent ← Xnew, Ybest ← Ycurrent ← Ynew;
7 Calculate the makespan of current best solution tbest ← f ′(Xbest,Ybest, Ψ);
8 N ← 1,Z ← 0;
9 while N ≤ Nmax, Z ≤ Zmax do

10 Select a destroy method d ∈ DM with probability PN
D ;

11 Select a repair method r ∈ RM with probability PN
R ;

12 Let Xnew and Ynew be the new solution obtained by apply destroy d and repair r ;
13 if f ′(Xnew,Ynew, Ψ) < tbest then
14 Xbest ← Xnew, Ybest ← Ynew, tbest ← f ′(Xnew,Ynew, Ψ), Z ← 0;
15 else
16 Z ← Z + 1;

17 v = e−(f ′(Xnew,Ynew,Ψ)−f ′(Xcurrent,Ycurrent,Ψ))/T ;
18 Generate a random number ε ∈ [0, 1];
19 if ε < v then
20 Xcurrent ← Xnew, Ycurrent ← Ynew;

21 T ← hT ;

22 Update PN
D and PN

R (Section 3.5.4);
23 N ← N + 1;

Let the tuple of lists

Ψ =

([
(ei , τi) : i ∈ D̃ ∪ S̃

]
,

[
L(k) : k ∈ K

]
,

[
O(k) : k ∈ K

])

denote the current state of the system, which includes EVs’ and shuttles’ arrival time ei , τi

at node i ; the locations L(k) of shuttle k ; and the number of workers O(k) onboard shuttle

k . Because the finished EV relocation and shuttle routing cannot be changed, the follow-

64

ing operations are done to reorganize the unfinished demands and suppliers. The value of

makespan is calculated based on the current state of the system Ψ.

3.7 Numerical Experiments

The experiments are done on a computer that runs 64-bit Windows 10 with a 2.60 GHz

Intel Core (TM i5-7300U) CPU and 8 GB RAM. ALNS and EBNSM are coded in Julia

1.6.1. The Reinforcement Learning approach of Bogyrbayeva et al. (2021) is implemented in

Python 3.6.

3.7.1 Randomly Generated Instances

We consider a 10× 10 miles square network, which is proximate to one urban city area.

There are supplier, charger, and demand nodes within the network. We fix the total number

of nodes and the number of suppliers, chargers, and demand nodes. The x and y coordinates

of each node are generated by a uniform distribution from 0 to 10. The initial residual

charge level of the battery for each supplier node is generated randomly between 0 to 100%.

Assume that the speed of each EV and the speed of each shuttle are equal to 65mph and

40mph, respectively.

We assume that EVs do not need to be charged and directly move to one demand node

if the initial battery level is more than 50%. Otherwise, the EV moves to a charge station

at first and is required to be charged fully. The charge time is assumed as 40 minutes from

empty to full. The charging energy is directly proportional to the time. For example, an

EV with 40% remaining battery level will spend 24 minutes to be charged fully. We do not

consider the battery consumption of EV movement. In ALNS, the stop criteria are set as

the maximum iteration Nmax of 3000 and Maximum non-improving iteration Zmax of 300.

The test instances are generated by three difficulty types. When the number of charge

stations is more than the number of suppliers requiring recharged, the instance is easy; When

they are the same, it is medium; otherwise, it is hard. The number of nodes |N |, the number

65

Table 3.2: Types of Random Instances

Nodes Num Easy Medium Hard

|N | |D| |C| |S| |Sc | |D| |C| |S| |Sc | |D| |C| |S| |Sc |

23 7 7 8 4 7 4 8 4 7 2 8 4
50 17 15 17 10 17 10 17 10 17 5 17 10
150 50 50 50 30 50 30 50 30 50 20 50 30

(a) single-shuttle case, K = 1 (b) multi-shuttle case, K = 2

Figure 3.3: Example Solutions for |N | = 23 and W = 3

of demand nodes |D|, the number of charge stations |C|, the number of supply nodes |S|,

and the number of supply nodes requiring charging |Sc | are summarized in Table 3.2.

Parameters affect the performance of the algorithm. After testing these parameters

on the randomly generated instances, they are tuned as follows. 1) destroy percentage

α% = 30%; 2) the constant in Probabilistic s-d matching λ = 0.5; and 3) ratios for destroy

σd = (0.35, 0.4, 0.25) and ratios for repair methods σr = (0.3, 0.2, 0.3, 0.2).

ALNS, EBNSM, and RL are implemented on 10 instances for each type. The example

solutions for single shuttle and multiple shuttles are shown in Figure 3.3a and Figure 3.3b,

respectively. The solutions are obtained by using ALNS to solve one easy instance with

|N | = 23.

66

Table 3.3: Average Objective Values of ALNS, EBNSM, and RL on Random Instances

Instances Easy Medium Hard

|N | K W EBNSM RL ALNS PD (%) EBNSM RL ALNS PD (%) EBNSM RL ALNS PD (%)

23 1 3 8.81 7.70 7.52 2.39 12.39 10.27 10.10 1.68 - 12.32 11.95 3.10
2 3 5.72 5.40 5.11 5.68 7.43 6.40 6.03 6.14 - 8.34 8.14 2.46
3 2 5.27 5.21 4.87 6.98 6.39 6.38 6.01 6.16 - 7.79 7.11 9.56

50 1 3 17.34 13.77 12.33 11.68 24.49 17.93 15.78 13.62 - 18.92 17.18 10.13
2 3 9.19 8.41 8.20 2.56 12.25 11.23 10.34 8.61 - 11.96 10.10 18.42
3 2 6.96 5.89 5.78 1.90 9.25 9.23 9.05 1.99 - 9.77 9.48 3.06

150 1 3 34.30 22.18 21.31 4.08 45.97 30.67 27.75 10.52 - 36.67 32.52 12.76
2 3 16.11 12.92 11.67 10.71 21.63 17.54 17.15 2.27 - 17.90 16.77 6.74
3 2 11.71 10.21 9.28 10.02 15.63 13.33 12.50 6.64 - 14.94 13.05 14.48

Average 6.22 6.40 8.97

The averages of objective values are summarized in Table 3.3. The percentage deviations

between RL and ALNS are calculated as follows.

PD =
Objective of RL−Objective of ALNS

Objective of ALNS
× 100% (3.36)

For all instances, ALNS can obtain the best average objective values. In the EBNSM

structure, the charge stations are not allowed to be visited more than one time, so a feasible

solution cannot be found in the hard type instances. The average percentage deviations

between RL and ALNS for easy, medium, and hard instances are 6.22, 6.40, and 8.97,

respectively. Therefore, ALNS can perform better than both EBNSM and RL in the solution

quality.

The average computational times are shown in Table 3.4. After training on the data set,

the trained RL model can take less than 1 second to get the solution. The training time is

not included in the computational times in Table 3.4. So, the computational times of RL

cannot be directly compared with the computational times of ALNS. We also observe that

ALNS can run faster 21.6% and 19.7% than EBNSM for easy and medium instances.

The numerical experiments on randomly generated instances demonstrate that ALNS

outperforms both EBNSM and RL in terms of the solution quality in all problem sizes. The

computational times of ALNS are shorter than EBNSM, but much longer than RL. While

67

Table 3.4: Average Computational Times of ALNS, EBNSM, and RL
on Random Instances (Unit: Second)

Instances Easy Medium Hard

|N | K W RL EBNSM ALNS RL EBNSM ALNS RL EBNSM ALNS

23 1 3 0.01 6.83 6.57 0.02 10.38 6.32 0.02 - 12.32
2 3 0.04 3.76 1.61 0.04 3.52 3.31 0.09 - 9.52
3 2 0.06 9.17 7.11 0.05 4.56 3.65 0.11 - 7.21

50 1 3 0.05 40.42 35.23 0.05 58.59 45.10 0.06 - 53.42
2 3 0.21 29.57 21.52 0.16 35.17 28.74 0.25 - 29.23
3 2 0.20 20.20 15.82 0.21 25.20 18.75 0.35 - 54.18

150 1 3 0.16 99.25 76.72 0.17 105.20 89.24 0.26 - 111.23
2 3 0.44 87.42 71.23 0.44 77.31 60.24 0.55 - 97.21
3 2 0.92 142.45 125.24 1.03 183.42 165.18 1.02 - 152.42

Average 0.21 48.79 40.12 0.24 55.93 46.73 0.30 - 58.53

RL executes in less than a second in most cases, RL requires very long training time; several

days to a couple of weeks depending on the hardware used. On the other hand, ALNS can

be applied to each problem directly without lengthy training.

3.7.2 Case Study: Car2go in Amsterdam

We apply our approach to a fully operational system of car2go in Amsterdam, the Nether-

lands, where the FFEVS service is operational using more than 300 EVs. From the actual

data, we take the initial and target locations of EVs that need to be relocated and test the

performance of our computational method. The nodes are depicted in Figure 3.4-(b), which

clearly shows that the current EV locations (suppliers) and the desired locations (demanders)

are concentrated in different areas, hence necessitating relocation operations.

To create a case study, we sample test data from 12:00 am to 7:00 am on each day.

Within this period, if one EV moves from one place s to another place d , place s is set as

a supply node, and place d is set as a demand node. When one EV stays at one location

and the battery level increases, the location c is set as a charge station. The 143 days data

are sampled, and their dates range from May to October in 2016. The numbers of suppliers,

68

dd

d

d

d

d
d
dd

d
d
d

dd

d

d
d
d

d

dd
d

d

dd

d

d

d

dd

d

d
d

ddd
dd

ddd

d
d

ddd
d

dd

dd
d

ddddd

d
dd

d
dd

d

d

d

d

d

dd
d

d
d

d d
dd

d d

ddddd

dd d
d

dd

d

d

d

dd

ddd

d
ddd

ddd

dddd
ddddd

d

dd

d

d
d

d

dd

d
ddd d

dddd dd dd
dd ddd

d

d
d
d

dd

d
dd
d d

d

dddddd
d

d
ddddd

d

dd

d
d

dddd dd dd

d

d d
d
d

ddd

dd

dddd

d

dd

d

d

dd ddd

dd

d
dd

dd
d

d

d

d

dd

dd

ddddd
dddd

d
ddddd

d
d

ddd

dd
d

dddd
d

dd

dddddd

d

d
dddd

d
dd

ddd

d

d

dddddddd

ddd
ddd

d

d

d

ddd

d
ddd

ddddddddddddddddddddddd

ddd

ddddddd

ddd

dddd

'
'

'

'

'

'

'

''

' '
' ''

'

'

'

'
'

'

'

'

'

'

'

'

'

'

'
'

'
'

'

'

'

'
'

'

''

'
'

'

'

'
''

'

'

'

'

'

''
'

'
'

' '

'
'

'
'

''

'

''

'

'

'

'

' '

'

'

'

'''

'

'

'

'

'

'

'

'

'

''

'

'

''
'

'''

' '
''

'' '
'

'

'

''

''

' '

'

'

'
'

'

'

'
'

'

'

'

' ' '

'

' '

'

'
'''

''

''''

'

''

'

'

'' '
'

'
'

'

''

''
'

'

'

'

''

'
'

'

'

'

'

'

''

'

''

'

''

''

'

'

'
''

'

''

' '

'

'
'''

'

'

''
'

' '''

' '
''''

'

'''

'

'

(a) Map for the Neighborhoods
(b) All Nodes for Reduced

Network

Figure 3.4: Amsterdam Network. Left: Map for the Neighborhoods together with Suppliers
(blue circle), Demanders (red square), Chargers (green bolt sign) and Depot node (Green

Pentagon); Right: All Nodes for Reduced Network

chargers and demanders in the final network stay within the range of [46, 251], [21, 64] and

[46, 251]. The average numbers of suppliers, chargers and demanders are 85.3, 39.2, and

85.3, respectively. Since the default speed limit in the city of Amsterdam is 50 km/h inside

built-up areas, the speed of an EV is assumed as 50 km/h. In urban residential areas, 30

km/h zones are found on the living streets. We assume the shuttles can move within these

areas, so the speed of a shuttle is assumed as 30 km/h.

Two scenarios are considered in this section:

• Scenario 1: No parking lots are equipped with chargers.

• Scenario 2: Some parking lots are equipped with chargers.

Considering these two scenarios, we also test additional solution strategies:

• RL: Using the trained neural network by RL, we can select the most probable solution by

the greedy decoding strategy as done in the previous section.

• Sample RL: We can generate solution samples from the trained neural network by the

probabilistic decoding strategy instead of the greedy decoding. Among all solution samples,

we choose the best solution.

69

• RL-ALNS: We can feed the RL solution by the greedy decoding strategy as the initial

solution to ALNS.

3.7.2.1 Scenario 1

In this scenario, no parking lots are equipped with chargers. The demand, supply, and

charge nodes are located at different places. The average objective values (makespan) and

computational times on 143 days data are summarized in Table 3.5. For all instances,

ALNS can perform better than EBNSM in both solution quality and computational times.

ALNS can get less average objective values than RL for all instances. However, when each

trained RL model is sampled 100 times in the Sample RL approach, a better solution can be

obtained for instances (K ,W) =(1,5), (1,7) and (1,9). We observe that RL-ALNS can obtain

the best solution in all cases, while the computational times are decreased by up to 48.86%,

compared to the Sample RL approach. Only in the instance (1,5), RL-ALNS consumes less

computational time but produces a greater objective value.

Table 3.5: Average Makespan (Unit:Min) and Computational Times (Unit:Sec)
in Scenario 1 for 143 Days Instances

P (K ,W) EBNSM RL Sample RL ALNS RL-ALNS

obj time obj time obj time obj time obj time

6 (1,5) 289.8 154.4 286.9 0.8 285.5 79.8 286.5 146.2 280.1 87.1
(2,2) 287.5 152.3 270.2 0.9 269.7 91.2 267.1 142.9 266.9 90.2
(3,1) 295.2 163.2 288.0 1.1 287.3 111.0 286.1 145.2 284.0 91.2

8 (1,7) 253.7 184.2 248.3 1.4 247.2 139.3 247.9 162.4 245.9 96.6
(2,3) 234.5 152.3 228.7 1.0 226.4 101.2 224.7 98.4 220.9 67.3
(4,1) 224.2 104.2 220.1 1.6 218.9 158.0 213.2 99.9 212.1 63.0

10 (1,9) 182.5 102.4 179.8 1.3 178.1 134.2 178.6 74.2 177.2 67.2
(2,4) 218.7 110.4 205.8 1.2 203.4 119.8 201.3 82.1 199.8 52.4
(5,1) 204.2 99.3 197.3 1.3 194.2 134.2 190.9 90.4 187.3 66.6

70

3.7.2.2 Scenario 2

In this scenario, many parking lots are equipped with chargers. Small changes are made

to let ALNS adapt to Scenario 2. There are two cases:

• Many demand nodes are equipped with chargers.

All EVs can directly move to one demand node that is equipped with a charger. The

charge time is not necessary to be considered. The changes in ALNS only happen in

finding EV relocation solution X as follows.

– In Algorithm 2, remove Line 7-12 and only keep Line 11-12.

– In the Greedy and Probabilistic s-d matching, Sc = ∅.

• Many supply nodes are equipped with chargers.

EVs at the supply nodes with chargers do not need to move to a charge station. EVs at

these supply nodes are set into Sn.

Table 3.6: Average Objective Values and Computational Times in Scenario 2

P (K ,W) EBNSM RL Sample RL ALNS RL-ALNS

obj time obj time obj time obj time obj time

6 (1,5) 223.7 145.8 214.3 1.3 213.8 131.3 202.5 122.8 201.4 83.4
(2,2) 227.2 149.7 214.6 1.1 212.9 111.2 201.6 126.1 200.9 78.2
(3,1) 200.3 134.2 199.5 1.4 198.4 138.3 199.4 156.2 197.9 108.2

8 (1,7) 182.1 155.1 153.6 1.5 151.8 152.3 145.2 133.7 140.2 88.5
(2,3) 213.7 162.5 190.7 1.6 188.7 154.2 182.4 99.6 180.3 76.9
(4,1) 200.5 118.5 188.3 2.0 187.0 198.4 187.4 100.1 185.3 85.2

10 (1,9) 125.1 111.2 104.3 1.9 102.7 187.3 99.3 77.8 98.1 49.4
(2,4) 157.2 99.4 142.2 1.8 140.2 179.2 140.1 78.4 138.7 55.9
(5,1) 129.5 99.4 120.2 2.1 118.2 209.3 111.4 89.7 110.6 58.3

Besides the changes stated above, the calculation of makespan also changes. When a

shuttle arrives at a supply node equipped with a charger and drops off a worker, this worker

71

has to wait for EV to complete fully charging. So the EV’s arrival time at supply s ∈ Sc

becomes:

es ≥ τs +
1

β

(
100− Is

)
∀s ∈ Sc

The average objective values and computational times on Scenario 2 are summarized in

Table 3.6. When the trained RL model is sampled 100 times, the average objective values

of Sample RL become better than RL for all instances. When the RL solution is used as the

initial solution in ALNS, the average objective values and computational times decrease by

1.08% and 30.52%.

3.7.3 Routing with Personal Mobility Vehicle

When a personal mobility vehicle is used instead of a shuttle, ALNS can solve the problem

as well by following the changes in Section 3.6.1. The results are summarized in Table 3.7.

The speed of scooters is assumed as 15mph. Since riding a scooter is much slower than a

shuttle, the makespans for personnel 6, 8, 10 are all longer. The workers spend more time in

the movement. Moreover, makespan is not the only factor that affects the decision. In this

section, the analysis of total operation cost and the wait times are discussed between using

shuttles or scooters.

Table 3.7: Average Objective Values and Computational Times of ALNS Using Scooters

P Scenario1 Scenario2

obj time obj time

6 364.2 100.2 303.2 98.6
8 268.7 120.4 200.2 113.2
10 210.3 140.5 183.4 145.2

3.7.3.1 Analysis on Total Operation Cost

Besides the total time spent in the system, the operation cost of EV relocation is also

important in the FFEVSS. The cost consists of operating the fleet of shuttles or scooters and

72

2 4 6 8 10
The hourly cost for each scooter

600

650

700

750

800

850

900

950

1000

T
ot
al
C
os
t

1.32

5.61

Csc

(1,5)

(2,2)

(3,1)

(a) Personnel = 6

2 4 6 8 10
The hourly cost for each scooter

650

700

750

800

850

900

950

T
ot
al
C
os
t

1.3
1.91

5.89

Csc

(1,7)

(2,3)

(4,1)

(b) Personnel = 8

2 4 6 8 10
The hourly cost for each scooter

650

700

750

800

850

900

950

T
ot
al
C
os
t

1.53

2.69

6.42

Csc

(1,9)

(2,4)

(5,1)

(c) Personnel = 10

2 4 6 8 10
The hourly cost for each scooter

700

750

800

850

900

950

1000

1050

T
ot
al
C
os
t

2.77

1.8

4.24

7.6
8.27

Csc

(1,11)

(2,5)

(3,3)

(4,2)

(6,1)

(d) Personnel = 12

Figure 3.5: Total Cost for Using Shuttles and Scooters

the labor cost of workers. Let T be the makespan value. Let Γw be the hourly cost for each

worker. The median pay in 2020 for one vehicle driver was $16.67 per hour (U.S. Bureau of

Labor Statistics, 2021). Assume the per hour labor cost Γw is $17/hr. Let Γsh and Γsc be

the hourly cost to operate each shuttle and each scooter. The total cost when using shuttles

is calculated as Csh = P × T × Γw + K × T × Γsh. When using scooters, the total cost is

calculated as Csc = P × T × (Γw + Γsc). Assume per hour cost of a shuttle Γsh is $24/hr.

The total cost for shuttles and scooters on Scenario1 is analyzed in the following. The

total costs for the given number of personnel 6, 8, 10, 12 are illustrated in Figure 3.5. When

Γsc is less than the hourly cost at the cross point, the total cost with a scooter is lower. It

is better to choose the scooter as the movement tool.

73

The higher the cost Γsc at the cross point is, the better to choose scooters. It is better to

choose scooters as the movement tool when the shuttle combination is (3,1), (4,1), and (5,1)

for personnel 6, 8, and 10, respectively. For personnel 12, using scooters is better when the

shuttle combinations are (6,1) and (4,2). Even though the more number of shuttles results

in short makespan, the cost for shuttles becomes expensive. Given the certain number of

personnel, more number of shuttles with small capacity is not a good choice. If the per hour

labor cost increases, the makespan will also further impact the total cost. It is important

to balance makespan and the cost of movement tools. This suggests not to use very large

shuttles or scooters for the system with the high hourly labor cost.

3.7.3.2 Analysis on Wait Times

Makespan values are influenced by both wait times and movement times. When the

mobility tool is the shuttle, the wait times happen at charge stations and demand nodes. If

a shuttle arrives earlier than EV’s arrival time, the shuttle has to wait for picking up the

worker; otherwise, if EV arrives earlier than the shuttle’s arrival time, the worker has to wait

for a shuttle. So, the wait time per shuttle is calculated as
∑

i∈C∪C+∪D |τi−ei |
K

.

When the mobility tool is the scooter, workers can directly leave charge stations and

demands by themselves. The wait times only happen at dummy charger nodes i ∈ C+. If

a worker arrives earlier, he has to wait for the EV to complete charging; otherwise, the EV

has to wait for a worker to drive it. The wait time per scooter is calculated as
∑

i∈C+ |τi−ei |
P

.

The wait time percentage is used to standardize the wait times as a percentage of the

total time. The wait time percentage is calculated as

Wait Time Percentage =
Total Wait Time

Makespan
× 100%

The average wait time percentages using shuttles and scooters are illustrated in Figure

3.6. As shown in Figure 3.6a, given a certain number of personnel, when the number of

74

(1,5) (2,2) (3,1) (1,7) (2,3) (4,1) (1,9) (2,4) (5,1)

(K,W)

12

14

16

18

20

22

24

26
W
ai
t
T
im
e
P
er
ce
nt
ag
e(
%
)

P=6

P=8

P=10

(a) Shuttles

6 8 10
Number of Personnel P

16

17

18

19

20

W
ai
t
T
im
e
P
er
ce
nt
ag
e(
%
)

(b) Scooters

Figure 3.6: Average Wait Time Percentage

shuttles is 2, the waiting time percentage is the lowest. When the number of shuttles is 1,

the workers spend more time in waiting for the shuttle to pick them up. When the number of

shuttles is more than 2, the shuttles have only one worker on board and have to pick up and

drop off workers frequently. With the increasing number of personnel, the workers can do

the relocation simultaneously, so the wait times also decrease. Thus, in order to decrease the

wait time, it is important to choose the shuttles with proper capacity. As shown in Figure

3.6b, the wait time percentages become smaller with the increasing number of personnel.

Because the scooter speed is slow, the workers spend more time on the movement, and EVs

need to wait for a worker to drive it to the destination after charging. So, the more workers

participate in the relocation assignment, the less wait time is.

3.7.4 EV Relocation and Routing in Dynamic Environment

This section compares the quality of the solution with the benchmark, assuming that the

upcoming change is foreseen at the beginning of the planning. We test the dynamic envi-

ronment when 50% EV relocations have been done. Two cases are considered: 1) Randomly

remove 10% EV demands; 2) Randomly add 10% additional EV demands. The average

makespan and computational times of 143 days Amsterdam data are summarized in the

Column obj and time in Table 3.8. The objective values are calculated from the time when

75

Table 3.8: Results on Amsterdam Data in Dynamic Environment

P (K ,W) Remove 10% EVs Add 10% EVs
obj time 5s 10s 20s 30s obj time 5s 10s 20s 30s

6 (1,5) 243.1 47.1 265.9 253.6 248.7 244.0 303.4 53.7 365.7 320.4 309.7 308.2
(2,2) 238.5 46.3 265.7 243.9 240.5 238.5 298.6 56.0 332.5 313.8 303.7 299.8
(3,1) 247.0 48.2 276.8 254.8 249.4 248.1 320.8 59.8 367.7 343.4 330.1 325.6

8 (1,7) 216.5 43.2 257.4 234.5 220.3 217.6 267.9 46.4 299.5 278.1 270.7 269.7
(2,3) 199.5 44.5 243.5 210.2 201.3 199.8 254.8 49.5 276.7 261.7 258.7 255.2
(4,1) 187.6 39.2 223.9 198.2 188.4 187.9 232.9 48.7 268.3 247.4 238.2 234.1

10 (1,9) 159.5 37.4 176.9 163.4 160.2 159.5 195.8 45.8 232.5 209.5 198.4 196.0
(2,4) 176.3 29.7 199.6 180.5 177.5 176.3 220.8 36.8 249.7 232.2 222.4 220.8
(5,1) 165.4 32.5 188.3 169.7 166.2 165.4 206.8 33.8 246.8 211.5 209.6 206.8

Avg. PD* 14.58 4.06 0.98 0.19 12.80 4.99 1.66 0.55

* Avg. PD is the Average Percentage Deviation between obj values and those under the limited time of 5s, 10s, 20s,
30s.

the shuttle departs the depot at the beginning. The computational times are the run times

of getting a new solution when removing or adding EVs. When the stop criterion is set as a

limited run time of 5s, 10s, 20s, and 30s, the average objective values are shown in Table 3.8.

ALNS can solve the dynamic case when adding or removing EVs in the middle of EV relo-

cation operations. ALNS can also provide a new routing for shuttles in short computational

times, less than 48.2s for removing 10% EVs and less than 59.8s for adding 10% EVs. When

10% EV demands are removed, the average percentage deviations are 14.58%, 4.06%, 0.98%,

0.19% within the computational times 5s, 10s, 20s, and 30s, respectively. When 10% EV

demands are added, average percentage deviations are 12.80%, 4.99%, 1.66%, and 0.55%. It

shows that a relatively good new solution (less than 2%) can be obtained in a short time.

Therefore, ALNS is a flexible method to adapt to the dynamic environment where some

EVs are assigned to external drivers or additional EV demands are added in the middle of

relocation operations.

3.8 Concluding Remarks

This chapter considers the EV relocation and shuttle routing problem for the rebalancing

operation of free-floating EV sharing systems. One of the key operational decisions for the

76

carsharing company is how to relocate the EV fleet to meet the next day’s demand with

sufficient battery levels.

We develop a metaheuristic ALNS algorithm for the EV relocation problem that deter-

mines where to relocate each EV and how to route the shuttles that transport the staff

drivers synchronously. We apply our method to conduct numerical experiments using both

randomly generated data and actual FFEVSS data in Amsterdam. We found that ALNS

outperforms EBNSM both in the solution quality and the computational time. Our ALNS

also produces better solutions than the RL approach but requires much longer computa-

tional time than RL. Our experiments reveal that providing the RL solution as the initial

solution for ALNS is an effective and efficient solution strategy that can take advantage of

both approaches, achieving the best solution quality and reducing the computational time

significantly.

We also demonstrate how our ALNS can be modified to solve the problem where staff

drivers carry a personal mobility vehicle such as a scooter. Our further analysis provides

practical recommendations on which mode of transportation will be more efficient—i.e., a

small number of shuttles with large capacity or a large number of shuttles with small capacity

(or even personal mobility)—in terms of total operational cost as well as wait times.

Lastly, we show that our ALNS that destroys an incumbent solution partially and repairs

to a new solution in each iteration is quite flexible to be applied to a dynamic environment.

Specifically, our numerical results highlight the usefulness of our flexible ALNS method for an

environment where some EV demands are removed or added in the course of EV relocation

operations.

As directions of future research, this model can be extended for day-time static relocation.

Extending this model to the 24-hour period will ordinarily require redeployment of the model

at constant, and relatively small, time intervals and also the assumption of zero new arriving

demand. In that case, unlike our numerical experiments conducted with constant travel speed

for the city of Amsterdam, a more robust analysis with different shuttle travel speeds can

77

be considered to account for various traffic conditions at different times and across different

locations. An important factor in the successful implementation of static repositioning is

the accuracy of the demand forecast. The demand faced by a car-sharing system is highly

sensitive to a variety of external factors. In this study, we base our demand forecast on past

demand data on similar days and focus on synchronous modeling of relocation and routing

operations. However, more sophisticated data mining models and demand prediction models

can be devised.

78

Chapter 4: An Adaptive Large Neighborhood Search Method for Drone-Truck

Arc Routing Problem

4.1 Introduction

With the rapid development of unmanned aerial vehicles or drones, the use of advanced

techniques increases the city level and improves the quality of life. Drones (or unmanned

aerial vehicles) are recently widely applied in many fields such as aerial imaging (Rakha and

Gorodetsky, 2018), traffic monitoring (Li et al., 2018), infrastructure inspections (Otto et al.,

2018), policing and surveillance (Engberts and Gillissen, 2016), rescue (Rabta et al., 2018),

product deliveries (Boysen et al., 2018; Wang and Sheu, 2019), and agriculture (Mogili and

Deepak, 2018). The use of drones can improve service because of the higher speeds, lower

cost, and safety. Because the drone can travel directly between any two nodes, it can fly

along or off the roads. The drone is not limited to the ground transportation infrastructure

while servicing the edges. The cooperation of the truck and the drone allows to adapt to

the specific circumstances where some edges require service, but there are no roads, such as

inspection along the power lines or pipelines (Yu et al., 2019). For example, some electric

power lines in mountain areas are not accessible by ground vehicles, while other power lines

have roads. The required edges can be covered by drones or trucks or both of them. Thus, the

Drone-Truck Arc Routing Problem (DT-ARP) extends the traditional arc routing problem

where the service is not limited to the road network and is done by the truck and the drone

cooperatively.

In this chapter, DT-ARP problem optimizes the truck route and drone route to minimize

the total time of completing all the tasks (all required edges are traversed at least once).

Despite the benefits of DT-ARP, it is a complicated problem to make arc routing decisions.

79

The cooperation between the truck and the drone poses multiple challenges. First, the

decisions on the truck’s route and the drone’s route are hierarchical and interdependent. The

decision on the drone’s takeoff and landing nodes depends on the truck route. Meanwhile,

the truck must move along the route that includes takeoff and landing nodes. Second,

because the drone has limited battery capacity, each flight trip has a physical constraint,

i.e., maximum flight range. The drones must land on the truck frequently, and the driver

replaces the battery for the drones. Third, it is allowed to fly over multiple arcs in one flight

trip as long as the flight length is less than the maximum flight range. So, it is the uncertain

number of arcs in each flight trip.

The Drone-Truck Arc Routing Problem in this paper is NP-hard because it is a special

case of the Rural Postman Problem (RPP) that has been proved to be NP-hard by Lenstra

and Kan (1976). To the best of our knowledge, there are few papers to look for the optimal

solution for this kind of complicated NP-hard problem. Starting from a simple case, One-

Drone-One-Truck is considered. Because we aim to minimize the total completion time

(makespan), it is vital to obtain the arrival time at each node. However, it is hard to

record the arrival time at each node, because each required edge is allowed to be traversed

at least once, and thus the number of visits at each node is unknown. Therefore, in order

to formulate a mathematical model for the One-Drone-One-Truck ARP, the arc routing

problem is transformed into a standard vehicle (node) routing problem (VRP). Two kinds

of transformation rules by Pearn et al. (1987) and Longo et al. (2006) are used here. Pearn

et al. (1987) added two side nodes and one middle node over each required edge and ensured

that each edge is traversed when all nodes are visited once. Longo et al. (2006) added two

side nodes over each required edge and ensured that each edge is traversed when the side

nodes are visited in sequence. The transformations are described in detail in Section 4.3.1.

The optimal objective value in VRP is equivalent to that in ARP. The optimal ARP solution

is obtained by being transformed back from the optimal VRP solution.

80

For a successful operation of DT-ARP, it is essential to develop an efficient method to

solve the Drone-Truck arc routing problem, because DT-ARP is always large-scale in the

real life. We develop an adaptive large neighborhood search (ALNS) algorithm to solve the

problem. ALNS, first proposed by Ropke and Pisinger (2006), is a well-known iterative

metaheuristic framework that has been popularly applied to solving various vehicle routing

problems. ALNS was first applied to the arc routing problem by Laporte et al. (2010) who

solved the capacitated arc routing problem with stochastic demands and multiple vehicles to

minimize the total cost. The key characteristic of ALNS is to destroy an incumbent solution

and repair it to construct a new solution in each iteration. The choices of destroy and repair

method are determined adaptively by their previous successes. Appling ALNS on DT-ARP

is not straightforward. Because two decisions of the truck route and drone route are tangled,

ALNS should be modified to be able to handle such complexity.

Numerical experiments are conducted for which we use randomly generated instances

of several sizes and a set of large-size benchmark undirected rural postman problem in-

stances (Corberán et al., 2021). The performance of ALNS is shown by comparison with

the optimal solution of the MIP formulation solved by Gurobi. Furthermore, ALNS solves

a more complex case Multi-Drones and One-Truck over the randomly generated instances.

A metaheuristic, named multi-start tabu search (MSTS) is proposed by Luo et al. (2021) to

investigate the multi-visit traveling salesman problem with multi-drones and a truck with

the aim to minimize makespan. With MSTS as being benchmark method, we demonstrate

the effectiveness and efficiency of ALNS algorithm.

The remainder of the chapter is written as follows. In Section 4.2, the related literature

is reviewed. The problem statement and mathematical model are presented in Section 4.3.

Adaptive Large Neighborhood Search is described in detail in Section 4.4. In Section 4.5,

the experimental results validate the performance of ALNS to solve the Drone-Truck Arc

Routing Problem. Conclusions are summarized in Section 4.6.

81

4.2 Literature Review

There have been numerous studies to investigate optimization for the arc routing problem.

Although there is a rapidly growing literature on the arc routing problems with trucks or

drones, the research on the cooperation between the truck and the drone has been previously

assessed only to a limited extent.

Some literature papers discussed the arc routing problem only with a single vehicle or

a fleet of homogeneous vehicles. Hertz et al. (2000) proposed a tabu search heuristic for

the capacitated arc routing problem where all given required edges were serviced exactly

by one vehicle and minimize the total weight of all service edges. Tagmouti et al. (2010)

proposed a variable neighborhood descent heuristic for a capacitated arc routing problem to

minimize the time-dependent service costs. They transformed the problem into an equivalent

vehicle routing problem and used it as an alternative approach. Then, Tagmouti et al.

(2011) studied the same problem in the dynamic environment. After the vehicles started to

work, new information showed up that affected costs. The variable neighborhood descent

heuristic was adapted to this dynamic variant. Benavent et al. (2014) solved k-vehicles

windy rural postman problem with minimizing the maximal distance traveled by a vehicle

to find k-routes that service all the required edges in a windy graph. They proposed a

branch-and-cut algorithm when the small number of vehicles and required edges. Vincent

and Lin (2015) proposed an iterated greedy heuristic for the time-dependent prize-collecting

arc routing problem and gave a vehicle route to maximize the profit. Monroy-Licht et al.

(2017) proposed an adaptive large neighborhood search algorithm to solve the rural postman

problem with time windows of serving some required edges with one vehicle and solved a set

of large instances with up to 104 required edges. Calogiuri et al. (2019) proposed a branch

and bound method to solve the time-dependent Rural postman problem in which the costs

depend on the time.

There are a few papers considering the arc routing problem with drones and presenting an

exact method for small scale and heuristic for large scale. Oh et al. (2011, 2014) modified a

82

road network search problem as a Multi-choice Multidimensional Knapsack problem to min-

imize flight time for multiple heterogeneous drones. And they proposed a greedy insertion

metaheuristic method to produce the shortest path in consideration of physical constraints

via the Dubins path planning. Dille and Singh (2013) also used Dubins path planning to

optimize the drone routing where the drone has a sensor with a radius of coverage. The

arc covering problem was converted into TSP by splitting the road network into a set of

coverage points. The visits on these points ensure part of the road is covered within the

range of the sensor. Chow (2016) formulated a deterministic arc-inventory routing problem

for UAV-based traffic monitoring. And they also modeled the uncertain demand based on

real-time data and derived a stochastic dynamic policy. An approximate dynamic program-

ming algorithm based on the Least Squares Monte Carlo simulation was proposed and was

validated better than the static myopic policy for small instances. Li et al. (2018) also ex-

plored an arc inventory routing and combined with capacitated arc routing with uncertain

demand for traffic monitoring. The mixed-integer programming model was presented with

the aim of minimizing the total cost. It solves up to 12 nodes and 40 lines with the Cplex

solver. The real case study of road traffic in Shanghai is done by applying a local branching

method. Campbell et al. (2018) studied drone arc routing problems to minimize the total

cost where drones can travel directly between any two points and approximate each curve

in the plane by a polygonal chain. The drones leave and enter at the points of the polygo-

nal chain. An iterative algorithm was proposed to solve RPP instances with an increasing

number of points of the polygonal chain. Campbell et al. (2021) also digitized the Length

Constrained K-Drones Rural Postman Problem by a polygonal chain with a finite number

of points. They presented a formulation and some valid inequalities. Based on this, they de-

signed a branch-and-cut algorithm for small-size instances and a metaheuristic for large-size

instances.

As stated above, a variety of methods have been proposed for solving the arc routing

problem with the truck or the drones. Although there are an increasing number of papers

83

that address node routing problems with the truck and the drone (Boysen et al., 2018; Agatz

et al., 2018; Khoufi et al., 2019; Wang and Sheu, 2019; Macrina et al., 2020; Chung et al.,

2020; Leon-Blanco et al., 2022), the papers remain few that propose the exact or heuristic

algorithm to solve the synchronization of drone and truck in arc routing problem.

4.3 Problem Statement

The Drone-Truck Arc Routing Problem can be described as follows. The notation is

listed in Table 4.1. Let G = (N , E) be an undirected connected graph. The depot is labeled

node 1. Define R as the set of required edges. One truck and one drone cooperatively

traverse all required edges at least once. The aim is to find the truck and drone routes to

minimize the makespan, i.e., the time leaving from and returning to the depot. There are

some assumptions about the drone.

• Assumption 1. Because the drone can fly off the edge, the flight network is larger than

the actual road network G . Define the set of drone flight edges Ed consists of all available

paths between any two nodes i , j ∈ N , in regards to the Drones Rules and Regulations.

The drone follows the graph Gd = (N , Ed). The distance of drone flight is calculated as

the horizontal distance.

• Assumption 2. The drone has a maximum flight range because of the limited battery

capacity. The drone must fly back to a truck before the battery runs out. After the drone

lands at the truck, the driver replaces a full backup battery and makes sure the drone is

prepared for the next trip.

• Assumption 3. The times for the drone to launch and land are neglected. The time to

replace the battery is also neglected.

The formulation for the Drone-Truck arc routing problem is made in two stages: (1)

Transform ARP into corresponding standard VRP; (2) Formulate mixed integer program-

ming for the Drone-Truck Vehicle Routing Problem (DT-VRP). The objective value in DT-

84

VRP is equivalent to that in DT-ARP. The truck route and the drone route can be obtained

by transforming back from VRP solution to ARP solution.

Table 4.1: Mathematical Notation

Sets
G Original undirected graph, G = (N , E)
Gd Original undirected flight network, Gd = (N , Ed)
N Set of original N vertices, N = {1, 2, ...,N}
E Set of original undirected edges
Ed Set of original undirected edges for the drone flight
R Set of original undirected required edges R ⊂ E
H The complete undirected graph of the corresponding VRP
VH Set of the constructed VRP nodes which are transformed from ARP
V Set of VRP nodes, V = VH ∪ {Nv + 1}
V1 Set of VRP nodes excluding the depot, V1 = VH \ {1}
A Set of VRP directed arcs
RH Set of VRP undirected required edges

Parameters
vt Truck Speed
vd Done Speed
dT The distance matrix between any two node in VH for the truck
dD The distance matrix between any two node in VH for the drone
tTij The time of traversing arc (i , j) ∈ A for the truck
tDij The time of traversing arc (i , j) ∈ A for the drone

e Maximum units of consecutive flight time, e = Maximum Drone flight range
vd

Variables
xTij 1, if the truck traverses arc (i , j) ∈ A; Otherwise, 0.
xDij 1, if the drone traverses through arc (i , j) ∈ A; Otherwise, 0.
yT
i 1, if node i ∈ V1 is visited only by the truck; Otherwise, 0.
yD
i 1, if node i ∈ V1 is visited only by the drone; Otherwise, 0.
yC
i 1, if node i ∈ V1 is combined node where a drone launches or lands;

Otherwise, 0.
nTi , nDi ∈ Z+ The ordered visit sequence of nodes for the truck or the drone; Oth-

erwise, 0.
fi ∈ R+ The flight time when the drone arrives at node i ∈ V .
ai ∈ R+ The arrival time of the truck or the drone at node i ∈ V .

85

4.3.1 Transformation ARP to VRP

We apply two kinds of the arc-to-node transformation proposed by Pearn et al. (1987)

and Longo et al. (2006). Pearn et al. (1987) replaced each required edge with three vertices

to transform ARP into the corresponding VRP. Longo et al. (2006) eliminated one of every

three nodes and achieved the same objective with specific constraints (each required edge

must be traversed at least once). The details are shown in the following section.

4.3.1.1 Pearn et al. (1987) Transformation

Pearn et al. (1987) transformed ARP into VRP by replacing each required edges (i , j) ∈ R

by two side nodes sij , sji and one middle central node mij . The corresponding VRP is defined

on the complete undirected graph H = (VH , EH).

VH =
⋃

(i ,j)∈R

{sij ,mij , sji} ∪ {1}

EH = {(i , j) : i 6= j , i , j ∈ VH}

The set of VRP nodes includes every three nodes of each required edge and the depot

node 1. The ARP with |R| required edges is transformed into the undirected complete graph

VRP with 3× |R|+ 1 nodes.

The distance of the edges in H are defined as the below equations.

d(sij , skl) =


0 if (i , j) = (k , l)

c(i , j) if (i , j) = (l , k)

dist(i , k) if (i , j) 6= (k , l), (i , j) 6= (l , k)

d(1, sij) = dist(1, i)

86

d(mij , v) =


1
2
cij if v = sij or sji

∞ otherwise

where dist(i , j) is the shortest path distance between node i and j in the original graph. The

purpose of the middle node mij is to ensure that the shortest path between two side node sij

and sji is always sij → mij → sji or sji → mij → sij in sequence.

1

2 3

4

7.1 7.
1

10

7.
1 7.1

s13

s31

m13

s23 s32m23

Figure 4.1: An Example for Arc Routing Problem with New Nodes. (Original arc distance
are shown next to each arc; green lines mean the required edges)

It is noted that the distance calculation rule is different from that in Pearn et al. (1987)’s

paper. The objective function in this paper is to minimize the completion time, while the

objective in Pearn et al. (1987)’s paper is to minimize the total cost. The arrival time at each

node is requested to be accurate. Although the three nodes are placed over required edges

at different locations (shown in Figure 4.1), they are actually dummy and the distances are

calculated based on their real locations. For example, the set of side nodes {sij ,∀i ∈ G :

(i , j) ∈ R} are the dummy nodes for the real node i ∈ G . Their real locations are actually

at the real node i . In the example Figure 4.1, s32 and s31 are the dummy nodes to node 3.

Their real locations are set at node 3.

87

4.3.1.2 Longo et al. (2006) Transformation

Longo et al. (2006) replaced each required edge with two vertices. An edge (i , j) ∈ R is

associated to vertices sij and sji . The pass through edge (i , j) is same as visiting two vertices

sij and sji in sequence (sij → sji or sji → sij). The ARP problem can be solved just by working

out the corresponding 2 × |R| + 1 VRP problem where each node is visited exactly once.

The corresponding VRP is defined on the complete undirected graph H = (VH , EH).

VH =
⋃

(i ,j)∈R

{sij , sji} ∪ {1}

The distances between internodes are calculated as the following equations (Longo et al.,

2006).

d(sij , skl) =


0 if (i , j) = (k , l)

c(i , j) if (i , j) = (l , k)

dist(i , k) if (i , j) 6= (k , l), (i , j) 6= (l , k)

d(1, sij) = dist(1, i)

where dist(i , j) is the shortest path distance between node i and j . Since the network of the

truck G = (N , E) and the network of the drone Gd = (N , Ed) are different, the distance

matrix for the truck dT and for the drone dD are calculated with regard to G and Gd ,

respectively.

The requirement of traversing the required edges can be satisfied by adding a specific

constraint that is to visit sij and sji in sequence. So, in the graph H , define the set of the

undirected required edges RH as follows.

RH = {(sij , sji)|(i , j) ∈ R}

88

Figure 4.2: Transformation Arc Routing Problem to Node Routing Problem. (Green lines
mean the required edges; the values above edges are the distances between internodes)

4.3.2 MIP Formulation for Drone-Truck VRP

The MIP formulation for DT-VRP is built based on the compact formulation by Roberti

and Ruthmair (2021). The main differences between my formulation and theirs are that (i)

They set the arrival time at one node based on the assumption that the drone’s speed is

greater than the truck’s speed. We do not need this assumption. We modify the arrival time

restriction to Constraint (4.19), such that the time through one arc depends on the truck’s

speed when the drone gets aboard the truck. (ii) Their subtour elimination constraints

(arrival times restriction) become invalid here, because some distances between internodes

are zero in our problem, such as d1,sij = ds31,s32 = 0 shown in Figure (4.2). So, we introduce

the variables nT and nD to denote the ordered sequence of visiting nodes. Constraints (4.15)

and (4.16) are added to avoid causing subtours. (iii) They restricted that the drone can

only visit one node in a single flight trip. Our formulation allows the drone to visit multiple

nodes in a single trip.

The vertex set V is defined as V = VH ∪ {N + 1}, where node N + 1 represents the enter

depot node. Define V1 = VH \ {1} as the set of nodes excluding the depot. The undirected

89

edges are extended as directed edges A = {(i , j)|i , j ∈ VH : i 6= j}∪{(i ,N+1)|i ∈ VH : i 6= 1}.

The mathematical formulation is described as the following.

The Objective Function is to find routes of a truck and a drone to minimize the total

completion time, i.e., makespan. The value of makespan is calculated between the times

when the truck leaves and returns to the depot.

minimize aN+1 (4.1)

Required Edges must be traversed at least once by the truck or the drone (Constraint

(4.2)). It is noted that Constraint (4.2) is only needed for the 2-node transformed VRP

(Longo et al., 2006). This ensures that all originally required edges are traversed when all

side vertices are visited. Constraint (4.3) restricts that truck routing decision xT and drone

routing decision xD are binary variables.

xTij + xTji + xDij + xDji ≥ 1 ∀(i , j) ∈ RH (4.2)

xTij , xDij ∈ {0, 1} ∀(i , j) ∈ A (4.3)

Flows for Truck and Drone Routes are described as follows. The truck leaves and returns

to the depot exactly once. Outflow at the depot leave node 1 is 1 and inflow at depot enter

node N + 1 is also 1 (Constraint (4.4)). Constraint (4.5) restricts the flow balance for the

other nodes. Constraints (4.6) and (4.7) restrict the flow balance for the drone route.

∑
(1,j)∈A

xT1j =
∑

(i ,N+1)∈A

xTi ,N+1 = 1 (4.4)

∑
(i ,j)∈A

xTij −
∑

(j ,i)∈A

xTji = 0 ∀i ∈ V1 (4.5)

∑
(1,j)∈A

xD1j =
∑

(i ,N+1)∈A

xDi ,N+1 = 1 (4.6)

90

∑
(i ,j)∈A

xDij −
∑

(j ,i)∈A

xDji = 0 ∀i ∈ V1 (4.7)

Node Category is introduced as follows. Let yT
i be a binary variable equal to 1 if node

i ∈ V1 is only visited by the truck, called a truck node. yD
i is a binary variable that is equal

to 1 if node i ∈ V1 is only visited by the drone, called drone node. Let yC
i ∈ {0, 1} be

equal to 1 if node i ∈ V1 is visited by both the truck and the drone, called the combined

node. Constraint (4.8) ensures that each node must be one of three categories of nodes.

Constraints (4.9) and (4.10) ensure the drone takes off and lands at the combined nodes and

allows the drone to visit multiple nodes in a single flight trip. Variable αij decides that arc

(i , j) can form the drone routes in two cases: one endpoint is (i) combined node or (ii) drone

node. In example Figure 4.3, arc (1,2) suits the first case: one endpoint is combined node;

arc (2,3) suits the second case: one endpoint is drone node.

1

2 3

4

combined node combined node

drone node drone node

Figure 4.3: An Example for Node Category in One Flight Trip.
(Solid lines are truck route and dashed lines are drone route)

Constraints (4.11) and (4.12) link xTij and xDij with y and ensure that along the truck

(drone) route, the node is either truck (drone) node or combined node. Constraints (4.13)

and (4.14) ensure variable y and α are binary.

yT
i + yD

i + yC
i = 1 ∀i ∈ V1 (4.8)

xDij + xDji ≤ yC
i + yC

j + 2(1− αij) ∀(i , j) ∈ A : i , j /∈ {1,N + 1} (4.9)

xDij + xDji ≤ yD
i + yD

j + 2αij ∀(i , j) ∈ A : i , j /∈ {1,N + 1} (4.10)

91

∑
(i ,j)∈A

xTij = yT
i + yC

i ∀i ∈ V1 (4.11)

∑
(i ,j)∈A

xDij = yD
i + yC

i ∀i ∈ V1 (4.12)

yT
i , yD

i , yC
i ∈ {0, 1} ∀i ∈ V1 (4.13)

αij ∈ {0, 1} ∀(i , j) ∈ A (4.14)

Subtour Elimination constraints are added to avoid causing subtours for the truck (Con-

straint (4.15)) and for the drone (Constraint (4.16)). Let nTi and nDi denote the sequence

order of visiting nodes for the truck and the drone. Let Nv = |VH |.

nTj ≥ nTi + Nvx
T
ij − (Nv − 1) ∀(i , j) ∈ A (4.15)

nDj ≥ nDi + Nvx
D
ij − (Nv − 1) ∀(i , j) ∈ A (4.16)

nTi , nDi ∈ Z+ ∀i ∈ V1 (4.17)

Arrival Time of the truck or the drone is denoted as ai ∈ R+ at node i ∈ V . Define tTij

and tDij be the time of traversing arc (i , j) for the truck and the drone, respectively.

tTij =
dT
ij

vt
tDij =

dD
ij

vd

Constraints (4.18) and (4.19) set the arrival times of the truck and the done at the node.

It is noted that when the drone gets aboard the truck (xDij = 1, xTij = 1), the arrival time

at node j only depends on the truck’s traverse time. Constraints (4.20) and (4.21) show

that the total completion time cannot be lower than the summation of the traverse time by

the truck or by the drone. Constraint (4.22) restricts that the arrival time is nonnegative

continuous variable.

aj ≥ ai + tTij −M(1− xTij) ∀(i , j) ∈ A (4.18)

92

aj ≥ ai + tDij −M(1− xDij)−MxTij ∀(i , j) ∈ A (4.19)∑
(i ,j)∈A

tTij x
T
ij ≤ aN+1 (4.20)

∑
(i ,j)∈A

tDij x
D
ij ≤ aN+1 (4.21)

ai ≥ 0 ∀i ∈ V (4.22)

Drone Flight Range is considered because of the limited battery. Let e be the maximum

consecutive flight time. Constraint (4.23) guarantees that the drone can not traverse an arc

whose flight time exceeds e unless the drone gets aboard the truck. A variable fi is introduced

to track the flight time in a flight trip. Constraint (4.24) sets the tracking flight time fi . The

flight time of a trip must be not greater than e (Constraint (4.25)).

xDij ≤ xTij ∀(i , j) ∈ A : tDij > e (4.23)

fj ≥ fi + tDij −M(1− xDij)−MxTij ∀(i , j) ∈ A (4.24)

0 ≤ fi ≤ e ∀i ∈ V (4.25)

4.4 Adaptive Large Neighborhood Search

In this section, we develop an Adaptive Large Neighborhood Search (ALNS) for the

Drone-Truck Arc Routing Problem. ALNS was first proposed by Ropke and Pisinger (2006)

and applied to the vehicle routing problem - the pickup and delivery problem with time

windows. ALNS is a well-known popular iterative algorithm to solve various vehicle routing

problems. The idea of ALNS is to search in a neighborhood by destroying an incumbent

solution and repairing it to construct a new solution in each iteration. The adaptivity is

achieved by determining the choices of several destroy and repair methods on their previous

successes. Laporte et al. (2010) first applied ALNS to solve the arc routing problem to

minimize the total cost. To the best of our knowledge, this is the first paper using ALNS

93

on the Drone-Truck Arc Routing Problem to minimize the completion time that considers

truck routing and drone routing jointly.

The procedure of the proposed ALNS is shown in Algorithm 4. DM and RM are denoted as

the sets of the destroy and repair methods, respectively. The solution has two decisions: the

truck route and the drone route. The key part is how to determine the sequence of traversing

the required edges. Thus, it is vital to create Xr and Yr which represent the sequence of

required arcs traversed by the truck and the drone. In each iteration, the new Xr and Yr in the

neighborhood are produced by applying destroy and repair. The destroy process is to remove

some edges from the truck required edges route Xr and drone required edges route Yr . Next,

the repair process can reconstruct the partial Xr and Yr . Then, the complete truck route X

and drone route Y are obtained by encoding from Xr and Yr , described in Section 4.4.1. The

destroy and repair methods are chosen by using the roulette-wheel selection principle based

on their probabilities. When the method creates a better solution, the probability of the

corresponding method increases, as described in section 4.4.5. The acceptance rule is used:

the new best solution is accepted if its objective value is better than that of the current

best solution; the new solution with a higher objective value has a chance to be accepted by

the simulated annealing acceptance criterion. T denotes the value of the temperature and

gradually decreases at each iteration by a rate h ∈ [0, 1]. The stop criteria are the maximum

iterations Nmax and non-improving iteration Zmax.

4.4.1 Decoding and Encoding

The feasible solution in ALNS has two decisions: the truck route X and the drone route

Y . The route is decoded by a string of arcs that represents the sequence of traversing the

arcs. Let Xr and Yr denote the sequence of required edges traversed by the truck and the

drone, respectively. It is noted that the edges in Xr and Yr do not have a direction.

94

Algorithm 4: Pseudocode for ALNS

Input: G, R, DM, RM, Nmax,Zmax

Output: Xbest,Ybest

1 Initialize the truck required edges route Xr0 and the drone required edges routes Yr0

(Sec 4.4.2);

2 Initialize destroy methods probability P0
D and repair methods probability P0

R (Sec
4.4.5);

3 Xrbest ← Xrcurrent ← Xr0, Yrbest ← Yrcurrent ← Yr0;
4 Encode the required edges route into the complete route Xbest,Ybest ← encode(Xr ,Yr)

(Sec 4.4.1);
5 Calculate the makespan of current best solution tbest ← f (Xbest,Ybest);
6 N ← 1,Z ← 0;
7 while N ≤ Nmax, Z ≤ Zmax do
8 Select a destroy method d ∈ DM with probability PN

D ;
9 Select a repair method r ∈ RM with probability PN

R ;
10 Let Xrnew and Yrnew be the new required edges solution obtained by appling

destroy d and repair r on Xrcurrent,Yrcurrent;
11 Obtain the complete truck route and drone route

Xnew,Ynew ← encode(Xrnew,Yrnew);
12 if f (Xnew,Ynew) < tbest then
13 Xbest ← Xnew, Ybest ← Ynew, tbest ← f (Xnew,Ynew), Xrbest ← Xrnew,

Yrbest ← Yrnew, Z ← 0;

14 else
15 Z ← Z + 1;

16 v = e−(f (Xnew,Ynew)−f (Xcurrent,Ycurrent))/T ;
17 Generate a random number ε ∈ [0, 1];
18 if ε < v then
19 Xrcurrent ← Xrnew, Yrcurrent ← Yrnew;

20 T ← hT ;

21 Update PN
D and PN

R (Sec 4.4.5);
22 N ← N + 1;

The encoding rule turns Xr and Yr into the complete route solution X and Y . The

encoding rule is done in two steps: (1) construct the complete truck route X ; (2) connect

the edges in Yr to the truck route X .

In step 1, any two required edges in Xr are connected with the shortest path. Let Xr =

{(va, va+1), (vb.vb+1), ...}. Starting from the depot 1, calculate the shortest distance dist(1, va)

and dist(1, va+1) and choose the shortest path to connect. If dist(1, va) < dist(1, va+1), add

95

{(1, va), (va, va+1)} in X ; otherwise, add {(1, va+1), (va+1, va)}. If v is the last node in the

current partial X , choose the shortest path v → vb or v → vb+1 to append to the end in X .

Complete the truck route until all required edges in Xr are done.

In step 2, Connect drone required edges Yr to the truck route X by a greedy rule. Let

Yr = {(vc , vc+1), (vd , vd+1), ...}. First, extract all node from the truck route X as Vx =

{1, v1, v2, ...}. Then, insert any edge in all possible locations between two consecutive nodes

∀vi , vi+1 ∈ Vx . Choose the direction of drone edges with the smaller distance between

dist(vi , vc) + dist(vc+1, vi+1) and dist(vi , vc+1) + dist(vc , vi+1). Calculate the increased value

in the objective value between before and after inserting the edge. Choose the location

with the least increased objective value to insert the edge (vc , vc+1). The partial Y becomes

{.., (vi−1, vi), (vc , vc+1), (vi+1, vi+2), ...}. Next, put the vertices vc , vc+1 in Vx . Repeat the

above procedures until all required edges are done.

Two constraints must be satisfied to construct the drone route:

• The drone required edges can not insert between two nodes belonging to an arc in Yr . For

example, (vd , vd+1) can not insert between vc and vc+1.

• The flight distance must less than or equal to the maximum drone flight range.

4.4.2 Initial Solution

The initial Xr and Yr are created by the Nearest Neighborhood Search. First, the required

edges are randomly assigned to the truck set Sxr and the drone set Syr . Next, the required

edges route is constructed progressively by adding the nearest edge. The procedure is shown

in Algorithm 5. The distance between any two edges (a, b) and (c , d) shows the spatial

closeness and is defined as following equation.

diste

(
(a, b), (c , d)

)
=

1

4

(
dist(a, c) + dist(b, d) + dist(a, d) + dist(b, c)

)
(4.26)

where dist(i , j) is the shortest path distance between node i and j in the graph G .

96

Algorithm 5: Pseudocode for initialization required edges route

Input: The set of the required edges for the truck or the drone Sr
Output: The required edges route r

1 r ← {(a, b)} with (a, b) = arg min{diste

(
(1, 1), (a, b)

)
,∀(a, b) ∈ Sr};

2 while Sr 6= ∅ do
3 (c , d)← the last edge in r ;
4 Add the nearsest edge (u, v) to the end of r with

(u, v) = arg min{diste

(
(c , d), (u, v)

)
,∀(u, v) ∈ Sr};

5 Sr ← Sr \ (u, v);

4.4.3 Destroy Methods

Three destroy methods are applied to destroy a feasible solution. The destroy methods

are Random Removal, Worst Route Removal, and Cluster Removal.

4.4.3.1 Random Removal

Randomly remove a certain percentage q% of edges from the truck and the drone required

edges route Xr and Yr .

4.4.3.2 Worst Route Removal

Given a solution (Xr ,Yr), the cost for the required edge e is defined as the difference

value in the objective function before and after removing edge e from current solution. It is

expressed as

cost(e,Xr ,Yr) = max
{
f
(

encode(Xr ,Yr)
)
− f−e

(
encode(Xr ,Yr)

)
, 0
}

(4.27)

where f−e(·) is objective function after removing edge e after current solution. Sort all costs

for required edge e ∈ R in the descending order. Remove the first bq% × |R|c edges with

the larger costs from Xr and Yr .

97

4.4.3.3 Cluster Removal

The idea of cluster removal is to avoid generating a similar new solution and try to

jump into a farther neighborhood to get a solution with the large change. The relatedness

between two edges (u, v) and (i , j) is measured by considering two factors: “distance” and

“time”. The “distance” represents the spatial closeness of these two edges and is calculated

as Equation (4.26).

The “time” between two edges (u, v) and (i , j) represents temporal closeness and is defined

as the average arrival times at start points and end points.

t((u, v), (i , j)) =
1

4
(|au − ai |+ |av − aj |+ |au − aj |+ |av − ai |)

For any edge (u, v) ∈ R, the measure of relatedness is defined as the following equations.

R((u, v), (i , j)) =w1
diste((u, v), (i , j))

max{diste((u, v), (k , l)),∀(k , l) ∈ R}
+ (4.28)

w2
t((u, v), (i , j))

max{t((u, v), (k , l)),∀(k , l) ∈ R} −min{t((u, v), (k , l)),∀(k , l) ∈ R}

where w1 and w2 are weights with sum of 1.

The smaller R((u, v), (i , j)) is, the more related two edges are. Following steps are fol-

lowed: randomly select a required edge (u, v) ∈ R and calculate R((u, v), (i , j)),∀(i , j) 6=

(u, v) ∈ R. Sort all R((u, v), (i , j)) in descending order. Remove edges with first bq%× |R|c

in the sequence.

4.4.4 Repair Methods

There are two repair methods to reconstruct the partial truck and drone required edges

route Xr and Yr . The repair methods are Random Insertion, Greedy Insertion, and Regret

Insertion.

98

4.4.4.1 Random Insertion

Given partial truck required edges route Xr and drone required edges route Yr , randomly

insert the undecided required edges into them.

4.4.4.2 Greedy Insertion

The idea of the greedy insertion heuristic is to find the best insertion. A concept of

Insertion Cost I (e, p,Xr ,Yr) is introduced to denote the change in the objective value when

inserting the edge e into Xr or Yr at position p. It is expressed as

I (e, p,Xr ,Yr) = ∆f (e, p,Xr ,Yr) (4.29)

Select the position p to insert e with the least insertion cost I (s, p,Xr ,Yr). Repeat the

above steps until all required edges are inserted.

4.4.4.3 Regret Insertion

The regret insertion is improved by incorporating look-ahead information when selecting

the required edge to insert.

For any required edge e ∈ R, the regret-k cost is defined as

R(e,Xr ,Yr) =
k∑

j=1

{∆fj(e,Xr ,Yr)−∆f1(e,Xr ,Yr)} (4.30)

where ∆f (e,Xr ,Yr) is the increased value in the objective value after inserting edge e. Sort

∆f (e,Xr ,Yr) for all possible insertion positions in the increasing order. ∆fk(e,Xr ,Yr) means

the increased value in the objective for the k-th best insertion position. The best insertion

position has the least ∆f1(e,Xr ,Yr). The regret insertion is the reconstruction heuristic that

chooses to insert the required edge with the maximum R(e,Xr ,Yr) and insert this edge into

99

the position with the least insertion cost. Repeat the above procedures until all required

edges are inserted.

4.4.5 Adaptive Probability Update

The adaptivity of ALNS is achieved by selecting the destroy and repair methods based

on their previous successes. In each iteration, the methods are chosen by the roulette wheel

selection principle based on their probabilities.

The weights are introduced to track the scores to measure how well the methods have

performed. The initial weights are equal to 1. In iteration i , the destroy method d and

the repair method r are selected. If the methods creates a new global best solution, the

weight w i+1
d ← w i

d + σ1 and w i+1
r ← w i

r + σ1; if the new solution is accepted with a better

objective value than the current solution but not the global best one, w i+1
d ← w i

d + σ2 and

w i+1
r ← w i

r +σ2; if the new solution is accepted with a worse objective value than the current

solution, w i+1
d ← w i

d + σ3 and w i+1
r ← w i

r + σ3.

Then, the probability values of destroy and repair methods in iteration i are updated as

follows:

Pi
D =

(
w i
d∑

d∈DM w i
d

: d ∈ DM

)
(4.31)

Pi
R =

(
w i
r∑

r∈RM w i
r

: r ∈ RM

)
(4.32)

4.5 Numerical Experiments

The experiments are implemented on the computer which has a 2.2GHz Intel Xeon Pro-

cessor and 32GB RAM. The MIP formulation in Section 4.3.2 is solved in Julia v1.6.1 by

calling Gurobi v0.9.12. Adaptive Large Neighborhood Search and Tabu Search are coded in

Julia v1.6.1. The experiments are implemented on small-size randomly generated data and

a set of large-size undirected rural postman problem instances.

100

4.5.1 One Truck and One Drone

4.5.1.1 Analysis on the Small-Size Instances

The data are randomly generated when the number of nodes |N | = 10, 15, the number

of edges |E| = 20, 30, the number of required edges |R| = 5, 7, 10. The vertices are randomly

distributed in a 100 × 100 square region. The required edges are randomly chosen from all

edges. Each type of randomly generated data has 25 instances. Define the maximum flight

time e = β × 1
|Ed |
∑

(i ,j)∈Ed d
D
ij ÷ vd . The parameter β is set as 1,2,3 which determines the

flight range. The speed of the truck vt and the speed of the drone vd are selected as equal

(1,1), slower (1,2), and faster (2,1).

We use two kinds of transformation rule to convert ARP into 2× |R|+ 1 and 3× |R|+ 1

VRP. The One-Drone-One-Truck results over the randomly generated data when N = 10

are shown in Table 4.2. Column Obj means the average objective values solved by MIP-3

(Pearn et al., 1987), MIP-2 (Longo et al., 2006), Tabu Search (TS) (Luo et al., 2021) and

our ALNS. The optimal solution can be obtained by MIP-3 and MIP-2 solved via Gurobi

when the number of required edges |R| is 5 or 7. When |R| is 10, the instances become very

large and cannot be solved to optimality in the limited run time of 3600s. As the objective

values of MIP-3 and MIP2 being benchmark, TS and ALNS can not perform better with the

average gap of 3.81% and 1.73% when |R| = 5; the gaps of 4.65% and 2.07% when |R| = 7;

and the gaps of 4.87% and 2.62% when |R| = 10. ALNS outperforms TS in the objective

values because of the smaller gap to the optimal solutions. The computational times reveal

that MIP-2 runs the fastest when the instances are small. When |R| = 10, the average run

time of TS (247.02s) and ALNS (202.99s) are much less than those of MIP. The advantage

of the metaheuristic in run time becomes more obvious. Meanwhile, ALNS also outperforms

TS in the run time.

One-Drone-One-Truck results over the randomly generated data when N = 15 are shown

in Table 4.3. MIP-3 and MIP-2 solve the small instances well. However, when the number

101

Table 4.2: One-Drone-One-Truck Results on Randomly Generated Data N = 10

Instance Obj CPU (seconds)

vt vd β MIP-3b MIP-2c TS Gap% ALNS Gap% MIP-3b MIP-2c TS ALNS

N10E20R5 1 1 1 359.30 359.30 367.23 2.21 363.23 1.09 4.85 2.96 11.24 3.64
2 289.67 289.67 299.32 3.33 290.62 0.33 8.25 4.90 10.63 5.72
3 252.07 252.07 258.62 2.60 254.34 0.90 4.79 1.28 9.42 6.32

1 2 1 358.22 358.22 371.99 3.84 365.32 1.98 4.58 0.96 4.63 11.23
2 256.43 256.43 268.32 4.64 263.23 2.65 8.59 2.73 10.42 7.32
3 196.29 196.29 204.23 4.05 200.42 2.11 9.12 4.36 9.98 5.43

2 1 1 184.26 184.26 191.32 3.83 188.42 2.26 2.81 1.59 12.42 7.43
2 165.14 165.14 173.32 4.96 168.23 1.87 2.22 2.17 9.43 5.73
3 158.54 158.54 166.21 4.84 162.34 2.40 3.23 1.86 8.99 6.43

Ave 246.66 246.66 255.62 3.81 250.68 1.73 5.38 2.53 10.42 5.85

N10E20R7 1 1 1 462.89 462.89 483.53 4.46 469.32 1.39 37.42 7.92 5.35 16.32
2 353.17 353.17 372.73 5.54 363.24 2.85 230.80 75.74 33.42 17.42
3 314.13 314.13 326.42 3.91 319.40 1.68 133.66 42.36 79.54 20.32

1 2 1 461.53 461.53 477.32 3.42 470.34 1.91 59.58 12.92 43.43 16.23
2 319.89 319.89 335.43 4.86 326.43 2.04 497.73 126.24 63.43 34.23
3 237.08 237.08 250.32 5.58 242.53 2.30 317.73 180.17 74.52 43.42

2 1 1 235.27 235.27 245.32 4.27 239.43 1.77 13.81 5.16 12.43 10.32
2 200.25 200.25 210.45 5.09 204.32 2.03 15.70 5.20 10.53 14.23
3 193.24 193.24 202.34 4.71 198.43 2.69 18.65 4.39 7.34 15.32

Ave 308.61 308.61 322.65 4.65 314.83 2.07 147.23 51.12 40.00 20.87

N10E20R10 1 1 1 594.61a 594.61a 607.34 2.14 603.24 1.45 1443.86 1066.15 295.34 125.34
2 439.66a 434.67a 466.34 7.29 452.32 4.06 3593.46 3144.67 222.75 220.32
3 393.13a 391.29a 436.23 11.48 412.32 5.37 2954.81 2049.52 252.39 198.52

1 2 1 591.06a 591.06a 603.30 2.07 599.42 1.41 1211.51 938.79 215.34 284.55
2 426.10a 394.15a 405.63 2.91 400.23 1.54 3600.00 3600.00 199.23 204.32
3 296.07a 284.21a 295.32 3.91 289.53 1.87 3504.08 2798.71 189.43 221.23

2 1 1 302.16a 301.05a 308.27 2.40 304.23 1.06 1546.43 918.86 285.35 198.43
2 258.35a 256.34a 270.43 5.50 263.23 2.69 1795.22 1008.30 263.23 174.23
3 244.98a 244.32a 259.32 6.14 254.34 4.10 1424.13 910.31 300.11 199.99

Ave 394.01 387.97 405.80 4.87 397.65 2.62 2343.81 1827.58 247.02 202.99

a Not all 25 instances can be solved to optimality within the limited computational time of 3600s and the objective
values are not optimal.

b MIP formulation are based on the VRP transformed from Pearn et al. (1987)
c MIP formulation are based on the VRP transformed from Longo et al. (2006)

of required edges increases, ALNS and TS perform better both in the solution quality and

computational times. The objective value gaps of ALNS 1.43%, 2.39% and 2.74% show that

ALNS can get an acceptable solution within up to 10.34s, 55.47s and 300.23s for |R| =5, 7,

10, respectively. Between these two metaheuristics, ALNS also runs faster and gets greater

solutions than TS.

102

Table 4.3: One-Drone-One-Truck Results on Randomly Generated Data N = 15

Instance Obj CPU (seconds)

vt vd β MIP-3b MIP-2c TS Gap% ALNS Gap% MIP-3b MIP-2c TS ALNS

N15E30R5 1 1 1 446.71 446.71 454.23 1.68 450.43 0.83 3.44 1.50 12.43 6.47
2 362.33 362.33 371.01 2.40 367.63 1.46 11.74 7.22 10.42 10.34
3 303.35 303.35 314.42 3.65 309.34 1.98 5.32 4.00 9.45 5.63

1 2 1 446.42 446.42 457.52 2.49 452.32 1.32 3.50 1.89 7.64 4.63
2 340.98 340.98 348.32 2.15 344.52 1.04 16.63 10.29 8.63 7.83
3 253.60 253.60 265.32 4.62 259.32 2.25 12.51 7.51 11.42 6.58

2 1 1 225.79 225.79 233.43 3.39 228.32 1.12 2.77 1.47 10.24 3.21
2 205.07 205.07 211.89 3.32 207.53 1.20 4.28 3.19 14.25 7.42
3 190.00 190.00 200.21 5.37 193.24 1.70 2.91 2.22 11.42 5.43

Ave 308.25 308.25 317.37 3.23 312.52 1.43 7.01 4.37 10.66 6.39

N15E30R7 1 1 1 537.89 537.89 553.42 2.89 549.75 2.21 45.05 9.11 45.33 18.32
2 424.33a 424.33 446.34 5.19 430.23 1.39 637.16 101.28 55.11 22.62
3 352.69 352.69 375.43 6.45 362.34 2.74 126.60 24.21 34.63 35.23

1 2 1 533.58 533.58 563.42 5.59 547.63 2.63 53.13 6.95 45.34 19.43
2 399.35a 399.35 420.53 5.30 410.23 2.72 963.13 221.13 39.64 35.64
3 282.83 282.83 297.34 5.13 289.53 2.37 741.21 125.79 26.71 55.47

2 1 1 271.76 271.76 290.34 6.84 278.43 2.45 22.17 4.20 36.23 16.43
2 239.13 239.13 250.43 4.73 244.42 2.21 72.57 16.91 53.53 20.43
3 225.23 225.23 235.43 4.53 231.52 2.79 57.28 13.49 49.35 19.64

Ave 362.98 362.98 381.41 5.18 371.56 2.39 302.03 58.12 42.87 27.02

N15E30R10 1 1 1 665.25a 665.25a 683.24 2.70 680.34 2.27 1454.16 1203.22 320.43 290.31
2 502.19a 498.74a 520.34 4.33 511.42 2.54 3600.00 3371.43 295.35 300.23
3 435.41a 429.91a 450.32 4.75 440.23 2.40 2685.58 2422.05 340.52 243.52

1 2 1 660.18a 660.18a 678.42 2.76 675.73 2.35 1305.83 1300.98 299.43 210.24
2 481.46a 481.08a 515.62 5.00 510.23 3.90 3555.47 3600.00 287.77 199.53
3 341.40a 337.74a 370.53 5.34 359.34 2.16 3402.47 3412.68 310.45 178.46

2 1 1 335.85a 332.41a 359.64 6.91 348.53 3.60 1514.19 1341.94 296.34 176.34
2 278.89a 278.72a 286.43 2.77 285.47 2.42 1454.84 1520.01 301.53 193.32
3 262.62a 260.58a 270.31 3.73 268.34 2.98 1228.25 1015.98 296.43 200.52

Ave 440.36 441.40 459.43 4.25 453.29 2.74 2263.24 2132.33 305.36 221.39

a Not all 25 instances can be solved to optimality within the limited computational time of 3600s and the objective
values are not optimal.

b MIP formulation are based on the VRP transformed from Pearn et al. (1987)
c MIP formulation are based on the VRP transformed from Longo et al. (2006)

4.5.1.2 Analysis on the Large-Size Instances

As shown in Table 4.2 and 4.3, Gurobi cannot solve MIP-3 and MIP-2 to optimality

in 3600s and formulation can not get a feasible solution when the network is large. The

two metaheuristic methods, TS and ALNS, are tested on a set of undirected rural postman

problem instances (Corberán et al., 2021). The characteristic of the instances UR500 is

103

shown in Table 4.4. The results of four URPP500 instances are summarized in Table 4.5.

The run time is limited to 1200 seconds for both TS and ALNS. ALNS is able to get better

solutions for all instances with the average gap of 1.99%, 4.16%, 1.36% and 3.54%.

Table 4.4: Characteristic of Undirected Rural Postman Problem UR500

Ave Min Max

Nodes 446.0 298 499
Edges 1128.9 597 1526
Req-Edges 35.3 1 99

Table 4.5: One-Drone-One-Truck Results on Large-Size Instances

vt vd β TS ALNS Gap% TS ALNS Gap%

UR532 UR535

1 1 1 10342 10034 3.07 12042 11592 3.88
2 10225 9987 2.38 11942 11561 3.30
3 9998 9698 3.09 10093 9899 1.96

1 2 1 8843 8733 1.26 8234 7953 3.53
2 8632 8529 1.21 8102 7801 3.86
3 8452 8321 1.57 7842 7504 4.50

2 1 1 7201 7033 2.40 7293 6903 5.65
2 6992 6843 2.18 7102 6723 5.64
3 6703 6653 0.75 6983 6643 5.12

Ave 8599 8426 1.99 8848 8301 4.16

UR537 UR542

1 1 1 11023 10932 0.83 11423 11242 1.61
2 10294 10200 0.92 11232 10923 2.83
3 10125 10101 0.24 11001 10842 1.47

1 2 1 10023 9994 0.29 10532 10424 1.04
2 9923 9530 4.12 10423 10211 2.08
3 9380 9305 0.81 10232 10112 1.19

2 1 1 8990 8942 0.54 10032 9123 9.96
2 9123 8816 3.48 9834 8942 9.98
3 8824 8736 1.01 8988 8834 1.74

Ave 9745 9617 1.36 10411 10073 3.54

104

4.5.2 One Truck and Multiple Drones

4.5.2.1 Analysis on the Small-Size Instances

Table 4.6: Two-Drones-One-Truck Results on Randomly Generated Data with N = 10

Instance Obj CPU (seconds)

vt vd β TS ALNS Gap% TS ALNS Gap%

N10E20R5 1 1 1 271.26 263.23 3.05 9.87 3.55 178.03
2 222.32 216.62 2.63 12.01 6.07 97.86
3 198.62 192.34 3.27 7.4 4.65 59.14

1 2 1 280.5 275.32 1.88 13.1 4.47 193.06
2 201.62 195.23 3.27 11.55 6.11 89.03
3 142.67 138.42 3.07 10.83 5.07 113.61

2 1 1 140.42 136.42 2.93 12.21 9.36 30.45
2 114.78 110.54 3.84 8.37 5.12 63.48
3 105.21 101.32 3.84 9.44 5.11 84.74

Ave 186.38 181.05 3.09 10.53 5.50 101.04

N10E20R7 1 1 1 418.34 409.56 2.14 33.38 17.69 88.69
2 311.91 308.22 1.20 37.28 14.08 164.77
3 234.7 229.68 2.19 80.68 15.62 416.52

1 2 1 381.38 373.75 2.04 45.02 22.11 103.62
2 259.99 253.81 2.43 64.27 39.26 63.70
3 170.71 163.95 4.12 75.80 48.2 57.26

2 1 1 152.8 148.61 2.82 36.51 13.5 170.44
2 162.5 154.3 5.31 48.65 13.99 247.75
3 126.74 121.64 4.19 28.56 20.5 39.32

Ave 246.56 240.39 2.94 50.02 22.77 150.23

N10E20R10 1 1 1 517.34 508.74 1.69 311.24 109.74 183.62
2 488.42 471.12 3.67 235.85 222.72 5.90
3 436.23 422.74 3.19 237.79 187.22 27.01

1 2 1 545.42 536.02 1.75 230.34 207.35 11.09
2 414.23 404.23 2.47 281.53 186.42 51.02
3 335.32 324.34 3.39 286.63 234.13 22.42

2 1 1 214.23 205.03 4.49 265.55 183.73 44.53
2 194.22 182.13 6.64 253.03 178.93 41.41
3 188.43 178.94 5.30 295.01 196.39 50.22

Ave 370.43 359.25 3.62 266.33 189.63 48.58

105

Table 4.7: Two-Drones-One-Truck Results on Randomly Generated Data with N = 15

Instance Obj CPU (seconds)

vt vd β TS ALNS Gap% TS ALNS Gap%

N15E30R5 1 1 1 327.83 312.33 4.96 14.93 7.97 87.33
2 301.23 299.93 0.43 18.12 8.74 107.32
3 284.32 269.74 5.41 11.85 8.53 38.92

1 2 1 379.82 351.82 7.96 7.94 4.23 87.71
2 309.72 299.22 3.51 11.63 6.73 72.81
3 258.42 254.23 1.65 14.32 6.28 128.03

2 1 1 248.83 239.32 3.97 12.24 4.61 165.51
2 201.49 195.93 2.84 15.25 7.82 95.01
3 189.81 185.14 2.52 11.32 4.33 161.43

Ave 277.94 267.52 3.69 13.07 6.58 104.90

N15E30R7 1 1 1 418.42 402.65 3.92 79.43 16.72 375.06
2 392.42 385.53 1.79 46.51 24.82 87.39
3 379.34 375.23 1.10 66.23 34.73 90.70

1 2 1 413.92 396.23 4.46 55.24 18.93 191.81
2 394.23 374.11 5.38 50.64 32.94 53.73
3 372.32 345.34 7.81 65.31 53.67 21.69

2 1 1 179.24 163.23 9.81 27.23 17.33 57.13
2 139.53 130.92 6.58 87.63 23.33 275.61
3 130.23 126.72 2.77 25.75 19.14 34.54

Ave 313.29 299.99 4.85 56.00 26.85 131.96

N15E30R10 1 1 1 524.64 515.44 1.78 335.53 308.53 8.75
2 396.64 381.52 3.96 314.25 224.12 40.22
3 343.23 333.13 3.03 323.62 226.12 43.12

1 2 1 583.62 574.23 1.64 289.13 203.80 41.87
2 395.23 383.43 3.08 296.37 170.21 74.12
3 240.32 227.54 5.62 337.65 178.37 89.29

2 1 1 218.34 213.33 2.35 315.64 225.35 40.07
2 193.23 182.77 5.72 316.33 236.30 33.87
3 159.32 145.34 9.62 310.43 222.19 39.71

Ave 339.40 328.53 4.09 315.44 221.66 45.67

106

Both ALNS and TS can solve the case when one truck and multiple drones traverse all

required edges jointly. The tests are done on the randomly generated data with |N | = 10

and |N | = 15. The results are summarized in Table 4.6 and 4.7. ALNS gets better objective

values with the average gaps of 3.09%, 2.94%, 3.62% and with the average run time gaps

of 101.04%, 150.23% and 48.58% for |N | =10; with the average obj gaps of 3.69%, 4.85%,

4.09% and with the average run time gaps of 104.90%, 131.96%, 45.67% for |N |=15. Since

both ALNS and TS are limited to run in 1200s, the gaps between them show that ALNS

performs better than TS for all randomly generated instances.

4.5.2.2 Analysis on the Large-Size Instances

Table 4.8: Two-Drones-One-Truck Results on Large-Size Instances

vt vd β TS ALNS Gap% TS ALNS Gap%

UR532 UR535

1 1 1 6894.67 6689.33 3.07 7528.00 7461.33 0.89
2 6816.67 6658.00 2.38 7961.33 7728.37 3.01
3 6665.33 6465.33 3.09 6728.67 6599.33 1.96

1 2 1 5171.33 5017.20 3.07 4760.03 4746.15 0.29
2 5006.67 4889.00 2.41 4471.13 4355.67 2.65
3 5034.67 4854.33 3.71 4567.00 4500.67 1.47

2 1 1 5712.67 5507.33 3.73 5793.53 5478.19 5.76
2 5476.33 5265.00 4.01 5384.67 5092.77 5.73
3 5059.67 4945.47 2.31 5561.65 5365.67 3.65

Ave 5759.78 5587.89 3.09 5861.78 5703.13 2.83

UR537 UR542

1 1 1 7348.67 7188.00 2.24 7615.33 7494.67 1.61
2 6862.67 6789.32 1.08 7488.23 7282.76 2.82
3 6850.00 6701.22 2.22 7334.16 7228.12 1.47

1 2 1 6315.00 6009.67 5.08 6294.33 6001.11 4.89
2 6012.15 5836.63 3.01 6298.67 5938.76 6.06
3 5601.37 5545.32 1.01 6088.33 5757.14 5.75

2 1 1 6725.98 6676.65 0.74 7517.00 6866.34 9.48
2 6700.01 6668.34 0.47 7138.00 6728.34 6.09
3 6854.67 6347.10 8.00 6912.65 6697.33 3.21

Ave 6585.61 6418.03 2.65 6965.19 6666.06 4.60

107

TS and ALNS methods also solve four large-size URPP500 instances when there are two

drones and one truck. Both methods use the stop criterion as the maximum iteration number

of 5000 and nonimproving iteration number of 1000. The objective values are shown in Table

4.8. Average gaps are 3.09%, 2.83%, 2.65% and 4.60% for instances UR532, UR535, UR537

and UR542, respectively. ALNS enables to get better solutions than TS in the situation of

the multiple drones and one truck.

4.5.3 Analysis on Speed and Drone Range

The number of instances solved to optimality are given in Table 4.9. There are 25

instances of each type. All instances are solved within the limited computational time of

3600 seconds. When |R| = 5, all 25 instances of each type can be solved optimally. When

|R| = 7, MIP-3 and MIP-2 can not obtain the optimal solutions in some cases when the truck

speed vt = 1, the drone speed vd = 2, range β = 2 or 3. As the number of required edges |R|

increases to 10, the property of the problem becomes obvious. The problem is the simplest

to solve when the truck is faster than the drone (vt = 2, vd = 1), because the truck tends to

service the most edges and the drone gets onboard the truck in the most time. Then, the

problem is harder to solve when the speeds are the same (vt = vd = 1), because it leads that

the problem is equivalent to 2-truck ARP with one truck having length constraint. It is the

hardest to solve when the drone is faster than the truck (vt = 1, vd = 2). Because the faster

drone is able to traverse more required edges and benefits in reducing the completion time.

The different maximum drone ranges also affect the complexity of the problem. For

different values of β = 1, 2, 3, the average percentages of instances solved to optimality are

72.67%, 25.33%, 37.33% by MIP-3 and 82.00%, 36.67% and 56.00% by MIP-2, respectively.

When the maximum flight range is short β = 1, one flight trip can not cover some edges. As

the maximum range increases to β = 2, there are more feasible solutions where the drone

can service some edges. If the maximum range becomes very large, the problem is equivalent

to 2-truck ARP with the trucks having different speeds. That becomes easier to solve.

108

Table 4.9: Number of Randomly Generated Instances Solved to Optimality

opt # opt

vt vd β Instance MIP-3 MIP-2 Instance MIP-3 MIP-2

1 1 1 N10E20R5 25/25 25/25 N15E30R5 25/25 25/25
2 25/25 25/25 25/25 25/25
3 25/25 25/25 25/25 25/25

1 2 1 25/25 25/25 25/25 25/25
2 25/25 25/25 25/25 25/25
3 25/25 25/25 25/25 25/25

2 1 1 25/25 25/25 25/25 25/25
2 25/25 25/25 25/25 25/25
3 25/25 25/25 25/25 25/25

1 1 1 N10E20R7 25/25 25/25 N15E30R7 25/25 25/25
2 25/25 25/25 24/25 25/25
3 25/25 25/25 25/25 25/25

1 2 1 25/25 25/25 25/25 25/25
2 24/25 25/25 22/25 25/25
3 24/25 24/25 25/25 25/25

2 1 1 25/25 25/25 25/25 25/25
2 25/25 25/25 25/25 25/25
3 25/25 25/25 25/25 25/25

1 1 1 N10E20R10 18/25 20/25 N15E30R10 18/25 19/25
2 1/25 6/25 3/25 8/25
3 6/25 15/25 10/25 14/25

1 2 1 19/25 21/25 20/25 20/25
2 0/25 0/25 1/25 1/25
3 2/25 9/25 2/25 3/25

2 1 1 17/25 22/25 17/25 21/25
2 16/25 20/25 17/25 20/25
3 17/25 21/25 19/25 22/25

The percentages of optimal solutions over the randomly generated instances with 10

required edges are drawn in Figure 4.4. The darker the color is, the harder the problem is

solved. Thus, the worst case happens when vt/vd = 0.5 and the range parameter β = 2.

Because the minimum makespan occurs in the situation where there is no or less waiting

time at the drone’s landing combined node.

109

Figure 4.4: Percentage of Solutions Solved to Optimality over Randomly Generated
Instances with |R| = 10

4.5.4 Analysis on Robustness of Adaptive Large Neighborhood Search versus Tabu Search

The robustness of a metaheuristic means how much the solutions vary if being repeated

several times on the same instance. The robustness of a method is expressed as the standard

deviation. The randomly generated instances N15E30-R5, R7 and R10 are used to evaluate

the robustness. Each instance is repeated 10 times and the standard deviation is calculated

from the 10 repeated solutions. The standard deviations of ALNS and TS are illustrated in

Figure 4.5. For all instances, ALNS has less Std than TS. With the increasing number of

required edges, the values of Std increase. The less standard deviation is, the more stable

the method is. So, ALNS has better robustness than TS.

4.6 Concluding Remarks

This chapter considers Drone-Truck Arc Routing problem. The drone and the truck

cooperatively service all required edges at least once. Since the drone can fly off the road

network, the DT-ARP extends the traditional ARP. With a limited battery capacity, the

drone needs to fly from and to vehicles for a replacement of the battery. The key chal-

lenge is how to determine the truck and drone route to minimize the completion time. A

110

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Instance Number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
ta

n
d

ar
d

D
ev

ia
ti

on

0.15

0.24

1.24

2.01

3.13

3.82R-edges 5 R-edges 7 R-edges 10

Standard Deviation over Randomly Generated Data N15E30

ALNS

TS

Figure 4.5: Standard Deviation of Objective Values by ALNS and TS
over Randomly Generated Instances

metaheuristic method based on Adaptive Large Neighborhood Search (ALNS) is proposed

to solve the Drone-Truck Arc Routing Problem (DT-ARP). The performance of ALNS is

evaluated using small-size randomly generated ARP instances and large-size undirected rural

postman problem instances. In order to get the optimal solution, we transform ARP into

VRP with two kinds of rules and formulate a mixed-integer programming. The experiments

reveal that MIP formulation can solve the problem well for the small-size network. However,

for a large-size network (the number of required edges is larger than 10), an efficient and

effective metaheuristic is necessary. We found that ALNS outperforms TS both in the solu-

tion quality and the computational time. The further analysis on the truck/drone speed and

maximum drone flight range shows that the problem is hard to solve when the maximum

flight range is double average edges’ distances and the done is twice as fast as the truck. The

111

robustness of ALNS is also better than Tabu Search by comparing the standard deviation

from the repeated solved solutions.

As for directions of future research, the metaheuristic method may be improved, such as

by using strong initialization or by some other destroy and repair methods. The future work

could extend to the DT-ARP with multiple trucks and multiple drones onboard per truck.

112

Chapter 5: Conclusion and Future Work

In this dissertation, we use an exact method and metaheuristic algorithms to solve trans-

portation problems.

In the first problem, a leader-follower decision problem is considered in the form of

bi-level optimization. In the upper level, the leader aims to minimize the total facility

construction costs and hazmat exposure risks by determining facility locations and available

roads for hazmat transportation. The leader affects the followers who intend to minimize

their transportation costs when designing the road network. We apply a robust optimization

approach to deal with the uncertainty in the exposure risk and the demand. A bi-level integer

programming model is formulated where the upper level is a min-max problem and the lower

level is a shortest-path problem. We devise an exact algorithm that combines a cutting plane

algorithm with Benders decomposition and derive a single-level reformulation. Comparisons

between two approaches are made on the Ravenna city data, in terms of objectives and the

running time. The analysis on small and large size instances demonstrates that the proposed

cutting plane algorithm performs much better than Gurobi as the problem size increases.

The proposed cutting plane algorithm is an effective exact method for solving the robust

combined facility location-network design problem.

A couple of directions for future research are suggested. First, uncertainty on origin

locations can be considered. In this paper, we assume that all origin nodes are exactly

known. Since the hazmat facility location problem is for long-term decision, considering new

hazmat origins in the future will lead to an important problem. Second, hazmat trips to

locations other than the hazmat facilities can be incorporated. Although we consider hazmat

trips to hazmat facilities only in this paper, there are also hazmat trips to other destinations.

113

Hazmat network design policies will certainly impact not only trips to hazmat facilities, but

also all other general hazmat trips. Therefore, incorporating both types of hazmat trips

within a single modeling framework is a valuable research direction.

The second problem is the EV relocation and shuttle routing problem for the rebalancing

operation of free-floating EV sharing systems. One of the key operational decisions for the

carsharing company is how to relocate the EV fleet to meet the next day’s demand with

sufficient battery levels. We develop a metaheuristic ALNS algorithm for the EV reloca-

tion problem that determines where to relocate each EV and how to route the shuttles that

transport the staff drivers synchronously. We apply our method to conduct numerical exper-

iments using both randomly generated data and actual FFEVSS data in Amsterdam. We

found that ALNS outperforms EBNSM both in the solution quality and the computational

time. Our ALNS also produces better solutions than the RL approach but requires much

longer computational time than RL. Our experiments reveal that providing the RL solution

as the initial solution for ALNS is an effective and efficient solution strategy that can take

advantage of both approaches, achieving the best solution quality and reducing the compu-

tational time significantly. We also demonstrate how our ALNS can be modified to solve the

problem where staff drivers carry a personal mobility vehicle such as a scooter. Our further

analysis provides practical recommendations on which mode of transportation will be more

efficient—i.e., a small number of shuttles with large capacity or a large number of shuttles

with small capacity (or even personal mobility)—in terms of total operational cost as well

as wait times. Lastly, we show that our ALNS that destroys an incumbent solution partially

and repairs to a new solution in each iteration is quite flexible to be applied to a dynamic

environment. Specifically, our numerical results highlight the usefulness of our flexible ALNS

method for an environment where some EV demands are removed or added in the course of

EV relocation operations.

As directions of future research, this model can be extended for day-time static relocation.

Extending this model to the 24-hour period will ordinarily require redeployment of the model

114

at constant, and relatively small, time intervals and also the assumption of zero new arriving

demand. In that case, unlike our numerical experiments conducted with constant travel speed

for the city of Amsterdam, a more robust analysis with different shuttle travel speeds can

be considered to account for various traffic conditions at different times and across different

locations. An important factor in the successful implementation of static repositioning is

the accuracy of the demand forecast. The demand faced by a car-sharing system is highly

sensitive to a variety of external factors. In this study, we base our demand forecast on past

demand data on similar days and focus on synchronous modeling of relocation and routing

operations. However, more sophisticated data mining models and demand prediction models

can be devised.

In the final problem, Drone-Truck Arc Routing problem is studied where the drone and

the truck cooperatively service all required edges at least once. Since the drone can fly off the

road network, the DT-ARP extends the traditional ARP. With a limited battery capacity,

the drone needs to fly from and to vehicles for a replacement of the battery. The key

challenge is how to determine the truck and drone routes to minimize the completion time.

A metaheuristic method based on Adaptive Large Neighborhood Search (ALNS) is proposed

to solve the Drone-Truck Arc Routing Problem (DT-ARP). The performance of ALNS is

evaluated using small-size randomly generated ARP instances and large-size undirected rural

postman problem instances. In order to get the optimal solution, we transform the ARP into

VRP with two kinds of rules and formulate mixed-integer programming. The experiments

reveal that MIP formulation can solve the problem well for the small-size network. However,

for a large-size network (the number of required edges is larger than 10), an efficient and

effective metaheuristic is necessary. We found that ALNS outperforms Tabu Search both in

the solution quality and the computational times. The further analysis on the truck/drone

speed and maximum drone flight range shows that the problem is hard to solve when the

maximum flight range is two times average distances of all edges and the done is twice as

115

fast as the truck. The robustness of ALNS is also better than Tabu Search by comparing

the standard deviation from the repeated solved solutions.

As for directions of future research, the metaheuristic method may be improved, such as

by using strong initialization or by some other destroy and repair methods. The future work

could extend to the DT-ARP with multiple trucks and multiple drones onboard per truck.

116

References

Agatz, N., P. Bouman, M. Schmidt. 2018. Optimization approaches for the traveling salesman

problem with drone. Transportation Science 52(4) 965–981.

Amaldi, E., M. Bruglieri, B. Fortz. 2011. On the hazmat transport network design problem.

Network Optimization. Springer, 327–338.

Ardjmand, E., G. Weckman, N. Park, P. Taherkhani, M. Singh. 2015. Applying genetic

algorithm to a new location and routing model of hazardous materials. International

Journal of Production Research 53(3) 916–928.

Arslan, O., O. Jabali, G. Laporte. 2018. Exact solution of the evasive flow capturing problem.

Operations Research 66(6) 1625–1640.

Becker, H., F. Ciari, K. W. Axhausen. 2018. Measuring the car ownership impact of free-

floating car-sharing–a case study in Basel, Switzerland. Transportation Research Part D:

Transport and Environment 65 51–62.

Benavent, E., Á. Corberán, G. Desaulniers, F. Lessard, I. Plana, J. M. Sanchis. 2014. A

branch-price-and-cut algorithm for the min-max k-vehicle windy rural postman problem.

Networks 63(1) 34–45.

Benders, J. F. 1962. Partitioning procedures for solving mixed-variables programming prob-

lems. Numerische Mathematik 4(1) 238–252.

Berglund, P. G., C. Kwon. 2014. Robust facility location problem for hazardous waste

transportation. Networks and Spatial Economics 14(1) 91–116.

117

Bertsimas, D., M. Sim. 2003. Robust discrete optimization and network flows. Mathematical

Programming 98(1-3) 49–71.

Bezanson, J., S. Karpinski, V. B. Shah, A. Edelman. 2012. Julia: A fast dynamic language

for technical computing. arXiv preprint arXiv:1209.5145 .

Bianco, L., M. Caramia, S. Giordani. 2009. A bilevel flow model for hazmat transportation

network design. Transportation Research Part C: Emerging Technologies 17(2) 175–196.

Bianco, L., M. Caramia, S. Giordani, V. Piccialli. 2015. A game-theoretic approach for

regulating hazmat transportation. Transportation Science 50(2) 424–438.

Bogyrbayeva, A., S. Jang, A. Shah, Y. J. Jang, C. Kwon. 2021. A reinforcement learning

approach for rebalancing electric vehicle sharing systems. IEEE Transactions on Intelligent

Transportation Systems 1–11.

Boyacı, B., K. G. Zografos, N. Geroliminis. 2015. An optimization framework for the develop-

ment of efficient one-way car-sharing systems. European Journal of Operational Research

240(3) 718–733.

Boyacı, B., K. G. Zografos, N. Geroliminis. 2017. An integrated optimization-simulation

framework for vehicle and personnel relocations of electric carsharing systems with reser-

vations. Transportation Research Part B: Methodological 95 214–237.

Boysen, N., D. Briskorn, S. Fedtke, S. Schwerdfeger. 2018. Drone delivery from trucks: Drone

scheduling for given truck routes. Networks 72(4) 506–527.

Bruglieri, M., F. Pezzella, O. Pisacane. 2017. Heuristic algorithms for the operator-based

relocation problem in one-way electric carsharing systems. Discrete Optimization 23 56–80.

Bruglieri, M., F. Pezzella, O. Pisacane. 2019. An adaptive large neighborhood search for

relocating vehicles in electric carsharing services. Discrete Applied Mathematics 253 185–

200.

118

Calogiuri, T., G. Ghiani, E. Guerriero, R. Mansini. 2019. A branch-and-bound algorithm

for the time-dependent rural postman problem. Computers & Operations Research 102

150–157.

Campbell, J. F., Á. Corberán, I. Plana, J. M. Sanchis, P. Segura. 2021. Solving the length

constrained k-drones rural postman problem. European Journal of Operational Research

292(1) 60–72.

Campbell, J. F., Á. Corberán, I. Plana, J. M. Sanchis. 2018. Drone arc routing problems.

Networks 72(4) 543–559.

Carotenuto, P., S. Giordani, S. Ricciardelli. 2007. Finding minimum and equitable risk routes

for hazmat shipments. Computers & Operations Research 34(5) 1304–1327.

Cepolina, E. M., A. Farina. 2012. A new shared vehicle system for urban areas. Transporta-

tion Research Part C: Emerging Technologies 21(1) 230–243.

Chow, J. Y. 2016. Dynamic uav-based traffic monitoring under uncertainty as a stochastic

arc-inventory routing policy. International Journal of Transportation Science and Tech-

nology 5(3) 167–185.

Chung, S. H., B. Sah, J. Lee. 2020. Optimization for drone and drone-truck combined

operations: A review of the state of the art and future directions. Computers & Operations

Research 123 105004.

Contreras, I., E. Fernández, G. Reinelt. 2012. Minimizing the maximum travel time in a

combined model of facility location and network design. Omega 40(6) 847–860.

Corberán, Á., I. Plana, M. Reula, J. M. Sanchis. 2021. Arc routing problems data instances.

https://www.uv.es/corberan/instancias.htm. Last updated: May 2021.

Di Febbraro, A., N. Sacco, M. Saeednia. 2012. One-way carsharing: Solving the relocation

problem. Transportation Research Record 2319(1) 113–120.

119

Dille, M., S. Singh. 2013. Efficient aerial coverage search in road networks. AIAA Guidance,

Navigation, and Control (GNC) Conference. 5094.

Dolan, E. D., J. J. Moré. 2002. Benchmarking optimization software with performance

profiles. Mathematical Programming 91(2) 201–213.

Dunning, I., J. Huchette, M. Lubin. 2017. Jump: A modeling language for mathematical

optimization. SIAM Review 59(2) 295–320.

Engberts, B., E. Gillissen. 2016. Policing from above: Drone use by the police. The Future

of Drone Use. Springer, 93–113.

Erkut, E., O. Alp. 2007. Designing a road network for dangerous goods shipments. Computers

& Operations Research 34(5) 1389–1405.

Erkut, E., S. A. Tjandra, V. Verter. 2007. Chapter 9 Hazardous Materials Transportation.

Transportation, Handbooks in Operations Research and Management Science, vol. 14. El-

sevier, 539–621.

Esfandeh, T., R. Batta, C. Kwon. 2017. Time-dependent hazardous-materials network design

problem. Transportation Science 52(2) 454–473.

Firnkorn, J., M. Müller. 2011. What will be the environmental effects of new free-floating

car-sharing systems? the case of car2go in ulm. Ecological Economics 70(8) 1519–1528.

Fontaine, P., S. Minner. 2018. Benders decomposition for the hazmat transport network

design problem. European Journal of Operational Research 267(3) 996–1002.

Garrido, R. A. 2008. Road pricing for hazardous materials transportation in urban networks.

Networks and Spatial Economics 8(2-3) 273–285.

Gelareh, S., D. Pisinger. 2011. Fleet deployment, network design and hub location of liner

shipping companies. Transportation Research Part E: Logistics and Transportation Review

47(6) 947–964.

120

Ghaderi, A. 2015. Heuristic algorithms for solving an integrated dynamic center facility

location-network design model. Networks and Spatial Economics 15(1) 43–69.

Ghaderi, A., M. S. Jabalameli. 2013. Modeling the budget-constrained dynamic uncapaci-

tated facility location–network design problem and solving it via two efficient heuristics:

a case study of health care. Mathematical and Computer Modelling 57(3-4) 382–400.

Gzara, F. 2013. A cutting plane approach for bilevel hazardous material transport network

design. Operations Research Letters 41(1) 40–46.

Haider, Z., H. Charkhgard, S. W. Kim, C. Kwon. 2019. Optimizing the reloca-

tion operations of free-floating electric vehicle sharing systems. Available at SSRN:

http://dx.doi.org/10.2139/ssrn.3480725 .

Herrmann, S., F. Schulte, S. Voß. 2014. Increasing acceptance of free-floating car shar-

ing systems using smart relocation strategies: a survey based study of car2go hamburg.

International Conference on Computational Logistics . Springer, 151–162.

Hertz, A., G. Laporte, M. Mittaz. 2000. A tabu search heuristic for the capacitated arc

routing problem. Operations Research 48(1) 129–135.

Jarboui, B., H. Derbel, S. Hanafi, N. Mladenović. 2013. Variable neighborhood search for

location routing. Computers & Operations Research 40(1) 47–57.

Jorge, D., G. H. Correia, C. Barnhart. 2014. Comparing optimal relocation operations

with simulated relocation policies in one-way carsharing systems. IEEE Transactions on

Intelligent Transportation Systems 15(4) 1667–1675.

Kara, B. Y., V. Verter. 2004. Designing a road network for hazardous materials transporta-

tion. Transportation Science 38(2) 188–196.

Khoufi, I., A. Laouiti, C. Adjih. 2019. A survey of recent extended variants of the traveling

salesman and vehicle routing problems for unmanned aerial vehicles. Drones 3(3) 66.

121

Killmer, K. A., G. Anandalingam, S. A. Malcolm. 2001. Siting noxious facilities under

uncertainty. European Journal of Operational Research 133(3) 596–607.

Kortum, K., R. Schönduwe, B. Stolte, B. Bock. 2016. Free-floating carsharing: City-specific

growth rates and success factors. Transportation Research Procedia 19 328–340.

Kwon, C., T. Lee, P. Berglund. 2013. Robust shortest path problems with two uncertain

multiplicative cost coefficients. Naval Research Logistics (NRL) 60(5) 375–394.

Kypriadis, D., G. Pantziou, C. Konstantopoulos, D. Gavalas. 2018. Minimum walking static

repositioning in free-floating electric car-sharing systems. 2018 21st International Confer-

ence on Intelligent Transportation Systems (ITSC). IEEE, 1540–1545.

Kypriadis, D., G. Pantziou, C. Konstantopoulos, D. Gavalas. 2020. Optimizing relocation

cost in free-floating car-sharing systems. IEEE Transactions on Intelligent Transportation

Systems 21(9) 4017–4030.

Laporte, G., R. Musmanno, F. Vocaturo. 2010. An adaptive large neighbourhood search

heuristic for the capacitated arc-routing problem with stochastic demands. Transportation

Science 44(1) 125–135.

Le Vine, S., J. Polak. 2019. The impact of free-floating carsharing on car ownership: Early-

stage findings from london. Transport Policy 75 119–127.

Lenstra, J. K., A. R. Kan. 1976. On general routing problems. Networks 6(3) 273–280.

Leon-Blanco, J. M., P. Gonzalez-R, J. L. Andrade-Pineda, D. Canca, M. Calle. 2022. A

multi-agent approach to the truck multi-drone routing problem. Expert Systems with

Applications 195 116604.

Li, M., L. Zhen, S. Wang, W. Lv, X. Qu. 2018. Unmanned aerial vehicle scheduling problem

for traffic monitoring. Computers & Industrial Engineering 122 15–23.

122

Longo, H., M. P. De Aragao, E. Uchoa. 2006. Solving capacitated arc routing problems using

a transformation to the cvrp. Computers & Operations Research 33(6) 1823–1837.

Luo, Z., M. Poon, Z. Zhang, Z. Liu, A. Lim. 2021. The multi-visit traveling salesman problem

with multi-drones. Transportation Research Part C: Emerging Technologies 128 103172.

Macrina, G., L. D. P. Pugliese, F. Guerriero, G. Laporte. 2020. Drone-aided routing: A

literature review. Transportation Research Part C: Emerging Technologies 120 102762.

Marcotte, P., A. Mercier, G. Savard, V. Verter. 2009. Toll policies for mitigating hazardous

materials transport risk. Transportation Science 43(2) 228–243.

Mattia, G., R. G. Mugion, L. Principato. 2019. Shared mobility as a driver for sustain-

able consumptions: The intention to re-use free-floating car sharing. Journal of Cleaner

Production 237 117404.

Melkote, S., M. S. Daskin. 2001a. Capacitated facility location/network design problems.

European Journal of Operational Research 129(3) 481–495.

Melkote, S., M. S. Daskin. 2001b. An integrated model of facility location and transportation

network design. Transportation Research Part A: Policy and Practice 35(6) 515–538.

Mogili, U. R., B. Deepak. 2018. Review on application of drone systems in precision agri-

culture. Procedia Computer Science 133 502–509.

Monroy-Licht, M., C. A. Amaya, A. Langevin. 2017. Adaptive large neighborhood search

algorithm for the rural postman problem with time windows. Networks 70(1) 44–59.

Noel, L., G. Z. de Rubens, B. K. Sovacool, J. Kester. 2019. Fear and loathing of electric

vehicles: the reactionary rhetoric of range anxiety. Energy Research & Social Science 48

96–107.

Nourinejad, M., M. J. Roorda. 2015. Carsharing operations policies: a comparison between

one-way and two-way systems. Transportation 42(3) 497–518.

123

Nourinejad, M., S. Zhu, S. Bahrami, M. J. Roorda. 2015. Vehicle relocation and staff

rebalancing in one-way carsharing systems. Transportation Research Part E: Logistics

and Transportation Review 81 98–113.

Oh, H., S. Kim, A. Tsourdos, B. A. White. 2014. Coordinated road-network search route

planning by a team of uavs. International Journal of Systems Science 45(5) 825–840.

Oh, H., H. Shin, A. Tsourdos, B. White, P. Silson. 2011. Coordinated road network search

for multiple uavs using dubins path. Advances in Aerospace Guidance, Navigation and

Control . Springer, 55–65.

Otto, A., N. Agatz, J. Campbell, B. Golden, E. Pesch. 2018. Optimization approaches for

civil applications of unmanned aerial vehicles (uavs) or aerial drones: A survey. Networks

72(4) 411–458.

Pearn, W.-L., A. Assad, B. L. Golden. 1987. Transforming arc routing into node routing

problems. Computers & Operations Research 14(4) 285–288.

Preeti, W., S. Prasenjit. 2019. Car sharing market size by model (p2p, station-based, free-

floating), by business model (round trip, one way), by application (business, private),

industry analysis report, regional outlook, application potential, price trend, competitive

market share & forecast, 2020 – 2026. https://www.gminsights.com/industry-analysis/

carsharing-market.

Rabbani, M., R. Heidari, H. Farrokhi-Asl, N. Rahimi. 2018. Using metaheuristic algorithms

to solve a multi-objective industrial hazardous waste location-routing problem considering

incompatible waste types. Journal of Cleaner Production 170 227–241.

Rabta, B., C. Wankmüller, G. Reiner. 2018. A drone fleet model for last-mile distribution in

disaster relief operations. International Journal of Disaster Risk Reduction 28 107–112.

124

Rahmaniani, R., A. Ghaderi. 2013. A combined facility location and network design problem

with multi-type of capacitated links. Applied Mathematical Modelling 37(9) 6400–6414.

Rakha, T., A. Gorodetsky. 2018. Review of unmanned aerial system (uas) applications in

the built environment: Towards automated building inspection procedures using drones.

Automation in Construction 93 252–264.

Ravi, R., A. Sinha. 2006. Approximation algorithms for problems combining facility location

and network design. Operations Research 54(1) 73–81.

Roberti, R., M. Ruthmair. 2021. Exact methods for the traveling salesman problem with

drone. Transportation Science 55(2) 315–335.

Romero, N., L. K. Nozick, N. Xu. 2016. Hazmat facility location and routing analysis with

explicit consideration of equity using the gini coefficient. Transportation Research Part E:

Logistics and Transportation Review 89 165–181.

Ropke, S., D. Pisinger. 2006. An adaptive large neighborhood search heuristic for the pickup

and delivery problem with time windows. Transportation Science 40(4) 455–472.

Samanlioglu, F. 2013. A multi-objective mathematical model for the industrial hazardous

waste location-routing problem. European Journal of Operational Research 226(2) 332–

340.

Santos, G., G. Correia. 2015. A mip model to optimize real time maintenance and relocation

operations in one-way carsharing systems. Transportation Research Procedia 10 384–392.

Shaheen, S. A., A. P. Cohen. 2007. Growth in worldwide carsharing: An international

comparison. Transportation Research Record 1992(1) 81–89.

Sharma, S., S. V. Ukkusuri, T. V. Mathew. 2009. Pareto optimal multiobjective optimization

for robust transportation network design problem. Transportation Research Record 2090(1)

95–104.

125

Shaw, P. 1998. Using constraint programming and local search methods to solve vehicle

routing problems. International Conference on Principles and Practice of Constraint Pro-

gramming . Springer, 417–431.

Sun, L., M. H. Karwan, C. Kwon. 2015. Robust hazmat network design problems considering

risk uncertainty. Transportation Science 50(4) 1188–1203.

Sun, L., M. H. Karwan, C. Kwon. 2017. Generalized bounded rationality and robust multi-

commodity network design. Operations Research 66(1) 42–57.

Tagmouti, M., M. Gendreau, J.-Y. Potvin. 2010. A variable neighborhood descent heuris-

tic for arc routing problems with time-dependent service costs. Computers & Industrial

Engineering 59(4) 954–963.

Tagmouti, M., M. Gendreau, J.-Y. Potvin. 2011. A dynamic capacitated arc routing problem

with time-dependent service costs. Transportation Research Part C: Emerging Technolo-

gies 19(1) 20–28.

Taslimi, M., R. Batta, C. Kwon. 2017. A comprehensive modeling framework for hazmat net-

work design, hazmat response team location, and equity of risk. Computers & Operations

Research 79 119–130.

United Nations. Committee of Experts on the Transport of Dangerous Goods. 2009. Recom-

mendations on the transport of dangerous goods: model regulations , vol. 2. United Nations

Publications.

U.S. Bureau of Labor Statistics. 2021. Occupational Outlook Handbook, Passen-

ger Vehicle Drivers. https://www.bls.gov/ooh/transportation-and-material-moving/

passenger-vehicle-drivers.htm.

126

U.S. Department of Transportation. 2015. Commodity Flow Survey: United States:

2012, Hazardous Materials. https://www.census.gov/library/publications/2015/econ/

ec12tcf-us-hm.html/. Accessed February, 2015.

Verter, V., B. Y. Kara. 2008. A path-based approach for hazmat transport network design.

Management Science 54(1) 29–40.

Vincent, F. Y., S.-W. Lin. 2015. Iterated greedy heuristic for the time-dependent prize-

collecting arc routing problem. Computers & Industrial Engineering 90 54–66.

Wang, J., Y. Kang, C. Kwon, R. Batta. 2012. Dual toll pricing for hazardous materials

transport with linear delay. Networks and Spatial Economics 12(1) 147–165.

Wang, Z., J.-B. Sheu. 2019. Vehicle routing problem with drones. Transportation Research

Part B: Methodological 122 350–364.

Weikl, S., K. Bogenberger. 2013. Relocation strategies and algorithms for free-floating car

sharing systems. IEEE Intelligent Transportation Systems Magazine 5(4) 100–111.

Weikl, S., K. Bogenberger. 2015. A practice-ready relocation model for free-floating carshar-

ing systems with electric vehicles–mesoscopic approach and field trial results. Transporta-

tion Research Part C: Emerging Technologies 57 206–223.

Wielinski, G., M. Trépanier, C. Morency. 2015. What about free-floating carsharing? a look

at the montreal, canada, case. Transportation Research Record 2563(1) 28–36.

Xie, Y., W. Lu, W. Wang, L. Quadrifoglio. 2012. A multimodal location and routing model

for hazardous materials transportation. Journal of Hazardous Materials 227 135–141.

Xin, C., L. Qingge, J. Wang, B. Zhu. 2015. Robust optimization for the hazardous materials

transportation network design problem. Journal of Combinatorial Optimization 30(2)

320–334.

127

Yu, L., E. Yang, P. Ren, C. Luo, G. Dobie, D. Gu, X. Yan. 2019. Inspection robots in oil

and gas industry: a review of current solutions and future trends. 2019 25th International

Conference on Automation and Computing (ICAC). IEEE, 1–6.

Zhao, M., X. Li, J. Yin, J. Cui, L. Yang, S. An. 2018. An integrated framework for electric

vehicle rebalancing and staff relocation in one-way carsharing systems: Model formula-

tion and lagrangian relaxation-based solution approach. Transportation Research Part B:

Methodological 117 542–572.

128

Appendix A: Copyright Permissions

The permission below is for the use of material in Chapter 2.

129

130

131

Appendix B: Mathematical Models of Chapter 2

B.1 Single-Level Robust Facility Location Problem

minimize
y

[
w1

∑
i∈M

Fiyi + w2

(∑
(i ,j)∈A

∑
s∈S

N sR s
ijx

s
ij +

∑
s∈S

ρs +
∑

(i ,j)∈A

ξij + Γuθu + Γvθv
)]

subject to
∑

(i ,j)∈A

x sij −
∑

(j ,i)∈A

x sji


= 1 if i = o(s)

≥ −yi if i ∈M

= 0 otherwise

∀i ∈ N , s ∈ S

cij − ζsi + ζsj − φs
ij = 0 ∀(i , j) ∈ A, s ∈ S

φs
ij ≤ M(1− x sij) ∀(i , j) ∈ A, s ∈ S

ζsi ≤ M[1− (
∑

(i ,j)∈A

x sij −
∑

(j ,i)∈A

x sji + yi)] ∀i ∈M, s ∈ S

ρs −
∑

(i ,j)∈A

ηsij + θu ≥
∑

(i ,j)∈A

K sR s
ijx

s
ij ∀s ∈ S

ξij −
∑
s∈S

πs
ij + θv ≥

∑
s∈S

N sQs
ijx

s
ij ∀(i , j) ∈ A

ηsij + πs
ij ≥ K sQs

ijx
s
ij ∀(i , j) ∈ A, s ∈ S

x sij ∈ {0, 1} ∀(i , j) ∈ A, s ∈ S

yi ∈ {0, 1} ∀i ∈M

ζsi ≥ 0 ∀i ∈M, s ∈ S

ζsi free ∀i /∈M, s ∈ S

φs
ij , ρ

s , ξij , η
s
ij , π

s
ij , θu, θv ≥ 0 ∀(i , j) ∈ A, s ∈ S

132

B.2 Single-Level Robust Network Design Problem

minimize
x,z

[∑
(i ,j)∈A

∑
s∈S

N sR s
ijx

s
ij +

∑
s∈S

ρs +
∑

(i ,j)∈A

ξij + Γuθu + Γvθv

]

subject to
∑

(i ,j)∈A

x sij −
∑

(j ,i)∈A

x sji


= 1 if i = o(s)

≥ −1 if i ∈ K

= 0 otherwise

∀i ∈ N , s ∈ S

x sij ≤ zij ∀(i , j) ∈ A, s ∈ S

cij − ζsi + ζsj + µs
ij − φs

ij = 0 ∀(i , j) ∈ A, s ∈ S

φs
ij ≤ M(1− x sij) ∀(i , j) ∈ A, s ∈ S

ζsi ≤ M[1− (
∑

(i ,j)∈A

x sij −
∑

(j ,i)∈A

x sji + 1)] ∀i ∈ K, s ∈ S

µs
ij ≤ M[1− (−x sij + zij)] ∀(i , j) ∈ A, s ∈ S

ρs −
∑

(i ,j)∈A

ηsij + θu ≥
∑

(i ,j)∈A

K sR s
ijx

s
ij ∀s ∈ S

ξij −
∑
s∈S

πs
ij + θv ≥

∑
s∈S

N sQs
ijx

s
ij ∀(i , j) ∈ A

ηsij + πs
ij ≥ K sQs

ijx
s
ij ∀(i , j) ∈ A, s ∈ S

x sij ∈ {0, 1} ∀(i , j) ∈ A, s ∈ S

zij ∈ {0, 1} ∀(i , j) ∈ A

ζsi ≥ 0 ∀i ∈ K, s ∈ S

ζsi free ∀i /∈ K, s ∈ S

µs
ij ,φ

s
ij , ρ

s , ξij , η
s
ij , π

s
ij , θu, θv ≥ 0 ∀(i , j) ∈ A, s ∈ S

133

	Computational Methods for Solving the Combinatorial Optimization Problems in Transportation
	Scholar Commons Citation

	tmp.1724270043.pdf._iT_Z

