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Abstract

This dissertation discusses three transportation problems. The first problem is a bi-level
optimization problem that simultaneously optimizes facility locations and network design
in hazardous materials transportation. In the upper level, the leader intends to reduce
the facility setup cost and the hazmat exposure risk, by choosing facility locations and
road segments to close for hazmat transportation. When making such decisions, the leader
anticipates the response of the followers who want to minimize the transportation costs.
A robust optimization approach with multiplicative uncertain parameters and polyhedral
uncertainty sets is applied to deal with the uncertain risk and demand.

The second problem comes from the Free-floating electric vehicle sharing systems. It
allows users to pick up and return an electric vehicle at any permissible parking location
within a service area. Such service flexibility can drive a severe spatial imbalance between
vehicle availability and trip demands. We consider the operations to relocate the EV fleet to
meet the next day’s demand with sufficient battery levels. This relocation operation involves
a complicated routing problem for a fleet of shuttles to transport the staff drivers who relocate
the EVs to proper demand locations. We devise an efficient algorithm, which adapts the
Adaptive Large Neighborhood Search framework. The experimental results validate the
efficiency and effectiveness of our proposed algorithm and prove it is quite flexible to adapt
to a dynamic environment.

The third problem is arc routing problem with the truck and the drones which coop-
eratively service the required edges. While the trucks follow road networks, drones can fly
directly between any two points and off the network. The cooperation of the truck and the
drone extends the traditional arc routing problem. We consider routing the truck and the

drone with the limited flight range. An Adaptive Large Neighborhood Search is devised to

vii



solve the Drone-Truck Arc Routing Problem. The experimental results on the small-size and

large-size instances validate the efficiency and effectiveness of the proposed method.
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Chapter 1: Introduction

For the combinatorial problems in transportation, vehicle routing aims to find an optimal
route that wants the minimum total cost, the minimum risk, or the minimum completion
time. The routing is mainly decision in transportation problems. Three problems are con-
sidered in the dissertation: the combined facility location and network design problem in
hazardous materials transportation, rebalancing free-floating electric vehicle sharing systems,
and Drone-Truck arc routing problem.

The first problem is a leader-follower decision problem in the form of bi-level optimiza-
tion. In the upper level, the leader aims to minimize the total facility construction costs
and hazmat exposure risks by determining facility locations and available roads for hazmat
transportation. The leader affects the followers who intend to minimize their transporta-
tion costs when designing the road network. We apply a robust optimization approach with
multiplicative uncertain parameters and polyhedral uncertainty sets to deal with the un-
certainty in the exposure risk and the demand. A bi-level integer programming model is
formulated where the upper level is a min-max problem and the lower level is a shortest-
path problem. We devise an exact algorithm that combines a cutting plane algorithm with
Benders decomposition and derive a single-level reformulation. Comparisons between two
approaches are made on the Ravenna city data, in terms of objectives and the running time.
The analysis on small and large size instances demonstrates that the proposed cutting plane
algorithm performs much better than Gurobi as the problem size increases. The proposed
cutting plane algorithm is an effective exact method for solving the robust combined facility

location-network design problem.



The second problem considers the EV relocation and shuttle routing for the rebalancing
operation of free-floating EV sharing systems (FFEVSS). One of the key operational de-
cisions for the carsharing company is how to relocate the EV fleet to meet the next day’s
demand with sufficient battery levels. We develop a metaheuristic based on an adaptive large
neighborhood search for this problem that determines where to relocate each EV and how
to route the shuttles that transport the staff drivers synchronously. We apply our method
to conduct numerical experiments using both randomly generated data and actual FFEVSS
data in Amsterdam. We found that ALNS outperforms EBNSM both in the solution quality
and the computational time. ALNS also produces better solutions than the RL approach but
requires much longer computational time than RL. The experiments reveal that providing
the RL solution as the initial solution for ALNS is an effective and efficient solution strategy
that can take advantage of both approaches, achieving the best solution quality and reducing
the computational time significantly. We also demonstrate how ALNS can be modified to
solve the problem where staff drivers carry a personal mobility vehicle such as a scooter. The
further analysis provides practical recommendations on which mode of transportation will
be more efficient—i.e., a small number of shuttles with large capacity or a large number of
shuttles with small capacity (or even personal mobility)—in terms of total operational cost
as well as wait times. Lastly, we show that our ALNS is quite flexible to be applied to a
dynamic environment when it destroys an incumbent solution partially and repairs to a new
solution in each iteration. Specifically, our numerical results highlight the usefulness of our
flexible ALNS method for an environment where some EV demands are removed or added
in the course of EV relocation operations.

The third problem is Drone-Truck arc routing problem. Arc routing problems are widely
used in many fields, including traffic monitoring, infrastructure inspection, and security. The
drone and the truck cooperatively service all required edges at least once. Since the drone
can fly off the road network, the DT-ARP extends the traditional ARP. With a limited

battery capacity, the drone needs to fly from and to vehicles for a replacement of battery.



The key challenge is how to determine the truck and drone routes to minimize the completion
time. In order to get the optimal solution, we transform the ARP into VRP with two kinds
of rules and formulate a mixed-integer programming. The experiments reveal that MIP
formulation can solve the problem well for the small-size network. However, for a large-
size network, an efficient and effective metaheuristic is necessary. A metaheuristic method
based on Adaptive Large Neighborhood Search (ALNS) is proposed to solve the Drone-
Truck Arc Routing Problem. The effectiveness of ALNS is evaluated over the small-size
randomly generated instances and large-size undirected rural postman problem instances.
The experimental results show the advantage of ALNS in the solution quality and run time
for two cases: One Truck-One Drone and One Truck-Two Drones. Further analysis on the
truck/drone speed and the drone’s maximum flight range reveals the difficulty to solve the
problem. The robustness of ALNS is also discussed and evaluated by the standard deviation
of multiple repeated solutions on the same instance.

In summary, the goal of this dissertation is to answer the following questions:

e How to design the network and choose locations to construct facilities by the administrator
decisions and to choose the transportation routes by the truck drivers in the hazmat

material transportation?

e How to route shuttles to distribute staff drivers to relocate EVs for rebalancing the free-

floating EV sharing systems?

e How to efficiently route drone and truck to service all required edges cooperatively with

the aim of minimizing the completion time?

The dissertation can be summarized as follows: In Chapter 2, we propose an exact method
that combines the cutting plane algorithm with Benders Decomposition for the combined
facility location and network design problem. Chapter 3 proposes a metaheuristic method,

named Adaptive Large Neighborhood Search, to relocate EVs and route shuttles. In Chapter



4, an adaptive large neighborhood search method is devised to solve Drone-Truck arc routing

problem. Chapter 5 summarizes three problems.



Chapter 2: Exact Robust Solutions for the Combined Facility Location and

Network Design Problem in Hazardous Materials Transportation

Portions of this chapter have been previously published in IISE Transactions (2020),
52(10), 1156-1172. The copyright permissions for the reuse of previously published material

in this chapter can be found in Appendix A.

2.1 Introduction

Hazardous materials (hazmat) are “solids, liquids, or gases that are harmful to people,
property, and the environment” (United Nations, 2009). A large amount of hazmat is gen-
erated in industrial production and transported over various transportation modes. Trucks
are the most popular mode of transporting hazmat (Erkut et al., 2007). For example, in
the U.S., more than 2.4 billion tons of hazmat were transported by trucks in 2012 (U.S.
Department of Transportation, 2015). Accidents involving hazmat can create catastrophic
consequences; hence the road system is facing pressure on the constantly increasing amount
of hazmat shipments. Managing risk in hazmat transportation is important in any industrial
society.

In most cases, the hazmat producers are responsible to carry hazmat to an appropriate
processing facility. The hazmat carriers make their choices about the transportation route,
usually, aiming to minimize the shipment cost. The local route decision of hazmat carriers
is beyond the control of the government, who considers the impact of hazmat transportation
from a global perspective of managing the entire road network and other infrastructure
systems. The government wants to minimize the total shipment exposure risk and total

facility construction costs. To achieve this goal, the government may consider road-ban



policies to specify the available and unavailable roads for hazmat shipments. Such policies
prohibit hazmat carriers from choosing a route with small transportation costs but with
great hazmat exposure risk. The problem to determine such road-ban policies is called a
hazmat network design problem in the literature.

In this chapter, we consider a combined hazmat facility locations and network design
problem. We assume that origin points where hazardous materials are produced are known,
but destination points (disposal facility location) are not. Instead, hazmat carriers are as-
sumed to choose the nearest facility if multiple facilities are available within the network;
therefore, the route decision of hazmat carriers is dependent on the location decision of the
government. When the government determines the locations of hazmat processing facili-
ties, we assume that the government also considers a road-ban policy to design the hazmat
network, upon which the route decision of hazmat carriers also depends. This structure of
hierarchical decision-making has been considered in a bi-level optimization framework in the
literature (Kara and Verter, 2004; Erkut and Alp, 2007; Gzara, 2013; Berglund and Kwon,
2014; Marcotte et al., 2009; Sun et al., 2015). We will present our problem as a bi-level
optimization problem as well.

We consider uncertain hazmat transportation demands and uncertain hazmat accident
risks. By assuming data for the demands and risks are available as intervals, we consider
the worst-case scenario using a robust optimization approach. We will consider polyhedral
uncertainty sets as considered in Bertsimas and Sim (2003). In our problem, the two uncer-
tain parameters form a product in the objective function, for which we adopt the approach
of Kwon et al. (2013).

Our work is closely related to Berglund and Kwon (2014) and Gzara (2013). Berglund
and Kwon (2014) have considered a robust hazmat facility location problem. Our modeling
approach for the robust combined facility location and network design problem extends the
work of Berglund and Kwon (2014). The computational method proposed by Berglund and

Kwon (2014), however, is a genetic algorithm, which does not produce an exact optimal



solution in general. In this chapter, for the combined problem, we devise an exact algo-
rithm by adopting the cutting plane algorithm of Gzara (2013) and combining with Benders
decomposition.

Gzara (2013) has devised a cutting plane algorithm for solving the bi-level hazmat net-
work design problem. The model of Gzara (2013), however, only considered a network design
decision without considering data uncertainty. Our problem is a robust optimization problem
that considers the facility location decision and the network design decision jointly. As we
adopt the cutting plane algorithm of Gzara (2013) to the robust combined problem, we have
revised the cut generation method for the joint decision. We also simplify the inequalities
in the cuts and eliminate the need for additional binary variables. In our problem, the mas-
ter problem is significantly harder to solve, mainly due to the robustness consideration; we
devise a Benders decomposition (Benders, 1962) approach for solving the master problem.
While a Benders decomposition approach has been used to solve a single-level reformulation
of the deterministic hazmat network design problem (Fontaine and Minner, 2018), we use
Benders decomposition to solve the robust master problem involving uncertainty within the
cutting plane algorithm framework for the joint decision of facility location and network
design.

The contributions of this chapter are summarized as follows. We consider a combined
facility location and network design problem for hazmat transportation. By assuming data
uncertainty, we formulate a robust optimization problem as a bi-level mixed-integer opti-
mization problem, where the upper-level problem has a min-max structure. We propose a
cutting plane algorithm incorporated with Benders decomposition to solve the robust com-
bined problem.

The remainder of this chapter is as follows. In Section 2.2, more related works are
summarized and the relevance to our work is discussed. In Section 2.3, a bi-level location-
network design mathematical optimization model is formulated. In Section 2.4, we present

a cutting plane algorithm, combined with Benders decomposition, to solve the optimization



problem. In Section 2.5, we provide a single-level reformulation of the bi-level robust problem.
Results from numerical experiments are discussed in Section 2.6. Finally, conclusions and

future researches are provided in Section 2.7.

2.2 Literature Review

In this section, we review the literature in the four categories: hazmat facility location,
hazmat network design, combined facility and network design in non-hazmat context, and

robust optimization approaches in hazmat transportation.

2.2.1 Hazmat Facility Location Problems

There are a variety of methods for facility location problems in hazmat transportation.
The related studies assume that facility locations are not given and need to solve a routing
problem. Carotenuto et al. (2007) propose two greedy algorithms to select the path which
minimizes the total risk. Xie et al. (2012) study multi-objective hazmat model that optimizes
facility locations and routes in the long-distance transportation and solve the mixed integer
linear program by CPLEX. Jarboui et al. (2013) propose various neighborhood search (VNS)
heuristics for solving location-routing problem. Samanlioglu (2013) studies a location-routing
problem and proposes a lexicographic weighted Tchebycheff formulation to minimize multi-
objectives of total cost, transportation risk, and site risk. Ardjmand et al. (2015) apply a
novel genetic algorithm for location-routing problem in facilities and disposal sites. Romero
et al. (2016) analyze location-routing decisions considering equity based on Gini coefficient
and propose a method that combines Lagrangian relaxation with column generation. Rab-
bani et al. (2018) emphasize on hazmat formulation restriction, i.e., incompatibility between
different kinds of waste with multi-objectives of minimizing total cost, transportation risk,
and site risk. They use Nondominated Sorting Genetic Algorithm (NSGA-II) and Multi-
Objective Particle Swarm Optimization (MOPSO) to solve the problem. For earlier works,

see Berglund and Kwon (2014) and references therein.



2.2.2 Hazmat Network Design Problems

There are also some research papers related to network-design problem. The routing is
also considered when the locations of origin-destination pairs are given. Verter and Kara
(2008) provide a path-based formulation for network design hazmat shipment problem and
compromise between exposure risk and economic viability. Garrido (2008) and Marcotte
et al. (2009) study a network-design problem where origin-destination pairs are given and
aim to minimize exposure risk. They design the network by road pricing method, and Wang
et al. (2012) improve the method and propose a dual-toll pricing policy. Bianco et al. (2009)
provide a linear bi-level programming formulation for the hazmat transportation network de-
sign that considers minimizing total risk and risk equity. They propose a heuristic algorithm
to find a stable solution. Gzara (2013) proposes a family of valid cuts and incorporates
with an exact cutting plane algorithm for solving a bi-level network flow model. Bianco
et al. (2015) study a novel toll setting policy and formulate a mathematical programming
with equilibrium constraints where the government aims to minimize total risk and carriers
intend to minimize travel cost. Taslimi et al. (2017) propose a bi-level network design model
with the aim to minimize the maximum zone total risk and propose a greedy heuristic ap-
proach for large-size problems. Esfandeh et al. (2017) formulate the time-dependent network
design problem based on altering carriers’ departure times and route choices and extend the
model that can consider consecutive time-based road closure policies and allow carriers to

stop at the intermediate nodes.

2.2.3 Combined Facility Location and Network Design Problem in Non-hazmat Context

To the best of our knowledge, there are few papers related to combined facility location
and network design problem in hazmat transportation; we review some relevant papers in
non-hazmat context. The main difference between hazmat and non-hazmat problems is that

hazmat problems usually need to be in the bi-level form with hierarchical decision-making.



Melkote and Daskin (2001b) investigate a generalized model that optimizes facility loca-
tion and transportation network. Then they extend the model when facilities have a capacity
constraint and present several classes of valid inequalities to strengthen its LP relaxation
(Melkote and Daskin, 2001a). Ravi and Sinha (2006) propose an approximation algorithm
for combined facility location and network design problem with minimizing facilities opening
costs and transportation costs. Gelareh and Pisinger (2011) formulate a mixed integer linear
programming for deep-sea liner service providers’ locations and network design and propose
a primal decomposition method. Contreras et al. (2012) present two mixed integer program-
ming formulations which generalize the classical p-center problem in order to minimize the
maximum customer-facility travel time. Ghaderi and Jabalameli (2013) present a model for
the budget-constrained facility location—network design healthcare problem with minimiz-
ing multi-objectives of total travel costs and operating costs for facilities and network arcs.
And a greedy heuristic is proposed based on simulated annealing and cutting plane method.
Rahmaniani and Ghaderi (2013) propose a fix-and-optimize heuristic to solve bi-objective
combined facility location and network design problem with capacitated arcs. Ghaderi (2015)
studies a facility location-network design problem over several different time periods in order
to minimize the maximum travel time between each pair of origin-destination and proposes

an improved Variable Neighborhood Search.

2.2.4 Robust Optimization Approaches in Hazmat Transportation

In hazmat transportation problems, considering data uncertainty is necessary (Kwon
et al., 2013). Stochastic programming methods are, however, less effective, because historical
data are often insufficient to construct probability distributions for the risk exposure. When
probability distributions of uncertain parameters are unknown, robust optimization is a
useful technique (Bertsimas and Sim, 2003). Killmer et al. (2001) study a noxious facility
location problem involving uncertainty by a robust optimization method. Sharma et al.

(2009) formulate and solve the multi-objective robust network design problem with uncertain

10



demand. Berglund and Kwon (2014) consider a robust facility location and routing problem
for hazardous materials management with the objective of minimizing the total cost and also
analyze the impact of uncertainty in the demand and exposure risk. Xin et al. (2015) use
robust optimization method to formulate a bi-level model under risk values uncertainty for
designing hazmat transportation network. Sun et al. (2015) study a robust hazmat network
design problem considering risk uncertainty and devise a heuristic method with Lagrangian
relaxation. Sun et al. (2017) consider behavioral uncertainty from hazmat carriers and

formulate a robust optimization problem, for which a cutting plane algorithm is devised.

2.3 The Robust Combined Facility Location-Network Design Problem

We consider a graph G(N, . A) where N is the set of nodes and A is the set of directed
arcs. We assume that the sources of hazmat are at the known subset of nodes in the network,
but the destinations (disposal facility) are not. We let S denote the set of hazmat shipments
and o(s) denote the origin node of shipment s € S. We want to determine the proper number
and locations for constructing facilities from a set of candidate facility sites. Note that we
assume disposal facilities do not generate hazmat; i.e., | J, g o(s) "M = 0, where M denotes
the set of candidate facility locations. At the same time, we will consider a road-ban policy
by network designer. The upper level objective function is to minimize a linear combination
of fixed facility cost and the worst-case exposure risk. The lower level objective function is to
minimize the transportation cost for hazmat carriers. We assume that the hazmat carriers
choose the least cost route to the nearest hazmat facility.

For shipment s, the expected number of trucks required is N°. We let the anticipated
risk induced by each truck for shipment s on arc (i, ) is R:. While the population exposure
is a popular choice for the risk measure RZ, one may use other metrics such as the accident
probability and the environmental impact. We require the risk measure R; to hold linearity

and additivity properties that ensures risk being measurable as the linear combination of

metrics.
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While one can estimate N° and Rj based on a survey and the national averages, the
values of these two critical parameters are hardly known exactly (Berglund and Kwon, 2014).
To address such data uncertainty, we employ a robust optimization approach. Following
Berglund and Kwon (2014), we assume that the demand is given as an interval [N°, N° + K*]
and the risk as [R}, RY + QF].

We denote the routing variable of hazmat carriers by x, where x;; = 1 if arc (1,J) is chosen

for shipment s and x;; = 0 otherwise. The worst-case total risk can be modeled as follows:

i, 5 S0 R G

(ij)eA seS

where the uncertainty sets & and V are bounded. The uncertain variables u and v are
constrained to stay within a specific range, and the total deviation from nominal values is
limited by a budget of uncertainty. In particular, we define the uncertainty sets with the

budget of uncertainty, [, and ', as follows:

U:{U:Zusgru, O§u5§1}

seS

V:{v: Z vi <y, ogv,-jgl}.

(ij)EA

Using the notation introduced in Table 2.1, we formulate the robust combined location-

network design problem as the following bi-level optimization problem:

minimize |:W1 Z Fiyi + wo max Z Z (N° + Keu®)(R: + Qpviy)x; } (2.1)

v ieM WEHVEY (hed ses
subject to y; € {0,1} Vie M (2.2)
z; € {0,1} V(i,j) € A (2.3)

where x solves

minixmize Z Z CijX;; (2.4)

(ij)eA seS
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Table 2.1: Mathematical Notation

w2
D
+
[92]

N the set of nodes

A the set of arcs

S the set of hazmat shipments

M the set of candidate facility locations
IC  the set of chosen facility locations

Parameters

cj  the cost of transportation though arc (i,j) € A
R:  the measure of exposure risk of shipment s € § through arc (i,j) € A
o(s) the node where hazmat are generated for shipment s € S,o(s)N M =10

F;  the cost of constructing a hazmat processing facility at node i € M

N*¢  the number of trucks required for shipment s € §

[,  the budget of uncertainty in the number of trucks

I, the budget of uncertainty in exposure risk

K*®  the width of the uncertainty in the number of trucks required by shipment s € S
@  the width of the uncertainty in the exposure risk through arc (i, j) € A

Variables
xi 1,ifarc (i,j) € A is chosen for shipment s € S; 0, otherwise.

y; 1, if a facility is located at node i € N; 0, otherwise.

z; 1, if arc (/,j) € A is available for shipments; 0, otherwise.

u®  the uncertainty variable for the number of trucks required for shipment s € S.

vj  the uncertainty variable for the exposure risk through arc (7, ) € A.

=1 if i = o(s)
subject to Z X — Z ;> —y; ifieM VieN,seS (2.5)
J:(ij)eA J:(j.i)eA
=0 otherwise
\
x; < zj V(i,j)e A,seS (2.6)
x; €1{0,1} V(i,j)e A,se S (2.7)

Note that since facilities construction cost and exposure risk are not directly comparable,
we will make a trade-off between these two parts of the objective function, i.e., set a dollar
amount equal to a unit of exposure risk. If the decision maker is prone to avoid risk, he/she

can set a higher dollar cost equal to a unit of risk, and vice versa. In the upper level objective
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function (2.1), wy and ws represent the weights for cost and risk. The first part is the total
facility construction cost and the second part represents the worst-case risk. Without loss
of generality, we assume (wy, wp) = (1, 1) for the rest of this chapter.

The lower level objective function (2.4) is to minimize the carriers’ own shipment cost.
Constraint (2.5) ensures that origin nodes must have net outflow of 1; when node i is selected
as a facility (y; = 1), node / can have net outflow of either —1 if node i is chosen as a
destination or 0 otherwise; when node i is not selected as a facility (y; = 0), node /i is same
as an intermediate node with zero net outflow; and all other intermediate nodes must have a
zero balance. Constraint (2.6) means that selecting arc (7, ) is constrained by whether it is
available (z; = 1) or not (z; = 0). Constraints (2.2), (2.3), and (2.7) represent that routing
variable x, location variable y, and network design variable z are binary variables.

The bi-level optimization problem, where the upper-level problem is a min-max problem,
can be formulated as a single-level optimization problem, shown in Section 2.5. The result-
ing single-level problem may be solved by off-the-shelf optimization solvers such as Gurobi
and CPLEX, when the problem instance is small. For large problems, optimization solvers
struggle with computational difficulty as shown in Section 2.6. There is also an issue with

big-M in the single-level problem.

2.4 An Exact Solution Method

To solve the bi-level mixed integer program problem, we propose a cutting plane algorithm
based on the cuts in Gzara (2013) and the idea of transforming location-network design
problem into a pure network design problem from Melkote and Daskin (2001b). The nature
of the cutting plane algorithm is to compare upper level objective (the Government’s global
goal) path and lower level objective (carrier’s goal) path. When these two paths are same,
an optimal solution is obtained. While the cutting plane algorithm can separate the lower-
level problem as a subproblem from the upper-level master problem, the master problem is

a computationally challenging problem, mainly due to the worst-case consideration in the
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. ( 1\
(%.9.2) Dual of Benders
A B-Sub cut

Figure 2.1: Flow Chart for the Cutting Plane Algorithm Combined
with Benders Decomposition

upper-level objective. To tackle such difficulty, we use a Benders decomposition approach
for solving the master problem. To distinguish master and subproblem from the cutting
plane algorithm and Benders decomposition, we use C-Master/C-Sub and B-Master /B-Sub,
respectively. We illustrate the entire computational framework in Figure 2.1. The dotted
line represents the original flow in the cutting plane algorithm of Gzara (2013), which is
replaced by Benders decomposition in this paper. Note that generated cuts in C-Master are

carried over to B-Master, while Benders cuts are not carried over to C-Master.

2.4.1 Cutting Plane Algorithm

The master problem obtains the minimization of facility construction cost and the total
shipment risk. The valid cuts (Section 2.4.2) will be added to C-Master iteratively. By
adding cuts, network design variables z; can be changed to ensure carriers not to choose a

certain arc. C-Master is firstly formulated as follows:
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X,y,Z

minimize {Z Fy,+max Z Z (N° + K*u®) (R} 4 Qjvij)x;

ieM (ij)eA seS
=1 if i = o(s)
subject to Z X — Z ;> —y; ifieM VieN,seS
Jj:(ij)eA J:(.NeA
=0 otherwise
\
x; < z; V(i,j)e A,se S
x; € {0,1} V(i,j)e AseS
yi €4{0,1} Vie M
z; € {0,1} V(i,j)e A
D v s,
seS
> i<l
(ij)eA
o< <1 Vse S

additional cuts (2.23) (Section 2.4.2) added

Note that the above problem is a robust optimization problem for combined facility
location-network design decisions, with additional cuts generated from the lower-level sub
problem. To reformulate this problem as a single-level problem, we use dualization and
linearization techniques introduced in Kwon et al. (2013). The inner maximization part can
be expanded as follows:

max Z Z (N° + K*u®)(R; + Qpvy)x;;

ueld veVy
(ij)eA seS
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E:E:WWfﬁQ%vE:E:WWW+WWW+WQWMU
(ij)eA seS (ij)eA sesS

For any give x, the inner maximization problem is equivalent as follows:

maximize Z Z(NSQZ'VIJ + K*Rju® + KSQSUSVU) X

(ij)eA seS

}:mgrm 0<u <1
seS

d v<r, 0<y<l
(ij)EA

By letting wj represent the quadratic term u®v; for each (i,j) € A,s € S, the above

y

model can be linearized as follows:

maximize Z Z(NSQZ-VU-FKSRSUS‘FKSQZ w;)x;

(iJ)eA ses
subject to u® <1 Vse S (p°)

v <1 Wi, j) € A (&)

Wi <O V(i,j)e AseS (75)

— v+ wE <0 V(i,j)e A seS (73)

Z u <T, (6.)

ses

Z vi < T, (0v)

(i.j)EA

u® >0 Vse S

v >0 (i, j) € A
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The dual variables p*, §;, 0, 77, 0, and 6, are introduced. The dual problem of the

U?

above problem becomes:

minimize Y pe+ Y &+ Tuby + T8,

p.&mm,0u,0,

seS (ij)eA
subject to p*— Y mi+0,> > KRix: VseS
(ij)eA (if)eA
DILEUE e A
seS seS
ny+ 75 > KEQpx; V(i,j)e A,seS
p° & i 5, 00, 0, > 0 V(iiij)e AiseS

We present the single-level linear optimization problem for C-Master:

minimize Z Fiyi + Z Z N°Rix;: + Zps Z Ei+T,0,+T1,0,

X!yvzvpvgr’rlvﬂ-remev

ieM (ij)eA seS seS (ij)eA
=1 if i = o(s)
subject to Z Z >y ifieM VieN,seS (2.8)
Ji(ij)eA j:(j.i)eA
=0 otherwise
x; < zj V(i,j)e A,seS (2.9)
x; € {0,1} V(i,j) e A,s €S (2.10)
yi €4{0,1} Vie M (2.11)
z; € {0,1} V(i,j) € A (2.12)
p°— Z ng+0u > Z K*Rix;; Vse S (2.13)
(ij)eA (ij)eA
Gi— Y m+0,>> NQxs v(i,j) e A (2.14)
seS seS
n; + 75 > KEQpx; V(i,j) e A,se S (2.15)
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p°, &5 i, 00, 0 > 0 V(i,j)e A seS (2.16)

ijv

additional cuts (2.23) (Section 2.4.2) added

Let X, ¥, Z be the solution of the C-master problem. The C-master problem is still difficult
to solve; we use Benders decomposition to solve it. C-Master is divided into an integer
Benders Master problem (B-Master) and a continuous Benders Sub problem (B-Sub). The
decision variables are divided into two parts: binary variables x, y;, z; and continuous
variables p®, &, 773 7r,j 0,,6,. The B-Sub problem generates a cut that is added to B-Master
problem in every iteration. When the objectives of B-Master and B-Sub are same, the

solutions X, y, and z are obtained.

Fixing y =y and z = z, we write the C-Sub problem as follows:

minimize E E c,-J-X,-j-
X

(ij)eA s€S

.

=1 if i = o(s)

subject to Z X — Z X;q>—y; ifieM VieN,seS8

Jj:(ij)eA J:(j.)eA

=0 otherwise

\
x; < Zjj V(i,j)e A,seS
x; € {0,1} V(i,j)e A;seS

Let X be the solution of the C-Sub problem, which represents the path which minimizes

the transportation costs with the given facility location and network design.

2.4.2 Cut Generation

While Gzara (2013) has provided effective cut generation methods for the hazmat network
design problem, our problem involves both network design and facility location variables.

To apply the method of Gzara (2013) to our problem, we first transform the combined
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Subpath py =2-3-4-6-0

Subpath Py =2-5-7-0

Candidate Facility
Locations

Figure 2.2: Conversion to a Pure Network Design Problem

facility location and network design problem to a pure network design problem (Melkote and
Daskin, 2001b). As shown in Figure 2.2, all facility candidate locations are first connected
to a dummy node via dummy arcs. Since the risk and transportation cost are zero in all
dummy arcs, constructing a facility in a candidate location is equivalent to opening the
corresponding dummy arc for traveling. By adding the dummy node, labeled as ‘0’, and
dummy arcs, labeled as (k,0) for each candidate location k € M, we obtain new sets of

nodes and arcs as follows:

No =N U {0}
Ao = AU{(K.0): k € M}

As a result, we obtain an augmented graph Go(Ng, Ap), in which new “network design”
variable z,o for each k € M corresponds to location variable yj.

For each shipment s, two solutions X and X utilize different paths. Among such two
different paths, we obtain two distinct subpaths p and p from X and X, respectively. Adding
the dummy node to p and p, we obtain subpaths py and py defined in Go(Np, Ayp), respectively.

When the cuts suggested by Gzara (2013) are applied in Go(Np, Ap), we obtain:

D> x5 < IPol = 14 tnew (2.17)

(i.j)€pPo
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e < X W(i.J) € po (2.18)

> 2 < [Pol = thew (2.19)
(i./)€Po
hew € {0,1} (2.20)

where |p| means the number of arcs in path p. We first show that the above cuts can be

simplified.
Proposition 1. Inequalities in (2.17)-(2.20) hold if and only if
Yz <Ipol+1pol —1— D> x (2.21)
(i.J)€Po (ij)€po
holds.
Proof. We consider each direction separately.
[ = ] Summing inequalities (2.17) and (2.19), we obtain
Yoo+ Dz < |pol — 1+ o,
(ij)€po (iJ)€Po
which is (2.21).
[ <] We now show that (2.21) implies (2.17)-(2.20). We consider two cases:

e When x2 = |po|. Then x2 =1 for all (/,j) € pg. Also (2.21) implies that
( ij ij

i.j)EPo
Z zj < [po| — L.
(i.j)€Po
For such x and z, we can set utpe, = 1 so that (2.17)—(2.20) hold.

e When } ;o X7 < |[Po|—1. Then xi = 0 for some (i, j) € po. Observe that the right-hand-

side of (2.21) is greater than or equals to |pp|. Since z; is binary, we have Z(i,j)eﬁo z; < |po

by definition. Therefore by setting upey = 0, we find that (2.17)—(2.20) hold.
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Note that (2.21) can be written as

Yo (M=z)>1—1|pol+ Y x.

(ij)€po (i)€po

(2.22)

which has the following simple interpretation. If we want to flow x through subpath py, i.e.

> (ij)epo Xi = |Pol, then at least one arc (i, ) € po must be closed or 3 ;.

Then we write the cut (2.22) in the original network G(N,.A).

Proposition 2. Let

1 if p includes node k

~

Ok =

0 otherwise

for each k € M. Then the cut in (2.22) is equivalently written as

Zl—zu Zékl—yk >1—|p|+Zx

(ij)ep keM (ij)ep
for the original network G(N, A).

Proof. If subpath p includes any facility location, we observe that

|Po| = [p| +1
DR EDIEEE
(iJ)€po (iJ)ep

—Z,'J') Z 1.

(2.23)

since every shipment must flow to the dummy node. If subpath p does not involve a facility

location, then

|Po| = ||
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Therefore, in both cases, we have
Pol = > X =1pl— > x5
(ij)€po (iJ)ep
With similar consideration, we also observe that
do-z)= > (1—z)+ Y ok(l—w)
(i.j)€Po (iJ)ep keM

Hence, we obtain a proof. O

2.4.3 Benders Decomposition for Solving C-Master

To solve the C-Master problem, we consider Benders Decomposition. The Benders Master
(B-Master) problem contains binary variables Xz, ¥i, and z; and constraints that restrict the

binary variables; namely, (2.8)—(2.12) and the cuts added in C-Master. We define the B-

Master problem as follows:

Yt X S AR

iemM (ij)eA s€S

=1 if i = o(s)

subject to Z X; — Z i8>y ifieM VieN,seS8

J:(ig) J:(.eA

= 0 otherwise
x; < zj V(i,j)e A,seS
x; € 10,1} V(iiij)e AiseS
yi € {0,1} Vi e M
z; € {0,1} V(i,j)e A
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cuts (2.23) (Section 2.4.2) carried over from C-Master

additional Benders cuts (2.24) added

where d represents the remainder of the objective function that will be computed by sub-
problems and constrained by Benders cuts. Let X, y, z, and d denote the optimal solutions

of B-Master. Then B-Master gives a lower bound for C-Master. We let

LB=Y Fyi+ > > NRX +d.

ieM (ij)eA seS

The Benders Sub (B-Sub) problem contains continuous variables p, &, 1, w,0,,0, and
constraints (2.13)—(2.16). The B-Sub problem is given by fixing x, y, and z with a solution

of X, y, and z by solving the B-Master problem. The B-Sub problem is defined as follows:

minimize [Zps + 2 Gt Fvev}
seS (ij)eA
subject to p°— Z n;+ 0 > Z K*Ryx; VseS§ (a®)
(ij)eA (ij)eA
G- m+0,>> NQx: V(i,j) € A (8;)
seS seS
T > KSR V(ij)e AseS ()
p°, & i, 04,0, > 0 V(i,j)e AseS

Because the optimality and valid cuts of B-Master problem can be defined by the dual
variables of B-Sub problem, we formulate the dual for B-Sub. The dual variables o, 8;;, and

7; are introduced. The dual problem for B-Sub is presented as follows:

e > D_(KRiXa® + N Q5565 + K*Q3%a3)
o (ij)eA s€S
subject to o’ <1 Vse S
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B <1 V(i,j)e A

—@S"‘%'SJ'SO V(i,j)e A,seS
_5U+7fj§0 V(i,j)e A,seS
D et <,

seS

(ij)eA

a®, B, v > 0 V(i,j)e A,se S

Let o, E,-j, and 7} be the optimal solution of the Dual of the B-Sub problem. The

following valid cut is added to the B-Master problem:

> (KRS + N Q5B + KEQiAs)x < d. (2.24)

(ij)eA seS

We also obtain an upper bound for C-Master as follows:

UB = Y Fgit 3 S NRIG 3 D (ORI + N QRS + KGR

ieM (ij)eA seS (ij)eA seS

If UB = LB, then an optimal solution for C-Master is obtained.

2.5 A Single-Level Reformulation

We provide a single-level reformulation of the robust combined location-network design
problem given in (2.1)-(2.7). We first replace the lower-level problem by its optimality
conditions using techniques similar to the methods used by Arslan et al. (2018). Then we
dualize and linearize the inner maximization problem for the worst-case consideration as
done in Berglund and Kwon (2014). The resulting single-level reformulation involves a big-

M like constant bounded by Z cj. We will use this single-level reformulation as a

(ig)eA

benchmark for the cutting-plane method developed in Section 2.4.
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2.5.1 Replacing the Lower-Level Problem by Optimality Conditions

Since the lower-level shortest path problem has the property of totally unimodular ma-
trices (Kara and Verter, 2004), the binary variable x;; can be relaxed to a nonnegative real
number. We also introduce a dummy node 0 to transform the problem into a pure network
design problem as done in Section 2.4.2. The lower-level problem can be written equivalently

as follows:

minimize E E C,-J-x,-j
X

(ij)eA s€S
.
=1 if i = o(s)
+xi=0 ifieM
subject to Z X — Z X VieN,seS8 (—X9)
Jji(ij)eA JjiGieA =-1 ifi=0
=0 otherwise
\
(1—-z)x; <0 V(i,j)e AiseS (—u5)
(1—yi)xpo <0 VieM,seS (—115,)
x; >0 V(i,j)e AseS
Xjp 2 0 VieM,seS

The dual variables —A} and —pj; are introduced. The dual problem is:

ma>}<‘i'l|1qize SGZS (A5 — Aos) (2.25)
subject to — A7 + A7 — (1 — zj)uj < ¢; V(i,j)e A, seS (2.26)
—XN+AN— (L —y)un <0 Vie M\Vse S (2.27)

5 >0 V(i,j)e A,s €S (2.28)

fio >0 VieM,seS (2.29)
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Using an approach similar to Arslan et al. (2018), we obtain the following result:

Proposition 3. Let i = »_; ;4 ¢;j. There exists an optimal solution for (2.25)-(2.29) with

pg; = pip=pforalls €S, (i,j) € Aand i € M.

Proof. By letting /\so(s) = 0 without loss of generality, we obtain:

maximize g AQ
Ap

ses

subject to A7 < A7 + ¢ + (1 — zj)p;; V(i,j)e A,seS
Ay <X+ (1 =y Vie M\Vse S
15 >0 V(i,j)e AseS
5o >0 VieM,seS

Note that g does not contribute to the objective function; therefore we can make (1 —
zy)ps and (1 — y;)pfp arbitrarily large to maximize A\3. Since A§ represents a label for node

d, we can bound pf; and i, by . ]

Therefore, the dual feasibility becomes:

A SN 4+ (1-z)p V(i,j)e A,;seS

A< XN+ (1—-y)p Vie M,VseS.

Note that 1 behaves like big-M constants. For the optimality condition, instead of the
strong duality, we can use the reverse weak duality (Amaldi et al., 2011; Arslan et al., 2018)

in the following form:

2N =Xw) = X D ax

seS (i.j)EA s€S

27



Therefore, the robust combined location-network design problem becomes:

X,¥,Z,A ucld vey

minimize {Z Fiyi + max Z ZNS Keu®)(R; + Qjvy)x;

ieM (ij)eA seS
=1 if i = o(s)
subject to Z X — Z ;> —y; ifieM VieN,seS
Jj:(ij)eA J:(.eA
=0 otherwise
\
x; < zj V(iiij)e AiseS
D N=Xw)z > > e
seS (ij)eA se€S
N SN+ +(1—-z)n V(i,j)e AseS
Ay <X+ (1—-y)i Vie M,Vse S
x; € {0, 1} V(i,j)e A,;seS
yi €40,1} Vie M
z; € {0,1} V(i,j)e A
AP >0 Vi e N U{0}.

2.5.2  Dualizing and Linearizing the Inner Maximization Problem

The inner maximization problem can be dualized and linearized as done in Section 2.4.1.
Finally, we obtain the single-level reformulation of the robust combined location-network

design problem as follows:

minimize {ZFy,—i— ZZNSRS-XS+Z[)+ Z£U+F9 +r.0,

x.y.z,A,p.§n,m0
y pEM (ij)eA s€S seS (ij)eA
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subject to

.
=1
PR DR S
J:(ij)eA J:(j.i)eA
=0
\
X,.j < zj

Z(A(s)_ Ss)) > Z Zc,-jx

seS (ij)eA seS
XN <X +e+(1-z)n

A <A+ —-y)m

if i = o(s)
ifie M

otherwise

S
ij

PP 0> > KR
(

ij)EA (ij)eA
TR D RTAES S
seS seS

n;+ 75 > KPQix;
x; € {0,1}

yi €{0,1}

z; € {0,1}

A >0

p° i M5, 5 04, 0y > 0

[}

VieN,seS

V(i j)eAseS

Y(ij) e AseS
Vie M\VseS

Vse S

V(i,j)e A

V(iiij)e AiseS
V(i,j))e A,seS
Vie M
V(i,j) € A

Vie NU{d}

V(iiij)e A,seS

The above problem is a mixed integer linear program (MILP) where all integer variables

are binary. Off-the-shelf optimization solvers such as Gurobi and CPLEX can be used to

solve small-size problem. As the size increases, however, the amount of time required by

solvers grows rapidly.
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2.6 Numerical Experiments

The experiments are done on the computer which runs 64-bit Windows 10 with 2.60GHz
Intel Core (TM i5-7300U) CPU and 8 GB RAM. The cutting plane algorithm is coded in
Julia 0.6.4 (Bezanson et al., 2012) and JuMP.jl optimization modeling package (Dunning
et al., 2017) is used. The single-level reformulation in Section 2.5 is solved by calling Gurobi
7.5.2 solver with default setting.

Numerical analysis is performed on a set of data from Ravenna city in Italy (Erkut and
Alp, 2007). The road network in Ravenna consists of 111 nodes and 143 arcs. The risk R;:
on arc (I, ) is calculated as the summation of exposure risk from all four types of hazmat
(methanol, chlorine, gasoline, and LPG). The transportation cost ¢; for arc (/, ) is measured
as the actual distance in meters. The demand for each shipment s is measured as truckloads,
i.e., the number of trucks N°.

The experiments are done on two sets of instances, small size and large size. In the
small-size problems, there are 9 origins and the set size of candidate facility locations M is
5 and 10. In the large-size problems, there are 20 origins of hazmat shipment. We randomly
choose 5, 10 and 15 as the set of candidate facility locations M.

The comparison between objectives and running time of the cutting plane algorithm and

Gurobi for the single-level reformulation are calculated as follows:

Objective of Gurobi — Objective of cutting plane

%Obj = x 100 (2.30)

Objective of cutting plane
Running time of Gurobi — Running time of cutting plane

% Time =

x 100 2.31
Running time of cutting plane ( )

2.6.1 Analysis on the Small-Size Instances

The objectives and running time on the small-size instances are shown in Table 2.2.
For instances 3, 4, and 9, Gurobi fails to obtain a proven optimal solution in 3600s. The

gaps between the incumbent solution and the best bound are 1.27%, 2.13%, and 0.71%,
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respectively. The cutting plane algorithm can take less running time to get the proven
optimal solutions except instances 5, 10, 15, and 20. ', and I', are much larger than those
in other instances. As a result, the worst-case in the inner maximization problem happens
when almost all v and v variables are set to 1. This makes the problem easier to solve for
larger I', and I, values. So, for these instances, the optimal solution can be obtained in
less running time by Gurobi than the cutting plane algorithm. The cutting plane algorithm
performs better than Gurobi on 80% small-size instances in terms of running time. The
average %0Dbj is 0.00% and the average %Time is 476.37%. The cutting plane algorithm

and Gurobi can get optimal solution values for all small-size instances.

Table 2.2: Comparison Between the Solutions by the Cutting Plane Algorithm and Gurobi
for the Single-Level Reformulation on Small-Size Ravenna Instances

Instance Cutting-Plane Single-Level Comparison

No. |M| (K* Q) (Fy,Ty) Objective Time(s) Objective Time(s) %Obj %Time
1 5 (N°R;) (1,1) 19390 1.2 19390 29 000 1417
2 (3,5) 28966 43.0 28966 495.8  0.00 1053.0
3 (5,5) 31222 66.5 31222*  3600.0  0.00 5313.5
4 (5,10) 36221 1764.5 36221*  3600.0  0.00 104.0
5 (10, 20) 41814  1559.8 41814 655.4  0.00 -58.0
6 (0.5N°,05R?) (1,1) 15628 1.1 15628 1.7 0.00 54.5
7 (3.5) 19783 7.5 19783 36.8  0.00 390.7
8 (5,5) 20779 11.3 20779 94.1 0.00 732.7
9 (5,10) 22754 221.1 22754*  3600.0 0.00 1528.2
10 (10, 20) 24893 242.5 24893 96.3  0.00 -60.3
11 10 (N, R?) (1,1) 11783 1.4 11783 1.9  0.00 35.7
12 (3,5) 19491 2.6 19491 4.7 0.00 80.8
13 (5,5) 20377 3.4 20377 53  0.00 55.9
14 (5,10) 22678 5.0 22678 53  0.00 6.0
15 (10, 20) 25470 294 25470 6.0  0.00 -79.6
16 (0.5N°,05Rs) (1,1) 9424 1.3 9424 14 0.0 7.7
17 (3,5) 12770 1.3 12770 1.6 0.00 23.1
18 (5,5) 13158 1.4 13158 54 0.00 285.7
19 (5,10) 13953 1.4 13953 1.4 0.00 0.0
20 (10, 20) 15251 20.1 15251 2.4 0.00 -88.1
Average 0.00 476.37

& The algorithm stopped in 3600s and the solution is not proven optimal.
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Figure 2.3: Results on Small-Size Ravenna Instances

The results for Instance 1 and 11 are illustrated in Figure 2.3. The circles denote origins
where hazmat is generated. The triangles represent chosen facilities sites. The green lines
denote the routes which truck drivers choose. The red lines denote the roads which are not

available for hazmat transportation.

2.6.2 Analysis on the Large-Size Instances

The objectives and running time on the large-size instances are shown in Table 3.3.
The cutting plane algorithm and Gurobi can obtain optimal solutions for 100% and 58.33%
large-size instances in 10800s, respectively. For instances 2 and 11, Gurobi obtains the
incumbent solution that is equal to the value of the optimal solution. But the optimality of
the incumbent solution can’t be proven. The gaps between the incumbent solution and the
best bound are 0.16% and 0.66%, respectively. For all instances, the cutting plane algorithm
can take much less running time to get the proven optimal solutions. The average %Obj
is 5.00% and the average %Time is 820.32%. The cutting plane algorithm outperforms the
single-level reformulation solved by Gurobi in solution quality and running time. The results
for Instance 1, 13, and 25 are illustrated in Figure 2.4.

The performance profile (Dolan and Moré, 2002) is used to compare different algorithms

on the running times. The running time performance file for different algorithms is created
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Table 2.3: Comparison Between the Solutions by the Cutting Plane Algorithm and Gurobi
for the Single-Level Reformulation on Large-Size Ravenna Instances

Instance Cutting-Plane Single-Level Comparison

No. M| (K* Q7) (FTu,Ty) Objective Time(s) Objective Time(s) %Obj  %Time
1 5 (N R) (1,1) 90089 8.4 90089 1554 0.00 1750.00
2 (3,5) 137010 279.8 137010* 10800.0 0.00  3759.90
3 (5,5) 143015 41.9 143015 389.0 0.00 828.40
4 (5,10) 168512 148.4 168512 717.3 0.00 383.36
5 (10, 20) 200155 48324 200296* 10800.0 0.10 123.49
6 (20, 20) 266569 652.0 266569 893.6 0.00 37.06
7 (0.5N°,05R7)  (1,1) 74187 12.5 74187 38.0 0.00 204.00
8 (3,5) 93607 22.6 93607 2695.3 0.00 11826.11
9 (5,5) 96609 13.8 96609 194.8 0.00  1311.59
10 (5,10) 106437 46.3 106437 122.1 0.00 163.71
11 (10, 20) 119942  1233.6 119942% 10800.0 0.00 775.49
12 (20,20) 124410 994.2 124660* 10800.0 0.20 986.30
13 10 (N*, R) (1,1) 50908 993.0 59432% 10800.0 16.74 987.61
14 (3,5) 67665 1723.9 85216% 10800.0 25.94 526.49
15 (5,5) 71346  1878.0 89698% 10800.0 25.72 475.08
16 (5,10) 80241 1111.5 97450* 10800.0 21.45 871.66
17 (10, 20) 95987  3621.7 98472% 10800.0 2.59 198.20
18 (20,20) 104626  1804.6 104626  2485.5 0.00 37.73
19 (0.5N¢,05R%)  (1,1) 39968  1203.2 46563* 10800.0 16.50 797.61
20 (3,5) 46879 1704.6 56822% 10800.0 21.21 533.58
21 (5,5) 48655  2464.6 58829* 10800.0 20.91 338.20
22 (5,10) 52257 998.5 62170* 10800.0 18.97 981.62
23 (10, 20) 58732 37094 63444* 10800.0 8.02 191.15
24 (20,20) 72117  1406.2 73233* 10800.0 1.55 348.84
25 15 (N°R;) (1,1) 48717 3.4 48717 168  0.00  394.12
26 (3,5) 65921 66.2 65921 100.8 0.00 52.27
27 (5,5) 70251 128.2 70251 223.7  0.00 74.49
28 (5,10) 77221 14.1 77221 19.8 0.00 40.43
29 (10, 20) 92991 136.9 92991 175.2 0.00 27.98
30 (20,20) 100673 129.1 100673 225.4  0.00 74.59
31 (0.5N°,05R7)  (1,1) 38090 45.1 38090 66.7  0.00 47.89
32 (3,5) 45218 225.6 45218 713.0 0.00 216.05
33 (5,5) 47211 166.5 47211 204.5 0.00 22.82
34 (5,10) 50117 78.1 50117 134.7  0.00 72.47
35 (10, 20) 56673 31.6 56673 42.4  0.00 34.18
36 (20,20) 59772 26.4 59772 36.2 0.00 37.12
Average 5.00 820.32

& The algorithm stopped in 10800s and the solution is not proven optimal.
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Figure 2.4: Results on Large-Size Ravenna Instances

by calculating the ratios of the running time of each algorithm and the minimum running
time of all algorithms. The horizontal axis shows the ratios. The vertical axis shows the
percentage of instances with a ratio that is less than or equal to the ratio on the horizontal
axis. This indicates that the method has better performance when its profile is drawn in the
upper left-hand graph. The running time performance profiles of the proposed cutting plane
algorithm and Gurobi for the single-level reformation on small-size and large-size Ravenna
instances are shown in Figure 2.5. Figure 2.5 indicates that the cutting plane algorithm
has better running time performance than the single-level reformulation solved by Gurobi
on small-size and large-size Ravenna Instances. In Figure 2.5(b), the profile of large-size

instances is a straight line, that means the running times of the cutting plane algorithm are
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Figure 2.5: The Running Time Performance Profile of the Cutting Plane Algorithm and
Gurobi for the Single-Level Reformulation

less than those by Gurobi for all instances. Compared large-size instances 5, 11, 17, and
23 with small-size instances 5, 10, 15, and 20, the difficulty caused by increasing problem
size is more than the simplicity caused by large I, and ', values. Besides, the cutting
plane algorithm takes less time in large-size instances 6, 12, 18, 24, 30, and 36, which have
larger parameters values (I',, [,) = (20,20). Therefore, the advantage of the cutting plane

algorithm becomes obvious as the problem size increases, especially in the running time.

2.6.3 Combined Model versus Sequential Model

We consider the combined robust model that optimizes facility locations and network
design problem simultaneously. If we use techniques proposed in the previous papers in the
literature review, the problem has to be solved in two phases. In Phase 1, robust facility
locations problem is solved, and facility setup locations are determined. In Phase 2, robust
network design problem is solved. We call this two-phase model the sequential model.

In this section, we use the single-level reformulation of bi-level robust facility location
problem proposed by Kwon et al. (2013), shown in Appendix B.1. We obtain the optimal
solution of facility location variables y*. When y* = 1 for i € M, facility / is chosen to

open. We let I be the set of chosen facility locations. Sun et al. (2015) considered a robust
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Table 2.4: Comparison Between the Objectives for Combined and Sequential Model on
Small-Size Ravenna Instances

Instance Objective

No. M| (K*, QF) (Fy,Ty) Combined Model Sequential Model %Deviation
1 5 (N°R}) (1,1) 19390 20417 5.30
2 (3,5) 28966 30720 6.06
3 (5,5) 31222 33193 6.31
4 (5,10) 36221 36764 1.50
5 (10, 20) 41814 42591 1.86
6 (0.5N°,0.5R) (1,1) 15628 15959 2.12
7 (3,5) 19783 20391 3.07
8 (5,5) 20779 21451 3.23
9 (5, 10) 22754 22791 0.16
10 (10, 20) 24893 25072 0.72
11 10 (N°RS) (1,1) 11783 12171 3.29
12 (3,5) 19491 20709 6.25
13 (5,5) 20377 21594 5.97
14 (5,10) 22678 23818 5.03
15 (10, 20) 25470 25817 1.36
16 (0.5N°,0.5R) (1,1) 9424 9549 1.33
17 (3,5) 12855 12770 0.67
18 (5,5) 13158 13243 0.65
19 (5,10) 13953 13964 0.08
20 (10, 20) 15251 15758 3.32
Average 2.91

network design problem only with the uncertainty in exposure risk. Based on their model,
we revise a single-level form of robust network design model that considers uncertainty both
in exposure risk and the number of shipment demand, shown in Appendix B.2. We obtain
the optimal solution of routing variables x* and network design variable z*.

To prove the benefits of the combined model, we compare it with the sequential model
in the terms of objective function value ;v Fiy! + 32 yea 2oses NOREXET + 2 ges P +
dpyeals + Tuby + T,0;. The comparison between objectives for combined model and

sequential model is calculated as follows:
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Objective of Sequential Model — Objective of Combined Model "

1
Objective of Combined Model 00

%Deviation =

(2.32)

The single-level reformulation models in Appendices B.1 and B.2 are solved by calling
Gurobi 7.5.2 solver with default setting. Big-M is set as a constant bounded by Z(i’ e Cii-
The objectives of sequential model and %Deviation are shown in Tables 2.4 and 2.5. For
small-size and large-size Ravenna city instances, the average %Deviation are 2.91 and 3.87,
respectively. The objectives of the combined model are less than those of sequential model
and the difference can be as large as 10.39%. In Table 2.5, we can observe that the difference
is more obvious when |M| is smaller. When | M| is 5, 10, and 15, the average %Deviation
are 6.52, 2.36, and 2.73, respectively.

This result indicates that when there are fewer choices of potential facility candidates, the
value of combined decision-making becomes more significant. When there are more choices
available for locations, there may exist a location that leads to a safe network even without
network design policy. On the other hand, with fewer choices available for locations, such a
favorable option may be unavailable; hence one needs to consider both location and network
design decisions at the same time. When considering facility location and network design
problem jointly, the leader can make a better decision with the aim of reducing the facility

setup costs and hazmat exposure risk.

2.7 Concluding Remarks

In this chapter, a leader-follower decision problem is considered in the form of bi-level
optimization. In the upper level, the leader aims to minimize the total facility construction
costs and hazmat exposure risks by determining facility locations and available roads for

hazmat transportation. The leader affects the followers who intend to minimize their trans-
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Table 2.5: Comparison Between the Objectives for Combined and Sequential Model on
Large-Size Ravenna Instances

Instance Objective

No. M| (K*, QF) (Fy,Ty) Combined Model Sequential Model %Deviation
1 5 (N°R}) (1,1) 90089 99445 10.39
2 (3,5) 137010 148392 8.31
3 (5,5) 143015 157416 10.07
4 (5,10) 168512 176718 4.87
) (10, 20) 200155 211719 5.80
6 (20, 20) 266569 273800 2.71
7 (0.5N°,0.5R%) (L,1) 74187 79259 6.84
8 (3,5) 93607 100067 6.90
9 (5,5) 96609 103821 7.47
10 (5,10) 106437 111429 4.69
11 (10, 20) 119942 125868 4.94
12 (20, 20) 124410 130981 5.28
13 10 (N¢, R) (1,1) 50908 51377 0.92
14 (3,5) 67665 68255 0.87
15 (5,5) 71346 72974 2.28
16 (5,10) 80241 80628 0.48
17 (10, 20) 95987 100021 4.20
18 (20, 20) 104626 109641 4.79
19 (0.5N, O.SRZ-) (1,1) 39968 40750 1.96
20 (3,5) 46879 47554 1.44
21 (5,5) 48655 49624 1.99
22 (5,10) 52257 52940 1.31
23 (10, 20) 58732 61058 3.96
24 (20, 20) 72117 75046 4.06
25 15 (N° R:) (1,1) 48717 50474 3.61
26 (3,5) 65921 66827 1.37
27 (5,5) 70251 71624 1.95
28 (5,10) 77221 78262 1.35
29 (10, 20) 92991 95298 2.48
30 (20, 20) 100673 103216 2.53
31 (0.5N°,0.5R) (1,1) 38090 30847 4.61
32 (3,5) 45218 46124 2.00
33 (5,5) 47211 48098 1.88
34 (5,10) 50117 51048 1.86
35 (10, 20) 56673 58208 2.71
36 (20, 20) 59772 63602 6.41
Average 3.87
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portation costs when designing the road network. We apply a robust optimization approach
to deal with the uncertainty in the exposure risk and the demand. A bi-level integer pro-
gramming model is formulated where the upper level is a min-max problem and the lower
level is a shortest-path problem. We devise an exact algorithm that combines a cutting plane
algorithm with Benders decomposition and derive a single-level reformulation. Comparisons
between two approaches are made on the Ravenna city data, in terms of objectives and the
running time. The analysis on small and large size instances demonstrates that the proposed
cutting plane algorithm performs much better than Gurobi as the problem size increases.
The proposed cutting plane algorithm is an effective exact method for solving the robust
combined facility location-network design problem.

A couple of directions for future research are suggested. First, uncertainty on origin
locations can be considered. In this chapter, we assume that all origin nodes are exactly
known. Since the hazmat facility location problem is for long-term decision, considering
new hazmat origins in the future will lead to an important problem. Second, hazmat trips
to locations other than the hazmat facilities can be incorporated. Although we consider
hazmat trips to hazmat facilities only in this chapter, there are also hazmat trips to other
destinations. Hazmat network design policies will certainly impact not only trips to hazmat
facilities, but also all other general hazmat trips. Therefore, incorporating both types of

hazmat trips within a single modeling framework is a valuable research direction.
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Chapter 3: An Adaptive Large Neighborhood Search Method for Rebalancing

Free-Floating Electric Vehicle Sharing Systems

3.1 Introduction

Electric vehicle (EV) sharing systems are a promising solution for smarter and more
sustainable urban mobility. Vehicle sharing systems have the potential to become a viable
alternative to private car ownership, leading to more efficient utilization of vehicles and park-
ing sites. Moreover, the use of EVs in vehicle sharing systems can offer an effective solution
to curbing greenhouse gas emissions in urban transportation. Accordingly, many vehicle
sharing companies, such as Zipcar and car2go, are developing rapidly with the traction of
increasing vehicle rental demands. As of 2019, the global carsharing market exceeded USD
2.5 billion and is estimated to reach up to USD 9 billion in 2026 (Preeti and Prasenjit, 2019).

Unlike traditional carsharing systems that are based on fixed stations, free-floating car-
sharing systems allow users to pick up any available vehicle wherever and whenever they
need it and return them at any permissible parking location within a designated service
area. As of 2016, free-floating EV sharing systems (FFEVSS) are being operated in about
34 cities across nine countries (Kortum et al., 2016). An important feature of such vehicle
sharing systems is that they allow users to make a customized one-way trip with the mobile
apps, providing more flexible service (Wielinski et al., 2015). It is reported that this type
of carsharing system reduces traffic congestion in urban areas (Becker et al., 2018; Le Vine
and Polak, 2019). In North America, it is estimated that 11-19% of carsharing participants
have sold their private vehicles after joining a carsharing program (Shaheen and Cohen,
2007). Moreover, carsharing improves the quality of mobility service compared to public

transportation (Mattia et al., 2019).
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Despite such clear benefits of FFEVSS, they also pose multiple operational challenges.
First, the vehicles should be available at the right location at the right time based on the
customers’ demand patterns, as one-way trip demands can cause a severe spatial imbalance
between vehicle availability and trip demands. Second, the low charging level of EVs may
trigger customers’ range anxiety and lower the service demand, and hence, the EVs should be
frequently and sufficiently charged (Weikl and Bogenberger, 2015; Noel et al., 2019). Indeed,
for a successful operation of FFEVSS, it is essential to develop an efficient EV relocation
plan to resolve the imbalance and charging issues.

There are two key decisions in the FFEVSS rebalancing problem: (1) EV relocation and
(2) shuttle routing. EV relocation decides which EV should be relocated from its origin (i.e.,
supply location) to which demand location, and also, whether and where it has to be charged.
This operation can be particularly complex and costly, because EVs cannot be moved in a
batch on one carrier, unlike other shared mobility systems such as bikes or scooters. In
addition, an EV relocation operation requires a driver to drive the vehicle to its destination,
and therefore, supporting vehicles, which we call shuttles, are employed to drop off and pick
up the drivers. Hence, a shuttle routing problem arises. Specifically, the shuttle routing
problem determines how such shuttles pick up and drop off drivers to satisfy the planned EV
relocations. For an efficient operation, these two decisions should be made simultaneously
rather than sequentially, which creates additional layers of computational challenge.

In this chapter, we develop an adaptive large neighborhood search (ALNS) algorithm
to solve the FFEVSS rebalancing problem. ALNS, first proposed by Ropke and Pisinger
(2006), is a well-known iterative metaheuristic framework that has been popularly applied
to solving various vehicle routing problems. One of the key characteristics of ALNS is that it
partially destroys an incumbent solution and repairs it to construct a better solution in each
iteration. Normally, a small number of destroy and repair methods are used, and the choice
of the method is determined adaptively as the algorithm proceeds. Applying ALNS to our

problem setting is not at all trivial or straightforward. As two decisions of EV relocation
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and shuttle routing are tangled in one problem, the destroy and repair methods should also
be able to handle such complexity. We propose multiple destroy and repair methods that
are adequate to the problem setting that we focus in this chapter. We then propose a way
to modify our ALNS algorithm to demonstrate how it can accommodate various operational
environments. For instance, we demonstrate how our ALNS algorithm can be adopted for the
case where each driver carries a small personal mobility vehicle such as a scooter or Segway
instead of being transported by a shuttle. In this case, our method routes the drivers directly,
rather than routing the shuttles. We present how we may modify our main algorithm to
create a variant.

One important strength of our ALNS algorithm, compared to other types of compu-
tational methods available for the FFEVSS rebalancing problems in the literature, is its
flexibility to be applied in a dynamic environment. Because ALNS algorithm continuously
improves the current route by destroying and repairing solutions, any change in the current
system can be easily considered within the destroy and repair procedures. However, the
ALNS framework applied to the EV relocation and shuttle routing problem should consider
the hierarchy and interdependency of the two decisions to be made. Our key methodological
contributions include developing efficient methods to handle such hierarchy and interdepen-
dency within the popular ALNS framework.

We also conduct numerical experiments for which we use randomly generated instances
of several sizes as well as actual data from an FFEVSS operated in the city of Amster-
dam. Haider et al. (2019) and Bogyrbayeva et al. (2021) proposed an exchange-based
neighborhood-search method (EBNSM) and a Reinforcement Learning (RL) approach to
solve the same problem, respectively. With EBNSM and RL being benchmark methods, we
demonstrate the effectiveness and efficiency of our ALNS algorithm.

The remainder of the chapter is organized as follows. In Section 3.2, the related lit-
erature is reviewed. In Section 3.3, the problem statement and mathematical formulation

are presented in detail. Two benchmark methods are described briefly in Section 3.4. The
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computational method based on ALNS, our main methodological contribution, is presented
in Section 3.5. The modification of ALNS in problem variants are presented in Section 3.6.
In Section 3.7, the experimental results validate the performance of ALNS. We conclude this

chapter in Section 3.8.

3.2 Literature Review

Since the inception of car2go operation, who started a free-floating carsharing system
in Ulm, Germany in April 2009 (Firnkorn and Miiller, 2011), many models and approaches
have been proposed to optimize the operations in FFEVSS. In this section, we review the
literature in this stream within the past decade.

Some papers focused only on vehicles relocation and did not take personnel allocation
into account. Cepolina and Farina (2012) developed a random search algorithm to optimize
the vehicles number and their distribution in the operating region with minimizing vehicle
costs and waiting times. The method tried to narrow the difference between the number
of available vehicles and users’ demands in a time period. Weikl and Bogenberger (2013)
implemented the online optimization module to collect and measure the current demand and
vehicle distribution and predicted the future demand in regards to an offline module. Then,
they proposed a mesoscopic relocation algorithm to relocate vehicles on two levels (macro-
scopic segment level and microscopic individual vehicle level) in the free-floating carsharing
system. Herrmann et al. (2014) investigated different relocation strategies to balance cars
distribution for the increasing customers’ acceptance in the free-floating carsharing system
and proposed a discrete-event simulation model that was evaluated by testing on car2go real
case data. Jorge et al. (2014) developed a mathematical model to relocate vehicles to maxi-
mize the profit and a simulation model to discuss different real-time relocation policies. The
results showed that the profit increased after operating vehicles relocations. Wielinski et al.
(2015) proposed a practice-ready model for free-floating carsharing systems combined with

the charging of electric cars and the refueling of conventional vehicles. They used two types
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of relocation: intra-zone relocation, where vehicles move within them, and inter-zone relo-
cation, where vehicles move between them. Boyaci et al. (2015) developed a multi-objective
MILP model for one-way EV sharing systems that considered EV relocation and recharg-
ing requirements. A branch-and-bound approach was used to analyze the trade-off between
operators’ and customers’ benefits.

Nevertheless, an inevitable practical problem in vehicle relocation is that each vehi-
cle movement requires one worker who drives from the supply node to the demand loca-
tion. Thus, EV relocation assignment requires a simultaneous personnel assignment. More
recently, some researchers considered the integration of vehicles relocation and personnel
assignment. Di Febbraro et al. (2012) used a discrete event systems model to represent
carsharing system and proposed a user-based approach on an optimal relocation policy in a
rolling horizon framework; the aiming was to maximize the operator’s profit by the minimum
number of required staff and relocate the least number of vehicles. Nourinejad and Roorda
(2015) integrated two models of multi-traveling salesman problem for jointly optimizing ve-
hicle relocation and personnel allocation. Nourinejad et al. (2015) further formulated two IP
models for the hybrid system that has both one-way and two-way trips. The first model was
built for tactical planning and calculated the number of required cars. The second model
decided to accept user requests who profit the most for the service provider. For minimizing
the total cost, Santos and Correia (2015) developed a MIP model for the real-time one-
way carsharing system, which considered the maintenance, vehicle relocation, and personnel
operation. Boyac et al. (2017) further considered some hard constraints, such as parking
station numbers and vehicle capacity limitation, and the service quality. A multi-objective
MIP model was proposed and involved three sub mathematical models: station clustering,
operations optimization, and personnel flow. The simulation framework was developed to
balance the cost of vehicle relocation, workers relocation, and service level. In order to max-
imize the total profit, Bruglieri et al. (2017) proposed a Ruin-and-Recreate metaheuristic

to solve the free-floating electric vehicle relocation problem where the workers use folding
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bicycles to relocate vehicles. Zhao et al. (2018) formulated a MILP model to describe the
EV rebalancing and workers relocation with spatial-time-dependent customers’ reservations.
A three-phase implementing algorithm was developed based on Lagrangian relaxation com-
bined with dynamic programming and a greedy algorithm. Kypriadis et al. (2018, 2020)
studied the minimum walking car repositioning problem where the workers walk to under-
take relocation assignments. The charging of EVs and refueling of conventional cars were
taken into account. The vehicle relocation approach aimed to minimize the relocation cost
by minimizing the walking distance. Bruglieri et al. (2019) also proposed another meta-
heuristic, Adaptive Large Neighborhood Search metaheuristic, for the same problem. And
ALNS method was proved to perform better than Tabu Search, Ruin and Recreate meta-
heuristic, and Mixed Integer Linear Programming. Haider et al. (2019) formulated a MIP
model for the relocation operations in the sequential and synchronized approach and pro-
posed the exchange-based neighborhood-search method (EBNSM) for large-scale problems.
Bogyrbayeva et al. (2021) proposed a reinforcement learning approach for rebalancing EVs
by considering charging in the free-floating electric vehicle sharing systems (FFEVSS). They
focused on the shuttle routing problem and formulated the shuttles routes using a multi-
agent reinforcement learning framework. EVs are relocated to the nearest available charger
or demand node.

As stated above, a variety of methods have been proposed for solving the rebalancing
free-floating carsharing system. To the best of our knowledge, only a few papers discussed
EV relocation and personnel allocation jointly for the free-floating EV sharing system with

the consideration of charging EVs, shuttles routing of transporting workers.

3.3 Problem Statement

We introduce our problem formally with the notation listed in Table 3.1. The service
area is constrained in a region with || nodes. One node means a parking lot for an EV.

The supply nodes are the places where the excess available EVs park and no customers will
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Table 3.1: Mathematical Notation

Sets

N Set of all original nodes, N =SUDUC

N Set of all nodes including depot start node {0}, end node {N+1} and
dummy charge nodes, N' = N U{0} U{N+1}uCuUC*

S Set of supply nodes, S = §" U §¢

S" Set of supply nodes where EVs do not require charging

S¢ Set of supply nodes where EVs require charging

D Set of demand nodes

C Set of real charge nodes

(o4 Set of real and paired dummy charge nodes

c* Set of dummy charge process nodes

K Set of shuttles

P Set of all feasible EV relocation paths

(i) Set of paths that contain node i, {p € P : i € p}

Parameters

Ve Average EV speed

Vs Average shuttle speed

Is Initial battery percentage of EV at supply s

I6] Charging time for one battery percentage

K Number of shuttles K = |K|

P Number of all workers

w Capacity of workers onboard one shuttle (exclude the workers who

drive shuttles)

dj Distance of arc (i, )

M A sufficient large positive number

H A sufficient large positive number for creating dummy charge nodes

Variables

Xp 1, EV is relocated along path p € P; Otherwise, 0.

Yii 1, if a shuttle comes through arc(/,j) as part of route; Otherwise, 0.

z; The number of workers onboard a shuttle after this shuttle leaves node
i

Ti The time when a shuttle arrives node i

& The time when an EV arrives node 7

pick up EVs at those nodes on the next day. Based on the booking orders, the customers will

pick up EVs at the demand nodes. Now there are no available EVs at these nodes. Thus,

the sharing system company is required to relocate EVs from supply nodes to demand nodes

to satisfy the customers’ needs.
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In this problem, two decisions are made: EV relocation and shuttles routing. EV relo-
cation is divided into two cases: (1) EV can move directly from a supply node s € 8" to a
demand node when it has sufficient battery energy (more than the minimum battery level);
and (2) When an EV does not have enough battery energy (less than minimum battery
level). EV at supply node s € §¢ is required to go to a charge station ¢ € C to be charged
fully before going to the demand node d € D. Shuttles routing determines the sequence of
visiting nodes. Shuttles transport workers to supply nodes and charge stations. The workers
will be picked up at the demand nodes and charge stations. Since the charging process takes
a long time, it is assumed that the worker has two choices: 1) To be picked up by one shuttle
to do other EV relocation assignments. Another worker will come to this charge station
and drive EV to the demand node. 2) To stay at the charge station and wait for charging.
Then the worker drives this EV to the demand node. The number of shuttles is K, and the
capacity of workers onboard one shuttle is W. All shuttles leave the depot with a full load
and return to the depot with all workers. The objective function is to minimize the total
time spent in the system, i.e., makespan. The makespan is calculated as the time between

shuttles leaving and all returning to the depot.

Figure 3.1: FFEVSS Example. (Circles, triangles, and squares represent supply nodes,
charge stations, and demand nodes, respectively. Red circle means that EV requires
charging; green circle means EV does not require charging; The solid lines represent EV
relocation; the dotted lines represent a single shuttle route)

For example, in Figure 3.1, there is one shuttle and two workers. EV relocation contains
1-2-3, 4-5, and 6-7. The shuttle route is depot-1-6-2-4-7-2-5-3-depot. The shuttle starts

from the depot and drops off 1st worker at supply 1. Then it goes to supply 6 and drops off
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2nd worker. It picks up 1st worker at charge station 2 and transports him to supply 4. It
continues to pick up 2nd worker at demand 7. The shuttle returns to charge station 2 and
dispatches 2nd worker to drive the EV from node 2 to demand 3. Then, it picks up 1st and

2nd workers at demand 5 and 3. Finally, the shuttle carries all workers back to the depot.

3.3.1 Mathematical Model for EV Relocation

The dummy charge node-set C’ is introduced to deal with multiple visits to each charge
station. Because charge stations can serve many EVs and can be visited many times, each
charge station needs sufficient enough dummy nodes. These dummy nodes have the same
location coordinates as the real charge station. Define H as the number of dummy charge
nodes for each real charge node. The depot end node is labeled as N + 1, so the dummy
charge nodes are labeled starting from N + 2. For example, the dummy charge node for
the first charge node is {N +2, N +3,.., N + 1+ H}. Let the total charge nodes set be
C=CU{N+2,N+3,. . N+1+|C|x H}.

The paired dummy charge process node-set C* = {c* : ¢ € C'} is introduced to deal
with the charging process, where ¢ represents a copy of ¢. The charge time for EV at s
is calculated from the initial battery percentage % to 100% and is assumed to equal to
B % (100 — I5). Because the charging takes a long time, the workers can be dispatched to do
other tasks. The charging process is described in Figure 3.2, EV goes to charge station ¢ for
charging, and after finishing charge, it goes to a dummy charge process node ¢*. The pairs
of charger-dummy charge process nodes ¢ € C', ¢t € C* are designated to receiving workers

and dispatching shuttles.

c ct J

Figure 3.2: Relocation Decision. In a relocation with charge model, one relocation
operation involves a stopover at a pair of charger-dummy charge process nodes
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We can enumerate all the possible EV relocation paths. If an EV does not require
charging, the path is defined as directly from any supply node to any demand node p =
{s > d:se8" de D} and the number of paths is |S| x |D|. If an EV requires charging,
the path is defined as p={s — c — d :s € §°,c € C',d € D} and the number of paths is

|S| x |C'| x |D|. The set of all possible EV relocation paths P is defined as

P={s—d:se8"deD}U{s—>c—d:seS8ce(' deD}

The mathematical formulation of EV relocation is described as follows:

> x=1 Vie D (3.1)

pES(i)

d %<1 VieSuc (3.2)

pEP(i)

x, € {0,1} VpeP (3.3)
ds

ed2e5+v—d Vp={s—dleP:seS8" (3.4)
dSC

e62e5+7 Vp={s—c—>d}eP:seS (3.5)

e+ > e + (100 — [5) Vp={s—>c—dteP:cel’ (3.6)
de

edzec++v—d Vp={s—>c—dleP (3.7)

€; Z 0 Vi e Nl (38)

Each demand node is visited exactly once, so the inflow of each demand node i € D is
equal to 1 (Constraint (3.1)). Each supply node and charge station is visited less than or
equal to 1 (Constraint (3.2)). If EV is assigned from s to d, the time when EV arrives node
d is more than or equal to EV’s arrival time at node s plus the movement time (Constraint
(3.4)). If EV moves along the path s — ¢ — d, EV’s arrival time at node c is the arrival

time at node s plus movement time from s to ¢ (Constraint (3.5)); EV arrives at dummy
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charge node ¢* after adding a charging time (100 — /5) (Constraint (3.6)); EV’s arrival
time at demand d is arrival time at dummy charge node ¢t plus movement time from c to
d (Constraint (3.7)). Constraints (3.3) and (3.8) restrict that EV relocation path decision

variable x” is binary and EV arrival times e; are nonnegative continuous variables.

3.3.2 Mathematical Model for Shuttle Routing

The shuttles routing problem is described as follows:

Y o= Y yinea= (3.9)
(0j)eA (i,N+1)eA

D yi— > yi=0 Vje N\ {0,N +1} (3.10)
(ij)eA (.neA
nj > n; + |N|y; — (IN'] = 1) V(i,j)e A (3.11)

Y y<1 VjesSuc (3.12)
(ij)eA

d =1 VjeD (3.13)
(ij)eA

Z Yie = Z Yie+ Veel (3.14)
(i,c)eA (i,ct)eA
yi €{0,1} V(i,j)e A (3.15)

djj ..

727+ 2= M- yy) v(ij)e A (3.16)
>0 VieN' (3.17)
z=W (3.18)
0<z<W Vie N (3.19)
zi=2z —yj V(i,j))e A,jeSuUCT (3.20)
zi=2z+yj; V(i,j)e A,je DU (3.21)
z € Z+ Vie N (3.22)

50



Constraint (3.9) makes sure that K shuttles leave depot start node 0 and enter depot
end node N + 1. Constraint (3.10) ensures the flow balance between intermediate nodes.
Constraint (3.11) eliminates subtours. Except for the depot node, supply nodes and charge
stations can be visited once or not (Constraint (3.12)), and demand nodes must be visited
once (Constraint (3.13)). If a charge node ¢ € C’ is visited by a shuttle, its paired dummy
charge process node ¢t € C* must be visited by a shuttle (Constraint (3.14)). Constraint
(3.16) restricts the times when a shuttle arrives at node j. All shuttles leave the depot with
W workers (Constraint (3.18)). The number of workers on a shuttle must be nonnegative
and less than or equal to the capacity W (Constraint (3.19)). Constraints (3.20) and (3.21)
show that one shuttle drops off one worker on a supply node or a dummy charge process node
and picks up one worker on a demand node or a charge node. Constraints (3.15), (3.17), and
(3.22) restrict that routing decision y is binary variable, shuttle arrival time 7 is nonnegative

continuous variable and the number of drivers onboard shuttles is integer variable.

3.3.3 Synchronizing EV Relocation and Shuttles Routing Decisions

The following part is to synchronize EV relocation and shuttle routing problems.

S ve= Y % VseS (3.23)

(i.s)eA pEG(s)
> v < Z Xp Veec (3.24)
(i,c)eA pEP(c
e >T—M1- ) x,) VseS (3.25)
pEP(s)
Te>e—M1- ) y) Veec (3.26)
(i,c)eA
et 27 = M(1— > yict) Vet ect (3.27)
(i,ct)eA
Td > €d vd € D (3.28)
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Constraint (3.23) shows that when an EV at node s is assigned to relocate to node d, the
shuttle must pass through node s. Constraint (3.24) shows that the shuttle passes through
charge station ¢ (the worker is picked by this shuttle) or does not pass charge station node
¢ (the worker chooses to wait for EV to be charged). The shuttles routes restrict EVs’ time
window. Assume the times of getting on and off shuttles are not considered. When a shuttle
drop off a worker at supply s or a dummy charge process node ¢t € C*, EV starts to leave
(Constraints (3.25) and (3.27)). Constraints (3.26) and (3.28) show that the shuttle picks
up a driver and leaves charge station ¢ or demand d after EV has already arrived.

The mathematical model for the FFEVSS is formulated as follows.

minimize TN+1

subject to (3.1) — (3.8) [EV Relocation]
(3.9) — (3.22) [Shuttle Routing]
(3.23) — (3.28) [Synchronize both]

3.4 Benchmark Methods

In this section, two benchmark methods, exchange-based neighborhood-search method
(EBNSM) (Haider et al., 2019) and reinforcement learning approach (RL) (Bogyrbayeva

et al., 2021) are introduced in brief.

3.4.1 Exchange-Based Neighborhood-Search Method

Haider et al. (2019) create a sequential approach. In the first stage, it gets the best
EV relocation paths. In the second stage, given the best EV relocation paths, the initial
shuttles routes are obtained by a greedy approach. Given the initial shuttles routes, a 2-

interchange method is used to get the best shuttles routes. Then, EBNSM improves the
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initial solution that is obtained from the sequential method by iteratively creating EV paths
and updating the shuttle route. Exchange procedures of suppliers and chargers are added
to update shuttles routes. When a pair of old EV relocation paths are replaced by a new
pair, their supplier and charger nodes are exchanged, respectively. The route update step
swaps the positions of the pair of exchanged nodes in the shuttle route based on the new
EV relocation path. Meanwhile, the precedence feasibility of visiting nodes and the capacity
feasibility of shuttles are also maintained.

The main difference between EBNSM and ALNS is that in EBNSM, each charge station
is allowed to visit exactly once, while ALNS allows them to visit multiple times. Thus,
EBNSM enables to get a feasible solution based on requesting that the number of available
charge stations is more than the number of pairs of EV relocation which requires a charge.
However, in reality, the number of charge stations is probably less than the number of EVs
which require a charge. It is realistic for EVs to wait in a queue at one charge station.
Moreover, the time window is also a variant value as the pairs of EV relocation and shuttles
routes change. So, another heuristic method is necessary to develop with consideration of

multiple visiting of charge stations.

3.4.2 Reinforcement Learning Method

Bogyrbayeva et al. (2021) formulate a reinforcement learning framework and deploy a
policy gradient method for training recurrent neural networks. The problem is formulated
as a finite horizon Markov Decision Process with the state, the action, the transition prob-
abilities, and the reward function. The state represents the network that shows each node
location, the distance, the number of EVs, the number of drivers, the battery level, and
indicators for the expected transitions. The action indicates a node number to be visited
next by which shuttle. The reward is defined as the negative of the total time spent in the
system that is measured from the time when shuttles leave a depot to the time when all

shuttles return. The reward function is to maximize the total expected reward. A simu-
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lator is proposed to describe the dynamics caused by shuttles routes. This simulator also
ensures the precedence feasibility of visiting nodes and the capacity feasibility of drivers on
a shuttle by following a masking scheme. Bogyrbayeva et al. (2021) focus on solving the
shuttle routing and making a decision on EV relocation by using the nearest rule. When an
EV at the supplier has a driver, the EV is relocated to the nearest available charge station
or demand node. On average computational time, RL outperforms EBNSM, but requires
lengthy training.

The main difference between RL and ALNS is that ALNS can search more further neigh-
borhoods of both EV relocation and shuttles routes, while RL only uses the nearest location

rule to find EV relocation decisions. Thus, ALNS may obtain a better solution than RL.

3.5 Adaptive Large Neighborhood Search

In this section, we develop an Adaptive Large Neighborhood Search (ALNS) for the free-
floating EV sharing system. Ropke and Pisinger (2006) developed ALNS as an extension
of the Large Neighborhood Search method (Shaw, 1998). The idea of ALNS is to search in
a large neighborhood using multiple destroy and repair methods and to choose the destroy
and repair methods based on their adaptive probabilities.

To the best of our knowledge, this is the first paper using ALNS on the free-floating
carsharing system problem that considers EV relocation and shuttle routing jointly. In the
original ALNS (Ropke and Pisinger, 2006), the feasible solution only has one decision (request
routes). However, in this paper, the feasible solution has two decisions: EV relocation X
and shuttle routes Y. The main challenge is to jump from one solution to a new solution
in the neighborhood. Because two decisions affect each other, the processes of destroy and
repair become more complicated. So, the repair methods are divided into two stages. In the
first stage, greedy and probabilistic methods are proposed to match suppliers and demanders
to repair EV relocations. In the second stage, greedy and regret methods are presented to

reconstruct shuttle routes.
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Algorithm 1: Pseudocode for ALNS
Input: D, S, C, DM, RM, Npax, Zmax
OUtPUt: Xbestv Ybest

1 Initialize EV relocation Xy and shuttle routes Yy (Sec 3.5.1);

2 Initialize destroy methods probability P% and repair methods probability P% (Sec

3.5.4);

3 Xbest < Xcurrent < X07 Ybest < Ycurrent < Y07

4 Calculate the makespan of current best solution tyes; <— f(Xpest, Yoest);

5 N« 1,7+« 0;

6 while N < Ny, Z < Znax do

7 Select a destroy method d € DM with probability PY;

8 Select a repair method r € RM with probability PF

9 Let Xiew and Yiew be the new solution obtained by apply destroy d and repair r;

10 if f(Xoew: Ynew) < thest then

11 ‘ Xbest < Xnewa Ybest A Ynewa thest < f(Xner Ynew)a Z Oa
12 else

13 Z+—7Z+1;

14 v = e (F(Xnew, Yoew)—F (Xeurrent, Yeurrent))/ T .

15 Generate a random number € € [0, 1];

16 if € < v then

17 L Xcurrent < Xnew; Ycurrent < Ynew;

18 T <« hT,

19 Update P and PR (Sec 3.5.4);
20 N < N+ 1;

The procedure of the proposed ALNS is shown in Algorithm 1. In each iteration, the
neighborhood of a solution is produced by destroy and repair. We let DM and RM denote the
sets of the destroy and repair methods, respectively. The destroy process is to remove part
of EV relocation solution X and shuttle routes Y. Next, the repair process can reconstruct
the partially incomplete solution. The destroy and repair methods are chosen according
to their past successes. When a better solution is obtained by applying the methods, the
counts of the corresponding methods are added by one, and their probabilities will increase,
as described in detail in section 3.5.4. The roulette-wheel selection principle is used for the
selection of destroy and repair. In this paper, a simple acceptance rule is applied: the new
best solution is accepted if its objective value is better than the current best solution. The

new solution with a higher objective value is accepted by a simulated annealing acceptance
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criterion. T denotes the value of the temperature and gradually decreases at each iteration
by a rate h € [0,1]. The stop criteria are the maximum iterations Npa, and non-improving

iteration Zpmax.

3.5.1 Finding an Initial Solution

The nearest neighborhood (NNH) search (Algorithm 2) is applied to generate an initial
solution as follows. We randomly select a demand node d in undecided demand node-set UD
and match its nearest supply node s in undecided supply node-set US. If EV at the node s
requires being charged, then insert the nearest charge station ¢ in the middle. Then, delete
s and d in the undecided set US and UD. The EV relocation w is assigned on the shuttles

in sequence.

Algorithm 2: Pseudocode for NNH

Input: D, S, S¢,C

Output: X, Y

Initialize EV relocation set: X; < 0, Xp < 0, X + X; U X5;
Initialize shuttle routes: Yy < 0 Vk € K, Y <+ Ugex Yi;
Initialize search sets: UD « D, US + S;

a4 k<+1;

W N =

5 while UD # () do
6 Vd € UD, find the nearest supplier s = arg min{dy,, Vs € US};
7 if s € §¢, then
8 Create a EV relocation wsy < {s — ¢ — d}, where
¢ = argmin{ds. + dey, Vc € C};
9 Xy +— Xo U{wsg};
10 else
11 Create a EV relocation wsy <— {s — d};
12 X1 X1 U{ws};

13 US «+ US\ {s}, UD <~ UD\ {d};

14 Add s and d to the end of kth shuttle route list Yj;
15 if k = K then

16 ‘ k +1;

17 else

18 L k <+ k+1,
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An initial solution consists of two decisions: EV relocation denoted as X and shuttle
routes denoted as Y. EV relocation decision X comprises of two distinct types: (1) an
EV directly moves from a supply node to a demand node, and (2) an EV moves to a charge
station and then goes to a demand node. Shuttle routes serve these EV relocation operations,
and the corresponding shuttle route set Y consists of K lists, namely Y7, Y, ..., Yk. The list

Y means the sequence nodes visited by the k-th shuttle.

3.5.2  Destroy Methods

Three destroy methods are applied to destroy a complete feasible solution into a partial
one. The destroy methods consist of Random Removal, Worst Route Removal, and Cluster

Removal, are presented as follows.

3.5.2.1 Random Remowval

Randomly remove |a% x |D|| EV relocation wsy in X, where « is the destroy percent-
age. Put these supply nodes and demand nodes into the undecided supplier set (US) and

undecided demand set (UD). Meanwhile, delete them in shuttle routes Y.

3.5.2.2 Worst Route Removal

Given a solution (X, Y), a demand d is matched with the supply s in EV relocation

solution X. we define the cost for EV relocation pair wsy as

cost(wsg, X, Y) = (X, Y) — (X, Y) (3.29)

Wsd

where f_,_(X,Y) is the objective value without EV relocation pair wsy in (X, Y). It is
reasonable to remove the supply-demand pair with the high cost and perhaps create new
EV relocation to obtain a better solution. Sort all supply-demand pairs w in descending

costs. Remove first |a% x |D|] EV relocation w with larger costs. Put these supply nodes
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and demand nodes into the undecided supplier set (US) and undecided demand set (UD).

Meanwhile, delete them from shuttle routes Y.

3.5.2.3 Cluster Remowval

The idea of cluster removal is to remove the similar demand nodes (Shaw, 1998). Since a
new and better solution is expected to be created, the current solution needs to be destroyed
more heavily. This allows the farther neighborhood to be searched.

The relatedness between node / and j is used to measure how node j is close to node /.

For any demand node /i, the measure of relatedness is calculated as the following equation.

O p— i

Vj£ieD
Uax{dn, vk €D} T " max{er, vk € D} —min{e, vk D} 7 '€

(3.30)

where w; and w, are weights with sum of 1. dj is the distance between node i and j. ¢ is
the time when an EV arrives at demand node i. The smaller R(/, ) is, the more related the
demands / and j are.

The following steps are to randomly select a demand node d € D and calculate R(d, j), Vj #
d € D. Sort all R(d,j) in descending order. Remove demands with the first |a% x |D|] in
the sequence and their corresponding supply nodes. Put these supply nodes and demand
nodes into undecided supplier (US) and undecided demand sets (UD). Meanwhile, delete

them from shuttle routes Y.

3.5.3 Repair Methods

The following repair process must conform to two constraints:

e Sequence constraint: supply s must be visited before demand d, when supply s is paired
with demand d in EV relocation. Charge station ¢ must be visited between s and d. Its

paired dummy charger ¢™ must be visited after c.
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e Personnel constraint: Since there are a limited number of workers (capacity) onboard each
shuttle, in any shuttle route Y, the difference between the numbers of visiting supply

and demand nodes must stay within [0, W]. For example, given a shuttle route Y, =

{al, do, ds, }

For each positive integer n = 1,2, ..., | x|, we enforce

0<> 1fa;eSUCT-) 1[aeDUCI< W
i=1 i=1
where 1[-] equals one if the condition inside the bracket holds and equals zero otherwise.

We have two repair rules for EV relocation and two repair rules for routes insertion. Four

repair methods are formed by combining these repair rules.

Sequential Greedy: Greedy s-d matching with Greedy routes insertion

Sequential Regret: Greedy s-d matching with Regret routes insertion

Probabilistic Greedy: Probabilistic s-d matching with Greedy routes insertion

Probabilistic Regret: Probabilistic s-d matching with Regret routes insertion

3.5.3.1 Repair Rules for EV Relocation

Two repair rules for EV relocation are applied to match a supply node with a demand

node, and are described as follows:

e Greedy s-d matching: For Vd € UD, demand d is matched with an undecided supply s
where s = argmin{dsy, s € US}. If s € §¢, wgy = {s — ¢ — d}, where ¢ = argmin{ds +
ded, ¢ € C}; else wygy = {s — d}. The new supply-demand pair wsy is formed by the

nearest-neighbor rule.
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e Probabilistic s-d matching: s and d are matched as a new pair based on the probability

that is related to their distance. The s-d matching probability is expressed as

exp(_/\dwsd) (331>

P(wea) =
() = S (AL

where U is the set of all combinations of undecided s € US and undecided d € UD. A
is a constant within [0,1]. If s € S, each charge station is inserted in the middle of s

and d. There are |C| combinations for s and d. For each wsy = {s — ¢ — d}, we set

d,

Wsd

=dse +dy. If s€S", we set d, , = dy.

sd

3.5.3.2  Repair Rules for Routes Insertion

Two repair rules for routes insertion are applied to insert supply-demand pair into the

shuttle routes, and are described as follows.

e Greedy routes insertion: A concept of Insertion Cost is introduced. Let Af(n, p, Y) denote
the change in the objective value when inserting node n into partial shuttle routes Y at

position p. The insertion cost is expressed as

I(n,p,Y)=Af(np,Y) (3.32)

For any new supply-demand wgy, insert s and d into the current partial shuttle routes Y,
separately. Select the position p to insert s with the least insertion cost /I(s, p, Y). The
new partial shuttle routes are formed after inserting s, denoted as Y,s. Then, insert d at
the position with the least insertion cost /(d, p, Y,s) and get the new partial routes Y. If
s € 8¢, insert ¢ and ¢* with the least insertion cost sequentially. Repeat the above steps

until all demands are satisfied.

e Regret routes insertion: The regret routes insertion is improved by incorporating look-

ahead information when selecting the supply-demand pair to insert.
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For any supply-demand pair wsy, the regret-k cost is defined as

R(wsq, Y) = Zk:{Afi(wsd, Y) — Af(wsa, Y)} (3.33)

j=1

where Af(wsy, Y) is the increased value in the objective value after inserting s and d.
Sort. Af(wsq, Y) for all possible insertion positions in the increasing order. The best
insertion position has the least Afi(wsy, Y). Note that Afy(wsy, Y) means the increased
value in the objective for the k-th best insertion position. The regret routes insertion is
the reconstruction heuristic that chooses to insert the supply-demand pair wsy with the
maximum R(wsy, Y). The wgy is inserted at its minimum cost position. If s € S, insert ¢
and ¢t with the least insertion cost sequentially. Repeat the above steps until all demands

are satisfied.

3.5.4 Adaptive Probability Update Procedure

The adaptivity of ALNS is achieved by selecting the destroy and repair methods based
on their previous successes. The initial probabilities of destroys and repairs are set to 1

and ——. In

divided by the number of available destroy and repair methods; that is, ﬁ RN

each iteration i, if destroy method d and repair method r create a new best solution X, the
count n; and n’ of destroy d and repair r is increased by 1, respectively. Then, the probability
values of destroy and repair methods in iteration N are updated by multiplication of two

sets of ratios o4 and o, as follows:

py_ (%", cpwm (3.34)
° D _deDM ogny .
N
pY— 7" ., cRM (3.35)
8 (ZreRM a.ny

The destroy and repair methods are adaptively chosen based on the new probabilities by

using the roulette-wheel selection principle.
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3.6 Modification of ALNS in Problem Variants

We consider two variants of the rebalancing problem. First, we consider the case when
EV drivers use their own personal mobility option instead of shuttles. Second, we consider
the dynamic environments wherein EV supply or demand locations change while shuttles
and drivers are already executing an operational plan. In both cases, we show that ALNS

can be easily modified.

3.6.1 Routing with Personal Mobility Options

In some cases, the workers can be moved not only by shuttles but also by personal
mobility vehicles such as scooters. Each worker has one personal mobility vehicle. When
a worker arrives at a supply node, this worker puts the scooter in the back and drives the
EV to the demand node or a charge station. When the EV arrives at a charge station, the
worker can ride his mobility tool to another node to accomplish other tasks. In the sequence
constraint, s — ¢ and ¢ — d are bound as one unit. Also, s — ¢ must be inserted before
¢ — d in the routes. The personnel constraint is necessary to be taken into account.

EV relocation is same as stated in Section 3.5. It has two types: wsy = {s — d} and
wsg = {s = ¢ — d}. The destroy and repair methods for EV relocation do not change.

The repair rules for routes insertion need some changes as follows. Because the scooters
and workers move synchronously with the EVs, the worker routing is consistent with EV
relocation from s — d, s — c and ¢ — d. We can regard s — d, s — ¢ and ¢ — d as
one unit and insert them into the partial routes. For an example, some EV relocations are
sl — d4, s2 — ¢3, and ¢57 — d6. One worker route can be described as (1 — 4) — (2 —
3) — (57 — 6). That means that this worker drives an EV from supply 1 to demand 4 and
then goes to node 2 by riding his scooter; he drives the EV from supply 2 to charge station

3; Finally, he rides the scooter to dummy charge station 5% and drives the EV to demand 6.
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3.6.2 EV Relocation and Routing in Dynamic Environments

In dynamic environment, the number of EV relocation assignments can change in the
middle of the relocation operations. It happens in the cases when some of the current
available EVs are assigned to the arriving customers or some additional demands are added
into the system. Instead of solving the new routing problem from scratch, we can use
the ALNS algorithm to destroy and repair the current solution to adapt to the dynamic
environment. When we repair, we just ignore those EVs which have been already served.
Remove the decreased demands (or suppliers) or add the additional demands (or suppliers)
to the undecided demand set UD (or the undecided supply set US).

The shuttles have departed the depot, and some EV relocation demands D have been
served already. The changes in demand and supply sets are described as sets themselves and

denoted as D* and S*. There are two cases.

e When the number of EV demands decreases: The decreased demand nodes and corre-
sponding supply nodes are removed from the current solution. Then, partial EV relocation
X and partial shuttle routes Y are obtained. This process is just like a destroy operation.
The next step is to repair the current partial sets X and Y by four repair methods in

Section 3.5.3.

e When additional EV demands are added in the middle of relocation operations: The
additional EV demands and supply sets D* and S8* are added to the undecided demand
set UD, and the undecided supply set US. Then a new solution is obtained after repairing

based on the new demand and supply nodes.

The process to create a new solution in the dynamic environment is described in Al-
gorithm 3. We let X% and Y° denote current EV relocation and shuttle routing solutions,

respectively. D and S are defined as the finished demands and suppliers, respectively.
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Algorithm 3: Pseudocode for ALNS in Dynamic Environment
Input: D,ﬁ,D*,S,g,S*,XO, Yo
OUtPUt: Xbestv Ybest .
1 The partial EV relocation X < X9\ {wey, Vwsq € X° : d € D};
2 The partial shuttle routing Y < Y°\ {s,d,Vs € S, d € D};
3 Initialize undecided demand set UD < D \ D U D* and undecided supply set
US + S\ SUS™
4 Initialize destroy methods probability P} and repair methods probability P% (Sec
3.5.4);
5 Apply a repair method r € RM with probability P% on X, Y and Xy, Yaew are
obtained;
Xbest <~ Xcurrent — Xnew; Ybest — Ycurrent — Ynew;
Calculate the makespan of current best solution tyes; <— '(Xbest, Yoest, V);
N <+ 1,7 <+ 0;
while N < Ny, Z < Zpax do
10 Select a destroy method d € DM with probability PY;
11 Select a repair method r € RM with probability P}

12 Let Xiew and Y,ew be the new solution obtained by apply destroy d and repair r;
13 if f'(Xoew, Ynews V) < thest then

© 0 N o

14 ‘ Xbest — Xnewa Ybest — Ynewa tbest — f/(XneWr Ynew: W), Z 0;
15 else

16 Z+—2Z+1;

17 v = e (F'(Xnew, Yoew, W) —F'(Xeurrent, Yeurrent, V) / T,

18 Generate a random number € € [0, 1];

19 if € < v then

20 L Xcurrent — Xnew; Ycurrent — Ynew;

21 T <+ hT;

22 Update P} and PR (Section 3.5.4);
23 N+ N+ 1;

Let the tuple of lists

V= ({(e;,ﬂ):iéﬁuS] [ﬁ(k);ke/c], {O(k):kelCD

denote the current state of the system, which includes EVs’ and shuttles’” arrival time e;, 7;
at node i; the locations L£(k) of shuttle k; and the number of workers O(k) onboard shuttle

k. Because the finished EV relocation and shuttle routing cannot be changed, the follow-
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ing operations are done to reorganize the unfinished demands and suppliers. The value of

makespan is calculated based on the current state of the system W.

3.7 Numerical Experiments

The experiments are done on a computer that runs 64-bit Windows 10 with a 2.60 GHz
Intel Core (TM i5-7300U) CPU and 8 GB RAM. ALNS and EBNSM are coded in Julia
1.6.1. The Reinforcement Learning approach of Bogyrbayeva et al. (2021) is implemented in
Python 3.6.

3.7.1 Randomly Generated Instances

We consider a 10 x 10 miles square network, which is proximate to one urban city area.
There are supplier, charger, and demand nodes within the network. We fix the total number
of nodes and the number of suppliers, chargers, and demand nodes. The x and y coordinates
of each node are generated by a uniform distribution from 0 to 10. The initial residual
charge level of the battery for each supplier node is generated randomly between 0 to 100%.
Assume that the speed of each EV and the speed of each shuttle are equal to 65mph and
40mph, respectively.

We assume that EVs do not need to be charged and directly move to one demand node
if the initial battery level is more than 50%. Otherwise, the EV moves to a charge station
at first and is required to be charged fully. The charge time is assumed as 40 minutes from
empty to full. The charging energy is directly proportional to the time. For example, an
EV with 40% remaining battery level will spend 24 minutes to be charged fully. We do not
consider the battery consumption of EV movement. In ALNS, the stop criteria are set as
the maximum iteration Ny, of 3000 and Maximum non-improving iteration Z,., of 300.

The test instances are generated by three difficulty types. When the number of charge
stations is more than the number of suppliers requiring recharged, the instance is easy; When

they are the same, it is medium; otherwise, it is hard. The number of nodes [N, the number
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Table 3.2: Types of Random Instances
Nodes Num Easy Medium Hard
V] D]l IS Isel D] o[cl IS o|sel D] IC] |S| |8
23 T 7T 8 4 7 4 8 4 7T 2 8 4
50 7 15 17 10 17 10 17 10 17 5 17 10
150 50 50 50 30 50 30 50 30 50 20 50 30
‘\\\4 5
N
7 \\5\\\\
e — ] 3
(a) single-shuttle case, K =1 (b) multi-shuttle case, K = 2

Figure 3.3: Example Solutions for |[N| =23 and W =3

of demand nodes |D|, the number of charge stations |C|, the number of supply nodes |S]|,

and the number of supply nodes requiring charging |S€| are summarized in Table 3.2.

Parameters affect the performance of the algorithm. After testing these parameters

on the randomly generated instances, they are tuned as follows.

o4 = (0.35,0.4,0.25) and ratios for repair methods o,

a% = 30%; 2) the constant in Probabilistic s-d matching A = 0.5; and 3) ratios for destroy

(0.3,0.2,0.3,0.2).

V] = 23.

1) destroy percentage

ALNS, EBNSM, and RL are implemented on 10 instances for each type. The example
solutions for single shuttle and multiple shuttles are shown in Figure 3.3a and Figure 3.3b,

respectively. The solutions are obtained by using ALNS to solve one easy instance with
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Table 3.3: Average Objective Values of ALNS, EBNSM, and RL on Random Instances

Instances Easy Medium Hard
N K W EBNSM RL ALNS PD (%) EBNSM RL ALNS PD (%) EBNSM RL ALNS PD (%)
23 1 3 8.81 17.70 7.52 2.39 12.39 10.27 10.10 1.68 - 1232 11.95 3.10
2 3 572  5.40 5.11 5.68 743 640 6.03 6.14 - 834 8.14 2.46
3 2 527 521 4.87 6.98 6.39 638 6.01 6.16 - 779 7.11 9.56
5 1 3 17.34 13.77 12.33 11.68 24.49 1793 15.78 13.62 - 1892 17.18 10.13
2 3 9.19 8.41 8.20 2.56 12.25 11.23 10.34 8.61 - 11.96 10.10 18.42
3 2 6.96  5.89 5.78 1.90 925 9.23 9.05 1.99 - 9T 9.48 3.06
150 1 3 34.30 22.18 21.31 4.08 45.97 30.67 27.75 10.52 - 36.67 32.52 12.76
2 3 16.11 12.92 11.67 10.71 21.63 17.54 17.15 2.27 - 1790 16.77 6.74
3 2 11.71 10.21 9.28 10.02 15.63 13.33 12.50 6.64 - 1494 13.05 14.48
Average 6.22 6.40 8.97

The averages of objective values are summarized in Table 3.3. The percentage deviations

between RL and ALNS are calculated as follows.

_ Objective of RL — Objective of ALNS
N Objective of ALNS

PD x 100% (3.36)

For all instances, ALNS can obtain the best average objective values. In the EBNSM
structure, the charge stations are not allowed to be visited more than one time, so a feasible
solution cannot be found in the hard type instances. The average percentage deviations
between RL and ALNS for easy, medium, and hard instances are 6.22, 6.40, and 8.97,
respectively. Therefore, ALNS can perform better than both EBNSM and RL in the solution
quality.

The average computational times are shown in Table 3.4. After training on the data set,
the trained RL model can take less than 1 second to get the solution. The training time is
not included in the computational times in Table 3.4. So, the computational times of RL
cannot be directly compared with the computational times of ALNS. We also observe that
ALNS can run faster 21.6% and 19.7% than EBNSM for easy and medium instances.

The numerical experiments on randomly generated instances demonstrate that ALNS
outperforms both EBNSM and RL in terms of the solution quality in all problem sizes. The

computational times of ALNS are shorter than EBNSM, but much longer than RL. While
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Table 3.4: Average Computational Times of ALNS, EBNSM, and RL
on Random Instances (Unit: Second)

Instances Easy Medium Hard

IN] K W RL EBNSM ALNS RL EBNSM ALNS RL EBNSM ALNS

23 1 3 0.01 6.83 6.57 0.02 10.38 6.32 0.02 - 1232
2 3 0.04 3.76 1.61 0.04 3.52 3.31 0.09 - 9.52
3 2 0.06 9.17 7.11 0.05 4.56 3.65 0.11 - 7.21

50 1 3 0.05 40.42  35.23 0.05 58.59  45.10 0.06 - 53.42
2 3 021 29.57  21.52 0.16 35.17  28.74 0.25 - 29.23
3 2 020 20.20 15.82 0.21 25.20 18.75 0.35 - 5418

150 1 3 0.16 99.25  76.72 0.17 105.20  89.24 0.26 - 111.23
2 3 044 87.42  T71.23 0.44 77.31  60.24 0.55 - 97.21
3 2 092 142.45 125.24 1.03 183.42 165.18 1.02 - 152.42

Average 0.21 48.79 40.12  0.24 55.93 46.73  0.30 - 58.53

RL executes in less than a second in most cases, RL requires very long training time; several
days to a couple of weeks depending on the hardware used. On the other hand, ALNS can

be applied to each problem directly without lengthy training.

3.7.2  Case Study: Car2go in Amsterdam

We apply our approach to a fully operational system of car2go in Amsterdam, the Nether-
lands, where the FFEVS service is operational using more than 300 EVs. From the actual
data, we take the initial and target locations of EVs that need to be relocated and test the
performance of our computational method. The nodes are depicted in Figure 3.4-(b), which
clearly shows that the current EV locations (suppliers) and the desired locations (demanders)
are concentrated in different areas, hence necessitating relocation operations.

To create a case study, we sample test data from 12:00 am to 7:00 am on each day.
Within this period, if one EV moves from one place s to another place d, place s is set as
a supply node, and place d is set as a demand node. When one EV stays at one location
and the battery level increases, the location c is set as a charge station. The 143 days data

are sampled, and their dates range from May to October in 2016. The numbers of suppliers,
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nodes for the Reduced Network

- . .
PRSTER .
o R
5232 E
. Chargers <)
«  Suppliers W
52.30 +  Demanders <

4.825 4.850 4.875 4.900 4.925 4.950 4.975 5.000
Longitude

(b) All Nodes for Reduced
(a) Map for the Neighborhoods Network

Figure 3.4: Amsterdam Network. Left: Map for the Neighborhoods together with Suppliers
(blue circle), Demanders (red square), Chargers (green bolt sign) and Depot node (Green
Pentagon); Right: All Nodes for Reduced Network

chargers and demanders in the final network stay within the range of [46, 251], [21, 64] and
[46, 251]. The average numbers of suppliers, chargers and demanders are 85.3, 39.2, and
85.3, respectively. Since the default speed limit in the city of Amsterdam is 50 km/h inside
built-up areas, the speed of an EV is assumed as 50 km/h. In urban residential areas, 30
km/h zones are found on the living streets. We assume the shuttles can move within these
areas, so the speed of a shuttle is assumed as 30 km/h.

Two scenarios are considered in this section:
e Scenario 1: No parking lots are equipped with chargers.
e Scenario 2: Some parking lots are equipped with chargers.
Considering these two scenarios, we also test additional solution strategies:

e RL: Using the trained neural network by RL, we can select the most probable solution by

the greedy decoding strategy as done in the previous section.

e Sample RL: We can generate solution samples from the trained neural network by the
probabilistic decoding strategy instead of the greedy decoding. Among all solution samples,

we choose the best solution.
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e RL-ALNS: We can feed the RL solution by the greedy decoding strategy as the initial
solution to ALNS.

3.7.2.1 Scenario 1

In this scenario, no parking lots are equipped with chargers. The demand, supply, and
charge nodes are located at different places. The average objective values (makespan) and
computational times on 143 days data are summarized in Table 3.5. For all instances,
ALNS can perform better than EBNSM in both solution quality and computational times.
ALNS can get less average objective values than RL for all instances. However, when each
trained RL model is sampled 100 times in the Sample RL approach, a better solution can be
obtained for instances (K, W) =(1,5), (1,7) and (1,9). We observe that RL-ALNS can obtain
the best solution in all cases, while the computational times are decreased by up to 48.86%,
compared to the Sample RL approach. Only in the instance (1,5), RL-ALNS consumes less

computational time but produces a greater objective value.

Table 3.5: Average Makespan (Unit:Min) and Computational Times (Unit:Sec)
in Scenario 1 for 143 Days Instances

P (K, W) EBNSM RL Sample RL ALNS RL-ALNS
obj time obj time obj  time obj time obj time
6 289.8 1544 2869 0.8 285.5 79.8 286.5 146.2 280.1 8&7.1

2875 1523 270.2 09 269.7 91.2 267.1 1429 266.9 90.2
295.2 163.2 288.0 1.1 287.3 111.0 286.1 145.2 284.0 91.2

8 , 253.7 184.2 2483 1.4 2472 1393 2479 1624 245.9 96.6
2345 1523 2287 1.0 2264 101.2 2247 984 220.9 67.3

, 2242 104.2 220.1 1.6 2189 158.0 213.2 99.9 212.1 63.0

10 182.5 1024 179.8 1.3 1781 1342 178.6 742 177.2 67.2

218.7 1104 205.8 1.2 2034 119.8 201.3 82.1 199.8 524
2042 993 1973 1.3 1942 1342 1909 904 187.3 66.6

~— — — | ~— —— | ~— — —
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3.7.2.2 Scenario 2

In this scenario, many parking lots are equipped with chargers. Small changes are made
to let ALNS adapt to Scenario 2. There are two cases:
e Many demand nodes are equipped with chargers.

All EVs can directly move to one demand node that is equipped with a charger. The
charge time is not necessary to be considered. The changes in ALNS only happen in
finding EV relocation solution X as follows.

— In Algorithm 2, remove Line 7-12 and only keep Line 11-12.

— In the Greedy and Probabilistic s-d matching, 8¢ = ().

e Many supply nodes are equipped with chargers.

EVs at the supply nodes with chargers do not need to move to a charge station. EVs at

these supply nodes are set into S”.

Table 3.6: Average Objective Values and Computational Times in Scenario 2

P (K, W) EBNSM RL Sample RL ALNS RL-ALNS
obj time obj time obj time obj time obj  time
6 223.7 1458 214.3 1.3 213.8 131.3 202.5 122.8 201.4 83.4

2272 1497 2146 1.1 2129 111.2 201.6 126.1 200.9 78.2
200.3 134.2 199.5 1.4 1984 138.3 1994 156.2 197.9 108.2

8 , 182.1 155.1 153.6 1.5 151.8 152.3 1452 133.7 140.2 88.5
213.7 1625 190.7 1.6 188.7 1542 1824 99.6 180.3 76.9

, 200.5 1185 188.3 2.0 187.0 1984 1874 100.1 185.3 85.2

10 125.1 111.2 1043 1.9 1027 1873 99.3 778 98.1 494

157.2 994 1422 1.8 140.2 179.2 140.1 784 138.7 55.9
129.5 994 120.2 2.1 1182 209.3 1114 89.7 110.6 58.3

~— — — | ~— —— | ~— — —
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Besides the changes stated above, the calculation of makespan also changes. When a

shuttle arrives at a supply node equipped with a charger and drops off a worker, this worker

71



has to wait for EV to complete fully charging. So the EV’s arrival time at supply s € §¢
becomes:

1
e5275+g<100—ls) Vs € 8¢

The average objective values and computational times on Scenario 2 are summarized in
Table 3.6. When the trained RL model is sampled 100 times, the average objective values
of Sample RL become better than RL for all instances. When the RL solution is used as the
initial solution in ALNS, the average objective values and computational times decrease by

1.08% and 30.52%.

3.7.3 Routing with Personal Mobility Vehicle

When a personal mobility vehicle is used instead of a shuttle, ALNS can solve the problem
as well by following the changes in Section 3.6.1. The results are summarized in Table 3.7.
The speed of scooters is assumed as 15mph. Since riding a scooter is much slower than a
shuttle, the makespans for personnel 6, 8, 10 are all longer. The workers spend more time in
the movement. Moreover, makespan is not the only factor that affects the decision. In this
section, the analysis of total operation cost and the wait times are discussed between using
shuttles or scooters.

Table 3.7: Average Objective Values and Computational Times of ALNS Using Scooters

P Scenariol Scenario?2

obj time obj time

6 3642 100.2 303.2 98.6
8 268.7 1204 200.2 113.2
10 210.3 140.5 1834 145.2

3.7.3.1 Analysis on Total Operation Cost

Besides the total time spent in the system, the operation cost of EV relocation is also

important in the FFEVSS. The cost consists of operating the fleet of shuttles or scooters and
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Figure 3.5: Total Cost for Using Shuttles and Scooters

the labor cost of workers. Let T be the makespan value. Let I',, be the hourly cost for each

worker. The median pay in 2020 for one vehicle driver was $16.67 per hour (U.S. Bureau of

Labor Statistics, 2021). Assume the per hour labor cost 'y, is $17/hr. Let Iy, and 'y be

the hourly cost to operate each shuttle and each scooter. The total cost when using shuttles

is calculated as G = P x T x T, + K x T x Iy, When using scooters, the total cost is

calculated as Cic = P x T x (I, + T'sc). Assume per hour cost of a shuttle Iy, is $24/hr.

The total cost for shuttles and scooters on Scenariol is analyzed in the following. The

total costs for the given number of personnel 6, 8, 10, 12 are illustrated in Figure 3.5. When

['sc is less than the hourly cost at the cross point, the total cost with a scooter is lower. It

is better to choose the scooter as the movement tool.
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The higher the cost I'g at the cross point is, the better to choose scooters. It is better to
choose scooters as the movement tool when the shuttle combination is (3,1), (4,1), and (5,1)
for personnel 6, 8, and 10, respectively. For personnel 12, using scooters is better when the
shuttle combinations are (6,1) and (4,2). Even though the more number of shuttles results
in short makespan, the cost for shuttles becomes expensive. Given the certain number of
personnel, more number of shuttles with small capacity is not a good choice. If the per hour
labor cost increases, the makespan will also further impact the total cost. It is important
to balance makespan and the cost of movement tools. This suggests not to use very large

shuttles or scooters for the system with the high hourly labor cost.

3.7.3.2  Analysis on Wait Times

Makespan values are influenced by both wait times and movement times. When the
mobility tool is the shuttle, the wait times happen at charge stations and demand nodes. If
a shuttle arrives earlier than EV’s arrival time, the shuttle has to wait for picking up the

worker; otherwise, if EV arrives earlier than the shuttle’s arrival time, the worker has to wait

for a shuttle. So, the wait time per shuttle is calculated as Z"GCU”;D I7i—eil
When the mobility tool is the scooter, workers can directly leave charge stations and
demands by themselves. The wait times only happen at dummy charger nodes i € C*. If

a worker arrives earlier, he has to wait for the EV to complete charging; otherwise, the EV

Dicet ITi—eil

has to wait for a worker to drive it. The wait time per scooter is calculated as 5

The wait time percentage is used to standardize the wait times as a percentage of the

total time. The wait time percentage is calculated as

Total Wait Ti
Wait Time Percentage = ora Al 1Ime 100%
Makespan

The average wait time percentages using shuttles and scooters are illustrated in Figure

3.6. As shown in Figure 3.6a, given a certain number of personnel, when the number of
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Figure 3.6: Average Wait Time Percentage

shuttles is 2, the waiting time percentage is the lowest. When the number of shuttles is 1,
the workers spend more time in waiting for the shuttle to pick them up. When the number of
shuttles is more than 2, the shuttles have only one worker on board and have to pick up and
drop off workers frequently. With the increasing number of personnel, the workers can do
the relocation simultaneously, so the wait times also decrease. Thus, in order to decrease the
wait time, it is important to choose the shuttles with proper capacity. As shown in Figure
3.6b, the wait time percentages become smaller with the increasing number of personnel.
Because the scooter speed is slow, the workers spend more time on the movement, and EVs
need to wait for a worker to drive it to the destination after charging. So, the more workers

participate in the relocation assignment, the less wait time is.

3.7.4 EV Relocation and Routing in Dynamic Environment

This section compares the quality of the solution with the benchmark, assuming that the
upcoming change is foreseen at the beginning of the planning. We test the dynamic envi-
ronment when 50% EV relocations have been done. Two cases are considered: 1) Randomly
remove 10% EV demands; 2) Randomly add 10% additional EV demands. The average
makespan and computational times of 143 days Amsterdam data are summarized in the

Column o0bj and time in Table 3.8. The objective values are calculated from the time when
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Table 3.8: Results on Amsterdam Data in Dynamic Environment

P (K,W) Remove 10% EVs Add 10% EVs
obj time 5s 10s 20s 30s obj time 5s 10s 20s 30s
6 (1,5 243.1 471 2659 253.6 248.7 244.0 | 3034 53.7 365.7 3204 309.7 308.2
(2,2) 238.5  46.3 265.7 243.9 240.5 238.5|298.6 56.0 332.5 313.8 303.7 299.8
(3,1) 247.0 482 276.8 254.8 2494 248.1 | 320.8 59.8 367.7 343.4 330.1 325.6
8 (1,7) 216.5 43.2 2574 2345 220.3 217.6 | 2679 46.4 299.5 278.1 270.7 269.7
(2,3) 199.5 445 2435 210.2 201.3 199.8 | 254.8 49.5 276.7 261.7 258.7 255.2
(4,1) 187.6 39.2 2239 198.2 188.4 187.9 | 232.9 487 268.3 247.4 2382 234.1
10 (1,9) 159.5 374 176.9 163.4 160.2 159.5| 195.8 458 232.5 209.5 198.4 196.0
(2,4) 176.3 29.7 199.6 180.5 177.5 176.3 | 220.8 36.8 249.7 232.2 2224 220.8
(5,1) 165.4 32,5 188.3 169.7 166.2 165.4 | 206.8 33.8 246.8 211.5 209.6 206.8
Avg. PD" 14.58 4.06 098 0.19 1280 4.99 1.66 0.55

* Avg. PD is the Average Percentage Deviation between obj values and those under the limited time of 5s, 10s, 20s,
30s.

the shuttle departs the depot at the beginning. The computational times are the run times
of getting a new solution when removing or adding EVs. When the stop criterion is set as a
limited run time of 5s, 10s, 20s, and 30s, the average objective values are shown in Table 3.8.
ALNS can solve the dynamic case when adding or removing EVs in the middle of EV relo-
cation operations. ALNS can also provide a new routing for shuttles in short computational
times, less than 48.2s for removing 10% EVs and less than 59.8s for adding 10% EVs. When
10% EV demands are removed, the average percentage deviations are 14.58%, 4.06%, 0.98%,
0.19% within the computational times 5s, 10s, 20s, and 30s, respectively. When 10% EV
demands are added, average percentage deviations are 12.80%, 4.99%, 1.66%, and 0.55%. It
shows that a relatively good new solution (less than 2%) can be obtained in a short time.
Therefore, ALNS is a flexible method to adapt to the dynamic environment where some
EVs are assigned to external drivers or additional EV demands are added in the middle of

relocation operations.

3.8 Concluding Remarks

This chapter considers the EV relocation and shuttle routing problem for the rebalancing

operation of free-floating EV sharing systems. One of the key operational decisions for the
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carsharing company is how to relocate the EV fleet to meet the next day’s demand with
sufficient battery levels.

We develop a metaheuristic ALNS algorithm for the EV relocation problem that deter-
mines where to relocate each EV and how to route the shuttles that transport the staff
drivers synchronously. We apply our method to conduct numerical experiments using both
randomly generated data and actual FFEVSS data in Amsterdam. We found that ALNS
outperforms EBNSM both in the solution quality and the computational time. Our ALNS
also produces better solutions than the RL approach but requires much longer computa-
tional time than RL. Our experiments reveal that providing the RL solution as the initial
solution for ALNS is an effective and efficient solution strategy that can take advantage of
both approaches, achieving the best solution quality and reducing the computational time
significantly.

We also demonstrate how our ALNS can be modified to solve the problem where staff
drivers carry a personal mobility vehicle such as a scooter. Our further analysis provides
practical recommendations on which mode of transportation will be more efficient—i.e., a
small number of shuttles with large capacity or a large number of shuttles with small capacity
(or even personal mobility)—in terms of total operational cost as well as wait times.

Lastly, we show that our ALNS that destroys an incumbent solution partially and repairs
to a new solution in each iteration is quite flexible to be applied to a dynamic environment.
Specifically, our numerical results highlight the usefulness of our flexible ALNS method for an
environment where some EV demands are removed or added in the course of EV relocation
operations.

As directions of future research, this model can be extended for day-time static relocation.
Extending this model to the 24-hour period will ordinarily require redeployment of the model
at constant, and relatively small, time intervals and also the assumption of zero new arriving
demand. In that case, unlike our numerical experiments conducted with constant travel speed

for the city of Amsterdam, a more robust analysis with different shuttle travel speeds can
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be considered to account for various traffic conditions at different times and across different
locations. An important factor in the successful implementation of static repositioning is
the accuracy of the demand forecast. The demand faced by a car-sharing system is highly
sensitive to a variety of external factors. In this study, we base our demand forecast on past
demand data on similar days and focus on synchronous modeling of relocation and routing
operations. However, more sophisticated data mining models and demand prediction models

can be devised.
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Chapter 4: An Adaptive Large Neighborhood Search Method for Drone-Truck

Arc Routing Problem

4.1 Introduction

With the rapid development of unmanned aerial vehicles or drones, the use of advanced
techniques increases the city level and improves the quality of life. Drones (or unmanned
aerial vehicles) are recently widely applied in many fields such as aerial imaging (Rakha and
Gorodetsky, 2018), traffic monitoring (Li et al., 2018), infrastructure inspections (Otto et al.,
2018), policing and surveillance (Engberts and Gillissen, 2016), rescue (Rabta et al., 2018),
product deliveries (Boysen et al., 2018; Wang and Sheu, 2019), and agriculture (Mogili and
Deepak, 2018). The use of drones can improve service because of the higher speeds, lower
cost, and safety. Because the drone can travel directly between any two nodes, it can fly
along or off the roads. The drone is not limited to the ground transportation infrastructure
while servicing the edges. The cooperation of the truck and the drone allows to adapt to
the specific circumstances where some edges require service, but there are no roads, such as
inspection along the power lines or pipelines (Yu et al., 2019). For example, some electric
power lines in mountain areas are not accessible by ground vehicles, while other power lines
have roads. The required edges can be covered by drones or trucks or both of them. Thus, the
Drone-Truck Arc Routing Problem (DT-ARP) extends the traditional arc routing problem
where the service is not limited to the road network and is done by the truck and the drone
cooperatively.

In this chapter, DT-ARP problem optimizes the truck route and drone route to minimize
the total time of completing all the tasks (all required edges are traversed at least once).

Despite the benefits of DT-ARP, it is a complicated problem to make arc routing decisions.
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The cooperation between the truck and the drone poses multiple challenges. First, the
decisions on the truck’s route and the drone’s route are hierarchical and interdependent. The
decision on the drone’s takeoff and landing nodes depends on the truck route. Meanwhile,
the truck must move along the route that includes takeoff and landing nodes. Second,
because the drone has limited battery capacity, each flight trip has a physical constraint,
i.e., maximum flight range. The drones must land on the truck frequently, and the driver
replaces the battery for the drones. Third, it is allowed to fly over multiple arcs in one flight
trip as long as the flight length is less than the maximum flight range. So, it is the uncertain
number of arcs in each flight trip.

The Drone-Truck Arc Routing Problem in this paper is NP-hard because it is a special
case of the Rural Postman Problem (RPP) that has been proved to be NP-hard by Lenstra
and Kan (1976). To the best of our knowledge, there are few papers to look for the optimal
solution for this kind of complicated NP-hard problem. Starting from a simple case, One-
Drone-One-Truck is considered. Because we aim to minimize the total completion time
(makespan), it is vital to obtain the arrival time at each node. However, it is hard to
record the arrival time at each node, because each required edge is allowed to be traversed
at least once, and thus the number of visits at each node is unknown. Therefore, in order
to formulate a mathematical model for the One-Drone-One-Truck ARP, the arc routing
problem is transformed into a standard vehicle (node) routing problem (VRP). Two kinds
of transformation rules by Pearn et al. (1987) and Longo et al. (2006) are used here. Pearn
et al. (1987) added two side nodes and one middle node over each required edge and ensured
that each edge is traversed when all nodes are visited once. Longo et al. (2006) added two
side nodes over each required edge and ensured that each edge is traversed when the side
nodes are visited in sequence. The transformations are described in detail in Section 4.3.1.
The optimal objective value in VRP is equivalent to that in ARP. The optimal ARP solution

is obtained by being transformed back from the optimal VRP solution.
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For a successful operation of DT-ARP, it is essential to develop an efficient method to
solve the Drone-Truck arc routing problem, because DT-ARP is always large-scale in the
real life. We develop an adaptive large neighborhood search (ALNS) algorithm to solve the
problem. ALNS, first proposed by Ropke and Pisinger (2006), is a well-known iterative
metaheuristic framework that has been popularly applied to solving various vehicle routing
problems. ALNS was first applied to the arc routing problem by Laporte et al. (2010) who
solved the capacitated arc routing problem with stochastic demands and multiple vehicles to
minimize the total cost. The key characteristic of ALNS is to destroy an incumbent solution
and repair it to construct a new solution in each iteration. The choices of destroy and repair
method are determined adaptively by their previous successes. Appling ALNS on DT-ARP
is not straightforward. Because two decisions of the truck route and drone route are tangled,
ALNS should be modified to be able to handle such complexity.

Numerical experiments are conducted for which we use randomly generated instances
of several sizes and a set of large-size benchmark undirected rural postman problem in-
stances (Corberan et al., 2021). The performance of ALNS is shown by comparison with
the optimal solution of the MIP formulation solved by Gurobi. Furthermore, ALNS solves
a more complex case Multi-Drones and One-Truck over the randomly generated instances.
A metaheuristic, named multi-start tabu search (MSTS) is proposed by Luo et al. (2021) to
investigate the multi-visit traveling salesman problem with multi-drones and a truck with
the aim to minimize makespan. With MSTS as being benchmark method, we demonstrate
the effectiveness and efficiency of ALNS algorithm.

The remainder of the chapter is written as follows. In Section 4.2, the related literature
is reviewed. The problem statement and mathematical model are presented in Section 4.3.
Adaptive Large Neighborhood Search is described in detail in Section 4.4. In Section 4.5,
the experimental results validate the performance of ALNS to solve the Drone-Truck Arc

Routing Problem. Conclusions are summarized in Section 4.6.
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4.2 Literature Review

There have been numerous studies to investigate optimization for the arc routing problem.
Although there is a rapidly growing literature on the arc routing problems with trucks or
drones, the research on the cooperation between the truck and the drone has been previously
assessed only to a limited extent.

Some literature papers discussed the arc routing problem only with a single vehicle or
a fleet of homogeneous vehicles. Hertz et al. (2000) proposed a tabu search heuristic for
the capacitated arc routing problem where all given required edges were serviced exactly
by one vehicle and minimize the total weight of all service edges. Tagmouti et al. (2010)
proposed a variable neighborhood descent heuristic for a capacitated arc routing problem to
minimize the time-dependent service costs. They transformed the problem into an equivalent
vehicle routing problem and used it as an alternative approach. Then, Tagmouti et al.
(2011) studied the same problem in the dynamic environment. After the vehicles started to
work, new information showed up that affected costs. The variable neighborhood descent
heuristic was adapted to this dynamic variant. Benavent et al. (2014) solved k-vehicles
windy rural postman problem with minimizing the maximal distance traveled by a vehicle
to find k-routes that service all the required edges in a windy graph. They proposed a
branch-and-cut algorithm when the small number of vehicles and required edges. Vincent
and Lin (2015) proposed an iterated greedy heuristic for the time-dependent prize-collecting
arc routing problem and gave a vehicle route to maximize the profit. Monroy-Licht et al.
(2017) proposed an adaptive large neighborhood search algorithm to solve the rural postman
problem with time windows of serving some required edges with one vehicle and solved a set
of large instances with up to 104 required edges. Calogiuri et al. (2019) proposed a branch
and bound method to solve the time-dependent Rural postman problem in which the costs
depend on the time.

There are a few papers considering the arc routing problem with drones and presenting an

exact method for small scale and heuristic for large scale. Oh et al. (2011, 2014) modified a
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road network search problem as a Multi-choice Multidimensional Knapsack problem to min-
imize flight time for multiple heterogeneous drones. And they proposed a greedy insertion
metaheuristic method to produce the shortest path in consideration of physical constraints
via the Dubins path planning. Dille and Singh (2013) also used Dubins path planning to
optimize the drone routing where the drone has a sensor with a radius of coverage. The
arc covering problem was converted into TSP by splitting the road network into a set of
coverage points. The visits on these points ensure part of the road is covered within the
range of the sensor. Chow (2016) formulated a deterministic arc-inventory routing problem
for UAV-based traffic monitoring. And they also modeled the uncertain demand based on
real-time data and derived a stochastic dynamic policy. An approximate dynamic program-
ming algorithm based on the Least Squares Monte Carlo simulation was proposed and was
validated better than the static myopic policy for small instances. Li et al. (2018) also ex-
plored an arc inventory routing and combined with capacitated arc routing with uncertain
demand for traffic monitoring. The mixed-integer programming model was presented with
the aim of minimizing the total cost. It solves up to 12 nodes and 40 lines with the Cplex
solver. The real case study of road traffic in Shanghai is done by applying a local branching
method. Campbell et al. (2018) studied drone arc routing problems to minimize the total
cost where drones can travel directly between any two points and approximate each curve
in the plane by a polygonal chain. The drones leave and enter at the points of the polygo-
nal chain. An iterative algorithm was proposed to solve RPP instances with an increasing
number of points of the polygonal chain. Campbell et al. (2021) also digitized the Length
Constrained K-Drones Rural Postman Problem by a polygonal chain with a finite number
of points. They presented a formulation and some valid inequalities. Based on this, they de-
signed a branch-and-cut algorithm for small-size instances and a metaheuristic for large-size
instances.

As stated above, a variety of methods have been proposed for solving the arc routing

problem with the truck or the drones. Although there are an increasing number of papers
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that address node routing problems with the truck and the drone (Boysen et al., 2018; Agatz
et al., 2018; Khoufi et al., 2019; Wang and Sheu, 2019; Macrina et al., 2020; Chung et al.,
2020; Leon-Blanco et al., 2022), the papers remain few that propose the exact or heuristic

algorithm to solve the synchronization of drone and truck in arc routing problem.

4.3 Problem Statement

The Drone-Truck Arc Routing Problem can be described as follows. The notation is
listed in Table 4.1. Let G = (N, £) be an undirected connected graph. The depot is labeled
node 1. Define R as the set of required edges. One truck and one drone cooperatively
traverse all required edges at least once. The aim is to find the truck and drone routes to
minimize the makespan, i.e., the time leaving from and returning to the depot. There are

some assumptions about the drone.

e Assumption 1. Because the drone can fly off the edge, the flight network is larger than
the actual road network G. Define the set of drone flight edges &4 consists of all available
paths between any two nodes /,j € N, in regards to the Drones Rules and Regulations.
The drone follows the graph Gy = (N, &y). The distance of drone flight is calculated as

the horizontal distance.

e Assumption 2. The drone has a maximum flight range because of the limited battery
capacity. The drone must fly back to a truck before the battery runs out. After the drone
lands at the truck, the driver replaces a full backup battery and makes sure the drone is

prepared for the next trip.

e Assumption 3. The times for the drone to launch and land are neglected. The time to

replace the battery is also neglected.

The formulation for the Drone-Truck arc routing problem is made in two stages: (1)
Transform ARP into corresponding standard VRP; (2) Formulate mixed integer program-

ming for the Drone-Truck Vehicle Routing Problem (DT-VRP). The objective value in DT-
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VRP is equivalent to that in DT-ARP. The truck route and the drone route can be obtained

by transforming back from VRP solution to ARP solution.

Table 4.1: Mathematical Notation

Sets

G Original undirected graph, G = (N, £)

Gy Original undirected flight network, Gy = (N, &)

N Set of original N vertices, N' = {1,2, ..., N}
Set of original undirected edges

Eq Set of original undirected edges for the drone flight

R Set of original undirected required edges R C £

H The complete undirected graph of the corresponding VRP

VH Set of the constructed VRP nodes which are transformed from ARP

1% Set of VRP nodes, V = Vy U{N, + 1}

Vi Set of VRP nodes excluding the depot, Vi = Vy \ {1}

A Set of VRP directed arcs

Ru Set of VRP undirected required edges

Parameters

Ve Truck Speed

Vg Done Speed

d’ The distance matrix between any two node in Vy for the truck

dP The distance matrix between any two node in Vy for the drone

t] The time of traversing arc (i, ) € A for the truck

t7 The time of traversing arc (7, j) € A for the drone

e Maximum units of consecutive flight time, e = Maximum Dri:e flight range

Variables

x,-J-T 1, if the truck traverses arc (i, j) € A; Otherwise, 0.

x,-f? 1, if the drone traverses through arc (i, /) € A; Otherwise, 0.

y. 1, if node i € V; is visited only by the truck; Otherwise, 0.

yP 1, if node i € V) is visited only by the drone; Otherwise, 0.

yE 1, if node i € V; is combined node where a drone launches or lands;
Otherwise, 0.

nT nP € Z+ The ordered visit sequence of nodes for the truck or the drone; Oth-
erwise, 0.

f € R+ The flight time when the drone arrives at node i € V.

a; € R+ The arrival time of the truck or the drone at node i € V.
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4.3.1 Transformation ARP to VRP

We apply two kinds of the arc-to-node transformation proposed by Pearn et al. (1987)
and Longo et al. (2006). Pearn et al. (1987) replaced each required edge with three vertices
to transform ARP into the corresponding VRP. Longo et al. (2006) eliminated one of every
three nodes and achieved the same objective with specific constraints (each required edge

must be traversed at least once). The details are shown in the following section.

4.8.1.1 Pearn et al. (1987) Transformation

Pearn et al. (1987) transformed ARP into VRP by replacing each required edges (/,j) € R
by two side nodes sj;, s; and one middle central node mj;. The corresponding VRP is defined

on the complete undirected graph H = (Wi, En).

Vi = U {sij, myj, 5y U {1}

(iJ))ER
Ew=A(ij)i#j,i.j €Vu}

The set of VRP nodes includes every three nodes of each required edge and the depot
node 1. The ARP with |R| required edges is transformed into the undirected complete graph

VRP with 3 x |R| + 1 nodes.

The distance of the edges in H are defined as the below equations.

(

0 it (i,j) = (k. 1)

d(sj, sw) =4 c(i,j)  if (i,j) = (I, k)

| dist(i k) if (i) # (k. 1), (7.)) # (1 k)

d(1,s;) = dist(1, 1)
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1 1 f— .. ..
5¢; v =sjors;

d(m,-j, V) =

oo  otherwise

where dist(/, j) is the shortest path distance between node i and j in the original graph. The
purpose of the middle node mj is to ensure that the shortest path between two side node s;

and s; is always s; — my; — sj; or s; — m;; — s in sequence.

Figure 4.1: An Example for Arc Routing Problem with New Nodes. (Original arc distance
are shown next to each arc; green lines mean the required edges)

It is noted that the distance calculation rule is different from that in Pearn et al. (1987)’s
paper. The objective function in this paper is to minimize the completion time, while the
objective in Pearn et al. (1987)’s paper is to minimize the total cost. The arrival time at each
node is requested to be accurate. Although the three nodes are placed over required edges
at different locations (shown in Figure 4.1), they are actually dummy and the distances are
calculated based on their real locations. For example, the set of side nodes {s;, Vi € G :
(i,j) € R} are the dummy nodes for the real node i € G. Their real locations are actually
at the real node /. In the example Figure 4.1, s3; and s3; are the dummy nodes to node 3.

Their real locations are set at node 3.
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4.3.1.2 Longo et al. (2006) Transformation

Longo et al. (2006) replaced each required edge with two vertices. An edge (i,j) € R is
associated to vertices s; and s;. The pass through edge (7, j) is same as visiting two vertices
sij and sj; in sequence (s; — sj; or s;; — s;). The ARP problem can be solved just by working
out the corresponding 2 x |R| + 1 VRP problem where each node is visited exactly once.

The corresponding VRP is defined on the complete undirected graph H = (Vy, Ex).
= {J {sp 51U {1}
(i))erR
The distances between internodes are calculated as the following equations (Longo et al.,

2006).

(

0 if (i,j) = (k. /)

d(sj. su) = c(i,j)  if (i,j) = (I, k)

| dist(i k) if (7)) # (k. 1), (7.]) # (1 k)

d(1,s;) = dist(1, 1)

where dist(/, j) is the shortest path distance between node i/ and j. Since the network of the
truck G = (N, €) and the network of the drone Gy = (N, &y) are different, the distance
matrix for the truck d7 and for the drone dP are calculated with regard to G and Gy,
respectively.

The requirement of traversing the required edges can be satisfied by adding a specific
constraint that is to visit s; and s; in sequence. So, in the graph H, define the set of the

undirected required edges Ry as follows.

R = (s 5i)l(i.J) € R}
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(a) Original ARP graph G (b) Corresponding VRP complete graph H

Figure 4.2: Transformation Arc Routing Problem to Node Routing Problem. (Green lines
mean the required edges; the values above edges are the distances between internodes)

4.3.2 MIP Formulation for Drone-Truck VRP

The MIP formulation for DT-VRP is built based on the compact formulation by Roberti
and Ruthmair (2021). The main differences between my formulation and theirs are that (i)
They set the arrival time at one node based on the assumption that the drone’s speed is
greater than the truck’s speed. We do not need this assumption. We modify the arrival time
restriction to Constraint (4.19), such that the time through one arc depends on the truck’s
speed when the drone gets aboard the truck. (ii) Their subtour elimination constraints
(arrival times restriction) become invalid here, because some distances between internodes
are zero in our problem, such as di s, = dg,, s, = 0 shown in Figure (4.2). So, we introduce
the variables n” and nP to denote the ordered sequence of visiting nodes. Constraints (4.15)
and (4.16) are added to avoid causing subtours. (iii) They restricted that the drone can
only visit one node in a single flight trip. Our formulation allows the drone to visit multiple
nodes in a single trip.

The vertex set V is defined as V = Vy U {N + 1}, where node N + 1 represents the enter

depot node. Define V; =V \ {1} as the set of nodes excluding the depot. The undirected
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edges are extended as directed edges A = {(i,j)|i,j € Vu : i # j}U{(i, N+1)|i € Vy : i # 1}.
The mathematical formulation is described as the following.

The Objective Function is to find routes of a truck and a drone to minimize the total
completion time, i.e., makespan. The value of makespan is calculated between the times

when the truck leaves and returns to the depot.
minimize  ay.1 (4.1)

Required Edges must be traversed at least once by the truck or the drone (Constraint
(4.2)). It is noted that Constraint (4.2) is only needed for the 2-node transformed VRP
(Longo et al., 2006). This ensures that all originally required edges are traversed when all
side vertices are visited. Constraint (4.3) restricts that truck routing decision x” and drone

D

routing decision x~ are binary variables.

x] +x] +xP+xP>1 V(i,j) € Ru (4.2)

x/ . x; €{0,1} v(i,j) €A (4.3)

y

Flows for Truck and Drone Routes are described as follows. The truck leaves and returns
to the depot exactly once. Outflow at the depot leave node 1 is 1 and inflow at depot enter
node N + 1 is also 1 (Constraint (4.4)). Constraint (4.5) restricts the flow balance for the

other nodes. Constraints (4.6) and (4.7) restrict the flow balance for the drone route.

doxi= Y, X =1 (4.4)

(1.j)eA (i,N+1)eA

dooxl = > Kl =0 VieWw (4.5)
(ij)eA (.eA

(1j)eA (i,N+1)eA
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doxP—= > xP=o0 Vie W (4.7)

(ij)eA (.i)eA

Node Category is introduced as follows. Let y;” be a binary variable equal to 1 if node
i € V; is only visited by the truck, called a truck node. yP is a binary variable that is equal
to 1 if node i € V; is only visited by the drone, called drone node. Let y& € {0,1} be
equal to 1 if node i € V; is visited by both the truck and the drone, called the combined
node. Constraint (4.8) ensures that each node must be one of three categories of nodes.
Constraints (4.9) and (4.10) ensure the drone takes off and lands at the combined nodes and
allows the drone to visit multiple nodes in a single flight trip. Variable «; decides that arc
(1,j) can form the drone routes in two cases: one endpoint is (i) combined node or (ii) drone
node. In example Figure 4.3, arc (1,2) suits the first case: one endpoint is combined node;

arc (2,3) suits the second case: one endpoint is drone node.

drone node drone node

combined node combined node

Figure 4.3: An Example for Node Category in One Flight Trip.
(Solid lines are truck route and dashed lines are drone route)

Constraints (4.11) and (4.12) link x] and x{ with y and ensure that along the truck
(drone) route, the node is either truck (drone) node or combined node. Constraints (4.13)

and (4.14) ensure variable y and « are binary.

_y,'T +y,'D + in =1 Vi e Vl (48)
xP +x7 <yf 4yt 4201 - ay) Vi, jye A:ij¢& {1, N+1} (4.9)
x7? +x7 <yl +yP + 2y V(i,j)eA:ij¢&{1,N+1} (4.10)
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S ox] =yl +yf View (4.11)

(iJ)eA

S xP=yP+yf viewn (4.12)
(i))eA
yi .yl yf €4{0,1} VieW (4.13)
a; € {0.1} v(i.j) € A (4.14)

Subtour Elimination constraints are added to avoid causing subtours for the truck (Con-
straint (4.15)) and for the drone (Constraint (4.16)). Let n] and nP denote the sequence

order of visiting nodes for the truck and the drone. Let N, = [Vy].

nf >nl +Nyx] — (N, —1) v(i,j) € A (4.15)
n? > n? + N,x; — (N, — 1) V(i,j) €A (4.16)
n! nP €7+ View (4.17)

Arrival Time of the truck or the drone is denoted as a; € R+ at node i € V. Define t,-jT

and t,-JD be the time of traversing arc (i, ) for the truck and the drone, respectively.

;
d;

Vi

D
dj

7]

th =

D __
i = ty =

;

Constraints (4.18) and (4.19) set the arrival times of the truck and the done at the node.
It is noted that when the drone gets aboard the truck (x7 = 1,x] = 1), the arrival time
at node j only depends on the truck’s traverse time. Constraints (4.20) and (4.21) show
that the total completion time cannot be lower than the summation of the traverse time by
the truck or by the drone. Constraint (4.22) restricts that the arrival time is nonnegative
continuous variable.

aj>a+t] —M(1-x]) v(i,j)e A (4.18)

y
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aj > a+t — M(1—x7)— Mx/] v(i,j) e A (4.19)

) )

> tix] < awa (4.20)
(ij)eA
Dt <ann (4.21)
(ij)eA
;>0 VieV (4.22)

Drone Flight Range is considered because of the limited battery. Let e be the maximum
consecutive flight time. Constraint (4.23) guarantees that the drone can not traverse an arc
whose flight time exceeds e unless the drone gets aboard the truck. A variable f; is introduced
to track the flight time in a flight trip. Constraint (4.24) sets the tracking flight time f;. The

flight time of a trip must be not greater than e (Constraint (4.25)).

D T .. . .D
Xij < Xij V(I,j) eA: t,-j > e (4.23)
fi >+t — M(1—x?)— Mx] V(i,j) e A (4.24)
0<f<e Viey (4.25)

4.4 Adaptive Large Neighborhood Search

In this section, we develop an Adaptive Large Neighborhood Search (ALNS) for the
Drone-Truck Arc Routing Problem. ALNS was first proposed by Ropke and Pisinger (2006)
and applied to the vehicle routing problem - the pickup and delivery problem with time
windows. ALNS is a well-known popular iterative algorithm to solve various vehicle routing
problems. The idea of ALNS is to search in a neighborhood by destroying an incumbent
solution and repairing it to construct a new solution in each iteration. The adaptivity is
achieved by determining the choices of several destroy and repair methods on their previous
successes. Laporte et al. (2010) first applied ALNS to solve the arc routing problem to

minimize the total cost. To the best of our knowledge, this is the first paper using ALNS
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on the Drone-Truck Arc Routing Problem to minimize the completion time that considers
truck routing and drone routing jointly.

The procedure of the proposed ALNS is shown in Algorithm 4. DM and RM are denoted as
the sets of the destroy and repair methods, respectively. The solution has two decisions: the
truck route and the drone route. The key part is how to determine the sequence of traversing
the required edges. Thus, it is vital to create X, and Y, which represent the sequence of
required arcs traversed by the truck and the drone. In each iteration, the new X, and Y, in the
neighborhood are produced by applying destroy and repair. The destroy process is to remove
some edges from the truck required edges route X, and drone required edges route Y,. Next,
the repair process can reconstruct the partial X, and Y,. Then, the complete truck route X
and drone route Y are obtained by encoding from X, and Y,, described in Section 4.4.1. The
destroy and repair methods are chosen by using the roulette-wheel selection principle based
on their probabilities. When the method creates a better solution, the probability of the
corresponding method increases, as described in section 4.4.5. The acceptance rule is used:
the new best solution is accepted if its objective value is better than that of the current
best solution; the new solution with a higher objective value has a chance to be accepted by
the simulated annealing acceptance criterion. T denotes the value of the temperature and
gradually decreases at each iteration by a rate h € [0, 1]. The stop criteria are the maximum

iterations Npax and non-improving iteration Zpay.

4.4.1 Decoding and Encoding

The feasible solution in ALNS has two decisions: the truck route X and the drone route
Y. The route is decoded by a string of arcs that represents the sequence of traversing the
arcs. Let X, and Y, denote the sequence of required edges traversed by the truck and the

drone, respectively. It is noted that the edges in X, and Y, do not have a direction.
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Algorithm 4: Pseudocode for ALNS
Input: G, R, DM, RM, Ny, Zmax
OUtPUt: Xbestv Ybest
1 Initialize the truck required edges route X,o and the drone required edges routes Yo
(Sec 4.4.2);
2 Initialize destroy methods probability P% and repair methods probability P% (Sec
4.4.5);
Xrbest — churrent — XrOa Yrbest — Yrcurrent — YrO;
Encode the required edges route into the complete route Xpest, Yoest <— encode(X;, Y;)
(Sec 4.4.1);
Calculate the makespan of current best solution tyes; <— f(Xpest, Yoest);
N <1, 7 <« 0;
while N < Ny, Z < Znax do
Select a destroy method d € DM with probability P};
Select a repair method r € RM with probability P}
10 Let Xinew and Yinew be the new required edges solution obtained by appling
destroy d and repair r on Xicurrent, Yrcurrent;
11 Obtain the complete truck route and drone route
Xoew: Ynew <= encode(Xipew, Yinew);
12 if f(Xnew: Ynew) < thest then

=W

© 00 N & W

13 Xbest < Xnewa Ybest — Ynew, tbest < f(Xner Ynew)a Xrbest < Xrnewa
\/rbcst — »/rncwa Z <+ 07

14 else

15 Z+—Z+1;

16 v = e_(f(XneWxYnew)_f(XcurrentvYcurrent))/T;

17 Generate a random number € € [0, 1];

18 if e < v then

19 L churrent < Xrnew» Yrcurrent <~ anew;

20 T« hT;

21 Update P} and PR (Sec 4.4.5);
22 N < N+ 1;

The encoding rule turns X, and Y, into the complete route solution X and Y. The
encoding rule is done in two steps: (1) construct the complete truck route X; (2) connect
the edges in Y, to the truck route X.

In step 1, any two required edges in X, are connected with the shortest path. Let X, =
{(Va, Vax1), (Vb-Vps1), ... }. Starting from the depot 1, calculate the shortest distance dist(1, v,)

and dist(1, vo41) and choose the shortest path to connect. If dist(1, v,) < dist(1, vat1), add
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{(1, va), (va, var1)} in X; otherwise, add {(1, voy1), (Vaz1, va)}. If v is the last node in the
current partial X, choose the shortest path v — v, or v — v,,1 to append to the end in X.
Complete the truck route until all required edges in X, are done.

In step 2, Connect drone required edges Y, to the truck route X by a greedy rule. Let
Y, = {(ve, ves1), (Va, Vig11), ... }. First, extract all node from the truck route X as Vi, =
{1, v1, v, ...}. Then, insert any edge in all possible locations between two consecutive nodes
Vv, viz1 € V. Choose the direction of drone edges with the smaller distance between
dist(v;, v¢) + dist(veq1, vir1) and dist(v;, veqq) + dist(ve, vip1). Calculate the increased value
in the objective value between before and after inserting the edge. Choose the location
with the least increased objective value to insert the edge (v, vc11). The partial Y becomes
{-s (Vi=1, Vi), (Vey Ves1), (Vig1s Viga), ... ). Next, put the vertices v, vey1 in V,. Repeat the
above procedures until all required edges are done.

Two constraints must be satisfied to construct the drone route:

e The drone required edges can not insert between two nodes belonging to an arc in Y,. For

example, (vg, Vg11) can not insert between v, and veyq.

e The flight distance must less than or equal to the maximum drone flight range.

4.4.2 Initial Solution

The initial X, and Y, are created by the Nearest Neighborhood Search. First, the required
edges are randomly assigned to the truck set S,, and the drone set S,,. Next, the required
edges route is constructed progressively by adding the nearest edge. The procedure is shown
in Algorithm 5. The distance between any two edges (a, b) and (c, d) shows the spatial

closeness and is defined as following equation.

(dist(a, c) + dist(b, d) + dist(a, d) + dist(b, c)) (4.26)

I,

diste ((a, b), (¢, d)) =

where dist(/, j) is the shortest path distance between node i and j in the graph G.
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Algorithm 5: Pseudocode for initialization required edges route
Input: The set of the required edges for the truck or the drone S,
Output: The required edges route r

1 r < {(a, b)} with (a, b) = argmin{dist. ((1,1), (a, b)), V(a, b) € S, };

2 while S, # () do

3 (c, d) < the last edge in r;

4 Add the nearsest edge (u, v) to the end of r with

(u, v) = argmin{diste ((c, d), (u, v)),V(u, v) € S, };

S, S\ (u, v);

(9]

4.4.3 Destroy Methods

Three destroy methods are applied to destroy a feasible solution. The destroy methods

are Random Removal, Worst Route Removal, and Cluster Removal.

4.4.3.1 Random Removal

Randomly remove a certain percentage g% of edges from the truck and the drone required

edges route X, and Y,.

4.4.3.2  Worst Route Removal

Given a solution (X;, Y;), the cost for the required edge e is defined as the difference
value in the objective function before and after removing edge e from current solution. It is

expressed as
cost(e, X;, Y;) = max {f(encode(X,, Y,)) — f-e(encode(X;, Y;)), O} (4.27)

where f_.(-) is objective function after removing edge e after current solution. Sort all costs
for required edge e € R in the descending order. Remove the first |¢% x |R|| edges with

the larger costs from X, and Y,.
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4.4.3.8  Cluster Remowval

The idea of cluster removal is to avoid generating a similar new solution and try to
jump into a farther neighborhood to get a solution with the large change. The relatedness
between two edges (u, v) and (7, /) is measured by considering two factors: “distance” and
“time”. The “distance” represents the spatial closeness of these two edges and is calculated
as Equation (4.26).

The “time” between two edges (u, v) and (i, j) represents temporal closeness and is defined

as the average arrival times at start points and end points.
.. 1
t((u,v). (i.J) = (la — ail + [ay — ] + |au — 3| + |av — ai])

For any edge (u, v) € R, the measure of relatedness is defined as the following equations.

o diste((u, v), (i,/))
R ). (1)) =w G o v), (k) Yk D ERY
. t((u, v), (i.4))
Zmax{t((u. v), (k,1),Y(k, 1) € R} — min{t((u,v), (k,1)),Y(k 1) e R}

(4.28)

where wy and w, are weights with sum of 1.

The smaller R((u, v), (i,J)) is, the more related two edges are. Following steps are fol-
lowed: randomly select a required edge (u,v) € R and calculate R((u, v), (i,/)),¥(i,j) #
(u,v) € R. Sort all R((u, v), (i,J)) in descending order. Remove edges with first | g% x |R]]

in the sequence.

4.4.4 Repair Methods

There are two repair methods to reconstruct the partial truck and drone required edges
route X, and Y,. The repair methods are Random Insertion, Greedy Insertion, and Regret

Insertion.
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4.4.4.1  Random Insertion

Given partial truck required edges route X, and drone required edges route Y,, randomly

insert the undecided required edges into them.

4.4.4.2  Greedy Insertion

The idea of the greedy insertion heuristic is to find the best insertion. A concept of
Insertion Cost /(e, p, X;, Y;) is introduced to denote the change in the objective value when

inserting the edge e into Xr or Y, at position p. It is expressed as
I(e,p, X, Y,) = Af(e,p, X, Y;) (4.29)

Select the position p to insert e with the least insertion cost I(s, p, X;, Y;). Repeat the

above steps until all required edges are inserted.

4.4.4.3 Regret Insertion

The regret insertion is improved by incorporating look-ahead information when selecting
the required edge to insert.

For any required edge e € R, the regret-k cost is defined as

k
R(e, X, Y,) = {Afi(e. X, Y,) = Afi(e, X, Y;)} (4.30)

j=1
where Af(e, X;, Y;) is the increased value in the objective value after inserting edge e. Sort
Af(e, X,, Y,) for all possible insertion positions in the increasing order. Af(e, X;, Y,) means
the increased value in the objective for the k-th best insertion position. The best insertion

position has the least Afy(e, X,, Y;). The regret insertion is the reconstruction heuristic that

chooses to insert the required edge with the maximum R(e, X;, Y;) and insert this edge into
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the position with the least insertion cost. Repeat the above procedures until all required

edges are inserted.

4.4.5 Adaptive Probability Update

The adaptivity of ALNS is achieved by selecting the destroy and repair methods based
on their previous successes. In each iteration, the methods are chosen by the roulette wheel
selection principle based on their probabilities.

The weights are introduced to track the scores to measure how well the methods have
performed. The initial weights are equal to 1. In iteration /i, the destroy method d and
the repair method r are selected. If the methods creates a new global best solution, the
weight w/t! < w/, + o1 and w/** « w/ + oy; if the new solution is accepted with a better
objective value than the current solution but not the global best one, Wé,+1 +— w) + o and
w! Tl < w/ +0y; if the new solution is accepted with a worse objective value than the current
solution, w//™! < w) + o3 and w/*! « w! + 03.

Then, the probability values of destroy and repair methods in iteration i are updated as

follows:

P = (L de DM) (4.31)

ZdeDM Wy

. Wi
Pr=|=—"——:reRM (4.32)
8 (ZrGRM WI! >

4.5 Numerical Experiments

The experiments are implemented on the computer which has a 2.2GHz Intel Xeon Pro-
cessor and 32GB RAM. The MIP formulation in Section 4.3.2 is solved in Julia v1.6.1 by
calling Gurobi v0.9.12. Adaptive Large Neighborhood Search and Tabu Search are coded in
Julia v1.6.1. The experiments are implemented on small-size randomly generated data and

a set of large-size undirected rural postman problem instances.
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4.5.1 One Truck and One Drone
4.5.1.1 Analysis on the Small-Size Instances

The data are randomly generated when the number of nodes || = 10, 15, the number
of edges |€| = 20, 30, the number of required edges |R| = 5,7, 10. The vertices are randomly
distributed in a 100 x 100 square region. The required edges are randomly chosen from all
edges. Each type of randomly generated data has 25 instances. Define the maximum flight
time e = § X ﬁ Z(i,j)egd d,-? =+ vyq. The parameter 3 is set as 1,2,3 which determines the
flight range. The speed of the truck v; and the speed of the drone vy are selected as equal
(1,1), slower (1,2), and faster (2,1).

We use two kinds of transformation rule to convert ARP into 2 x |[R|+ 1 and 3 x |R|+1
VRP. The One-Drone-One-Truck results over the randomly generated data when N = 10
are shown in Table 4.2. Column Obj means the average objective values solved by MIP-3
(Pearn et al., 1987), MIP-2 (Longo et al., 2006), Tabu Search (TS) (Luo et al., 2021) and
our ALNS. The optimal solution can be obtained by MIP-3 and MIP-2 solved via Gurobi
when the number of required edges |R| is 5 or 7. When |R] is 10, the instances become very
large and cannot be solved to optimality in the limited run time of 3600s. As the objective
values of MIP-3 and MIP2 being benchmark, TS and ALNS can not perform better with the
average gap of 3.81% and 1.73% when |R| = 5; the gaps of 4.65% and 2.07% when |R| = 7;
and the gaps of 4.87% and 2.62% when |R| = 10. ALNS outperforms TS in the objective
values because of the smaller gap to the optimal solutions. The computational times reveal
that MIP-2 runs the fastest when the instances are small. When |R| = 10, the average run
time of T'S (247.02s) and ALNS (202.99s) are much less than those of MIP. The advantage
of the metaheuristic in run time becomes more obvious. Meanwhile, ALNS also outperforms
TS in the run time.

One-Drone-One-Truck results over the randomly generated data when N = 15 are shown

in Table 4.3. MIP-3 and MIP-2 solve the small instances well. However, when the number
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Table 4.2: One-Drone-One-Truck Results on Randomly Generated Data N = 10

Instance Obj CPU (seconds)
MIP-3> MIP-2¢ TS Gap% ALNS Gap% MIP-3> MIP-2¢ TS ALNS

359.30 359.30 367.23 2.21 363.23 1.09 4.85 296 11.24 3.64
289.67 289.67 299.32 3.33  290.62 0.33 8.25 4.90  10.63 5.72
252.07 252.07 258.62 2.60 254.34 0.90 4.79 1.28 9.42 6.32

358.22 358.22 371.99 3.84 365.32 1.98 4.58 0.96 4.63 11.23
256.43 256.43 268.32 4.64 263.23 2.65 8.99 273 10.42 7.32
196.29 196.29 204.23 4.05 200.42 2.11 9.12 4.36 9.98 5.43

184.26 184.26 191.32 3.83 188.42 2.26 2.81 1.59 1242 7.43
165.14 165.14 173.32 4.96 168.23 1.87 2.22 2.17 9.43 5.73
158.54 158.54 166.21 4.84 162.34 2.40 3.23 1.86 8.99 6.43

Ave 246.66 246.66 255.62 3.81 250.68 1.73 5.38 2.53 1042 5.85

Vi V4

NIOE20R5 1 1

—_
O]
WN [ WNRF|WN R~

200.25 200.25 210.45 5.09 204.32 2.03 15.70 5.20 10.53 14.23
193.24 193.24 202.34 4.71 198.43 2.69 18.65 4.39 7.34 15.32

Ave 308.61 308.61 322.65 4.65 314.83 2.07 147.23 51.12  40.00 20.87

NI10E20R7 1 1 1 462.89 462.89 483.53 4.46 469.32 1.39 37.42 7.92 5.35 16.32
2 353.17 353.17 372.73 5.54 363.24 2.85  230.80 75.74  33.42 17.42
3 314.13 314.13 326.42 3.91 319.40 1.68  133.66 42.36  79.54 20.32
1 2 1 461.53 461.53 477.32 3.42 470.34 1.91 59.58 12.92 4343 16.23
2 319.89 319.89 33543 4.86 326.43 2.04 49773  126.24 63.43 34.23
3 237.08 237.08 250.32 5.58 242.53 230 31773 180.17  74.52 43.42
2 1 1 23527 235.27 245.32 4.27 239.43 1.77 13.81 5.16 12.43 10.32
2
3

N10E20R10 1 1 1 594.61* 594.61* 607.34 2.14 603.24 1.45 1443.86 1066.15 295.34 125.34
2 439.66* 434.67* 466.34 7.29 452.32 4.06 3593.46 3144.67 222.75  220.32

3 393.13* 391.29* 436.23 11.48 412.32 5.37 2954.81 2049.52 252.39 198.52

1 2 1 591.06* 591.06* 603.30 2.07  599.42 1.41 1211.51 938.79 215.34 284.55

2 426.10* 394.15* 405.63 2.91 400.23 1.54 3600.00 3600.00 199.23  204.32

3 296.07* 284.21* 295.32 3.91 289.53 1.87 3504.08 2798.71 189.43  221.23

2 1 1 302.16* 301.05* 308.27 240 304.23 1.06 1546.43 918.86 285.35 198.43

2 258.35* 256.34* 270.43 5.00 263.23 2.69 1795.22 1008.30 263.23 174.23

3 244.98* 244.32* 259.32 6.14 254.34 4.10 1424.13  910.31 300.11  199.99

Ave 394.01 387.97 405.80 4.87 397.65 < 2.62 2343.81 1827.58 247.02 202.99

2 Not all 25 instances can be solved to optimality within the limited computational time of 3600s and the objective
values are not optimal.

> MIP formulation are based on the VRP transformed from Pearn et al. (1987)

¢ MIP formulation are based on the VRP transformed from Longo et al. (2006)

of required edges increases, ALNS and TS perform better both in the solution quality and
computational times. The objective value gaps of ALNS 1.43%, 2.39% and 2.74% show that
ALNS can get an acceptable solution within up to 10.34s, 55.47s and 300.23s for |R| =5, 7,
10, respectively. Between these two metaheuristics, ALNS also runs faster and gets greater

solutions than TS.
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Table 4.3: One-Drone-One-Truck Results on Randomly Generated Data N = 15

Instance Obj CPU (seconds)
MIP-3> MIP-2¢ TS Gap% ALNS Gap% MIP-3> MIP-2¢ TS ALNS

446.71 446.71 454.23 1.68 450.43 0.83 3.44 1.50 1243 6.47
362.33 362.33 371.01 240 367.63 1.46 11.74 722  10.42 10.34
303.35 303.35 314.42 3.65 309.34 1.98 5.32 4.00 9.45 5.63

446.42 446.42 457.52 2.49 452.32 1.32 3.50 1.89 7.64 4.63
340.98 340.98 348.32 2.15 344.52 1.04 16.63 10.29 8.63 7.83
253.60 253.60 265.32 4.62  259.32 2.25 12.51 751  11.42 6.58

225.79 22579 233.43 3.39  228.32 1.12 2.77 147  10.24 3.21
205.07 205.07 211.89 3.32 207.53 1.20 4.28 3.19 14.25 7.42
190.00 190.00 200.21 5.37 193.24 1.70 291 222 11.42 5.43

Ave 308.25 308.25 317.37 3.23 31252  1.43 7.01 4.37 10.66 6.39

Vi V4

NI15E30R5 1 1

—_
O]
WN [ WNRF|WN R~

239.13 239.13 250.43 4.73 244.42 2.21 72.57 16.91  53.53 20.43
225.23 22523 235.43 4.53 231.52 2.79 57.28 13.49  49.35 19.64

Ave 362.98 362.98 381.41 5.18 371.56  2.39 302.03 58.12  42.87  27.02

N15E30R7 1 1 1 537.89 537.89 553.42 2.89 549.75 2.21 45.05 9.11 45.33 18.32
2 424.33* 424.33 446.34 5.19 430.23 1.39  637.16 101.28  55.11 22.62
3 352.69 352.69 375.43 6.45 362.34 2.74  126.60 2421 34.63 35.23
1 2 1 53358 533.58 563.42 5.59 547.63 2.63 53.13 6.95 45.34 19.43
2 399.35* 399.35 420.53 5.30 410.23 272 963.13 221.13 39.64 35.64
3 282.83 282.83 297.34 5.13  289.53 237 741.21 12579  26.71 55.47
2 1 1 27176 271.76 290.34 6.84 278.43 2.45 22.17 420  36.23 16.43
2
3

NI15E30R10 1 1 1 665.25* 665.25* 683.24 2.70  680.34 2.27 1454.16 1203.22 32043  290.31
2 502.19* 498.74* 520.34 4.33 511.42 2.54 3600.00 3371.43 295.35 300.23

3 435.41* 429.91* 450.32 4.75 440.23 2.40 2685.58 2422.05 340.52  243.52

1 2 1 660.18* 660.18* 678.42 2.76  675.73 2.35 1305.83 1300.98 299.43 210.24

2 481.46* 481.08* 515.62 5.00 510.23 3.90 3555.47 3600.00 287.77  199.53

3 341.40* 337.74* 370.53 5.34 359.34 2.16 340247 3412.68 31045 178.46

2 1 1 335.85* 332.41* 359.64 6.91 348.53 3.60 1514.19 1341.94 296.34 176.34

2 278.89* 278.72* 286.43 277 285.47 242 1454.84 1520.01 301.53 193.32

3 262.62* 260.58* 270.31 3.73  268.34 2.98 122825 1015.98 296.43  200.52

Ave 440.36 441.40 459.43 4.25 453.29  2.74 2263.24 2132.33 305.36 221.39

2 Not all 25 instances can be solved to optimality within the limited computational time of 3600s and the objective
values are not optimal.

> MIP formulation are based on the VRP transformed from Pearn et al. (1987)

¢ MIP formulation are based on the VRP transformed from Longo et al. (2006)

4.5.1.2  Analysis on the Large-Size Instances

As shown in Table 4.2 and 4.3, Gurobi cannot solve MIP-3 and MIP-2 to optimality
in 3600s and formulation can not get a feasible solution when the network is large. The
two metaheuristic methods, TS and ALNS, are tested on a set of undirected rural postman

problem instances (Corberdn et al., 2021). The characteristic of the instances UR500 is
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shown in Table 4.4. The results of four URPP500 instances are summarized in Table 4.5.
The run time is limited to 1200 seconds for both TS and ALNS. ALNS is able to get better

solutions for all instances with the average gap of 1.99%, 4.16%, 1.36% and 3.54%.

Table 4.4: Characteristic of Undirected Rural Postman Problem UR500

Ave Min Max

Nodes 446.0 298 499
Edges 1128.9 597 1526
Req-Edges 35.3 1 99

Table 4.5: One-Drone-One-Truck Results on Large-Size Instances

ve vg B| TS ALNS Gap% | TS ALNS Gap%
| UR532 | UR535

1 1 1]10342 10034  3.07 | 12042 11592  3.88
2| 10225 9987  2.38 | 11942 11561  3.30

3] 9998 9698  3.09 | 10093 9899  1.96

1 2 1] 8843 8733  1.26| 8234 7953  3.53
2| 8632 8529  1.21| 8102 7801  3.86

3| 8452 8321  1.57| 7842 7504 450

2 1 1| 7200 7033 240 | 7293 6903  5.65
2| 6992 6843 218 | 7102 6723  5.64

3| 6703 6653  0.75 | 6983 6643  5.12

Ave | 8599 8426  1.99 | 8848 8301  4.16

| UR537 | UR542

1 1 1]11023 10932  0.83 | 11423 11242  1.61
2| 10294 10200  0.92 | 11232 10923  2.83
310125 10101  0.24 | 11001 10842  1.47

12 1]10023 9994 029 | 10532 10424  1.04
2| 9923 9530  4.12| 10423 10211  2.08

3] 9380 9305  0.81]10232 10112  1.19

2 1 1| 8990 8942  0.54 | 10032 9123  9.96
2| 9123 8816  3.48 | 9834 8942  9.98

3| 8824 8736 1.01 | 8988 8834  1.74

Ave | 9745 9617  1.36 | 10411 10073  3.54
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4.5.2 One Truck and Multiple Drones

4.5.2.1 Analysis on the Small-Size Instances

Table 4.6: Two-Drones-One-Truck Results on Randomly Generated Data with N = 10

Instance Obj CPU (seconds)

Vi Vg B TS ALNS Gap% TS ALNS Gap%

N10E20R5 1 1 1 271.26 263.23 3.05 9.87 3.55 178.03
2 222.32 216.62 2.63 12.01 6.07 97.86

3 198.62 192.34 3.27 7.4 4.65 59.14

1 2 1 280.5 275.32 1.88 13.1 4.47 193.06

2 201.62 195.23 3.27 11.55 6.11 89.03

3 142.67 138.42 3.07 10.83 5.07 113.61

2 1 1 14042 136.42 2.93 12.21 9.36 30.45

2 114.78 110.54 3.84 8.37 5.12 63.48

3 105.21 101.32 3.84 9.44 511 84.74

Ave 186.38 181.05 3.09 10.53 5.50 101.04
N10E20R7 1 1 1 418.34 409.56 2.14  33.38 17.69 88.69
2 311.91 308.22 1.20 37.28 14.08 164.77

3 234.7 229.68 2.19 80.68 15.62 416.52

1 2 1 381.38 373.75 2.04 45.02 22.11 103.62

2 259.99 253.81 2.43 64.27  39.26 63.70

3 170.71 163.95 4.12 75.80 48.2  57.26

2 1 1 152.8 148.61 2.82 36.51 13.5 170.44

2 162.5 154.3 5.31 48.65 13.99 247.75

3 126.74 121.64 4.19 28.56 20.5 39.32

Ave 246.56 240.39 2.94 50.02 22.77 150.23
N10E20R10 1 1 1 517.34 508.74 1.69 311.24 109.74 183.62
2 488.42 471.12 3.67 235.85 222.72 5.90

3 436.23 422.74 3.19 237.79 187.22 27.01

1 2 1 545.42 536.02 1.75 230.34 207.35 11.09

2 414.23 404.23 247 281.53 186.42 51.02

3 335.32 324.34 3.39 286.63 234.13 22.42

2 1 1 214.23 205.03 4.49 265.55 183.73 44.53

2 194.22 182.13 6.64 253.03 178.93 41.41

3 188.43 178.94 5.30 295.01 196.39 50.22

Ave 370.43 359.25 3.62 266.33 189.63 48.58
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Table 4.7: Two-Drones-One-Truck Results on Randomly Generated Data with N = 15

Instance Obj CPU (seconds)

vi vq fB TS ALNS Gap% TS ALNS Gap%

N15E30R5 1 1 1 327.83 312.33 4.96 14.93 7.97 87.33
2 301.23 299.93 0.43 18.12 8. 74 107.32

3 284.32 269.74 5.41 11.85 8.53 38.92

1 2 1 379.82 351.82 7.96 7.94 4.23 87.71

2 309.72 299.22 3.51 11.63 6.73 72.81

3 258.42 2b54.23 1.65 14.32 6.28 128.03

2 1 1 248.83 239.32 3.97 12.24 4.61 165.51

2 201.49 195.93 2.84 15.25 7.82 95.01

3 189.81 185.14 2.52 11.32 4.33 161.43

Ave 27794  267.52 3.69 13.07 6.58 104.90
N15E30R7 1 1 1 418.42 402.65 3.92 79.43 16.72 375.06
2 392.42 385.53 1.79 46.51 24.82 87.39

3 379.34 375.23 1.10 66.23 34.73 90.70

1 2 1 413.92 396.23 4.46 55.24 18.93 191.81

2 394.23 374.11 5.38 50.64 32.94 53.73

3 372.32 345.34 7.81 65.31 53.67  21.69

2 1 1 179.24 163.23 9.81 27.23 17.33 57.13

2 139.53 130.92 6.58 87.63 23.33 275.61

3 130.23 126.72 2.77 25.75 19.14 34.54

Ave 313.29 299.99 4.85 56.00 26.85 131.96
N15E30R10 1 1 1 524.64 515.44 1.78 335.53 308.53 8.75
2 396.64 381.52 3.96 314.25 224.12 40.22

3 343.23 333.13 3.03 323.62 226.12 43.12

1 2 1 583.62 574.23 1.64 289.13 203.80 41.87

2 395.23 383.43 3.08 296.37 170.21 74.12

3 240.32 227.54 5.62 337.65 178.37 89.29

2 1 1 218.34 213.33 2.35 315.64 225.35 40.07

2 193.23 1R82.77 5.72 316.33 236.30 33.87

3 159.32 145.34 9.62 31043 222.19 39.71

Ave 339.40 328.53 4.09 315.44 221.66 45.67
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Both ALNS and TS can solve the case when one truck and multiple drones traverse all

required edges jointly. The tests are done on the randomly generated data with |N| = 10

and |N| = 15. The results are summarized in Table 4.6 and 4.7. ALNS gets better objective

values with the average gaps of 3.09%, 2.94%, 3.62% and with the average run time gaps

of 101.04%, 150.23% and 48.58% for |N| =10; with the average obj gaps of 3.69%, 4.85%,

4.09% and with the average run time gaps of 104.90%, 131.96%, 45.67% for |N|=15. Since

both ALNS and TS are limited to run in 1200s, the gaps between them show that ALNS

performs better than TS for all randomly generated instances.

4.5.2.2  Analysis on the Large-Size Instances

Table 4.8: Two-Drones-One-Truck Results on Large-Size Instances

vi va B TS ALNS Gap¥% | TS ALNS Gap%
| UR532 | UR535
1 1 1]6894.67 6689.33  3.07 | 7528.00 7461.33  0.89
2 | 6816.67 6658.00  2.38 | 7961.33 7728.37  3.01
3 1666533 6465.33  3.09 | 6728.67 6599.33  1.96
1 2 1]5171.33 5017.20  3.07 | 4760.03 4746.15  0.29
2 | 5006.67 4889.00  2.41 | 4471.13 4355.67  2.65
3 | 5034.67 4854.33  3.71 | 4567.00 4500.67  1.47
2 1 1|5712.67 5507.33  3.73 | 5793.53 5478.19  5.76
2 | 5476.33 5265.00  4.01 | 5384.67 5092.77  5.73
3 | 5059.67 494547  2.31 | 5561.65 5365.67  3.65
Ave | 5759.78 5587.89  3.09 | 5861.78 5703.13  2.83
| UR537 | UR542
1 1 1734867 7188.00 224 |7615.33 7494.67  1.61
2 | 6862.67 6789.32  1.08 | 7488.23 728276  2.82
3 16850.00 6701.22 222 | 7334.16 722812  1.47
1 2 1]6315.00 6009.67 508 |6294.33 6001.11  4.89
2 [ 6012.15 5836.63  3.01 | 6298.67 5938.76  6.06
3 15601.37 5545.32  1.01 | 6088.33 5757.14  5.75
2 1 1/]672598 6676.65  0.74 | 7517.00 6866.34  9.48
2 | 6700.01 6668.3¢  0.47 | 7138.00 6728.34  6.09
3| 6854.67 6347.10  8.00 | 6912.65 6697.33  3.21
Ave | 6585.61 6418.03  2.65 | 6965.19 6666.06  4.60
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TS and ALNS methods also solve four large-size URPP500 instances when there are two
drones and one truck. Both methods use the stop criterion as the maximum iteration number
of 5000 and nonimproving iteration number of 1000. The objective values are shown in Table
4.8. Average gaps are 3.09%, 2.83%, 2.65% and 4.60% for instances UR532, UR535, UR537
and URbH42, respectively. ALNS enables to get better solutions than TS in the situation of

the multiple drones and one truck.

4.5.3 Analysis on Speed and Drone Range

The number of instances solved to optimality are given in Table 4.9. There are 25
instances of each type. All instances are solved within the limited computational time of
3600 seconds. When |R| = 5, all 25 instances of each type can be solved optimally. When
|R| = 7, MIP-3 and MIP-2 can not obtain the optimal solutions in some cases when the truck
speed v; = 1, the drone speed v, = 2, range 5 = 2 or 3. As the number of required edges |R|
increases to 10, the property of the problem becomes obvious. The problem is the simplest
to solve when the truck is faster than the drone (v, = 2, v; = 1), because the truck tends to
service the most edges and the drone gets onboard the truck in the most time. Then, the
problem is harder to solve when the speeds are the same (v; = vy = 1), because it leads that
the problem is equivalent to 2-truck ARP with one truck having length constraint. It is the
hardest to solve when the drone is faster than the truck (v, = 1, vy = 2). Because the faster
drone is able to traverse more required edges and benefits in reducing the completion time.

The different maximum drone ranges also affect the complexity of the problem. For
different values of g = 1, 2,3, the average percentages of instances solved to optimality are
72.67%, 25.33%, 37.33% by MIP-3 and 82.00%, 36.67% and 56.00% by MIP-2, respectively.
When the maximum flight range is short § = 1, one flight trip can not cover some edges. As
the maximum range increases to [ = 2, there are more feasible solutions where the drone
can service some edges. If the maximum range becomes very large, the problem is equivalent

to 2-truck ARP with the trucks having different speeds. That becomes easier to solve.
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Table 4.9: Number of Randomly Generated Instances Solved to Optimality

| # opt | # opt
Vi vy B ‘ Instance MIP-3 MIP-2 ‘ Instance MIP-3 MIP-2
1 1 1] NI1OE20R5 25/25  25/25 | N15E30R5 25/25  25/25
2 25/25  25/25 25/25  25/25
3 25/25  25/25 25/25  25/25
1 2 1 25/25  25/25 25/25  25/25
2 25/25  25/25 25/25  25/25
3 25/25 25/25 25/25  25/25
2 1 1 25/25 25/25 25/25  25/25
2 25/25  25/25 25/25  25/25
3 25/25  25/25 25/25  25/25
1 1 1| NIOE20R7 25/25  25/25 | N15E30R7 25/25  25/25
2 25/25 25/25 24/25 25/25
3 25/25 25/25 25/25  25/25
1 2 1 25/25  25/25 25/25  25/25
2 24/25  25/25 22/25  25/25
3 24/25  24/25 25/25  25/25
2 1 1 25/25 25/25 25/25  25/25
2 25/25 25/25 25/25  25/25
3 25/25  25/25 25/25  25/25
1 1 1| NIOE20R10 18/25 20/25 | N15E30R10 18/25 19/25
2 1/25 6/25 3/25 8/25
3 6/25 15/25 10/25  14/25
1 2 1 19/25 21/25 20/25 20/25
2 0/25 0/25 1/25 1/25
3 2/25 9/25 2/25 3/25
2 1 1 17/25  22/25 17/25  21/25
2 16/25 20/25 17/25  20/25
3 17/25  21/25 19/25  22/25

The percentages of optimal solutions over the randomly generated instances with 10
required edges are drawn in Figure 4.4. The darker the color is, the harder the problem is
solved. Thus, the worst case happens when v,/vy, = 0.5 and the range parameter 3 = 2.
Because the minimum makespan occurs in the situation where there is no or less waiting

time at the drone’s landing combined node.
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Figure 4.4: Percentage of Solutions Solved to Optimality over Randomly Generated
Instances with |R| = 10

4.5.4 Analysis on Robustness of Adaptive Large Neighborhood Search versus Tabu Search

The robustness of a metaheuristic means how much the solutions vary if being repeated
several times on the same instance. The robustness of a method is expressed as the standard
deviation. The randomly generated instances N15E30-R5, R7 and R10 are used to evaluate
the robustness. Each instance is repeated 10 times and the standard deviation is calculated
from the 10 repeated solutions. The standard deviations of ALNS and TS are illustrated in
Figure 4.5. For all instances, ALNS has less Std than TS. With the increasing number of
required edges, the values of Std increase. The less standard deviation is, the more stable

the method is. So, ALNS has better robustness than T'S.

4.6 Concluding Remarks

This chapter considers Drone-Truck Arc Routing problem. The drone and the truck
cooperatively service all required edges at least once. Since the drone can fly off the road
network, the DT-ARP extends the traditional ARP. With a limited battery capacity, the
drone needs to fly from and to vehicles for a replacement of the battery. The key chal-

lenge is how to determine the truck and drone route to minimize the completion time. A
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Figure 4.5: Standard Deviation of Objective Values by ALNS and TS
over Randomly Generated Instances

metaheuristic method based on Adaptive Large Neighborhood Search (ALNS) is proposed
to solve the Drone-Truck Arc Routing Problem (DT-ARP). The performance of ALNS is
evaluated using small-size randomly generated ARP instances and large-size undirected rural
postman problem instances. In order to get the optimal solution, we transform ARP into
VRP with two kinds of rules and formulate a mixed-integer programming. The experiments
reveal that MIP formulation can solve the problem well for the small-size network. However,
for a large-size network (the number of required edges is larger than 10), an efficient and
effective metaheuristic is necessary. We found that ALNS outperforms TS both in the solu-
tion quality and the computational time. The further analysis on the truck/drone speed and
maximum drone flight range shows that the problem is hard to solve when the maximum

flight range is double average edges’ distances and the done is twice as fast as the truck. The
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robustness of ALNS is also better than Tabu Search by comparing the standard deviation
from the repeated solved solutions.

As for directions of future research, the metaheuristic method may be improved, such as
by using strong initialization or by some other destroy and repair methods. The future work

could extend to the DT-ARP with multiple trucks and multiple drones onboard per truck.
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Chapter 5: Conclusion and Future Work

In this dissertation, we use an exact method and metaheuristic algorithms to solve trans-
portation problems.

In the first problem, a leader-follower decision problem is considered in the form of
bi-level optimization. In the upper level, the leader aims to minimize the total facility
construction costs and hazmat exposure risks by determining facility locations and available
roads for hazmat transportation. The leader affects the followers who intend to minimize
their transportation costs when designing the road network. We apply a robust optimization
approach to deal with the uncertainty in the exposure risk and the demand. A bi-level integer
programming model is formulated where the upper level is a min-max problem and the lower
level is a shortest-path problem. We devise an exact algorithm that combines a cutting plane
algorithm with Benders decomposition and derive a single-level reformulation. Comparisons
between two approaches are made on the Ravenna city data, in terms of objectives and the
running time. The analysis on small and large size instances demonstrates that the proposed
cutting plane algorithm performs much better than Gurobi as the problem size increases.
The proposed cutting plane algorithm is an effective exact method for solving the robust
combined facility location-network design problem.

A couple of directions for future research are suggested. First, uncertainty on origin
locations can be considered. In this paper, we assume that all origin nodes are exactly
known. Since the hazmat facility location problem is for long-term decision, considering new
hazmat origins in the future will lead to an important problem. Second, hazmat trips to
locations other than the hazmat facilities can be incorporated. Although we consider hazmat

trips to hazmat facilities only in this paper, there are also hazmat trips to other destinations.
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Hazmat network design policies will certainly impact not only trips to hazmat facilities, but
also all other general hazmat trips. Therefore, incorporating both types of hazmat trips
within a single modeling framework is a valuable research direction.

The second problem is the EV relocation and shuttle routing problem for the rebalancing
operation of free-floating EV sharing systems. One of the key operational decisions for the
carsharing company is how to relocate the EV fleet to meet the next day’s demand with
sufficient battery levels. We develop a metaheuristic ALNS algorithm for the EV reloca-
tion problem that determines where to relocate each EV and how to route the shuttles that
transport the staff drivers synchronously. We apply our method to conduct numerical exper-
iments using both randomly generated data and actual FFEVSS data in Amsterdam. We
found that ALNS outperforms EBNSM both in the solution quality and the computational
time. Our ALNS also produces better solutions than the RL approach but requires much
longer computational time than RL. Our experiments reveal that providing the RL solution
as the initial solution for ALNS is an effective and efficient solution strategy that can take
advantage of both approaches, achieving the best solution quality and reducing the compu-
tational time significantly. We also demonstrate how our ALNS can be modified to solve the
problem where staff drivers carry a personal mobility vehicle such as a scooter. Our further
analysis provides practical recommendations on which mode of transportation will be more
efficient—i.e., a small number of shuttles with large capacity or a large number of shuttles
with small capacity (or even personal mobility)—in terms of total operational cost as well
as wait times. Lastly, we show that our ALNS that destroys an incumbent solution partially
and repairs to a new solution in each iteration is quite flexible to be applied to a dynamic
environment. Specifically, our numerical results highlight the usefulness of our flexible ALNS
method for an environment where some EV demands are removed or added in the course of
EV relocation operations.

As directions of future research, this model can be extended for day-time static relocation.

Extending this model to the 24-hour period will ordinarily require redeployment of the model
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at constant, and relatively small, time intervals and also the assumption of zero new arriving
demand. In that case, unlike our numerical experiments conducted with constant travel speed
for the city of Amsterdam, a more robust analysis with different shuttle travel speeds can
be considered to account for various traffic conditions at different times and across different
locations. An important factor in the successful implementation of static repositioning is
the accuracy of the demand forecast. The demand faced by a car-sharing system is highly
sensitive to a variety of external factors. In this study, we base our demand forecast on past
demand data on similar days and focus on synchronous modeling of relocation and routing
operations. However, more sophisticated data mining models and demand prediction models
can be devised.

In the final problem, Drone-Truck Arc Routing problem is studied where the drone and
the truck cooperatively service all required edges at least once. Since the drone can fly off the
road network, the DT-ARP extends the traditional ARP. With a limited battery capacity,
the drone needs to fly from and to vehicles for a replacement of the battery. The key
challenge is how to determine the truck and drone routes to minimize the completion time.
A metaheuristic method based on Adaptive Large Neighborhood Search (ALNS) is proposed
to solve the Drone-Truck Arc Routing Problem (DT-ARP). The performance of ALNS is
evaluated using small-size randomly generated ARP instances and large-size undirected rural
postman problem instances. In order to get the optimal solution, we transform the ARP into
VRP with two kinds of rules and formulate mixed-integer programming. The experiments
reveal that MIP formulation can solve the problem well for the small-size network. However,
for a large-size network (the number of required edges is larger than 10), an efficient and
effective metaheuristic is necessary. We found that ALNS outperforms Tabu Search both in
the solution quality and the computational times. The further analysis on the truck/drone
speed and maximum drone flight range shows that the problem is hard to solve when the

maximum flight range is two times average distances of all edges and the done is twice as
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fast as the truck. The robustness of ALNS is also better than Tabu Search by comparing
the standard deviation from the repeated solved solutions.

As for directions of future research, the metaheuristic method may be improved, such as
by using strong initialization or by some other destroy and repair methods. The future work

could extend to the DT-ARP with multiple trucks and multiple drones onboard per truck.
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Appendix B: Mathematical Models of Chapter 2

B.1 Single-Level Robust Facility Location Problem
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B.2 Single-Level Robust Network Design Problem
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