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Abstract

This research focuses on machine (and deep) learning applications (including clustering,

anomaly detection and signal classification) for self-organizing and next generation mobile

networks in wireless communications. Specifically, this dissertation document will address

the three different topics.

First, in the study titled “Performance analysis of neural network topologies and hyperpa-

rameters for deep clustering”, we explore the relationship between the clustering performance

and network complexity. Deep learning found its initial footing in supervised applications

such as image and voice recognition successes of which were followed by deep generative

models across similar domains. In recent years, researchers have proposed creative learning

representations to utilize the unparalleled generalization capabilities of such structures for

unsupervised applications commonly called deep clustering. This paper presents a compre-

hensive analysis of popular deep clustering architectures including deep autoencoders and

convolutional autoencoders to study how network topology, hyperparameters and clustering

coefficients impact accuracy. Three popular benchmark datasets are used including MNIST,

CIFAR10 and SVHN to ensure data independent results. In total, 20 different pairings

of topologies and clustering coefficients are used for both the standard and convolutional

autoencoder architectures across three different datasets for a joint analysis of 120 unique

combinations with sufficient repetitive testing for statistical significance. The results sug-

gest that there is a general optimum when it comes to choosing the coding layer (latent

dimension) size which is correlated to an extent with the complexity of the dataset. More-

over, for image datasets, when color makes a meaningful contribution to the identity of the

observation, it also helps improve the subsequent deep clustering performance.
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Second, in the study titled “Anomaly Detection in Self-Organizing Networks Conven-

tional vs. Contemporary Machine Learning”, we compare the premise of both conventional

and modern machine (deep) learning, specifically for anomaly detection in self-organizing

networks. While deep learning has gained significant traction, especially in application

scenarios where large volumes of data can be collected and processed, more conventional

methods may yet offer strong statistical alternatives, especially when using proper learn-

ing representations. For instance, support vector machines have previously demonstrated

state-of-the-art potential in many binary classification applications and can be further ex-

ploited with different representations, such as one-class learning and data augmentation. We

demonstrate for the first time, on a previously published and publicly available dataset, that

conventional machine learning can outperform the previous state-of-the-art using deep learn-

ing by 15% on average across four different application scenarios. Our results indicate that

when execution time is critical, conventional machine learning provides a strong alternative

for 5G self-organizing networks using significantly fewer trainable parameters.

Finally, the third study is on “Fast, Robust and Light Machine Learning for Signal Clas-

sification in Next Generation Mobile Networks”. The next generation mobile networks bring

unprecedented opportunities coupled with unique challenges thanks to the integration of

multiple families of devices. Fast and robust signal classification and modulation identi-

fication become critical to meet the sustained demand on capacity. This paper presents a

comparative study of data-centric and conventional approaches to signal identification at dif-

ferent noise levels on a real-world application. We demonstrate that a standard lightweight

classifier can detect multiple modulation schemes with and without data compression and

outperforms current state-of-the-art by as much as 6% on average across 15 different noise

levels. More importantly, the detection speed is improved by at least 50-fold without a

significant loss in accuracy when using feature compression.
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Chapter 1: Introduction and Contributions

The primary motivation of this dissertation is to introduce machine learning techniques to

improve the performance of the next-generation mobile networks. The essential background

and the main contributions of this research are detailed in the following sections along with

the contributions of this thesis. Further details of the contributions can be found in the

respective chapters.1

1.1 Performance Analysis of Neural Network Topologies and Hyperparameters

for Deep Clustering

Clustering [102] is a pervasive problem in various research fields such as data analysis,

machine learning, deep learning, computer vision, pattern recognition, signal identification,

etc. The main goal is to group data into clusters based on the similarities or dissimilarities

of the sample points. Most commonly used conventional clustering methods are applied to

data with small volumes. However, in the era of deep learning and big data with multimodal

and extremely high volume datasets the performance of the conventional clustering methods

for identifying similarities are inherently weak. Dimensionality reduction techniques have

been applied to raw data to lessen the volume by keeping the main characteristics of the

sample features and allow conventional algorithms to achieve acceptable performance levels.

In recent years, deep clustering had played a very important role where the power of deep

neural networks (DNNs) and autoencoders [64] are used as feature extractors. Like con-

ventional dimensionality reduction methods, deep neural networks can be used to transform

1Part of this chapter was published in [56]. The permission is includes in Appendix A
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the raw data into a latent low-dimensional representation which can be directly applied to

conventional approaches.

Categorization of clustering methods is based on their performance criteria including

partition-based clustering methods, density-based clustering methods, and hierarchical clus-

tering methods. Deep clustering first aims to learn a clustering-focused representation. For

that reason, categorization of the deep neural network-based methods cannot be done solely

on the clustering loss and instead should focus on the hyperparameters such as the clustering

coefficient, network topology, and latent space representation (code) size.

The first chapter of this dissertation will focus on analyzing the effect of hypermeters on

deep clustering (DC) performances to close the gap in our knowledge on how DC hyperpa-

rameters affect the clustering performances of deep embedding networks. The deep neural

networks used in this study are auto-encoders (AE) [90], and convolutional auto-encoders

(CAE) [39] applied to different image datasets with varying complexities. For drawing a

clearer perspective, popular image benchmark datasets, which are MNIST, CIFAR10, and

SVHN, have been chosen for a two-phase experiment where each phase implements a change

in either topology or hyperparameter set for an exhaustive analysis of the field. The details

are provided in chapter 3.

1.1.1 Contributions to Science

In chapter 3 we present novel approaches for analyzing clustering method performances

by looking at the hyperparameters while applying the deep neural network-based techniques

such as autoencoder and convolutional autoencoder on datasets with varying complexity.

The contributions of this study are the findings that i) when using deep unsupervised fea-

ture extraction, more complex datasets require a higher dimensional latent space to achieve

the best subsequent clustering performance and ii) unlike previous observations, the color

information could be helpful in statistically significantly improving the deep clustering per-
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formance for datasets only when color makes a meaningful contribution to the identity of

the observation.

1.2 Anomaly Detection in Self-Organizing Networks: Conventional vs. Con-

temporary Machine Learning

The second and third parts of this dissertation will focus on anomaly detection and

signal classification in the next generation mobile networks. We begin with self-organizing

networks (SON) and compare the detection rates of classical machine learning techniques

and modern approaches such as deep learning for both complexity and performance to guide

their implementation in the next generation mobile networks.

As mobile traffic data grew exponentially, hyper-connectivity, and various applications

have increased the attention on new technology for the next-generation mobile networks.

5G is the latest cellular communications technology and it works to meet the demanding

requirements of mobile customers (supporting a wider range of services and fulfilling the

needs of new applications, etc.), which cannot be sustained by the current 4G technology

[32]. It is vitally important that these new types of services supporting a divergent key

technology embraced by 4G are required to properly integrate into 5G and beyond with

additional development as necessary for future technologies. Machine learning and big data

have created big opportunities to enable intelligent SON operations by using the data analysis

process in the network for data driven decision making to enable the autonomous network

management by fixing issues and optimizing operations.

Nowadays, telecommunication companies have updated their infrastructure according to

the most recent technological developments such as 5G and beyond. Future systems will

only bring new requirements based the business and customer needs. Specifically, artificial

intelligence is one of the core requirements of future mobile network systems and must be

deployed effectively and efficiently on the current systems. For that reason, the telecommu-
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nications companies have already begun to develop methods to support smart technologies

by improving their infrastructures and adopting AI-related technologies.

Vodafone [101] is one telecommunications company with a significant analytical vision

and strategies on AI adoption to provide network and cost efficiency in the radio domain

and reduce its operational costs. Vodafone uses cloud economics by migrating to the Google

Could Platform (GCP) to form a single data-ocean in collecting data – including the in-

formation related to network issues and service faults for a complete automatic network

management strategy. For that reason, Vodafone cooperated with Nokia to develop AI/ML-

based intelligent applications by using anomaly detection as a use-case while considering its

potential for network automation. The intuition behind using anomaly detection is based

on Vodafone’s strategy on future cost-effective network planning and optimization while ex-

panding coverage areas and minimizing risk. Vodafone deployed the general system structure

with partnerships. In that structure, the Neuron platforms run with GCP to deliver and

collect the Radio Access Network information via the platform by utilizing ML-based pattern

recognition, clustering, and classification. Nokia helped Vodafone by developing an app to

detect anomalies within the data provided by Vodafone called the data-ocean before an ac-

tual impact on the customers. The systems have already been deployed in Italy over *60000

LTE cells aiming for at least 80% productivity for all abnormal mobile network issues while

automatically identifying the capacity demands by the anomaly detection service system.

SONs are considered automatic management systems for the next-generation wireless net-

works (NGWN) standardized by 3GPP [40]. The notion of SONs started with the eighth re-

lease of the 3GPP and continues through NGWN standardization based on self-configuration,

building, and setting up and running of equipment. The SON aims to obtain targeted per-

formance values and key performance indicators (KPIs). The KPIs can be evaluated within

the telecommunication network’s scope, including network capacity, quality of service (QoS),

and capital and operational expenditures (CAPEX&OPEX). CAPEX refers to gaining and

adapting new technologies and network assets, whereas OPEX relates to cellular networks’

4



actuating operation and maintenance costs. Here, SON targets minimum CAPEX&OPEX

by cutting human input as much as possible in network operations while optimizing the

network coverage, capacity, and quality of service. Generally, SONs are evaluated in three

categories: self-configuration, self-optimization, and self-healing. In this study we mainly

focus on the self-healing aspect of SONs [7]. The self-healing can detect outages (anomalies)

in cellular networks automatically. In addition to this capability, it provides performance

degradation and root-cause analysis of cells, and compensation of outage affected cells if

the issue is being resolved. Furthermore, it can also reduce operational costs by minimizing

network outages and increasing the quality of service in an automatic manner.

Anomaly detection is a well-researched common problem [53] in various domains. It is

generally referred to as identifying key differences between normal and anomaly samples.

For instance, in wireless communications, the transmission of healthy knowledge in a proper

channel is an expected norm. However, when the transmission process is not successful

and the information does not reach the destination point an anomaly is flagged. The error

could be hardware malfunctions, software problems, functional resource failures, loss due to

overload situations, broken base stations, cell outage, etc. Anything that prevents commu-

nication is an unexpected “feature” and considered an anomaly in a network which can be

detected by a variety of anomaly detection algorithms.

Autonomous separation of abnormal (anomaly) samples from the normal ones can be

supplied via historical datasets labeled by the network operators. In those datasets, KPIs

are manually classified as anomaly or normal, which helps train automated algorithms [106].

Unfortunately, this assumption cannot be generalized because the historical data may not

contain a sufficient number of anomaly samples properly detected by the network opera-

tors. Hence, many research studies look into adding synthetic anomalies to obtain a dataset

including a sufficient number of both sample types. Other approaches include no-label as-

sumptions where each sample is treated as “normal” when the incidence rate of anomaly

samples is too low to affect training.
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In this study, the MDT (Minimization of Drive Test) report-based dataset generated in

a network simulation [9] is used for training purposes. 3GPP first introduced the MDT

reporting schemes in release 10, a standardized solution offered by network operators to

reduce the cost of the conventional drive tests. The release commits to building a database

of MDT reports from the deployed network using Immediate or Logged MDT information

forms. The reporting is considered for the collection of each user equipment attitude in the

network. The MDT report includes measurement information of UEs (User Equipments) as

KPIs, which are defined as use cases. The KPIs consist mainly of Reference Signal Received

Power (RSRP) and Reference Signal Received Quality (RSRQ). In this study we propose an

alternative to the popular deep learning approaches when applying anomaly detection on a

moderately sized labeled dataset where the details are provided in chapter 4.

1.2.1 Contributions to Science

In chapter 4, we introduce comprehensive analysis of classical and modern machine learn-

ing techniques in detecting anomalies (service outages) in self-organizing networks. This

study has multiple contributions. Firstly, we present a comprehensive analysis of a con-

ventional machine learning method for anomaly detection in self-organizing 5G networks

(5G-SONs) and compare it with a popular deep learning alternative using different learning

representations, including one-class and binary learning. We claim state-of-the-art perfor-

mance on a publicly available dataset [9], which investigates multiple use case scenarios for

anomaly detection in 5G-SONs where the results demonstrate an average improvement of

15% over the best recent performance which was achieved by a deep auto-encoder-based

setup. Furthermore, we demonstrate for the first time that data augmentation methods can

further boost anomaly detection performance in binary mode, even when utilizing conven-

tional algorithmic techniques such as support vector machines on a sufficiently large dataset.

Finally, we achieve nearly two orders of magnitude improvement in computational speed

and an order of magnitude reduction in trainable parameters using conventional machine
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learning to provide a robust alternative for 5G self-organizing networks especially when the

execution and detection times are critical.

1.3 Fast, Robust, and Light Machine Learning for Signal Classification in Next

Generation Mobile Networks

The exponential growth of data transmission in wireless communications systems, mil-

lions of multi divergent additional devices and networks undeniably cause spectrum limi-

tations in dynamic networks [93]. Scientists have put significant effort to respond to such

demands with multidisciplinary research on utilizing small cells, mmWave communications,

device-to-device communications, and massive MIMO for cognitive radio networks. Further-

more, authorities such as FCC, highlighted the importance of spectrum sensing algorithms,

specifically signal recognition, to improve the quality of service by considering their effective-

ness on various devices, network structures, transmission layout, and transmission channel

conditions. Machine learning can provide the necessary intelligence function for wireless

infrastructures to identify and detect the radio frequency (RF) signal characteristics imple-

mented for commercial and military applications.

Electronic warfare and spectrum awareness have been employed to identify (classifica-

tion) wireless signals in various tasks. Although the signal classification tasks rely on high

order cumulants and hierarchical decision trees for feature extraction, they are susceptible to

wrong alarms and their adaptations to new technologies can be difficult. Hence, data-driven

machine learning-based approaches that include possible faults for real-world conditions can

prove more precise, efficient, and reliable than classical methods. The signal identification

methods are divided mainly into feature-based and likelihood-based methods [25]. Most

studies that use the feature based methods employ cyclostationarity based-features for the

most robust performance in real-world scenarios to account for channel effects and model

mismatches, e.g., phase, timing, and timing frequency offset. In this dissertation we con-

sider a feature based approach with cyclostationary- features obtained from real-world mea-
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surements. The dataset includes most of the commercially used frequencies with different

modulations to define a multiclass classification problem. A feed forward neural network is

used with an without data compression to compare the performance of signal classification

with the state of the art approach on this dataset. Chapter 5 explains in detail how the

proposed method achieves better performance with a lighter algorithm that is two orders of

magnitude faster.

1.3.1 Contributions to Science

In chapter 5, we investigate the promise of conventional machine learning for signal clas-

sification (identification) that is utilized on a very large real-life dataset, where the signal

characteristics represent the most-used channel frequencies in communications. The main

contributions of this study are as follows. Firstly, the proposed model is more straightfor-

ward than complex deep learning topologies, which previously claimed state-of-the-art for

signal classification on this dataset. Simplicity is essential for time-critical applications such

as modulation classification in this case where the proposed model is shown to reduce the the

identification time of signals significantly. Second, we discovered that PCA dimensionality

reduction techniques in this study have an extraordinary impact on reducing the identifica-

tion time even further with minimal impact on performance. After PCA, feature samples

include useful information with less volume. Finally, we demonstrate that this model has

better classification accuracy results (average of 6%) with or without data compression than

the state-of-the-art study while running 50x faster. Overall, the proposed methods clearly

demonstrate that the conventional machine learning algorithms are still valuable tools even

for very large datasets while having the significant advantages of being fast and light.
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Chapter 2: A Brief Introduction to Machine Learning

Artificial Intelligence
Smart systems and algorithms model human intelligence

Machine Learning
Algorithms that learn from data and make decisions 

automatically

Deep Learning
Complex algorithms which can only 
be trained by sufficiently large 

volumes of data

Figure 2.1: Comparison of Artificial Intelligence, Machine Learning, and Deep Learning

2.1 Learning Representations

There are mainly three techniques represented in Figure 2.1 which has been used in

machine learning algorithms. Those are;

2.1.1 Supervised Learning

Supervised learning is one of the three main types of machine learning [85]. As the name

suggests, it uses labeled datasets for training in many tasks such as classification or pre-
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diction. In supervised learning, classical machine learning training steps are applied which

begin with feeding the input data to the model. The model updates the system weights

until a convergence criteria is reached (i.e., the model fits to the data). Some kind of cross-

validation can be used to prevent overfitting of the model to the data. Supervised learning

has been used in many real-world applications, including text categorization, face detection,

signature recognition, spam detection, weather forecasting, predicting house prices, etc. Pop-

ular methods for supervised learning include neural networks, näıve Bayes, linear regression,

logistic regression, random forest, and support vector machines. In this dissertation, we used

support vector machines and artificial neural networks.

2.1.2 Unsupervised Learning

Unsupervised learning is a training technique without the need for labels. Unsupervised

learning primarily targets data clustering and dimensionality reduction problems which can

further be used in a supervised training applications [100]. In the clustering applications

the data is divided into distinctly separable groups based on the distances between data

points based on some metric and generally within the latent space. Dimensionality re-

duction is commonly used to identify the most relevant features of the data and alleviate

computational requirements which can come from high dimensional data. In unsupervised

learning, the machine learning algorithms can automatically explore disguised information or

data groupings. Popular methods include autoencoder neural networks, k-means clustering,

probabilistic clustering, principal component analysis and singular value decomposition.

In this dissertation we utilize a novel learning representation called one-class training, to

utilize supervised learning architectures in an unsupervised manner.

2.1.3 Semi-Supervised Learning

Unlike the previous two approaches, semi-supervised learning can utilize both labeled and

unlabeled datasets in the training process [96]. Typically, the labeled data constitutes only
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a tiny amount of the training samples, whereas the unlabeled data represents most of the

dataset. This technique has been based on self-training, also known as self-labeling/learning

from the heuristic approach, the earliest one for semi-supervised learning with given initial

examples in the 1960s. Later, it differed from transductive learning introduced by Vapnik

in the 1970s along with the inductive learning for generative models in the same year. In

the following decade, “probably approximately correct” learning was demonstrated by Leslie

Valiant as a novel semi-supervised machine learning framework. Semi-supervised learning

addresses the practical limitations of the data collection process while also decreasing the

computational cost of training for a more practical approach.

2.1.4 Principal Component Analysis

Principal component analysis (PCA) is a dimensionality reduction technique [49],[50],

also called a data compression algorithm that is often utilized to obtain low dimensional

(uncorrelated variables) versions of large datasets (correlated variables) by still preserving

the rich information on the original dataset. It is a popular method for compression due

to the fact that it is non-parametric and straightforward, meaning that extracting relevant

information does not follow a specific distribution in the dataset. In the literature, PCA has

often been used for divergence fields. For example, in [1], it is used to extract the signal that

has been subjected to noise or prevent the propagation effects in wireless communications.

Another application in [66] proposes a PCA-based spectrum detection perspective for cog-

nitive radio networks. If there is white noise in the signal, covariance matrix (CM) of the

signal samples is diagonal. If the signal includes a component of the white noise, the CM

becomes a low-rank diagonal matrix due to the fact that the primary signal is low rank. By

subtracting the CM of white noise samples from the CM of signal samples and utilizing PCA

on the remaining CM one can identify the significant principal components. After the PCA,

the results can be used for test statistics for the spectrum sensing. Furthermore, in [105], the
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author has developed a PCA-base radio localization method. The method analyzes received

signal strength samples and the user’s location distribution to extract s location information.

Another definition of the PCA is an orthogonal linear transformation that represents the

projection of observation (original variables) to a new coordinate system that maximizes the

variance. The first principal component is the projection of data with the greatest variance.

The second principal component lies on the second coordinate that is orthogonal to the first,

and so on.

In this chapter we focus on the eigenvector decomposition [89] as the main mathematical

intuition behind the PCA as follows:

Let X be the original data set, mxn, where each column represents a single observation.

Let Y be another mxn matrix related to X by a linear transformation P .X where Y becomes

a new projection of that data set as follows:

P .X = Y (2.1)

PX =


p1
...

pm

×
[
x1 · · · xn

]
(2.2)

Y =


p1.x1 ... p1.xn
...

. . . ...

pm.x1 ... pm.xn

 (2.3)

where pi are rows of P , xi are the columns of X , yi is first columns of Y. Please note that,

from the first row of Y , we recognize that rows of P are a new set of basis vectors for the

projection of the columns of X.

Identifying the principal components can be derived using many approaches. We rep-

resent an algebraic solution to the PCA by using “eigenvector decomposition”. From the

definition above, m is the number of measurement types, and n is the number of samples.
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The goal is finding an orthonormal matrix P in Y = PX , where Cy = 1/nYY T is a diagonal

matrix and the rows are the principal components of X . The following equations present

this process mathematically:

CY =
1

n
YYT

=
1

n
(PX)(PX)T

=
1

n
(PXXTPT

= P(
1

n
XXT)PT

CY = PCXP
T

(2.4)

where Cy is the covariance matrix of X and Cx is a square symmetric mxm matrix. The

covariance matrix is nothing but a table that summarizes the correlations between all the

possible pairs of variables in a matrix. The positive sign of covariance shows that there is a

positive correlation in between variables whereas the negative sign means inverse correlation.

The diagonal terms of Cx are the variance of measurement types. The off-diagonal terms

of Cx are the covariance between the different measurement types. The goal is to diagonalize

Cy as follows:

CY = PCXP
T

= P(ETDE)PT

= P(PTDP)PT

= (PPT)D(PPT)

= (PP−1)D(PP−1)

CY = D

(2.5)
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where A = ETDE is a symmetric matrix, D is the diagonal matrix, and E is a matrix of

eigenvectors of A.

2.2 Machine Learning Algorithms and Topologies

2.2.1 Perceptron

The perceptron [84, 12] can be considered the basic building block of an artificial neural

network. It consists of a single linear threshold unit (LTU) (although a non-linear activation

function can also be used) after each input is weighed and summed. Instead of binary on/off

values, the input and output of the perceptron have real values. Each input is associated

with a weight. The linear threshold unit computes a weighted sum of inputs

(z = ω1.x1 + ω2.x2 + . . . + ωnxn = ωT .x) (2.6)

The weighted sums goes through step (activation) function and the output is

f ω(x) = step(z) = step(ωT .x) (2.7)

There are two types of common step functions for a perceptron: ‘heaviside’ and ‘sign’.

H[z ] =


0, z < 0

1, z ≥ 0

(2.8)

sgn(z) =


−1 if x < 0

0 if x = 0

1 if x > 0

(2.9)

A single perceptron can be used as a simple binary classifier. Depending on the activation

function, the calculated linear combination goes through the threshold and predicts either
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Figure 2.2: General View of Perceptron

a positive or negative class (prediction). During the training of the perception, the weight

values for w0, w1, . . . wn, etc. are updated to find the best model fit to the available data.

The perceptron learning can be simplified mathematically as follows:

wi ,j = wi ,j + θ(yj − ŷj)xi (2.10)

where wi ,j represents the connection weight between the i th input neuron and the output

neuron, xi is the i th input value, ŷj is the output of j th output neuron, yj is target output,

and θ is learning rate. Based on the eqn 2.10, the perceptron updates the weight parameters

using gradient descent, however it is important to note that the single dimensional linearity

prevents the perceptron from deciding on famous classification examples such as the exclusive

OR gate.

15



2.2.2 Multilayer Perceptron

Multilayer perceptron can overcome the limitations of a single perceptron such as the

decision boundaries for the XOR gate [71]. It consists of an input layer followed by one

or multiple hidden layers. Every neuron except the ones in the output layer carries a bias

neuron, and unlike the perceptron, each layer can use an arbitrary activation function.

Multilayer perceptrons are often called feedforward neural networks [34]. At the begin-

ning of the training, each input sample is fed into the network where activation functions are

calculated for each layer to be forwarded into the next layer progressively until the output

layer. This one time pass is called the forward pass. Then, the sum of squared differences

between the desired and original values of the output neuron is calculated as the error via

the cost function shown below:

E =
1

2

∑
j

(yj − ŷj)
2 (2.11)

where y th is the desired output of the j th neuron in the output layer and y th is the actual

output. This error is backpropagated through the layers to find out the contribution of each

neuron from the last hidden layer to the input layer in a process called backpropagation.

Specifically, the backpropagation algorithm does a forward pass, calculates the error, then

goes back through each layer to calculate the error contribution between neurons (a reverse

pass). Eventually, it slightly updates the connection weights, △ωij(n) to decrease the error,

(E ), via the gradient descent algorithm as shown below:

△ωij(n) = −θ
∂E (n)

∂vj(n)
yi(n) (2.12)

where yi is the output of the i
th neuron (which can be considered as the input to the j th neuron

in the next layer), n is the index of the training example, vj is the activation potential of

the j th neuron in the next layer, and θ is the learning rate, which is chosen to help increase

16



the convergence speed for the weights. To calculate the degree of error rate at the output

neuron, the partial derivate of eqn 2.12 can be simplified to:

−∂E (n)

∂vj(n)
= (yj − ˆyj)α

′(vj(n) (2.13)

where α
′
is derivative of the activation function. Changing the weights to the hidden layers

is more complicated , but using the chain rule yields the following:

−∂E (n)

∂vj(n)
= α

′
(vj(n))

∑
k

− ∂E (n)

∂vk(n)
ωkj(n) (2.14)

where k is the neuron index in the previous layer going into the j th neuron in the next layer.

In addition to the previous analysis, it is worth mentioning that the backpropagation

algorithm can only be used actively in multilayer perceptron if the activation function is

usable with the gradient descent algorithm (i.e., it’s differentiable) [42]. Most commonly

used logistic activation functions with backpropagation are summarized below.

S =
1

(1 + exp(−z))
(2.15)

H = tanh(z) = 2σ(2z)− 1 (2.16)

where S represents signum function, and H denoted “Hyperpolic Tangent” function.

2.2.3 Support Vector Machine

The support vector machine (SVM) is a family of machine learning algorithms [68]. It is

an effective supervised learning method commonly used for regression and classification. It

was developed and introduced by Vapnik at the ATT Bell Laboratories in 1997. SVM aims

to discover the optimum region that separates two or more class members from each other.
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The optimum area is often called a hyperplane if the classification problem is linear and the

SVM does a linear separation.

On the other hand, if the classification problem cannot be solved with a single hyperplane,

it requires non-linear classification. In this case, a kernel trick is applied for distinguishing

the classes by mapping the non-linear feature data to higher dimensions where they become

separable. The intuition behind the process for finding the best hyperplanes, both for linear

and non-linear problems, are summarized as follows.

In linear problems [12], a given dataset {(x1, y1), ..., }xi ∈ Rn, yi ∈ {+1,−1} can be sepa-

rated by a hyperplane linearly. An n-dimensional vector w and a bias constant b, defines the

hyperplane through the linear equation w .xi + b = 0. The perpendicular (normalized) dis-

tance from the hyperplane is found through the dot product where the hyperplane threshold

function is used to make the following binary decision:

h(xi) =


(w .xi) + b > 0, yi = 1

(w .xi) + b < 0, yi = −1

(2.17)

In the eqn 2.17, it is designated to belong to the positive class (+1) and vice versa for

the negative class (-1). Thanks to this duality and the way the problem is formulated, the

following equation is true for all the observations in the dataset:

yi(W
TXi − b) ≥ 1, for all 1 ≤ i ≤ n (2.18)

From the eqn 2.18, the goal is to find the maximal margin distances, geometrically defined

as 2
∥w∥ , between the planes that separate the two classes. The data points closest to the

margins of the hyperplane become the so-called support vectors.
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When the data is not linearly separable then the hinge loss function can replace the

regular thresholding function as follows:

max(0, 1− yi(w
Txi − b)) (2.19)

The hinge loss function is formulated such that it becomes zero if the condition in eqn

(2.18) is satisfied. Also, the conditions are totally provided on the eqn (2.18) then following

the non-linear problem be linear problem similar which is expressed as,

λ∥w∥2 +

[
1

n

n∑
i=1

max(0, 1− yi(w
Txi − b)

]
(2.20)

where λ (regularization parameter) is minimum and greater then zero to satisfy max margin

size where the support vectors are correct side of the middle hyperplane (on figure it is shown

as red). This process is also called as soft-margin and it is a technique for solving noisy data.

Figure 2.3: Support Vector Machine
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When the data is not linearly separable one can apply a kernel trick where the data

is projected into a higher dimensional space where it is separable. Another benefit of the

kernel function is increasing the computational speed compared to the classical mathematical

calculations especially for dot products. The kernel function is shown as K (xi , xj) = xi .xj .

where polynomial and Gaussian kernels are two of the most popular forms.

K (xi ,xj) = (xixj + c)d (2.21)

The eqn 2.21 is polynomial kernel. Here, c is a constant d represents the dimension of the

projection space. As d As d increases, the decision boundary can become more complex and

could cause overfitting. However, probably the most popular kernel shown to demonstrate

superior performance in many non-linear applications is the radial basis function (RBF)

kernel defined as follows:

K (xi , xj) = exp(λ∥xixj∥2) (2.22)

The egn 2.22 is also called the Gaussian kernel due to the shape of the kernel following

the Gaussian distribution. Lambda is the hyperparameter of the kernel where smaller values

generally yield better results.

2.3 A Brief History of Artificial Neural Networks

The concept of a “neural network” has been inspired by the fundamental operation of

the human brain. The neural network uses “connectionism” described by the scientists as

simulating the connected circuits to understand the intelligence of the human brain. In

1943, this concept was described with a single electrical circuit by neurophysiologist Waren

McCulloch and mathematician Walter Pitts. This concept was further described in Donald

Hebb’s book, “The Organization of Behaviour (1949)”, which talks about strengthening the
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neural network pathways for every single attempt as he famously put “the neurons that fire

together wire together”.

Two main views are generally considered as pioneers to Neural Networks: “Threshold

Logic” and “Hebbian Learning” which were both proposed in the 1940s. As researchers

were trying to implement these networks in computational machines, a “Hebbian Network”

was first implemented at MIT in 1954 called a ‘calculator’ at the time. In 1958, a psy-

chologist at Cornell, Frank Rosenblat, proposed the idea of a “Perceptron (Mark I)” when

he was trying to solve a different research problem. The general idea was modeled after

Waren S. McCulloch’s and Walter Pitts’ 1943 McCulloch-Pitts neuron. The McCulloch-

Pitts neuron explains a brain’s complex decision process using a simple linear threshold

gate. The neuron takes inputs, applies a weighted sum, and returns ‘1’ if the result is above

the threshold, and ‘0’ otherwise. This threshold model, began the history of the artificial

neural networks (ANN).

Kelly in 1960 and Bryson in 1961, laid the foundations of “backpropagation” in control

theory by using features of dynamic programming. In 1969, Minsky and Papert introduced

the basics of perceptrons. However, the perceptrons did not satisfy expectations for solving

trivial problems (e.g., the famous Exclusive OR or XOR problem). Hence, research stag-

nated until the elimination of basic perceptrons’ limitations by stacking multiple perceptrons

together. It was called a Multi-Layer Perceptron (MLP) – the first neural network similar to

its more recent cousins. There were significant developments in ANNs in the years followed

by improving the hardware operations to provide robust and better alternatives for training

to solve more complex problems.

In the 1990s, the concept of machine learning was introduced to the general field of AI

with the help of MLPs in popular applications. Until the mid-1990s, the development of AI

around the concept of neural networks was slow since it couldn’t satisfy mostly unrealistic

expectations. However, at the same time, other branches of machine learning, such as kernel

machines (Boser et al. 1992, Cortes and Vapnik, 1995; Scholkopf et al., 1999) and graphical
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models (Jordan, 1998) achieved satisfactory performance in a variety of tasks. These two

methods continued to be more popular than neural networks until late 2000s.

Hochreiter (1991) and Bengio et al. (1994) have identified some mathematical difficul-

ties in modeling sequences with neural networks. Later, Hochreiter and Schmidhuber (1997)

presented long-term, short-term memory (LTSM) networks to solve these mathematical chal-

lenges through a novel topology which uses input, output and forget gates to capture the

most relevant information in a sequence of data points such as speech signals. In today’s

world, LSTM is used in many sequence-based modeling tasks by large companies such as

Google for natural language processing. A breakthrough in 2006 by Geoffrey Hinton and

his colleagues introduced the greedy layer-wise pretraining to provide more efficient neural

network training. Later, the same idea was successfully applied to other deep neural net-

works by Bengio in 2007 (Ranzato 2007). The term “deep learning” became popular among

the scientists as more applications began to outperform conventional machine learning and

feature extracting approaches in fields from image processing to speech(Bengio and Lecun,

2007; Delalleau and Bengio, 2011; Pascanu et al., 2014a; Montufar et al., 2014).

2.3.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) were presented in the early 1980s by Yann Le-

Cun [58] with inspiration from the previous work done by the Japanese scientist Kunihiko

Fukushima, who invented the neocognitron, a simple image recognition network. Later, the

CNN structure called LeNet [57] has gained the ability to recognize handwritten digits and

became the most used tool in the banking and postal services. Their purpose was to read

numbers and letters, especially the zip codes on arrival/destination documents and digits on

important papers such as checks. Although the convolutional neural network was an intelli-

gent tool, it lacked scalability as the CNNs required vast amounts of data for effective work

on larger images. Hence, they were applied to only low-resolution images at the beginning.

In 2012, Alex Krizhevsky won the ImageNet computer vision award by introducing AlexNet
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Figure 2.4: Convolutional Neural Network Structure

[55] which provided unprecedented 85% training accuracy and 74% test accuracy. AlexNet

became the first CNN that could be applied to complex tasks by processing a high volume

of image datasets. CNNs are now commonly used in computer vision, media recreation,

recommendation systems, and natural language processing for text classification, etc.

The convolutional neural network is a branch of deep learning [38]. It functions partially

as a feed-forward neural network with a slight difference. The first hidden layers are replaced

with convolutional layers, followed by activation layers that are also called feature maps,

and pooling layers for effective feature selection. The name comes from the convolution

operation in the first few layers. As the convolutional layers increased in size thanks to

widely available computational powers of graphical processing units or GPUs, the CNN’s

recognition capabilities also increased. For instance, while the handwritten digits could be

recognized with just three or four layers, the human face needs more than twenty layers to

effectively capture the fine details. The human visual cortex inspired the intuition behind the
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utilization of convolutional layers. The sequenced convolutional layers regularly process the

images whenever they arrive at the next stage and resolve complex information as features.

During this filtering process specific tasks are carried out such as padding, stride, convolution,

and pooling.

Filtering is an operation to extract specific features from the input image. During the

forward propagation (forward pass), each filter is convolved with the input matrix – across

both the width and height of the samples of images to obtain a 2-D feature (activation)

map. In other words, the convolutional network learns to identify basic information such

as sharp edges and corners from the input matrix via trainable filtering operations. Stride

and padding are important operations during the filtering. Stride controls how much sliding

should be over the entire input matrix. For instance, if the stride is 1, the filter moves only

for one pixel at a time.

Figure 2.5: Filtering Operation in the CNN

Padding is one of two options to make the edges of the input matrix useful by adding

information such as zeros which is called zero padding. The padding operation is required

when the filter size (2a+2b) does not match exactly with the image dimensions to extract all

the information from the input matrix. It also depends on the stride number from the edge
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edge of the input matrix. That means, during the convolutional operation, movement of

the filter on the x (horizontal) and y (vertical) axes, the filter covers the vast amount of

information on the inner area of the input matrix wheras the edges would be less convolved.

The other option is removing the parts of the input matrix where the filter does not fit.

This option is called valid padding, which keeps only the necessary pieces of the input and

removes the others.

Another important step in the filtering process is pooling. It is a non-linear down-

sampling layer in the convolutional neural network. It divides the input matrix into sub-

categories according to the filter size and takes the most useful information. That means

it progressively reduces the input matrix size (fewer parameters) and controls overfitting.

The pooling layer comes after the activation function. There are many pooling layers, but

the most commonly used one is max-pooling. As the name suggests, it takes the maximum

value from each filtered sub-part of the input matrix as output as shown:

fX ,Y (S) = max
a,b

(S2a+2b) (2.23)

where S is the size stride, and a and b are width and height of the filter.

Defining the network parameters for CNN to measure the complexity of this deep neural

network is an important concept [4]. There are specific hyperparameters to choose includ-

ing the output size of feature maps; the amount of padding and the number of trainable

parameters within the particular layer.

The size of the output feature map, M, is calculated as follows:

M =
(N − F )

S
+ 1 (2.24)

where N refers to the volume of the input matrix, F represents the dimension of the filters,

and S is defined as the stride number or length.
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In addition, the amount of padding, P, is formulated as:

P = (F − 1)/2 (2.25)

whereas F denotes the kernel size. Finding the number of parameters and the total memory

required to process a specific (lth) layer are as follows;

N (th)
p = (Fx(F + 1)xFMl−1)xFMl (2.26)

where N lth
p represents the total number of parameters of the l th layer. FMl is the total number

of output feature maps and FM(l−1) is the size of the input matrix goin into the l th layer.

The overall operation and structure of the CNN are shown in Figure 2.5. The red

dotted box represents the sliding window as the filter moves based on the stride number.

Output (activation map) is the compression of both the information and volume of the

input matrix after the convolution operation. Pooling operation takes the maximum value,

such as d2, among the calculated values (d1, d2, d3, d4). The other values (d7, d10, d15)

are obtained similarly.

2.3.2 Convolutional Autoencoders

The convolutional autoencoder (CAE) [10] represents the joint operation of the autoen-

coder and convolutional neural network topologies commonly used to represent 2D images

in the latent space. It has mainly two parts including encoding, and decoding layers. The

encoding layers are similar to the CNN forward propagation structure and consists of con-

volution and max-pooling layers (downsampling). On the other hand, the decoder layers

include deconvolution and upsampling (upscaling) layers. As we have seen from the autoen-

coder, the input data is compressed through the convolution and pooling operations in the

encoder to be represented in the latent space. Then, the decoder part uses the compressed

matrix in the latent space by applying the deconvolution and upsampling process to obtain
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Figure 2.6: Convolutional Autoencoder Structure

the output matrix which aims to recreate the input matrix. The aforementioned process is

illustrated in figure 2 and could be defined mathematically as follows:

The compressed features of the input image data, D with dimensions K = K1,K2, . . . ,Kd ,

n are obtained by passing through n convolution filters F (1) = F
(1)
1 , F

(1)
2 , . . . , F

(1)
n to create

intermediate (latent) features as follows:

Tl = f (K ∗ F (1)l+b
(1)
l ),m = 1, 2, ..., n (2.27)

where f denoted the activation function such as relu or sigmoid, b
(1)
l is the bias for l th

feature map.

During the decoding process, the reconstructed input image is represented as K̃ , which

is obtained by deconvolutional operationsas follows:

∼
K = f (T ∗ F (2)

l + b
(2)
l ) (2.28)
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where T = (Tl)
n
l=1 denotes the intermediate (latent) feature maps, F (2) = F

(2)
1 ,F

(2)
2 , . . . , F

(2)
n

represent n deconvolutional filters for the decoding part. A loss function, L such as the mean

squared error could then be used to update the weights in the network using backpropagation

as explained in the previous chapters until the loss function reaches a threshold.

L(K , K̃ ) =
1

2

∥∥∥K − K̃
∥∥∥2

2
(2.29)

That means the output features approximate the input features using only the transformation

of the latent space.
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Chapter 3: Performance Analysis of Neural Network Topologies and

Hyperparameters for Deep Clustering

3.1 Introduction

Clustering [46], the unsupervised process that groups similar data examples together

based on some distance measures, is one of the primary problems in various research fields,

such as machine learning, computer vision, pattern recognition and, data analysis. Many

clustering methods have been proposed including k-means [6],[41],[99] and Gaussian Mixture

Models (GMM)[81]-[12], however, traditional clustering methods do not perform well with

high-dimensional data, due to the inadequacy of distance measures applied in these meth-

ods. Besides, these clustering methods are affected by high computational complexity on

large datasets. Therefore, dimensionality reduction and feature mapping methods have been

studied extensively to represent the original data in a feature (latent) space where original

data is separated more effectively by a clustering algorithm. However, the complexity of the

latent space still remains a challenging problem. Recent progress in deep learning [88], led to

deep neural networks (DNN) being used as non-linear and rich mappings of the data input

space into a lower dimensional feature space. In other words, DNNs integrate representation

learning with clustering using raw data with a high accuracy rate. This new method of

grouping is generally referred to as Deep Clustering (DC).2

Researchers have previously considered feature mapping and data grouping (clustering)

as two different processes. First, high dimensional input examples are transformed into a

generally lower dimensional feature space. Then, the clustering algorithm is applied to the

transformed data. DC on the other hand aims to combine these two processes as first intro-

2Part of this chapter was published in [56]. The permission is includes in Appendix A
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duced with the Deep Embedding Clustering (DEC) [3] which implements feature mapping

via a fully connected deep auto-encoder [98] with a k-means back-end for clustering. Vari-

ations of DEC have been proposed in recent years including, the Discriminatively Boosted

Clustering (DBC) which replaces the feature mapping auto-encoder with a convolutional

auto-encoder (CAE) for image analysis [60], a joint dimensionality reduction technique with

k-means based on DNN [103], the Deep Embedded Regularized Clustering (DEPICT) using

logistic regression with CAE for joint clustering assignment [37], the Variational Deep Em-

bedding (VaDE) based on a variational auto-encoder (VAE) and Gaussian Mixture Model

(GMM) [47],the Joint Unsupervised Learning (JULE) proposed as a recurrent perspective

with convolutional neural network (CNN) activated data on agglomerative clustering [104],

and a CNN-based joint clustering method which brings an iterative solution with feature

drift compensation [43]. While deep clustering remains a popular research field with such

recent advances in algorithm design and clustering accuracy [73], the process of choosing

many of the hyper - parameters, such as the code size, network topology and clustering

coefficient, still remains an inexact science.

The purpose of this analysis study is to address this gap in our knowledge of deep cluster-

ing methodologies and conduct a comprehensive analysis study on how DC hyperparameters

affect the clustering performances of deep embedding networks. The DNNs used in this study

are auto-encoders (AE) [90] and convolutional auto-encoders (CAE) [39] applied to different

image datasets with varying complexities. For a clear perspective, we choose popular image

benchmark datasets MNIST, CIFAR10, and SVHN for a two-phase experiment where each

phase implements a change in either topology or hyper-parameter set. In summary this

study has the following contributions:

1. When using deep unsupervised feature extraction, more complex datasets require a

higher dimensional latent space to achieve the best subsequent clustering performance.

30



2. Color information can be useful in statistically significantly improving the deep clus-

tering performance for datasets where color makes a meaningful contribution to the

identity of the observation.

3. General trends need to be further evaluated on a wider variety of datasets and clustering

domains to make more definitive conclusions.

The rest of this chapter is organized as follows: section 3.2 provides general information

about the Autoencoder and the Convolutional Autoencoder structures and their applications

to deep clustering. Section 3.3 describes the experimental setup used in the study and along

with the hyperparameters, the datasets, evaluation metrics, and implementation. The results

and discussions are presented in section 3.4.

3.2 Methods

3.2.1 Autoencoder

Figure 3.1: Autoencoder Network Structure

Autoencoder is a particular artificial neural network topology which has the same input

and output layers where the training is performed by presenting the same input data to both

layers simultaneously. The general structure of the auto-encoder consists of a visible input
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layer x, a number of hidden layers h and the reconstructed output layer y with a family of

nonlinear activation functions f applied at different layers.

During training, the auto-encoder maps the input xεRy to the hidden layers with lesser

dimensions than the input data which produces a compressed representation of the original

data in which its dimensionality is reduced to the code (latent) layer size HεRh. This

first step is called the “encoder” and is shown on the left side of Figure 3.1. Later, the

compressed information is mapped to the output layer via the “decoder,” through a process

called “reconstruction.” Mathematically, these two steps are formulated as follows:

H ≡ fWH(x) = f (WHx + bH) (3.1)

z ≡ gW z(x) = g(WzH + bZ ) (3.2)

where WH and WZ define the encoding weight and decoding weight, respectively, bH and bZ

define the corresponding encoding bias vector and the decoding bias vector, and f (.) and

g(.) are encoding and decoding activation functions such as a sigmoid function or a rectified

linear unit, respectively. As previously mentioned, the primary purpose of the auto-encoder

is to learn useful latent information on the code layer by minimizing the reconstruction

error. For a given N input data samples, the following loss function is used to determine the

parameters “WH ,WZ , bH , and bZ” through a back-propagation algorithm commonly used in

feed-forward neural networks:

LAE = min
1

N

N∑
k=1

||xk − zk ||2 (3.3)

In this study, we constructed several auto-encoder networks with different topologies and

four different code layer sizes to simulate a variety of scenarios and study the impact of

topology on reconstruction and clustering performance.
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3.2.2 Convolutional Autoencoder (CAE)

K=32
DeConv1 DeConv2 DeConv3

2x2x8 8x8x16 16x16x32 32x32x64

DeConv4

32x32x64 16x16x32 8x8x16
Conv1 Conv2 Conv3

2x2x8
Conv4

INPUT OUTPUT

Figure 3.2: Convolutional Autoencoder Network Structure

The convolutional auto-encoder (CAE) is similar to the standard auto-encoder except the

input layers are replaced with convolutional layers to present a powerful technique specifically

for image-processing tasks. CAEs borrow ideas from the Convolutional Neural Networks

(CNN) much like how AEs implement standard fully - connected networks. Similar to

the equations defined in section II-A, we define the CAE encoding part as follows where

multiplications are replaced with 2D convolutions:

H ≡ f (WH ∗ x) (3.4)

z ≡ gDZ (H) = g(H ∗ DZ ) (3.5)

where H represents the input image samples as the latent variables in the code layer which

then feeds into the fully connected AE hidden layers, WH and WZ are encoding and decoding

weights, ‘*’ is the 2D convolution operation. The CAE’s primary purpose is finding the latent

layer representation, sometimes called the coding layer, through minimizing a cost function

such as the mean squared error (MSE) between original and reconstructed images where the
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corresponding loss function is defined as:

LCAE = min
WH ,DZ

1

N

N∑
j=1

||gDz(fWH(xj))− xj ||2 (3.6)

where N is the number of input images in the dataset, xjεR
2 is the j th image.

As shown in Figure 3.2, each convolutional layer at the encoder includes filters with

a certain size and stride, image normalization followed by max pooling to transform and

compress the information included in the original image. The decoder structure is similar

but in reverse order which includes up sampling to obtain the reconstructed image at the

output layer of the autoencoder.

3.2.3 K-means Clustering

Clustering is performed on unlabeled observations in a dataset with the objective to

group similar data samples in an unsupervised fashion. One of the most popular clustering

algorithms is k-means which stands out from others with the guaranteed convergence prop-

erty [63]. The hyper-parameter k defines the number of randomly assigned centroids which

would be used to identify the center location for each similarly grouped data cluster. The

training is done via minimizing the within-cluster sum of squares (WCSS) metric which uses

squared Euclidean distances between the assigned centroid locations and observations. The

centroid locations are then updated by calculating the new centroid location based on the

observations assigned to the initial centroid assumption.

While k-means is easy to implement and its training is straightforward, it suffers from

scalability issues where higher dimensional observations have poor clustering accuracy com-

pared to the other methods. However, the advance of deep feature learning such as the

autoencoder and convolutional autoencoder allowed for rich statistical representation of the

input space at the code layers of deep neural networks which can be used with a k-means

backend negating its drawbacks with high dimensional data. In this study the latent repre-
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sentation of the input images at the code layer of both the autoencoder and convolutional

autoencoder structures are used as inputs to the k-means algorithm.

3.3 Experimental Setups

3.3.1 Datasets

Figure 3.3: MNIST(a), Cifar10(b), and SVHN(c) Images Dataset Representation

We implemented the AE and CAE based neural network structures on three different

datasets; MNIST, CIFAR10, and SVHN to analyze the effect of hyper-parameters on clus-

tering performances and associated reconstruction losses.

• MNIST [59]: MNIST is a set of black and white handwritten image examples between

0 and 9 used as a popular benchmark dataset for deep learning applications in image

classification. It has 60,000 images for training and 10,000 for testing where each image

contains 28x28 pixels. Figure 3.3-(a) shows a collection of representative examples from

this dataset.

• CIFAR10 [54]: Another popular benchmark dataset, CIFAR10, includes 10 classes with

6000 image samples per class to constitute 60,000 colored images of size 32x32 pixels
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where 50,000 images are used for training and 10,000 images are used for testing. The

10 different classes that are represented in the dataset include airplanes, cars, birds,

cats, deer, dogs, frogs, horses, ships, and trucks. Figure 3.3-(b) shows a collection of

representative examples from this dataset.

• SVHN [67]: Google’s Street View House Numbers dataset consists of real-world images

and includes 73,257 digits for training, 26,032 digits for testing with an image size of

32x32 pixels. The SVHN is similar to MNIST as it has 10 classes with numbers

ranging from 0 to 9 except the images have color. Figure 3.3-(c) shows a collection of

representative examples from this dataset.

3.3.2 Hyperparameters

The main hyper-parameters used in this study are the network topologies (both in terms

of network size and input layer structure), size of the code layer (latent space) and clustering

coefficients. In AE, the general network topology is 784-128-64-32-16. Four different code

sizes are defined as 128, 64, 32, and 16 with five different clustering coefficients K = 10, ..., 50

for every 10 incremental of K . Unlike AE, we used a different network topology for different

code sizes for the CAE as shown in Figure 3.4 with the same five clustering coefficients.

3.3.3 Evaluation Metrics

There are different clustering performance (evaluation) metrics defined in the literature

separated as internal and external metrics such the Davies–Bouldin index [22] and Dunn

index [28] for internal metrics, and Purity [86], Rand Index [79], F-measure [87], Jaccard In-

dex [80], Dice Index [24], Fowlkes-Mallows Index [33], and Confusion Matrix [95] for external

metrics for a variety of applications. We use the purity evaluation metric in this study to

find the clustering accuracy for both algorithms for a fair comparison of the effect of hyper-

parameters. To calculate the purity metric, each cluster is labeled as the group with the

most frequent samples in that cluster, and the accuracy of this assignment is measured by
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Figure 3.4: Implementation Representation of Convolutional Autoencoder Structures

finding the ratio of correctly assigned observations to the general population in that cluster

for each group. Its formal definition is,

Purity(Ω,C) =
1

N

∑
k

maxj |ω ∩ cj | (3.7)

where Ω = ω1,ω2, ...,ωk is the set of clusters and C = c1, c2, ..., cj is the set of groups, N is

the total number of data points.

3.3.4 Implementation

All implementations are done using the Keras [18] library on Google’s Colab platform.

There are differences in how the input data is represented based on the specific network
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topology being used. In the case of the autoencoder, the fully connected network topology

for the encoder is D-128-64-32-16 where D is the input space dimension (feature space) size of

784 for the MNIST and 3072 for the CIFAR10/SVHN datasets and 16 is the code size (latent

space). For a fair comparison of the datasets, CIFAR10 and SVHN are converted to gray-

scale like MNIST (1D) prior to training on the autoencoder. After training the autoencoder,

the latent representations of each observation in the dataset are collected in a transformed

dataset (such as 60,000 x 16 for the MNIST dataset when using a code size of 16) on which

the k-means clustering algorithm is applied to find the associated purity metric for each

clustering coefficient (i.e., K = 10 through 50). The centroids are initialized randomly 20

times and the purity metrics are averaged to find statistically meaningful results. A similar

process is repeated for the convolutional autoencoder except the colored images in CIFAR10

and SVHN are represented via the three RGB channels available at the convolutional front

layer of this topology. In order to represent the samples from the MNIST dataset, the same

image is presented to each channel creating a pseudo 3D representation for a fair comparison

of the network structures. Figure 3.4 shows the detailed overview of each topology to obtain

the desired bottleneck size for each experiment. We repeat the same procedure of applying

k-means using different clustering coefficients on the transformed datasets for each code size.

3.4 Experimental Results and Discussions

The clustering performances of different network topologies on different image datasets

for both autoencoder and convolutional autoencoder are presented in Table 3.1 and Table

3.2 below respectively.
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Table 3.1: Convolutional Autoencoder for MNIST(Replicated), Cifar10, and SVHN

Cluster

Size

(K)

Cifar10 (CAE)

Latent Space(k)

Mnist (Grey-Scaled-CAE)

Latent Space(k)

SVHN(CAE)

Latent Space(k)

k=16 k=32 k=64 k=128 k=16 k=32 k=64 k=128 k=16 k=32 k=64 k=128

Accuracy Accuracy Accuracy

Standard Deviation Standard Deviation Standard Deviation

K=10 22.97 24.90 26.28 25.27 52.10 51.40 45.69 42.54 20.31 20.44 20.43 20.06

+/- 1.57 1.15 0.92 0.67 3.47 4.26 3.81 2.69 0.65 0.59 0.53 0.23

K=20 26.43 27.70 29.13 28.42 63.74 64.51 62.31 57.50 21.31 21.47 21.66 20.34

+/- 1.80 0.74 0.73 0.51 3.94 4.05 2.17 2.63 0.72 0.68 0.66 0.37

K=30 27.54 28.66 30.01 29.46 71.24 72.81 71.63 67.22 21.60 21.87 22.36 21.22

+/- 1.29 1.17 0.73 0.51 3.41 1.95 2.45 2.02 0.58 0.67 0.83 0.42

K=40 28.77 29.98 31.39 30.47 73.44 75.56 73.94 71.94 22.23 22.64 23.03 21.31

+/- 0.88 0.78 0.79 0.73 2.98 1.91 1.98 2.73 0.54 0.66 0.76 0.44

K=50 29.16 30.46 31.92 31.49 76.07 77.18 75.97 74.36 22.39 22.95 23.83 21.69

+/- 1.19 0.87 0.70 0.74 2.87 2.21 2.92 1.40 0.49 1.02 0.81 0.37



In Table 3.1, the following observations can be made. The highest clustering accuracy

values are obtained pretty consistently at two different code sizes for the three different

datasets. Where the maximum accuracy is observed at the code size of K = 32 for the MNIST

dataset, a higher code size of K = 64 is needed for both CIFAR10 and SVHN datasets to

achieve the highest clustering accuracy. This is expected due to the inherent complexity of

the images of these two datasets when compared to MNIST. A similar trend is observed for

supervised classification applications where the performances reported in the literature for

MNIST are significantly higher than the ones reported for CIFAR10 and SVHN. Assuming

that the back-end K-means algorithm perform similarly between different datasets; a larger

code size is better able to capture the latent statistics of the more sophisticated images in

CIFAR10 and SVHN. Another observation is that the clustering accuracy also increases as

the K factor increases for the back-end clustering algorithm. This is also expected due to the

performance metric used in this study (purity) which dictates that as the number of clusters

increases, the probability of samples falling into a wrong cluster decrease. For instance, at

the limit, when K is equal to the number of observations, the clustering accuracy would be

100% which would have no practical meaning. A standard practice in comparing clustering

accuracies is to choose the K value to be either the same or twice the number of classes in

the dataset.
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Table 3.2: Autoencoder for MNIST, Cifar10(Greyscale), and SVHN(Greyscale)

Cluster
Size
(K)

Cifar10(AE-Grey-Scaled)

Latent Space(k)

Mnist(AE)

Latent Space(k)

SVHN(AE-Grey-Scaled)

Latent Space(k)
k=16 k=32 k=64 k=128 k=16 k=32 k=64 k=128 k=16 k=32 k=64 k=128

Accuracy Accuracy Accuracy
Standard Deviation Standard Deviation Standard Deviation

K=10 20.42 20.71 20.90 20.95 64.04 66.57 66.52 59.23 20.05 19.86 19.92 19.83
+/- 0.93 0.74 0.59 0.45 3.39 1.76 1.06 2.21 0.47 0.23 0.32 0.23

K=20 23.24 24.31 23.49 23.81 73.23 74.99 73.56 70.06 20.90 20.94 20.72 20.46
+/- 1.12 0.53 0.86 0.45 2.20 2.04 1.53 2.63 0.68 0.70 0.65 0.30

K=30 24.71 24.31 24.84 24.74 78.09 79.80 77.86 76.47 21.74 21.68 21.87 21.48
+/- 1.05 0.74 0.57 0.45 2.16 1.40 1.17 1.83 1.16 0.66 0.60 0.31

K=40 25.33 25.13 25.58 25.70 81.46 82.47 81.27 79.26 22.68 22.49 22.47 22.11
+/- 0.99 0.65 0.79 0.48 1.53 1.14 1.03 1.65 1.53 0.52 0.64 0.28

K=50 26.39 26.69 26.57 26.49 82.21 83.52 83.27 81.05 23.21 23.44 23.47 22.53
+/- 0.86 1.65 0.59 0.62 1.67 0.73 1.19 1.61 1.12 0.86 0.95 0.37
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Figure 3.5: Convolutional Autoencoder Accuracies Across Different Settings and Datasets

In Table 3.2, a similar result is obtained for the MNIST dataset where the code size of

k = 32 provides the highest clustering accuracy. In fact, the accuracy for the autoencoder

in this case is greater than the accuracy reported for the convolutional autoencoder on the

same dataset (as in Table 3.1). This can be explained by the fact that MNIST images have

been replicated at the convolutional input layers designed for an RBG colored image which

increases the number of parameters to be trained in the case of CAE which may have in turn

reduced the maximum possible accuracy from the network topology due to a lesser ratio of

observations to weight parameter comparatively. On the contrary, the clustering accuracies

are lower for CIFAR10 and SVHN when using the regular autoencoder which suggests that

the convolutional layers can properly utilize the additional information coming from the

colored images. This effect is more significant for the CIFAR-10 dataset where color also

signifies a meaningful feature of the observation (for instance a dog or a cat, as the two

classes in the dataset, can only have a specific range of color values) compared to the SVHN
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Figure 3.6: Autoencoder Accuracies Across Different Settings and Datasets

dataset where color is not as relevant. However, there is no standard code-size which provides

the highest accuracy for all K values – which indicates that the lack of convolutional layers

affects the code size required for maximum performance. In fact, for the CIFAR10 dataset,

a code size of 128 (twice that of table 3.1) is generally required which may suggest that

the information encoded in the convolutional layers is now represented (and compensated)

in the increased bottleneck layer size. However, the results for SVHN do not support this

conclusion where some of the high accuracies have been obtained at even lower code sizes

such as 16. This is a very interesting observation which indicates that further research is

required to understand such behavior and how removing convolutional layers could impact

the training of the rest of the network for different datasets and how data is subsequently

represented in the code layer. Figures 3.5 and 3.6 summarize the best performance curves

for each topology as the latent space dimensions change.
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Chapter 4: Anomaly Detection in Self-Organizing Networks: Conventional vs.

Contemporary Machine Learning

4.1 Introduction

As a next-generation telecommunication technology, 5G brings a novel perspective and

innovative solutions to the increased demand of humans and autonomous devices [13]. This

technology mainly focuses on five areas, including dense-device structures, high carrier fre-

quency bands such as millimeter wave (mmWave), multi-connectivity such as massive MIMO,

smart devices, and massive machine-type communications. To fulfill these requirements in

such a dynamic digital world, the next-generation cellular networks must be adaptable with

predictive capabilities due to the ever changing environment of the nested services interact-

ing with each other [5]. Hence, artificial intelligence (AI) has garnered increased interest as

a potential 5G technology to handle the dynamic environment in analyzing and contributing

to the execution of the network. There are examples of intelligent applications on massive

machine-type communications (mMTC) in 5G or massive MIMO in wireless sensor networks

(WSNs), to achieve better service quality through improved IoT connectivity as well as to

extend battery life and boost spectral efficiency by utilizing channel aware decision fusion

methodology [11],[20].

In previous mobile networks, such as 4G, autonomous mobile networks or self-organizing

networks (SONs) with capabilities such as self-planning, self-configuring, self-optimizing,

and self-healing, have been shown to significantly contribute to reducing network failures

and boosting performance without human intervention such as AirHop’s eSON [1]. How-

ever, current solutions in the market generally lack smart functionalities, especially for cell

outage management (COM) to heal autonomically [23]. If there is no traffic due to a spe-
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cific network issue, it signals an anomaly where one or more cells may be in outage and

it is vital to detect the outage to resume service within the shortest time possible. For

instance, Ericsson lost at least $100 million because of a network outage [30], which could

have been prevented using AI-powered SONs. In consideration of these issues, the European

Telecommunications Standards Institute (ETSI) introduced a zero-touch group to research

automation to advance machine learning and AI techniques (deep learning) specifically for

anomaly detection applications on mobile networks.

This paper has four main contributions to the field as summarized below:

• We present a comprehensive analysis of a conventional machine learning method for

anomaly detection in self-organizing 5G networks (5G-SONs) and compare it with a

popular deep learning alternative using different learning representations, including

one-class and binary learning.

• We claim state-of-the-art performance on a publicly available dataset [9], which inves-

tigates multiple use case scenarios for anomaly detection in 5G-SONs. We demonstrate

an average improvement of 15% over the best recent performance which was achieved

by a deep auto-encoder-based setup.

• We demonstrate for the first time that data augmentation methods can further boost

anomaly detection performance in binary mode, even when utilizing conventional al-

gorithmic methods such as support vector machines on a sufficiently large dataset.

• Finally, we achieve nearly two orders of magnitude improvement in computational

speed and an order of magnitude reduction in trainable parameters using conventional

machine learning to provide a robust alternative for 5G self-organizing networks espe-

cially when the execution and detection times are critical.

The rest of this chapter is organized as follows. Section 4.1.1 provides a brief summary

of prior work on anomaly detection in current mobile and self-organizing networks. Section
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4.2 introduces the methods used in this study. Section 4.3 describes the experimental setup

in detail and provides the hyper-parameters, dataset characteristics, implementation, eval-

uation metrics, and necessary details for repeatability. Finally, the results and discussions

are presented in Section 4.4.

4.1.1 Related Research

Anomaly detection in communications has been an active research area over the last

decade. For instance, in [76], abnormal activity in the wireless spectrum has been explored.

Specifically, the authors used power spectral density (PSD) information to identify and

pinpoint anomalies in the form of either undesired signals present in the licensed band or

the absence of a desired signal. The information obtained from the PSD was processed

using a combination of adversarial auto-encoders, convolutional neural networks, and long

short-term memory recurrent neural networks.

In another example, [23] utilizes the measurements and handover statistics (inHO) from

adjacent cells in a mobile communications network to expose abnormalities and outages.

Monitoring in this way provides the potential status of a cell outage where the inHO in-

formation becomes zero. In [15], a novel online anomaly detection system was proposed

in mobile networks to identify anomalies in key performance indicators (KPIs). The pro-

posed system consists of a training and detection/tracking block. The system learns the

most detrimental anomalies in the training block as each recent KPI is sourced, and mon-

itors its status until the end of the second block. Thus, the detection of anomalies has

been set to prefer highly possible anomalies in the long term. Moreover, the system ob-

jects to provide the minimum amount of anomalies by maintaining a low positive rate on

behalf of network operators’ efforts to deal with only real anomalies. In addition, the system

can be extended to next-generation networks via automatic adaptation features to a new

network behavior profile.
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The authors in [65] proposed unsupervised learning to detect anomalies related to mobil-

ity using mobility robustness optimization (MRO), which is an important use case of SONs

for modern 4G and 5G networks. A similar study in [75] brings a different perspective by

using reinforcement learning to degrade call drop rates.

In [17], the authors used an autoencoder-based network anomaly detection method to

detect the ratio of changes in features that reflect non-linearity to increase detection accuracy.

The authors used a convolutional autoencoder for dimensionality reduction and outperformed

more conventional methods in wireless communications to detect cyberattacks.

Artificial intelligence (AI) applications supporting 5G technologies can be implemented

both in the physical and network layers. For instance, authors in [69] present an excellent

overview of deep learning (DL) applications for the physical layer. One of the applications

is a novel modification of the standard autoencoder called the ”channel autoencoder”. In

a typical autoencoder, the goal is to find the most compressed representation of the inputs

in the encoding layer with minimal loss at the output layer. In [69], the authors aim to

find the most robust representations of the input (messages) to account for the channel

degradation by adding redundancies instead of removing them. The authors further extend

this concept to an adversarial network of multiple transmitter/receiver pairs aiming for

increased capacity. Furthermore, they discuss augmented DL models using radio transformer

networks (RTNs). The RTNs carry channel domain information and simplify the receiver’s

job for symbol detection using a neural network estimator to obtain the best parameters

for symbol detection. The augmented DL models on complex I/Q samples for modulation

classification demonstrated that the DL models outperformed the classification methods

based on expert features. Another study discussed in [2] introduces designing mobile traffic

classifiers based on the DL utilization. A systematic framework of new DL-adopted Traffic

Classification (TC) structures is introduced and analyzed. Rather than mobility, the study

includes a wide allocation range to encrypt the TC.
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These studies generally rely on multi-class applications of deep neural network methods

learning on features such as key performance indicators, handover statistics, reference signal

received power and quality (RSRP and RSRQ), number of connection drops and failures.

However, there exists a discussion in the research community where other learning repre-

sentations such as one-class learning, and deep unsupervised methods have the potential to

become strong alternatives for anomaly detection in SONs [9]. Similarly, an ever-present

debate investigates the comparative effectiveness of empirical deep learning models and con-

ventional approaches such as feature engineering for a range of temporal applications [51].

A categorical analysis of literature discussed in this section can be found in Table 4.1, which

displays the important characteristics and features such as the dataset type, topology of the

network used, which learning methodology is applied for which application, etc.
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Table 4.1: Summary of Related Research

Paper
Name and
Reference

Features Dataset Topology Learning Application
Data

Preprocessing

Asghar
et. al. [9]

KPIs (RSRP,
RSRQ)

User-Cell
Based Four
Use Case
Datasets

AE
(Autoencoder),

k-NN
(k-Nearest
Neighbor)

Unsupervised
Cell Outage
Detection

Yes

Rajendran
et. al. [76]

PSD (Power
Spectral
Density)

One Synthetic
Spectrum
Dataset,
Two Real
Wireless
Datasets

(SDR, PSD
Sensor Data)

VAE
(Variational

Autoencoder),
AAE(

Adversarial
Autoencoder),
LSTM(Long-
Short-Term
Memory)

Unsupervised/
Semi-Supervised

SAIFE
(Spectrum
Anomaly
Detector
with

Interpretable
Features)

Yes

Bandera et.
al. [23]

InHO-KPIs
(Incoming
Handover
Statistics –

Key
Performance
Indicators)

Live LTE
Network
Simulator

LTE
Cellular
Layout

Unsupervised
COD (Cell
Outage

Detection)
No

Burgueño
et. al. [15]

KPI (Key
Performance
Indicators)

Real LTE
Advanced
Mobile
Network

DBSCAN
(Density

based spatial
clustering)

Supervised
Online

Anomaly
Detection

Yes



50

Table 4.1 (Continued)

Moysen et.
al. [65]

PM
(Performance
Management),

CM
(Configuration
Management)/

IM
(Inventory

Management)

Commercial
LTE

Networks
Datasets

PCA
(Principal
Component
Analysis),
HDBSCAN
(Hierarchical
Density Based

Spatial Clustering
of Applications
with Noise)

Unsupervised

Identifying
Cells

Experiencing
Performance
Degradation

Yes

Chen et.
al. [17]

TCP
(Transmission

Control
Protocol),
UDP(User
Datagram
Protocol),
ICMP

(Internet
Control
Message
Protocol)
Traffics

NSL-KDD

PCA
(Principal
Component
Analysis),

AE
(Autoencoder),

CAE
(Convolutional
Autoencoder),
k-NN (k-Nearest
Neighbor), SVM
(Support Vector
Machine), TANN
(Triangle Area
Based Nearest
Neighbors)

Unsupervised/
Supervised

Network
Anomaly
Detection

Yes
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Table 4.1 (Continued)

Kanjilal et.
al. [51]

ADL
(Activities
of Daily
Living)

UniMIB-SHAR

SVM
(Support

Vector Machine),
ANN (Artificial
Neural Network),
LSTM (Long-
Short-Term

CNN
(Convolutional
Neural Network)

Unsupervised
Human
Activity

Recognition
Yes

O”Shea et.
al. [69]

Real Signal
Messages,

I/Q
Samples

RML2016.10b

AE (Autoencoder),
RTN (Radio
Transformer

Networks), CNN
(Convolutional
Neural Network)

Unsupervised

Deep Learning
Applications
on Physical
Layer-Survey

Yes

Aceto et.
al [2]

HTTP Traffic,
User-Website
Fingerprint,
Flow-based

Multi-Class
Dataset,
FB/FBM
(Face-
book/

Facebook
Messenger)
Binary
Dataset

SAE (Sparse
Autoencoder,
CNN, LSTM
(Long-Short

Term Memory)

Unsupervised/
Supervised

Real Human
Users’
Activity

Yes



4.2 Methods

MDT Data
Collection

Cell Outage

N # of cells

MU: Mobile Users 
BS  : Base Stations

BS

MU

Figure 4.1: Grid Based Layout Used in the Simulation of Cell Outage Detection

4.2.1 Anomaly Detection Problem Definitions

In this paper, we look at anomaly detection scenarios where a total of 105 mobile users

are uniformly spread around 7 base stations (BS) and the BS can fail to communicate with

the user by performing below the expected key performance indicator (KPI) margins. Each

BS is represented as a circle and in each circle, there are 3 cells regularly spread out shown

in Figure 4.1, for a total of 21 cells. Minimization of drive test (MDT) report is generated

for each user at a 5kHz sampling rate (i.e., once every 0.2 ms) with a total recording time

of 50 seconds to obtain the associated data. The KPIs including the RSRP and RSRQ

measurements are collected from each of the 7 base stations at this time. The data for each

MDT report is then assigned a class label from the numerical set 0,1,2,3.
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The three labels; 0,1, and 2 indicate normal network status with varying levels of dis-

crete transmitter power, whereas label 3 indicates that the base transceiver station (BTS)

has failed to communicate with the user, which is classified as an anomaly in the dataset.

Three other scenarios are implemented in a similar way with the only differences being the

numbers of users (210, 105, 105) and cells (57, 57, 57) to be able to consider the anomaly

detection (AD) application for a wider range of networks and users with different numbers

of observations.

Figure 4.1 shows the structure of the communications network for the case of 7 BS and 3

cells within each grid used in the first scenario for outage detection. This figure is provided

to help with the visualization of the AD application and is similar for different scenarios

using a range of BS, cell and user numbers.

4.2.2 Support Vector Machine

The support vector machine (SVM) [91] is a popular machine learning algorithm that

plays important roles in binary classification and unsupervised feature learning. An SVM

model represents and separates various classes by building a set of hyperplanes in a multi-

dimensional space. Separation of the classes from each other is performed iteratively by

the SVM algorithm through finding the optimal hyperplane (the decision region between a

group of objects from different classes). In this context, the optimal hyperplane maximizes

the distance gap (margin) between the two lines closest to the data points from different

classes based on the support vectors (data sample points where the classification error is

minimum).

We implement SVM in two different ways:

4.2.2.1 One Class Anomaly Detection with SVM

One-class SVM is a popular method for unsupervised anomaly detection [97, 21, 14,

72]. In general, an SVM is applied to binary classification tasks. In the one-class anomaly
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detection case, the algorithm is trained only with observations from the majority class to

learn the “normal” samples . When new data are presented to the SVM algorithm the

“anomaly” samples generate a lower decision probability compared to the observations from

the majority class under ideal conditions.

4.2.2.2 Binary Anomaly Detection with SVM

A binary SVM classifier provides the most accurate results when trained on balanced

datasets. When the dataset is imbalanced, the SVM classifier model is inclined to overfit to

the majority class and shows poor performance for the minority class with reduced general-

ization. To overcome the imbalance in a dataset, different techniques have been introduced

in the past one of which, the synthetic minority oversampling technique or SMOTE, has

gained increased popularity in cases of severe imbalances such as anomaly detection.

4.2.3 Smote Algorithm

The synthetic minority oversampling technique, or SMOTE [16], is one of the most

popular methods for oversampling to overcome the imbalance problem. Its goal is to balance

class distribution by randomly increasing the minority class by generating ‘synthetic’ patterns

based on features instead of raw data. The oversampling process of the minority class (C)

begins by selecting each minority class sample (X), where CϵX and interpolating synthetic

instances along the lines that connect minority instances and their k-nearest neighbors x.

The k value is chosen randomly according to the hyper-parameter oversampling rate N based

on the number of minority samples. First, a distance-based method, such as the ’Euclidean

distance’, is used to calculate the distance between the feature vector and its neighbors.

Second, the distance is multiplied by a random number between (0,1] and added to the

previous feature sample.
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Hence, new and synthetic features were generated along the line segments between the

two original samples. Mathematically:

X ′ = X + rand(0, 1)∗|X − Xk | (4.1)

where X ′ is the new set of synthetic samples, and Xk is the set of randomly selected k-nearest

neighbor samples.

4.2.4 Autoencoder

Autoencoder is a particular artificial neural network topology which has the same input

and output layers where the training is performed by presenting the same input data to both

layers simultaneously. The general structure of the auto-encoder consists of a visible input

layer x, a number of hidden layers h and the reconstructed output layer y with a family of

nonlinear activation functions f applied at different layers.

During training, the auto-encoder maps the input xεRy to the hidden layers with lesser

dimensions than the input data which produces a compressed representation of the original

data in which its dimensionality is reduced to the code(latent) layer size HεRh. This first

step is called the ”encoder” which provides the compressed information to be mapped to the

output layer via the ”decoder,” through a process called ”reconstruction.” Mathematically,

these two steps are formulated as follows:

H ≡ fWH(x) = f (WHx + bH) (4.2)

z ≡ gW z(x) = g(WzH + bZ ) (4.3)

where WH and WZ define the encoding weight and decoding weight, respectively, bH and bZ

define the corresponding encoding bias vector and the decoding bias vector, and f (.) and

g(.) are encoding and decoding activation functions respectively such as a sigmoid function

or a rectified linear unit. As previously mentioned, the primary purpose of the autoencoder
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is to learn useful latent information on the coding layer by minimizing the reconstruction

error. For a given N input data samples, the following loss function is used to determine the

parameters “WH ,WZ , bH , and bZ” through a back-propagation algorithm commonly used in

feed-forward neural networks:

LAE = min
1

N

N∑
k=1

||xk − zk ||2 (4.4)

Within the context of this application, the autoencoder is used for anomaly detection

by training the network using normal observations and once trained, comparing the recon-

struction error of the normal and anomalous samples to a threshold for detection. It is

hypothesized that the normal samples will provide lesser reconstruction errors compared

to the anomalous samples which can easily be characterized using the receiever-operating-

characteristics (ROC). More specifically, in [9], the autoencoder model structure start with

an input vector of size 20 (which corresponds to 10 RSRP and 10 RSRQ measurements),

followed by four hidden layers including 12, 6, 6 and 12 neurons to implement a general

topology as follows: 20-12-6-6-12-20.

4.3 Experimental Setups

4.3.1 Datasets

In this work, we use the dataset created by a SON simulator previously introduced

in [9] and made available to the public for further research [8]. The dataset includes four

different application scenarios where the data is collected periodically (with a 5 kHz sampling

rate) from a minimization of drive test report [48], which includes mobile user information

regarding the user activities recorded in the enclosed regions around the base stations (cells)

in certain measurement periods. There are four different datasets with different numbers of

users and use-cases. Figure 4.2 demonstrates the basic structure of the dataset for the first

use case (dataset 1), which consists of the measurement time, a unique ID assigned to each
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DATASET STRUCTURE 
Time  UserID  LocationX  LocationY  RSRP1  RSRQ1  . . .  RSRP10  RSRQ10  LABEL 
0.4  1  2003.53  648.252  97.8906  ‐5.9521  . . .  ‐116.126  ‐24.1876  0 
0.4  2  1434.95  283.589  92.1017  3.84048  . . .  ‐113.364  ‐25.1028  0 
0.4  3  1982.94  712.61  ‐100.5  7.79236  . . .  ‐117.207  ‐24.4995  0 
0.4  4  1721.1  872.081  80.8191  4.40083  . . .  ‐115.727  ‐39.3085  0 
.. . 

.. . 
.. . 

.. . 
.. . 

.. . 
...

.. . 
.. . 

0.6  1  2006.21  646.261  7.8847  5.95526  . . .  ‐115.727  ‐39.3085  1 
.. . 

.. . 
.. . 

.. . 
.. . 

.. . 
...

.. . 
.. . 

22.4  65  1162.72  369.994  94.3135  4.38688  . . .  ‐112.918  ‐22.9913  0 
Figure 4.2: Dataset Structure for the First Use Case
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Figure 4.6: Dataset 4 AUC Curves

user, the coordinates of user locations in two dimensions at the time of measurement, the

reference signal received power (RSRP), the reference signal received quality (RSRQ), and

the label that shows if the associated entry (i.e., the collection of measurements associated

with that user) is anomalous (1) or not (0). RSRP and RSRQ are significant measures of

signal level and quality in LTE networks designated as key performance indicators (KPIs)

in identifying whether the collected information is anomalous. The feature vector consists

of the RSRP and RSRQ measurements from different cell locations (i.e., RSRP1, RSRQ1,

RSRP2, RSRQ2, . . . , RSRP10, RSRQ10). The dataset has 11674 observations where only

60 of them are anomalous (i.e., 1 in 200) measurement samples and 25 features including

the feature vector, user ID, location, and class labels.

The second dataset is similar to the first one in terms of the number of features and

measurements except that it has a much less frequent anomaly rate with 8382 observations,

where only eight of them are anomalous (i.e., approximately 1 in 1000).
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Datasets 3 and 4 represent different use cases, both of which have 114 features with a

longer (80s) recording time, which resulted in a much larger observation base (42000). As in

datasets 1 and 2, they represent different anomaly rates where dataset 3 has a much larger

sampling of anomalous measurements (9635) compared to dataset 4 (22) because only the

entries below the -120 dB RSRP measurement threshold were labeled as such.

4.3.2 Hyper-parameters

The most significant hyper-parameters in this study are the oversampling rate N and the

number of nearest neighbors k, specifically for the SMOTE algorithm in applying oversam-

pling for the binary classification case. In applying SMOTE, we tested two different sets of

hyper-parameters with N = 300, k = 4 and N = 500, k = 5.

4.3.3 Implementation

All implementations were performed using MATLAB 2020b. We tested both one-class

and binary SVM models on all datasets. The SMOTE algorithm was used with the binary

SVM model to adjust for the imbalanced datasets. The datasets were preprocessed, where

the time, UserID, and location features were not included in the training process for fairness.

Approximately 10 % of the normal and anomalous samples were separated for testing. Both

the training and testing samples were normalized to between (0,1].

The one-class SVM model was trained with only normal samples using Gaussian RBF

kernels. After training, we generated the SVM probability outputs with test samples, includ-

ing both normal and anomalous samples, to obtain receiver operating characteristic (ROC)

curves along with area-under-the-curve (AUC) scores as performance metrics.

The binary SVM model is trained in exactly the same fashion except that in addition to

the above process, the anomaly samples are oversampled with SMOTE to generate balanced

datasets prior to training and testing the algorithm.
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4.3.4 Evaluation Metrics

In this study, we evaluated performance by looking at ROC curves and AUC scores.

The ROC is a probability curve that shows the model’s ability to identify the positive class

appropriately. It is plotted with the true positive rate (TPR) on the y-axis and false positive

rate (FPR) on the x-axis, where TPR is the percentage of correctly classified positive outputs

and FPR is the percentage of incorrectly classified positive outputs, as expressed below:

TPR =
TP

TP + FP
(4.5)

FPR =
FP

FP + TN
(4.6)

The AUC, on the other hand, provides a summarized number as an indication of how powerful

the model is in discriminating between classes with the mathematical expression as below:

AUC =
TP + TN

TP + FP + FN + TN
(4.7)

Table 4.2: Representation of AUC Scores of All Datasets for One-Class SVM and Binary
SVM Classifiers

Dataset 1Dataset 2Dataset 3Dataset 4

SVM
Binary

(No Smote)
84% 90% 68% 99%

One Class
(No Smote)

69.52 58.125% 40.92% 99.84%

Smote
Algorithm

N=500%
K=5

One Class 72.52% 47.30% 30.40% 99.91%
Binary 87% 94% 82 99%

N=300%
K=4

One Class 71.76% 49.72% 51.20% 99.86%
Binary 83% 93% 80% 100%

Ashgar et al. AUC [6] 67.25% 78.49% 66.54% 87%
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Figure 4.7: Area Under Curve (AUC) Scores Across Different Datasets

4.4 Results and Discussion

The ROC curves for each of the four datasets are shown in Figures 4.3 through 4.6. The

red curve in each figure represents the latest state-of-the-art reported on this dataset using

a deep autoencoder [9]. For comparison, different SVM implementations are represented in

different colors, including binary and one-class combinations with and without augmentation

using SMOTE. The results are generally consistent except in the case of dataset 4, where all

SVM combinations outperformed the deep autoencoder at all levels of TPR & FPR. In the

case of the first three datasets, the deep autoencoder outperformed the SVM implementations
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without augmentation. However, when SMOTE is used, both one-class and binary modalities

of the SVM demonstrate higher performance compared to the original study, and in some

cases significantly so.

Table 4.3: Abbreviations Used in This Study

Abbreviation Meaning
AI

AUC

BTS

COM

DL

ETSI

FB/FBM

FPR

inHO

IoT

5G-SON

KPIs

LTE

MDT

MIMO

Mm Wave

MRO

PSD

RBF

ROC

RSRQ

RSRP

RTNs

SMOTE

SONs

SVM

TC

TPR

Artificial Intelligence

Area Under the Curve

Base Transceiver Station

Cell-Outage Management

Deep Learning

European Telecommunications Standards Institute

Facebook/Facebook Messenger

False Positive Rate

Measurements and Handover Statistics

Internet of Things

Self-Organizing 5G Networks

Key Performance Indicators

Long-Term Evaluation

Minimization of Drive Test

Multiple Input Multiple Output

Millimeter Wave

Mobility Robustness Optimization

Power Spectral Density

Radial Basis Function

Receiver Operating Characteristics

Reference Signal Received Quality

Reference Signal Received Power

Radio Transformers Networks

Synthetic Minority Oversampling Technique

Self-Organizing Networks

Support Vector Machine

Traffic Classifier

True Positive Rate

The results are further summarized in Figure 4.7, which provides an overview of AUC

scores across different datasets and algorithms where both binary and one-class SVMs (with

the three curves at the top) clearly outperform the deep autoencoder approach shown in
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red. Table 4.2 provides the absolute numbers in terms of the AUC with 5% significance.

The best combination of SMOTE and SVM modality outperformed the deep autoencoder

by 19.75%, 15.5%, 15.5%, and 13% for datasets 1, 2, 3, and 4, respectively. This corresponds

to an average performance improvement of over 15% across all the application scenarios. It

is important to note that even without artificial augmentation of the dataset, conventional

machine learning using SVM still outperforms the previous state-of-the-art methods reported

in the literature. However, the difference in performance was noticeably less.

4.4.1 Computational Complexity Analysis

Computational complexity analysis is an important step in identifying the strengths and

weaknesses of conventional algorithm such as one-class and binary SVMs when compared

to the more modern approaches such as the autoencoders used in anomaly detection. In

this paper we focused on both the raw computational times specifically for testing phase for

each of the four datasets scenarios as well as the number of trainable parameters for both

algorithms. We also compared how SMOTE affected the complexity.

All measurements are done using the latest version of MATLAB at the time of this writing

(2021b) using the standard time measurement scripts. On the first dataset, for the one-class

SVM algorithm, the testing time took 90 ms without SMOTE and 140 ms with SMOTE,

whereas it took 9000 ms to run the autoencoder, almost a 100-fold increase. Additional

complexity of SMOTE is more than outclassed by its significant contribution to the accuracy.

We have observed similar computational times for the rest of the use-case scenarios (i.e., for

the second dataset one-class SVM testing times were 110 - 130 ms (SMOTE) compared to

7120 ms for the AE) where there were orders of magnitude improvement in testing times.

We have performed the computational speed analysis using one-class SVM due to the fact

that the implementation was done using a native script whereas for the binary SVM, a GUI

toolbox was used with better visualization capabilities which affects speed. However, there
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should be no difference in testing times since the SVM topologies are identical with the only

difference being the way the data is represented to the algorithms.

In terms of the trainable parameters as an indicator of computational complexity, the

SVM models on average had 23 support vectors compared to the 660 weight and 76 bias

parameters (total of 736) that need to be trained for the autoencoder. Based on the above

measurements for computational times and complexity, SVM-based approaches are less com-

plex even when using SMOTE, have competitive AUC scores, and are thus more suitable for

time-critical scenarios such as anomaly detection / outage recovery compared to the AE.

Future work will study the impact of augmentation on other learning algorithms, specif-

ically statistical deep learning, such as variational auto-encoders. Work presented in this

paper can further be extended to other applications beyond anomaly or outage detection.

Specifically, there has been increased attention to modulation detection in next generation

mobile wireless networks where fast, robust, and light machine learning models could enable

time-critical applications in signal classification and modulation detection. Improvements

in speed can be realized both at the algorithm level and data preprocessing stages using

techniques such as principal component analysis to identify the most relevant features for

classification and detection. Finally, statistical learning algorithms, such as Gaussian Process

Regression, which have gained immense popularity as alternatives to deep learning can be

applied to different scenarios especially when data is not present in sufficiently large volumes

to properly train DL models with many parameters.
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Chapter 5: Fast, Robust, and Light Machine Learning for Signal Classification

in Next Generation Mobile Networks

5.1 Introduction

Today’s biggest challenges for wireless communications systems include growing demands

on data transmission capacity, integration of multiple families of devices with increasing

population and network optimization. Therefore, supplying the increased demand within a

limited spectrum for rapidly changing environments in the next-generation wireless networks

makes the cognition of intelligent systems more critical than ever. Both the FCC and the

researchers in academia and industry continue to emphasize the importance of advanced

spectrum sensing and signal identification to improve the quality of service while considering

integrated systems and services. Within this framework, the next-generation communication

devices with intelligent features are being prospected to recognize and detect over-the-air

signals and choose the most suitable transmission layout.

Signal identification methods are studied from two main perspectives: likelihood-based

[27] and feature-based [26]. Although the likelihood-based methods optimize the decision

threshold, they suffer from high complexities and model mismatch. On the other hand, the

feature-based methods extract unique attributes from the received signal, such as higher-

order cyclic-related statistics, where some of these features may be are more sensitive to the

environmental conditions.

In cognitive radio environments, over-the-air signal identification [70] has been employed

in various fields including the military (i.e., directing energy to control spectrum) and civil-

ian (i.e., RF spectrum monitoring) communication systems. Among the aforementioned

methods, the ones with cyclostationary-based features carry the most robust characteristics
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for real-world conditions, making them the best candidates for modulation classification.

For instance, modulations such as phase-shift keying (PSK), frequency-shift keying (FSK),

and quadrature-amplitude modulation (QAM) can be separated using cyclostationary at-

tributes [35]. For instance, cyclostationary feature detection in [78] can distinguish generic

modulation techniques. Furthermore, second-order cyclostationarity [52] can be used for

the classification of LTE and GSM signals in radio access technology identification. A tree-

based classification method [29] is proposed for 3GPP-designed signal classification (i.e.,

GSM, CDMA2000, UMTS, LTE). Such classical methods depend on specific features for

employing the likelihood-based techniques in the statistical decision process. As a result,

the decision parameters, including the threshold and number of samples need to be adjusted

for adaptive situations in a real-life application. Moreover, to satisfy the standards for the

next-generation wireless networks [44] one has to tolerate and take into account such defi-

ciencies of the classical methods in real-world conditions. In response, recent data-focused

AI-based approaches [92] were shown to address some of the most significant shortcomings

for classical modulation detection in wireless communications.

Machine learning and deep learning (when there is sufficient data to train a model prop-

erly) have been used to reduce the variability of the environmental conditions in signal

identification. More specifically, data-centric approaches such as feed-forward neural net-

works (FNN), support vector machines (SVM) and convolutional neural networks (CNN)

have been demonstrated to have success in this application. In [74], a multilayer perceptron

is employed to identify twelve modulation types with high accuracy over a broad range of

signal-to-noise ratio (SNR) values. In [83], two distinct FNN topologies are implemented

using standard gradient descent to classify eight modulation types with high accuracy at

low SNR conditions. In [31], AM and PSK modulations are identified by employing a neural

network architecture fed with spectral correlation function (SCF)-based features. In [62], an

SVM is utilized to estimate the optical signal-to-noise-ratio (OSNR) and modulation types

by using cumulative distribution function (CDF) -based features to reduce the dimension-
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ality of the feature space. Similarly, in [61], principal component analysis (PCA) is used

to reduce the feature size using a wavelet transform. In [93], a CNN classifier is trained on

SCF-based features as a deep learning application.

Most studies focused on improving classification accuracies for signal identification. While

most claim deep learning is the state-of-the-art in multi-class modulation identification ap-

plication such as [93], it is generally more complex than conventional machine learning and

the identification process takes longer where timing is of critical importance [77]. In this

research we investigate the promise of conventional data-centric approaches to signal identi-

fication at different SNR values and compare with the latest state-of-the-art on a real-world

dataset. We focus on reducing the identification time by both reducing the number of train-

able parameters in the model and applying data compression techniques such as PCA to

reduce the vast temporal dimension of the feature set. The classifier models are capable of

classifying AWGN, UMTS, GSM, LTE signal types by using the dataset given in the SCF

format as the future matrix. We demonstrate that the proposed network with or without

using data compression outperforms current state-of-the-art, recently reported in the IEEE

Transactions of Vehicular Technology in correctly identifying UMTS, GSM, and LTE mod-

ulations including AWGN as background using SCF based features with significantly faster

training and identification [93].

5.2 Analytical Framework

The ultimate objective of the proposed algorithm is to identify the modulation of the

complex baseband signal x(t) in a fading channel where the received signal r(t) with AWGN

w(t) is defined as follows:

r(t) = I (t) ∗ x(t) + ω(t), (5.1)

where I (t) is the impulse response of the time-varying channel and * shows the convolution

process [92]. In this study, x(t) is identified through a data-centric approach using the
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cyclostationary signal processing on r(t) within the multipath fading environment in the

absence of any prior knowledge. To achieve this, we will deploy a feedforward neural network

(FNN) using two different learning representations. The signal data will be represented

with the spectral correlation function (SCF) both as the raw I/Q measurements and the

compressed form using principal component analysis (PCA).

5.2.1 Feedforward Neural Network
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Figure 5.1: Feedforward Neural Network Structure

Feedforward neural networks (FNNs) are extensively used for classification tasks in the

literature due to the flexibility of its architecture in providing data-driven solutions for

different problems [45]. The general structure of an FNN consists of an input layer, a

number of hidden layers, and an output layer, as shown in Figure 5.1. In the first stage of

the network, one neuron is assigned to each feature in the dataset to construct the input

layer. The hidden layers model the complex non-linear relationship between the input and
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the output of the system. The final stage includes one neuron for each class type where the

number of classes determines the size of the output layer.

Each connection between different neurons in the architecture has an assigned weight,

shown as ω. The weight between the two neurons; neuron n in the Lth hidden layer and neuron

m in the (L− 1)st hidden layer, is shown as ωL
nm. Hence, one can express the weighted sum

at the Lth layer as follows:

ZL
m =

∑
m

ωL
nm. σ

L-1
n + bLm, (5.2)

where σL−1
n is the output of the nth neuron in the Lth layer and bLm is bias value for each

neuron. ZL
m is now the input for the next layer after going through an activation function

such as the rectified linear unit (ReLU) as follows:

f (Z L
m) = z+ = max(0, z), (5.3)

Thus, the output value of the specific neuron m in the Lth layer is shown as,

σL
m = f (zLm), (5.4)

For classification purposes, the softmax activation function is used in the output layer

instead of the ReLU function, σo
m, which is defined as follows:

σo
m =

ez
L
m∑

j e
zLj
∀m = 1, ...,N , (5.5)

where N is the number of neurons in the output layer. In this research, each neuron in

the output layer indicates a different modulation type. The intuition behind utilizing the

softmax function is to assign probabilities to output neurons based on the predicted class

label. This is done by one hot encoder, which takes the categorical vectors in the form of

a 1xN vector which includes N − 1 zeros and the one index specifies the correct class label.

The output values filtered by the softmax function in the form of σo
mϵ[0, 1] represents the
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probability distributions for all potential outcomes. The neuron with the maximum value in

the softmax output vector indicates the predicted output label, i.e., the modulation type in

this research.

In order to train an FNN, the parameters of the network are updated using an iterative

optimization process which aims to minimize a loss function which measures the distance

between predictions and actual outputs. In this study, we use the popular “categorical-cross-

entropy” which is suitable for multi-class classification problems and is shown below,

Loss = −
M∑

j=m

ym.log σ̂
o
m, (5.6)

where σ̂o
m is the mth scalar value in the output layer of size M extracted from the softmax

function and, ym is the target value.
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Figure 5.2: Diagram for Proposed Methods

5.2.2 Spectral Correlation Function

In [36], the authors define the cyclostationary signals as ones with periodically changing

features (such as the mean and autocorrelation) over time. In other words, cyclostationary
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signals have hidden periodicities that carry identical characteristics for divergent mobile

communication signals such as the symbol periods, code spreading, cyclic prefixes, and even

communication data bits. These embedded characteristics generally represent the most

relevant information for signal differentiation. The hidden periodicity as a feature of the

cyclostationary processes can be extracted from the received signal (1), as mentioned in

section II. As with any classification task, one needs to generate an input data matrix with

the necessary features and class labels to be able to train the learning algorithm. In this

application, the process begins with a non-linear transformation to obtain the second-order

cyclostationarity of a signal by autocorrelation as follows,

rτ (t) = E{r(t + τ/2)r*(t-τ/2)}, (5.7)

where rτ (t) is the autocorrelation function of r(t). Considering the autocorrelation function

is periodic with T0, it’s Fourier series coefficients can be calculated as follows:

Rα
r (τ) =

1

T0

∫ T0/2

−T0/2

rτ (t)e
−j2παtdt, (5.8)

where Rα
τ is called the cyclic autocorrelation function (CAF) and the frequencies α = n/T0,

nϵZ are called the cyclic frequencies.

The Fourier transform of the cyclic autocorrelation function at a cyclic frequency is called

the spectral correlation function (SCF) which is expressed as,

Sα
r (f ) =

∫ T/2

−T/2

Rα
r (τ)e

−j2πftdτ , (5.9)

where Sα
r (f ) is the same as the average power spectrum density (PSD) when alpha is equal

to zero.

Calculating the SCF is a complex process. However, Fast Fourier Transform (FFT)

accumulation method (FAM) [82] helps decrease the computational complexity. Ultimately,

72



for each received signal with modulations GSM, UMTS or LTE, the input matrix can be

constructed as follows:

XSCF
k = |Sr τ (nL, f )|, (5.10)

where Sr τ (nL, f ) is the FAM approximated SCF and L is the length of the FFT.

The mathematical processes between equations (5.9) and (5.10) are omitted in this text

for the sake of brevity, however the reader is referred to [92] for a detailed discussion on this

subject. The input matrix shown in (5.10) is used as magnitudes since the complex values

are not supported by the Python environment for general classification tasks.

5.3 Experimental Setup

5.3.1 Dataset

In this study, the dataset first introduced by [92] is used which considers real-world

scenarios based on actual measurements in an urban area. The data is represented in the

form of the Spectral Correlation Function (SCF) [94] which has previously been shown to

provide the best performance for classification accuracy among other formats such as fusion

in [92]. The dataset includes three different signal types stemming from the Global System

for Mobile Communications (GSM), wideband code division multiple access (WCDMA) for

the universal mobile telecommunications system (UMTS), and long-term evolution (LTE).

For the measurements, different locations and bands have been considered. In the ex-

periment, transmitters are placed in the urban areas, but receivers are placed in the sub-

urban areas. Thus, the signals propagate from the urban area directly whereas the re-

ceiver collects them in the sub-urban area. Evaluation in this dataset was done by focusing

on the 800, 900, 1800, and 2100 MHz bands, which cover the entire cellular communica-

tion spectrum. Those bands represent different classes at 15 different signal-to-noise ratio

(SNR) levels. For each class under each noise level, a total of 1000 samples are collected
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with 60% of them being used as the training data and the remaining 40% as the test-

ing data. Each signal has 16384 in-phase/quadrature (I/Q) samples such that the size of

the observation matrix for each signal is 8193x16 – a significant size compared to more

conventional classification problems.

The signals in the dataset have specific characteristics based on the environment in

which they were generated and/or measured. For example, the received signal is affected

by different wireless spreading channels such as multipath fading, shadowing, and path

attenuation in the measurement area. Therefore, the power and phase of the signal have

different scales. Moreover, the received signal has different power distributions since it is

recorded at different receivers and locations within identical characteristic bands. Finally,

phase spreading characteristics are uniform between −π and π, similar to Rayleigh fading

channel properties. As the authors indicate in [92], the bandwidth and carrier frequency are

not represented in the dataset to allow for the cognitive radios to perform at every point on

the spectrum opportunistically.

5.3.2 Performance Metric

A commonly used evaluation metric for multiclass classification problems is the average

classification accuracy. The goal is to look at the mean accuracy on the test data which can

be defined simply as follows,

Accuracy(y , ŷj) =
1

nsamples

nsamples−1∑
j=0

(ŷj == yj), (5.11)

where ŷj is the predicted value of the j th sample and yj is the true value.

5.3.3 Implementation

All the software implementations are done using the Keras library [19] on Spyder, as a

popular scientific Python environment for the training and testing processes. We investigate
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the performance of two models where the data is represented in two fundamentally different

ways. In the first case, an FNN with the D-100-4 structure where D represents the size of

the feature space is trained using the raw I/Q samples such that the dimension of the input

layer is 131088 (8193 x 16). In the second case, PCA is applied to reduce the dimensionality

of the input space before training the FNN. The variance margin of the data is set at 85%

for the PCA which creates a significantly smaller feature set for training.

The training and testing partitions of the dataset are set as 60% and 40%, respectively.

Hence, 2400 samples were separated for training and 1600 for testing for each SNR value.

In training, early stopping is employed to avoid overfitting. Adam optimizer is used with

600 epochs for each SNR level with a 25% validation split used in early stopping. For

statistically meaningful results, the initialization of the network is randomized 20 times and

the average accuracy across all the trials are reported. Both models using raw data and

PCA were trained and on a workstation computer with an AMD RYZEN 5800@3.2 GHz X

8 CPU, 16GB RAM, and an NVIDIA GeForce RTX 3070 GPU. The training and testing

times have been recorded for different learning scenarios at 5dB and 15dB to compare the

computational time with corresponding classification performance.

5.4 Results and Discussions

The classification performance of the proposed methods including the raw and PCA

representations of the data are evaluated over a real dataset of wireless communications

signals, and their powers of signal identification (classification) for different SNR levels from

1 to 15 dB are compared to the current state-of-the-art and represented in Table 5.1 and

Figures 5.3 through 5.4. In this chapter, the signal identification power of the proposed

models are indicated by their average classification accuracies.
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Figure 5.3: Box Plots for Average Classification Accuracy Includes All 300 Statistical
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Table 5.1: Classification Accuracy for SNR Values in Between 1 to 15 dB.

AVERAGE CLASSIFICATION ACCURACY (%)

SNR/dB Tekbiyik et. al.[93] FNNs
Applied PCA

(Component %85)

1 57 50 52.2
2 66.6 70.4 67.9
3 73.3 80.8 79.8
4 77.8 85 82.9
5 81.3 90.8 90.3
6 83.9 93.9 93.9
7 85.8 96.2 96.6
8 87.4 97.4 97.3
9 88.7 97 97.6
10 89.7 97.4 98
11 90.4 98 97.5
12 91.1 96.9 98.3
13 91.7 98.2 98.1
14 92.1 98.3 97.7
15 92.5 98.3 98.6

In Table 5.1, the following observations can be made. At the lowest SNR level, the test

accuracy levels exceed 50% for FNN-Raw and 52% for FNN-PCA, which means that the

proposed methods can still distinguish signals to some extent, even at an extremely low

SNR as the original study claims that no signal exists at this level. One can observe that all

models perform similarly at high SNR values (around 98%) whereas the performance of the

proposed models begin to significantly outperform the previously reported results around

SNR = 11dB with an average performance difference of 4-5% between models.

Figure 5.3 shows the distributions of model accuracies across all SNR levels as box-plots.

Since there are 15 different SNR levels and 20 repetitions at each SNR levels, this figure

represents 300 accuracy values for each of the proposed models. One can observe that while

both FNN-Raw and FNN-PCA perform similarly at the mean, there is a bigger variance of

accuracies for the PCA model. This is not entirely unexpected as the PCA model compresses

the feature space likely losing some of the important outlier information, especially at low

SNR values, which can improve the performance of the raw data model. However, when
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considering the training and execution times, the PCA model significantly outperforms the

raw model where the average training time per epoch is 1.2 seconds for FNN-Raw and only

0.0003 seconds for FNN-PCA. More importantly, the execution time (or testing time) for the

PCA model is only 0.06 seconds compared to 3.22 seconds (almost a 50-fold increase) for the

raw data model. Execution time is critical for signal identification where switching systems

can quickly adapt to the modulation if the signal is identified both accurately and quickly. It

is important to note that the training times are reported per epoch whereas testing times are

reported over the entire test set for a fair comparison with previous state-of-the-art. Finally,

it is worth mentioning that the PCA model is competitive at higher SNR levels which means

that when the channel is controlled, the execution time and accuracy metrics both work in

favor of the compressed learning representation.
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Chapter 6: Conclusions and Future Work

Chapter 3 presents a comprehensive study in deep unsupervised learning to observe the

effect of hyper-parameters including network topology and clustering coefficients on deep

clustering accuracy. Popular autoencoder and convolutional autoencoder architectures are

used to obtain clustering friendly features in the latent space where a standard k-means

back-end algorithm implements the clustering. The experimental results show that the

hyper-parameters influence clustering accuracy performance in both expected and unex-

pected ways. For instance, more complex datasets require a higher dimensional latent space

to achieve the best subsequent clustering performance. For the image datasets, color can

help improve the clustering performance but only when it signifies relevant information on

the identity of the observation. Additional studies need to be conducted to truly understand

the complex relationship between the hyperparameters, network topologies and the statistics

and complexities of the datasets when it comes to deep clustering applications.

In chapter 4, we explored the premise of conventional machine learning when compared

to deep learning for anomaly detection in SONs. Anomaly detection was a popular appli-

cation area of deep learning for cell outages in communication networks. However, as in

other domains, conventional methods can still provide strong statistical alternatives to the

right learning representations. In this research, we focused on SVMs with one-class and bi-

nary learning scenarios on a previously published and publicly available dataset. We found

that while deep learning was highly competitive, standard SVMs using RBF kernels, can

be trained to outperform a deep autoencoder approach. Both one-class and binary classi-

fication can benefit immensely from synthetic augmentation of the dataset using SMOTE
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with improvements in detection accuracy by as much as 15% on average over four different

application scenarios.

Future work will study the impact of augmentation on other learning algorithms, specif-

ically statistical deep learning, such as variational auto-encoders. Work presented in this

paper can further be extended to other applications beyond anomaly or outage detection.

Specifically, there has been increased attention to modulation detection in next generation

mobile wireless networks where fast, robust, and light machine learning models could enable

time-critical applications in signal classification and modulation detection. Improvements

in speed can be realized both at the algorithm level and data preprocessing stages using

techniques such as principal component analysis to identify the most relevant features for

classification and detection. Finally, statistical learning algorithms, such as Gaussian Process

Regression, which have gained immense popularity as alternatives to deep learning can be

applied to different scenarios especially when data is not present in sufficiently large volumes

to properly train DL models with many parameters.

In chapter 5, we present a comparative study of a lightweight conventional machine

learning algorithm with and without data compression for modulation detection on a large

real-world dataset. The latest report on this dataset published in the IEEE Transactions

on Vehicular Technology demonstrated the promise of data-centric deep learning which

can perform robust signal classification at a variety of noise levels. The proposed algo-

rithm outperforms the current state-of-the-art by as much as 6% on average across differ-

ent noise levels from 1dB to 15dB SNR. We observe that the true gains however are in

execution times where the detection speed is improved by at least 50-fold keeping approx-

imately the same median accuracy with only a marginal increase in error variance. Future

work will implement additional reductions in computational complexity while maintaining

similar performance levels.
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Kurt. Multi–dimensional wireless signal identification based on support vector ma-

chines. IEEE Access, 7:138890–138903, 2019.
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