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Abstract

In today’s healthcare industry, quality of care is a growing focus in the delivery of health-

care. To improve the quality of care in healthcare delivery, many studies focus on the long-

term operational decision making to meet the expectations of healthcare providers and users,

such as medical resource allocation, bed planning, staff scheduling, etc. These problems are

typically parts of long-term operational decision making, however, time is essential in health-

care system. To ensure the adherence to a high quality of care and detect deterioration in

real time, the quality of service should be measured over days or hours instead of just months

or years. Therefore, it is critical to develop effective statistical monitoring methods for de-

tecting the deterioration in the quality of healthcare services. In this dissertation, a series of

statistical monitoring methods based on stochastic process models are developed for improv-

ing the service quality in healthcare including acute and chronic care services. First, a novel

statistical monitoring method based on quadratic contrast estimation technique is proposed

for detecting changes in the departure intensity function in emergency department. The

proposed method is based on an approximate likelihood function that alleviates the issue of

needing to numerically maximize a complex likelihood function for estimating the in-control

parameters and obtaining test statistics. Second, likelihood-ratio based cumulative sum

(CUSUM) control charts are proposed for monitoring the service rate of queueing network

with time-inhomogenerous state dependent queues. The proposed approaches could over-

come the limitation of the normality assumption of traditional multivariate control charts

and do not need to know the potential change in service rate of the queueing nodes in a

queueing network, and thus have important practical applications. Third, a continuous-time

stochastic process model is proposed to monitor and measure the treatment process for pa-

tients with alcohol use disorder (AUD) based on the Cascade of care (COC) framework. The

vii



proposed work learns the ideal patterns in the initiation and duration of AUD treatment,

from which benchmarks for COC can be developed and factors that are correlated to unde-

sirable patient outcomes identified. Simulation studies and real case studies are considered

to illustrate the proposed statistical monitoring methods and demonstrate their superior

performance over traditional methods.

viii



Chapter 1: Introduction

1.1 Background and Motivation

As today’s US healthcare industry is shifting from a fee-for-service system to a value-

based care system where healthcare providers are rewarded based on quality rather than

quantity, quality assurance and improvement is a growing focus in the delivery of healthcare

services. There are many concepts and definitions regarding the quality in healthcare. The

most widely accepted definition to healthcare quality is “the degree to which health services

for individuals and populations increase the likelihood of desired health outcomes and are

consistent with current professional knowledge” [1], which is first proposed by the Institute

of Medicine (IOM) in 1990. A comprehensive review about the features and dimensions in

the context of healthcare service quality is summarized in [2]. This paper highlighted the

key characteristics of quality in healthcare delivery including safety, timeliness, effectiveness,

efficiency, equity, and patient centeredness. To improve the quality of care in healthcare

delivery, many studies focus on the long-term operational decision making to meet the ex-

pectations of healthcare providers and users, such as medical resource allocation/planning,

bed planning, staff scheduling. These problems are typically part of long-term operational

decision making, however, time is essential in healthcare system. To ensure the adherence

to a high quality of care and detect deterioration in real time, the quality of service should

be measured over days or hours instead of just months or years. Therefore, it is critical

to develop effective statistical monitoring methods that quickly detect deterioration in the

performance of the quality indicators in healthcare from which the data is collected.

Longitudinal time-to-event data is the most common type of data encountered in health-

care system. In longitudinal healthcare studies, patients are observed over time and a se-
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quence of clinical events are collected on several occasions. Such examples include death,

transition or recurrence of a disease, arrival or departure from a hospital, treatment trajecto-

ries for patients, etc. Figure 1.1 is an example of the treatment trajectories for patients that

obtained from Electronic Health Record (EHR) [3]. In the figure, different colors and shapes

represent the occur times of different clinical events, such as the diagnosis of a disease, first

follow-up with the physician, first visit to physical therapy. Additionally, longitudinal time-

to-event data are commonly collected as performance indicator metrics. A few representative

examples include - (1) study of manufacturing processes where the quality of each finished

product is assigned a label, such as “acceptable”, “repair”, or “discard”; (2) the number of

customers waiting in a call center at any given time point of operation; (3) utilization metrics

of hospital emergency departments (ED), which can be labeled as “not busy”, “moderately

busy”, and “highly busy” during different times of the day. These performance metrics pro-

vide important insight to engineers, operations managers and healthcare providers regarding

the quality of service processes. However, existing papers focus on advancing the perfor-

mance modeling rather than performance monitoring in health care using the quality data

that represented by these longitudinal categorical and count time-to-event data.

Figure 1.1: Diagram of the patient treatment trajectory (Source: Duan et al. (2019))

With the need to advance the performance monitoring in health systems engineering

using time-to-event data, the main challenges are posed by stochastic process modeling and

2



how to effectively and accurately monitor the system performance in real time. Longitudinal

time-to-event data is naturally counting process since it is generated by observing repeated

measurements on a number of events that can be occurred over time. However, stochastic

processes like counting processes are rarely integrated into statistical monitoring methods.

Moreover, traditional statistical monitoring methods often have underlying assumption to

the data set and do not fit real world data, which make the performance of traditional

statistical monitoring methods inferior. Facing these challenges, this dissertation proposes

novel statistical monitoring methods to effectively detect deterioration in healthcare quality

based on stochastic process models.

1.2 Literature Review

In this section, comprehensive SPC methods for quality monitoring and improvement

in service systems are first summarized in subsection 1.2.1. Although SPC methods have

been widely used in service industries, their application in healthcare environments has not

been well explored. Then, literature reviews of existing statistical monitoring studies for two

major types of care services in healthcare systems engineering, namely acute care service

and chronic care service, are presented in subsections 1.2.2 and 1.2.3.

1.2.1 Statistical Process Control Methods for Service Processes

Statistical Process Control (SPC) methods have been used to monitor service processes

with the objective to maintain and improve the quality of service in many service systems

including healthcare systems, transportation systems, and computer networks. Based on the

quality related data often encountered in service system, we review SPC methods for service

processes with continuous data and categorical/count data.

Many conventional univariate and multivariate control charts are used to deal with service

processes with continuous data. Sulek et al. [4] employed X chart to detect the service process

instability with the objective of improving the service quality and performance for a food

3



retailing company. Apte and Reynolds [5] presented r-bar chart and x-bar charts to monitor

the window hang time to ensure the stability of a service system. Shafqat [6] designed an

X-bar control chart with inverse rayleigh distribution based on repetitive sampling scheme.

Mehring [7] developed a new statistical process control method to monitor the timeliness

in service for a credit company to improve their customer satisfaction. The authors in

[8] applied XmR chart to real-time monitor the care delivery process for outpatients in

behavioral healthcare organizations. Costa and Rahim [9] proposed a synthetic control

chart with non-central chi-square statistic to monitor the process mean and variance, which

outperforms the X bar and R charts. Ajadi et al. [10] developed a univariate control chart

called progressive mean EWMA control chart that can effectively detect small and moderate

shifts in process mean. In addition, Woodall [11] presented a detailed review of the control

charts methods that have been used in healthcare and public healthcare engineering.

On the other hand, when multiple dimensions of the service quality are identified, uni-

variate control charts focusing on single continuous variable are not sufficient for service

processes that are represented by several continuous variables. For example, a hospital has

multiple wards to serve different types of patients and a patient may flow from one ward to

another ward. The service quality measurement then can be characterized by the service rate

of patients that been treated at different wards and the length of stay at different wards. It is

also important to consider the relationships between different variables. For this example, the

length of stay for each patient would increase when the number of patients increases, which

delays the treatment for each patient. Therefore, multivariate control charts are needed

to develop to monitor the multiple variables and their relationship to ensure the service

quality. Jensen and Markland [12] proposed a quality perception control chart to manage

the SERVQUAL quality data which are characterized by five dimensions, called “tangibles,

reliability, responsiveness, assurance, empathy.” Aparisi et al. [13] developed Hotelling’s T 2

chart based on multiple variables supplemented with runs rules to improve the performance

in detecting small or moderate shifts in process. Later, Ghute and Shirke [14] developed

4



a synthetic T 2 chart to monitor the mean of a multivariate normally distributed process,

which integrated the Hotelling’s T 2 chart and conforming run length chart. They demon-

strated that their method is better than conventional Hotelling’s T 2 chart and T 2 chart with

supplementary runs rules. However, these Hotelling’s T 2 charts all assume the successive ob-

servation data are independent, which cannot fit the autocorrelation data in practice. Thus

Dargopatil and Ghute [15] designed a synthetic T 2 chart to monitor the bivariate process

when variables and observations are correlated. This method combined the Hotelling’s T 2

chart and the conforming run length chart, and various sampling strategies are introduced

to improve the performance of the synthetic T 2 chart. Recently, Hadian and Rahimifard

[16] proposed a multivariate statistical control chart for monitoring the project duration and

cost based on the earned value management indices. Khae et al. [17] developed a novel syn-

thetic multivariate control chart technique to monitor the coefficient of variation. Samanta

and Mondal [18] evaluated multiple multivariate control charts for monitoring the online

process in industrial engineering. He et al. [19] proposed real-time contrasts (RTC) control

charts to monitor the changes in multivariate processes based on support vector machines

technique. Also, multivariate cumulative sum (MCUSUM) and multivariate exponentially

weighted moving average (MEWMA) charts were developed for monitoring service processes

with multiple dimensions. For example, Mehmood et al. [20] established MCUSUM control

chart based on bivariate ranked set schemes for process capability monitoring. Xie et al. [21]

proposed a MCUSUM control chart focusing on detecting the shift for Gumbel’s bivariate

exponential data. Majika et al. [22] designed multivariate triple EWMA control chart for

monitoring the system parameters, which is shown to be more sensitive than multivariate

simple and double EWMA charts. Ajadi et al. [23] proposed a novel MEWMA for monitor-

ing the process dispersion, which is shown to be robust to data that violates the normality

assumption.

Other than the continuous data, categorical or count data are the most common type

of data encountered in service processes. Many statistical process control methods are de-

5



veloped for monitoring the quality of service processes with categorical data. For example,

Bourke [24] proposed a conforming run length (CRL) chart to monitor the change in frac-

tion defective for sampling inspection. Wu et al. [25] integrated the CRL chart with np

chart to detect the nonconforming fraction increase. Later on, Gadre and Rattihalli [26]

developed a unit and group-Runs Chart which outperforms the CRL chart, the np chart

and the synthetic chart in detecting fraction nonconforming increase. In addition, Li et al.

[27] suggested a simple categorical control chart based on ordinal information for monitoring

the attribute level count data. Jin and Loosveldt [28] designed a nonparametric multivariate

statistical process control tool based on principal component analysis mix method to monitor

the categorical variables. However, these control charts for categorical data were all designed

for monitoring single process and they did not consider multiple stages of a service process.

While considering multiple stages in a service process with categorical data, one stage may

affect the performance of next stage, thus the statistical monitoring methods focusing on

individual stage are not appropriate to identify the abnormality for a multiple-stage pro-

cess. Sulek et al. [29] proposed a regression-based control chart, called the cause selecting

control chart, to monitor a multistage service process with the cascade property. Skinner et

al. [30] developed a control chart based on generalized linear model, one type of likelihood

ratio statistic, to monitor the multiple discrete count data. Sogandi et al. [31] suggested a

risk-adjusted control chart to control the healthcare service processes with multiple stages

and categorical covariates. They showed that the likelihood ratio test is a promising method

in effectively detecting the deterioration in multistage service processes. Thus, as an ex-

tension, I propose novel statistical monitoring methods by integrating the likelihood ratio

test to monitor the healthcare system with multiple stages. Although SPC methods have

been widely used in service industries, their application in healthcare environments has not

been well explored. Then literature reviews of existing statistical monitoring studies for two

major types of care services in healthcare systems engineering, namely acute care service

and chronic care service, are presented in the next two subsections.
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1.2.2 Statistical Monitoring the Quality of Acute Care Service

As populations continue to grow and age, acute care service in healthcare is increasingly

important to respond to sudden, often unexpected, urgent or emergent injury and illness that

can lead to death or disability without prompt intervention [32]. Thus monitoring the acute

care service is imperative to maintain the quality and safety in healthcare delivery, and pre-

vent serious consequences caused by potential anomalies during care process. Among all the

populations, elderly patients and pediatric patients are the frailest patients who need extra

attention. Brand [33] developed quality indicators to monitor the outcomes of aged people

under acute care setting. Baldewijns et al. [34] proposed three techniques, tabular CUSUM,

standardized CUSUM and EWMA control charts, for automatically detecting health changes

in older adults based on transfer times. Khandoker et al. [35] developed a support vector

machine model based on wavelet analysis to identify the older adults with a high risk of

falls and injuries. Another time and energy-saving fall detection method for elderly people

based on a cumulative sum control chart is introduced by Thammasat and Chaicharn [36].

Ranhoff et al. [37] applied MNA-SF method to identify the malnutrition in elderly acute

medical patients. In pediatric acute healthcare settings, multiple papers investigated the

effectiveness of using control charts to monitor care process. Desa et al. [38] proposed a

residual control chart to monitor the performance of pediatrics hospital admission, which

demonstrated the effectiveness of using pre-whitening technique for auto-correlated data.

Hsian et al. [39] applied the percent coefficient of variation to detect the nonadherence and

acute rejection in pediatric kidney transplant patients. Arienzo et al. [40] employed statis-

tical analysis methods such as student t tests, Mann-Whitney U tests and chi-square tests

to identify the acute kidney injury in children admitted to the pediatric intensive care unit

and evaluate its influence on the outcomes in children. Moreover, Moss et al. [41] proposed

an advanced time series analysis-based method to monitor the cardiorespiratory dynamics

data for improving the performance for detecting the anomalies in acute care patients.
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Other than the patient-level monitoring studies, system-level monitoring of acute care

service is another important part needed to be investigated in this dissertation. The main

acute care sectors in healthcare are intensive care unit(ICU) and emergency department

(ED), thus systematic monitoring of service quality in ICU and EDs is a critical issue world-

wide. Cook proposed [42] a risk adjusted statistical monitoring control chart based on

machine learning methods, such as artificial neural networks (ANNs) and support vector

machines (SVMs), to monitor the in-hospital mortality rate for ICU patients. Similarly,

Cook et al. [43] designed a modified risk adjusted Shewhart p chart and cumulative sum

process control chart to monitor the quality process and patient outcomes in ICU. As an ex-

tension, Koetsier [44] compared the performance of different risk-adjusted(RA) control charts

including RA P-chart, RA Additive P-chart, RA Multiplicative P-chart, RA CUSUM, RA

Resetting Sequential Probability Ratio Test, and RA EWMA control chart. They found the

RA EWMA control chart performs best in detecting the change of the mortality rate of ICU

patients. Rodrigues et al. [45] applied CUSUM chart to identify the risk of the prevalence

of multidrug-resistant bacteria in the ICU. Cocanour et al. [46] employed a control chart

for reducing the ventilator-associated pneumonia in a shock trauma ICU. Medlock et al.

[47] developed statistical process control charts to monitor the timeliness of discharge letter

based on the mean time elapsed between discharge and the finalized intensive care unit dis-

charge letter, which is shown to be a multifaceted intervention that can be highly effective

for improving discharge communication from the ICU.

Furthermore, statistical process control (SPC) methods have been studied in the context

of monitoring the quality of service in the ED [48]. Kadri et al. [49] presented a time-series

analysis model-based SPC control chart, called stationary auto-regression moving average

based EWMA chart, to monitor the abnormal situation caused by the overcrowding in ED.

Salient examples using Shewhart-type control charts include the application of p-chart to

monitor the variability of the number of patients leaving the ED [50], x̄-chart to monitor the

door-to-reperfusion time for patients who have acute ST myocardial infarction [51], and run
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charts are developed to monitor the patient mortality rate [52] and daily demand in order

to identify the start and end of the winter surge of pediatric patients in ED [53]. Unlike

the Shewhart-type charts depended on only the current observation, the charts based on

CUSUM and EWMA schemes accumulate information from past observations. For example,

the authors in [54] implemented an EWMA chart to detect significant changes in the average

number of deaths in the intensive care units of hospitals in Australia and New Zealand. The

authors in [55] developed advanced CUSUM charts for monitoring the performance of typical

queueing systems like ED with single queueing node. Kenyon et al. [56] applied X and S

statistical process control chart to monitor the daily ED utilization of pediatric asthma

emergency department. These methods focus on monitoring of specific quality indicators,

such as the queue length of an individual queue, using univariate control charts. Service

systems like the ED have a networked structure, so we cannot ignore the multidimensionality

and granularity of the data obtained from electronic health records that can capture the delay

experienced by patients at various stages of the care delivery process. To deal with that,

Harrou et al. [57] proposed a principal component analysis (PCA)-based anomaly detection

approach to monitor multiple correlated variables. They combined PCA modeling and the

MCUSUM control chart to improve the accuracy in detecting the abnormal situations in

ED.

1.2.3 Statistical Monitoring the Quality of Chronic Care Service

Unlike acute diseases that develop suddenly and last a short time, chronic diseases gen-

erally last a long period of time and require ongoing medical attention. Due to long-lasting

damage to the body and brain, chronic diseases cannot be cured but only controlled. Thus,

developing statistical process control method for monitoring the quality of chronic care ser-

vice and treatment progress is critical to ensure the favorable treatment outcomes and prevent

relapse. Examples of chronic medical conditions include HIV, asthma, diabetes, depression,

substance use disorder, etc. Adeoti [58] applied CUSUM control scheme to detect changes
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in the number of patients who tested positive to HIV/AIDS in Nigeria. Turner et al. [59]

evaluated the use of different control charts or monitoring the lung function in asthma based

on data from randomized trials. Hayati et al. [60] demonstrated Shewhart control chart is an

effective, simple, and inexpensive method to identify occupational asthma. Dokouhaki and

Noorossana [61] developed a control chart based on a two-state Markov model for monitor-

ing the risk of epidemicity of diabetes based on auto-correlated discrete data. Aslam et al.

[62] showed EWMA control chart with repetitive sampling is more effective than Shewhart

control chart for detecting the shift in blood glucose levels in Type-II diabetes patients.

Kaczmarek-Majer et al. [63] proposed a control chart based on weighted model averaging

for monitoring the stability of patients with bipolar disorder. They claimed this method

can take into account the uncertainty in the data and is more accurate and simple than

other typical control charts. Cottrill et al. [64] applied p-chart to help identify adolescents

and young adults with opioid use disorders, which allow early interventions to promote their

initiation, engagement and retention in treatment.

First, medication non-adherence is a prevalent problem that affecting the quality of

chronic care services. Proper medication adherence can decrease the occurrence rate of

many major irrevocable health complications including death. In addition, poor medication

adherence results in more than 100,000 mortalities each year in US and costs hundreds of

billion dollars of healthcare spending annually [65]. Since improving medication adherence

can achieve a significant benefit from both health and economic perspective, many methods

have been used for the aim of monitoring medication adherence. Direct and indirect meth-

ods can be summarized in monitoring and measuring medication adherence. Direct methods

of measuring the medication adherence include monitoring the drug concentration level in

the patients’ blood or urine. Indirect of measuring the medication adherence include self-

reporting, pill-counting, analyzing patient’s refill records, and measuring health outcomes,

etc. And statistical monitoring techniques are considered as indirect monitoring methods.

For example, Remien et al. [66] developed a backward stepwise regression analysis method
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to determine which patient does not have a proper medication-taking behavior with the aim

of improving Antiretroviral therapy adherence for HIV-infected patients. Hatoun et al. [67]

proposed a Shewhart-type control chart by integrating with logistic regression models and

negative binomial models to track the medication possession at discharge and medication fill

rates after discharge for patients with asthma.

Furthermore, due to the long-lasting changes and damage in the brain and body caused

by chronic diseases, relapse is common, so continuity of care or adherence to care is the

critical factor for successful treatment for chronic diseases. However, in reality, most of the

patients with chronic diseases have poor adherence to the duration of physician/therapy

treatment and medication does or schedules. For example, the majority of the patients who

are identified with AUD do not initiate treatment. And for those who initiated treatment,

fewer than 15% continued in treatment [68]. Therefore, it is important to measure and

monitor the treatment process for chronic diseases to identify care processes that lead to

successful outcomes and patients whose adherence to care failed to occur in a timely man-

ner and led to negative outcomes. Haberer et al. [69] developed a real-time approach for

monitoring the antiretroviral therapy (ART) treatment adherence for HIV/AIDS patients.

McHutchison et al. [70] applied χ2 test and the 2-sided t test to assess the adherence to

combination therapy with interferon or peginterferon plus ribavirin in chronic hepatitis C

patients. Kubica et al. [71] adopted univariate and multivariate analysis for monitoring

the adherence to treatment for patients with coronary artery disease (CAD) after myocar-

dial infarction (MI) and identifying patients requiring personalized educational activities. In

addition, underutilization of addiction treatment has been documented for over 20 years.

Government reports claim that only 10% of people who need treatment receive it. Further-

more, retention in care whether the treatment is counseling or medication is poor with many

people never getting past the initial assessment appointment. Recent efforts have focused on

increasing capacity for treating opioid use disorder (OUD). For example, Matteliano et al.

[72] developed a biopsychosocial-spiritual assessment model which is a comprehensive ap-
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proach for monitoring and improving the adherence treatment of chronic opioid therapy for

patients with persistent pain. Manchikanti et al. [73] proposed an evaluation tool including

a chart review to monitor controlled substance intake for patients with chronic pain, which

results in 50% reduction in opioid abuse. These researches did improve the access to care for

patients with opioid use disorder, but not continuity of care or outcomes despite an increase

in public and private expenditures. In the meantime, although access may have improved

for the treatment of OUD, it has not increased for people with other substance use disorders.

Thus new approach is needed to monitor the quality of system-level care in other substance

use disorders treatment such as alcohol use disorder (AUD) treatment.

1.3 Overview and Organization of the Dissertation

This dissertation focuses on developing a series of statistical monitoring methods based

on stochastic process models for improving the service quality in healthcare including acute

and chronic care services. The detailed contributions and advancements of the developed

statistical monitoring methods in each chapter as well as their applications are elaborated

with details as follows.

As described in the previous section, effective monitoring of healthcare time-to-event

data to improve the system quality has increasingly attracted attention from researchers

in the area of statistical process control. However, many of the existing papers assume

the healthcare time-to-event data as independent and identically distributed data or seri-

ally correlated discrete time stochastic processes. Very limited research has been conducted

for monitoring continuous-time stochastic processes (CTSPs). To fill the gaps and to ad-

dress the research need of monitoring continuous-time stochastic processes (CTSPs) based

on time-to-event data. In Chapter 2, a novel statistical monitoring method is proposed for

continuous-time stochastic processes with a focus on queueing processes under the emer-

gency department(ED) setting. The proposed method is based on detecting a change in

the intensity function of such processes, using an approximate likelihood ratio test. The
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approximation method is both computationally easy for real-time implementation and well-

suited for the introduction of penalization methods. Simulation results based on Markovian

and non-Markovian queues show that the proposed methods can effectively detect temporal

changes in the queueing process. A case study focusing on monitoring the waiting time of

patients visiting an emergency department demonstrates the efficacy of the proposed method

in a healthcare system.

The second type of continuous-time stochastic process faced in healthcare service system

I want to address in this dissertation is the queueing networks. As described in the previous

section, most of the existing statistical monitoring papers focus on monitoring single stage

service process and they did not consider the multidimensionality in some complex service

processes. While considering multiple stages in a service process with time-to-event data,

one stage may affect the performance of next stage, thus the statistical monitoring methods

focusing on individual stage are not appropriate to identify the abnormality for multiple-

stage service processes. Further, we want to note that we observed most of the existing

papers focus on monitoring the queue length or waiting time in a service system modeled as

a queue, limited attention has been paid of detecting the changes of the system parameters

like service rate, which is the key factor that reflect the service ability of a service system

like ED. To fill these gaps, in Chapter 3, the statistical monitoring method is extended to

accommodate complex service system structure with multiple nodes or stages. I proposed

cumulative sum (CUSUM) control charts that monitor the queueing information collected in

real-time from a queueing network (QN). We compare the proposed methods with existing

statistical monitoring methods to demonstrate their ability to quickly detect a change in

the service rate of one or more queues at the nodes in the QN. Simulation results show

that the proposed CUSUM charts are more effective than existing statistical monitoring

methods. The motivation for this research comes from the need to monitor the performance

of a hospital emergency department (ED) with the goal of monitoring delays experienced by

patients at various stages of the care delivery process in visiting the ED. A case study using
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the data from the ED of a large academic medical center shows that proposed methods are

a promising tool for monitoring the timeliness of care provided to patients visiting the ED.

In addition to monitoring the quality of acute care services such as emergency department,

this dissertation also investigates quality monitoring methods for chronic care services, such

as alcohol use disorder treatment processes. As described in the previous section, a Cascade

of Care (COC) framework has been widely applied to improve system-level practice and

treatment outcomes for various chronic medical conditions. However, very limited research

has been conducted on monitoring the treatment process based on COC framework for

alcohol use disorder (AUD). To fill this gap, in Chapter 4, the work aims to develop and

test a model for measuring and monitoring the treatment processes of AUD using a COC

framework. First, an innovative continuous-time stochastic process model is proposed to

represent the dynamics of the COC for AUD treatment, from which benchmarks for COC

can be developed by learning ideal patterns during different stages in care for AUD related to

outcomes that indicate improved health. To the best of our knowledge, this study would be

the first extension of the continuous-time stochastic modeling approach to AUD treatment

processes. Then, a new statistical monitoring scheme is developed to identify the patients

whose care deviated from the baseline model. Finally, key factor that is most correlated to

undesirable health outcomes is identified, which would help clinicians develop subsequent

interventions to promote treatment and improve outcomes for AUD.

The dissertation is organized as follows. Chapter 1 introduces the background and sig-

nificance of monitoring the quality of healthcare services, and further presents a literature

review on existing statistical monitoring methods for monitoring the quality of acute care

service and chronic care service. Chapter 2 proposes a novel statistical monitoring method

for detecting changes in the departure intensity function of ED service node by integrating

with quadratic contrast estimation techniques. Chapter 3 proposes likelihood ratio based

cumulative sum (CUSUM) control charts for monitoring the service rate of queueing net-

work with time-inhomogenerous state dependent queues under the ED setting. Chapter 4

14



proposes continuous-time stochastic process model to measure and monitor the treatment

process for patients with AUD based on the COC framework, from which benchmarks for

COC can be developed and key factors that are correlated to undesirable health outcomes

identified. In Chapter 5, the conclusion of this dissertation is drawn and the future research

directions are discussed. Figure 1.2 gives an organizational diagram of this dissertation.

Figure 1.2: Organization of dissertation
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Chapter 2: Monitoring Timeliness of Healthcare Delivery in Emergency

Department Using Counting Processes

2.1 Overview

In recent years, effective monitoring of categorical and count data has increasingly at-

tracted attention of researchers in the area of statistical process control. However, most of

the existing research model categorical and count data streams as independent and identi-

cally distributed data or serially correlated discrete time stochastic processes. Very limited

research has been conducted for monitoring continuous-time stochastic processes (CTSPs).

This paper develops a novel statistical monitoring method for CTSPs with a focus on queue-

ing processes. The proposed method is based on detecting a change in the intensity function

of such processes, using an approximate likelihood ratio test. The approximation method is

both computationally easy for real-time implementation and well-suited for the introduction

of penalization methods. Simulation results based on Markovian and non-Markovian queues

show that the proposed methods effectively detect temporal changes in the queueing pro-

cess. A case study focusing on monitoring the waiting time of patients visiting an emergency

department demonstrates the efficacy of the proposed methods in a healthcare system.

The methods researched in this paper can be used by operations managers in service

enterprises, such as healthcare industries, for monitoring the timeliness of service provided

to customers. The proposed method requires arrival and departure timestamps of customers

from a queueing system when the system is considered ideal. This data is then used to

define a metric for evaluating the queueing system’s performance using real-time data. The

proposed method does not require the arrival rate of the customers to be time-homogeneous.

The experimental results show that the method is agnostic to classical Markov process as-
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sumptions required in traditional performance modeling methods for queueing systems. The

paper describes applying the proposed method to a timeliness-of-care monitoring problem

in the emergency department of a large academic medical center. However, the method is

expected to be broadly applicable to other service systems as well.

2.2 Introduction

Longitudinal and serially dependent categorical and count data occur in many engineer-

ing, financial, and biomedical processes. A few representative examples include – (1) study

of manufacturing processes where the quality of each finished product is assigned a label,

such as acceptable, repair, or discard; (2) the number of customers waiting in a queue at any

given time-point of operation; and (3) utilization metrics of hospital emergency department

(ED), which can be labeled as not busy, moderately busy, and highly busy during different

times of the day. These examples illustrate applications where performance indicator metrics

are categorical and count data. Therefore, monitoring categorical and count data stream is

important to detect deterioration in the system from which the data is collected. Statistical

process control (SPC) literature describe an extensive set of categorical and count data mon-

itoring methods [74]. However, most of the existing research model categorical and count

data streams as independent and identically distributed (i.i.d.) data or serially correlated

discrete time stochastic processes. Very limited research has been conducted for monitoring

continuous-time stochastic processes (CTSPs). To fill the research gap, this paper proposes

a novel statistical monitoring method for CTSPs with a focus on queueing processes.

Queueing models have a wide range of application in stochastic modeling of service sys-

tems and contain vast amount of countable events such as the number of customers waiting

in a queue. Unlike traditional statistical models used in SPC methods for count and categor-

ical data that are based on probability distributions and transition probability distributions,

queueing processes are often defined by intensity or rate functions. Applications that involve

intensity functions include Markov processes, Poisson processes, Renewal processes and birth-
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death processes where the intensities include the rate of arrival (or birth) and departure (or

death) in queueing processes [75]. Figure 2.1 (a) and (b) are examples of time-homogeneous

stochastic process with constant state transition intensity and time-inhomogeneous stochas-

tic process with time-varying state transition intensity function, respectively.

Figure 2.1: Illustration of stochastic processes: (a) Time-homogeneous stochastic process
(b) Time-inhomogeneous stochastic process

The objective of this research is to develop a statistical monitoring scheme that detects

changes in the rate of the departure process from a queueing system to evaluate, in real-time,

whether the system performance has deteriorated or not. The departure process, which

is defined as the real-time count of the number of customers processed in a queue (also

considered as the number of departures from a queue), is modeled as a class of counting

process that have predictable intensity. Figure 2.2 illustrates the procedure for transferring

the observed departure timestamps to a counting process. This statistical monitoring scheme

often involves two steps. The first step is the estimation of the intensity function from the

data collected when the system is in control. The second step is the statistical test performed

to label an observed departure timestamp sample as out of control if it deviates significantly

from the in-control departure intensity function.

Maximizing the likelihood function is commonly used to estimate the departure intensity

function and define a generalized likelihood ratio (GLR) test for detecting out-of-control

samples of quality characteristics in various SPC methods. However, computing the maxi-

mization problem using this likelihood function of departure timestamps can be computa-
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Figure 2.2: Illustration of the proposed idea for monitoring the departures in a queue: (a)
The timestamps of the departures (b) The departure intensity is monitored using a

counting process that denotes the number of departures in [0,t], which is denoted as N(t).

tionally prohibitive. In general, it does not have a general analytical solution and must be

solved numerically. Additionally, a statistical monitoring statistic for real-time evaluation is

meant to be computed for every time-point, which can further aggravate the computational

burden. To overcome these issues, this paper proposes an approximate likelihood ratio test

based on the quadratic contrast estimator for constructing the desired statistical monitoring

scheme.

The proposed methods include a simple quadratic contrast test (SQCT) and a general-

ized quadratic contrast test (GQCT) that are analogous to the simple likelihood ratio (SLR)

test and generalized likelihood ratio (GLR) test, respectively. Unlike GLR tests for count-

ing processes based on MLE, the optimization step in GQCT has an analytical solution

and does not require expensive numerical computations [76]. This is especially advanta-

geous for computing a test statistic in real-time. Furthermore, the GQCT test results in a

quadratic minimization problem and the results from Gaussian linear models can be used

in computation and analysis of the test statistic. The proposed methods are compared with

the traditional monitoring scheme using simulation study of single-server and multi-server

Markovian and non-Markovian queueing systems. Further, the data from an ED is used to

illustrate the application of the proposed method in the real world. The real case study is

based on the problem of monitoring the waiting time of patients waiting to be assigned a

bed in the ED of a large academic medical center.
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The remainder of the chapter is organized as follows. Section 2.3 describes the counting

process model for departure process and the quadratic contrast estimator for the intensity

of the departure process. The statistical monitoring method is described in Section 2.4. A

simulation study and a real case study are presented in Sections 2.5 and 2.6, respectively.

Finally, the conclusions of this research and future research directions are described in Section

2.7.

2.3 Quadratic Contrast Estimation

This section describes the estimation of the intensity function from in-control data. For

each in-control sample j ∈ J0, let τi ,j denote the ith departure timestamp in sample j . The

counting process Nj(t) that counts the number of departures in [0, t] is defined as:

Nj(t) =
∑
i

I(τi ,j ≤ t).

It is assumed that Nj(t) are non-explosive, i.e. the number of departures are almost surely

finite over finite intervals. The intensity of the departure process is defined as follows

P(Nj(t + dt)− Nj(t) = 1|Ft) = λj(t)dt, (2.1)

where Ft denotes the information available until time t. For example, Ft could be the

arrivals, departures, and number of servers observed until time t (In measure-theoretic dis-

cussion on stochastic processes, it would be referred to as the filtration to which the counting

process is adapted.) The departure intensity λj(t) in (2.1) is a predictable processes. That

is, λj(t) is not random given Ft− , where Ft− denote the union of the sets Fs for s < t.
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The proposed model is based on the assumption that the in-control queueing system will

have an intensity processes:

λj(t) = µ(t)Dj(t), (2.2)

where Dj(t) is a function of arrival and departure time stamps recorded before time t and

µ(t) is common for all in-control queueing systems.

An example of a queueing system that consider the departure process from an Mt/Mt/st

queue, where the arrivals to the queue follow inhomogeneous Poisson process, customers

spend an exponentially distributed time being served, and the number of servers changes

over time. The departure intensity for an Mt/Mt/st queue is

λj(t) = µ(t)Bj(t), (2.3)

where 1/µ(t) is average service time at time t and Bj(t) is the number of busy servers at

time t. This is similar to a multiplicative intensity process commonly used in proportional

hazard models [77].

Defining the statistical monitoring scheme requires estimating µ(t). The maximum like-

lihood estimation of µ(t) would involve maximization of:

max
θ

∏
j∈J0


Nj (T )∏
i=1

λj(τi ,j)

 exp

(
−
∫ T

0

λj(s)ds

) , (2.4)

where the maximization is with respect to a certain finite dimensional parameter θ that

defines µ(t). Typically, µ(t) is approximated as

µ(t) =
K∑

k=1

θkϕk(t), (2.5)
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for t ∈ [0,T ], where ϕ1,ϕ2, ...ϕK are a set of basis functions over the interval [0,T ] and

θ = [θ1, θ2, ... θK ] are the coefficients. In general, (2.4) does not have an analytical solution.

But since it is equivalent to the following convex minimization problem:

min
θ

∑
j∈J0

∫ T

0

λj(s)ds −
Nj (T )∑
i=1

log λj(τi ,j)

 , (2.6)

and for which, numerical optimization methods work well for large sample sizes. However

there are a few drawbacks of this estimation method. The functional form of the intensity

function in (2.5) can be used to fit a large class of λj(t) by increasing the number of basis

functions K . For smaller in-control sample sizes, such as a service system that intends

to use a few selected number of days as the in-control dataset, require additional model

selection criteria to ensure overfitting is avoided. Such process typically includes adding

prior knowledge about the departure process as constraints. Therefore an alternative to

(2.6), which is referred to as the quadratic contrast estimator has recently been reported in

literature [76].

The quadratic contrast that provides a simpler estimation method .

min
θ

∑
j∈J0

∫ T

0

λ2j (s)ds −
Nj (T )∑
i=1

2λj(τi ,j)

 , (2.7)

Such quadratic contrasts have recently received a lot of interest in high-dimensional statistical

methods of counting processes [78, 79, 80, 81]. Also, this method has been used to detect

multiple change points in counting processes [76]. There are some similarities to the Laplace

approximation method used in Bayesian inference of count data. For λj(t) defined as in (2.2)

and (2.5), the minima θ̂ for the minimization problem (2.7) is given as the solution to

G̃θ = ñ (2.8)
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where the kth row, lth column element of the matrix G̃ is

1

J0

∑
j=J0

∫ T

0

ϕk(s)ϕl(s)D
2
j (s)ds,

the kthe element of ñ is

1

J0

∑
j=J0

∫ T

0

ϕk(s)Dj(s)dNj(s) =

Nj (T )∑
i=1

ϕk(τi ,j)Dj(τi ,j),

and J0 is the number of elements in set J0.

Departure processes with predictable intensities occur in a very large class of queues.

In fact, even non-Markovian queues have a predictable departure intensity, where λ(t) is a

function of the number of customers being processed and the time they have spent in the

process. The following proposition shows that the estimation method in (2.7) converges to

the true departure estimated intensity if it is of the form defined by (2.3) and (2.5). We use

the notation [A]ij to denote the element in row i and column j of matrix A.

Proposition 1. Let π(t) = E(B2(t)), for t ∈ [0,T ]. If the matrix G0, defined as

[G0]kl =

∫ T

0

ϕk(s)ϕl(s)π(s)ds,

is positive definite, then the solution to (2.8)

θ̂ = G̃
−1
ñ

converges in probability to θ that defined µ(t) in (2.5) as the size of the in-control sample

size |J0| → ∞.
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Proof. Based on the theory of stochastic integral of counting processes,

Nj (T )∑
i=1

λ(τi ,j) =

∫ T

0

λ(s)dNj(s)

=

∫ T

0

K∑
k=1

θkϕk(s)Bj(s)dNj(s)

=
K∑

k=1

θk

∫ T

0

ϕk(s)Bj(s)dNj(s)

= nT
j θ,

where nj = [n1,j , n2,j , ... nK ,j ] and

nk,j =

∫ T

0

ϕk(s)Bj(s)dNj(s)

=

Nj (T )∑
i=1

ϕk(τi ,j)Bj(τi ,j)

Also,

∫ T

0

λ(s)2ds

=
K∑

k=1

K∑
l=1

θkθl

∫ T

0

ϕk(s)ϕl(s)B
2
j (s)ds

= θGT
j θ,

where the kth row lth column of matrix Gj is

gkl ,j =

∫ T

0

ϕk(s)ϕl(s)B
2
j (s)ds
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Thus

min
θ

∑
j∈J0

∫ T

0

λ(s)2ds −
Nj (T )∑
i=1

2λ(τi ,j)


= θT Ḡθ − 2θT n̄.

where

Ḡ =
1

J0

∑
j∈J0

Gj and n̄ =
1

J0

∑
j∈J0

nj

Thus the minimization problem in (2.7) is simplified as the solving for θ that such that

Ḡθ = n̄

First we provide some of the definitions of the probability space on which the departure

process Nj are defined. Let (Ω,F ,P) be a probability space over which X is defined. Further,

assume that Ft is an increasing, complete and right-continuous filtration such that FT = F .

The stochastic process Nj is adapted to Ft for all j .

Further, let

N̈(t) =
J0∑
j=1

Nj(t),

and

B̈(t) =
J0∑
j=1

Bj(t).

Since it is assumed that τi ,j , the transition times across all in-control sample j are different,

N̈(t) is a counting process adapted to the filtration Ft , and has a Doob-Meyers decomposition

given as

dN̈(t) = λ(t)dt + dM̈(t),
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where M̈(t) is a Ft-martingale. Define

1

J0
U(θ) = Ḡθ − n̄.

Since the estimating θ involves solving 1
J0
U(θ) = 0, convergence of θ̂ to θ in probability is

proved is the following conditions are satisfied:

1. 1
J0
U(θ) converges in probability to 0 as J0 → ∞.

2. Ḡ converges in probability to positive definite matrix G0.

The mentioned conditions are similar to the conditions that ensure the convergence in prob-

ability of the MLE for random variable. The quadratic contrast estimator satisfies these

conditions and given in Lemma A.1 and A.2 prove that the two conditions are true for the

estimator. Thus, when G0 is positive definite, the consistency of the quadratic contrast based

estimate is proved.

Lemma A.1. 1
J0
U(θ) converges in probability to 0 as J0 → ∞

Proof.

Uk(θ) =
K∑
l=1

θl

∫ T

0

ϕk(s)ϕl(s)B̈
2(s)ds

−
∫ T

0

ϕk(s)B̈(s)dN̈(s)

=
K∑
l=1

θl

∫ T

0

ϕk(s)ϕl(s)B̈
2(s)ds

−
∫ T

0

ϕk(s)B̈(s){λ(s)ds + dM̈(s)}

=
K∑
l=1

θl

∫ T

0

ϕk(s)ϕl(s)B̈
2(s)ds

−
K∑
l=1

θl

∫ T

0

ϕk(s)ϕl(s)B̈
2(s)ds −

∫ T

0

ϕk(s)B̈(s)dM̈(s).
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Thus Uk(θ) = −
∫ T

0
ϕk(s)B̈(s)dM̈(s). Note that, as the stochastic integral with respect to a

FT martingale, E
(∫ T

0
ϕk(s)B̈(s)dM̈(s)

)
= 0.

In order to prove convergence in probability, following [82], we use the predictable vari-

ance process of the stochastic integral
∫ T

0
ϕk(s)B̈(s)dM̈(s) and apply Chebychev’s inequality.

Similarly, the variance of 1
J0

∫ T

0
ϕk(s)B̈(s)dM̈(s), denoted as V

(
1
J0

∫ T

0
ϕk(s)B̈(s)dM̈(s)

)
, and

V
(

1

J0

∫ T

0

ϕk(s)B̈(s)dM̈(s)

)
=

1

J2
0

E
(∫ T

0

ϕ2
k(s)B̈

2(s)λ(s)ds

)
=

1

J0
E

(
1

J0

∫ T

0

K∑
l=1

θlϕl(s)ϕ
2
k(s)B̈

3(s)ds

)

=
1

J0

(∫ T

0

K∑
l=1

θlϕl(s)ϕ
2
k(s)E

(
1

J0
B̈3(s)

)
ds

)

Using Chebychev’s inequality,

P
(∣∣∣∣ 1J0

∫ T

0

ϕk(s)B̈(s)dM̈(s)

∣∣∣∣ ≥ ϵ

)
≤ 1

ϵ2
V
(

1

J0

∫ T

0

ϕk(s)B̈(s)dM̈(s)

)
→ 0.

Therefore, 1
J0
U(θ) converges to 0 in probability.

Lemma A.2. limJ0→∞ Ḡ converges in probability to G0
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Proof.

lim
J0→∞

1

J0

J0∑
j=1

gkl ,j

= lim
J0→∞

1

J0

∫ T

0

ϕk(s)ϕl(s)
J0∑
j=1

B2
j (s)ds

=

∫ T

0

lim
J0→∞

1

J0
ϕk(s)ϕl(s)

J0∑
j=1

B2
j (s)ds,

which follows from the Dominated Convergence Theorem, and

∫ T

0

ϕk(s)ϕl(s)

(
lim

J0→∞

1

J0

J0∑
j=1

B2
j (s)

)
ds

→P

∫ T

0

ϕk(s)ϕl(s)E(B2
j (s))ds = G0

(by the Continuous Mapping Theorem)

In practice, the quadratic contrast estimation as given in (2.7) would over-fit the in-

control data, which is particularly true if the number of basis function K is chosen to be

significantly high or the data size is small. Therefore, a penalization term should be added.

In the real-data based case study discussed later in the paper, we penalize θ as follows:

min
θ

J0∑
j=1

θTGjθ − 2nT
j θ + ψJ0Λ(θ)

for a specified ψ > 0 and a chosen penalty function Λ(θ). The penalty function can be

decided based on application. The quadratic and convex penalties are preferred for easier

computation. Given the optimization problem is a quadratic minimization problem, several

novel penalties such as total variation penalty and smoothness penalty can be easily added.
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A cross-validation method can then be used to select the best value of ψ. The parameter

estimation based on the in-control data is illustrated in Section 2.6.

2.4 Quadratic Contrast Tests

There are two popular likelihood ratio based SPC schemes – the simple likelihood ratio

test and GLR test. If X denotes a test sample with likelihood l(X ,θ), where θ denotes the

parameters of the distribution. A hypothesis test to test the null hypothesis H0 : θ = θ0 vs.

alternative hypothesis H1 : θ = θ1 is performed using the test statistic

T (X ) =
l(X ,θ1)

l(X ,θ0)
.

When the above ratio T (X ) ≥ c for a specified threshold c , the null hypothesis is rejected

and it is not rejected otherwise. A statistical monitoring scheme based on such a test statistic

would classify a sample X as out-of-control if T (X ) ≥ c , when θ0 denotes the distribution

parameters corresponding to the in-control system generating the samples. This test statistic

is ideal when the out-of-control scenarios are approximated by the parameters θ1. It requires

the practitioners to specify θ1 or define several θ1 corresponding to many different out-of-

control scenarios.

When stipulating the out-of-control distribution parameters is difficult, or when the out-

of-control distribution lies in a parameter space Θ, a GLR test is often used. The test

statistic for GLR test is

T (X ) = max
θ∈Θ

l(X ,θ)

l(X ,θ0)
.

Recent, multivariate SPC methods have focused on penalization methods when θ is multi-

dimensional and the change in the parameters in the out-of-control distribution parameter

occurs in only a few dimension. A penalized test GLR test statistic is given as

T (X ) = max
θ∈Θ

l(X ,θ)

l(X ,θ0)
− Λ(θ),
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where Λ a penalty function. Commonly used penalty function include the ℓ2 and ℓ1 or Lasso

penalty.

For quality measures that follow multivariate normal distribution, Λ(||θ − θ0||) is used.

However, here we penalize θ rather than θ − θ0. The difference in the two approaches is

that when θ − θ0 is penalized, the GLR test statistic is maximized likelihood for θ that are

not too far from θ0. Whereas, when θ is penalized, the GLR test statistic is maximized

likelihood for θ that are not too far from the origin of K -dimensional Euclidean space. We

demonstrated that the second approach is suited for detecting decrease in intensity of Poisson

process, which is discussed in Appendix B.

The procedure for detecting deterioration in system generating Nj(t) is done by identi-

fying the changes in the intensity parameter µ(t). The objective of this paper is to conduct

a hypothesis test for any time in between [0,T ], which is given by the following hypothesis

test:

H0 : µ(s) = µ0(s) ∀s ∈ [0, t]

vs.

H1 : µ(s) ̸= µ0(s) ∀s ∈ [0, t]

(2.9)

for any t ∈ [0,T ], where µ0(t) denotes the in-control intensity function. The unique aspect

of the procedure developed in this paper, is that the hypothesis test in (2.9) is conducted

for any t ∈ [0,T ].

The first test statistic is designed to perform the following hypothesis test:

H0 : µ(s) = µ0(s) ∀s ∈ [0, t]

vs.

H1 : µ(s) = µ1(s) ∀s ∈ [0, t]

(2.10)
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for any t ∈ [0,T ], where µ1(t) is assumed to be the out-of-control intensity function. This

is a simple hypothesis test, and requires the knowledge of out-of-control intensity. Let

µ0(t) =
K∑

k=1

θ0,kϕk(t)

and

µ1(t) =
K∑

k=1

θ1,kϕk(t).

The proposed test statistic for testing the hypothesis in (2.10) is defined as:

SQCTj(t) = 2

Nj (t)∑
i=1

(µ1(τi ,j)− µ0(τi ,j))Dj(τi ,j)

−
∫ t

0

(
µ2
1(s)− µ2

0(s)
)
D2

j (s)ds

(2.11)

for any test CTMC Xj . Note that τi ,j ≤ t for i ∈ {1, 2, ...Nj(t)}. This test statistic is called

the simple quadratic contrast test (SQCT). We introduce the following functions to simplify

the calculation of SQCT:

gkl ,j(t) =

∫ t

0

ϕk(s)ϕl(s)D
2
j (s)ds

and

nk,j(t) =

∫ t

0

ϕk(s)Dj(s)dNj(s)ds =

Nj (t)∑
i=1

ϕk(τi ,j)Dj(τi ,j).

It needs to be clarified that nk,j(T ) and gkl ,j(T ) were previously denoted as nk,j and gkl ,j

respectively. Following previous convention, define the vector

nj(t) = [nj ,1(t) nj ,2(t) · · · nj ,K (t)]T

31



and Gj(t) is the matrix with the kth row and lth column element as gkl ,j(t). Similarly, Gj

and nj have been used to denote Gj(T ) and nj(T ) respectively. With this notation, the

SQCT statistic is given as:

SQCTj(t) = 2nT
j (t) [θ1 − θ0]

− θT
1 Gj(t)θ1 + θT

0 Gj(t)θ0,

θ1 = [θ1,1 θ1,2 · · · θ1,K ]T and θ0 = [θ0,1 θ0,2 · · · θ0,K ]T . This test statistic is similar to a simple

likelihood ratio test for multivariate Gaussian random vectors.

For SPC problems where the out-of-control intensity functions are not known, we propose

the generalized quadratic contrast test (GQCT) statistic as follows:

GQCTj(t) = max
θ

2

Nj (t)∑
i=1

(µ(τi ,j)− µ0(τi ,j))Dj(τi ,j)

−
∫ t

0

(
µ2(s)− µ2

0(s)
)
D2

j (s)ds − Λ(θ),

(2.12)

where µ(t) =
∑K

k=1 θkϕk(t), Λ is a penalty function. The idea of adding a penalty to the

GQCT statistic comes form the success of penalized multivariate SPC methods [83]. The

simulation studies reported in the paper use the elastic net penalty, and for which (2.12)

simplifies as

GQCTj(t) = max
θ

2nT
j (t)θ − θTGj(t)θ

− [2nT
j (t)θ0 − θT

0 Gj(t)θ0]− η||θ||22 − ζ||θ||1,
(2.13)

This optimization problem in (2.13) can be effectively solved using subgradient methods.

2.5 Simulation Study

This section reports the evaluation of the statistical power of the proposed method to

detect changes in the service rate of Markovian and non-Markovian queues that experience
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time-varying arrival rates and also have time-varying processing times. The basis functions

used in this simulation study to approximate the in-control departure rate parameter µ(t)

are:

ϕ1(t) =
1

2

ϕ2p(t) = cos (2pπt)

ϕ2p+1(t) = sin (2pπt)

for p = 1, 2, 3, and 4. The simulations illustrate the application the proposed methods for

detecting decrease and shift in departure rate of single-server and multi-server queues for both

Markovian and non-Markovian queues. The departure intensity in the GQCT and SQCT

models considers λj(t) = µ(t)Bj(t) for each test data j . This is the exact departure intensity

for Markovian queues. However, the simulation results demonstrate that the performance

of the monitoring schemes is robust to violation of the assumptions that service times are

exponentially distributed.

We compare the SQCT scheme and elastic-net-penalized GQCT with a average length of

stay (ALOS) monitoring scheme for detecting changes in departure rate, which has impor-

tant application in monitoring service systems. It is a ALOS monitoring scheme and it is

commonly used in queueing systems as a performance metric. The ALOS monitoring scheme

is given as:

(A− E(A|θ0))
2.

where A is average time spent in the queue, which includes time in the queue and service

time, of the customers departing the queue from t = 0 to t = 1.
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In this simulation study, we use the type II error (also called miss detection rate) to

measure the performance of the statistical monitoring methods. Type II error results from

inferring that a process is in control when it is actually out of control.

2.5.1 Detecting Changes in Departure Rate of Single-server Queues

2.5.1.1 Mt/Mt/1 Queue

The queueing system studied here is a single-server queue to which the arrival of cus-

tomers follows inhomogeneous Poisson process, has time-varying and exponentially dis-

tributed service time distribution, and processes customers on a first-come-first-serve basis.

We set the arrivals intensity as:

10− 5 sin(2πt),

for 0 ≤ t ≤ 1, and the service times of customers who are processed starting at time t have

an exponential distribution with rate

1.1

ρ
(10− 5 sin[2π(t − ω)]) ,

When the queue is in-control, we set ρ = 1 and ω = 0. The rational of selecting this

queue is to simulate a service system that experience time varying arrival rates, and where

the service rate has been designed to match the demand. When such a queue is out-of-

control, the parameters ω and ρ will change. An increase in ρ implies that the service rate

has become slower and a change in ω implies a temporal shift in the service rate function,

which means that the peak service rate does not match the peak arrival, which is often the

goal of optimized service rate in queues.

Figure 2.3 and 2.4 compares the described methods for detecting increase in ρ and change

in ω. We can see both SQCT and GQCT are more sensitive than ALOS monitoring scheme
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Figure 2.3: Detecting increase in ρ of a Mt/Mt/1 queue.

to detect the decrease and shift in departure rate of a Mt/Mt/1 queue, which demonstrates

the benefit of using an approximate-likelihood-ratio-based approach of monitoring departure

rate. In addition, SQCT and GQCT have similar performance in detecting the decrease in

departure rate, while SQCT is better than GQCT in detecting the shift in departure rate.

SQCT is more specific in detecting out-of-control scenarios but requires the out-of-control

scenario to match the stipulated alternative. GQCT is more general in its application, but

its performance is only slightly worse than SQCT.

2.5.1.2 Mt/Gt/1 Queue

The queue studied here is a single-server queue that arrivals are determined by an inho-

mogeneous Poisson process, and the service times have a time-varying general distribution.

We set the arrivals intensity as

10− 5 sin(2πt),
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Figure 2.4: Detecting change in ω of a Mt/Mt/1 queue.

for 0 ≤ t ≤ 1, and the service times of customers who are processed starting at time t are

determined by a gamma distribution, which is denoted as

Gamma(α, γ(t)),

where α is a shape parameter and γ(t) is called a rate parameter. Here we set α = 4 and

γ(t) =
4.4

ρ
(10− 5 sin[2π(t − ω)]) ,

for 0 ≤ t ≤ 1. Based on the comparisons in Figure 2.5 and 2.6. We can see SQCT and

GQCT are more sensitive for detecting the decrease and shift in departure rate than ALOS

monitoring scheme. In addition, SQCT performs slightly better than GQCT for detecting

changes in Mt/Gt/1 queue.

36



1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

ρ

T
y
p

e
II

er
ro

r

SQCT GQCT ALOS chart

Figure 2.5: Detecting increase in ρ of a Mt/Gt/1 queue.
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Figure 2.6: Detecting change in ω of a Mt/Gt/1 queue.
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2.5.1.3 Gt/Gt/1 Queue

The queue studied here is a single-server queue that both inter-arrival times and service

times have a time-varying general distribution. We set the inter-arrival times have a time-

inhomogeneous gamma distribution, Gamma(4, γ′(t)), with

γ′(t) = 4/(10− 5 sin(2πt)),

for 0 ≤ t ≤ 1. Then, in order to match the demand, the service times of customers are

determined by another time-varying gamma distribution, Gamma(4, γ(t)), with

γ(t) =
4.4

ρ
(10− 5 sin[2π(t − ω)]) ,

for 0 ≤ t ≤ 1.

Based on the comparisons in Figure 2.7 and 2.8. We can see SQCT and GQCT are

more sensitive for detecting the decrease and shift in departure rate than ALOS monitoring

scheme. In addition, SQCT performs slightly better than GQCT for detecting changes in

Mt/Gt/1 queue.
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Figure 2.7: Detecting increase in ρ of a Gt/Gt/1 queue.
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Figure 2.8: Detecting change in ω of a Gt/Gt/1 queue.

Sections 2.5.1.2 and 2.5.1.3 illustrate that users can use the SQCT and GQCT schemes

even when the underlying assumption of exponential service times are violated.

2.5.2 Detecting Changes in Departure Rate of Multi-server Queues

In addition to the single server queues, the proposed methods can be extended to queues

with multiple servers as well, such as Mt/Mt/c queue, Mt/Gt/c queue and Gt/Gt/c queue.

For Mt/Mt/c queue, the arrivals are determined by an inhomogeneous Poisson process, has

time-varying and exponentially distributed service time distribution, and processes customers

on a first-come-first-serve basis. For Mt/Gt/c queue, the arrivals are determined by an inho-

mogeneous Poisson process, and the service times have a time-varying general distribution.

For Gt/Gt/c queue, both the inter-arrival times and service times have a time-varying general

distribution.

The simulation study results in Figure 2.9 - 2.14 show that SQCT and GQCT are quite

sensitive for detecting the decrease and shift in departure rate of Mt/Mt/5 queue, Mt/Gt/5

queue and Gt/Gt/5 queue, while the ALOS monitoring scheme can barely detect any changes.
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Figure 2.9: Detecting increase in ρ of a Mt/Mt/5 queue.
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Figure 2.10: Detecting change in ω of a Mt/Mt/5 queue.
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Figure 2.11: Detecting increase in ρ of a Mt/Gt/5 queue.
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Figure 2.12: Detecting change in ω of a Mt/Gt/5 queue.
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Figure 2.13: Detecting increase in ρ of a Gt/Gt/5 queue.
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Figure 2.14: Detecting change in ω of a Gt/Gt/5 queue.
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2.6 Monitoring the Waiting Patients Waiting Volume in an Hospital ED

In this section, our proposed monitoring schemes are tested to monitor the daily patient

flow based on the emergency department (ED) patient visit data of a large academic medical

center in the United States. Patients visiting the ED often have to wait for undesirably long

time before they are assigned bed. Therefore, health services research has focused on various

aspects of monitoring measures of delay in providing emergency care to patients. One such

metric is the door-to-bed wait time [84]. We focus on monitoring the rate of bed assignment

in the ED. The case-study here builds on the simulation study in Section 2.5. The arrival

patients are considered to form a queue before they are assigned a bed, and thus monitoring

the rate of bed assignment is equivalent to monitoring the departures from the arrival queue.

Figure 2.15: The ED patient flow from door to bed

We select the first 183 days in Year 2016 as training data, in which the days with patient

average length of stay less than the 0.9 percentile (50.4 minutes) are used as in-control data.

For parameter estimation of the in-control bed assignment rate, as described in 2.3, in order

to avoid over-fitting cross-validation method is used to select the best value of the penalty,

which we found is η = 0.01 and ζ = 100. Figure 2.16 shows the in-control bed assignment

rate of a day for the registration desk base on the in-control data, we can see that the

registration desk has the lowest bed assignment rate at about 5AM and the highest bed

assignment rate at about 11 AM.
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Figure 2.16: In-control bed assignment rate

We use the last 183 days in Year 2016 as test data set. We intend to use SQCT and

GQCT to detect the decrease of the service rate. Then the ALOS chart designed to detect

the increase of average door-to-bed wait time is used to compare with proposed SQCT and

GQCT. The number of days classified as in-control and out-of-control are presented in the

confusion matrix in Table 2.1 and 2.2. Table 2.1 shows that there are total 43 days in the test

dataset are labeled as “out-of-control” by ALOS chart, while 35 days among the testing set

are signed as “out-of-control” by SQCT, in which 16 days are identified as “out-of-control”

by both SQCT and ALOS chart, and 19 days are identified as “out-of-control” by SQCT

only. Similar results for the comparisons for GQCT and ALOS chart are given in Table 2.2.

Table 2.1: Confusion matrix for SQCT and ALOS chart

SQCT
N = 183 Out-of-control In-control Total

ALOS chart
Out-of-control 16 27 43
In-control 19 121 140

Total 35 148

In the test dataset, there are 12 days signaled out-of-control by both SQCT and GQCT

but not the ALOS chart. To get further insight into the reason for this, study August 26,
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Table 2.2: Confusion matrix for GQCT and ALOS chart

GQCT
N = 183 Out-of-control In-control Total

ALOS chart
Out-of-control 16 27 43
In-control 16 124 140

Total 32 151

2016 in further detail. Figure 2.17 shows the observed bed assignment rate and the in-control

bed assignment rate. We can observe there is an overall decrease in the rate on August 26,

particularly the peak hour rate. However, the mean and variance of the patient length of stay

on August 26 were 32.77 minutes and 1.26 minutes respectively. This example illustrates a

case where the average door-to-bed time did not deviate from the in-control average value,

and, hence, the ALOS test statistic did not distinguish it as out-of-control. However, the

intensity or rate of patients moving from waiting area to beds had clearly decreased on

August 26, and we are able to detect it using the proposed methods.
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Figure 2.17: Intensity comparison on August 26, which was signaled out-of-control by both
SQCT and GQCT but not the ALOS chart
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2.7 Conclusions

In this paper, we have introduced a new statistical monitoring method for detecting

changes in the departure intensity function of queues. The proposed method is based on an

approximate likelihood function that alleviates the issue of needing to numerically maximize

a complex likelihood function for estimating the in-control parameters and obtaining test

statistics. There are two types of monitoring schemes that are proposed in the paper as

alternatives to the SLR and GLR tests. Both methods were shown to detect changes in the

intensity that is otherwise hard to detect using existing techniques. Besides, the proposed

scheme can be used to identify changes in real-time, which is particularly complicated for

inhomogeneous queueing systems. The efficacy of the methods is demonstrated by simula-

tion studies and a real-data case study. The real-data case study analyzes the problem of

monitoring the waiting time of patients visiting the ED of a major academic medical center.

There are several extensions of the method developed in this paper. Among them, an

optimal detection scheme that minimizes delay in change detection for inhomogeneous CT-

SPs would have a wide range of applications. Further theoretical development of the GQCT

method can lead to a better understanding of the type of penalty and the magnitude of the

penalty that is ideal for detecting a specific kind of change in the intensity. Besides, moni-

toring the quality of care provided in the ED is an essential area of research in emergency

medicine. We are working on developing other applications of the proposed methods to

monitor the timeliness of care provided to patients visiting the ED. We anticipate that our

ongoing research would result in several methodological developments and novel applications

involving statistical monitoring of CTMCs.
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Chapter 3: Statistical Monitoring of the Quality of Service in a Network of

Queues with Application in Emergency Department

3.1 Overview

Queuing networks (QNs) are widely used stochastic models for service systems includ-

ing healthcare systems, transportation systems, and computer networks. While existing

literature has extensively focused on modeling and optimizing resource allocation in QNs,

very little research has been done on developing systematic statistical monitoring methods

for QNs. This paper proposes cumulative sum (CUSUM) control charts that monitor the

queueing information collected in real-time from the QN. We compare the proposed methods

with existing statistical monitoring methods to demonstrate their ability to quickly detect a

change in the service rate of one or more queues at the nodes in the QN. Simulation results

show that the proposed CUSUM charts are more effective than existing statistical monitoring

methods. The motivation for this research comes from the need to monitor the performance

of a hospital emergency department (ED) with the goal of monitoring delays experienced by

patients at various stages of the care delivery process in visiting the ED. A case study using

the data from the ED of a large academic medical center shows that proposed methods are

a promising tool for monitoring the timeliness of care provided to patients visiting the ED

modeled as a QN.

3.2 Introduction

A QN is the representation of a service system consisting of a network of servers. Each

node of a QN consists of a set of servers processing or serving arriving entities, such as
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customers in a service system or packets in a computer network [85]. In recent years, QNs

have been widely used in modeling many service systems, such as manufacturing systems

[86], computer networks [87], transportation systems [88], and healthcare systems [89, 90,

91]. Especially in healthcare, QN models have been found valuable in modeling the flow of

patients in the hospital emergency departments (ED).

There is a rich body of research on resource allocation and decision-making in ED using

QN models. For example, Cochran and Roche developed an open QN model to increase

the capacity of an ED for patient care by considering various types of arrival patterns and

volumes in patients [92]. Vass and Szabo applied QN models to determine the optimal

allocation of trained personnel and specialized equipment in ED [93]. Huang et al. [94] and

Xie et al. [95] presented QN models that consider triage patients as a multi-class queuing

system to control the priority of patients’ treatments. They model the ED as a traditional

queuing system, such as M/M/1 and M/M/k queues, where the service capacity is bounded

and constant. However, the available medical staff and resources in ED is time-varying in

reality, which make traditional queuing systems with fixed service capacity a poor fit for

ED. Therefore, Shi et al. [96] adopted a processor-sharing queue, where the service rates

are functions of the number of patients over time, to study how to effectively integrate a

new diagnostic test into the clinical environment in ED. They demonstrate the processor-

sharing queue with a state-dependent service rate function is more flexible to accommodate

the complexities commonly seen in the ED environment compared to the traditional queuing

setting.

Resource allocation using performance modeling tools like QNs addresses the problem of

optimizing scare emergency medical resources. But such problems are typically part of long-

term operational decision making in the ED. For example, changing the staffing schedules

too frequently could be opposed by ED healthcare providers [84]. Therefore, it is important

to augment such performance modeling methods with real-time performance monitoring

methods, which will ensure the adherence to a high quality of care and detect deterioration
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in the hypothesized optimal flow of patients. Statistical process control (SPC) charts are

increasingly being used in healthcare to monitor and measure the process variation and

identify changes that indicate deterioration in quality [97]. It is important to note that the

Center for Medicare and Medicaid Services requires that the hospitals report performance

measures of the EDs, such as average length of stay of patients visiting the ED. Deterioration

of these indicators can quickly bring down the quality of care. Research shows that lower

service rates in ED can result in longer queue length and waiting time, which might increase

the risk of adverse outcomes for patients [98, 99]. Therefore, it is imperative to develop

statistical performance monitoring methods for evaluating the quality of healthcare delivery

in the ED.

Statistical process control (SPC) methods have been studied in the context of monitoring

the quality of service in the ED [48]. Salient examples using Shewhart-type control charts

include the application of p-chart to monitor the variability of the number of patients leaving

the ED [50], x̄-chart to monitor the door-to-reperfusion time for patients who have acute ST

myocardial infarction [51], and run charts are developed to monitor the patient mortality

rate [52] and daily demand in order to identify the start and end of the winter surge of

pediatric patients in ED [53]. Unlike the Shewhart-type charts depended on only the current

observation, the charts based on CUSUM and EWMA schemes accumulate information from

past observations. For example, the authors in [54] implemented an EWMA chart to detect

significant changes in the average number of deaths in the intensive care units of hospitals

in Australia and New Zealand. The authors in [55] developed advanced CUSUM charts for

monitoring the performance of typical queuing systems with single queuing node. These

methods focus on monitoring of specific quality indicators, such as the queue length of

an individual queue, using univariate control charts. Service systems like the ED have a

networked structure, so we cannot ignore the multidimensionality and granularity of the

data obtained from electronic health records that can capture the delay experienced by

patients at various stages of the care delivery process. Therefore, a multivariate statistical
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monitoring scheme based on advanced stochastic models like QNs is crucial and needs to be

developed.

The most appropriate and widely used multivariate control charts are multivariate EWMA

(MEWMA) and multivariate CUSUM (MCUSUM) charts. Their good performance in moni-

toring the changes of process means, especially for small changes, has been validated by many

papers [100]. However, these methods assume the process data follow a time-homogeneous

multivariate normal distribution. It needs to be clarified that, many large sample approxima-

tions of queue performance metrics, such as diffusion approximation, also follow multivariate

normal distribution [101]. In practice, the normality assumption is usually difficult to justify

for a real time queuing performance metric obtained from a nonstationary QN, so that the

statistical properties of MEWMA and MCUSUM charts could be affected. In addition, we

observed most of the existing papers focus on monitoring the queue length or waiting time

in a service system modeled as a queue, limited attention has been paid of detecting the

changes of the system parameters like service rate, which is the key factor that reflects the

service ability of a service system like ED.

To overcome the limitation caused by the multivariate normal distribution assumption

and fill the gap of monitoring the system parameters of a service system, this paper proposes

new CUSUM charts based on the likelihood ratio statistics to monitor the service rates

for a QN with time-inhomogeneous state-dependent queues. The likelihood ratio statistics

pose no constraint to the underlying process distribution and have been demonstrated to be

generally more powerful than other alternative methods [102]. The proposed methods are

evaluated based on the delay in detecting the change in service rate of one or more nodes of

the QN. Our simulation results show that the proposed charts are more effective compared

with conventional MCUSUM and MEWMA charts. Also, a real case study focusing on

monitoring the daily patient flow of an emergency department demonstrates the efficacy of

the proposed methods in real application.

50



The remainder of the chapter is organized as follows. Section 3.3 introduces the QN

model, and Section 3.4 introduces the statistical monitoring scheme for the QN. Section 3.5

derives the CUSUM charts based on different likelihood ratio statistics to monitor the service

rate of QN. Their numerical performances are investigated in Section 3.6. In Section 3.7, we

demonstrate the application of the proposed methods using a real-data example from the

ED of a large academic medical center. Finally, the conclusions of this research and future

research directions are described in Section 3.8.

3.3 Queuing Network Model

A QN is a network of queues with queues at every node of the network. Entities (e.g.,

customers, patients, and data packets) processed in the QN arrive at a node in the network

from either outside the network or a different node in the network and upon completion

of processing at the node the entities move to a different node or leave the network. The

structure of the network, the arrival process to the network, and the service policy are used to

classify the type of QN. In this paper, we shall focus on studying the open Jackson network,

which is a very commonly used QN in practical applications of queuing theory in service

systems [103]. In an open Jackson network, external arrival can happen to any of the nodes

and customers can leave the system from any of the nodes. A customer completing service

at one node in the open Jackson network can either move to another queue node with some

probability or leave the system.

Consider an open network with I nodes where the service rate of the nodes depends on

the number of customers at each node. In this network, external arrivals to node i , for i ∈

{1, 2, · · · , I}, occurs as a Poisson process with rate λi(t), where t denotes the time of a day.

Let Bi(t) denote the number of customers at node i at time t. We assume that the service

rate of queue at node i follows an exponential distribution with rate µi(t) = fi(Bi(t), θi),

where θi is the vector of parameters that define fi . The arrival process and service time
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for each node are assumed to be mutually independent. The data from a queue network

consisting of queues indexed by i = 1, 2, ... I will have following events:

1. τ 1i , τ
2
i , ... τ

Ai (t)
i : The external arrivals to a queue node between times [0, t] are indepen-

dent of everything happening inside the network.

2. δ1i , δ
2
i , ... δ

Di (t)
i : The departures from a queue node between times [0, t] are independent

of everything except the number of customers at δ1i , δ
2
i , ... δ

Di (t)
i .

3. e1i , e
2
i , ... e

Di (t)
i : The index of the queue that a customer leaving node i joins. enii = 0

indicates that the nith customer leaving node i is either deterministic or dependent on

the transition probabilities pij , where pij is the probability of a customer leaving node

i to join node j and pi0 = 1−
∑I

j=1,j ̸=i pij .

Since,

P (t ≤ δnii < t + dt| | all events that have occurred on or before t) = µi(t)dt

for ni ∈ 1, 2, ...Ni(t) and

P (t ≤ τ aii < t + dt| | all events that have occurred on or before t) = λi(t)dt

for ai ∈ 1, 2, ...Ai(t). The log likelihood of this data is given as

l(t, Θ) =
I∑

i=1

Di (t)∑
ni=1

log µi(δ
ni
i )−

∫ t

0

µi(s)ds+
I∑

i=1

Ai (t)∑
ai=1

log λi(τ
ai
i )−

∫ t

0

λi(s)ds+

I∑
i=1

Di (t)∑
ni=1

I(enij = j)

Di(t)
log pij .

Here Θ = [θi ], vector obtained from concatenating the service rate parameters from node

i for i = 1, ... I . Let tn denote the nth event in the ordered list of all arrivals (τ nii ) and

departures (δnii ), and let ln(Θ) = l(tn, Θ). Thus,
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Then, the log-likelihood function for the observed sample path in (0, tn] becomes

ln(Θ) =
I∑

i=1

Di (tn)∑
ni=1

log µi(δ
ni
i )−

∫ tn

0

µi(s)ds+

I∑
i=1

Ai (tn)∑
ai=1

log λi(τ
ai
i )−

∫ tn

0

λi(s)ds+

I∑
i=1

Di (tn)∑
ni=1

I(enij = j)

Di(tn)
log pij .

(3.1)

In the following sections, instead of the likelihood ratio function, our proposed CUSUM charts

are designed based on the log-likelihood function (3.1), which is both computationally easy

and well-suited for the introduction of penalization methods.

3.4 Statistical Monitoring Scheme for Queueing Network

The likelihood function in (3.1) can be used to monitor any change in the QN. However,

in practice, detecting deterioration in the performance of a QN caused by one or more queues

at the nodes of the QN slowing down is more relevant than other types of changes. This

detection problem is also the primary focus of the related research reviewed in Section 1.

Therefore, we focus on building a statistical monitoring scheme to detect the change in the

service rate of a QN. Let Θ0 = {θ01, θ02, · · · , θ0I } represent the parameters related to service

rate of each node in the QN when the system is in control, referred to as the in-control

parameter, and let the parameter Θ = {θ1, θ2, · · · , θI} denote the parameters related to

true service rate of each node. Hence, if the system is in control, then Θ0 = Θ. The

statistical monitoring scheme in this paper focuses on monitoring the QN only when an

event such as arrival, departure, or movement of an entity from one node to another occurs.

It is a framework also considered in prior research on monitoring single server queues [104].

Therefore, the monitoring statistic is only updated at tn, which represents the time when nth

event occurs.
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Therefore, for each tn, a test statistic hn is defined to test the following hypothesis

H0 : Θ = Θ0

vs.

H1 : Θ ̸= Θ0.

A decision rule is defined to test this hypothesis in a CUSUM scheme as follows:

hn > g

where g is the threshold value. Once the CUSUM statistic hn exceeds the control limit g , an

alarm is triggered. A generated alarm means that the observed process is classified as out of

control. Then the time tn where such an out-of-control signal first happens is used to define

the run length n. Here, the control limit g is determined such that the average run length

(ARL) under the in-control scenario, denoted by ARL0, meets the specified value [105]. The

CUSUM statistic is defined in the next section.

3.5 Proposed CUSUM Charts

The CUSUM chart, introduced by [106], is one of the most popular sequential change-

detection methods used in statistical quality control. It is based on not only current obser-

vations but also past observations. It has been demonstrated that the conventional CUSUM

chart and its modifications are very effective in detecting a large class of change in model

parameters [55, 107, 108]. Therefore, we develop CUSUM charts for monitoring the deteri-

oration in the service rate of queues in a QN. In this section, CUSUM charts that are based

on the likelihood ratio statistics are proposed to monitor the service rate of QNs. The first is

a simple CUSUM (SCUSUM) chart, which is best suited when the practitioners can specify

the potential out-of-control parameters. However, the performance of the SCUSUM chart

might deteriorate if the real out-of-control parameters were far from the hypothesized out-of-
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control parameters. So, the general likelihood ratio and penalized likelihood ratio, which are

computed by maximizing the likelihood ratio and penalized likelihood ratio respectively, are

developed to construct the second type of CUSUM charts. They are called the generalized

CUSUM (G-CUSUM) chart and penalized CUSUM (P-CUSUM) chart.

3.5.1 The SCUSUM Chart

For deriving the SCUSUM chart based on the likelihood ratio, a specified out of control

parameter is needed. Let

Θ1 = {θ1, θ2, · · · , θI} = {(1 + ∆1)θ
0
1, (1 + ∆2)θ

0
2, · · · , (1 + ∆I )θ

0
I }

represent the specified out of control service rates. Where ∆i denotes the hypothesized degree

of a shift away from in control parameter in µ0
i . The sign of ∆i should be consistent with

the actual change direction of the service rate for each node i = {1, 2, ..., I}. For instance, if

we are interested in detecting the decrease of the service rate for node i , then δi should be

set as a negative value such as −10%.

Then, based on equation (3.1), we denote the log-likelihood ratio after the nth event under

the observed complete sample path {X (tn)} as ξn, which is

ξn = ln(Θ1)− ln(Θ0)

=

 I∑
i=1

Di (tn)∑
ni=1

log
fi(Bi(δ

ni
i ), Θ1

fi(Bi(δ
ni
i ), Θ0)

−
∫ tn

0

(fi(Bi(s), Θ1)− fi(Bi(s), Θ0)) ds

 (3.2)

Thus, the SCUSUM statistic hsn is defined as

hsn =max{0, hsn−1 + ξn − ξn−1} where hs0 = 0.
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3.5.2 The G-CUSUM and P-CUSUM Charts

The SCUSUM chart requires a set of specified design parameters, like ∆i that indicate

the type of change that the users want to detect. However, in practice, it is difficult for users

to know the potential change in advance. For example, the user may need to specify the

specific nodes of a QN that have the potential to slow down. For such cases, the SCUSUM

chart may perform poorly when the actual change is different from the assumed change. As

a solution to this problem, the specified service rate Θ1 can be replaced by the maximum

likelihood estimate (MLE) of the service rate for the server in each node by maximizing the

log-likelihood ratio. The resulting CUSUM scheme results in a generalized-likelihood-ratio-

based G-CUSUM chart.

Let ξgn denote the generalized log-likelihood ratio after the nth event, which is the maxi-

mum of the log-likelihood ratio in (3.2), that is

ξgn = max
Θ

 I∑
i=1

Di (tn)∑
ni=1

log
fi(Bi(δ

ni
i ), Θ)

fi(Bi(δ
ni
i ), Θ0)

−
∫ tn

0

(fi(Bi(s), Θ)− fi(Bi(s), Θ0)) ds


=

I∑
i=1

ξgn,i

, (3.3)

where

ξgn,i = max
Θ

log
fi(Bi(δ

ni
i ), Θ)

fi(Bi(δ
ni
i ), Θ0)

−
∫ tn

0

(fi(Bi(s), Θ)− fi(Bi(s), Θ0)) ds.

This maximization problem is simplified when fi is a linear function in θi . Assume that fi is

functional linear model where:

fi(Bi(t), θi)) = ϕi(Bi(t))
Tθi
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where ϕi(Bi(t))
T is a vector-valued function of Bi(t), which includes polynomial functions.

Further, let Φi ,n =
∫ tn
0
ϕi(Bi(s))ds. Then,

ξgn,i = min
θi

ΦT
i ,n(θi − θi ,0)− log

ϕi(Bi(δ
ni
i ))

Tθi
ϕi(Bi(δ

ni
i ))

Tθi ,0

which is a convex minimization problem and can be easily solved using gradient descent

methods. Then, the G-CUSUM statistic hgn is then given as

hgn = max{0, hgn−1 +
I∑

i=1

(ξgn,i − ξgn−1,i)} where hg0 = 0.

The MLE-based likelihood ratio test can lead to poor change detection power when the

dimensionality of Θ is large. To overcome this problem, a Lasso penalty term can be added

for estimating the MLE of the service rate in each node, which reduces the dimensionality

of changed parameters by inducing sparsity to the MLE in generalized likelihood ratio test

[109, 83]. In large QNs, it is reasonable to assume that only a few service rates will deviate

from the in-control values. The Lasso method induces sparsity in the estimated Θ, and

therefore increases the probability to select the θi that change.

Adding a penalty term to MLE-based statistic is equivalent to maximize the penalized

log-likelihood ratio, which is as follows

ξψn =max
Θ

 I∑
i=1

Di (tn)∑
ni=1

log
fi(Bi(δ

ni
i ), Θ)

fi(Bi(δ
ni
i ), Θ0)

−
∫ tn

0

(fi(Bi(s), Θ)− fi(Bi(s), Θ0)) ds


− ψ||Θ−Θ0||1

=
I∑

i=1

ξψn,i ,

(3.4)

where I is the number of nodes in the QN, i ∈ {1, 2, · · · , I}, and

ξψn,i = min
θi

ΦT
i ,n(θi − θi ,0)− log

ϕi(Bi(δ
ni
i ))

Tθi
ϕi(Bi(δ

ni
i ))

Tθi ,0
+ ψ||θi − θi ,0||1.
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Similarly, the test statistic for the P-CUSUM with a penalty ψ is defined as

hψn =max{0, hψn−1 +
I∑

i=1

(ξψn,i − ξψn−1,i)} where hψ0 = 0.

It is worth noting that the derivations of ξn, ξ
g
n , ξψn in Equation (3.2), (3.3) and (3.4)

show that our proposed log-likelihood ratio based CUSUM statistic only require departure

timestamps and number of customers in for each queue in a QN. In the implementation of

the CUSUM charts, the optimization step converges in a few iterations and did not pose

numerical issues.

3.6 Numerical Study

In this section, the results of a simulation study to analyze the performance of the pro-

posed CUSUM schemes in Section 3.5 are discussed. In the simulation experiments, a QN

with ten nodes will be examined, which is shown in Figure 3.1. Each node of the QN

consists of a single server. It is important to note that the likelihood-ratio-based CUSUM

schemes are agnostic to the number of servers in the queue. Entities arrive at the first

node and depart the system from the last node. All the servers are independent of each

other and their service times are exponentially distributed with the rate µi , i ∈ {1, 2, ..., 10}.

The in-control values of service rate for each node are all set to be 1.1, that is Θ0 =

[1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1]. The external arrivals to the first node are accord-

ing to a Poisson process with rate λ = 1. This QN is equivalent to ten connected M/M/1

queues.

Monte Carlo simulations are used to analyze the ARL performance of our proposed

CUSUM methods: SCUSUM, G-CUSUM and P-CUSUM charts. The designed out-of-

control parameters of the service rates for SCUSUM chart is set as Θ1 = 0.9Θ0 = 0.9 ∗

[1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1], which corresponds to a 10% decrease in service

rates of all nodes. For the G-CUSUM, instead of a hypothesized change in service rate
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Figure 3.1: Structure of QN

for each node, the MLE of the service rate for each node should be computed to obtain the

test statistics. The control limits for all methods are all set such that the ARL0 = 100.

We compare the performance of the proposed CUSUM scheme with two general multivari-

ate SPC schemes: the multivariate CUSUM (MCUSUM) scheme [110] and the multivariate

exponentially weighted moving average (MEWMA) chart [111] to monitor the queue length

for every tn, the time when nth event occurs. This is consistent with previous literature on

monitoring queue length of single server queues [55, 112]. Let Qn = [q1
n, q

2
n, ..., q

10
n ]T denote

the queue length for each of the ten nodes at tn. The MEWMA and MCUSUM charts de-

scribed here are meant to detect the change in service rate of the service nodes in the QN

based on Qn. The MEWMA test statistic for Qn is defined as

T 2
n =

2− γ

γ
ZT
n Σ−1Zn

where γ ∈ (0, 1] is a weighting parameter and Zn is a vector calculated in a recursive form

Zn = γ(Qn − Q0) + (1− γ)Zn−1
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where Z0 = 0, and Q0 and Σ are the mean and covariance of queue lengths under in-control

scenario, which are estimated from 10,000 simulations of Qn under the in-control setting.

The recommended values of γ is between 0.05 and 0.2 [113]. In the reported results γ = 0.2

was found to be the best for detecting small changes.

The MCUSUM statistic is defined as:

MCn = max{0,
√
DT

n Σ
−1Dn − k̃ωn},

where

Dn =
n∑

i=n−ωn+1

(Qi − Q0)

and

ωn =

 ωn−1 + 1 if MCn−1 > 0

1 otherwise
.

Also, following the recommendations in [110] and the Θ1 = 0.9Θ0 values, k̃ = 0.12 was

selected.

3.6.1 ARL Comparisons for Detecting the Change of All Service Nodes

Figure 3.2 presents the ARL comparisons for detecting the decrease in service rates of

all nodes ranging from Θ0 to 0.4Θ0. The comparison shows that our proposed CUSUM

charts significantly outperform the MEWMA and MCUSUM charts. Among them, the G-

CUSUM is comparable to the SCUSUM in terms of the ARL performance and exhibits

better sensitivity than the P-CUSUM chart in detecting the small changes of all service

nodes. The Lasso penalty would force some of estimated service rates equal to their in-

control values, which is not consistent with the fact that all service rates have been changed.

Hence, P-CUSUM chart is less effective when all the nodes of the QN have slowed down.

On the other hand, when the actual service rates are much slower than the designed out-

of-control parameter Θ1, the performance of G-CUSUM chart deteriorates and SCUSUM

60



Θ0 0.9Θ0 0.8Θ0 0.7Θ0 0.6Θ0 0.5Θ0 0.4Θ0

0

20

40

60

80

100

A
R

L

SCUSUM G-CUSUM

P-CUSUM (ψ = 0.1) MEWMA

MCUSUM

Figure 3.2: ARL comparisons in detecting the decrease of the service rates of all nodes

chart is still sensitive. It is due to the fact that simple CUSUM charts are usually effective

when actual change direction is similar to the hypothesized out-of-control change [104]. On

the other hand, when service rates decrease, the number of departure events decreases and the

estimation error in G-CUSUM test statistic increases, which can explain the slight decrease

in performance for smaller values of Θ observed in Figure 3.2.

3.6.2 ARL Comparisons for Detecting the Change of Single Node

For detecting change of the single node in the QN, ARL comparisons are discussed

for the first node, middle node and last node. Figure 3.3 and Figure 3.4 show the ARL

comparisons in detecting the decrease of the service rate of the first node and last node,

respectively. Firstly, we demonstrate that the proposed CUSUM charts perform much better

when compared to MEWMA and MCUSUM charts. Because the change in queue length of

first node or last node significantly dominates that of other nodes when we only decrease the

service rate of the first or last node, it makes MEWMA and MCUSUM less sensitive to the

slowing in the service rate of other nodes. Among all the CUSUM charts, the G-CUSUM
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and P-CUSUM charts are more sensitive than SCUSUM chart in detecting any amount of

decrease of the service rate for the first node and last node. However, this is not surprising.

The designed out-of-control parameters of SCUSUM charts assume all the service rates have

reduced, therefore its relatively poor ability to detect the change of service rate of a single

node in comparison with G-CUSUM and P-CUSUM charts. Furthermore, it reveals that the

G-CUSUM chart is more sensitive than the P-CUSUM chart. But the first and last node of

the network are different than the other nodes. Change in service rate of either changes the

performance of the whole QN. So, the need for detecting a sparse change, which is the goal

in P-CUSUM chart, is not realized. Indeed the bias resulting from penalizing the likelihood

could also impact the performance of P-CUSUM chart.
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Figure 3.3: ARL comparisons in detecting the decrease of µ1

Figure 3.5 shows ARL comparisons for various monitoring schemes in detecting the de-

crease of the service rate of the fifth node, which is located in the middle of the network.

Again, Figure 3.5 shows that MEWMA and MCUSUM perform poorly. Also, G-CUSUM

and P-CUSUM charts have better performance in detecting the change in service rate of a
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Figure 3.4: ARL comparisons in detecting the decrease of µ10

single node than SCUSUM. In addition, it is observed that the P-CUSUM chart is more

effective in detecting a small decrease of the service rate in fifth node and the G-CUSUM

chart exhibits better sensitivity in detecting the moderate and large decreases in service rate

of a single node. The latter observation is consistent with the findings in Figure 3.3 and

Figure 3.4. Therefore, if the objective is to detect a small change in the service rate of a

single node using a small sized sample, adding a penalty term is recommended.

3.6.3 Identity the Exact Out-of-control Node Using Penalized CUSUM Chart

Traditional multivariate SPC scheme like MEWMA and MCUSUM control chart statis-

tics are computed based on the covariance matrix in data, they can be used to detect the

potential change for multivariate process but not to identify which variate has changed, but

the latter is more important for quality control practitioners. Thus, our proposed penalized

CUSUM charts can overcome the limitation to identify the exact out of control node when

only single node in a queueing network has changed. The designed penalized CUSUM charts

can return us a set of estimated departure rates for each node that has potentially changed,
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Figure 3.5: ARL comparisons in detecting the decrease of µ5

then the node with the minimal estimated departure rate is signaled as out of control. In

order to verify the efficiency of penalized CUSUM chart, a parallel network with 5 nodes is

examined, which is shown in Figure 3.6.

Table 3.1 is the accuracy of P-CUSUM for identifying node 2 as out-of-control if only

node 2 has decreased. It shows that the accuracy is increasing when the degree of change

for node 2 is increasing. The accuracy is defined as the probability of identifying node 2 as

out-of-control within all the five nodes during a process.

Table 3.1: The accuracy of P-CUSUM for identifying node 2 as out-of-control if only node
2 has decreased

Actual change of µ2 Accuracy of P-CUSUM
0.9µ2 30%
0.8µ2 40%
0.7µ2 52%
0.6µ2 65%
0.5µ2 76%
0.4µ2 85%
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Figure 3.6: Parallel queueing network

3.7 Case Study: Monitoring the Flow of Patients in an ED

In this section, the proposed monitoring schemes are evaluated to monitor the flow of

patients in the emergency department of a major academic medical center. The patient flow

in the ED is modeled as a QN with five nodes, which are registration desk and four clusters

of beds with a team of healthcare providers in each cluster. They are called East, Center

1, Center 2 and West nodes. These correspond to the distinct pods in the ED from where

the data is collected and illustrated in Figure 3.7. Patients visiting the ED wait until they

are assigned to different wards. The patients leave the ED (admitted to the hospital wards

or discharged) after being served in the wards. We are interested in monitoring the service

rate of these five nodes, shown in Figure 3.7.

Here we assume each service node in ED is a processor-sharing queue with a state-

dependent service rate function, because many existing papers show that a processor sharing

queue with state-dependent service rate function has more flexibility to model complicated

healthcare systems like ED while approximating the actual system performance reasonably

well [96]. Figure 3.8 illustrates an example for the empirical distribution of the patient oc-

cupancy levels in one of the nodes at our partner ED, e.g. the east node. The occupancy
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Figure 3.7: Patient visit flow of the emergency department (ED) of a large academic
medical center

level at a given time represents the total number of patients in the node. In the figure, The

x-axis is the state namely the number of patients in the east node, and the y-axis corre-

sponds to the frequency of the state. We find that assuming a processor-sharing queue with

a state-dependent service rate for our partner ED can best replicate the empirical occupancy

distribution curve compared to the conventional M/M/1 queue, which clearly deviates from

the empirical distribution. We believe that the processor-sharing queue provides a better fit,

since the ED is a complex service environment with many shared resources (nurses, doctors,

medical equipment, labs, etc) and multitasking situations. For example, it is natural to

postpone the treatment of a low-risk patient for a newly arriving high-risk patient. Also, a

doctor or nurse can be acted as a single server to deal with multiple patients simultaneously.

Thus, processor-sharing queue is more appropriate to fit these complex situations encoun-

tered in the ED service environment, while traditional queuing models, in which the server

focuses on servicing just one patient at a time, are not flexible enough to deal with these

complexities. Because both resource sharing and multitasking mechanisms that commonly
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seen in the ED service environment are basically a processor sharing framework in which all

patients currently in the ED gain equal attention from each medical staff [114].

Figure 3.8: Histogram of patient occupancy of the east node in ED

We select the first 183 days in Year 2016 as training data to estimate the in-control

departure rate using model fitting methods. We adopted a linear form with µi(t) = θi fi(ni(t))

to define the service rate of node i in ED, where ni(t) denotes the number of patients in

node i at time t and θi is a parameter corresponding to fi , and fi represents a transform

of ni(t) such as the logarithm, square root, square or cube of ni(t). Then, 10-fold cross

validation (CV) method is applied on the in control data to select the best model. Table

2 is the CV errors for different models. Among different models, we can see that Model

3 (a linear function with respect to the square root of number of patients) produces the

minimum errors, which is then chosen as the best model to explain the relationship between
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total service rate and the number of patients for each node. As a result,

µ1(t) = 203.1
√

n1(t),µ2(t) = 49.93
√

n2(t),µ3(t) = 47.43
√

n3(t),
µ4(t) = 51.2

√
n4(t),µ5(t) = 51.61

√
n5(t),

Table 3.2: CV errors for different models

Model 1

µi(t) =

θini(t)

Model 2

µi(t) =

θi log(ni(t))

Model 3

µi(t) =

θi
√
ni(t)

Model 4

µi(t) =

θin
2
i (t)

Model 5

µi(t) =

θin
3
i (t)

Node 1 755.9 746.7 702.6 796.6 811.8

Node 2 299.2 299.2 299.2 301.1 304.4

Node 3 293.2 293.2 293.2 295.1 298.6

Node 4 290.6 289.9 289.7 294.6 298.8

Node 5 336.3 336.2 336.2 339.6 345.4

We use the last 183 days in Year 2016 as the test data set. The control limits are set as

the 90% percentile of the test statistics for the training data. The proposed CUSUM charts

are used to detect the decrease in the service rates and then the MEWMA and MCUSUM

charts are used to compare with proposed CUSUM charts. The number of days classified as

in control and out of control are presented in the confusion matrices in Table 3-6. Table 3

shows that there are total 51 days in the test dataset are labeled as out of control by SCUSUM

chart, while 36 days among the testing set are signed as out of control by MEWMA chart,

in which 21 days are identified as out of control by both SCUSUM and MEWMA charts,

and 30 days are identified as out of control by SCUSUM chart only. Similar results for

the comparisons for P-CUSUM and MEWMA charts are given in Table 4, SCUSUM and

MCUSUM charts are given in Table 5, and P-CUSUM and MCUSUM charts are given in

Table 6.
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Table 3.3: Confusion matrix for SCUSUM and MEWMA charts

SCUSUM
N = 183 Out of control In control Total

MEWMA
Out of control 21 15 36
In control 30 117 147

Total 51 132

Table 3.4: Confusion matrix for P-CUSUM and MEWMA charts

P-CUSUM
N = 183 Out of control In control Total

MEWMA
Out of control 20 16 36
In-control 26 121 147

Total 46 137

Table 3.5: Confusion matrix for SCUSUM and MCUSUM charts

SCUSUM
N = 183 Out of control In control Total

MCUSUM
Out of control 33 26 59
In control 18 106 124

Total 51 132

Table 3.6: Confusion matrix for P-CUSUM and MCUSUM charts

P-CUSUM
N = 183 Out of control In control Total

MCUSUM
Out of control 29 30 59
In control 17 107 124

Total 46 137
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In the test dataset, there are 15 days signaled out-of-control by both SCUSUM and P-

CUSUM but not the MEWMA and MCUSUM charts. To get further insight into the reason

for this, we study October 20, 2016 in further detail. Our methods found there is an overall

decrease in service rate for all the nodes on Oct 20. However, the east node has decreased

dramatically compared to other nodes. Then we compare the actual departure rate with the

in-control departure rate for the east node on Oct 20 in Figure 3.9. This figure shows the

departure rate has clearly dropped at every time of the day for the east node on Oct 20,

2016.

Figure 3.9: East node departure intensity comparison on Oct 20, 2016, which was signaled
out-of-control by both SCUSUM and P-CUSUM but not the MEWMA and MCUSUM

Table 3.7 shows actual average queue length, and their in-control values for each node

on October 20, 2016. We can observe that, except for the registration node, the average
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queue length of all the other nodes on October 20 just slightly deviated from the in-control

average value, hence, the MEWMA and MCUSUM test statistics were not able to distinguish

them as out of control. However, as shown in Figure 3.9, the service rate for the east node

had clearly decreased on October 20, 2016 and we are able to detect it using the proposed

methods.

Table 3.7: The average queue length comparisons on October 20, 2016

Registration East Center 1 Center 2 West

October 20 7.8 3.17 8.32 9.55 9.64
Ave. Queue Length

In-control 4.31 4.25 8.67 8.02 9.68

The analysis of the real data leads to an important conclusion that monitoring the service

rate in the ED is needed. It also shows that traditional performance measures of queuing

system such as queue length often are unable to reflect the service ability in ED. The result

can assist operations managers to improve the timeliness of care in the ED. The proposed

methods can be used as a retrospective evaluation tool. If a specific day for a node is signaled

as out of control, the operations managers in the ED would retrospectively look into probable

causes of the alarm and take necessary action to resolve it. For example, if we found a day

of the week is signaled as out of control frequently, redesigning the weekly staffing schedule

on that day could be considered.

3.8 Conclusion

In this paper, we propose new CUSUM control charts based on count data to monitor

the service rates of a QN with state-dependent queues. The proposed CUSUM charts are

compared with the MEWMA and MCUSUM charts using the ARL criteria to detect out-

of-control scenarios. A major contribution of this research is the development of an easy to

implement and efficient likelihood-ratio-based CUSUM charts, G-CUSUM and P-CUSUM

charts for monitoring QNs, which could overcome the limitation of the normality assumption

and do not need know the potential change in service rate of the queueing nodes in a QN,
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and thus have important practical applications. Numerical studies based on a simulated

QN demonstrated that the proposed CUSUM charts can outperform traditional approaches

on a variety of out-of-control scenario detection tests. Further, a case study focusing on

monitoring the daily patient flow of an ED demonstrates the efficacy of the proposed methods

in a real application.

There are several extensions of the methods developed in this paper. The current moni-

toring scheme is based on the likelihood ratio statistic, which requires the sample path can be

observed completely. However, there are some challenges associated with obtaining the like-

lihood ratio statistic when only limited and partial samples can be observed. Generalizations

and extensions of this method to study problems such as changes in optimal routing policies

and dependence on factors external to an ED that can cause delays in the ED are part of

our ongoing research. Another important extension of this paper could involve the study of

approximation methods in establishing theoretical understanding of statistical monitoring

of QNs. Specifically, the application of diffusion approximation methods can help establish

theoretical performance guarantees of CUSUM methods developed here. In addition, other

than the real case application in ED, monitoring the patient flows in other units, such as the

intensive care units is important for further methodological development and application of

the proposed methods in quality control of healthcare systems.
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Chapter 4: Statistical Monitoring the Cascade of Care for Patients with

Alcohol Use Disorder 1

4.1 Overview

Recently, a Cascade of Care (COC) framework has been widely applied to improve

system-level practice and treatment outcomes for various chronic medical conditions. In-

creasingly, the CDC and NIDA are suggesting this framework as it can be used to trace

and evaluate the treatment progress and outcomes at both the individual patient level and

population level. However, very limited research has been conducted on COC development

for alcohol use disorder (AUD). This paper aims to develop and test a model for measuring

and monitoring the treatment processes of AUD using a COC framework. First, an innova-

tive continuous-time stochastic process model is proposed to represent the dynamics of the

COC for AUD treatment, from which benchmarks for COC can be developed by learning

ideal patterns during different stages in care for AUD related to outcomes that indicate im-

proved health. To the best of our knowledge, this study would be the first extension of the

continuous-time stochastic modeling approach to AUD treatment processes. Then, a new

statistical monitoring scheme is developed to identify the patients whose care deviated from

the baseline model. The efficacy of the proposed method is demonstrated by simulations

and a real case study focusing on monitoring the patient’s follow-up visit after initiating

the treatment for AUD. Finally, the key factor affecting treatment outcome is identified,

1Portions of Chapter 4 have been reproduced by permission for dissertation use only, “A Continuous-time
Stochastic Modeling Approach for Monitoring the Cascade of Care for Patients with Alcohol Use Disorder”
in Proceedings of the 2022 IISE Annual Conference, Institute of Industrial and Systems Engineers [115].
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which would help clinicians or public health associations develop subsequent interventions

to improve treatment outcomes.

4.2 Introduction

Alcohol use disorder (AUD) is a chronic disease characterized by compulsive or uncon-

trollable alcohol use despite harmful consequences and long-lasting changes in the brain.

According to the 2019 National Survey on Drug Use and Health, 14.5 million people ages 12

and older had AUD. This number includes 14.1 million adults and 0.4 million adolescents.

The rate of all alcohol-related hospitalization increased 47 percent between 2006 and 2014

[116] and alcohol becomes the third leading preventable cause of mortality in USA, causing

more than 95,000 alcohol-related deaths annually [117]. Also, AUD costs more than $249.0

billion annually which results in a big economic burden in the United States [118]. Since

AUD is very harmful to individual’s health and the society, effective treatment for AUD is

needed. Due to the long-lasting changes in the brain caused by AUD, relapse is common,

so continuity of care is the critical factor for successful treatment for AUD. However, the

majority of the patients who are identified with AUD do not initiate treatment [68]. And

for those who initiated treatment, fewer than 15% continued in treatment. Therefore, it is

important to measure and monitor the treatment process for AUD to identify care processes

that lead to successful outcomes and patients whose linkage to care failed to occur in a timely

manner and led to negative outcomes.

Although monitoring the treatment process for AUD has not been studied, some papers

have developed approaches for monitoring and improving the treatment outcome for other

substance use disorder such as opioid use disorder (OUD). For example, Matteliano et al [72]

developed a biopsychosocial-spiritual assessment model which is a comprehensive approach

for monitoring and improving the adherence treatment of chronic opioid therapy for patients

with persistent pain. Manchikanti et al [73] proposed a evaluation tool including a chart

review to monitor controlled substance intake for patients with chronic pain, which results
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in 50% reduction in opioid abuse. These researches have successfully improved the access to

care for OUD patients, but not continuity of care or outcomes despite an increase in public

and private expenditures. In the meantime, although access may have improved for the

treatment of OUD, it has not increased for people with other substance use disorders. Thus

new approach is needed to monitor the quality of system-level care in substance use disorder

treatment especially for the alcohol use disorder (AUD) that is currently lack of attention.

Cascade of Care (COC) is a whole-system approach to assess the effectiveness of treat-

ment process for various health conditions. Increasingly, the CDC and NIDA are suggesting

this framework as it can be used to trace and evaluate the treatment progress and outcomes

at both the individual patient level and population level [8]. Treatment cascades measure

patient flow through the system and can be used to identify process breakdowns missed

by single care stage like initiation or engagement that are required to achieve a successful

treatment outcome [119]. The COC model has been widely used in assessing the effective-

ness of treatment systems in HIV, HCV, diabetes, and other conditions [9]-[11], but very

limited work has been published on COC development for AUD. To fill this gap, this paper

aims to develop and test a model for measuring and monitoring the treatment processes

of AUD under a COC framework. First, an innovative continuous-time stochastic process

model (called CTCOC model) is proposed to represent the dynamic of the COC for AUD

treatment, from which benchmarks for COC can be developed by learning ideal patterns

during different stages in care for AUD related to outcomes that indicate improved health.

To the best of our knowledge, this study would be the first extension of the continuous-time

stochastic modeling approach to AUD treatment processes. Furthermore, a new statistical

monitoring scheme is developed to effectively identify the patients whose care deviated from

the baseline based on the CTCOC model.

The remainder of this paper is organized as follows: The general formulation for CTCOC

model is provided in Section 4.3. Section 4.4 introduces the statistical monitoring scheme

that we developed to monitor the patient COC events. Section 4.5 presents a simulation
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study to demonstrate the efficiency of the proposed method by comparing it with the tra-

ditional method. Section 4.6 presents the real case study focusing on monitoring the follow

up visit for AUD patients after initiating treatment. Section 4.7 identifies the key factor

affecting the patient outcome, and conclusions are conducted in the last section.

4.3 Continuous-time COC (CTCOC) Model

Consider a COC consisting of a set of events, E0,E1,E2, . . . ,En, where n is the total

number of unique events that can be obtained for an AUD treatment process. For example,

E0 can be considered as the identification of AUD, E1 can be the initiation of treatment, E2

can be the first follow-up appointment with a physician or therapist, and so on. Data for

individual patient undergoing AUD treatment can be represented as:

(E i
0, t

i
0), (E

i
1, t

i
1), ... , (E

i
n−1, t

i
n−1), (E

i
n, t

i
n)

where the index i denotes the ith patient, t i0 < t i1 < · · · < t in and E i
0,E

i
1, . . . ,E

i
n are successive

COC events-logs data for patient i. For every pair of Ep and Eq, if Eq immediately follows

Ep for patient i, the time of occurrence of Eq is denoted as s i ,jp,q, where j denotes that the jth

time Eq immediately follows Ep. Specifically, if E i
j−1 = Ep and E i

j = Eq, then s ip,q = t ij . This

is illustrated in Figure 4.1

For every patient i and every pair of events Ep and Eq, a counting process can be defined

as follows

N i
p,q(t) = number of s i ,jp,q ≤ t.

N i
p,q(t) indicates the number of times the event Eq is recorded immediately after Eq for patient

i by the time t. The CTCOC model is based on the assumption that the rate of occurrence

of Eq after Ep in the ideal subpopulation specific to an AUD satisfies the following:

Prob(N i
p,q(t + dt)− N i

p,q(t) = 1) = rp,q(t)dt, (4.1)
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Figure 4.1: CTCOC model for COC event log

where Prob(·) denotes the probability of the event within the parenthesis. In stochastic

process literature, rp,q(t) is referred to as the intensity of occurrence of Eq following Ep , and

Rp,q(t) =

∫ t

0

rp,q(s)ds

is the cumulative intensity of occurrence of Eq following Ep. For the counting process N i
p,q(t)

that satisfy the assumption mentioned in equation 4.1, it is known that the expected value

of N i
p,q(t) is Rp,q(t). This concept is illustrated from an example in Figure 4.2. If I denotes

the set of all such patients in the ideal subpopulation, Rp,q(t) can be estimated as

R̂p,q(t) =
1

NI

∑
i∈I

N i
p,q(t),

where R̂p,q(t) is the estimated value of Rp,q(t) and NI the total number of patients in the set

I. This approach is a nonparametric method of estimating the cumulative intensity function
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Rp,q(t). To the best of our knowledge, the proposed project would be the first extension of

the continuous-time stochastic modeling approach to AUD treatment processes.

Figure 4.2: Rate of occurrence of Eq after Ep

4.4 Statistical Monitoring Scheme

This section develops a statistical monitoring scheme that detects changes in the tran-

sition rate between different stages along COC, in real-time, whether a patient adheres to

the ideal treatment process or not. A monitoring scheme often involves two steps. The first

step is to find the in control transition intensity between the COC events, the second step is

to signal a patient as out-of-control if his or her care deviates from the in-control transition

intensity. The in-control or ideal patients could be based on specific outcomes yi . For ex-

ample, if yi denotes the number of hospitalizations in a year, yi < 1 could be used to select

the in-control patient COC event group. Let R0
p,q(t) be the in-control cumulative intensity

of occurrence of Eq following Ep, which is estimated based on the in control patients, and

R1
p,q(t) be the actual intensity of a test patient. If R0

p,q(t) ̸= R1
p,q(t), the test patient is said

to be “out-of-control”. The purpose of the statistical monitoring scheme described here is

to detect such a change. For each patient and time point t, a test statistic d(t) is defined as

to test the following hypothesis
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H0 : R
0
p,q(t) = R1

p,q(t)

v .s.

H1 : R
0
p,q(t) ̸= R1

p,q(t)

Then a decision rule is defined as

d(t) ≥ h(t)

such that

P(d(t) ≥ h(t)|H0) = α,

where h(t) is the “out-of-control” signal threshold and α is a user specified type I error rate,

which is typically set as 10%.

The proposed CTCOC model allows us to develop a metric for measuring how much an

individual patients’ care deviates from ideal. As an example, consider the case where Ep is

the initial treatment of an AUD and Eq is the subsequent visit with a healthcare provider.

If a patient delays his or her first follow-up visit to healthcare provider, s ip,q for this patient

would be larger. Thus, the area between the curves Rp,q(t) and N i
p,q(t) will be large. This is

illustrated in Figure 4.3. Hence, we can define a test statistic d i
p,q(t) as follows:

d i
p,q(t) =

∫ t

0

|R̂p,q(s)− N i
p,q(s)|ds.

The average value of d i
p,q(t) for a subgroup of patients can provide a measure of deviation of

the subgroup from the ideal Rp,q(t). Similarly, the mean square of d i
p,q(t) for various COC

events Ep and Eq can give combined metric for multiple pairs of COC events. d i
p,q(t) is similar

to the Kolmogorov-Smirnov test statistic, which can be used to develop statistical tests

to measure the statistical significance of the deviation from the ideal COC. The proposed

the statistical test is then compared with the traditional goodness-of-fit test method for
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continuous distributions, e.g. Chi-squared test, where the test statistic is defined as

S i
p,q(t) =

K∑
k=1

(O i ,k
p,q −Mk

p,q)
2/(Mk

p,q),

where K indicates the total number of bins that the continuous distribution has been dis-

cretized, O i ,k
p,q is the observed number of transitions from Ep to Eq for patient i at each

segment, and Mk
p,q the expected number of transitions from Ep to Eq for each segment.

Figure 4.3: Measure of deviation from ideal COC

4.5 Simulation Study

In this section, a simulation study focuses on a two-state CTMC model is presented to

demonstrate the efficacy of the proposed statistical monitoring scheme. Considering a two-

state CTMC with states indexed as 1 and 2. The initial state at time t=0 can be either 1

or 2 with an equal probability. The transition rate matrix for the CTMC for 0 < t < 1 is

given as
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Q(t) =

λ11 λ12

λ21 λ22

 ,

where λ11 = −λ12 and λ22 = −λ21. Here we let λ12 = θ − 10 sin(2πt) and λ21 = θ. In

the simulation study reported here, we are interested in detecting changes in λ12, where

the transition rate λ12 is time-inhomogeneous and always greater than or equal to zero.

Here we set θ = 20 when λ12 is under control, since θ = 20 can make sure λ12 is always a

positive value. A change in θ represents an out-of-control scenario of the transition rate λ12.

The larger difference between the actual and in-control value of θ means the out-of-control

scenario for λ12 is more deviated from the in-control scenario.

In this paper, we use Type II error rate, also known as misdetection rate if the system is

known as out-of-control, to examine the performance of our proposed control chart compared

with a traditional Chi-square chart. It is defined as the probability of failing to give an out-

of-control signal when a system is actually out of control. First, we specify the type I error

rate α as 10%, which can transfer to a type II error rate with 90% when θ is in-control. We

use this value to find the control limit and we expect the type II error rate for detecting a

system that is actually out of control is lower this value. The smaller the value of Type II

error rate for a particular change, the greater the efficiency of the chart to detect the change.

Figure 4.4 and Figure 4.5 show the Type II error rates for detecting changes in θ for our

proposed control chart and the traditional Chi-square chart. We can see that the proposed

control chart performs better than Chi-square chart for detecting any direction of change in

θ or λ12. In particular, for detecting the decrease of θ (which is equivalent to detecting the

delay of the transition from state 1 to state 2), the figures show that our method is much

more sensitive in detecting the delay of the transition compared to the Chi-square chart,

while the latter can hardly detect any delay especially for smaller magnitude of decrease in

θ.
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Figure 4.4: The type II error rates for detecting increase in θ

Figure 4.5: The type II error rates for detecting decrease in θ

82



4.6 Real Case Study

4.6.1 Data Description

In this section, the proposed monitoring scheme is evaluated on the DE-SynPUF data

obtained from the website of the Centers for Medicare and Medicaid Services. This particular

dataset provides a set of synthetic claims data from 2008 to 2010, including inpatient, outpa-

tient and carrier claims. The claims ICD-9 diagnosis codes (e.g. 303.9x, 303.0x, 305.0x, etc.)

are used to identify whether the visit is related to AUD treatment, and the patients with

greater than 2 visits related to AUD treatment are adopted for analysis. First, we need to

identify in-control or ideal patients based on favorable treatment outcomes. These treatment

outcomes could be discrete-values, such as number of ED visits or number of hospitaliza-

tions, or continuous-valued such as cost of care. Here we consider the AUD patients with

no hospitalizations record during treatment as in control samples and the rest are treated

as testing data. Based on the way the training and testing data are split, there are 3397

in-control training samples and 2736 testing samples used in the case study.

We assume all these patients are identified or diagnosed as AUD on 2008/01/01, and

the first claim record related to AUD treatment is considered as the initiation visit of the

treatment. We are interested in monitoring the patients’ follow-up visit with a doctor after

initiating the treatment for AUD. Figs. 4 (a) and (b) show boxplot of the days spent and

the cumulative intensity of occurrence for the follow-up visit after initiating the treatment

for all in-control data, respectively. We can see the first quantile and the third quantile are

52 and 275 days, respectively. Also, the in-control median and average time spent for a

patient to seek for a follow-up doctor’s visit is 143 and 182 days, respectively. It may be due

to the fact that the physicians often recommend 180-day duration on average for receiving

medications, which can be self-managed at home, after the initial doctor’s visit to achieve

beneficial treatment outcome.
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Figure 4.6: The boxplot of the days spent for the follow-up visit after initiating the
treatment for all in-control data

Figure 4.7: The rate of occurrence for the follow-up visit after treatment is initiated for all
in-control data

4.6.2 Detect the Patients with Undesirable Outcomes

Furthermore, in the test dataset, there are 134 days signaled as out-of-control by the

proposed monitoring method but not the traditional Chi-squared chart. To get further

84



insight into this, we study one of the 134 patients in further detail. Figure 4.8 shows the

visit trajectory from 2008 to 2010 for this patient. We can observe that he/she initiated the

AUD treatment on 2008-1-20, and his/her first follow-up visit occurred on 2009-4-30. The

duration was over 15 months. Besides there was a 6-day hospitalization due to the excessive

delay of the first follow-up visit with a physician. This is clearly an out-of-control patient

with an undesired outcome whose behavior deviated from the ideal model, and we are able

to detect it using the proposed method.

Figure 4.8: The visit trajectory for a patient who is identified as out-of-control by our
proposed method but not the traditional method

4.7 Identify Key Factors Affecting the Patient Outcome

This section aims to develop an efficient classification model for patient outcome by com-

paring 8 machine learning approaches, such as logistic regression, Naive Bayes classification,

support vector machines, linear discriminant analysis, k-nearest neighbors classification, de-

cision tree classification, random forest classification and XGBoost classification. The patient

outcomes are classified as two categories - in-control and out-of-control outcomes, where the

patients with out of control outcome are identified by our proposed statistical monitoring

method. The in-control outcome is referred as positive outcome, and out-of-control outcome

is referred negative or undesirable outcome. In order to find the best classification method,

the accuracy score will be used to measure the performance of the eight models. Based on

the proposed best prediction model, the relationship between the various patient features

and treatment outcome is identified, also the most influential factor on treatment outcome is
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obtained. In the meantime, valuable insight and recommendation for improving the patient

outcome is provided.

4.7.1 Machine Learning Methods

The section introduce the formulations and algorithms of the machine learning methods

that we use. Given a dataset {yi , xi1, ... , xip}ni=1 of n units, p stands for the number of

predictor variables or features of each unit.

The first method is logistic regression. Logistic regression is a classification method that

works for target value that is categorical. There are two steps for performing the logistic

regression to predict the target with two possible outcomes, say 1 or 0. The first step is to

perform a linear regression to build relationships between variables and then get an output

Pi that shows the probability of the unit i belonging to the first class. The formula is shown

below:

Pi(X ) =
1

1 + exp [−(b0 +
∑p

i bixip)]
.

The threshold of the classification line is assumed to be at 0.5. For example, if the probability

of one class I is greater than 0.5, we say the data is classified as class I. The involved

parameters like b0, bi for i ∈ [1, ... , p] are estimated based on maximizing the likelihood

function

L =
n∏

i=1

p(Xi)
yi (1− p(Xi))

(1−yi ).

The second method is Naive Bayes classification. Naive Bayes classifier is one of the

simplest and effective classification methods. It is based on Bayes’ theorem to evaluate the

probability of an event given a prior knowledge that related to the data. Let X denotes the

predictors or features of an input variable and Y denotes a target variable with two possible

outcomes. The mathematical formula is shown below:

P(Y |X ) =
P(X |Y )P(Y )

P(X )
,
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where P(Y |X ) is the value that we want to find, which denotes as the posterior probability

of the class Y given X (a vector of the features for a unit). P(X |Y ) is the likelihood of X

given class Y , which is calculated using the number of similar data points to X in the class

Y divided by the number of total data points in the class Y . P(Y ) is the prior probability

of the class Y , which is calculated using the number of data points in the class Y divided

by the total number of data points. P(X ) is the prior probability or marginal likelihood of

X , which is calculated using the number of similar data points to X divided by the total

number of data points. A feature variable will be labeled as a class that has the highest

posterior probability, which is typically greater than 0.5. For example, for a feature variable

X with two possible class outcomes, say Y = 1 or Y = 2. If P(Y = 1|X ) > 0.5 , then X is

determined to belong to class 1. If P(Y = 1|X ) < 0.5 , then X is determined to belong to

class 2.

The third method is support vector machines. Support vector machines (SVM) is a

method to define a decision boundary to separate the observed data into different classes.

The decision boundary is actually a hyperplane, the objective of SVM is finding the optimal

hyperplane that maximizes the margin between the two different classes, where margin is de-

fined as Euclidean distance between the hyperplane and the closest point. The mathematical

formula using to determine the boundary is shown below:

f (x) = β0 +
∑

αiK (x , xi),

where αi and β0 are the training parameters and K denotes the kernel function. The decision

boundary can be both linear and non-linear which depends on the kernel function we choose.

The following are four typical kernel functions in performing SVM.
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Figure 4.9: Typical kernel functions used in Support Vector Machines

Please note that the degree of the polynomial should be specified in polynomial kernel.

And the radial basis function (RBF) kernel is adopted in sklearn by default, it usually

performs good if feature variables have non-linear relationship. The sigmoid kernel is used

for binary classification, which is similar to the concept of logistic regression.

The fourth method is linear discriminant analysis. Linear discriminant analysis (LDA) is

a robust classification method with the assumptions that data follows multivariate Gaussian

distribution and their covariance matrix are same among different classes. For a classification

problem with K classes and N observations. The covariance matrix is defined as

Σ̂ =
K∑

k=1

1

N − K

∑
i

(xi − µ̂k)(xi − µ̂k)
T ,

where the mean of the class k is defined as

µ̂k =
1

Nk

∑
i

xi .

Then the computation steps are summarized in Figure 4.10. The π̂k in the step 4 denotes

the prior probability of class k , δk(x
∗) is used to determine which class x belongs to. For

example, for a classification problem with two classes k and l , We label x to class k if

δk(x
∗)− δl(x

∗) > 0.

The fifth method is k-nearest neighbors (KNN). K-nearest neighbors classification method

is a non-parametric classification method by identifying K nearest points to an observed point

by measuring the distance. Then the observed data is classified to the class that appeared
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Figure 4.10: The LDA computation steps

the most times among these K nearest points. The steps of KNN classification algorithm

are summarized as follow:

1. Obtain a new unclassified data.

2. Measure the distance from the new data to all other data that are already labeled

with a class. The distance can be measured using Euclidian, Manhattan, Minkowski

or Weighted distance, where Euclidean distance is the most commonly used method

to measure the distance between two points, its mathematical formulation is shown

below:

d(X1,X2) =

√√√√ p∑
j=1

(X1 − X2)2,

where p is the number of predictors or features of the data.

3. Get the K nearest points based on the distances.

4. Count the amount of each class in these K nearest points.

5. Label the new data to the class that appeared the most times among these K nearest

points.

Please note that K is user specified parameter. Small K means the model is low bias and high

variance, while large K will cause the model to become high bias and low variance. Thus,
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it is important to choose a proper K to achieve the trade-off between bias and variance. In

my dissertation, cross-validation method is used to select the best value of K .

The sixth method is decision tree classification. Decision tree is a classification method

with the form of a tree structure. It divides the data into smaller subsets based on the

feature variables in the dataset. The separation threshold of each decision node is the mean

or mode of the respective feature variable. Entropy and information gain are used as criteria

to split the data into child nodes or test the purity of the split. Entropy is defined as

E = −
K∑

k=1

pk log(pk),

which can be explained as the degree of uncertainty in the randomness of data. And the

information gain is defined as

G = −
K∑

k=1

pk(1− pk),

which measures the relative information contained by each feature. In both equations, pk

denotes the proportion of data that belongs to class k at each decision node. We split the

data based on the feature with the minimum value of entropy or Gini index. The final result

of decision tree classification looks like a tree that characterized with decision nodes and leaf

nodes.

The seventh method is random forest classification. Random forest is an ensemble mod-

eling technique that combines the output results across multiple individual decision trees.

The decision tree algorithms are known for their simplicity and efficiency for dealing with

dataset with large number of attributes. Beginning from the top of the tree, decision trees

are generated by recursively splitting the training data to smaller subsets or regions based

on the feature variables in the dataset. At each step of the splitting process, the best split is

performed at a particular node without considering splits in future nodes. For each splitting

process, information gain and mean squared error are commonly used as a criterion to select

the best feature and determine the threshold for a splitting. Single decision tree tends to
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over-fitting. However, the random forest technique can handle the over-fitting by building

multiple decision trees using bootstrapped data from the training dataset and also selecting

a random subset of the original features for splitting a node. The decision forest algorithm

then estimates target value by averaging the predictions of the individual decision trees. The

procedures of random forest are as follows:

Algorithm 4.1 Random Forest Classification

1. For b = 1 to B

(i) Generate a bootstrap sample Z from the training data

(ii) Grow a decision tree Tb to bootstrapped data Z by recursively selecting a random

subset of the original features for splitting a node, until the maximum depth is reached

2. Output the ensemble trees {Tb}B1

3. Make a prediction to a new unclassified data point x: f̃ (x) = 1
B

∑B
b=1 Tb(x)

The eighth method is XGBoost method. As another example of an ensemble model,

boosting method is one of the most powerful learning model introduced in the last decades.

Similar to random forest, the procedure of boosting is to combine the outputs of many

“weak” learners to produce a powerful predictor. The general idea of boosting algorithms

is to produce models sequentially, where each subsequent model attempts to correct the

errors of its predecessor. Boosting method sequentially produces a series of weak learners,

{Gm(x)}M1 , to fit the data that has been modified repeatedly. Since weak learners are pro-

duced sequentially, the models cannot be parallel trained, because we must wait until the

previous model has been trained and evaluated to generate the next model. The most com-

monly known boosting algorithm is AdaBoost. This method repeatedly corrects the learning

model by paying more attention to training instances that were incorrectly predicted by the

previous model.

Now instead of adjusting the instances weights at every iteration in AdaBoost, another

more powerful boosting algorithm, gradient boosting, attempts to update the predicting
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model with an additive form iteratively using gradient descent. The procedures of gradient

boosting are as follows:

Algorithm 4.2 Gradient Boosting Method

1. Initial the boosted model on the original data, call it F0(x), by minimizing the loss

function.

F0(x) = argmin
γ

n∑
i=1

L(yi , γ)

2. Compute the gradient of the loss function iteratively, which is same as the residual at

each iteration. If we select square loss as the loss function,

rim = −
[
∂L(yi ,F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

3. Fit on the gradient obtained at each step and denote it as hm(x)

4. Update the boosted model Fm(x) as

Fm(x) = Fm−1(x) + αhm(x)

where α is the learning rate that is typically defined between [0,1].

5. Repeat step 2 to 4 until the loss is negligible, or the maximum limit of the number of

estimators is reached

In addition to the classical gradient boosting algorithm, XGBoost is an advanced im-

plementation of the Gradient Boosting. Thus XGBoost has the same learning procedures

gradient boosting algorithm which described in Algorithm 4.2. This XGBoost algorithm has

a stronger predicting power and faster speed than any other gradient boosting techniques.

Specifically, XGBoost can control over-fitting by adding some regularization through both

L1 and L2 penalization, handling sparse data, parallel learning, tree pruning, etc., which

make sure XGBoost gives a better performance. Therefore, in this dissertation, we consider
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using this powerful XGBoost boosting method, and the decision tree algorithm is used as

the basis weak leaner in the boosting methods.

4.7.2 Model Performance Comparison

Based on the beneficiary summary DE-SynPUF data that is available on the website of

the U.S. Centers for Medicare and Medicaid Services (https://www.cms.gov), we can get 5

attributes for each patient, including demographic, clinical and financial factors, which is

shown in Figure 4.11. The attributes are comprised of continuous variables and categorical

variables. The continuous variables include age, medical expenses, where medical expenses

represent patient’s out-of-pocket total medical expenses for inpatient, outpatient and carrier

visits. The categorical variables include gender, race and if the patient has other chronic

medical conditions. Note that the categorical variables need to be converted to dummy

variables so that they can be used in classification models. Thus, each class of a categorical

variable is treated as an attribute. For example, the race has 4 levels: White, Black, His-

panic, Others, then we can convert race into 3 dummy variables which are all denoted as

binary variables. Finally, we will obtain total 7 attributes after converting all the categorical

variables to dummy variables.

Figure 4.11: Patient factors that may affect the patient outcome
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The correlation matrix between features is shown in Figure 4.12. The correlation coef-

ficient is a measure of the degree of linear relationship between independent variables and

dependent variable. The coefficient value can range from -1 to 1. The value of -1, 0, 1 indi-

cate a perfect negative linear relationship, no linear relationship, and a perfect positive linear

relationship between variables, respectively. Typically, if we find strong correlation between

some features, some algorithms cannot deal with it very well and result in bad prediction

performance. In that case, feature deduction methods such as principal component analysis

can be used to reduce the dimension of the data and then overcome the drawback of strong

correlation between these variables. However, in our data, as shown in Figure 4.12 , there is

no strong correlation within different features, which means we do not need to worry about

the accuracy of the classification methods would be affected and to perform the additional

procedure to remove some features that are considered redundant.

In the subsection, in order to find the best classification method to build our treatment

outcome prediction model for AUD patients, eight different classification techniques, such as

logistic regression, Naive Bayes classification, support vector machines, linear discriminant

analysis, k-nearest neighbors classification, decision tree classification, random forest clas-

sification, and XGBoost classification, have been compared and evaluated in terms of the

prediction accuracy score (model score). In classification, the accuracy score is a statistical

measure of how well the classification predictions match the real data class. Accuracy score

is formulated as

Accuracy =
Number of correct predictions

Total number of predictions
.

The accuracy can also be calculated using the confusion matrix, accuracy = TP+TN
TP+TN+FP+FN

,

where TP is the true positives, TN is the true negatives, FP is the false positives, FN is the

false negatives. Details of the model parameter settings in performance comparison analysis

are summarized in table 4.1.
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Table 4.1: Details of model parameter settings in performance comparison analysis

Model Parameter Settings

Model Parameter Settings Value

Logistic

Regression

Solver lbfgs

Tolerance for stopping criteria 1e-4

Maximum number of iterations 100

Penalty L2

Naive Bayes Data distribution assumption Gaussian distribution

Support

Vector

Machines

Kernel function Linear function

Tolerance for stopping criteria 1e-3

Regularization parameter 1

LDA
Solver svd

Tolerance for stopping criteria 1e-4

K-nearest

Neighbors

Number of neighbors 9

Distance metric Euclidean metric

Weights Uniform

Decision

Tree

Classification

Tree splitting criterion gini

Minimum n. required to split 2

Minimum node size 1

Random

Forest

Classification

Number of trees 100

Tree splitting criterion gini

Minimum n. required to split 2

Minimum node size 1

XGBoost

Classification

Booster Trees

Number of trees 100

Learning rate 0.1

Maximum depth of a tree 3

L2 regularization value 1

95



Figure 4.12: Correlation matrix between features

Table 4.2: Model performance comparison

Model Accuracy scores

XGBoost Classification 0.876

Logistic Regression 0.860

Support Vector Machines 0.858

Linear Discriminant Analysis 0.854

K-nearest Neighbor Classification 0.816

Random Forest Classification 0.802

Decision Tree Classification 0.761

Naive Bayes Classification 0.643

Table 4.2 is the model performance comparison table. As shown in table 4.2, XGBoost

gives us the highest accuracy score, which is 87.6 %. It indicates that XGBoost classification

model delivers the best performance. On the other hand, the Naive Bayes classification has

the worst performance because Naive Bayes classification assumes that all features are totally
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independent which is impossible in real world. However XGBoost is an ensemble machine

learning model based on a gradient boosting framework with various advanced enhancements

to prevent overfitting. It can better integrate the outputs of many weak learners to produce

a powerful predictor.

4.7.3 Feature Importance

Then, we examined the relative contribution of different patient characteristics. Figure

4.13 below summarizes the relative importance scores for the patient characteristics with

respect to the accuracy of XGBoosting classification model which is the best performing

model among all the eight models. The feature importance is calculated based on the average

improvement in training accuracy gained when using the corresponding feature to split the

data for a tree. A feature with the highest value of this metric means it is the most relevant

or important feature for classifying an observation when compared to other features. The

results of Figure 4.13 suggest that medical expenses, which is the financial factor, has the

most significant impact on patient treatment outcome. And whether the patient has other

chronic conditions has the least impact on patient treatment outcome.

Figure 4.13: Patient’s feature importances in affecting treatment outcome
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To better understand the financial factor with respect to the treatment outcome. The

boxplot of the out-of-pocket medical expenses for different treatment outcomes is shown

in Figure 4.14 . We can see the median out-of-pocket medical expenses for patients with

good outcome and undesirable outcome are $5412 and $8602, respectively. Also, the mean

out-of-pocket medical expenses for patients with good outcome and undesirable outcome are

$6172 and $9216, respectively. Thus, to improve the outcome, it is important to introduce

financial incentive schemes for patients with AUD to encourage their continuity in care and

adherence to the follow-up treatment. For example, patients can get reward if he/she initiates

the treatment plan that made by the provider, and the reward is increasing over time as they

continue to treatment. This kind of financial incentive program has achieved big success in

improving the rate of follow-up treatment for other chronic medical conditions such as Opioid

Use Disorder [120]. These financial incentive programs are usually supported by federal and

state funding but have not been well utilized by promoting follow-up treatment for Alcohol

Use Disorder.

Figure 4.14: Boxplot of the out-of-pocket medical expenses
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4.8 Conclusion

In this paper, we propose a continuous-time stochastic process model to measure and

monitor the treatment process for patients with AUD based on the COC framework. First,

the ideal rate of occurrence from one stage to another stage along COC can be estimated

based on the in-control patients with favorable outcomes, from which benchmarks for COC

can be developed. Furthermore, a new statistical monitoring scheme is developed to iden-

tify the patients whose care deviated from the baseline model, which would help clinicians

develop subsequent interventions to improve outcomes. In the monitoring scheme, a test

statistic d i
p,q(t) that measures deviation in the cumulative transition intensity is used to im-

prove detection of performance. The effectiveness of the proposed method is demonstrated

via simulations and a real case study, it is demonstrated that the proposed method out-

performs the traditional Chi-squared chart. Furthermore, this chapter compares 8 different

machine learning approaches to link the patient factors to adverse patient outcomes. It’s

demonstrated the XGBoost classification outperforms the other 7 classification models in

terms of the evaluation of the model accuracy score. In the meantime, based on the training

result of XGBoost classification model, we find that the financial factor is the key factor

affecting treatment outcome. Thus, it is recommended to introduce financial incentive pro-

grams for patients with AUD to increase the rate of their follow-up treatment to improve

outcome.

In the future study, extending the proposed monitoring method to detect COC events

in the subpopulation level for AUD treatment is promising. In addition, in order to have a

more accurate classification model to link the patient factors to treatment outcome, more

features (including patient-level factors and facility-level factors ) should be collected and

considered in the future. For example, the counting processes N i
p,q(t) can be considered as

covariates that are correlated to positive and negative treatment outcomes.
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Chapter 5: Conclusion and Future Work

In this dissertation, a series of statistical monitoring methods based on stochastic process

models are developed for detecting the abnormality in the timeliness of care and patient

engagement for healthcare system to improve the quality of healthcare services. At the cute

care service level, novel statistical monitoring approaches based on the log-likelihood ratio

test and cumulative sum control chart are proposed to effectively detect the delay in service

for emergency department that is modeled as different types of single queues and a network

of queues, respectively. The developed statistical monitoring methods can be used as a

retrospective evaluation tool. If a specific day for a node is signaled as out of control, the

operations managers in the ED would retrospectively look into probable causes of the alarm

and take necessary action to resolve it. For example, if we found a day of the week is signaled

as out of control frequently, redesigning the weekly staffing schedule on that day could be

considered. At the chronic care service level, a statistical monitoring scheme based on a

continuous-time stochastic modeling approach is proposed for measuring and monitoring

the Cascade of Care (COC) for patients with alcohol use disorder. The proposed model can

identify the ideal patterns in the initiation and duration of AUD treatment for the key stages

of the COC , from which benchmarks for COC can be developed. In the meantime, machine

learning methods are applied to identify the key factor affecting treatment outcome, which

will help inform the healthcare provider as well as public health associations to develop

incentive programs to encourage treatment for patients with alcohol use disorder.

Chapter 2 focused on monitoring the timeliness of healthcare delivery in emergency de-

partment using counting processes. The proposed SQCT and GQCT methods are based on

an approximate likelihood function that alleviates the issue of needing to numerically max-
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imize a complex likelihood function for estimating the in-control parameters and obtaining

test statistics. Both methods were shown to detect changes in the intensity that is other-

wise hard to detect using existing techniques. Besides, the proposed scheme can be used to

identify changes in real-time, which is particularly complicated for inhomogeneous queueing

systems. The efficacy of the methods is demonstrated by simulation studies and a real-data

case study. For future research, an optimal detection scheme that minimizes delay in change

detection for inhomogeneous CTSPs would have a wide range of applications. Further the-

oretical development of the proposed GQCT method can lead to a better understanding of

the type of penalty and the magnitude of the penalty that is ideal for detecting a specific

kind of change in the intensity. Besides, monitoring the quality of care provided in other

acute care sector such as ICU is an essential area of future research.

Chapter 3 focused on monitoring of the service rate in a network of queues with appli-

cation in emergency department. Novel CUSUM control charts based on count data are

proposed to monitor the service rate of a QN with time-inhomogeneous state dependent

queues. The proposed CUSUM charts are compared with the MEWMA and MCUSUM

charts using the ARL criteria to detect out-of-control scenarios. A major contribution of

this research is the development of an easy to implement and efficient likelihood-ratio-based

CUSUM charts, G-CUSUM and P-CUSUM charts for monitoring QNs, which could over-

come the limitation of the normality assumption and do not need know the potential change

in service rate of the queueing nodes in a QN, and thus have important practical applica-

tions. Numerical studies based on a simulated QN demonstrated that the proposed CUSUM

charts can outperform traditional approaches on a variety of out-of-control scenario detec-

tion tests. Further, a case study focusing on monitoring the daily patient flow of an ED

with multiple service stations demonstrates the efficacy of the proposed methods in a real

application. For further research, extending our method to accommodate with the situa-

tion where only limited and partial samples can be observed is needed. Also, the study of

approximation methods in establishing theoretical understanding of statistical monitoring
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of QNs. Specifically, the application of diffusion approximation methods can help establish

theoretical performance guarantees of CUSUM methods developed here.

Chapter 4 focused on monitoring and evaluating the Cascade of care for patients with

alcohol use disorder. A novel statistical monitoring scheme with a continuous-time stochastic

process model is proposed to monitor and measure the treatment process for patients with

AUD based on the COC framework. First, the ideal rate of occurrence from one stage to

another stage along COC can be estimated based on the in-control patients with favorable

outcomes, from which benchmarks for COC can be developed. Furthermore, a new statistical

monitoring scheme is developed to identify the patients whose care deviated from the base-

line model, which is demonstrated to be superior than the conventional Chi-squared chart.

In addition, various machine learning methods are adopted to investigate the relationship

between patient factors and treatment outcome. Thus the key factor affecting treatment

outcome can be identified, which would help clinicians or public health associations develop

subsequent interventions to improve treatment outcomes for AUD. For further research, ex-

tending the proposed monitoring method to detect COC events in the subpopulation level

for AUD treatment is promising. Also, more individual characteristics and other facility

level characteristics should be considered to improve the classification accuracy thus more

factors that led to negative outcomes can be identified.
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Appendix B: Supplemental Materials

B.1 Appendix for Chapter 2

B.1.1 Penalized GLR for Poisson Process

Considering the problem of identifying the decrease in the intensity of a Poisson process.

The traditional GLR test (GLRT) for the hypothesis test H0 : λ = λ0 versus H0 : λ ̸= λ0, for

the in-control intensity λ0 is

max
λ

n log

(
λ

λ0

)
− λT + λ0T (B.1)

where n events were recorded in a [0,T ] time period. The two alternative penalization term

result in two penalized GLR testing methods. They are referred to as PGLR1 and PGLR2,

where

PGLR1 = max
λ

n log

(
λ

λ0

)
− λT + λ0T − (ψT )(λ− λ0)

2

PGLR2 = max
λ

n log

(
λ

λ0

)
− λT + λ0T − (ψT )(λ)2

The penalty (ψT ) is assumed to be proportional to T . In order to compare the perfor-

mance of these three tests, we use an example with λ0 = 1 and T = 1. Figure B.1 shows that

PGLRT2 with ψ = 1 has the best performance in detecting the decrease in λ for a simple

Poisson process, which demonstrates the efficiency for the penalized GLR test by penalizing

λ instead of λ− λ0.
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Figure B.1: Detecting decrease in λ for a simple Possion process using loglikelihood ratio
test
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