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The Study of Compensatory Motions While Using a Transradial Prosthesis 
 

Stephanie Lutton Carey 

 
ABSTRACT 

 
Improvement of prostheses requires knowledge of how the body adapts.  A 

transradial prosthesis without a dynamic wrist component may cause awkward 

compensatory motion leading to fatigue, injury or rejection of the prosthesis.  This work 

analyzed the movements of shoulder, elbow and torso during four tasks: drinking from a 

cup, opening a door, lifting a box and turning a steering wheel. 

 The main purpose of this study was to determine if using a basic transradial 

prosthesis that lacks motion of the forearm and wrist would cause significant 

compensatory motion of the shoulder, elbow and torso during the tasks. The second 

purpose of the study was to determine if the location of added mass would affect 

compensatory movements during these tasks.  

 A group of able-bodied participants were asked to complete the tasks, without 

and with a brace, simulating a basic transradial prosthesis to determine if bracing is an 

appropriate way to study prosthetic use.  Transradial prosthesis wearers also completed 

the tasks without and with added mass at the elbow or at the wrist to determine if 

distribution of mass has an effect on the motions. Using a motion capture system 

movements of the shoulder, elbow and torso were analyzed. For the bilateral tasks, the 

degree of asymmetry (DoA) was calculated for each subject. Statistical analysis was 
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completed within subject comparing the mass interventions and between subjects 

comparing the control, braced and prosthesis wearing groups.  

While opening a door and lifting a box, prosthesis users compensated 

predominantly by bending the torso sideways toward affected side. During the steering 

wheel task, amputees used more elbow flexion to accommodate for the lack of forearm 

rotation. While drinking from a cup, compensation occurred by bending the cervical 

spine, although this was not measured.  Adding mass increased the joint forces and 

moments during the box lift. 

This research can be used for transradial prosthesis design improvements as well 

as improving methods of prosthesis fitting and therapeutic training by providing 

quantitative data of compensatory motion.  The data from this study is being used to 

develop a model for an upper limb prosthesis. 
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Chapter 1: Introduction 
 

1.1 Research Motivation 

According to 1996 survey conducted by the Amputee Coalition of America, 

approximately 1,285,000 persons in U.S. have an amputation excluding finger and toes 

[1].  Due to the present ware in Iraq and Afghanistan, the numbers of amputees including 

upper limb amputees will most likely increase.   According to the Department of 

Veteran’s Affairs (VA), since Feb. 2006 over 400 soldiers have suffered an amputation 

because of the casualties of war [2].  According to the Veteran Affairs Department’s 

survey of traumatic amputees, 22% perceive a prosthesis as “not good for anything” [3].  

Amputees often choose not to wear a prosthesis due to marginal performance or may 

settle for a prosthesis that offers only a cosmetic improvement, but that lacks function [4].  

In the United States, rejection rates for upper limb prostheses have been shown to be as 

high as 50% [5]. Poor function of an upper limb prosthesis may cause awkward 

compensatory motion.  These awkard motions have been cited as an explanation for the 

discontinuation of prosthetic use [5].  Quantification of these compensatory motions can 

help to test design changes and training methods of the upper limb prosthesis. 

The majority of upper extremity amputations occur below the elbow and are 

referred to as transradial amputations[6].  The terminal device of a transradial prosthesis 

can be controlled by excursion of the shoulder via cables (body powered) or controlled by 

muscle contractions in the residual limb (myoelectric).  This study is limited to the use of 

a transradial myoelectric prosthesis (TRMP). 
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  Current research on the optimal designs of TRMPs includes advanced technology 

in control systems and electronic circuitry that allow for human motion mimicking of and 

prosthesis function movement.  Often times these improvements require large amounts of 

power, circuitry and excess mass distally along the prosthesis that may require greater 

effort from the user.  The increased weight of the myoelectric prosthesis is a common 

cause for complaints among users [5, 7-10] [11][12].   

 Persons using a myoelectric upper limb prosthesis are forced to decide if the extra 

function provided by the advanced electronics is worth carrying the extra mass which 

may cause fatigue, socket issues and greater stress on the remaining joints. An example is 

the wrist rotator component of the TRMP which may allow greater function and reduce 

compensatory motion, but adds mass distally, potentially causing greater torques on 

remaining joints.  It may also be important to consider the distribution of weight.  The 

human hand, forearm and upper arm each weigh a certain percentage of the total arm that 

seems to result in minimal effort across a wide variety of tasks. 

Pronation and supination of the forearm are important in normal completion of 

many activities of daily living [13].  According to surveys, users would like the wrist 

component of the prosthesis to perform more movements particularly drinking from a 

glass and opening a door [14].  This suggests that the wrist component of an upper limb 

prosthesis is important.  Surveys are a useful tool to determine specific needs of a given 

population, but there is also a need for evidence-based research when setting guidelines 

for design, fitting and training techniques for the TRMP. 

 In March 2005, the Defense Sciences Office of the Defense Advanced Research 

Projects Agency (DARPA) announced a Prosthesis 2007 program to advance the research 
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in upper limb prosthetic design.  The goal of the project is to improve the capabilities of 

the upper limb prosthesis.  DARPA listed 17 desired characteristics for an upper arm 

prosthesis system, which included inertial properties that matched the lost limb, wrist 

flexion strength of up to 1.67 ft-lbs, 2-degrees of freedom at the wrist and humeral 

rotation [15].  This dissertation attempts to address this particular subset of the 

characteristics deemed by the Department of Defense to be of great importance in upper 

limb prosthetic design improvement.  The study discussed in this dissertation considered 

how the joint angles and torques were affected by mass added at different locations.  It 

may also be of interest to determine how inertial properties of the TRMP alter torques at 

the interface between the prosthesis and the residual limb, but this concept was not 

explored here. 

 The evolution and improvements of lower limb prostheses have often been made 

on the basis of studying gait pattern studies.  These studies determine common 

parameters that constitute a normal gait, and lower limb prostheses are often designed to 

mimic ‘normal’ gait as characterized by these parameters.  Many studies have analyzed 

the speed, energy costs, and efficiency of gait.  These gait analysis studies have included 

kinematic studies determining the joint angles, angular velocity and acceleration during 

different phases of a gait pattern.  Kinetics or the forces, moments and powers of the 

various joints required for walking have also been thoroughly studied.  The parameters 

obtained from these tests enable designs to be adjusted to match expected normal values.  

In depth gait analysis also provides a tool to properly test and compare prosthetic 

performance.  Detailed examples of gait analysis studies will be discussed in Chapter 2. 
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 This type of detailed motion benchmarking of the upper limb is often lacking in 

the literature. A review of the limited current publications in this area is discussed in 

Chapter 2.  The essential difficulty is that the lower extremity is used for one 

stereotypical motion whereas the upper extremity is used in numerous skilled ways.  Part 

of the rationale for this study is the need to obtain benchmark motion data for the upper 

limb in order to improve prosthetic design, fitting and training techniques.  During this 

study, special attention was given tothe wrist component of upper limb prosthesis.  The 

benchmarks obtained in this dissertation will improve upper limb prosthetic prescription 

and training.  Proper prescription and training may reduce the number of patients who 

reject their prosthesis. 

 

1.2 Objectives 

 This dissertation describes the importance of the need to improve upper limb 

prosthetic design, prescription and training.  Improvement of prosthetic design often 

requires knowledge of how the human body works and adapts. There were three main 

objectives or goals in performing this study. 

The first objective was to create normal profiles of upper limb motions that can be 

used for prosthetic performance evaluation.  Normal profiles were created for four 

activities of daily living: drinking from a cup, opening a door, lifting a box, and turning a 

steering wheel.  The profile of these motions included shoulder, elbow and wrist joint 

angles and the associated forces and torques. 

The second objective was to quantify the compensatory motion caused by the 

limitations of a TRMP lacking a powered wrist component during the four common 
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tasks.  This objective was first approached by testing healthy subjects who wore a brace 

in a way that simulated TRMP use.  This was done to determine if TRMP use can be 

appropriately simulated with non-amputee subjects who are easier to recruit for research 

studies.  Second, tests were also performed on actual amputee subjects.  Quantification of 

compensatory motion could be used to create a mathematical model of a transradial 

prosthesis to be used for fitting, training and evaluation. 

The final objective was to determine if location (distally or proximally) of a mass 

equivalent to the mass of a wrist rotator of a TRMP affects the compensatory motion 

during the four common tasks. With the information regarding the motions of healthy 

subjects, braced subjects, and prosthesis users some general design, fitting and training 

guidelines were made. 

 

1.3 Hypotheses 

 This was a scientific study that used statistical analysis to accept or reject 

hypotheses.  The following hypotheses were considered for this study: 

• The ranges of motion of the shoulder, elbow and torso will be significantly 

different between the non-amputee group (N-BR), the braced group (BR) and the 

transradial myoelectric prosthesis user group (PROS).  This hypothesis was tested 

using a one-way analysis of variance between subjects. Since the N-BR and the 

BR group contained the same subjects a repeated measure analysis of variance 

was also completed between these groups. 

• The range of motion of the shoulder, elbow and torso of the TRMP wearing group 

will be significantly different during three conditions: with prosthesis (PROS), 
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prosthesis with added mass at the elbow (P-EL) and prosthesis with added mass at 

the wrist (P-WR). This hypothesis was tested using a repeated measure analysis of 

variance. 

• The shoulder and elbow joint forces and torques of PROS group will be 

significantly different during the three conditions mentioned above while 

completing one unilateral task (opening a door) and one bilateral task (lifting a 

box). This hypothesis was tested using a repeated measure analysis of variance. 

 

1.4 Dissertation Outline 

Background information is presented in Chapter 2.  This includes technical 

background describing forces, torques, anthropometrics and biomechanics.  The details of 

the anatomy of the upper limb that pertain to this study are also described.  An 

exploration of prior research on the subjects of motion analysis, gait analysis, prosthetics, 

and activities of daily living is offered in Chapter 2. 

The study methodology is discussed in Chapter 3.  The design of the experiment 

and a description of the participants, the activities of daily living studied and the testing 

protocol are given in this chapter. 

In Chapter 4, the experiment instrumentation and set-up are described.  This 

includes the testing apparatus, the motion analysis system and the force transducer used 

to collect data.  An explanation of the calibration methods and the subject measurements 

is also stated in this chapter 

Chapter 5 explains the development of a kinematic model, specifically; how 

segments of the arms and torso are determined and joint angles are calculated. 
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In Chapter 6, a description of the kinetic chain while opening a door and lifting a 

box was determined and how inverse dynamics is used to determine joint forces and 

torques.  This chapter also explains how the differences between inertial properties of a 

prosthesis and a forearm with added mass were reconciled. 

Chapter 7 explains the outcome measures that were compared and the statistical 

analysis used to determine significance and test the hypotheses.  Chapter 8 

observationally describes the motions of the three groups: non-braced, braced and the 

TRMP wearing group.  This chapter also looks at a case study of one prosthesis users 

comparing the motions of prosthetic side to the sound side while completing the tasks. 

The results such as the maximum and the range of the joint angles, the forces, and 

the torques are presented in Chapter 9.  Chapter 10 compares and discusses the results, 

explains limitations of the study and presents recommendations for upper limb prosthetic 

design, training and evaluation. 

The final chapter, Chapter 11, summarizes the conclusions of the study.  This 

chapter also suggests how information from this research will lead to future studies and 

funding. 
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Chapter 2: Background 
 
2.1 Technical Background 

2.1.1 Newton’s Laws of Motion 

Basic physics principles guide the study of how the body moves. Sir Isaac 

Newton first published his laws of motion in a work written in Latin and titled 

Philsophiæ Naturalis Pricnipia Mathematica in 1687.   Newton’s first law (the law of 

inertia) explains that inertia is the resistance of an object to changing its motion.  A 

particle will stay at rest or in constant velocity unless acted upon by a force.  Newton’s 

second law describes the effect of a resultant force vector on the relative acceleration of 

an object:        

F = ma          (2.1) 

where F is the force vector, m is the mass of the object and a is the linear acceleration 

vector (time derivative of velocity) of the object.   

Newton’s second law can also be described in terms of angular momentum which 

is described in Euler’s equations of motion (Eq. 2.2). Angular inertia also known as 

moment of inertia describes an object’s resistance to change its rotational motion.  The 

moment of inertia of an object is affected by mass and its distribution of mass as 

described by:  

    M = Iα                                (2.2) 

where M is the resultant moment of all forces acting on the object, I is mass moment of 

inertia and α is the angular acceleration of the object. The greater the distance of an 
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object from its axis of rotation, the larger its moment of inertia will be.  For example, 

moving the heavy electronics and motors associated with an electric wrist closer to the 

elbow joint would decrease the moment of inertia, and thus require less torque from the 

user to perform a task involving elbow flexion. 

Newton’s third law states that for every action there is an equal and opposite 

reaction.  It also determines how forces and moments propagate with a solid body, and 

determines the internal forces and moments that the body experiences.  This becomes 

important when a segment of the body comes in contact with another object such as the 

ground or a door knob.   

 

2.1.2 Biomechanics and Anthropometrics 

Biomechanics applies classical mechanics described by Newton’s laws of motion 

to biology and physiology.  Biomechanical properties of tissue such as bone, cartilage, 

tendons, ligaments, muscles and nerves can be studied.  This dissertation is concerned 

with applied biomechanics or segmental motion analysis.  Kinematics is a branch of 

motion analysis that describes movement without reference to the causes of those 

movements.  In humans, kinematic studies can include descriptions of range of motion of 

the joints, as well as, position, velocity and acceleration of the body segments.  Kinetics 

as applied to humans is the study of forces and moments acting on the segments both 

statically (at rest) and dynamically (in motion).   

Anthropometrics is the study and measurement of human physical dimensions. 

Anthropometric tables of the human body give average data such as segment lengths, 

weights, center of mass and radius-of-gyration data based on numerous cadaver 
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experiments [16, 17]. The radius of gyration describes the distribution of mass of an 

object or in this case of a segment of the body about a particular axis.  The moment of 

inertia of body segments with respect to an axis of rotation can be estimated using data 

from anthropometric tables and the following equation:      

I = k2m          (2.3) 

 

where k is the numerical value of the radius of gyration 

           I is the moment of inertia  

           m is the mass of the object  

 

2.1.3 Euler Angles 

In order to describe how one object in space is oriented in relation to another 

object, Euler angles can be used.  Each object’s orientation is defined by a local 

coordinate system using vectors. Euler angles are a set of three rotations performed on a 

moving (as opposed to a fixed) system.  Each rotation is performed about an axis whose 

location is determined by the previous rotation [18]. To describe the orientation of each 

upper limb segment relative to another, Euler angles were computed.  Each Euler-angle 

rotation represented a particular joint movement such as flexion, abduction or rotation.  

Details of how each joint angle was calculated using Euler angles are written Chapter 5. 

 

2.1.4 Newton-Euler Inverse Dynamics Method 

The Newton-Euler Inverse Dynamics Method is used to estimate the applied 

forces and moments at the joints using the Newton (linear) and the Euler (angular) 
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equations of motion and the kinematic data.  In order to solve these equations of motions 

at each joint, the following assumptions are made about the human body: 

• Segments are rigid bodies with the mass distributed about the center of 

mass. 

• Joints are frictionless joints.  

• There is no co-contraction of agonist and antagonist mucles. 

• Air friction is minimal. 

 

2.2 Anatomy and Biomechanics of the Human Arm 

2.2.1 Shoulder Complex 

The shoulder complex is made up of several joints and articulations that allow for 

a wide range of mobility. While the sternoclavicular joint, the acromioclavicular joint, 

and the scapulothoracic articulation are all essential to upper limb function, the 

glenohumeral joint (GH) often plays the most important role. The scapular motion is hard 

to measure, so scapulothoracic and glenohumeral rotations are often combined during 

calculations of the shoulder motions.  For this reason and to simplify calculations, the GH 

joint will be the main focus of this description of shoulder biomechanics.  

The GH joint lies where the head of the humerus connects to the glenoid fossa of 

the scapula. There is little bony constraint in the GH joint, making its motion almost 

purely rotational [19].  Dislocation or inferior subluxation is prevented by the slight 

superior inclination of the proximal humerus articulation with the glenoid fossa.  With an 

incline superiorly of about 5˚ relative to the plane of the scapula a great degree of 

geometric stability is created [19]. Structures such as the glenoid labrum, the 
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glenohumeral joint capsule, the rotator cuff muscles, and the glenohumeral and 

coracohumeral ligaments provide much of the stability in the shoulder joint complex. 

The GH joint allows for three types of pure motions: flexion/backward extension 

(120˚/60˚), abduction/adduction in standard position (120˚/0˚), hyperadduction (10-15˚), 

and internal/external rotation (70˚/90˚) [20] (Figure 2.1).  Other combination motions of 

the shoulder complex include horizontal flexion/extension, shoulder girdle 

elevation/depression and protraction/retraction, and combined glenohumeral and scapulo-

thoracic motion.  Although activities of daily living often require a complex combination 

of these motions, for research purposes it is appropriate to study the pure movements 

separately.  To test range of motion of shoulder flexion, the humerus resides in the 

sagittal plane, and the straight arm is raised forward with palm down.  For abduction of 

the shoulder, the humerus is in the frontal plane and the straight arm is lifted away from 

the body.  Internal and external rotation is tested with the humerus at the side with 

rotation occurring around the long axis of the humerus in the transverse plane. 

 

 

 

Figure 2.1.  Movement of the glenohumeral joint. 

 

 

Flexion (+)

Extension (-) Hyperadduction (-)

Abduction (+)
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2.2.2 Elbow and Forearm Complex 

The joints at the elbow allow for two types of motions: flexion/extension (10˚ to 

145˚) in the sagittal plane and pronation/supination of the forearm (71˚/81˚) [20, 21].  The 

hinge joint at the elbow allows for the flexion and extension of the forearm that occurs at 

the humeroulnar (or ulnohumeral) articulation where the spool-shaped surface of the 

trochlea on the distal end of the humerus articulates with the ulna.  The capitulum, also 

located distally on the humerus, articulates with the radius creating the humeroradial joint 

which also allows for the flexion and extension movement.    The olecranon fossa, a 

depression located on the dorsal distal end of the humerus just above the trochlea, accepts 

the olecranon process of the ulna when the arm is fully straightened.  Upon complete 

flexion, the coronoid process of the ulna moves into the coronoid fossa located also 

above the trochlea but on the ventral side of the humerus.  The semilunar notch of the 

ulna and the precise markings of the trochlea prevent any lateral movement at this joint 

making it predominately uniaxial. 

 The radius rotates relative to the humerus and ulna during pronation and 

supination at the proximal radioulnar articulation. As the distal radius rotates around the 

distal ulna in a cone-shaped arc during pronation and supination, the forearm is rotating 

around a longitudinal axis.  This axis passes through the center of the capitulum, the 

rounded protrusion at the distal end of the humerus, the radial head and the distal ulnar 

articular surface [19].  The supinator muscle, the biceps brachii, brachioradialis and wrist 

extensors are responsible for rotating the radius during supination and the pronator teres, 

pronator quadratus, brachioradialis and wrist flexor muscles pronate the forearm at the 

superior and inferior radial ulnar joints. Most of these muscles are multiarticular and so 
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the motion and forces at one joint are directly interrelated to other joints in the upper 

extremity.  

The medial and lateral epicondyles of the distal end of the humerus are the 

prominent attachment sites for many muscles responsible for movements of the forearm 

and fingers.  For this study the epicondyles will also serve as boney landmarks used for 

marker placement and to estimate the location of the elbow joint center when calculating 

flexion and extension of the elbow during common tasks. 

 

2.2.3 Wrist 

The wrist is made up of eight carpal bones.  The proximal row contains the 

scaphoid, the lunate, the triquetrum and the pisiform.  The distal row of carpal bones is 

made up of the trapezium, the trapezoid, the capitate and the hamate.  The primary joints 

of the wrist are at the radiocarpal joints, where the radius articulates with the proximal 

carpals and the metacarpal joints where the proximal and distal carpal rows articulate.  

The intercarpal joints create a sliding motion between carpal bones adding to the wrist 

motion in a less considerable way [22]. 

The wrist joint allows for flexion and extension (80˚/75˚) in the sagittal plane as 

well as in radial and ulnar deviation (25˚/45˚) in the frontal plane. Small combinations of 

these movements as well as insignificant amounts of axial rotation can occur at the wrist 

in some individuals, but for this study axial rotation of the hand is considered to occur 

from pronation and supination of the forearm.  The range of motion of flexion and 

extension is spilt between the radiocarpal joint and the metacarpal joints.  The scaphoid 

articulates with the radius at the scaphoid fossa, the lunate articulates with the lunate 
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fossa of the radius and partly with the ulnar soft tissue to allow for the flexion/extension 

of the wrist.  During radial deviation the proximal carpal row, led by the scaphoid, flexes, 

and the opposite occurs during ulnar deviation.  The distal carpal row follows the finger 

rays during both directions of deviation [19]. 

 

2.3 Upper Limb Prosthesis 

An upper limb prosthesis can be either transradial (below the elbow) or 

transhumural (above the elbow) or through the elbow.  This dissertation concentrates on 

the transradial prosthesis because it can be simulated with a less complicated bracing 

system.  The below elbow prosthesis consists of a terminal device (TD), a wrist unit, a 

forearm section, a socket with some type of suspension to attach the prosthesis to the 

remaining limb and some type of control device to operate the TD [23]. 

 

2.3.1 Terminal Devices 

There are passive functioning terminal devices often used for cosmetic purposes 

and for simple tasks such as opposition or stability.  Active terminal devices can be 

controlled by a body-powered harness system or by external power which is most often a 

myoelectric system.  A combination of these two controls is also found in some upper 

limb prostheses and is referred to as a hybrid system.  The choice of a TD shape is 

usually limited to a hook which can be more functional or a hand shape which is more 

cosmetically pleasing [7].  Active hand shaped TDs are typically more bulky and heavier 

than hooks [23].  
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2.3.2 Wrist Units  

The wrist unit is attached to the terminal device of the prosthesis and is 

responsible for positioning of the TD.   Some wrist units are fixed which limits the 

position of the TD.  Other wrist units can be manually adjusted such as a Motion Control 

(Salt Lake City, UT) wrist or moved by an external power such as a myoelectric system 

[23]. A quick disconnect wrist unit allows for exchange of a terminal device easily. A 

locking wrist unit provides safety by locking in place while the TD is used for grasping or 

lifting [23].  Liberating Technologies (Boston, MA) and Otto Bock (Duderstadt, 

Germany) are companies that sell powered wrist rotators that allow for complete rotation 

of the TD, but do not provide wrist flexion or extension. In contrast to the anatomical 

wrist and forearm, these wrist units cause rotation about a transverse axis. The Otto Bock 

wrist rotator is the lightest wrist rotator currently available and weighs 96 grams.  

 

2.3.3 Control Devices 

Upper limb prostheses are divided in two main control types: body-powered and 

externally powered.  As mentioned previously myoelectric control is the most common 

form of external power although electrical switches with an on/off button and hybrid 

controls are also used.  Body powered systems use either a figure eight or a figure 9 

harness to control opening and closing of a terminal device by a mechanical cabling 

system.  Commonly shoulder flexion or scapular abduction is used to create and relax 

tension on the cable allowing for the TD to be opened or closed [24].  

The myoelectrical control system uses electrical signals from muscle activation to 

control the TD.  This requires muscle strength and muscle training for adequate function. 
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The myoelectrical control system is battery powered and requires control circuitry that 

has to be fitted into the forearm section of the prosthetic limb [24]. 

 

2.3.4 Current Approaches for Fitting an Upper Limb Prosthesis  

It is difficult to explain a common and current fitting technique for fitting 

amputees with an upper limb prosthesis.  The fitting practice is often subjective and 

individualized for the patient by the prosthetist.  According to Fillauer (Chattanooga, 

TN), a leading manufacturer of prosthetic products that includes the Motion Control 

branch (Salt Lake City, UT), there are many issues to consider when fitting a transradial 

amputee with a prosthesis.  The patient is interviewed to determine goals and 

expectations of the prosthesis especially in terms of function.  An evaluation of the 

residual limb and joints is conducted to determine range of motion, muscle and joint 

strength, and in the case of a myoelectrically controlled prosthesis, electrode placement. 

A plaster cast is made of the residual limb.  From the cast, the prosthetist will be able to 

construct a socket of the prosthesis that should fit closely around the residual limb.  

Proper socket fit is essential to the user’s comfort which may determine the amount of 

prosthesis use.  Often a trial fitting with a diagnostic or “check” socket and components is 

completed to improve function for the user and justify expenses to a funding source [25].   

Advanced Arm Dynamics Inc. (Redondo Beach, CA), a Center of Excellence for 

Upper Extremity Prostheses, offers services that include expedited delivery, advanced 

socket design, occupational and physical therapy, psychological counseling as well as 

rehabilitation planning, insurance assistance services and expert witness testimony.  

Advanced Arm Dynamics breaks down the prosthesis fitting process into three phases: 
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Interface Phase, Controls Phase and Alignment Phase.  After an initial patient assessment 

(Patient Evaluation Phase) during the Interface Phase, a socket is made by the prosthetist.  

During the Controls Phase, myoelectric or body-powered control is chosen.  For the 

myoelectric prosthesis, optimal electrode placement on the residual limb is determined.  

During the Alignment Phase, a rigid frame is fabricated and all components are attached 

to the prosthesis and cosmetics are added.  After the completion of the three phase fitting 

process, the patient develops skills for optimal prosthetic use during the Interim 

Therapeutic Phase. During this phase, minute modifications may be made by the 

prosthetist to optimize comfort and function of the prosthesis.  Even with expedited 

delivery, Advanced Arm Dynamics requires 1-3 days for fitting with the patient then 

receiving the prosthesis in 7-10 days [26, 27]. 

 

2.4 Prior Research 

There have been several studies detailing the use of infrared cameras and motion 

analysis systems to study human movement.  There have also been many articles showing 

how gait analysis has led to the improvement of lower limb prosthetic design.  There is a 

limit amount of documentation regarding the motion of the upper limb especially in 

regards to improving prosthetic design. 

 

2.4.1 Gait Analysis and Prosthetic Design 

There are many examples throughout scientific literature showing how gait 

analysis has lead to the improvement of lower limb prosthetic design criteria [28, 29].  In 

2003, Twiste et al. conducted a literature review on rotation and translation during 
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prosthetic gait.  The abstract from this review mentions that more accurate gait analysis 

showing optimized gait patterns could help manufacturers design prosthetic components 

to mimic these patterns [29].  Another study compared the adaptations during gait 

initiation between able-bodied subjects and amputees wearing a prosthesis.  It was 

determined that since the prosthetic foot could not generate as much force, the amputees 

were required to increased stance duration to generate force over a longer period of time 

[30].  This is an example of how gait analysis of healthy subjects was compared to 

prosthesis wearers to determine how amputees compensate for the limitations of the 

prosthesis.  This same idea was used in this study to compare compensation methods in 

upper limb motions. 

 

2.4.2 Upper Limb Motion Analysis 

There have also been studies involving upper limb motion, but they are few in 

number [31].  Anglin and Wyss have reviewed studies involving the motion analysis of 

the upper limb in terms of motions, tasks, methods and kinematic models [31].  

Kinematic and trajectory patterns of upper arm reaching have been evaluated [32, 

33].  The range of motion of the upper limb of healthy subjects performing activities of 

daily living such as eating, drinking, [34, 35], jar opening, carton pouring [36], and  

zipping a jacket [37] have been recorded and analyzed. Wrist, elbow, and shoulder joint 

kinetics such as external joint forces and moments have been studied during various 

everyday tasks including reaching, eating, and drinking [35] ; lifting a block and 

answering a telephone [38]; lifting a 5 kg box and carrying a suitcase 10 kg [39].  

Motivations for these studies vary but include definition of normal motion and collection 
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of input for a biomechanical arm model.  In contrast to the cyclic and often predictable 

motion of normal lower extremity tasks such as gait and running, upper limb tasks are 

varied and difficult to analyze.   

 

2.4.3 Upper Limb Research for Orthotic and Prosthetic Design 

Motion analysis of twenty-two upper limb motions has been used develop an 

upper limb power orthosis [40].  First by collecting motion analysis data on unaffected 

subjects, then using the data to create a simulation program to assist design optimization, 

and finally clinically assessing actual users by completing motion analysis again [40].  A 

seven degree of freedom upper limb powered exoskeleton has been designed for 

applications in rehabilitation medicine and virtual reality simulation [41].  A kinematic 

database from one subject completing 24 activities of daily living was completed for use 

in the design of this exoskeleton, although only details from five motions were reported 

[42]. 

Developing upper extremity prostheses, and understanding the movement patterns 

imposed by these mechanisms can be facilitated by comparisons with people with normal 

upper extremities where movement restrictions have been controlled. Motion analysis of 

activities of daily living of braced subjects simulating prosthesis use have been performed 

to determine optimal wrist alignment of an upper limb prosthesis [37, 43].  These studies 

support the validity of braced subjects as a means of simulating prosthesis users.  Studies 

have also examined common unilateral task completion of an upper extremity while 

wearing a wrist splint [44]; while using a body powered upper-limb prosthetic simulator 

during object manipulation [45] and kayaking [46].  Potential energy during work related 
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activities such as folding, cutting and hammering was measured from three transradial 

prosthesis users [47]. 
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Chapter 3: Design of Experiment 
 
3.1 Introduction 

This study looked at between subjects and with-in subjects comparisons.  The first 

hypothesis was to determine if the range of motion of the shoulder, elbow and torso 

would be greatest in the prosthetic group (PROS) that required compensatory motion due 

to loss of degrees of freedom of the wrist and forearm.  It was predicted that the braced 

BR would be significantly the same as the PROS group and that the non-braced (N-BR) 

would use significantly less range of motion to complete the tasks. The second and third 

hypotheses were tested with a with-in subjects comparisons of motion predicting that the 

added mass at the wrist would cause greater compensatory motion than no added mass or 

added mass at the elbow.  For the control group three conditions were compared: 

• braced (BR) 

• braced with added mass at the elbow (BR-EL)  

• braced with added mass at the wrist (BR-WR). 

For the transradial myoelectic prosthesis wearing group three conditions were compared: 

• with prosthesis (P) 

• with prosthesis with added mass at the elbow (P-EL) 

• with prosthesis with added mass at the wrist (P-WR). 
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3.2 Participants 

Two groups of subjects were used for this study.  There were ten healthy non-

amputee adult volunteers with no previous upper limb injury. In this group there were 6 

men, 4 women; mean age 28 years old (SD 7.4). In addition there were 7 transradial 

prosthesis wearers. The group using upper limb prosthetics consisted of 6 men, 1 woman 

with a mean age of 36 years (SD 10.1). All the non-amputee participants were right hand 

dominant. Details of the prosthesis wearing subjects are shown in Table 3.1. All 

participants gave informed consent prior to participation.  The experimental procedures 

were approved by the Institutional Review Board of the University of South Florida prior 

to data collection.   

 

Table 3.1.  Descriptions of the transradial prosthesis users. 

 

Recruitment of transradial prosthesis wearing subjects was difficult.  All of the 

prosthesis wearing subjects used a two channel transradial myoelectric prosthesis with a 

Sensor Speed Hand® (Otto Bock, Germany).  One subject’s prosthesis included a 

humeral half cuff, step up hinges and a split socket.  The prosthesis also contained a 3 

mm gel liner and pin lock.  These additions at the elbow joint were incorporated to 

Subject Sex 
 

Age 
(years) 

 
Dominant 

Hand 

 
Year of 

amputation 

 
Prosthesis 

side 

Time of  
current 

prosthesis 
use (years) 

Mass of 
prosthesis 

(kg) 

1 M 43 Right 1999 Right 7 1.5 
2 M 43 Right 2003 Left 3.5 1.5 
3 F 53 Right Congenital Left 16 1.2 
4 M 31 Right 2007 Left 0.25 1.4 
5 M 27 Left 2001 Left 5 1.0 
6 M 26 Right 1991 Left 16 1.2 
7 M 31 Right 2003 Left 1 1.8 
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protect the short residual limb from hyperextension and to give a mechanical advantage 

by exchanging range of motion for increased lift support. 

 

3.3 Activities of Daily Living 

  Subjects completed four simulated activities of daily living in a laboratory 

environment: drinking from a cup, opening a door, lifting a box and turning a steering 

wheel.  Two unilateral and two bilateral ADLs were chosen based on surveys of 

amputees in the literature [14]. Drinking from a cup has been analyzed kinematically in 

other studies [34, 37] and was used for comparison.  Opening a door and turning a 

steering wheel require obvious movement of the forearm and wrist, so these tasks were 

chosen to determine compensation when restricting these movements.  The box lift was 

chosen since it was a bilateral task and required moving a mass.  Table 3.2 describes the 

steps of each task. 

  For the cup task, subjects were asked to start holding by the cup with the elbow at 

approximately 90 degrees, bring the cup to the mouth and return to the starting position.  

For the door task, the subjects were asked to open the door without taking a step.  For the 

box lift task, the subjects were asked to bilaterally lift a 2.27 kg box from one shelf 

(height: 0.91m) and place it on to the higher shelf (0.4572 m above lower shelf) without 

taking a step.  These heights represent the average height of a kitchen counter and cabinet 

respectively.  For the steering wheel task, the subjects were asked to place hands at the 

“10 and 2” positions on the steering wheel and turn the wheel as far to affected side (right 

side for non-amputee subjects; prosthetic side for amputees) as possible without moving 

their hands and then return the steering wheel to the starting position.  Before each task, 
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the subjects were allowed to practice until familiar enough with the task to complete it 

correctly without instruction or feedback.  While braced, subjects were given the same 

instructions for each task, but were not instructed on how to overcome the restrictions of 

the brace to perform the ADL.  Similarly, the prosthesis wearers were given the basic 

instructions but not told how to compensate.  The non-amputee subjects completed the 

unilateral tasks with the dominant (right in all cases) hand.  The amputee subjects 

completed the unilateral task with the prosthesis that in most cases (5 of 7) was the non-

dominant hand prior to amputation. The effect of hand dominance was not accounted for 

in this study. 

 
Table 3.2.  Descriptions of the tasks analyzed. 

 
Drinking from a cup: 

• Standing 
• Start at neutral position – elbow flexed at approx.  

90 ˚ 
• Lift the cup to mouth and tilt to simulate drinking 
• Return to neutral position 

Opening a door 
• Stand in front of door 
• Start at neutral position – hands straight down by 

side 
• Open the door 

Turning a steering wheel 
• Sitting in front of steering wheel at comfortable 

height 
• Place hands on steering wheel at 10 and 2 
• Turn steering wheel to affected side as far as able 

without removing hands 
• Return steering wheel to starting position 

Box lift 
• Standing at counter 
• Start at neutral position – hands, straight down by 

side 
• Lift 5 lb box off lower shelf without stepping  
• Place box on higher shelf 
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3.4 Test Protocol 
 

Prior to each data collection the motion analysis system including the force 

transducer on the door was calibrated.  The calibration process is explained in Section 

4.5. 

 

3.4.1 Subject Measurements 

Anthropometric measurements were recorded from each subject prior to testing 

(Table 3.3).  These measurements were used in the kinematic and kinetic calculations that 

will be described in Chapter 5 and 6.  

Table 3.3.  Descriptions of the subject measurements collected prior to testing. 

 

3.4.2 Marker Placement 

Spherical reflective markers approximately 14 mm in diameter were placed on the 

bony landmarks of the upper limbs and torso of the subjects as described in Table 3.4.  In 

the case of the braced and prosthesis wearing groups, the elbow, wrist and hand markers 

were placed on the brace or prosthesis. 

 

 

Measurement Units Instrument Used Description 
Mass kg Professional Health o meter ®scale Weight of subject 
Height cm Professional Health o meter ®scale Height of subject 
Shoulder depth cm Cloth tape measure Vertical offset from the base of the 

acromion marker to shoulder joint 
center 

Elbow width cm Cloth tape measure Width of elbow along flexion axis 
between the distal epicondyles of the 
humerus 

Wrist thickness cm Caliper Anterior/Posterior thickness of wrist  
Hand thickness cm Caliper Anterior/Posterior thickness of the 

hand 
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3.4.3 Experimental Trials 

A static trial was collected to allow proper calculations of measurements required 

for the kinematic program and to expedite marker identification.  During the static trial, 

the subject was instructed to keep arms to the side, the pinky away from body, palms 

down, and standing perpendicular to the door on the testing apparatus. Once an adequate 

static trial was collected, the medial elbow markers were removed prior to collection of 

the dynamic task trials. 

 

Table 3.4.  Marker placement and code names of markers used in programming. 

 
 

Code name Marker description Marker placement 
C7 7th Cervical vertebrae Spinous process of the 7th cervical vertebrae 
T10 10th Thoracic vertebrae Spinous process of the 10th thoracic vertebrae 

CLAV Clavicle Jugular notch where the clavicles meet the 
sternum 

STRN Sternum Xiphoid process of the sternum 
RBAK Right back Middle of the right scapula (asymmetrical) 
RSHO Right shoulder Right acromio-clavicular joint 
RUPA Right upper arm Right upper arm between the elbow and 

shoulder markers 
RELB Right elbow Right lateral epicondyle approximating elbow 

joint axis 
RELBM Right elbow medial Right medial epicondyle approximating elbow 

joint axis (static trial only) 
RWRA Right wrist A Right wrist thumb side 
RWRB Right wrist B Right wrist pinkie side –on the pisiform 
RFIN Right finger On the dorsum of the hand just below the head 

of the right third  metacarpal 
LSHO Left shoulder Left acromio-clavicular joint 
LUPA Left upper arm Left upper arm between the elbow and 

shoulder markers 
LELB Left elbow Left lateral epicondyle approximating elbow 

joint axis 
LELBM Left elbow medial Left medial epicondyle approximating elbow 

joint axis (static trial only) 
LWRA Left wrist A Left wrist thumb side 
LWRB Left wrist B Left wrist pinkie side 
LFIN Left finger On the dorsum of the hand just below the head 

of the left third metacarpal 
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The non-amputee participants completed each task during the following 

interventions: (1) no intervention (N-BR) (2) braced restricting forearm and wrist motion 

(Figure 3.1), (BR) (3) braced with 96 g (mass of average prosthetic wrist rotator) added 

near the elbow (BR M-EL), (4) braced with 96 g added near the wrist (BR M-WR).  The 

brace restricted pronation and supination of the forearm as well as wrist movement, but 

allowed the full range of motion of the elbow.  The amputee subjects completed the tasks 

during the following interventions: (1) wearing a myoelectric transradial prosthesis (PR), 

(2) prosthesis with 96 g added near the elbow (PR-EL) and (3) prosthesis with 96g added 

near the wrist (PR-WR). Three trials were collected for each experimental test condition. 

These three trials were averaged as a representative for each subject. The order of the 

tests was randomly assigned for each subject.  

   

 
Figure 3.1.  Brace used to restrict forearm and wrist motion. 
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Chapter 4: Experimental Instrumentation and Set-up 
 
4.1 Introduction 

The objectives of this dissertation were to create normal profiles of upper limb 

motion, quantify compensatory motion caused by lack of wrist and forearm movement 

and to determine how prosthesis wearers compensate for added mass during several 

common tasks.  Motion analysis was used to determine if prosthesis wearers 

compensated differently than control subjects wearing a brace and if shoulder and elbow 

joint angles or resultant forces increased at different mass locations.  Video based motion 

analysis requires defining segments so that joint angles and forces can be calculated. 

 

4.2 Testing Apparatus 

A testing apparatus was built to allow for the completion of the four activities of 

daily living in a controlled situation (Figure 4.1). The apparatus combined an interior 

door, a steering wheel and shelving system into one unit. The door was a pre-hung 

interior door measuring 71.12 cm x 203.2 cm (28in x 80in).  The door handle was a 

conventional interior style locking knob. The base of the steering wheel was 

approximately 78.31cm (31in) off the floor and about 38.1 cm (15in) above the seat of 

the chair.  The steering wheel was angled at 72º relative to the horizon which is typical of 

a compact car (Figure 4.2).  The shelving system was used for the box lift task. The lower 

shelf was 91.44cm (36in) above the floor which is the standard height of a kitchen 

countertop and the higher shelf was approximately 45.72 cm (18in) above the lower 
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shelf.  This is the standard height for the bottom shelf of a cabinet above a typical kitchen 

counter. The box weighed 2.27 kg (5 lb). 

 

 

               

Figure 4.1.  Testing apparatus used to complete the tasks. 

 

 

 

 

Figure 4.2.  The steering wheel used for the turning task. 
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4.3 ViconTM Motion Analysis System 

4.3.1 Hardware 

The ViconTM motion analysis system allows for the collection and analysis of 

movement data.  It consists of 8 cameras with infrared lights and a Vicon TM 612 

datastation computer that is used to collect and preprocess the data from the cameras.  

The cameras are linearized to correct distortions that may be present in the camera lens 

and to correct small variations that may exist in the internal mounting of the CCD image 

sensor.  Reflective markers are placed on bony anatomical landmarks of the subjects.    

Two-dimensional image points of the reflective markers from each camera are digitized 

and converted to real metric units in three dimensions using direct linear transformation 

(DTL) [48]. A CanonTM digital video camera was also used to film standard video of the 

subjects. A DellTM computer took the information from the datastation and ran programs 

to analyze the data. 

 

4.3.2 Software 

The ViconTM motion analysis system provides three software platforms to collect 

and analyze movement data.  The Vicon WorkstationTM module allows for the calibration 

of the system through a proprietary technique called DYNCALTM, the collection of the 

trajectories of the markers and the assigning of names or labeling of these markers. 

 The Vicon BodybuilderTM language allows the user to create programs using the 

positions (X,Y,Z) of the markers to calculate kinematic and kinetic results such as 

velocities, accelerations of segments, center of rotations of segments, joint angles, joint 

forces and joint torques. 
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 The Vicon Polygon TM program is a report writer that creates graphs and 

hyperlinks to explain and present results of data collection.  Graphs of each of the 

outcome measures ,explained in details in the following chapters, were created using 

Polygon and the maximum and minimum values were extracted. 

 

4.4 ATI TM Force/Torque Transducer 

 An ATI TM Gamma Force/Torque transducer (F/T transducer) was purchased and 

implemented onto the door knob in order to get information about forces and torques 

during the door opening task (Figure 4.3).  The Gamma  model is 2.97 in. in diameter, 

1.31 in. in height and weighs 0.56 lbs.  The F/T transducer was connected to a control 

box which powers, amplifies and calibrates it.  A cable was fabricated to send analog data 

from the control box to the analog to digital converter (A/D) board and then to the Dell TM 

computer so that the transducer data could be collected simultaneously with the Vicon TM 

motion analysis data. 

The transducer was instrumented with six silicon strain gages.  The resistance of 

the strain gage changes as a function of the applied strain. Six channels of analog data 

were collected from the transducer representing the six components of force and 

moments ( Fx, Fy, Fz, Mx, My, Mz) at the door knob.    In order to convert the Volt 

information from the strain gages into meaningful force information, a scale factor was 

calculated using the following equation: 

Scale Factor = 
Gain)r )(AmplifieExcitation ty)(Bridge(Sensitivi

1
*

Digits

(V) RangeInput                         (4.1) 

The 16-bit analog card used on the analog to digital converter had an input 

parameter set to +/- 10 V (20 V dynamic range) which corresponds to 65535 possible 
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output values (digits). The sensitivity of the transducer was provided by ATITM and is 

equal to 6.4 N/V.  The bridge excitation and gain were set in the amplifier of the 

transducer.  A similar scale factor was used for the moment data with the additional 

factor of 10-3 added to the denominator since the ViconTM system measures distances in 

millimeters rather than meters.  The sensitivity of the ATI TM transducer was given as 0.5 

Nm/V.  These scale factors were used in the ViconTM software to extract force and 

moment data. 

 

 Figure 4.3.  ATI TMGamma transducer connected to the door knob. 

 

4.5 Calibration  

Calibration of the ViconTM system and the ATI TM transducer was completed at 

the beginning of each testing session. 

 

4.5.1 Calibration of the Cameras 

Prior to calibration, the eight cameras were positioned to ensure that a marker 

held at any location within the data collection volume was seen by at least two cameras.  

A four marker calibration frame (L-frame) (Figure 4.4) with known distances between 
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markers was used during the collection of the static calibration trial to define the location 

of origin and direction of axes of the global coordinate system.  A two marker wand 

(Figure 4.4) also with a known distance between markers was waved around in the data 

collection volume to complete the dynamic portion of the calibration.  The DYNACALTM 

program extracted the locations of the markers on the wand from each camera view and 

automatically calculated the camera positions and orientations relative to each other.  

Information from the calibration was used to properly reconstruct the individual 2-D 

camera data to 3-D data. 

           

Figure 4.4.  L-frame and wand used for the calibration of the ViconTM motion analysis system. 
 

4.5.2 Calibration of the ATITM Transducer 

 The ATI transducer was connected to a control box mentioned in Section 4.4.  

Prior to testing, a button was pressed on the control box that automatically calibrated and 

zeroed the transducer.  The analog signal from the transducer to the ViconTM system was 

also calibrated and zeroed with-in the Vicon TM Workstation software. 
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Chapter 5: Kinematic Model 
 
5.1 Introduction 

A kinematic model describes how the segments of the body are defined and 

quantified in a three dimensional space.  From the position data of the markers placed on 

the segments and captured during the movement, coordinate systems are defined and 

joint angles are calculated. 

 

5.2 Determining Local Coordinate Systems 

5.2.1 Introduction 

In order to calculate joint angles, and other information in 3-D space it is 

important to define a local coordinate system or the orientation for each segment of the 

arm and torso. As mentioned earlier, in order to avoid a complicated mathematical 

solution, it was assumed that the segments of the arm and torso were rigid bodies.   

For this study the segments of interest were the torso, the upper arm (humerus), 

the forearm and the hand. At least three non-collinear markers are required to define a 

segment and its orientation. More markers can be used to assure that a segment is 

captured by the cameras. Since markers could not be placed directly at the joint centers, 

or points of rotation of the segments, joint centers had to be determined from the marker 

placements and the subject measurements. 

The joint center located at the distal end of each segment was used as the origin 

for the local coordinate system assigned to the segment.  After the origin was defined, the 
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other markers were used to determine the x, y, z axes of the local coordinate system of 

each segment.  In the Vicon BodyLanguageTM, the code for segment definition is as 

follows: 

Segment name = [origin, defining line 1, defining line 2, token]      (5.1) 

The first defining line is the direction between two points on the segment and in the 

model created here coincident to the first segment axis.  The second defining line is also 

defined by two points of the segment.  The second segment axis is defined by the cross 

product of the second defining line with the first.  The third segment axis is created by 

crossing the first segment axis with the second segment axis using the right hand rule.  

When writing the defining line in code, two markers were used to describe the line.  The 

line was defined in the direction from the second marker to the first marker.   The token 

labels which segment axis correspond with which lettered axis (x, y, z).  For the labeling 

of the segment axes the right hand rule must be followed.  The equations (5.2-5.4) below 

summarize this general explanation of defining segments or the local coordinate systems 

in the Vicon Bodybuilder TM Software. 

SA1 = DL1 (passing through the origin)         (5.2) 

SA2 = DL2 X DL1 (passing through the origin)        (5.3) 

SA3 = SA1 X SA2            (5.4) 

where SA = segment axis (1, 2, 3) and DL = defining line (1, 2).  

 The joint centers and segments of the right and left arm were determined using the 

same orientation for the local coordinate system and therefore are described below in 

general without reference to a particular side.  However, sign (+/-) adjustments in the 



 

  
37

software were made in the angle calculations to describe the movement of the right and 

left arm in an anatomically correct way.  This is described in Section 5.3:  

 Each segment definition is described in detail in the following sections.  Figure 

5.1 shows the local coordinate system of each segment while subject is standing in a 

neutral position.  The BodyLanguage TM code created to define these segments is shown 

in Appendix A. 

 

5.2.2 Torso Segment 

Markers placed on C7, T10, the sternum (STRN) and the clavicles (CLAV) were 

used to define the torso segment.  Since only three markers are needed to define a 

segment, a macro was used within the software to replace any missing marker in the set 

of four allowing for a greater chance of calculating the torso segment constantly even 

with marker blockage.  

For the torso segment, the upper torso, defined as half the distance between the 

C7 and CLAV marker, was used as the origin of the local coordinate system.  The first 

defining line representing the z-axis was described from the lower torso to the upper 

torso. The lower torso was calculated as half the distance from STRN marker to the T10 

marker.  The second defining line was described from the lower torso to the C7 marker. 

This line is crossed with the first defining line to define the x-axis of the torso segment.  

The x-axis of the torso is defined using the right hand rule crossing the z-axis with the y-

axis. 
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5.2.3 Upper Arm Segment 

Defining the upper arm (humerus) segment or local coordinate system required 

the calculation of two joint centers. First, the elbow joint center (EJC) was used as the 

origin.  The EJC was determined during a static trial, with markers placed on the medial 

and lateral epicondyles of the elbow.  After collecting the static trial, the distance 

between these two markers was calculated to give the joint center of the elbow.  The 

medial epicondyle marker was removed for dynamic trials because it is often blocked and 

may have disturbed movements.  A temporary reference frame was used in the software 

to give directions to the EJC during dynamic trials without the use of the medial marker.  

The first defining line of the upper arm was determined from the EJC to the shoulder 

joint center (SJC) and represented the z-axis of the upper arm segment.  The SJC was 

defined as the glenohumeral (GH) which position was calculated from the marker placed 

on acromio-clavicular joint and the shoulder depth measurement taken by the researcher 

for each subject.  The second defining line was EJC to the upper limb marker (UPA) and 

was crossed with the z-axis to define the x-axis of the upper arm segment.  Finally, the z-

axis and the x-axis of the upper arm were crossed (cross-product) using the right hand 

rule to define its y-axis. 

 

5.2.4 Forearm Segment 

For the forearm segment, the wrist joint center (WJC) was used for the origin of 

the local coordinate system. The WJC was calculated as half the distance between the 

wrist marker on the radial side (WRA) and the wrist marker on the ulnar side (WRB).   

The first defining line was determined from the direction of the WJC to the EJC and 
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represented the z-axis of the forearm local coordinate system.  The second defining line 

was described from the SJC to the EJC and was crossed with the z-axis to define the x-

axis.  Again to determine the remaining forearm segment axis, the y-axis, the right hand 

rule was used and the z-axis was crossed with the x-axis. 

 

5.2.5 Wrist Segment  

The wrist segment is a dummy segment set up to determine the first defining line 

of the hand segment. The WJC was also used as the origin to define the wrist segment. 

The first defining line was calculated from the direction of the WJC to the EJC and 

defined the z –axis. The second defining line was from marker WRB to marker WRA and 

was crossed with the z-axis of the forearm segment to define the x-axis.  Following the 

right hand rule, the z-axis was crossed with x-axis to determine the y-axis of the forearm 

segment. 

 

5.2.6 Hand Segment 

       The hand segment was also defined using the WJC for the origin.  The first 

defining line used the third axis (y-axis) of the wrist segment and also represented the y-

axis of the hand segment.  The second defining line was determined from the WJC to the 

hand joint center (HJC) and represented the x-axis.  The HJC was estimated using the 

finger marker, the subject hand thickness and the marker diameter.  The details of this 

calculation can be found in the software program shown in Appendix A.  The y-axis was 

crossed with the x-axis while adhering to the right hand rule to determine the z-axis of the 

hand segment. 
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Figure 5.1.  Local coordinate systems of defined segments. 

   

5.3 Calculation of Joint Angles 

Once local coordinate systems or segments have been defined, relationships 

between the segments can be determined using Euler angles as described in Chapter 2.  

Joint angles can be described as the relative orientation of two coordinate systems of 

segments next to each other.  The torso angles were determined by how the torso segment 

moved relative to the global coordinate system.  Torso bending to the right was defined in 

the positive direction and to the left in the negative direction.  Torso forward bending (+) 

and backward bending (-) were calculated. The glenohumeral joint angles were 

determined by how the upper arm segment moved in relationship to the torso segment. 

The glenohumeral joint movement was calculated in the sagittal plane (GHsag) 

representing the flexion (+) and extension (-) angle, the frontal plane (GHfront) 

representing the abduction (+) and adduction (-) angle and the transverse plane (GHtran) 

representing internal rotation (+) and external rotation (-).  The elbow joint angles were 

calculated from the relationship of the upper arm segment to the forearm segment. 

Torso segment 

Upper arm segment 

Hand segment 

x y

z
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The Bodybuilder TM software code used to compute the joint angles is shown in 

Appendix A.  In general, the software will compute the floating point Euler angles 

between defined segments by using the following syntax: 

EulerAngles  = -<ParentSegment, ChildSegment, token> 

The EulerAngles describe the relative ParentSegments orientations as three rotations 

about the axes of the moving ChildSegment. An arbitrary sequence of rotations is used to 

align the axes of the rotations. By convention, the rotation with the largest assumed 

angular displacement is the first rotation.   Basically the angles between the two moving 

local coordinate systems are determined.  As described in Section 5.2.1, the token is the 

order definition, in this case the order of rotation.  For the shoulder, elbow and wrist 

angles the yxz token was used with y representing flexion (+)/extension(-) movement, ax 

representing the abduction (+)/adduction(-) movement and z representing the internal (+)/ 

external (-) rotation movement. 
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Chapter 6: Kinetic Chain and Inverse Dynamics 
 

6.1 Introduction 

Inverse dynamics is used to determine the kinetics or reaction forces and moments 

at each joint responsible for the joint motion from the kinematic data.  The link-segment 

model or kinetic chain is a mathematical model that uses Newton-Euler equations 

explained in Chapter 2 to determine the kinetics.  Also explained in Chapter 2 are the 

assumptions made about the human body to simplify calculations.  By calculating 

backwards from the terminal segment, the applied forces and moments of each segment 

of the human kinetic chain, in this case the upper arm, can be determined.  Forces can be 

due to gravity or from forces applied to a segment by another object. 

  An open kinetic chain has no resistance at the terminal segment so the equations 

of motion of each segment based on the effects of gravity can easily be solved using the 

kinematic data of the segments.  From the positions acquired from the markers during the 

movement and from anthropometric tables (Section 6.2).  The positions of center of mass 

of each segment were extracted from the marker position data and the anthropometric 

tables (Section 6.2).  The second derivatives of segmental center of mass locations and of 

the joint angles are used to calculate the joint reaction forces (including those due to 

gravity) and the joint moments of inertia.  There is some inherent filtering completed 

during this process since it is digitally accomplished.  A moving average filter of width 

0.5 seconds was also applied since the derivatives are taken from the current frame and 

frames +/- 0.25 from the current frame [49].  In simpler terms, the BodyBuilderTM 



 

  
43

software linear and angular velocity and acceleration are calculated using three samples 

of the segments position and orientation, centered on the current frame.  Using these three 

samples allows the segment movement calculations to be significantly greater than any 

error that may occur from noise or marker positioning.  Spikes caused during the 

reconstruction process were also removed during the filtering process.  

When the terminal segment comes into contact with another object such as a door 

knob or a box, the kinetic chain is considered a closed chain and the force between the 

obstructing object and the terminal segment has to be measured.  Calculating joint forces 

and torques is an arduous task for the upper limb, due to the difficulty of quantifying the 

forces acting on the terminal segment.  For this reason, the joint kinetics involved during 

the steering wheel turn were not calculated. 

Appendix B shows a simple 2-D calculation of the force and moment of the 

shoulder joint in one plane using inverse dynamics considering only the force of gravity.  

This example is an illustration of how the kinetic chain and Newton-Euler equations are 

used to determine forces and moments at each joint.  However, the kinetic data were 

determined for this study by using the Vicon BodyBuilderTM software written in 

BodyLanguageTM code in three dimensions. 

 

6.2 Segment Hierarchy Description 

The scope of this study concentrates on the upper limb, so the hierarchy of the 

upper limb will be described.  A hierarchical description of the physical interconnection 

of the segments described in modeled in Chapter 5 must be defined in the 

BodyLanguageTM of the BodyBuilderTM software.  To describe how each segment is 
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connected to other segments and its anthropometric characteristics the following notation 

is used in BodyLanguageTM: 

SegmentName = [Segment, Parent Segment, Attachment Point, Anthropometric Data]        

The Segment is also called the child segment.  The Parent Segment is higher up in 

the kinetic chain than the child segment and is connected to the child segment through the 

attachment point defined in the global space.  The Anthropometric Data was entered into 

the script as a table for each segment (Appendix A).  The anthropometric table consists of 

four numbers: 

• the segment mass as a proportion of the total body mass of the subject 

(%BodyMass) 

• the center of mass point as a proportion of the length of the principal (long) 

segment axis 

• the transverse radius of gyration around the center of mass as a proportion of the 

segment length used for calculations around both transverse axes 

• the longitudinal radius of gyration around the center of mass as a proportion of 

the segment length used for calculations around the principal (long) axis 

 

The upper arm segment was connected to the torso with the attachment at the 

SJC.  The forearm segment was connected to the upper arm segment with the attachment 

at the EJC.  The hand was connected to the forearm segment with the attachment point at 

the WJC.  Once the hierarchy was described and the anthropometric information of each 

segment was entered  a REACTION function solved the equations of motion of the 

segment taking into account all reactions applied to it by connected segments.  The 
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following syntax was used in Bodylanguage to complete the reaction solutions of each 

segment: 

ReactionName = REACTION (SegmentName) 

The REACTION function outputs a 3 x 3 matrix describing a combination of force (Fx, 

Fy, Fz), moment (Mx,My,Mz)  and point of application (Px,Py,Pz) of the reaction on the 

specified segment: 

PzPyPx
MzMyMx
FzFyFx

 

The reaction matrix can then be decomposed into its separate components using the 

following syntax: 

Forcename = ReactionName (1) 

Momentname = ReactionName (2) 

Pointname = ReactionName (3) 

The BodyLanguangeTM program is shown in Appendix A and the details of the kinetic 

chain are under the heading, Kinetics. 

 

6.3 Kinetic Chain While Opening a Door 

While opening a door, the terminal segment is the hand.  To determine the forces 

and moments acting on the hand, an ATITM force and torque (F/T) transducer described 

in Section 4.4 was used  The coordinate system of the F/T transducer was entered into the 

Vicon BodyBuilder program in relation to the global coordinate system.   The segment 

hierarchy connected the torso to the upper arm, the upper arm to the forearm, the forearm 

to the hand and the hand to F/T transducer. The CONNECT function was used to apply 
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the reaction expression of the F/T transducer consisting of the force, moment and point of 

application to the hand. 

 

6.4 Kinetic Chain While Lifting a Box 

The box lift was a bilateral task.  A box segment was created from 4 markers 

placed on the box (See Figure 6.1).  The kinetic hierarchy was similar to the door kinetic 

chain from the torso down to the hand.  However, for this case half the box mass was 

connected to the right hand and half of the box mass was connected to the left hand.  

Again the CONNECT function was used to connect the box reaction expression to the 

hands.  The box reaction was defined using the weight of the box as the force. 

 

 

Figure 6.1.  Marker placements on the box during the bilateral lifting task. 

 

6.5 Adjusted Inertial Properties for an Upper Limb Prosthesis 

The anthropometrics data for the torso, and upper arm were defined the same as 

for the non-amputee group.  However, the anthropometric data for the forearm and hand 
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segment had to be estimated and adjusted for the side of the prosthesis. The whole TRMP 

of each subject in the prosthesis user group was weighed prior to data collection.  The 

mass of the terminal device (hand) of the TRMP was acquired from the manufacturer.   

Due to the difficulty of disassembling the TRMP of each subject, however, on average 

TRMP was used to determine the location of the center of mass of the hand and forearm 

as a proportion of the prosthesis. It was assumed that the prosthesis was symmetric as far 

as thickness and therefore the location was center of mass was reduced to two 

dimensions. Since these objects of the TRMP are of complex shape, each object was 

suspending from two different points in two planes.  A plumb line was marked during 

each suspension and the intersection of these lines was estimated as the center of mass of 

the object. Once the proportion of center of mass location to length of principal axis of 

the forearm and hand segment of the general prosthesis was determined this ratio was 

used for each amputee subject. Normally, the moment of inertia of a geometrically 

complex object such as a prosthesis can be estimated by pendulum suspension method.  

However, in this case the radii of gyration were assumed to be similar to the human arm 

and the moment of inertia for the prosthesis was calculated using the following equation: 

        I = mr2                                            (6.1) 

 

where m is the mass of the prosthesis and r is the radius of gyration of human arm [16]. 

This assumption should have minimal effect on the moment calculations because 

the small angular acceleration values during the tasks result in inertial torques that are 

much smaller than the torques due to gravity.  An equivalent intact body mass of the 

PROS group was estimated by the following equation: 
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Adjusted Body Mass = 
mass) forearm Noramlized mass hand d(Normalize-1

Mass) Prosthesis-(BodyMass 
+

         (6.2) 

  

where BodyMass = body mass including the mass of prosthesis measured using a scale 

Normalized segment mass = proportion of normal body mass of the missing 

segments (hand and forearm) [16] 

Prosthesis mass = mass of prosthesis measured from a scale 

In the BodybuilderTM software, a table of anthropometric data based on the standards 

values published by Winter was used [16].   For subjects with a prosthesis a direct 

definition of mass properties was used in the following general form: 

 segementS =[segments, SegmentMass, CenterOf MassPoint, Inertia] 

where  segmentS is the segment name 

 SegmentMass is a scalar quantity expressing the mass of the segment (in kg)  

 CenterOfMassPoint is the location of the center of mass of the segment in the 

local coordinate system and 

 Inertia is defined using three terms which correspond to the components of the 

moment of inertia. 

Each subject had a corrected body mass and a mass of the prosthesis.  A center of 

mass point was defined from a suspension test of a typical TRMP so the same value was 

used for all subjects (Figure 6.2).  Table 6.1 shows these measurements calculated from 

the suspension test.   The inertia term used was the same as published by Winter [16].  

Appendix A under the Kinetics heading shows specifically how these corrections were 

implemented in the software program. 
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Figure 6.2.  Suspension test on a typical TRMP to determine inertial properties. 

 

 

 

Table 6.1.  Inertial properties from a typical TRMP calculated from a suspension test. 

Segment of 
Prosthesis 

Distance from distal end to CoM 
(cm) 

Total 
Length 

Proportion = 
Distance/Total 

Forearm 19 28 0.68 
Hand 10 17 0.59 

 

 

6.6 Adjusted Inertial Properties with Added Mass 

The amputee subjects completed the tasks with added mass proximally near the 

elbow and distally near the wrist.  A 96 g mass was added using a wrist band measuring 

7.5 cm along the principal axis on the forearm segment of the prosthesis.  

 

 



 

  
50

 To determine the new location of the center of mass as a proportion of the total 

length of the forearm (FA) the following equation was used: 

 

 

 

  

    (6.3) 

 

• LBand= Length of wrist band (added mass) 

• LFA= Length of forearm 

• XCoM of FA= Position of center of mass of forearm 

• XCoM of Band= Position of center of mass of wrist band 

                                       

          Added mass at elbow                                  Added mass at wrist 

Figure 6.3.  Depiction of the forearm (FA) with mass added at the elbow and at the wrist. 

 

 For each subject the distance from the distal end to the center of mass location 

was determined using the proportion determined from the suspension test on the average 

TRMP and the specific forearm lengths of the subjects using the following equation: 

LFA 

XCM of FA 

XCM of Band= LFA - ½ L Band 

LFA

XCM of FA 

           XCM of Band= ½ L Band 

New X CoM of FA ∑
∑=

Mass
Moments

) (Mass) (Mass
) )(Mass (X) )(Mass (X

BandFA

BandBand of CoMFAFA of CoM

+
+

=
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 X cm = (length of forearm of prosthesis) * (proportion CoM location)            (6.4) 

 where X cm = distance of CoM from distal end (wrist) and 

            length of forearm of prosthesis was measured for each subject and the 

proportion of CoM location = 0.68 as measured from average TRMP as explained 

above.  Table 6.2 shows the adjusted inertial properties for each of the amputee subjects 

with mass added at elbow and mass at wrist. 

Table 6.2.  Adjusted inertial properties of the prosthesis users with added mass. 

 Length of FA (cm) Location of CoM  
as a proportion of FA length 

mass at elbow  

Location of CoM  
as a proportion of FA length 

mass at wrist  
Subject 1 23 0.70 0.62 
Subject 2 23 0.70 0.62 
Subject 3 28 0.70 0.60 
Subject 4 29 0.70 0.62 
Subject 5 28 0.71 0.58 
Subject 6 31 0.70 0.61 
Subject 7 36 0.69 0.64 
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Chapter 7: Data Analysis 
 
7.1 Validation 

Validity is the degree to which a study accurately depicts the actual measurements 

examined. Numerous studies have validated the accuracy of motion analysis technique 

[50,51]  

A validation study was conducted to determine the accuracy of the camera and 

marker placement as well as the Bodybuilder TM program (see Appendix A) that 

calculated angles written by the author.  The same marker set described in Chapter 3 was 

used.  The validity was first tested on a human volunteer.  A plastic goniometer was used 

to position the subject’s arm at various positions: shoulder flexion, shoulder abduction 

and elbow flexion at   30°, 60°, 90°, 120°, and 150°.  The subject was asked to maintain 

these positions statically during recording. In a similar study, a universal goniometer was 

filmed in various static angular alignments in order to validate a Peak 5 motion analysis 

system [52]. 

Analysis of validity by linear regression was completed.  Figure 7.1 depicts the 

relationship between the measuring devices during shoulder flexion.  The difference 

between the means and standard deviations of the two measuring tool were computed. 

Pearson’s R correlation, which describes the linear relationship between two variables, 

was also computed to compare the joint angles determined by the two modes of 

measurement [53].  The results of the validity testing comparing measurements from the 
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goniometer and from the ViconTM system during shoulder and elbow motion including 

the Pearson’s R correlation are shown in Table 7.1. 

Even though the results for the human subject elbow flexion showed a high 

correlation (Pearson’s 0.99) a larger mean difference and standard deviation difference 

was shown, and therefore elbow flexion was also tested using a skeleton model.  The 

skeleton model of the upper limb was used to dynamically flex the elbow to the following 

joint angles: 0°, 30°, 60°, 90°, 120°, and 150°.  The arm was held in a neutral position 

and flexed at the elbow to the specified goniometer measurements and then back to the 

starting position.  The results from the skeleton model validity test are shown in Table 

7.2. 
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Figure 7.1.  Linear regression between the goniometer and Vicon TM for shoulder flexion.  
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Table 7.1.  Measurements of shoulder and elbow angles from the goniometer and the ViconTM system. 

 Shoulder Flexion Shoulder Abduction Elbow Flexion 
 Goniometer ViconTM Goniometer ViconTM Goniometer ViconTM 
 0 0.10 0 0 0 24.00 
 30 28.50 30 33.90 30 47.30 
 60 63.20 60 56.80 60 70.30 
 90 87.80 90 82.90 90 95.20 
 120 117.10 120 144.20 120 118.30 
 150 149.20 NA NA 150 140.90 

Mean Difference 0.68 3.6 7.7 
Stdev Difference 0.72 7 12 

Pearson’s r 0.99 0.98 0.99 
 

Table 7.2.  Measurements of elbow flexion of skeleton model. 
 

Elbow flexion (Skeleton) 

Goniometer (degrees) ViconTM (degrees) 

30.00 54.30 

60.00 60.80 

90.00 95.30 

120.00 117.00 

150.00 148.40 

Mean difference = 1.6 

Stdev. Difference = 3.6 

Pearson’s r = 0.985 

 

 The validity results of the shoulder flexion show a 0.7 mean difference between 

the measurements taken and the results provided by ViconTM system.  The results of the 

shoulder abduction were much less conclusive.  This was perhaps because of the 

subjective nature of taking measurements and/or the subject slightly changing position.  

These same limitations may explain the much higher mean difference in the elbow 

flexion of the human subject.  However, the change in methodology and the usage of the 

skeleton as a subject provide for much more reassuring data with only a 1.6 mean 

difference. 
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7.2 Reliability  

 Reliability is the repeatability or consistency of a measurement.  Reliability 

explains how reproducible and free from error a measurement is.  Test-retest reliability 

describes the measurements consistency on two separate occasions keeping the testing 

conditions as stable as possible.  Intrarater reliability refers the consistency of the data 

from one person over multiple trials one right after the other [53].  The intrarater 

reliability of the Vicon TM system in this case is more important since the trials on one 

subject were recording one right after each other on the same day.  Figure 7.2 shows the 

average shoulder flexion with standard deviations of one subject while opening a door 

during 3 different trials.  This graph indicates acceptable repeatability. 
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Figure 7.2.  Average shoulder flexion with standard deviations shaded areas of one subject opening a door 
three times showing repeatability. 
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7.3 Kinematic Outcome Measures 

The following kinematic outcome measures were calculated: range of shoulder 

flexion of glenohumeral joint, range of shoulder abduction, range of shoulder rotation, 

range of elbow flexion and torso sideways and forward bending.  The range of motion 

was calculated by subtracting the minimum angle from the maximum angle. The 

maximum angle and total range of motion were then used in subsequent analyses.  

For the drinking and door opening tasks, these measures were determined from 

the right (dominant) side for the control group and on the prosthesis side (6 subjects on 

the left side; 1 subject on the right side) for the PROS group.  For the box lift and turning 

tasks, measures from both the right and left side were determined. The degree of 

asymmetry (DoA) between the right (dominant) side (R) and the left side (L) during the 

bilateral box lift task was calculated with the following equation:  

   DoA = 
)(
)(

RL
RL

+
−           (7.1) 

 

The DoA was calculated for the range of shoulder flexion, shoulder abduction and 

elbow flexion. The value of zero represented perfect symmetry, a positive number and a 

negative number represented the left dominant asymmetry or increased range of motion 

of the left side and right dominant asymmetry respectively. 

 

7.4 Kinetic Outcome Measures 

 The joint reaction forces and the joint moments of the glenohumeral joint, the 

elbow joint and the wrist joint were calculated.  The forces in three directions (Fx, Fy, 

Fz) of the joints were calculated with Fx in the direction anteriorly to posteriorly, Fy, 
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medially to laterally and Fz in the vertical direction.  The peak forces and moments were 

calculated and then divided by the individual subject body mass (N) to obtain values as a 

percentage of body mass in order to accurately compare between subjects.  These peak 

forces and moment as expressed as % of body mass were used in the subsequent 

statistical analysis. 

 

7.5 Statistical Analysis 

7.5.1 Power Calculation to Determine Sample Size   

 There is a relatively small upper limb amputee patient population in the greater 

Tampa area, particularly when limited to TRMP users. As mentioned in Chapter 2, few 

studies have evaluated kinematic and kinetic data of the upper limb and even fewer have 

considered upper extremity prosthesis users. This fact makes estimating clinically 

relevant variability difficult. Murray et al. studied the joint angles, forces and moments at 

the shoulder and elbow on ten unimpaired subjects.  They reported standard deviations 

ranging from 6˚ to 38˚ for shoulder flexion, 5˚ to 13˚ for shoulder abduction and 4˚ to 24˚ 

for elbow flexion among the ten tasks studied [34].  Changes smaller than 5˚ standard 

deviation will be too small to detect and changes in excess of 38˚ standard deviation is 

unrealistic expectations.  Therefore standard deviation of 10˚ was chosen within the 

reported range of 5˚ to 38˚ of all movements. 
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The following power calculation was used to determine the sample size needed to 

show a  

E
zn σα *2/=                                                                 (7.2) 

where zα/2   =1.96 at α = .05 

σ = 10˚ from 5˚ to 38˚ range reported [34] 

E =  7˚ within the population mean, which is 4% of largest mean angle (164˚) 
reported [34]. 

With this calculation it was determined that a sample size of seven would be 

sufficient to determine a statistical difference between groups.  A power calculation to 

obtain a “norm” of a particular group would most likely produce a much higher sample 

size requirement.  However, normal functional range of upper limb joints during feeding 

activities has been published with a sample size of ten [34]. 

  

7.5.2 Between Subject Analysis 

Using SPSS software (Ver. 15 for Windows, Chicago, IL), a one-way analysis of 

variance (ANOVA) was performed on each maximum angle and range of motion for 

each of the four tasks separately between the three groups: non-braced (N-BR), braced 

(BR) and transradial prosthesis users (PROS).  Since the N-BR and BR groups were the 

same subjects, a repeated measured ANOVA was conducted to determine differences 

between those two groups.  A P value of less than 0.05 was considered significant with 

level of significance of α = 0.05. A one-way ANOVA was also computed for the DoA for 

each range separately for the two bilateral tasks: lifting a box and turning a steering 

wheel.  A Tukey post hoc comparison adjusted for unequal sample sizes was used to 
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determine between which two of the three groups the significant differences, if any, 

occurred [54,55].  

 

7.5.3 With-In Subject Analysis 

A within subject repeated measures design where each subject repeated tasks 

during the three levels: no mass added, mass added at elbow, mass at wrist was analyzed 

for the BR and PROS group. Again using SPSS software package package (Ver. 15 for 

Windows, Chicago, IL), a repeated measure analysis of variance (ANOVA) was 

performed on each maximum and range of motion for each task separately for the three 

interventions. 
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Chapter 8: Descriptive Observations 
 

As explained in the previous chapter, average range of motions and maximum 

joint angles based on marker placement were collected and will be reported in Chapter 9. 

However, the marker set described in Chapter 3, was limited to the upper limbs and torso.  

During the study, compensatory motions were observed in other parts of the body such as 

the neck and legs but not analyzed due to the limitation of the marker set.  For this reason 

and because only range and maximum angles were reported, this chapter is dedicated to 

descriptive observations of the completion of tasks. 

 
8.1 Control Subjects 

The control subjects were the ten non-amputee subjects that first completed the 

task with no brace and then completed the task with a brace limiting wrist and forearm 

movement. While drinking from the cup, all the control subjects followed a similar 

pattern of raising the cup to the mouth by mostly flexing the elbow. The door knob could 

be twisted to the right or to the left to be opened.  All but one of the ten control subjects 

turned the door to the right by mostly supinating the forearm. The starting point of the 

forearm rotation varied, with some subjects starting in a neutral position and others 

starting with the forearm pronated. During the box lift, eight of the control subjects 

followed a three-part linear path: bringing the box straight toward the stomach in a 

horizontal line, lifting straight up to the level of the shelf in a vertical line and completing 

the task in a horizontal line.  Two of the control subjects, brought the box toward stomach 

and upward at the same time in a more semi-circular motion.   
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Subjects were allowed to set the chair used during the turning task to a 

comfortable position that allowed two hands to remain on the steering wheel at a “10 and 

2” position.  This allowed for varying starting positions of the rest of the arm with some 

subjects keeping the elbow in a more extended position while others lowered and flexed 

the elbow.  Spine posture also varied while turning a steering wheel with some subjects 

sitting up with the vertebral column straight and others sitting in a more slumped 

kyphotic position. 

The guidelines described in Chapter 3 were given to the subjects, however, no 

instructions were given to the subjects on how to compensate for lack of wrist and 

forearm movements while braced.  Braced subjects were observed forward bending the 

cervical spine (neck) to compensate while drinking from a cup.  Movement of the 

cervical spine was not recorded and is non-quantified therefore limiting our ability to 

measure compensatory motions that may involve the neck in this study.  The one control 

subject that turned the door to the left pronating his forearm turned the door to the right 

while braced.  While using the brace, subjects were asked not to use the proximal 

interphalangeal (PIP) joints or the distal interphalangeal (DIP) joints of the fingers and 

instead hold the index and middle fingers straight moving only the metacarpophalangeal 

joints of these two fingers together in opposition to the thumb to simulate the one degree 

of freedom of a prosthetic hand.  However, it seemed that two subjects were able to get 

some rotation of the door knob by flexing the PIP and DIP joints of the one or two 

fingers.  Four of the subjects seemed to rely mostly on torso side bending for 

compensation, while two visibly internally rotated the shoulder and one awkwardly 

abducted the shoulder, to open the door while braced.  During the box lift while braced, 
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all the subjects seemed the follow the same trajectory of the box  (either linearly in three 

stages or a semi-circle) as with no brace, although some had to bend torso backwards to 

accommodate the same pattern.  There were no visible obvious differences between 

braced and unbraced trials while turning a steering wheel. 

 

8.2 Prosthesis Wearing Subjects 

The subjects in the prosthesis wearing group had a wide range of techniques used 

to accomplish the tasks.  As mentioned in Chapter 3 (3.3 Description of Tasks), the 

subjects were given limited guidelines for each task, and no specific instructions on how 

complete the task that normally require forearm or wrist movement. 

While drinking from a cup, five of the TRMP users had some forward bending of 

the cervical spine.  One subject did not seem to bend the neck, rotate the torso to the left 

toward the side of the prosthesis to bring the cup up to mouth level.  The other subject 

(Subject # 3, see Section 8.4) that did not use neck bending, abducted the shoulder to 

compensate for lack of wrist and forearm movement.   

The compensatory motion of the TRMP users while opening a door seemed to be 

the most varied.  All the TRMP users had some visible torso bending toward the side of 

the prosthesis.  Two subjects bent the knees in a squatting position to open the door.  One 

of these subjects squatted in such an exaggerated manner that he was eliminated from the 

analysis of the door task (see Chapter 9 Results).  The other subject only bent slightly at 

the knees, and stood farther back from the door having to extend his arm greatly. Some of 

the TRMP users visibly bent the torso forward while one subject visibly bent the torso 

backward to open the door.  One subject described in Section 8.4, positioned her body 



 

  
63

perpendicular to the door (instead of facing toward the door) and seemed to hike her hip 

on the prosthetic side to complete the task. 

Prior to lifting instead of bringing the box toward the chest and straight up, four of 

the subjects in the PROS group shifted the box toward the unaffected side and lifted the 

box following a horizontal semi-circular trajectory that differed from the vertical semi-

circular path followed by a couple of the control subjects mentioned in Section 8.1.  

Without wrist extension, the prosthetic arm was unable to position the elbows out of the 

way to allow the box to be brought to the chest prior to lifting.  The three TRMP users 

that did not use this circular pattern, seemed to rely more on the backward or side 

bending (toward the prosthetic side) of the torso.  The majority (five of seven) of the 

PROS group chose to place the fingertips of the prosthetic hand on to the side of the box.  

The remaining two subjects placed the medial side of the thumb and index finger of the 

prosthetic hand on to the box.  

 

8.3 Case Study of Prosthesis User Subject # 3 

One subject was reported as a case study for the American Academy of Orthotics 

and Prosthetists Conference (Orlando, FL; Feb. 2008).  This volunteer was a 53 year old 

female who was born with a congenital defect on the left arm that required surgical 

revision of a vestigial limb.  She had been using the myoelectric transradial prosthesis 

with SensorHand (Otto Bock, Duderstadt, Germany) for sixteen years.  Her prosthesis 

weighed 1.2 kg. In addition to completing the tasks with the prosthesis, this subject 

completed three of the simulated activities of daily living: drinking from a cup, opening a 

door, and turning a steering wheel with her sound hand also. For the steering wheel task, 
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the subject completed the task three times, first turning to the right (sound side) and then 

to the left prosthetic side. Table 8.1 shows the maximum, minimum and range of the 

shoulder, elbow and torso motion for each task.  The wrist flexion and extension and 

forearm rotation (Table 8.1) were calculated for the sound arm only since the prosthesis 

did not allow for these motions. 

While drinking from a cup with the sound arm, the subject used a total of 31 

degrees of wrist flexion and extension and 24 degrees of forearm rotation.  While using 

the prosthesis the subject used less elbow flexion and a greater peak shoulder abduction 

to compensate for the lack of wrist movement and forearm movement.  Opening a door 

with the sound arm required 64 degrees of wrist flexion and extension and 123 degrees of 

forearm rotation.  Compensation while completing the door opening task with a 

prosthesis occurred by bending the torso to the right side and by maintaining the elbow 

flexed at 87 degrees (Figure 8.1a-b).  The steering wheel task also required wrist flexion 

(49 degrees) and forearm pronation (33 degrees) of the sound arm.  With the lack of these 

movements on the prosthetic side, like during the door task the elbow remained mostly 

flexed, but the shoulder flexed and abducted more to compensate. 
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Table 8.1.  The maximum, minimum and range of motions (in degrees) during each task for 
Subject # 3 of prosthesis users. 

 
  Left Right 
Task Motion (in degrees) Max Min Range Max  Min Range 
Cup        
 Shoulder flexion   71 25 46   73 25 48 
 Shoulder ab(+)/ad(-)duction   21 18   3   12   3   9 
 Elbow flexion 102 74 28 122 72 50 
 Wrist flexion (+)/extension(-)  N/A N/A N/A  21 -10    31 
 Forearm pronation(+)/supination (-)  N/A N/A N/A 16 -8 24 
Door        
 Shoulder flexion 23   4 19 57  17 40 
 Shoulder ab(+)/ad(-)duction 35 26   9 -1 -11 10 
 Elbow flexion 87 80   7 58    5 53 
 Torso bend right 16   3 13 9    5   4 
 Wrist flexion (+)/extension(-) N/A N/A N/A 25 -39 64 
 Forearm pronation(+)/supination (-) N/A N/A N/A 46 -77 123 
Turn        
 Shoulder flexion 109 48 61 95   49 46 
 Shoulder ab(+)/ad(-)duction  43   6 37 5 -17 22 
 Elbow flexion  88 76 12 83   48 35 
 Wrist flexion (+)/extension(-) N/A N/A N/A 49    0 49 
 Forearm pronation(+)/supination (-) N/A N/A N/A 33    0 33 

    
 
 
 
 

                   

Figure 8.1.a. Torso right side bend during the door task.     Figure 8.1.b. Elbow flexion during the door task. 
 
 

In general when comparing the prosthetic and sound arm for this subject, an 

increase in peak shoulder abduction was shown in all tasks.  The elbow of the sound side 
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and prosthetic side was also used differently either less or by maintaining a greater peak 

flexion.  Opening the door required torso right side bending which was not predicted.  

This may have been due to the difficulty of grasping the door knob with prosthetic hand.  

It was difficult to recruit volunteers using a TRMP to complete this study so this type of 

comparison between the prosthetic and sound arm was not recorded and analyzed due to 

the extra time commitment it would have required from the subjects. 
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Chapter 9: Experimental Results 

 
9.1 Range of Motion Results 

Peak wrist flexion and extension and peak forearm pronation and supination 

required to complete the tasks by the non-impaired group are shown in Table 9.1.  The 

BR group and the PROS group lacked forearm and wrist movements and used different 

parts of the upper limb kinetic chain as compensation to complete the tasks.   

 
Table 9.1.  Average and standard deviation (SD) peak wrist flexion and extension and peak forearm 
pronation and supination of right (dominant) side (in degrees) of control group during the four tasks. 

 

 Wrist flexion Wrist 
extension 

Forearm 
pronation 

Forearm 
supination 

Task Angle(˚) SD Angle(˚) SD Angle (˚) SD Angle (˚) SD 

Cup 7 7 25 7 11 8 2 8 

Door 20 8 25 17 54 29 39 37 

Box lift 8 11 70 12 0 0 70 18 
Right 
turn 62 16 21 14 36 12 75 31 

 

 
9.1.1 Between Group Results 

 The outcome measures between the three groups: non-braced (N-BR), braced 

(BR) and prosthesis user (PROS) were compared using a one way analysis of variance as 

explained in detail in Section 7.5.  Tables 9.2-9.5 list the maximum (MAX) and range of 

motion (ROM) of the glenohumeral joint in the sagittal plane (GHsag), the frontal plane 

(GHfront), the transverse plane (Ghtran), the elbow flexion (Elflex) and in some cases the 

torso motion of the three groups during each task. 
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9.1.1.1 Drinking from a Cup 

The mean maximum and total range of motions of the shoulder and elbow while 

drinking from a cup are shown in Table 9.2. Significant differences (P<0.05; α=0.05) 

were found in the range of GHsag (P=0.04) between the groups.  Tukey post hoc 

comparisons showed the PROS group has a significantly less range of motion in the GH 

joint in the sagittal plane (Figure 9.1). The PROS group had the greatest range of elbow 

flexion (40 degrees) of the groups (Figure 9.2).   

Table 9.2.  The maximum and range of motion of the glenohumeral (GH) joint and the elbow joint 
of the three groups while drinking from a cup. 

 
CUP N-BR BR PROS 

Angle Max SD ROM SD Max SD ROM SD Max SD ROM SD 

GHsag 70 19 69 19 77 6 71 24 72 30 47 12 
GHfront 28 8 10 7 31 12 13 9 23 13 9 7 
GHtran 28 28 20 6    33 23 21 17 37 13 20 9 
ELflex 123 10 31 13 115 8 30 11 112 16 40 9 

 
Note: Max: maximum; ROM: range of motion; SD: standard deviation 
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Figure 9.1.  Average range of motion of the glenohumeral (GH) joint in the sagittal plane of the three 
groups while drinking from a cup. 
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Figure 9.2.  Average range of elbow flexion of the three groups while drinking from a cup. 

  

9.1.1.2 Opening a Door 

The mean maximum and total range of motions of the shoulder and elbow while 

opening a door are shown in Table 9.3. While opening a door, the PROS and BR group 

showed significantly greater range of shoulder rotation when compared to the N-BR 

group (P = <.001; P=.046).  The PROS group has the largest internal shoulder rotation, 

while the N-BR showed external shoulder rotation (Figure 9.3). Significant differences 

were shown in the range of motion of the elbow flexion (P=0.003). Tukey post hoc 

comparisons showed that the PROS group had a significantly smaller range of elbow 

flexion than the N-BR group (Figure 9.4). Figure 9.5 shows the torso side bending toward 

the affected side of one subject from each group while opening a door.  Only subjects that 

completed the door task without total knee bending were considered and therefore six 

subjects in the PROS were used for analysis of this task.  Peak torso bending to the right 

and the range of torso right side bending was significantly greater (P=0.002; P=0.009 

respectively) in the PROS group compared to the N-BR group (Figure 9.6).  Although the 
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BR group showed a greater range of torso bending when compared to the N-BR group, 

this difference was not significant. 

 
 

 
Table 9.3.  Maximum and total range of motion of shoulder and elbow of the reference, braced and 

prosthetic side while drinking from a cup. 
 

DOOR N-BR BR PROS 
Angle Max SD ROM SD Max SD ROM SD Max SD ROM SD 
GHsag 52 12 49 12 50 18 51 18 44 30 38 29 

GHfront 29 7 15 7 35 11 17 5 30 12 20 12 
GHtran -7 13 18 9 9 27 49 17 30 18 37 11 
ELflex 66 14 53 14 61 15 41 16 73 16 24 16 
Torso  

Sideways 
Bend 

5 7 10 5 8 12 16 7 26 13 19 11 

 
Note: Max: maximum; ROM: range of motion; SD: standard deviation 
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Figure 9.3.  Average range of shoulder rotation of the three groups while opening a door. 
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Figure 9.4.  Average range of elbow flexion of the three groups while opening a door. 
 
 
 
 
 
 

                  
 

Figure 9.5.  Torso side bending (toward affected side) of one subject from each group while 
opening a door. 
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Figure 9.6.  Average torso bending (affected side +; unaffected side –) during door opening of the 
three groups. 

 
 
 

   

 

9.1.1.3 Lifting a Box 

Significant differences were shown in the range of motion of the glenohumeral 

joint in both the sagittal plane (P=.001) and frontal plane (P<.001) and the range of 

motion of the elbow (P<.001) while lifting a box (Table 9.4). Tukey post hoc 

comparisons showed that the differences were between the N-BR and PROS groups and 

the BR and PROS groups. As shown in Figure 9.6, the PROS group showed a 

significantly greater maximum and range of torso forward bending  during the box lift 

task when compared to the N-BR group (P<0.001) and the BR group (P=0.010). The 

PROS group also showed significantly increased maximum torso right side bending 

(P<0.001) when compared to N-BR and BR groups, although the difference in total range 

of torso side bending was not significant (Figure 9.8).   
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Table 9.4  Average maximum (Max) and range of motion (ROM) of the three groups while lifting a 
box.  

 
Box Lift N-BR BR PROS 
Angle Max SD ROM SD Max SD ROM SD Max SD ROM SD 

A GHsag 88 13 82 17 89 20 70 12 85 16 42 22 
UA GHsag 85 12 81 19 81 14 77 15 77 11 73 19 
A GHfront 41 7 30 8 43 8 25 9 32 10 11 7 

UA GHfront 44 10 28 8 42 10 28 7 27 14 23 12 
A GHtran 23 13 25 14 31 44 34 11 42 30 22 10 

UA GHtran 33 13 34 12 33 18 27 13 44 13 28 13 
A ELflex 102 13 78 18 84 31 54 26 66 17 21 18 

UA ELflex 108 7 78 19 90 30 71 22 82 21 56 29 
 

Note: Max: maximum; ROM: range of motion; SD: standard deviation, A:affected side; UA:unaffected 
side 
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Figure 9.7.  Average torso bending (forward + / backward-) while lifting a box. 
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Figure 9.8.  Average range of torso bending (Right side +; Left side -) while lifting a box. 
 

 
The degrees of asymmetry of the range of motion of the glenohumeral joint in 

sagittal plane and the range of motion of the elbow also had significant differences 

between the N-BR and PROS group (GHSag: P<.001; ELFlex: P<.001) and the BR and 

PROS group (GHSag: P<.001; ELFlex: P=.01).  Figure 9.9 shows that the PROS group 

had a greater dominance on the unaffected side while lifting a box. 
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Figure 9.9.  Degree of asymmetry during the box lift for each of the three groups. 
 

Note:  Positive DoA represents an unaffected side dominance. 
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9.1.1.4 Turning a Steering Wheel 

Figure 9.10 shows an example of the shoulder flexion of one subject while turning 

a steering wheel non-braced and braced.  It shows that during the braced condition the 

right (affected) shoulder moves through a greater range of flexion when compared to the 

non-braced trials.  Oppositely, the left shoulder moves through a lesser range of flexion 

during the right arm braced trial when compared to the non-braced trial. 

The PROS group showed a significantly greater maximum (P=0.004) and total 

range of elbow flexion (P=0.008) of the unaffected arm when compared to BR group 

although not significant when compared to the N-BR group (Figure 9.11).  Asymmetry 

between the affected and unaffected side was shown in the BR and PROS groups 

although differently (Figure 9.12). 

 

 

Figure 9.10. Right (affected) and left shoulder flexion of one subject during the non-braced and braced 
conditions while turning a steering wheel to the affected side. 
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Table 9.5  Average maximum (Max) and range of motion (ROM) of the three groups while turning a 
steering wheel to the affected side. 

 
Steering wheel 

turn 
N-BR BR PROS 

Angle Max SD ROM SD Max SD ROM SD Max SD ROM SD 
A GHsag 78 12 39 8 86 18 49 5 73 11 36 14 

UA GHsag 99 11 22 6 95 9 15 5 91 4 31 9 
A GHfront 13 6 26 9 18 10 23 10 22 13 16 7 

UA GHfront 15 9 31 7 15 13 27 10 3 4 17 6 
A GHtran -18 13 22 8 -4 16 28 10 -23 21 30 17 

UA GHtran 41 20 34 17 35 21 24 10 38 15 28 14 
A ELflex 60 17 17 5 63 19 29 12 73 14 19 11 

UA ELflex 40 14 29 13 30 13 14 8 58 19 31 12 
 

Note: Max: maximum; ROM: range of motion; SD: standard deviation, A:affected side; UA:unaffected 
side 
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Figure 9.11.  Average range of elbow flexion of the reference, braced and prosthetic side while 
turning a steering wheel to the affected side. 
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Figure 9.12. Degree of asymmetry of range of motions during the steering wheel right turn. 

Note:Negative DoA represents affected side dominance. 

 
 

Significant differences while turning a steering wheel were shown in all range of 

motions except in the affected glenohumeral joint in the frontal plane.  Tukey post hoc 

comparisons showed that most of the differences occurred between the N-BR and BR 

group.  Asymmetry between the affected and unaffected side was shown in the BR and 

PROS group although differently (Figure 9.13). 

 

9.1.2 Braced Group With-In Subject Results 

The average range of motion of the shoulder, elbow and in some cases torso  

while drinking from a cup, opening a door, lifting a box and turning a steering wheel with 

the different mass placements while the control group was braced are shown in Tables 

9.6-9.9 respectively. 

 There were no significant differences between the three factor levels for shoulder 

motion while drinking from a cup (n=9). 
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Table 9.6.  Maximum and range of motions of braced group while drinking from a cup during three mass 
conditions. 

CUP BR BR -EL BR-WR 

Angle Max SD ROM SD Max SD ROM SD Max SD ROM SD 

GHsag 77 6 71 24 77 20 69 20 75 23 70 24 
GHfront 31 12 13 9 31 9 10 6 33 14 13 13 
ELflex 115 8 30 11 112 8 28 12 111 13 28 14 

 
Note: Max: maximum; ROM: range of motion; SD: standard deviation 

 
 

Table 9.7.  Maximum and range of motions of the braced group while opening a door during three mass 
conditions. 

DOOR BR BR-EL BR-WR 
Angle Max SD ROM SD Max SD ROM SD Max SD ROM SD 
GHsag 50 18 51 18 46 15 49 15 53 12 51 14 

GHfront 35 11 17 5 36 9 18 8 36 10 18 7 
ELflex 61 15 41 16 62 20 38 13 48 13 31 13 

 
Note: Max: maximum; ROM: range of motion; SD: standard deviation 

 
 

 
Although no significant differences were found between the different added mass 

positions: near the elbow (proximally) or near the wrist (distally), Figure 9.13 

demonstrates the difference in degree of asymmetry of elbow flexion during the box lift 

during the four experimental conditions completed by the control group.  

Table 9.8.  Maximum and range of motions of braced group while lifting a box during three mass 
conditions. 

 
Box Lift BR BR-EL BR-WR 
Angle Max SD ROM SD Max SD ROM SD Max SD ROM SD 

A Ghsag 89 20 70 12 89 20 69 11 87 23 69 15 
UA Ghsag 81 14 77 15 80 11 81 15 79 14 79 17 
A Ghfront 43 8 25 9 41 10 24 8 43 9 31 12 

UA Ghfront 42 10 28 7 40 10 26 4 44 11 30 5 
A Elbow 84 31 54 26 83 39 60 26 77 35 50 23 

UA Elbow 90 30 71 22 94 60 71 22 97 55 77 30 
 

Note: Max: maximum; ROM: range of motion; SD: standard deviation 



 

  
79

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

No BR BR BR M-EL BR M-WR

De
gr

ee
 o

f A
sy

m
m

et
ry

 
 

Figure 9.13.  Degree of asymmetry of elbow flexion while lifting a box during four conditions.  
 

Note: 0 is perfect symmetry; Negative DoA represents affected side dominance. 
 
 
 

Table 9.9.  Maximum and range of motions of braced group while turning a steering wheel during three 
mass conditions. 

 
Steering wheel 
turn 

BR BR-EL  BR-WR 

Angle Max  SD ROM SD Max SD ROM SD Max SD ROM SD 
A GHsag 86 18 49 5 89 17 45 8 89 19 46 12 
UA GHsag 95 9 15 5 98 11 14 5 98 12 16 6 
A GHfront 18 10 23 10 16 8 18 9 18 9 20 9 
UA GHfront 15 13 27 10 13 12 24 7 14 12 26 7 
A Elbow 63 19 29 12 55 20 25 8 54 20 26 12 
UA Elbow 30 13 14 8 33 15 18 11 32 14 18 11 

 
Note: Max: maximum; ROM: range of motion; SD: standard deviation 

 
 

9.1.3 Prosthesis Wearing Group With-In Subject Results 

During the box lift, a significant difference (p = .033) was shown in the GHSag 

on the affected side.  Bonferroni pairwise comparisons showed that range of GHsag was 

significantly greater (p = .035) with the prosthesis only when compared to using the 

prosthesis with added mass at the elbow.  Using the prosthesis with added mass at the 
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wrist was not significantly different. A significant difference (p = .003) was also shown 

in the degree of asymmetry of the GHfront during the box lift.  Bonferroni pairwise 

comparisons showed that the degree of asymmetry was more positive (representing an 

unaffected side dominance) for the PROS (p = .016) and PROS-WR (p =.002) when 

compared to the PROS-EL mass condition. No other significant differences were found 

in joint angles when comparing the three experimental set-ups: using a prosthesis, using a 

prosthesis with added mass at elbow, and using a prosthesis with added mass at wrist. 

The mean range of motions of the shoulder and elbow for the different added mass 

conditions are shown in Tables 9.10- 9.13. 

 
 

Table 9.10.  Maximum and range of motions of prosthesis users while drinking from a cup at three mass 
conditions. 

 
Cup PROS PROS-EL PROS-WR 

Angle Max SD ROM SD Max SD ROM SD Max SD ROM SD 
GHsag 72 31 47 12 67 31 46 14 72 31 47 12 

GHfront 23 14 9 7 23 13 10 7 23 14 8 6 
ELflex 112 17 40 9 103 11 32 9 107 8 37 13 

 
Note: Max: maximum; ROM: range of motion; SD: standard deviation 

 
 
 

Table 9.11.  Maximum and range of motions of prosthesis users while opening a door at three mass 
conditions. 

 
Door PROS PROS-EL PROS-WR 
Angle Max SD ROM SD Max SD ROM SD Max SD ROM SD 
GHsag 44 30 38 29 43 27 41 24 42 23 44 24 

GHfront 30 12 20 12 29 13 17 10 31 13 22 9 
ELflex 73 16 24 16 72 17 26 17 72 18 24 11 

Torso side 
bend 26 13 19 11 22 18 22 18 19 20 19 20 

 
Note: Max: maximum; ROM: range of motion; SD: standard deviation 
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Table 9.12.  Maximum and range of motions of prosthesis users while lifting a box at three mass 

conditions. 
 

Box Lift PROS PROS-EL PROS-WR 
Angle Max SD ROM SD Max SD ROM SD Max SD ROM SD 

A GHsag 85 16 42 8 81 13 36 9 84 17 37 8 
UA GHsag 77 11 73 19 77 10 64 22 75 12 70 22 
A GHfront 32 10 12 7 33 11 13 4 32 10 9 4 

UA GHfront 27 14 23 12 22 14 19 10 24 14 21 10 
A Elbow 66 17 21 18 66 15 20 16 70 22 25 22 

UA Elbow 82 21 56 29 80 25 57 33 84 24 57 29 
Torso Bend 

Right 5 4 11 6 5 5 12 6 3 6 10 6 

Torso Bend 
Front 30 11 31 10 31 8 29 11 32 11 34 12 

 
Note: Max: maximum; ROM: range of motion; SD: standard deviation 

 
 
 

 
Table 9.13.  Maximum and range of motions of prosthesis users while turning a steering wheel at three 

mass conditions. 
 

Steering Wheel 
Turn 

PROS PROS-EL PROS-WR 

Angle Max SD ROM SD Max SD ROM SD Max SD ROM SD 
A GHsag 73 11 36 14 70 13 35 13 74 12 37 11 

UA GHsag 91 4 31 9 92 5 31 10 93 3 31 10 
A GHfront 22 13 16 7 22 13 16 6 23 13 18 4 

UA GHfront 3 4 17 6 4 7 15 7 4 6 16 6 
A Elbow 73 14 19 11 76 10 17 14 72 15 21 12 

UA Elbow 58 19 31 12 53 25 24 12 53 22 26 14 
Torso Bend 

Right 11 6 4 3 12 3 5 3 13 3 6 2 

 
Note: Max: maximum; ROM: range of motion; SD: standard deviation 

 
 
9.2 Kinetic Results 

 As described in Chapter 3 and Chapter 7, the kinetic data were collected and 

analyzed for one unilateral task, opening a door, and one bilateral task, lifting a box. 
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9.2.1 Between Group Kinetic Results 
 
 The kinetic data were compared between non-braced (NB) control group and the 

prosthesis wearing (PROS) group.  Figure 9.14 shows the peak joint forces acting at the 

shoulder, elbow and wrist between the two groups while opening a door. There were no 

significant differences in the peak joint forces or moments between the two groups while 

opening a door. Figures 9.15-9.17 show the peak forces bilaterally at the shoulder, elbow 

and wrist respectively while lifting a box. The non-braced control group showed 

significantly greater (p=.028) a shoulder joint force in the medial/lateral direction on the 

unaffected (non-dominant side of control; sound side of amputees).  The non-braced 

group also showed a significantly greater (p=.048) elbow joint force along the forearm of 

the affected side (dominant side of controls; prosthetic side of amputees).  Figures 9.18-

9.20 show the degrees of asymmetry between the unaffected side and the affected side of 

the peak forces at shoulder, elbow and wrist joint respectively.  Figure 9.21 depicts the 

moments at the shoulder and elbow joint between the two groups. 
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Figure 9.14.  The peak external joint forces of the non-braced (NB) group and the prosthesis user  (PROS) 
group while opening a door. 

 
Note: Sh: shoulder; El: elbow; Wr:wrist. 
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Figure 9.15.  The peak shoulder joint forces of the non-braced (NB) group and the prosthesis user (PROS) 
group while lifting a box. 

 
Note: A Sh; Affected shoulder; U Sh: Unaffected shoulder. 

 
 
 
 
 
 
 
 

0

0.2

0.4

0.6

0.8

1

1.2

A El Fx A El Fy A El Fz U El Fx U El Fy U El Fz

Fo
rc

e 
(%

 o
f b

od
y 

m
as

s)

NB
PROS

 
 

Figure 9.16.  The peak elbow joint forces of the non-braced (NB) group and the prosthesis user (PROS) 
group while lifting a box. 

 
Note: A El: Affected elbow; U El: Unaffected elbow. 

 
 
 
 



 

  
84

0

0.2

0.4

0.6

0.8

1

1.2

A Wr Fx A Wr Fy A Wr Fz U Wr Fx U Wr Fy U Wr Fz

Fo
rc

e 
(%

 o
f b

od
y 

m
as

s)
NB
PROS

 
 

Figure 9.17.  The peak wrist joint forces of the non-braced (NB) group and the prosthesis user (PROS) 
group while lifting a box. 

 
Note: A Wr: Affected wrist; U Wr: Unaffected wrist. 
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Figure 9.18.  Degree of asymmetry of the peak shoulder joint forces between the non-braced (NB) group 

and prosthesis wearing (PROS) group. 
 

Note: 0: perfect symmetry; Positive value represents unaffected side dominance. 
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Figure 9.19.  Degree of asymmetry of the peak elbow joint forces between the non-braced (NB) group and 

prosthesis wearing (PROS) group. 
 

Note: 0: perfect symmetry; Positive value represents unaffected side dominance. 
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Figure 9.20.  Degree of asymmetry of the peak wrist joint forces between the non-braced (NB) group and 
prosthesis wearing (PROS) group. 

 
Note: 0: perfect symmetry; Positive value represents unaffected side dominance. 
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Figure 9.21.  Shoulder (Sh) and elbow (El) joint moments between the non-braced (NB) group and 
prosthesis wearing (PROS) group while opening a door. 

 
 
 

 
 
9.2.2 Prosthesis Wearing Group With-In Subject Results 

 Force and moment data were calculated with in the three mass conditions of the 

prosthesis wearing group.  Kinetic data of the different mass conditions of the braced 

group were not reported because it was determined that the added mass of 96g was too 

small to make a difference in persons with an intact limb.  Figure 9.22 shows the peak 

joint forces and Figure 9.23 shows the peak joint moments while opening a door under 

the three mass conditions: no mass; added mass at the elbow and added mass at the wrist. 

Figures 9.24-9.26 show bilaterally the peak joint forces of the shoulder, elbow and wrist 

respectively while lifting a box among the mass conditions. Figures 9.27 and 9.28 

illustrates the peak moments acting bilaterally on the shoulder and elbow respectively 

while lifting a box. 
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Figure 9.22.  Peak joint forces while opening a door during three mass conditions. 
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Figure 9.23  Peak shoulder (Sh) and elbow (El) moments while opening a door during three mass 
conditions. 
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Figure 9.24.  Peak external forces acting on the shoulder joint while lifting a box during three mass 
conditions. 

 
 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pros 
Fx

Pros 
Fy

Pros 
Fz

Sound
Fx

Sound
Fy

Sound
Fz

 
Fo

rc
e 

(%
 o

f b
od

y 
m

as
s)

PROS

PROS-EL

PROS-WR

 
 

Figure 9.25.  Peak external forces acting on the elbow joint while lifting a box during three mass 
conditions. 
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Figure 9.26.  Peak external forces acting on the wrist joint while lifting a box during three mass conditions. 
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Figure 9.27.  Peak moments acting at the shoulder while lifting a box during three mass conditions. 
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Figure 9.28.  Peak moments acting at the elbow while lifting a box during three mass conditions. 
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Chapter 10: Discussion 
 

 The discussion of the results will include limitations of the study, comparison of 

findings of similar studies, and a review of significant findings and hypotheses.  This 

chapter will also give some suggested recommendations regarding TRMP design, fitting 

and training.  

 

10.1 Limitations of the Study 

 As with most research, this study had limitations.  As mentioned in Chapter 2, 

there were assumptions made about the human body such as the arm is a completely rigid 

body, and that joints are frictionless.  Such assumptions are necessary in order to simplify 

the equations of motions involved in the human motion and are accepted in the field of 

biomechanics.   

  Motion analysis, in general, has some limitations.  There is a certain margin of 

error associated with marker placement, skin movement and camera capturing 

capabilities. Due to the difficulty of calculating movements of the scapula, GH and 

scapular rotations were combined. Sequence of rotations of Euler angles could also create 

errors. Efforts were made to minimize human error associated with marker placement and 

movement by using bone landmarks and requiring tight fitting clothing, however, 

eliminating marker movement completely is presently not possible and can lead to small 

joint angle error.  The upper limb motions performed and analyzed in this study were 

larger gross movements not affected by small (less than 0.5 mm) marker movement. 



 

  
92

Chapter 7 explained the validity study conducted on the system as it was used in this 

study.  Bracing only limited the wrist and forearm movement, but did not simulate loss of 

musculature, change in lever arm or difference in arm center of mass that occurs after an 

amputation. It was also assumed that the braced forearm did not rotate and that hand 

motions with in the brace were negligible. 

  It was hypothesized that compensatory motion would occur mostly in the 

shoulder and elbow, and therefore the marker set used to collect movements was limited 

to the upper limbs and torso.  However, it was observed that TRMP users also 

compensated for lack of wrist and forearm movement by bending the cervical spine and 

in some cases using a knee flexion or hiking of the hip to complete a task.  Since markers 

were not placed on the lower limbs or head, these movements were not quantified. 

  Additionally, because the selected tasks were performed in a laboratory setting, 

performance may not be ecologically valid as the laboratory setting can never replicate 

each subject’s living environment and conditions. Markers were placed on the person and 

the objects, also limited the fully realistic completion of the tasks. Furthermore, the 

activities examined in this study are merely four of an innumerable quantity of tasks that 

the upper extremity performs on a day to day basis. 

  Bracing an intact extremity is always an attractive comparative condition for 

simulating prosthetic function but does not completely simulate prosthetic use/function.  

Although the brace satisfied the objective of restricting forearm and wrist movement, 

simulating prosthetic terminal device prehension was not possible under these conditions.  

A brace may be helpful in the collection of preliminary data to help determine where 

compensation may occur in order to develop a marker set prior to testing prosthesis users. 
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Bracing appears to cause compensations but these may not be the exact compensations 

experienced by prosthetic users.  

  The study was also limited by the assumptions made for completing inverse 

dynamics calculations. The anthropometrics of the prosthesis was estimated. Due to the 

difficulty of finding prosthesis wearing subjects as well as considering the time 

constraint, each individual prosthesis was not disassembled to complete a center of mass 

location calculation. However as explained in Chapter 6, each prosthesis was weighed.  

Also an estimation of the anthropometrics of the residual limb of the amputee subjects 

was not completed.  An estimation of the residual limb mass could have been estimated 

by creating a water filled bag the same shape and size as each individual limb.  The bag 

could have been weighed to complete the estimate of the weight of the residual limb 

since the specific gravity of water is similar to that of the human body.  Generalizations 

of anthropometrics of the human body are often made in the field of biomechanics since 

it is impossible to weigh each segment of the body separately.  Inverse dynamics also 

require acceleration data calculated by taking the second derivative of the marker position 

data.  This calculation is also limited but a weighted average type filter was used to 

smooth the data. 

The number of subjects was also limited.  Although a power calculation was 

completed that allowed for comparisons to be made with only seven subjects in each 

group, a larger number of subjects would provide statistical strength to the 

generalizations made from data collected in this study.  Many studies discussed in 

Chapter 2 that reported on upper limb motions of unaffected subjects have also been 

limited to ten subjects [36], six subjects [39], five subjects [32], and four subjects [35].   
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  When studying actual upper limb prosthesis wearers the number of subjects 

decreases to three subjects [46] or case studies involving only one prosthesis user [53].  

Due to the complexity of the upper limb motions, and the difficulty of successfully 

capturing and analyzing common upper limb tasks, the sample size in upper limb studies 

is often small. 

 

 10.2 Comparison of Results to Similar Studies  

  The cup task was chosen to allow comparison with other studies.  In this study, 

subjects were asked to start in a neutral position with the elbow flexed to approximately 

90 degrees.  In similar studies, reaching for the cup was also included in the task [34, 37].  

These previous investigations reported a maximum shoulder (glenohumeral) flexion of 

43˚, maximum shoulder abduction 31˚, and maximum elbow flexion of 129˚ which are 

comparable to our intact, N-BR group’s averaged (n=10) maximum shoulder and elbow 

motions: shoulder flexion 70˚, maximum shoulder abduction 28˚, and maximum elbow 

flexion 123˚, with exception of shoulder flexion.  Landry reported a maximum shoulder 

(glenohumeral) flexion of 61˚ which is more comparable to our findings [37].  The 

smaller values of shoulder flexion reported by Safaee-Rad et al. [34] could be the result 

of using only two cameras and a smaller marker set.  

  Our study also quantified forearm and wrist movement while dinking from a cup. 

The control group, on average, used a total of 32˚ of wrist movement (flexion/extension) 

and 13˚ of forearm rotation (pronation/supination).  Morrey et al. [35] reported an elbow 

flexion range of approximately 22˚ to 58 ˚ and Romilly 42˚ to 76˚ during a door opening 

task  We found a mean range of elbow flexion of 57˚ (13-66˚).  The difference may be 
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because Morrey et al. [35] used an electrogonimeter to determine range of motion at the 

elbow and Romilly [40] used a stereo image analysis system.  We additionally looked at 

wrist and forearm movement of the control group that showed an average range of wrist 

motion (flexion/extension) of 45˚ and forearm rotation (pronation/supination) of 93 

degrees. 

  During the box lift, the N-BR group, on average, required 70 ˚ of supination and 

70 ˚ of wrist extension. Anglin and Wyss [39] studied healthy subjects lifting a 5 kg. box 

with both hands, but reported the upper limb and torso angles at peak external moments.  

Our study examined peak and range of joint angles with a 2.27 kg box so a comparison 

between the two studies was not made. 

As mentioned in Chapter 2, Section 2.4.2, studies have analyzed the external 

joints and moments of the upper limbs [35, 38-39].  However, none of these studies were 

similar enough to make direct comparisons to the results of these studies.  Chadwick 

looked at the contact forces of the elbow and wrist during tasks such as answering the 

telephone and opening a jar, but did not have any ADLs similar to the four chosen for this 

study [38].  

Murray et al. [35] studied ten common tasks which included drinking from a mug, 

a task similar to drinking from a cup in this study.  The peak external forces and moments 

were calculated for the shoulder and elbow for each task, but only the task that showed 

the maximum force and moment value was reported.  The drinking from a mug task 

never reported a maximum force or moment value.  The maximum force of shoulder 

occurred along the longitudinal axis of the upper arm and the maximum force of the 

elbow occurred along the longitudinal axis of the forearm [35].  These maximums 



 

  
96

reported were collected while raising a block to head height and so can not be compared 

to the results of the study discussed in this dissertation.  However, our study also found 

the maximum forces occurring in the vertical directions while opening a door and lifting 

a box for the non-amputee group. 

As mentioned earlier, the Anglin study examined the lifting of a 5 kg box and 

reported the total hand load of 3% of body weight mostly occurred in the vertical 

direction. The total moment (box load moment + gravitional moment of the upper arm, 

forearm and hand) in all directions was reported as 21.8 Nm.    Although again it is 

difficult to make a direct comparison to the hand load lifting 5 kg box , the study 

described in this dissertation found maximum loads up to 3.5% of body mass at each 

shoulder while lifting a box about half the mass as the one described by Anglin.   

 

10.3 Discussion of Results 

A complete description of all the results was given in Chapter 9.  Tables 10.1 

(unilateral tasks) and 10.2 (bilateral tasks) review the significant kinematic findings 

between groups that will be discussed here.  

 

Table 10.1.  A review of statistically significant findings during the unilateral tasks. 
 

Cup Task Door Task  
Max Angle ROM Max Angle ROM 

GHsag * N-BR, BR >PROS * * 
GHfront * * * * 
GHtran * * PROS>N-BR,BR PROS,BR>N-BR 
ELflex * * * N-BR >PROS 

Torso side bend NA NA PROS>N-BR, BR   PROS>N-BR, BR 
 

Note:  An * indicates no significant difference; NA: Not applicable. 
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Table 10.2.  A review of statistically significant findings during the bilateral tasks.  

 
 Box Task Turning Task 
 Max Angle ROM Max Angle ROM 
A GHsag * N-BR, BR > 

PROS 
* BR> N-BR, PROS 

A GHfront BR > PROS N-BR, BR > 
PROS 

* * 

A GHtran * * * * 
A ELFlex N-BR > 

PROS 
N-BR > BR > 

PROS 
* BR> N-BR, PROS 

UA GHsag * * * N-BR>BR>PROS 
UA GHfront N-BR, BR 

> PROS 
* N-

BR>PROS 
N-BR>PROS 

UA GHtran * * * * 
UA ELFlex NS * PROS>BR PROS,N-BR>BR 
Torso side bend PROS>N-

BR, BR 
* * * 

Torso forward bend PROS>N-
BR 

PROS>, N-
BR, BR 

* * 

DoA GHSag NA PROS affected 
side 

dominance 

NA PROS similar asymmetry as N-BR; 
BR greater dominance on affected 

side 
DoA GHFront NA * NA * 
DoA ElFlex NA PROS affected 

side 
dominance 

NA PROS similar asymmetry as N-BR 
showing dominance on unaffected 

side; BR group showed dominance on 
affected side 

 
Note:  An * indicates no significant difference; NA: Not applicable. 

 

 

10.3.1 Drinking from a Cup 

 The PROS group had less range of the glenohumeral joint in the sagittal plane 

while drinking from the cup compared to the control group.  With less flexion at the 

shoulder and no wrist or forearm motion available, braced and prosthesis using subjects 

were observed forward bending the cervical spine (neck) to compensate.  As mentioned 

earlier, movement of the cervical spine was not recorded and is therefore non-quantified 

represents a limitation in this study. 
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10.3.2 Opening a Door 

 The loss of forearm and wrist movement in the braced and prosthesis wearing 

groups was compensated by side bending of the torso and increased internal shoulder 

rotation while opening a door.  We hypothesized that compensatory motion would most 

likely occur in the shoulder abduction during the door task, however, it occurred in torso 

bending and shoulder rotation.  The unaffected group with the elbow extened, slightly 

externally rotated the shoulder while rotating the forearm to twist the door knob and open 

the door.  It was thought that the PROS group would have trouble rotating the shoulder 

joint without the ability to rotate the forearm.  However, the PROS group held the elbow 

in a flexed position that allowed for internal rotation of the shoulder.  The location of 

compensation may not always be obvious, which demonstrates the importance of 

studying transradial prosthesis user’s motion..   

 The PROS group had a greater shoulder joint force acting in the medial/lateral 

direction mostly due to the acceleration sideways while bending the torso to complete the 

task.  The PROS group also had greater moments with the exception of the shoulder 

moment around the medial/lateral axis.  This is probably because the PROS group relied 

on the bending of the torso instead of the rotation of the shoulder joint. 

 

10.3.3 Lifting a Box 

 The PROS group compensated for the lack of wrist and forearm movement by 

bending the torso forward and sideways.  The BR group showed greater use of the torso 

also although not significantly different than the N-BR group.  The BR group did not 

require as much compensation in the torso as the PROS group due to greater although 
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still limited use of the terminal device (hand) for gripping. The N-BR group was 

observed pulling the box toward the chest symmetrically by extending the wrist allowing 

for the positioning of the elbows laterally and then lifting it linearly up to the shelf. The 

right and left sides of the N-BR group are close to symmetric (Figure 9.9) for all motions, 

with showing a slight right side dominance (DoA =-0.03) of range of motion probably 

due to all subjects being right–handed.  The braced group shows a trend towards a right-

left positional asymmetry toward the affected side despite this task being considered 

symmetrical although not significantly different than the N-BR group. The PROS group 

shows the greatest dominance statistically on the unaffected side for all three ranges of 

motion.  Prior to lifting instead of bringing the box toward the chest and straight up, the 

PROS group shifted the box toward the unaffected side and lifted the box following a 

circular trajectory. Without wrist extension, the prosthetic arm was unable to position the 

elbows out of the way to allow the box to be brought to the chest prior to lifting.  This 

caused a greater range of motion on the sound side.  The PROS group showed a 

significantly greater dominance of the unaffected side in terms of shoulder force in the 

vertical direction when compared to the N-BR group (Figure 9.17).  For the wrist forces, 

the N-BR favored the right (dominant) hand during the box lift while the PROS group 

showed a slight degree of asymmetry toward the unaffected side (Figure 9.19).  

Kinetically, in the vertical direction the PROS group tended to rely more on the sound or 

non amputated side during the box lift which is in agreement with the kinematic findings. 

 While lifting a box, the added mass conditions (PROS-EL, PROS-WR) showed 

greater peak shoulder forces in the anterior/posterior direction and greater elbow forces in 

most directions when compared to the PROS group with no added mass (Figure 9.24, 
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Figure 9.25).  The PROS-WR condition experienced the greatest shoulder moments 

bilaterally and elbow moments on the sound side (Figure 9.27).  This suggests with added 

mass, the center of mass of the prosthesis changes enough to increase the forces and 

moments at the shoulder and elbow.  If this type of task is done repetitively, it may injure 

the intact joints or create a reason for rejection or lack of use of the prosthesis. However, 

in general, the location of such a small mass had little effect.  

 

10.3.4 Turning a Steering Wheel 

 For the steering wheel task, the second bilateral activity, the braced subjects were 

required to use the affected side more for GHSag and elbow angle motion although not 

for GHFront motion. However, the PROS group was similar to the N-BR group.  Turning 

a steering wheel to the right requires flexing and abducting the shoulders to hold the 

hands on the wheel. It also requires rotation of the forearms, and flexion of the wrist and 

elbow to produce the rotation of the wheel.  Basic transradial myoelectric prostheses do 

not allow for pronation or supination of the forearm that is used to rotate the end effectors 

(hands) attached to the steering wheel.  Only the right turn was analyzed under normal 

conditions and this required a greater range of motion (not peak) of the right shoulder 

during flexion and greater range of left elbow flexion. The BR group showed a similar 

but greater right (affected) side range of motion dominance as the N-BR group.  

However, the left elbow of the BR group did not show dominance or flex more than the 

right side (Figure 9.10).  This demonstrates that the affected (simulated prosthetic use) 

side can change the kinematics of the unaffected (sound) side.  However the PROS group 

DoA profile was similar to the N-BR.  The PROS group showed a significantly greater 
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elbow flexion maximum and range compared to the BR group (Figure 9.11).  The BR 

group may have had a different grip or may have felt that elbow range of motion was 

restricted by the brace during this task even though the brace allowed a full range of 

elbow motion in flexion/extension.  This is a case when bracing was a good simulation 

for prosthetic use.  

No differences were found between the different added mass positions: near the 

elbow (proximally) or near the wrist (distally) of the braced group or of the prosthesis 

wearing group kinematically while turning a steering wheel. 

 

10.3.5 Review of Hypotheses 

The first hypothesis stated that there would be significant differences in the 

motions of the shoulder, elbow and torso between the control group and the prosthesis 

users.  This was true for all tasks with the exception of the steering wheel turning task.  

During this task the prosthesis users had similar shoulder flexion as the non-amputee 

subjects, but differed in shoulder abduction and elbow flexion.  The turning task was also 

the activity where the braced and prosthesis groups were the most dissimilar, suggesting 

that bracing is not always a good method for determining compensatory motions. 

The second and third hypotheses predicted that the range of motions and forces 

and moments of the joints would differ during three mass conditions: no mass, mass 

added at elbow and mass added at wrist.  The mass conditions had little effect on the door 

task, but some minimal changes were found during the box lift task.  
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10.4 Recommendations 

 By looking at four tasks, it has become obvious that TRMP users must 

compensate for lack of wrist and forearm movement.  However, depending on the task 

the compensation occurs in different segments of the body.  It is difficult to make overall 

recommendations regarding improvements of an upper limb prosthesis since it can be 

used in such varied tasks.  However, in general it seemed that awkward bending of the 

torso provided the compensation in most o the four tasks studied.  Flexing the elbow to 

position the end-effector differently was also a compensatory strategy used.  This shows 

the necessity of using a wrist component that allows pronation and supination of the 

forearm and in some cases wrist flexion and extension. The prosthesis users seemed to 

not change the degree of elbow flexion much throughout the task.  This could be caused 

by the difficulty either mentally or physically to use the biceps brachii to both control 

elbow flexion and to control the opening and closing of the myoelectrically controlled 

terminal device.  A new wrist component design should be lightweight and easy to 

control. 

 It is also recommended that more time be spent on determining how the residual 

limb and body mass affects compensatory motion. It is recommended that a quick 

modeling of the residual limb and its characteristics be done by measurements and 

calculations of the volume of the stump.  Adding a wrist component to the prosthesis may 

decrease compensatory motion, but for an amputee with a short residual limb and small 

body mass it may not be worth the added function.  For upper limb prosthesis users 

without a wrist component, it is recommended that therapists demonstrate a more optimal 

technique to compensate depending on task.  
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 The process of fitting an amputee with a prosthesis and teaching its optimal usage 

is an arduous task that requires many experts. An amputee must get a prescription of a 

prosthesis from a physician, fitting various components by a prosthetist, provide 

justification of component choices to an insurance company or government agency in 

order to receive monetary reimbursement, receive training from a therapist and deal with 

psychological implications of limb loss.  These decisions that are required for prosthesis 

use can sometimes be made based on biased unconfirmed claims from manufacturers, 

subjective choices of prosthetists and limited funding options.  All these variables can 

lead to improper fitting and use of an upper extremity prosthesis or worse, 

overprescription and rejection.  Therefore, it is recommended that a more individualized 

and quantitatively driven process be developed and implemented for a prosthesis from 

prescription to expert use.  This kind of process can be started by developing a kinematic 

simulated model of an upper limb prosthesis explained in Section 11.2, Future Studies.  It 

may also be helpful to catalog the inertial properties of each basic prosthetic component.  

With information such as the center of mass and moment of inertia of a hand component 

or of a wrist component could implemented into a simulated biomechanical model to help 

prosthetists with component selection based on patient parameters. 

 When studying prosthesis users certain aspects should be considered for the 

testing protocol.  For one thing, the whole body should be studied since it may not be 

obvious where compensation due to limitations of the prosthesis occurs.   
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 The following testing procedure is recommended when studying the motions of 

upper limb prosthesis wearers in particular for design changes: 

• Survey prosthesis users about difficult movements and design flaws 

• Survey prosthetists, therapists about compensatory motion of patients 

• Record motions of non-amputee population for comparative purposes 

• Record motions of non-amputee population limiting degrees of freedom similar to 

the prosthesis to determine possible areas of compensation 

• Determine appropriate marker set to fully capture these areas of compensation 

• Record motions of one prosthesis user including the inertial properties of the 

prosthesis 

• Make sure that pseudo joints with in the prosthesis don’t affect motion analysis –

that is that each segment can be assumed to be a rigid body 

• Compare non-amputee motion to prosthesis user motion 

• Determine design changes based on these differences 

• Implement design change 

• Test prosthesis users with and without design change and compare motions 

It is important to include users, surgeons, prosthetists, therapists and engineers in the 

testing protocol. 
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Chapter 11: Summary and Conclusions 
 

11.1 Contributions 

This work has provided many contributions to the biomechanics, prosthetic 

design and physical medicine fields.  One important aspect of studying human problems 

is to have a set of control data to use for comparison.  This work has documented 

kinematic data of the upper limb during four common tasks and this can be used for a 

comparison when studying many upper limb problems or injuries. Quantitative data as 

shown has justified the necessity of providing more degrees of freedom such as a 

properly designed wrist component to a transradial prosthesis.  From this study, a general 

testing protocol for studying prosthesis users was developed.   

 This work has started to bridge the gap between the technological innovation of 

the engineering field and the clinical astuteness of the clinicians that are in contact with 

the prosthetic users on a daily basis.  Through this study, an interdisciplinary group from 

the University of South Florida’s Department of Mechanical Engineering and the School 

of Physical Therapy and Rehabilitation Sciences; the St. Petersburg College of Orthotics 

and Prosthetics; and West Coast Brace and Limb, a prosthetics and orthotics fitting 

service has been developed and shown that collaborative work can be accomplished. 

 

11.2 Future Studies 

  In general, future studies should include more subjects, specifically different 

levels of amputees such as transhumeral and shoulder disarticulation.  The upper limb is 
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capable of a wide variety of tasks, so other tasks should also be considered in future 

studies.  Particularly, bilateral tasks should be investigated because these activities 

definitely require the use of the prosthesis.  Electromyography should be studies along 

with the motion analysis to determine if TRMP users limit range of elbow flexion 

because of muscle contractions are also used to control the opening and closing of the 

terminal device. 

 

11.2.1 Biomechanical Model 

 A biomechanical simulation for transradial prosthesis users will be created by a 

mechanical engineering graduate student using data from this study. This future study 

will use the compensatory motion data from this dissertation to create a simulated 

biomechanical model that can select the best prosthesis for a given user. This simulation 

program could also be used to design and test prostheses that are more effective at 

strategic tasks. Kinematic data from actual body motions will be used to test and evaluate 

the accuracy of this upper limb prosthetic model.  A comparative analysis of 

experimental data to model predicted data can be completed to determine the robustness 

of the model. Based on the experimental data collected and studied here, weight 

coefficients can be given to specific parameters of the upper limb prosthetic model. 

Subject inputs such as length of residual limb, height, and weight and task preference can 

be entered into the model. Parameters of the prosthesis such as a range of movement, 

component selection, degrees of freedom, grip angle(s), weight, and geometry will also 

be inputs for the model. Task inputs will include information on joint constraints, and a 

trajectory which the hand or limb must follow.  Joint locations necessary to accomplish 
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the task with a given configuration will be outputted and simulated from the 

biomechanical model. Figure 11.1 explains the simulation model in a schematic form. 

The simulation will allow for wrist rotation given by the prosthesis, elbow flexion, three 

degrees of rotation at the shoulder joint, movements of the shoulder joint about the 

sternoclavicular joint, and bending and rotation of the torso. All joints will have a 

restricted range of motion that will be determined by subject data, prosthesis, and task 

Once a reasonable upper limb model is created, kinematic and kinetic simulations 

as well as individual patient parameters can be used to fit the amputee with the proper 

prosthesis.  This simulation can also help to individualize training and therapy associated 

with a prosthesis.   

 

Figure 11.1. Schematic of biomechanical simulation model for compensatory motion of transradial 
prosthesis users created by Derek Lura. 
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11.2.2 Prosthetic Component Design Testing 

  Having a baseline data of unaffected as well as amputee data can also contribute 

to the testing phase of new designs of components of the upper limb prosthesis.  For 

example, a new powered prosthetic St. Petersburg (SPC) wrist with two degrees of 

freedom was presented at the 12th World Congress of the International Society for 

Prosthetics and Orthotics [57].  For the clinical testing phase of the SPC wrist, motion 

analysis can be used to determine if using the wrist decreases the compensatory motion 

used by upper limb prosthesis users during common tasks without increasing force and 

moments of the intact joints.  With the computer programming completed in this 

dissertation that includes anthropometric changes to account for a prosthesis, this kind of 

study showing the benefits of a new design can be easily implemented.  Completing the 

biomechanical model mentioned above, some preliminary design considerations can be 

tested in simulation before complete prototypes are fabricated. 

 

11.3 Conclusions 

 This study compared the compensatory motion of persons using a transradial 

prosthesis without wrist motion to that of non-amputees under an unrestricted and 

restricted forearm rotation (braced) conditions while performing four ADL’s; drinking 

from a cup, opening a door, lifting a box and turning a steering wheel. It also looked at 

the effects of added mass on the prosthesis users’ motions. This study adds to the 

kinematic and kinetic database of upper limb movements needed to understand how a 

person with amputation of the forearm/hand using a prosthesis lacking forearm rotation 

will compensate relative to non-amputees.  While opening a door and lifting a box, tasks 
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that require a significant amount of forearm rotation and wrist flexion, persons with 

transradial amputation compensated predominantly with movements of the torso side 

bending toward affected side.  The door task also required rotation of the shoulder.  

During the steering wheel task, amputees used more elbow flexion to accommodate for 

the lack of forearm rotation. While drinking from a cup, a task that does not require as 

much forearm rotation or wrist movement as the other tasks, the location of compensation 

was not determined.  Bending in the cervical spine was anecdotally observed while 

drinking from a cup but was not analyzed in this study. With the exception of turning the 

steering wheel, the braced group seemed to compensate similarly to the amputee group 

although to a lesser degree. This suggests that studies using bracing to simulate a 

transradial prosthesis may be helpful to make preliminary generalizations about the 

potential type, quantity and origin of awkward, compensatory motions caused by 

functional prosthetic limitations, but that actual prosthesis users need to be studied to 

more accurately locate and quantify compensatory motion especially during tasks that 

depend largely on prehension.  Added mass had the most effect during the bilateral lifting 

task.  This suggests the importance of keeping a wrist component light or developing a 

component with a more evenly distributed mass.  It also emphasizes the importance of 

considering bilateral tasks when considering improvements of an upper limb prosthesis. 

Compensatory motion should also be studied to develop a kinematic and kinetic model 

specifically for upper limb prosthesis users and to help with design, prescription and 

training of prostheses.  
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Appendix A: BodybuilderTM Software Program for Upper Limb Calculations 
 
{*======================*} 
{*Start of macro section*} 
{*======================*} 
 
{*Display of segment axes*} 
{*-----------------------*} 
 
Macro AXISVISUALISATION(Segment) 
ORIGIN#Segment=O(Segment) 
AXISX#Segment={100,0,0}*Segment 
AXISY#Segment={0,100,0}*Segment 
AXISZ#Segment={0,0,100}*Segment 
output(ORIGIN#Segment,AXISX#Segment,AXISY#Segment,AXISZ#Segment) 
Endmacro 
 
{*Replace a missing marker from set of 4 in a segment*} 
{*---------------------------------------------------*} 
 
macro REPLACE4(p1,p2,p3,p4) 
s234 = [p3,p2-p3,p3-p4] 
p1V = Average(p1/s234)*s234 
s341 = [p4,p3-p4,p4-p1] 
p2V = Average(p2/s341)*s341 
s412 = [p1,p4-p1,p1-p2] 
p3V = Average(p3/s412)*s412 
s123 = [p2,p1-p2,p2-p3] 
p4V = Average(p4/s123)*s123 
{* Now only replaces if original is missing  11-99 *} 
p1 = p1 ? p1V 
p2 = p2 ? p2V 
p3 = p3 ? p3V 
p4 = p4 ? p4V 
endmacro 
 
{*====================*} 
{*End of macro section*} 
{*====================*} 
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Appendix A (continued) 
 
{*===============*} 
{*Initialisations*} 
{*===============*} 
 
{*Define optional marker points*} 
{*-----------------------------*} 
 
OptionalPoints(RBAK,RSHO,RELB, 
RELBM,RWRA,RWRB,RFIN,LSHO,LELB,LELBM,LWRA,LWRB,LFIN) 
OptionalPoints(CLAV,C7,STRN,T10,BOXR,BOXL,BOXC) 
 
{*Define the Global Origin*} 
{*------------------------*} 
Gorigin = {0,0,0} 
Global = [Gorigin,{1,0,0},{0,0,1},xyz] 
 
{*==============*} 
{*VIRTUAL POINTS*} 
{*==============*} 
 
{*Calculate the joint centers*} 
{*---------------------------*} 
 
{*Torso*} 
 
Replace4 (C7,T10,CLAV,STRN) 
UTorso = (C7+CLAV)/2 
 
If Exist (STRN) Then 
  LTorso = (T10+STRN)/2 
  FTorso = (CLAV+STRN)/2 
Else 
  LTorso = (T10+CLAV)/2 
  FTorso = CLAV 
EndIF 
 
BTorso = (C7+T10)/2 
  
Torso = [UTorso,UTorso-LTorso,BTorso-UTorso,zyx]  
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Appendix A (continued) 
 
{*Shoulder joint centers*} 
 
{*Temporary local coordinate system*} 
TempRClav = [RSHO,UTorso-RSHO,1(Torso),zyx] 
TempLClav = [LSHO,UTorso-LSHO,1(Torso),zyx] 
 
 
 
 
If $Static == 1 Then 
 RSJC = RSHO+{0,0,-$RShoulderDepth}*Attitude(Torso) 
 LSJC = LSHO+{0,0,-$LShoulderDepth}*Attitude(Torso) 
 $%RSJC = RSJC/TempRClav 
 $%LSJC = LSJC/TempLClav 
 PARAM($%RSJC) 
 PARAM($%LSJC) 
EndIf 
 
{*From local coordinate system to global*} 
RSJC = $%RSJC*TempRClav 
LSJC = $%LSJC*TempLClav 
 
 
{*Elbow joint centers*} 
 
{*Temporary local coordinate system*} 
TempRArm = [RELB, RELB-RUPA,RSHO-RUPA,zyx] 
TempLArm = [LELB, LELB-LUPA,LSHO-LUPA,zyx] 
 
If $Static == 1 Then 
 REJC = (RELBM + RELB)/2 
 LEJC = (LELBM + LELB)/2 
 $%REJC = REJC/TempRArm 
 $%LEJC = LEJC/TempLArm 
 PARAM($%REJC) 
 PARAM($%LEJC) 
EndIf 
 
REJC = $%REJC*TempRArm 
LEJC = $%LEJC*TempLArm 
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Appendix A (continued) 
 
{*Wrist joint centers*} 
RWJC=(RWRA+RWRB)/2 
LWJC=(LWRA+LWRB)/2 
 
 
 
{*Hand offsets*} 
RHandOS = ($MarkerDiameter + $RHandThickness)/2 
LHandOS = ($MarkerDiameter + $LHandThickness)/2 
 
 
 
 
{*==========*} 
{*KINEMATICS*} 
{*==========*} 
 
 
{*Segments*} 
{*---------*} 
 
If Exist (STRN) Then  
Torso = [UTorso,UTorso-LTorso,BTorso-UTorso,zyx]  
Else  
Torso = [UTorso,UTorso-T10,BTorso-UTorso,zyx]  
EndIF  
 
If Exist (T10) Then  
Torso = [UTorso,UTorso-LTorso,BTorso-UTorso,zyx]  
Else  
Torso = [UTorso,UTorso-STRN,C7-UTorso,zyx]  
EndIF  
 
 
RUpperarm = [REJC,RSJC-REJC,RUPA-REJC,zxy] 
LUpperarm = [LEJC,LSJC-LEJC,LUPA-LEJC,zxy] 
 
RForearm = [RWJC,REJC-RWJC,REJC-RSJC,zxy] 
LForearm = [LWJC,LEJC-LWJC,LEJC-LSJC,zxy] 
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Appendix A (continued) 
 
RWrist = [RWJC,REJC-RWJC,RWRA-RWRB,zxy] 
LWrist = [LWJC,LEJC-LWJC,LWRA-LWRB,zxy] 
 
RHJC = RFIN + (RHandOS*RWrist(1)) 
LHJC = LFIN - (LHandOS*LWrist(1)) 
 
RHand = [RWJC,RWrist(3),RHJC-RWJC,yxz] 
LHand = [LWJC,LWrist(3),LHJC-LWJC,yxz] 
 
 
{*============*} 
{*Joint Angles*} 
{*============*} 
 
{*Caculated Euler floating angles*} 
 
TorsoAngles = -<Global,Torso,xyz> 
 
RShoulderAngles = <Torso,RUpperarm,yxz> 
LShoulderAngles = <Torso,LUpperarm,yxz> 
 
RElbowAngles = <RUpperarm,RForearm,yxz> 
LElbowAngles = <LUpperarm,LForearm,yxz> 
 
RWristAngles = -<RForearm,RHand,yxz> 
LWristAngles = -<LForearm,LHand,yxz> 
 
 
{* Forearm pronation and supination*} 
{* Rotation around the z-axis so consider z component (3)*} 
RForearmRotation = -<RForearm,RWrist,yxz> 
LForearmRotation = -<LForearm,LWrist,yxz> 
 
 
 
 
{*KINETICS*} 
{*========*} 
 
{*Upper Body Anthropometric Data*} 
{*This data is from Winter (1990) Chapter 3 Anthropometry, Biomechanics and Motor 
Control of Human Movement, Second Edition*} 
{*University of Waterloo, Ontario, Canada, pages: 56, 57*} 
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Appendix A (continued) 
 
AnthropometricData 
AnthroHand 0.006 0.6205 0.223 0 
AnthroForearm 0.016 0.57 0.303 0 
AnthroUpperarm 0.028 0.564 0.322 0 
AnthroTorso 0.355 0.63 0.31 0 
EndAnthropometricData 
 
{*Define the hierarchy for the Upper Body Kinetics*} 
Torso = [Torso, AnthroTorso] 
 
RUpperarm = [RUpperarm,Torso,RSJC, AnthroUpperarm] 
LUpperarm = [LUpperarm,Torso,LSJC, AnthroUpperarm] 
 
RForearm = [RForearm,RUpperarm,REJC,AnthroForearm] 
LForearm = [LForearm,LUpperarm,LEJC,AnthroForearm] 
 
RHand = [RHand,RForearm,RWJC,AnthroHand] 
LHand = [LHand,LForearm,LWJC,AnthroHand] 
 
{*Adjust for Prosthesis weight(SC122707)*} 
{* If statement to allow definition of prosthesis on right or left side*} 
{* CoM of forearm and hand portion of the prosthesis calculated from one sample 
prosthesis using the suspension test*} 
{* CoM location = length from distal end of principal axis of segment/ total length of 
segment*}  
{* CoM of forerarm = 19/27; CoM of hand = 10/17*} 
{* Direct definition of mass properties used *} 
{* Moment of inertia data the same as in table above from Winter but adjusted to fit 
direct definition format*} 
{* I = mr^2;   therefore Mass of prosthetic segement * (radius of gyration (from table 
above-3rd number) ^2*} 
 
{* If $Prosthesis == 1 Then 
      If $ProsthesisR == 1 Then 
           RForearm = 
[RForearm,RUpperarm,REJC,$ProsthesisForearmMass,{0,0,$CoMForearm},$Prosthesis
ForearmMass*{0,0.091809,0}] 
    RHand = 
[RHand,RForearm,RWJC,$ProsthesisHandMass,{0,0,$CoMHand},$ProsthesisHandMass
*{0,0.049729,0}] 
      Else 
           LForearm = 
[LForearm,LUpperarm,LEJC,$ProsthesisForearmMass,{0,0,$CoMForearm},$Prosthesis
ForearmMass*{0,0.091809,0}] 
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Appendix A (continued) 
 
    LHand = 
[LHand,LForearm,LWJC,$ProsthesisHandMass,{0,0,$CoMHand},$ProsthesisHandMass
*{0,0.049729,0}] 
      EndIf 
EndIf*} 
 
 
 
{*Create reaction for Door force transducer*} 
{*Set a variable in marker file to determine right or left handed*} 
 
OptionalReactions(ForcePlate1) 
If $Lefthanded ==1 
 
 DoorTransducer=ForcePlate1(2) 
 
 ForceDirect=[LHCM,LSJC-LHCM,LWRA-LWJC,zxy] 
 
 DoorTransducerNew={DoorTransducer(1),DoorTransducer(2),DoorTransducer(3
)}*Attitude(ForceDirect) 
 ForcePlate1=|DoorTransducerNew,ForcePlate1(2),{LHCM(1),LHCM(2),LHCM(
3)}| 
 CONNECT(LHand,ForcePlate1,1) 
 
ELSE 
 DoorTransducer=ForcePlate1(2) 
 
 ForceDirect=[RHCM,RSJC-RHCM,RWRA-RWJC,zxy] 
 
 DoorTransducerNew={DoorTransducer(1),DoorTransducer(2),DoorTransducer(3
)}*Attitude(ForceDirect) 
 ForcePlate1=|DoorTransducerNew,ForcePlate1(2),{RHCM(1),RHCM(2),RHCM(
3)}| 
 CONNECT(RHand,ForcePlate1,1) 
 
Endif 
 
{*Create a Reaction for box*} 
{*The dummy force must be entered in the .mp file or subject measurements if run 
through Plug In Modeller*} 
{* Box is 5 lbs which converts to 2.268 kg*} 
 
DummyForce = {0,0,2.268*(9.81)} 
DummyMoment = {0,0,0} 
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Appendix A (continued) 
 
{*This relates the force to the Body Segments:ReactionForce is the force applied*} 
{* to the segment, and the ScalarTest set on with a value of 1. *} 
 
ReactionRWrist = REACTION(RHand) 
ReactionRElbow = REACTION(RForearm) 
ReactionRShoulder = REACTION(RUpperarm) 
 
ReactionLWrist = REACTION(LHand) 
ReactionLElbow = REACTION(LForearm) 
ReactionLShoulder = REACTION(LUpperarm) 
 
{*ReactionBox=|DummyForce,DummyMoment,BOX|*}  
 
{*CONNECT(BOX,ReactionBox,1)*} 
 
 
{*OUTPUT*} 
 
 
{*Joint Centers*} 
OUTPUT (RSJC,LSJC,REJC,LEJC,RWJC,LWJC,RHJC,LHJC) 
 
{*Angles*} 
OUTPUT (TorsoAngles) 
OUTPUT (RShoulderAngles,LShoulderAngles,RElbowAngles,LElbowAngles) 
OUTPUT (RWristAngles,LWristAngles,RForearmRotation,LForearmRotation) 
 
{*Output Joint Forces (1) and Moments (2)*} 
 
RWristForce = ReactionRWrist(1) 
RWristMoment = ReactionRWrist(2) 
LWristForce = ReactionLWrist(1) 
LWristMoment = ReactionLWrist(2) 
 
 
RElbowForce = ReactionRElbow(1) 
RElbowMoment = ReactionRElbow(2) 
 
LElbowForce = ReactionLElbow(1) 
LElbowMoment = ReactionLElbow(2) 
 
RShoulderForce = ReactionRShoulder(1) 
RShoulderMoment = ReactionRShoulder(2) 
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Appendix A (continued) 
 
LShoulderForce = ReactionLShoulder(1) 
LShoulderMoment = ReactionLShoulder(2) 
Output(RWristForce,LWristForce,RElbowForce,LElbowForce,RShoulderForce,LShould
erForce) 
Output(RWristMoment,LWristMoment,RElbowMoment,LElbowMoment,RShoulderMo
ment,LShoulderMoment) 
 
 
{*DISPLAY*} 
{*This calls up the macro to display the segments*} 
AXISVISUALISATION(Torso) 
AXISVISUALISATION(RUpperarm) 
AXISVISUALISATION(LUpperarm) 
AXISVISUALISATION(RForearm) 
AXISVISUALISATION(LForearm) 
AXISVISUALISATION(RHand) 
AXISVISUALISATION(LHand) 
AXISVISUALISATION(Global) 
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Appendix B: Solution to an Open Chain 2D Example Problem 

• no resistance to motion at the terminal segment 
• forces only due to gravity and occur at center of mass of each segment 
• based on a 150 lb. (68.04kg = BM) person with the following measurements: 

Lhumerus = 0.22 m ;  Lforearm = 0.20 m ; Lhand = 0.18 m 
• g=gravity= 9.8 m/s 
• uses anthropometrics from D.A. Winter [17,18]: humerus:0.28BM; forearm: 

0.016 BM; hand: .006BM 
• drawing not to scale 

 

 

 

  

 

 

 

Figure B.1. A free body diagram of the arm. 
 

Larm  = Lhumerus +  Lforearm + Lhand 
 

Mshoulder = Fhumerus (0.436 Lhumerus) 
           + Fforearm (Lhumerus +0.430 Lforearm) 

         + Fhand (Lhumerus +Lforearm 0.506 Lhand) 
 

Mshoulder = (18.68)(0.09595) +(10.67)(0.306)+(4.00)((0.51108) 
 

Mshoulder = 7.1017 N/m 
 

Fshoulder =Fhumerus +  Fforearm + Fhand- Fmuscle 
Fhumerus= .028(BM)g 
Fforearm= .016(BM)g 
Fhand= .006(BM)g 

Fshoulder = 18.68 + 10.67 + 4.00 = 33.35 N 
 

From static trial, of person with the subject parameters used in this calculation  
Fshoulder  in x-direction = 33.55 N   
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