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Abstract

Large networks of complex systems-of-systems are commonplace and evermore present

in both mundane and extraordinary facets of human existence. From the exponential growth

of connectivity via the internet and other information networks, to the miniaturization of

computers and sensors, to cross-domain sensor and communication networks, these networks

of distributed systems-of-systems (NDSS) present incredible benefits and challenges. Auton-

omy is perhaps the most important and most difficult to achieve enabling technology for

efficient performance of the NDSS. Giving each individual agent in a network the ability

to manage its internal state in dynamic operating environments and in pursuit of multiple

complex and possibly conflicting individual and network-level goals is key to efficient, ro-

bust, and adaptable performance. When humans are an integral part of the system through

oversight, operation, physical interaction, or dependency, the safety, security, understand-

ability, and verifiability of an autonomous agent’s actions are paramount. These attributes

and constraints describe a class of problems with members including autonomous ground ve-

hicles operating on public motorways, autonomous air traffic control systems, constellations

of Earth-observation satellites, and human-rated interplanetary spacecraft.

In this work, the problem of how to enable a high degree of on-board system autonomy

for individual agents within the human-centered NDSS is explored. Foundations for agent-

based autonomy are discussed in the context of understanding and managing complexity. A

Hierarchical Ensembles of Autonomous Decision Systems (HEADS) framework is proposed.

The HEADS framework is designed to enable cooperative, explainable, and robust multiple

objective decision making by collections of fuzzy logic expert systems based on linguistic

variables.

x



The HEADS framework is applied to a simulated constellation of Earth satellites

tasked with managing sensor activation and maintaining battery status and subject to the

dynamic space environment and fault conditions. The initial system design shows acceptable

behavior and robustness against fault conditions. Performance and operational analysis

provide the basis for manually tuning the system which increases performance by 48%.

An additional 6.8% performance increase is seen after automated genetic algorithm based

parameter tuning. The HEADS framework is shown to provide robust performance for

the multiple objective dynamic decision making problem for a large network of distributed

systems of systems.
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Chapter 1: Introduction

Large networks of complex systems-of-systems are commonplace and evermore present

in both mundane and extraordinary facets of human existence. From the exponential growth

of connectivity via the internet and other information networks, to the miniaturization of

computers and sensors [1], to cross-domain sensor and communication networks [2], these net-

works of distributed systems-of-systems (NDSS) present incredible benefits and challenges.

Autonomy is perhaps the most important and most difficult to achieve enabling technology

for efficient performance of the NDSS. Giving each individual agent in a network the ability

to manage its internal state in dynamic operating environments and in pursuit of multiple

complex and possibly conflicting individual and network-level goals is key to efficient, robust,

and adaptable performance. When humans are an integral part of the system through over-

sight, operation, physical interaction, or dependency, the safety, security, understandability,

and verifiability of an autonomous agent’s actions are paramount [3, 4]. These attributes

and constraints describe a class of problems with members including autonomous ground ve-

hicles operating on public motorways, autonomous air traffic control systems, constellations

of Earth-observation satellites, and human-rated interplanetary spacecraft.

In this work, the problem of how to enable a high degree of on-board system autonomy

for individual agents within the human-centered NDSS is explored. Foundations for agent-

based autonomy, including the challenges from and management of complexity, are discussed.

A Hierarchical Ensembles of Autonomous Decision Systems (HEADS) framework designed to

handle multiple objective decision making is proposed conceptually and through application

to a representative NDSS problem.

This chapter discusses the contributions of this dissertation followed by a brief intro-

duction to computational autonomy to provide context for the proposed framework. The
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human-centric nature of the problem is discussed. Limitations of making assertions about

human factors are considered along with the literature-backed mitigation strategy employed

in this work. There is a per-chapter map for the rest of the dissertation and alternate sub-

maps for those who may be interested in either the theory or the application. Finally, the

motivations for this work are presented.

1.1 Contributions

The primary contributions of this dissertation are:

1. the HEADS framework,

2. the HEADS design, analysis, and optimization process, and

3. HEADS applied to a representative NDSS problem.

The structure of the HEADS framework leverages multiple hierarchical collections of

fuzzy experts to balance system performance and complexity. These cooperative-competitive

fuzzy experts are the core logic agents and exhibit desirable characteristics including linguis-

tic variable based reasoning and bounded outputs resulting in understandable and verifiable

performance. This structure enables robust multiple-objective decision making.

The design methodology behind implementing HEADS includes a baseline approach,

iteration, and introspective analysis. Top-level data modeling informs bottom-up design

which supports subject matter experts in designing for problem domain specificity. The

result is modular in that each component agent derives its expertise from domain specific

knowledge. Framework analyses including signal space coverage, complexity metrics, and

output sensitivity enable the system designer to manage understandability and performance.

An approach to evolutionary optimization is presented for tuning the system according to

cost/reward metrics.

The autonomous operation of a space-based Earth sensing network, a representative

human-centered NDSS problem, is considered and a HEADS framework solution is designed
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and analyzed. Simulation results are shown before and after the system is optimized demon-

strating generalized decision making. Simulation of partial and full agent failures and the

resulting network-level performance further confirm robust performance.

Approaches to managing complexity and the adjacent concept of human factors are

discussed in Chapter 4. As intrinsically related to the motivations of this dissertation, the

human-centered design approach has informed many of the specific design decisions behind

the HEADS framework. Secondary contributions of this dissertation include an overview

of the foundations of autonomy through the lens of agents and recent trends in artificial

intelligence in Chapter 2 and a discussion on the nature of complexity as applied to agent-

based autonomy in Chapter 3.

1.2 Hierarchical Ensembles of Autonomous Decision Systems

The Hierarchical Ensembles of Autonomous Decision Systems (HEADS) framework is

the foundation for bridging the gap between symbolic reasoning and data-driven approaches

to system autonomy. Based on combinations of multiple expert systems, the framework

attempts to reduce the decision making problem into many sub-problems that can be inde-

pendently solved and combined into a robust system. Many of these sub-problem experts are

combined to collectively solve singular problems, further enabling the separation of solution

finding across many perspectives or domains of expertise. This approach is expert-agnostic

meaning the sub-problems can be solved in the most appropriate manner (logic systems,

filters, machine learning models, etc.) as long as the output includes a measure of confi-

dence. This many-agent approach combines individual solution contributions to arrive at a

cooperative ensemble output.

The primary intent behind this approach is to reduce total system complexity while

maintaining broad and robust performance. The reduction of the decision making problem

into sub-problems reduces the logic space by first considering if an input is relevant to the

single output in question. If there is an input-output correlation for the sub-problem, then

that input is added to the list of necessary inputs that a sub-problem agent can use. Ignoring
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uncorrelated input-output combinations for the sub-problem yields an exponential reduction

of logic space. This serves to reduce the complexity of the sub-problem for both design and

computation.

Aligned with the human-centric design focus of the problems of interest, this disser-

tation considers fuzzy systems as the core agents. Compared to probabilistic uncertainty

describing whether an event occurs, fuzzy theory accounts for the uncertainty of degree of

occurrence. This enables reasoning with overlap between rule antecedent activation within

the logic system. Enabling such overlap is a powerful way to model nonlinear correlations

between inputs and outputs and nuanced state transition boundaries.

An implementation of the HEADS framework requires first identifying the data model

including inputs, outputs, and intermediate signals. Each output and intermediate signal is

supported by at least one ensemble of expert agents. Here, the focus on decision making using

fuzzy systems requires the If-Then rules to be developed next followed by the rule antecedent

(fuzzy set) parameterizations. This bottom-up methodology enables the designer to focus

on state-action mappings using the strength of linguistic variables inherent to fuzzy systems.

Finally, operational objectives are used as the scoring methodology to assess perfor-

mance. The score is used to assess behavior across the system hierarchy and for guiding

parameter optimization. Design metrics including signal space coverage and complexity

measures assist the designer in assessing understandability and sensitivity.

1.3 Historical Foundations and Perspectives

Automatons are found in storytelling throughout history, but the practical develop-

ment of autonomous systems has occurred over the last century starting with Alan Turing’s

first notions of artificial intelligence [5]. A rapid evolution occurred over the subsequent

decades leading to autonomous system theories and implementations. A primary distinction

must be made between automation and autonomy [6]. Automation relies on prescribed activ-

ity and feedback to map states to actions. Autonomy requires a more complex understanding

of the self and motivation. Many competing autonomous agent architectures have been de-
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veloped with the most capable incorporating planning, coordination, and reactive controls

across multiple layered subsystems [7]. These complex autonomous systems have been en-

abled by generations of technological advancements in computing, sensors and actuators,

and communications. Large collections of independent systems have been connected across

networks further enhancing the distributed system’s capabilities across physical distance and

time [2, 8].

As systems become more complex through the combination of many component au-

tonomous systems into large networks of distributed systems-of-systems, the challenges of

verification and validation (V&V) of safety and performance become prohibitive to inte-

grating such complex systems into human-centric applications [3, 9]. Approaches to solving

this problem include modular V&V of individual subsystems and data-based modeling and

simulation [10].

The recent proliferation of artificial intelligence (AI) and machine learning (ML)

for modeling complex relationships based on empirical data has enabled high performance

automated systems [11, 12, 13, 14, 15, 16]. However, these AI/ML models are difficult to

generalize and adapt which makes them insufficient for system autonomy. Further, AI/ML

approaches suffer from an explainability crisis comparable to V&V for complex systems [17].

The implementation of system autonomy in a manner that supports application to the NDSS

problem while also supporting V&V is therefore a meaningful objective.

1.4 Difficulty in Praxis, or Limitations of an Engineering Dissertation

Generally speaking, when taking an idea from the theoretical to the practical, as-

sertions about the validity of assumptions and real-world performance must be proven or

at least rigorously supported. This holds true for most engineered systems, where theory

informs practice and theoretical systems are modeled, prototyped, and tested before ulti-

mately being produced at scale. However, the costs associated with rigorous validation and

testing for human factors can be prohibitive. Instead, assertions concerning human compre-

hension can be assessed against and supported by the literature. In this dissertation, basic
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principles are discussed including information abstraction, understanding complexity, and

cognitive loading. In the context of human factors and understandable system autonomy,

these basic principles are explored through literature review. Future work in this area could

include foundational human psychology and physiology to understand and explore the limits

of cognition under realistic operational settings. Further exploration of human-in-the-loop

interaction with the HEADS framework in simulation would be of great value for applications

of the technology.

1.5 Dissertation Structure and Motivation

1.5.1 Chapter List

This chapter has covered the basic problem description, the contributions from this

dissertation, and notes on the history of and current trends in agent based autonomy.

The limitations of testing assertions about human factors and the mitigation strategy of

literature-backed discussion employed here are acknowledged.

1.5.1.1 Chapters 2-4: Foundations

Chapter 2 presents a discussion of automation and autonomy, an overview of the

history of autonomous agents, and recent trends in supporting technologies and requirements

for human-centered systems. The problems arising from the concept of system complexity

and how complexity impacts autonomous system design is covered in Chapter 3. The ideas

of measuring performance and what ‘truth’ means for autonomous systems is also discussed.

Chapter 4 includes practical approaches to modeling uncertainty and complexity and the

important topic of how human factors are treated throughout the rest of this dissertation.

1.5.1.2 Chapters 5-7: HEADS Principles and Design

Chapter 5 presents the inspiration for and general approach to the HEADS frame-

work. The attributes and structure of the framework are discussed in depth. Chapter 6

follows with the design methodology for implementing the HEADS framework and provides

tools for designers to assess system completeness, complexity, and sensitivity. General per-
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formance is discussed in Chapter 7 including a standardized method for both defining goal-

based performance metrics and using those metrics to enhance system performance through

optimization.

1.5.1.3 Chapters 8-11: Practical Applications

The HEADS design methodology is applied to a representative NDSS problem in

Chapter 8. The simulation environment developed for training and testing the implementa-

tion of HEADS is discussed in depth. Performance metrics are outlined and justified. The

example HEADS system is presented in full including application of the introspective design

metrics. Simulation results are presented with performance analysis for the original system

design in Chapter 9. Tuned performance, first through manual analysis and tuning and

then through application of evolutionary optimization to parameter modification, is shown

in Chapter 10. Concluding remarks are in Chapter 11.

1.5.2 Alternative Reading Paths

A reader who is primarily interested in the HEADS framework design and implemen-

tation should first read Chapter 5 to understand the design choices behind the framework,

followed by Chapter 6 for how to design a workable system. Optimizing for performance is

found in Chapter 7, although for general cases the as-designed system should offer reasonable

performance.

To understand the full sequence of technologies in the human-centered decision mak-

ing framework of HEADS as used in this dissertation, start with Chapter 4 then proceed

through Chapters 5-6 for implementation details. This path covers the basics of fuzzy sys-

tems, ensembles, and hierarchies and provides useful context for some of the assertions made

about system understandability.

The reader who is already familiar with HEADS and who only wants a practical ex-

ample should start with Chapter 8. Chapters 9-10 provide increasingly optimal performance

results through initial design, manual tuning, and algorithmic tuning with narrative on how

such improvements were achieved.
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1.5.3 Motivation

This research was motivated out of a passion for exploring and developing space-

related technologies that will benefit interplanetary human space travel. Based on the idea

that the first crewed mission to travel beyond Earth orbit will be subject to minimal crew

size and disruptive communications constraints with Earth-bound support, this framework

contributes to the on-board system autonomy that will be necessary for safe and effective

exploration.

The focus on human-centered engineering is founded on the belief that technology

exists to serve human curiosity and that great technological advances cannot be devoid of

human factors. Taking humans out of the equation not only reduces the anthropomorphic

nature of a given technology, it also reduces the humanity of any person that must interact

with or rely on such a system.

Finally, engineering is a cross-disciplinary art. It takes many experts from multiple

domains to develop meaningful solutions to the hard problems faced by people every day.

This is evident in this work through the multiple-agent based ensembles that were modeled

after committees of distinct experts tasked with answering a single question. Each individual

may not have much to say when faced with any specific problem and environment, but the

team is better for its breadth and depth of focus.
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Chapter 2: Foundations of Autonomy

The history of foundational advances toward practical system autonomy are many.

The following (incomplete) list of contributions is offered as inspiration for the concepts

discussed through the rest of this chapter:

• Francis Bacon developed the theory of inductive reasoning [18],

• Blaise Pascal invented the mechanical calculator [19],

• Charles Babbage invented the analytical engine [20],

• Ada Lovelace developed the first algorithm for implementation on a computer [21],

• Alan Turing pioneered artificial intelligence [5],

• John von Neumann and Oskar Morgenstern developed game theory [22], and

• Arthur Samuel created one of the first machine learning algorithms [23].

2.1 Automation and Autonomy

The separation and overlap between automation and autonomy is discussed in [6].

Automation includes prescribed activity and reactionary adaptation. The most straightfor-

ward examples of automation are scripted:

• a computer script follows instructions from start to finish

• a manufacturing machine takes feedstock and produces bent metal widgets through a

series of operations controlled by mechanical cams and linkages

Automation can also include feedback-based adaptation:
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• a computer script checks for return codes after executing each instruction and has logic

to determine which of two actions to take based on the result of the previous step

• a manufacturing line includes robots that use motor encoders to measure end effector

position and proximity sensors at the welding tips to control weld depth

Where automation is scripted and may include feedback control, autonomy requires more

complex consideration of state and motivation. Autonomous systems do not exclude automa-

tion (in fact, many autonomous systems have high degrees of automation through component

functions). The differentiating factor is how the system selects its next action. Automation

relies on pre-defined sequences or control actions to drive system states toward desired val-

ues. The autonomous system considers multiple feasible actions against dynamic operating

requirements and selects an action believed to achieve its goals. Selecting an action to

achieve goals requires inherent understanding of the environmental state, the system state,

how state evolution is correlated, and what actions are likely to result in desired effects.

External motivation does not reduce autonomy, since an agent must still assess its state and

environment to select a course of action to meet externally-defined goals.

2.2 Autonomous Agents

The discussion concerning agency as applied to computer systems is thoroughly

treated in [7]. Briefly, there are three key issues in discussing agency, namely agent the-

ories, agent architectures, and agent languages:

• Agent theorists are concerned with defining agents through formalisms and properties.

• Agent architects are concerned with implementing agents through structures.

• Programmers leverage agent languages to define agent programs to implement on com-

puters.

A formal description of an agent for agent based reasoning, found in [24] as adopted

from [7], is summarized as follows. The agent exists in an environment defined by states
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S = {s1, s2, ...} and can execute actions A = {a1, a2, ...}. The simplest definition of agent is

a function

act : S → A (2.1)

which maps environmental states to actions. A more realistic agent first perceives and then

acts

observe : S → P , act : P → A (2.2)

where P is the set of percepts, and action now maps these percepts to actions. The agent

may be more complex with many possible internal states K with internal state evolution

driving actions:

observe : S → P , orient : K × P → K , act : K → A (2.3)

2.2.1 Agent Theory

In [7], many possible properties of agents are described as attitudes and include belief,

knowledge, desire, intention, obligation, and choice. An agent theory combines two or more

of these attitudes and creates the formalism for how they represent the agent. The theory

captures what an agent can do and by exception what it cannot do.

Agent theory matters for discussion of autonomous systems because every system has

a set of attributes that the designers felt important enough to bestow on the system. These

attributes define how the system perceives signals and uncertainty. The system exhibits

the attributes through its logic. Defining these properties sets expectations for what the

autonomous system is capable of and how it will behave.

2.2.2 Agent Architecture

The agent architecture incorporates the structure of modular components that inter-

act to realize the theory. In [24], four basic agent architectures are described, including logic

based agents, reactive agents, belief-desire-intent agents, and layered architectures.
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2.2.2.1 Logic Based Architecture

A logic based agent considers the internal state of an agent and what it can per-

ceive and provides mappings to feasible actions. The logic that provides these mappings

incorporates both performance measures and uncertainty to support a system that evaluates

actions based on known or estimated parameters. These feasible actions are provided to a

planner function. A drawback of logic based approaches is the computational complexity

of considering all feasible actions. To overcome this, a stochastic approach to uncertainty

combined with performance measurement (cost, reward, fitness) has been demonstrated as

practical for logic based decision making for rational agents [25].

2.2.2.2 Reactive Architecture

A practical approach to artificial intelligence is best summarized in [26] where the ar-

gument is made that an intelligent system must be grounded by physical connections to the

world. Symbolic reasoning is insufficient as praxis since there must always be the physical

connection through sensors and actuators. Further, symbolic representations are necessarily

abstractions and may require assumptions or simplifications that reduce precision and accu-

racy. Stated succinctly in [26], “the key observation is that the world is its own best model...

the trick is to sense it appropriately and often enough.” The result of this work was the

subsumption architecture [27] in which a combination of augmented finite state machines

react to sensor data or messages from other machines to make control decisions. Subsump-

tion describes a layered approach to decomposing problems into subproblems, solving the

subproblems, and then composing solutions. The tightly-coupled sense-act paradigm leads

to behavioral decision making to answer the question of what to do when, and how to do it.

Behavioral actions are reactive in nature, where overall system behavior emerges from the

interaction of individual behaviors.

Reactive agents are inherently similar to feedback controllers, since decision making

depends only on the current perceived state. Reactive agents may require additional sub-

functional connectivity or a higher level of determination before they can be considered
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to make decisions. Common methods for achieving this higher-level function include voting

methods [28]. The speed of reactive agent architectures is often their most attractive feature.

However, since no models are used, it is difficult to use non-local or estimated information as

part of the decision making process. Deconfliction of competing priorities is also a challenge,

since sub-functions have no inherent ability to consider their impact on achieving goals. One

approach for solving this problem includes a blackboard model [29] for information sharing

between reactive behaviors [30].

2.2.2.3 Belief-Desire-Intent Architecture

Perhaps the most common architecture endowing its agents with belief, desire, and

intent is the procedural reasoning system [31]. Within this architecture, action selection

depends on current goals, beliefs about the environment, and prior intent. An agent may

also perform introspective reasoning about the validity of its beliefs, desires, and intent.

External influences can interrupt or force an agent to reprioritize its goals. This architecture

enables robust planning and plan adaptation in dynamic environments.

2.2.2.4 Layered Architecture

A layered architecture incorporates component functions of reactive, logical, behav-

ioral, or belief-desire-intentive architectures across multiple independent subsystems. Early

layered architectures are covered in depth in [32]. Applications of layered architectures may

focus on the different layers, although they hold in common the separation of how (behav-

iors), when (planning), and what (connective courses of action between behaviors and plans).

The general hybrid description of a layered architecture, with special attention to the reac-

tive layer, is detailed in [28]. In [33] it is shown that a modular and hierarchical structure of

behavior-oriented components enables complex reasoning.

2.2.3 Agent Language

Traditional software engineering approaches to modularity and hierarchy are well-

suited to the design and implementation of an agent language. Throughout the literature
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one can find examples of agent languages that have become more historical than practical.

This is attributed to the rise and popularity of powerful and flexible scripting languages (and

abundantly available code examples) that make prototyping software simpler. The critical

enabler of an agent language is the clear and concise definition of behaviors and attributes

as outlined in the theory and structured according to the architecture. The reader is referred

to [7] for further coverage of the topic.

2.3 Current Trends in Technologies Supporting Autonomy

Systems that exhibit autonomy depend on advanced technology to be able to perceive

and interact with the physical world. Networks of autonomous systems multiply the impor-

tance of technological enhancement as more data is created, processed, and communicated.

The following sections discuss a few critical technologies that support high-performance au-

tonomous systems.

2.3.1 Technological Advancement

Advancement in technology drives enhanced capability of sensors, actuators, and

computer devices even as the size, weight, and power (SWaP) of the devices decrease. Many

common systems are locally-connected collections of these advanced devices including ground

transportation vehicles, seafaring vessels, aircraft, spacecraft, smart buildings, and datacen-

ters. These individual systems can do more than ever before across the land, sea, air, space,

and cyber domains. The lower costs and increased capabilities of devices has led to the pro-

liferation of independent and networked smart devices and systems. A distributed system of

systems extends these devices across time, space, or both to deliver pervasive and persistent

capabilities.

2.3.1.1 Advanced Computing

Moore’s Law defines the trend that, since its origin in 1965, has empirically described

the exponential enhancement of computing devices [1]. Central (CPU), graphics (GPU),

tensor (TPU), and combined processing units support the SWaP reduction of modern de-
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vices. Not only are integrated circuits (ICs) becoming more dense, the increasing variety

of application specific ICs (ASICs) means the performance enhancements are seen across

general and specialized computing needs. An ASIC may be designed for signal processing,

data acquisition, radio frequency digital filtering, or any other application that requires high

performance and low latency. Field programmable gate arrays bridge the gap between ASICs

and more generalized processors, with software-defined connections between logic blocks that

can be reprogrammed after manufacturing.

The connection between advanced computing and autonomy is faster and more ef-

ficient processing. Autonomy for complex systems requires complex solutions which often

require high-performance computer systems. Historical high-performance computers were

not embeddable within the autonomous device. However, embedded computers available

today offer performance comparable to historical supercomputers with minimal size, weight,

power, and cost. Enhanced computers also benefit system designers through faster develop-

ment of autonomous system technologies.

Another recent advancement in computing technology is the ‘Cloud.’ A large col-

lection of networked computers serves as the backbone for nearly every consumer-facing or

private internet-connected service today. Furthermore, many services imbued with facets

of autonomy are backed by the Cloud, including voice recognition and networks of smart

devices. While off-device autonomy is useful for some classes of problems, the inherent lim-

itations of proximity to the datacenters that support such autonomy makes this approach

infeasible for the class of problems considered in this dissertation.

2.3.1.2 Advanced Components

Advanced computing has further impacted the landscape of materials, peripheral de-

vices, sensors, actuators, and other components commonly used within systems. Computer-

aided research, design, and production of materials and widgets yields both advanced and

application specific tools to solve problems more efficiently. Through embedded computer

systems, intermediate process control can be accomplished at increased scale and efficiency.

15



The core devices and components used to build complex and capable systems directly

enable system autonomy. Without such components an autonomous system would require

more size, weight, or power to achieve the same effects. At the network level, advanced mate-

rials, sensors, and actuators enable more robust and resilient performance which helps reduce

operating and maintenance costs. An autonomous system realizes its greatest potential when

it is given the most advanced tools to interact with its environment.

2.3.1.3 Advanced Communications

The most common physical medium for wireless communication is radio frequency

(RF) bandwidth. RF bandwidth is limited, as multiple users on the same channel interfere

and render both communication links unusable. More efficient use of frequency spectrum

through medium access control is one approach to solving this problem. Strategies to coor-

dinate shared spectrum have been implemented such as frequency (FDMA), time (TDMA),

code (CDMA), and orthogonal frequency division multiple access (OFDMA). Methods for

deconfliction without pre-coordination, such as ALOHAnet [34], are based on a reactionary

and stochastic approach. Advanced computing and components enable the use of higher

frequency spectrum which provides more bandwidth leading to higher data rates at the cost

of generally lower signal propagation.

Optical wireless communication is a newer capability that promises more throughput

and less interference than RF communication. Laser based solutions are highly directive.

Challenges to optical communications include background illumination and optical receiver

sensitivity. It is also difficult to create an omnidirectional optical receiver making simul-

taneous optical links a challenge. Mitigations including optical filtering and miniaturized

redundant laser sources and sensors have enabled practical prototype devices that address

some of these challenges [35, 36, 37, 38].

Wired communication leverages electrical or optical signals over solid physical media.

Wired connections often achieve high data rates with little susceptibility to or generation

of interference. Networks made from wired connections are the preferred choice for local
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interconnectivity among subsystems and systems. However, wired networks are impractical

for dynamic network topologies.

Distributed network-level autonomy relies on inter-agent communication for agents

to understand each other. High throughput communication may not be necessary unless the

network is made of heterogeneous agents with distributed sensing, reasoning, and actuation

capabilities. In this case, a high bandwidth network is critical to system performance.

Finally, for distributed systems subject to human oversight, the streaming of raw or processed

data may be required to provide situational awareness or for auditing purposes.

2.3.1.4 Network Connectivity

Advanced computing, miniaturized components, and advanced communications serve

as the foundation for enhanced connectivity of systems. Often referred to as the Internet

of Things (IoT), these networks consists of sensors and processors that enable a variety of

data-driven services including:

• smart home lights, locks, thermostats, and other devices,

• tracking and locating for postal and package delivery services,

• real-time information about transportation and logistics networks,

• identity authentication and authorization services, and

• management and control of distributed infrastructure such as electrical power distri-

bution.

Although these networks often contain distributed systems-of-systems, their primary intent

is more automation than autonomy [2, 8].

Connected networks of devices serve autonomous systems in a supporting role through

their proliferation. The network of sensors, as a layer within an autonomous agent archi-

tecture, provides the autonomous agent with sufficient information for nuanced decision

making.
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2.3.2 The Need for Verification and Validation

Enhanced technology enables high-performance networks of autonomous systems.

These systems must operate in a human context which requires strict validation and verifi-

cation (V&V) driven by safety and regulatory considerations. Safety takes two forms:

• human safety and well-being when depending on or interacting with the autonomous

system, and

• safety and longevity of the autonomous system itself.

The ethical nature of prioritizing safety is beyond the scope of this work. However, the basic

requirement is that the autonomous system should do no harm to itself or others. Regulatory

concerns are important when considering the application of autonomous systems outside of

the laboratory where the impacts of failure may extend beyond the experimental system.

Increased system complexity makes validation and verification of systems more dif-

ficult [3, 9]. Research into methods for V&V of complex models has recently focused on

leveraging tools such as model based systems engineering (MBSE) and systems modeling

language (SysML) [10]. These tools are used to perform analysis of data flows, information

consistency, and cause-effect interactions among subsystems during the design phase.

Operational considerations for V&V are focused on performance. One approach to

guarantee performance is the separation of duties across hierarchical layers. For example,

separating the decision and control loops can lead to guaranteed closed-loop tracking per-

formance toward the dynamic outcomes from the decision making loop that often take more

time to adapt and reconsider [39]. The separation approach enables each sub-part to be

independently verified. However, independent verification may not consider the complex in-

teractions between subsystems. To account for this complexity, enforcing a standard model

for requesting and delivering data between subsystems can support inter-agent validation at

the system level [40].
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Another V&V task is understanding the bounds of system behaviors. The descrip-

tive models that MBSE and SysML help develop can be used for on-line fault identification

and tracing the impact of component failures across the system. Input validation is another

method for rejecting out of bounds or corrupted data that might otherwise cause internal

failures. The difficult task of full system characterization requires robust models and/or real

hardware and sufficient representative data for simulating the range of anticipated operating

environments and all possible fault conditions. Of course, testing at this scale and fidelity

is either cost prohibitive or technically impossible on standard mission development time-

lines requiring high fidelity simulation and other approximate methods [41]. Therefore, the

reliance on subsystem-level V&V and as much cross-functional testing as can be done in

concert with simulation is the industry standard when it comes to integrated system V&V.

2.3.3 Artificial Intelligence and Machine Learning

A discussion on technologies and current trends supporting autonomous systems is not

complete without mentioning artificial intelligence (AI) and machine learning (ML). At its

core, artificial intelligence enables machines to execute tasks that would require intelligence if

performed by humans [42]. AI is the broadest term for a system that incorporates functions

of automation, reasoning, and autonomy. Machine learning is itself a broad subfield of AI

that is focused on automated model generation and adaptation based on data processing

and feedback [43].

The overlap between AI, ML, and autonomous systems means distinguishing between

them is difficult. In practice, AI and ML are often conflated and used interchangeably. The

proliferation of AI and ML solutions to complex problems is well documented across domains,

including:

• AlphaGo is perhaps the most well-known artificial intelligence derived from machine

learning and was developed to learn how to play Go [11, 12],
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• medical diagnosis has been supported by machine learning models inspired by biology

[13],

• machine learning has been used for model generation and optimization for electrical

grid simulation resulting in faster high-fidelity simulations [14],

• spacecraft anomaly detection uses machine learning for categorizing complex multi-

dimensional telemetry data [15], and

• asymmetric encryption methods are developed using generative adversarial networks

[16].

However, most if not all current AI/ML models lack defining attributes of autonomy includ-

ing belief, motivation, and the notion of understanding internal and environmental states.

Although highly informative when considering system autonomy, a deeper discussion

on methods for designing and using AI/ML models is beyond the scope of this dissertation.

The interested reader is encouraged to seek references on the topics of classifiers and various

types of artificial neural networks (deep, recursive, generative adversarial, etc.) [44, 45,

46, 47, 48, 49] and tools useful for automated learning and model optimization (bagging,

boosting, ensembles, evolutionary algorithms, etc.) [50, 51, 52, 53, 54].

2.3.3.1 AI/ML and Autonomy

State of the art AI and ML tools are adept at mapping knowledge of states into

optimal categorizations or control decisions. When extended to searching a set of feasible

actions the AI/ML approach can yield outstanding results exhibiting behavior adjacent to

automated decision making. However, these tools are not malleable. Once a model is

generated or trained it is effectively static. Performance can be generalized through training

on a wide scope of plausible scenarios, but the first time an AI/ML model encounters an

event that is not covered by its training set performance suffers. One approach to mitigate

this effect is transfer learning, where a model is trained on representative data but applied

to similar-but-not-exact data in practice [55, 56]. Still, to cover a scenario that has little
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or no overlap with the training scenarios still requires the development or training of a new

model which can be a long and costly process. This makes standard AI/ML approaches

insufficient for achieving system autonomy. Furthermore, the difficulty in verifying and

validating AI/ML solutions for safety and bounded performance is an active area of research

that has yet to bear meaningful fruit [17].

In spite of the inherent limitations of AI and ML they can be useful in the context

of system autonomy. When considered as part of a layered approach to autonomy, AI/ML

models show their strengths through reactive agency and function-specific efficiency.

2.4 Agent: A Working Definition

Without delving much further into philosophical or ontological discussion and for the

purpose of this dissertation, a workable theory and architecture defines the agent as a system

of functions to ingest information

observe : S → P (2.4)

which processes and reasons about the information driving internal state transitions

orient : K × P → K (2.5)

develops a self-confidence measure C in its internal state based on its internal logic L

decide : K × L→ C (2.6)

and arrives at executable courses of action based on self-confidence

act : K × C → A (2.7)
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This system of functions operates concurrently and is modeled after John R. Boyd’s Observe,

Orient, Decide, Act (OODA) loop1 where agility enables the agent to respond to dynamic

environments to drive the system toward success.

The agent theory for this working definition includes attributes of belief, obligation,

choice, self-confidence, and selecting a ‘good-enough’ option quickly. The theory is structured

into a layered architecture with logic-based agents at the core.

1John R. Boyd was a United States Air Force fighter pilot and military strategist. He created the OODA
loop to describe the cyclic decision process through which an individual or organization reacts to events.
The theory provides a solid framework for the necessary functions of an agent [57].
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Chapter 3: The Complex Nature of Autonomy

A great deal of attention is placed on the concept of complexity throughout this

dissertation. It is therefore worthwhile to define and understand what complexity means in

the context of systems, decision making, and autonomy.

Various reasonable definitions and characterizations of complexity are found in the

literature, including:

• complexity arises from system attributes including nonlinearity, uncertainty, dimen-

sionality, and structure [58],

• model complexity depends on the number of degrees of freedom [59],

• complex class boundaries cannot be modeled linearly [60], and

• complex means entangled such that the complex system cannot be decomposed while

maintaining capability [61].

Other descriptive language that applies to complex systems includes: opaque, black box,

partially-observable, hidden, hard to describe, difficult to reproduce, disorganized, and

chaotic.

The rest of this chapter attempts to make sense of complexity as it applies to auton-

omy. Approaches to modeling complexity are discussed. Relevant to the problem considered

by this dissertation, the networked and distributed systems-of-systems structure is described

as hierarchical connections between complex subsystems. Finally, the difficult nature of

truth for an autonomous system is considered.
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3.1 Modeling Complexity

The difficulty in modeling complex systems comes from the need to capture holistic

behavior while keeping the model itself tractable. The two main approaches to modeling

include top-down and bottom-up, and each handles complexity in different ways.

A top-down approach treats the effect to be modeled as an outline or a sketch and

iteratively incorporates more explicit detail until the model meets its purpose [62]. The

added detail may arise from disaggregating a complex function into its constituent sub-

functions, new functionality to handle edge cases, or simply identifying interacting sub-

parts of a mechanism. Each iteration better describes the system as a whole through its

parts. Ensuring each part meets but does not exceed its performance criteria ensures the

overall model achieves its purpose without too much development cost. The benefits of this

approach include minimum model complexity to achieve its purpose (consider a spherical

cow...) and cost efficiency through designing to threshold metrics. A major drawback of top-

down modeling is the cost associated with adapting the model to other purposes. Re-using

its sub-parts is difficult due to the original focus on a specific use-case.

The bottom-up approach to modeling starts with first principles and develops added

functionality through the combination of lower-level parts. Examples of component parts

that are used to create a bottom-up model include differential equations and stochastic

processes. The primary benefit of this approach is that a deep understanding of the basic

mechanisms behind a behavior enable the designer to carefully control and adapt components

that depend on the well-understood parts. Another major benefit is that once a fundamental

process is understood and modeled it can be used as a building block in innumerable more

complex models. A clear drawback to bottom-up modeling is the potential for high costs

associated with understanding the basic principles and experimentally validating the low-

level models.

Modeling a complex system often requires both top-down and bottom-up approaches.

Where fundamental interactions among parts of the system are known or can be investigated
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deeply the bottom-up approach can reduce modeling errors. The top-down approach can

help capture higher-level systemic properties and encourage strategic investment into deeper

understanding of system behaviors. Whichever modeling approach is prioritized, the result-

ing model of a complex system will be made up of many component parts. These components

describe the complex internal state evolution of the bulk system when exposed to inputs and

perturbations.

3.2 Complex Agents as Complex System of Systems

The reader is referred back to Chapter 2 for how the following description of an agent

was formed. For this dissertation, an agent is a system of functions to:

• ingest information,

• process and reason about the information,

• develop a self-confidence measure in its internal state based on its internal logic, and

• arrives at executable courses of action based on self-confidence.

This agent clearly consists of multiple component parts. The individual components do not

need to be complex (ingesting information is a simple mechanism). The agent as a whole

exhibits complex behavior based on how it uses the information it has to reason about itself

and take actions to achieve its goals. Depending on the specific implementation of such an

agent, it is easy to see how individual processes may be nonlinear and sensitive to nuanced

differences in state realizations. When such complex components interact, the overall system

is also complex.

3.3 Networked and Distributed Systems-of-Systems (NDSS)

A network of distributed systems-of-systems (NDSS) is the ultimate realization of a

connected capability. Devices (or agents) within the NDSS communicate across the network

to share information that can lead to increased overall system performance. Thoughtful de-

sign of the NDSS can lead to benefits beyond added physical or temporal reach of the desired
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capability. Building the network using many redundant nodes leads to robustness against

individual node failure. Strategically placing, orienting, or connecting complementary de-

vices or systems can boost NDSS performance. Layering network communications across

multiple physical link methods protects against disruptions. These complementary systems

provide more data, increase the value of collected data, or enhance the flow of information

across the network.

However, the NDSS is not a panacea for perfect data, operations, robustness, or

redundancy. Installing, connecting, calibrating, and maintaining large numbers of devices

or systems can be costly. Large networks of connected agents can stress communications

infrastructure. The data produced by independent sources can require additional prepara-

tion, correlation, or validation before it can be trusted or used. Real-time command and

control of large numbers of devices can require vast teams of operators. The NDSS may be

made of distributed heterogeneous sub-components across many layers of capabilities and ef-

fects. Complex interactions between these distant and disparate systems can require intense

monitoring for system performance and stability.

One approach for reducing costs associated with implementation and operation of the

NDSS is to enable each component system with on-board autonomy. Enabling agents in the

network to choose their courses of action reduces the need for centralized monitoring and

task management. Autonomous systems can be made robust against delayed or disrupted

communication with the rest of the network. On-board autonomy also supports intelligent

communication where objectives and results are shared rather than raw data. Individual

autonomy enables smart and efficient operation of single agents. NDSS autonomy requires

multiple agents to cooperate in fulfilling shared objectives. Cooperative autonomy without

central coordination is the primary enabler of large NDSS. Cross-system autonomy is re-

quired for efficient optimization at the agent level [40]. Each agent should be trusted to

handle its own autonomy while also participating in higher-level cross-system planning and

optimization.
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NDSS autonomy should not be disconnected from the human domain, however, for ob-

servability, verifiability, performance, and ethical reasons. Engineered systems are designed

to solve human problems and should therefore be subject to human oversight. Human-in-

the-loop operation is common for many existing systems for which autonomy is a goal, for

example, autonomous ground transportation vehicles. Human cooperation is a necessity for

other autonomous systems such as life support for astronauts in Earth orbit and beyond.

When lives and human rights are at stake, it is dangerous and unethical to trust opaque au-

tonomous systems that cannot be proven to operate in a safe and bounded manner. When

consequences are less severe, a black-box autonomous system cannot be relied upon to behave

deterministically.

Therefore, for reasons of safety, stability, efficiency, performance, and ethics, an au-

tonomous network of distributed systems-of-systems should:

• incorporate and enable cooperation between any number of systems-of-systems;

• support verification and validation of deterministic behavior through inspection;

• support human-in-the-loop cooperation;

• enable per-agent operation in the absence of local or global connectivity or centralized

control; and

• behave deterministically in uncertain or unbounded environments.

Meeting these criteria will result in a capable, adaptable, performant, understandable, and

deterministic autonomous agent. Connecting such agents through direct communication or

measured or estimated parameters is the foundation for localized cooperative clusters.

3.3.1 A Representative NDSS

The following example illustrates a representative network of distributed systems-of-

systems and how per-node autonomy enhances the network. Applying autonomy across a

network of a distributed spacecraft system (DSS) can reduce the logistical burdens inherent
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to large networks of cooperating nodes [63]. Backed by inter-satellite links (ISL), the DSS

can coordinate plans, share measured data, bid on tasks, and cover for degraded nodes,

increasing overall system effectiveness.

Data sharing impacts both the local node and the network as a whole. Each node,

given data about its neighbors, might choose slightly different actions to balance its strengths

against deficient neighbors. If satellite B is between A and C, and B has much more stored

energy, it may opt to perform energy-intensive tasks for longer to make up for the reduced

capacity from the other nodes. A and C may then decide to perform medium-energy tasks

or save energy to cover for the next objective. The group adapts to optimize for current and

future performance.

Leveraging the ISL for consistent cross-network logistics, the DSS can also respond to

emerging or opportunistic events at speed. If one node detects a signal that meets mission

criteria, for example a severe weather event forming over the ocean, it can share time and

location data to the network. Other nodes can then consider repurposing their sensors

to cover the event. The network can increase coverage, enable continuous tracking, and

prioritize relevant data for downlink, all without direction from ground control.

Cross-DSS data sharing also benefits fault mitigation. A single node may compare

its own performance against what is reported by its neighbors as a way to increase fault

detection. Maybe node A has failing solar panels as the root cause of its low energy. If A

consistently determines it can perform high-energy tasks for less time than B or C, it may

self-select for additional diagnostics on-board or from ground systems and operators.

3.4 Autonomy and Truth

When it comes to autonomous systems that make decisions and take actions, being

correct is a difficult thing to measure. There are often decisions that are known to be good

or bad and these can be measured and tracked directly. However, when there is no feasible

good decision, and similarly when there are many good decisions, the concept of correctness

becomes unclear. If a desired course of action is known, whether the autonomous system
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takes the action is a binary classification. The corollary bad decisions or failure results are

likewise easy to categorize. Binary failures can be iterated and may include:

• allowing a battery to be completely drained,

• taking an action that is contrary to a goal,

• causing a traffic collision, or

• misdiagnosing a patient.

These failures are events, and the failure truth is binary. Avoiding failures can be countably

scored. When binary classification does not fully describe an event or a key performance

indicator, a cost function can be applied:

• expending more battery power than necessary,

• driving too fast for the road conditions, or

• administering the wrong amount of medication to a patient.

These events occur to degrees and the indicator truth is fuzzy. It is therefore more useful to

describe these indicators over time through the summation or integration of a cost function.

However, avoiding failure is only one way to be correct. For a stochastic system,

correctness is binary. The probabilistic model predicts a future state with some uncertainty

and in finite time that prediction can be evaluated as true or false. A decision making system,

on the other hand, can have multiple feasibly correct actions from which to select. Choosing

a single course of action requires comparing the feasible decisions. This drives the need for

a cost/reward structure for measuring decision correctness. Measurable outcomes drive this

cost/reward assignment since assigning scores to a decision is otherwise meaningless. For

expensive predictions or comparisons, it may be necessary to select the first feasible action

that meets pre-defined criteria. Thus, a decision making system can operate with degrees of

correctness.
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Chapter 4: Managing Complexity

Where Chapter 3 discusses what autonomous system complexity can mean and how it

impacts system development and performance, this chapter covers approaches for managing

such complexity. Complexity management is critical to system design for human factors

and validation and verification considerations. How complexity is modeled and minimized

directly impacts the explainability of system behaviors and performance. The following

sections describe aspects of autonomous system complexity and approaches to understanding

and modeling them in ways that encourage ease of use for human designers and co-operators.

These factors and the complexity modeling and management decisions making up the

4.1 Probability and Uncertainty

How uncertainty is handled impacts how a system responds to unknown inputs. For

example, a Markov process is a probabilistic system that evolves based on the current state

and the likelihood of an event. Probability accounts for whether something happens. Fuzzy

theory and fuzzy logic systems [64, 65] account for a different kind of uncertainty: one where

any number of events can co-occur to varying degrees [66]. Therefore, the Fuzzy Inference

System (FIS) serves as a strong basis for a logic system that deals with complexity. Input

signals used for complex logic often have poorly-defined boundaries. The resulting decision

outputs tend to overlap when the system moves from one state to another. Within the FIS,

logic rules combine fuzzy set activations that capture overlapping signals and states to enable

logic that incorporates this kind of uncertainty.

Probability theory encompasses the uncertainty of whether an event will occur. Sta-

tistical modeling serves as the foundation for making predictions. The sum of two fair dice

is known to equal 7 with probability 1/6. On a finite time scale, whether an event occurs
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is a binary truth. Thus, a prediction of 7 for every future roll of the dice yields the best

performance even though it will be wrong 5 of every 6 rolls. For a simple independent trial,

this model makes mathematical sense. But, being objectively wrong 83% of the time may

be unacceptable.

Understanding the world through the lens of probability enables an autonomous sys-

tem to make rational decisions without perfect information. Statistical correlation can fill in

knowledge gaps based on likelihood of events or states being true. When making decisions

about the future, the rational decision maker leverages data and models. Assigning condi-

tional probability to events lets a stochastic model represent complex system behavior. If

a specific parameter or state is known (or thought to be known) the other parameters and

states can be found using maximum likelihood estimation. Of course, having an accurate

model of the system is necessary for such estimation. For a complex system, uncertainty in

the component models tends to amplify overall uncertainty, which also means event occur-

rence uncertainty increases. And yet, whether an event occurs (or whether an event is likely

to occur) still only captures one sense of uncertainty inherent in the real world.

A B

0.75

0.5

0.50.25

Figure 4.1 A simple Markov model

The nuance of to what degree an event occurs cannot be described under classical set

theory. Binary set membership is inherently limited in the kinds of informational relations

that can be drawn between state realizations. For example, Figure 4.1 shows a Markov

process where the transition from state A to state B occurs with probability 3/4 and the B

to A transition occurs with probability 1/2. This model captures that state B is likely to

follow state A and that the system is most likely to be in state B at any time. What this

model fails to represent is behavior at the state transition boundary. Further, this model
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assumes that state A is mutually exclusive of state B. Of course, a more complex model with

intermediate states may better describe the state transition pathways and their likelihood,

although the same inherent limitation of opaque transition boundary behavior and state

exclusivity apply. For complex processes, transitions between states are rarely instantaneous

or complete.

Under fuzzy theory, all things admit degrees [66]. Both probability theory and fuzzy

theory describe uncertainty on the range [0, 1]. However, how the systems deal with a thing

A and its complement Ac at the same time is the key distinguishing factor. Classical set

theory requires mutually exclusive set membership. A stochastic event cannot have occurred

and have yet to occur at the same time. A Markov model cannot be in state A and state

B at the same time. Fuzzy theory allows for a more nuanced approach with degrees of

set membership in multiple sets. Compared to the Markov model, a state realization where

both A and B have nonzero membership activation levels is possible and commonplace under

fuzzy theory.

The major contribution of fuzzy theory is the use of linguistic variables to describe

signals, and fuzzy conditional statements and algorithms for manipulating linguistic vari-

ables. These features were revolutionary to managing the uncertainty of to what degree in

the context of a human-comprehensible ‘theory of possibility’ [65]. It is the concepts of hu-

manistic uncertainty and human comprehension of uncertainty that necessitate fuzzy theory

for decision making.

4.2 Fuzzy Theory

Since Zadeh [64] first published on Fuzzy Logic as an extension of boolean logic that

better captures uncertainty, many tutorials and applications have been published [67]. The

Fuzzy Inference System (FIS) has been extended to be adaptive and combined with neural

networks to increase performance [68, 69, 70, 71]. Fuzzy Logic is a non-probabilistic approach

to addressing uncertainty which is concerned more with the degree to which something

happens opposed to whether something happens.
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4.2.1 Fuzzy Set Definition

A fuzzy set maps part of an input variable domain to [0, 1] and is represented by

a linguistic variable. An activation function (which can be continuous or discrete) and its

parameters are chosen to enable sufficient coverage and overlap of the input variable domain

into the fuzzy domain. Common functions include triangles and trapezoids due to their

straightforward parameterization. However, any function that maps inputs to [0, 1] can be

used. There is no restriction on the dimensionality of the input space to a fuzzy set activation

function. Similarly, functions that map non-real values to the appropriate domain may be

used if needed.

Output fuzzy sets are similar to input fuzzy sets in definition and implementation.

The main difference is that input fuzzy sets are used as rule antecedents and output fuzzy

sets as rule consequents. The number of fuzzy sets used to represent an input or output

can vary between fuzzy expert systems. For example, one expert might divide an input into

three fuzzy sets, another expert might use seven fuzzy sets. This is a design choice driven

by the granularity requirements of the rule set in use by the specific fuzzy expert. This

variability is one way mechanism for increasing robustness, since an expert can be designed

to perform well over a subsection of the input space. The first expert can then be augmented

by another expert that is designed to cover a different input subspace.

4.2.2 Rule Definition and Evaluation

A rule is written in the form of standard logic using AND (∧), OR (∨), NOT (¬) and

THEN (→) terms and parenthetical grouping to evaluate antecedents into a rule consequent

activation. For input fuzzy sets A, B, C, and D, and output fuzzy sets Y and Z, a rule set

might include:

1. If A or C then Y

2. If not A or (B and D) then Z
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Fuzzy logic rule evaluation combines fuzzy set activation levels for all antecedent

terms. This process is referred to as ‘fuzzy reasoning’ as it generalizes the application of

logic inference. The value resulting from fuzzy reasoning is the output fuzzy set, or rule

consequent, activation.

Rule evaluation may apply to one or more antecedent terms. When multiple an-

tecedents are considered, fuzzy logic operators dictate value propagation:

1. AND: (A and B) ≡ min (A,B)

2. OR: (A or B) ≡ max (A,B)

3. NOT: (not A) ≡ (1− A)

Parenthetical statements group terms:

1. (A = 0.5 or B = 0.8) and C = 0.2→ 0.2

2. A = 0.5 or (B = 0.8 and C = 0.2)→ 0.5

The resulting activation level is then used to limit the output fuzzy set, or consequent,

activation. This process is where fuzzy expert systems handle the uncertainty of ‘to what

degree,’ as an output inference can be considered ‘true’ to the extent that the consequent

activates. Figures 4.2 and 4.3 illustrate the evaluation of a multiple-antecedent rule and the

consequent output fuzzy set activation that results.

4.2.3 Aggregation and Defuzzification

After rule evaluation, the fuzzy expert system consists of one or more output fuzzy set

activations. Any particular output fuzzy set can have zero or more component activations

that need to be combined via T-norm or T-conorm before the fuzzy expert system can

provide a usable crisp output. The T-norm operator is a function

T : [0, 1]× [0, 1]→ [0, 1] (4.1)
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that defines fuzzy intersection [72]. Common T-norms include the minimum and algebraic

product. The T-conorm (or S-norm) similarly maps

S : [0, 1]× [0, 1]→ [0, 1] (4.2)

Common S-norms include the maximum and algebraic sum

S(a, b) = max(a, b) (4.3)

S(a, b) = a+ b− ab (4.4)

The T-norm and T-conorm provide the basis for combining fuzzy sets via intersection and

union, respectively.

The final duty of a fuzzy expert system is to produce a crisp output value built from

the aggregated output fuzzy sets. This process is called ‘defuzzification’ as it takes fuzzy

values as input and gives a crisp output. Common methods include:

• centroid of area,

• bisector of area,

• mean of maximum,

• smallest of maximum, and

• largest of maximum.

The computational burden of computing areas or means is one factor in deciding which

defuzzification method to employ. The selection of a defuzzification operation may also

depend on the output variable and whether the system must be lenient or conservative when

reasoning.

Several fuzzy inference systems have been defined that provide the T-norm and T-

conorm selections for both rule antecedent combination and rule consequent aggregation.
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Some of these benefit from crisp outputs after consequent aggregation, reducing the compu-

tational burden from defuzzification. The Mamdani, Sugeno (TSK), and Tsukamoto fuzzy

models are some of the most well-known and often-used throughout industry and literature

[73, 74, 75].

4.2.4 A Fuzzy Example

Clear Cloudy Low Pressure High Pressure

Crisp Input 1x Crisp Input 2x

Rule 1: If x1 is cloudy (0.9) and x2 is low pressure (0.75)

1x 2x

Cloudy Low Pressure

1x 2x

0.9
0.75

Then y is Rainy (0.75)

Figure 4.2 Fuzzy rule evaluation

Figure 4.2 shows an illustrative fuzzy logic calculation which maps two input signals,

‘pressure’ and ‘cloudiness,’ to a weather forecast, ‘rainy or dry.’ This example shows multiple

fuzzy sets for both input and output, and the rules being evaluated are ‘IF cloudy AND low

pressure THEN rainy’ and ‘IF clear AND high pressure THEN dry.’
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Figure 4.3 Fuzzy rule output aggregation and defuzzification

The aggregated output is the set combination ‘rainy or dry’ which is defuzzified by

a center-of-mass calculation, shown in Figure 4.3. This simple example shows the power of

fuzzy logic. Inputs yield multiple linguistic variables, which are inherently understandable,

that when evaluated through the ruleset gives a crisp output backed by the output activation

‘confidence’ measurement.

4.3 Ensembles

A decision space is the number of logic rules needed to completely cover input-output

combination mappings. Generally, the decision space dimensionality increases exponentially

with an increase in the input space and linearly with outputs. It is impractical to design

an autonomous system to cover all possible combinations. Without an enormous amount

of data and precise knowledge of the operating environment, modeling the system is also

impractical. Finally, failures and other perturbances will degrade the system performance

in an unpredictable way. For a complex system, the list of unknown unknowns is impossible
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to investigate in full. Therefore, it makes sense to divide the problem into pieces that can

be optimized for subsets of the solution space. When combined, such an ensemble can lead

to robust and resilient performance.

Ensemble systems are a group of systems separately trained or otherwise managed

that are tasked with addressing the same question. The outputs of all systems are combined

to arrive at a single output. This provides the benefit of a variety of supporting systems that

may provide an answer closer to the truth than any single expert could do. This ‘Wisdom

of the Crowd’ concept is commonplace among machine learning systems today. The first

efforts to increase the performance of neural networks using ensembles can be traced to

Hansen and Salamon [49, 76]. The divide-and-conquer approach is also common to the

blackboard paradigm that has seen wide application to multi-agent systems [77, 78, 30, 79].

With a sufficient number of individual systems trained across the problem domain,

some are bound to show excellent performance and some will be poor performers. The goal

is to train the ensemble such that the overall performance is acceptable across the range of

anticipated operating environments or states. The output is either selected from the sin-

gle best-performing subsystem or created by combining multiple outputs. The combination

method is of interest, since even the best-trained group of experts cannot handle environ-

ments or scenarios for which it has no training overlap. However, an ensemble of subsystems

may approach a reasonable solution due to partial overlap or adjacency between a new prob-

lem and the training data. Ensembles of systems have been proven to increase performance

from classifier systems to control systems [44, 80].

Ensembles quickly evolved and many of the best-performing machine learning algo-

rithms still rely on ensembles. One of the first examples of a mixture of experts ensemble

regulated by a gating network was introduced in 1991 [81]. The general methodology behind

an ensemble or mixture of experts is:

1. Train individual experts/systems on a subset of the operating domain, so that each

expert is the most accurate on its domain;
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2. Provide every expert with the same inputs;

3. Process the outputs to either:

(a) Select the single-best performer and use its output, or

(b) Aggregate the outputs from all experts.

The benefits of this approach include the ability to separate the input space across subsystems

which reduces the overall computational complexity of the system (recall that the decision

space for a classifier system increases exponentially with inputs and linearly with outputs).

It is straightforward to negate relationships between inputs and outputs that are known to

be uncorrelated. Reducing the input space for an expert to a subset of the overall input

space may ignore input-output correlations. However, careful design can reduce the impact

of such oversights and it is always feasible to add ensemble members to cover these missing

pieces.

Ensemble structures have been used for fuzzy systems with success for classification,

decision making, energy demand forecasting, and business strategy analysis [82, 83, 84, 85].

These applications leverage the strengths of fuzzy systems for modeling uncertainty. The

ensemble structure enables sub-experts to be trained and combined which yields a more

adaptable and robust system.

4.4 Hierarchies

Designing within a hierarchical structure is another tactic for dealing with system

complexity. A hierarchical structure yields benefits ranging from varying control granularity,

to covering uncertainty in system dynamics or environments, to multi-layered logic [86, 87,

88]. For systems consisting of multiple fuzzy logic experts the hierarchical structure fosters

competition among experts that may be trained for different subsets of the input space.

Compared to a flat structure, the hierarchy supports logical groupings that can lead to

better understanding during design and increased performance during operation. Different

levels in the hierarchy can also focus on various data including direct inputs, interpreted
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data, or other intermediate data. These intermediate levels in the hierarchy yield variables

that can then be used as inputs by experts across the hierarchy.

There are myriad examples of hierarchical fuzzy systems. One of the earliest set

out to reduce the complete rule base into a subset that includes only the most important

rules [89]. Varying rule specificity across the hierarchy has been used to prevent less specific

rules from diluting the value of the output [90, 91]. There are algorithmic approaches for

decomposing a fuzzy system into two-input-single-output fuzzy logic units that leverage

matrix representations [92]. Each of these approaches can result in increased performance

using fewer resources during reasoning.

This structure can be extended into hierarchies of ensembles which are themselves

hierarchical systems. Such an approach can further increase performance by taking multiple

experts and connecting their mixed output to other experts in the system. Ensembles within

and across layers can focus on decision making or control logic using the same input data.

Separation of duties within the same hierarchical structure encourages logical system design

which supports understandability.

4.5 Measuring Performance

The performance of a system can be measured through methods including cost-reward

functions, binary measures of task completion, and error compared to a desired signal state.

A classification system, for example, requires labeled data to assess performance of the

classifier via measures including accuracy, precision, recall, and an ‘F-measure’ based on

true-positive (TP), false-positive (FP), true-negative (TN), and false negative (FN) counts:

accuracy =
TP + TN

TP + FN + FP + TN
(4.5)

precision =
TP

TP + FP
(4.6)

recall =
TP

TP + FN
(4.7)
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F −measure = 2 ∗
(
precision ∗ recall
precision+ recall

)
(4.8)

These measures provide a numerical score for system classification performance that can be

used to objectively compare different classifier or other binary systems. There are many other

metrics used in statistical analysis of information theory that are derivative of sensitivity

(true-positive rate) and specificity (true-negative rate) as first described in [93]. For example,

the receiver operating characteristic ratio of TP/FP can be used for assessing performance

between different models or parameterizations to aid in selecting an optimal system [94].

When the system outputs are control decisions, cost-reward or error measures tend

to provide a better assessment of performance. In cases where the truth or a desired state

is known, performance increases as accumulated (counted or integrated) absolute error de-

creases. When truth or the desired state is unknown, scores are assigned to operating

parameters and counted or integrated. For example, the general optimal control problem

seeks to minimize cost (J) associated with the endpoint (E) and runtime (F ):

J(x(·), u(·), t0, tf ) = E(x(t0), t0, x(tf ), tf ) +

∫ tf

t0

F (x(t), u(t), t)dt (4.9)

This equation considers cost for state and control inputs that may be nonlinear. The cost

function for an autonomous system may be as simple as a counter index for positive outcomes.

It is up to the designer to select and apply scoring in an appropriate manner since the chosen

scoring methodology impacts performance assessment and optimization.

4.6 Notes on Computational Complexity

It is important to consider how effective a complex autonomous system can be when

applied on low-cost and low-power computers. Technological advances have made these mod-

est computers relatively powerful compared to historical devices. However, the autonomous

system may share the computer with other applications and therefore must minimize its re-

source use. The following illustrates how ensembles, hierarchies, and subdividing the input

space among multiple expert systems benefits computational complexity.
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A complete logic space includes rules based on all possible combinations of inputs

and outputs. The logic space dimensionality increases linearly with added outputs m and

exponentially with added inputs n:

#rules = m ∗ (2n − 1) (4.10)

Intermediate variables as defined throughout the hierarchy can act as both outputs and

inputs which further adds to overall complexity. Note that the null input is ignored which

leads to the −1 adjustment to the exponential.

At the most basic level, breaking the logic space into output-driven subsystems that

are fully-combined leads to each individual subsystem having complexity of 1/m compared

to the single fully-connected system. A more profound reduction in complexity is seen when

subsets of the input space are used to reason about a single output. Reducing the total

number of inputs by q reduces the computational complexity by a factor of about 2q. Even

in the extreme case where all input-output correlations are used for the reduced-input sub-

space, the complexity of the resulting system is a minor fraction of the complete system for

relatively small q:

#rules(reduced) = 1 ∗ (2r − 1) (4.11)

with the reduced complexity ratio ψr/n being

ψr/n =
2r − 1

m ∗ (2n − 1)
(4.12)

and the reduction in complexity as a percentage

%reduction = 1− ψr/n (4.13)

Figure 4.4 shows how small reductions in the input sub-space can greatly reduce the total

system complexity. The effect is more pronounced as the size of the input space increases.
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For example, for n = 30 a reduction of only four (r = 26) reduces the sub-system complexity

by 94% compared to the fully-connected system. Of course, multiple reduced-complexity

systems are needed to provide adequate coverage and performance. The most effective

balance of overall reduction and combination of reduced systems is left to the designer.
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Figure 4.4 Complexity reduction as a function of reduced input sub-space
fraction for various input space sizes (constant output space size of m = 1)

Considering multiple outputs amplifies the effect of system complexity reduction.

Figure 4.5 shows this effect for a system with input space size n = 30 and output space size

varied m ∈ {1, 2, 5, 10}. For system m = 10 a reduction of input space by one r = 29 results

in a 95% reduction in sub-system complexity assuming the reduced subsystem is required to

provide a single output.

This approach to assessing computational complexity accounts for the general number

of operations required to process a system of arbitrary size. It is meant to illustrate the power

of considering combinations of reduced subsystems compared to a näıve fully-connected
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Figure 4.5 Complexity reduction as a function of reduced input sub-space
fraction for various output space sizes (constant input space size of n = 30)

system. The system designer must carefully select signal subspaces since complex systems

often have nuanced input-output correlations.

4.7 Notes on Human Factors

This dissertation makes broad claims about the importance of human understanding

of autonomous systems. The scientifically rigorous method to prove these claims through

testing research subjects’ situational awareness while interacting with a simulated system

would require expertise in assessing human cognition. While attempts have been made

to make this approach easier by clearly outlining data collection strategies, data analysis

techniques, and recommendations for selecting a strategy and technique [95], this level of

effort is reserved for future work. The importance of human-machine interaction is well-

established and studied [4, 96, 97, 98, 99, 100, 101, 102]. This section provides arguments
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behind the assertion that human understanding is fundamentally enabled through language

and an overall reduction in complexity.

4.7.1 Language Is Human

Humans have a rich language capability that extends to the powerful cognitive capa-

bility of recognition and reasoning with language [103]. Human language conveys complex

ideas, emotions, context, and other direct and indirect information. It is a tool for story-

telling, describing, convincing, and learning. These attributes and functions make human

language a strong foundation on which to build a tool meant for autonomy.

Humans can play many roles when interacting with an autonomous system. A fully-

autonomous system might rely on humans for oversight. The system may provide data or

other services to humans as customers. A cooperative autonomous system might augment or

amplify human capabilities. A co-dependent human-machine system might rely on human-

sourced information to give context to constrain the autonomous agent.

The difficulty in using human language as a basis for automation comes from the

necessary translation into the computer domain. Encoding complex ideas conveyed through

words or phrases requires a translation into a format through which a computer can process

the data using models to infer meaning. Much work has been done toward giving computers

the capability of natural language processing (NLP) [104, 105, 106]. Several applications

of NLP for processing textual data include information retrieval (finding the most relevant

document based on search query), information extraction, text classification, and text gen-

eration [107, 108]. These algorithms have shown good performance at their tasks. Training

NLP models to understand emotion, nuance, or other complex characteristics of language is

an active area of research [109, 110, 111, 112]. Understanding multidimensional contextual

cues including auditory (cadence, inflection) and physical (facial expression, body language)

is another area of research supporting human-machine interaction [113, 114, 115, 116, 117].

These challenges and their solutions combine toward computers generally understanding hu-
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man input better. However, until machines can easily understand human communication

their reasoning is limited to the vocabularies and ontologies granted by human designers.

Language-to-data abstraction through NLP models helps computers understand hu-

mans. Of equal importance is a natural language representation of computer-generated

data in support of explainability and human comprehension [6]. In the context of explain-

ing autonomous decision making, reconnecting the abstracted cause-effect relationships into

‘why-because’ statements supports understanding the system’s beliefs and intents. Enabling

the computer to reason using language-based data can therefore directly support human

comprehension of such reasoning.

4.7.2 Linguistic Variables, Complexity, and Understandability

In defining the need for fuzzy theory, Zadeh contends, “the conventional quantitative

techniques of system analysis are intrinsically unsuited for dealing with humanistic systems

or, for that matter, any system whose complexity is comparable to that of humanistic sys-

tems” [64]. The linguistic nature of fuzzy set definitions naturally lends itself to human

comprehension. A person can comprehend what a ‘comfortable temperature’ might be with-

out seeing a number. Individuals might not each have the same numerical ‘comfortable

temperature,’ but they can each understand logic based on such a value.

Fuzzy systems depend on linguistic variables for logic design. System designers write

logic rules using natural language to describe relationships between data and also the vari-

ables that represent the data. This reduces cognitive loading on the system designer by

capturing human-centered reasoning without numerical abstraction. Since they rely on lin-

guistic variables, fuzzy systems support direct inspection during operation without the need

to reconnect numerical data to meaning. Linguistic variables contain meaning once their

fuzzy set activation functions are evaluated based on input numerical data. An activated

variable can then be traced through rule evaluation to understand how and why specific

rules activated. It is therefore straightforward to understand that the ‘turn heater on’ rule

activated because the ‘user cold’ variable activated first.
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Linguistic variables are the mechanism supporting human comprehension of fuzzy sys-

tems. However, complex rule structures and having many or poorly-differentiated linguistic

variables can reduce understanding. It is useful to define metrics for complexity and under-

standability through which fuzzy systems can be compared. Completeness, consistency, and

complexity measures for fuzzy logic rule understandability are described in [69]:

• completeness: for an arbitrary system input state x0 there must be at least one fuzzy

rule that triggers

• consistency: a rigid definition requires that no rules can have the same antecedents

but different consequents (although relaxation may be required with overlap between

rules with multiple antecedents)

• complexity: a system with fewer rules is less complex

Notions of interpretability and readability are founded on minimizing the number of rules,

the number of antecedents used by each rule, and total number of linguistic labels in use

[118]. Low-level and high-level interpretability are distinguished as applying to fuzzy sets

and fuzzy rules, respectively, and depend on factors including distinguishability, readability,

and transparency of structure [59]. An interpretability index that integrates a membership

function coverage measure and two separate complexity measures is proposed in [119]. A

methodology for designing highly-interpretable linguistic knowledge bases measured by total

number of rules, total number of premises, the number of rules using three or fewer premises,

and the total number of labels per input is found in [120].

A common feature of these metrics for understandability is the minimization of the

total size and complexity of the system. Reducing the layers of abstraction between inputs

and their impacts on the outputs supports human comprehension. The linguistic nature of

logic within fuzzy systems supports the best of both human and machine languages. Humans

write and read logic rules using linguistic variables that represent subsets of input spaces.

Computers use fuzzy set activation functions to obtain numerical representations of these
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linguistic variables for performing comparison operations. The fuzzy activation functions are

the only abstraction layer between human and machine domains.
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Chapter 5: Hierarchical Ensembles of Autonomous Decision Systems

The case for autonomy applied at the per-system and cross-system level for both local

and connected distributed systems is evident. The tools and techniques for understanding

and managing complexity described in Chapter 3 and Chapter 4 are the foundation that en-

ables modeling and implementation of autonomous complex decision making. The resulting

framework consists of hierarchical ensembles of autonomous decision systems (HEADS).

5.1 Principles and Attributes

Several overarching principles were considered when designing the HEADS framework

for automated reasoning:

• a focus on human-centered design,

• requiring bounded behavior to support validation and verification, and

• an extensible design supporting simple modification after initial development.

These principles attempt to capture the critical attributes required for explainable autonomy

for mission-critical applications and human-centric or human-adjacent operation.

5.1.1 Human-Centered Design

Autonomy can and often should be able to perform without human oversight for

reasons of efficiency, speed, and cost-effectiveness. However, even the best fully-autonomous

systems cannot match human capability across a variety of tasks. It has also been shown that

human-machine teaming increases system performance even when the human input is only

a third as accurate as the automated system [121]. A primary reason for this cooperative

benefit is the type of data each uses for reasoning where a computer can operate on large

volumes of labeled data while a human processes narrative and context with ease.
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The HEADS design was modeled after collective human decision making embodied

by NASA Mission Control where the hierarchy of decision making supports the manage-

ment of some of the most complex systems ever designed. Mission Control spans automated

control systems, teams of engineers dedicated to maintaining and evaluating data for each

subsystem, consoles operated by subsystem-specific subject matter experts, and the Flight

Director who serves as overwatch across subsystems. The HEADS framework structure lever-

ages hierarchical ensembles to balance system performance and complexity. Fuzzy experts

are the core logic expert systems and exhibit desirable characteristics including linguistic

variable based reasoning and bounded outputs resulting in understandable and verifiable

performance. Layered collections of cooperating experts structure enables robust multiple-

objective decision making. The foundation built on fuzzy logic and linguistic variables en-

ables a human-centered approach to modeling complex behaviors. The HEADS framework

yields autonomous systems with inspiration from how humans consider information and

perform reasoning.

5.1.2 Bounded Behavior

Another powerful attribute of the HEADS framework design based on fuzzy logic

experts is bounded behavior. Through the nature of fuzzy systems design, unbounded input

domains are subdivided into fuzzy set domains. Each fuzzy set domain can be bounded

or unbounded but its activation is mapped to [0, 1] by definition. Then, the fuzzy logic

rule evaluation uses these activation signals as antecedents and yields yet another bounded

output signal. When the output fuzzy sets are defined on a finite domain, such as [0, 1] as

done for logic consequents, the entire system yields bounded outputs.

Automated controllers, guidance algorithms, and even humans may rely on these

bounded autonomous logic outputs as inputs. The most direct approach to using the logic

outputs is to set an action threshold where the action is taken once the logic output meets

or exceeds the threshold. Other methods might use linear or nonlinear functions to map the

output in [0, 1] to other values that are meaningful for the system. As a machine-machine
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translation or explainability aid, intermediate mapping functions can be used to extend

the logic output ([0, 1]) into extended-domain ([a, b]) data to better match expected values.

Regardless of how it is used the logic output is verifiably bounded at all times and can

therefore be mapped in a finite way to support validation and verification of system outputs.

5.1.3 System Modularity

The modularity of the HEADS framework comes from the shared signal space and the

divide-and-conquer approach to problem solving. The shared signal space is a pool of data

containing system inputs and logic outputs. These signals can all be used for reasoning by

one or more logic systems. A system designer can add ensemble subsystems at any time to

provide new outputs to the signal space that can be used for reasoning across the rest of the

system. Adding new experts within existing ensembles to use the new subsystem outputs

does not require modification or retraining of the existing experts. The HEADS framework

system can therefore accept new information with zero rework of existing subsystems. These

extensions increase problem-specific performance and are effectively plug-and-play with the

rest of the framework.

5.2 Structure

The following sections describe the HEADS structure. The signal space is formalized

as the combination of all available inputs and outputs. A description of a fuzzy expert and

its component parts is provided in the context of the signal space. The collection of experts

in an ensemble and the interconnections between ensembles into the hierarchy complete the

framework structure. Figure 5.1 shows the basic HEADS topology of multi-layered ensembles

containing many expert systems that use subsets of the signal space for reasoning.

5.2.1 Signals

The signal space contains all inputs, intermediate outputs, and terminal outputs of

the system.
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Figure 5.1 Hierarchical Ensembles of Autonomous Decision Systems
(HEADS) topology

The input vector includes data that are not generated within the system:

x = {xi : i = 1, 2, ..., n} (5.1)

Intermediate and terminal logic outputs are treated the same and make up the output

vector:

y = {yj : j = 1, 2, ...,m} (5.2)

The combination of inputs and outputs is the full signal space

Z = {x,y} (5.3)

such that every signal zk, k = 1, 2, ...,m+ n is information available for logic.

The use of fuzzy systems within the HEADS framework means the signal space in-

corporates both quantitative and qualitative data. Quantitative data includes measured,

estimated, and derived numerical data:
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• measured, e.g., battery voltage, storage space remaining, system temperature,

• estimated, e.g., physical state, sensor bias, duration until critical event, and

• derived, e.g., current power draw as a function of voltage and current, time since the

last signal update or change.

Qualitative data leverage linguistic variables directly and are captured through binary or

fuzzy set activation values. Qualitative data are interesting in the context of human-machine

cooperation as they give the human a natural language format for providing the autonomous

system information and feedback. For example, a logic system might reason based on human

operator emotional state and rely on the human to provide signals such as ‘happy,’ ‘sad,’

‘stressed,’ and ‘anxious.’

5.2.2 Ensembles

A core feature of the HEADS framework is the collection of many expert systems

into an ensemble. This enables decision making among a variety of independent experts that

provide robustness in a dynamic problem space. The many experts deliver their outputs to

the ensemble which collects, weights, and combines the independent outputs into a single

ensemble output. Each ensemble output serves as an intermediate or terminal system output

yj. Multiple ensembles can be incorporated into an ensemble structure which itself provides

a single system output.

Multiple experts solving the same problem leads to collaborative-competitive decision

making where each individual expert impacts the ensemble output based on a confidence

factor. HEADS leverages information from the fuzzy aggregation and defuzzification process

as a measure of uncertainty in an expert’s output:

1. each rule that activates limits its output fuzzy set to the rule activation level,

2. all such limited output fuzzy sets are combined according to the system aggregation

algorithm, and
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3. the aggregated output fuzzy set activation level that corresponds to the defuzzification

output value is used as the uncertainty metric.

The output confidence is joined with the defuzzified output into a tuple of (value, confidence).

All expert output tuples are combined at the ensemble level using the softmax function, a

normalized exponential which generalizes the logistic to multiple inputs [122]:

Oj =
exp (Ij)∑
k exp (Ik)

(5.4)

The softmax gives larger weight to relatively larger values in a set. Since the softmax is a

function that maps real-valued inputs to [0, 1], the outputs are often compared to discrete

probabilities. The confidence values from the defuzzified expert outputs are the inputs to

the softmax function, which then produces a weight for each expert’s output value. The

ensemble output is then the weighted sum of these softmax-computed weights and the raw

output from the expert system.

A single expert that has a much larger confidence in its output will impact the en-

semble to a greater extent. If all expert systems have similar confidence, then they will each

impact the ensemble in a more even manner. The output confidence selection method used

for ensemble mixing leverages the expertise for a realized input subspace. A confident expert

activates when its rules and fuzzy sets align with the system state. The rule outputs for an

expert aligned to the system state will aggregate around a narrower section of the output

domain. The resulting crisp output value will effectively be known with higher confidence.

5.2.3 Expert Systems

Fuzzy systems are the core logic experts within the HEADS framework. Natural

language logic modeling supports human comprehension through design and operation of

the systems. Each individual fuzzy logic expert contains fuzzy sets and fuzzy rules that map

inputs to an output through aggregation and defuzzification functions.
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For each system output yj there is a set of expert systems sj containing pj individual

experts:

sj = {sj,p : j = 1, 2, ...,m; p = 1, 2, ..., pj} (5.5)

To reduce both logical and computational complexity, an individual expert system

within the ensemble uses a subset of the signal space

zj,p = {zk ⊆ Z : zk used by sj,p} (5.6)

The system contains fuzzy sets as functions of signals. Each individual expert system

has its own collection of these fuzzy sets. The input subspace for a given fuzzy expert system

is the full space for the fuzzy expert system’s fuzzy sets:

mj,p = {µj,p,u (zj,p) : u = 1, 2, ..., uj,p} (5.7)

where uj,p is the number of fuzzy sets in use by expert system sj,p

An individual fuzzy set is defined for one signal within the subspace and maps the

signal to an activation level:

µj,p,u (zj,p,k ∈ zj,p)→ [0, 1] (5.8)

Each fuzzy set subdivides an input signal into multiple sections each described using linguistic

variables. If the input is temperature the fuzzy set variables might include very cold, cold,

warm, hot, and very hot with a single value of the input mapping to one or more fuzzy set

activations.

There are also fuzzy sets for rule consequents, with one or more defined for a fuzzy

expert system such that an output value yields an activation level:

νj,p,v (yj)→ [0, 1] ; v = 1, 2, ..., vj,p (5.9)
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During processing output fuzzy activation levels are combined to produce the output yj as

part of the rule aggregation and defuzzification algorithm. The output fuzzy sets logically

map to actions or decisions that the HEADS system is tasked with making. For exam-

ple, an action might be charge battery to determine when to prioritize lower power use or

higher generative capacity, with component fuzzy sets including charge later, charge soon,

and charge now.

The fuzzy expert system contains rules that define the logic used for autonomy:

rj,p = {rj,p,w : w = 1, 2, ..., wj,p} (5.10)

Each rule uses one or more fuzzy set to determine an output fuzzy set activation:

rj,p,w (mj,p)→ νj,p,v ∈ [0, 1] (5.11)

Rules are written using standard logic operators (AND, OR, NOT) and parenthetical group-

ings (A OR (B AND NOT C)).

In processing the logic rules each fuzzy output set attains some activation level. These

output levels are combined into an expert output fuzzy set νj,p according to one of multiple

aggregation methods including the minimum, algebraic product, maximum, or algebraic

sum. The default aggregation function used within HEADS is the maximum:

νj,p (yj) = max
v

[νj,p,v (yj)] (5.12)

Once the component output fuzzy sets are aggregated the output fuzzy set νj,p is

defuzzified using one of several common methods including centroid of area, bisector of area,

and mean of maximum. The default method used in HEADS is the bisector of area:

yj,p = t :

∫ t

−∞
νj,p (yj) dyj =

∫ ∞
t

νj,p (yj) dyj =
1

2
(5.13)
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A feature of how HEADS treats this defuzzification is that it captures both the defuzzified

output and the aggregated fuzzy set activation level of that output as its confidence:

cj,p = νj, p (t) (5.14)

The output and confidence values enable ensemble-level combination.

5.2.4 Hierarchies

Hierarchies arise from the using intermediate system outputs as signals for performing

logic. These intermediate signals are defined in the output vector and as part of the signal

space but are not required at the system edge for data egress. The utility of such intermediate

signals is aligned with the subsystem nature of the HEADS framework leading to components

of lower complexity that combine to enable complex behavior. In the context of using

fuzzy systems as experts, these intermediate signals can be quantitative or qualitative in

nature leading to both computationally and linguistically powerful subdivided logic. The

hierarchical structure is not formally defined but rather an emergent property of the data

flow between ensembles.

5.3 HEADS as an Adaptable Framework

The definitive purpose of HEADS is to describe interconnectedness and output data

mixing techniques to combine many independent expert systems to achieve autonomous

decision making for complex systems. Specific choices have been made thus far to maximize

the framework for human-centered design and interaction. The framework could be adapted

in various ways to meet other requirements or constraints. This section discusses specific

features of the HEADS framework and implementation as presented and alternative choices

that could be made.

5.3.1 Expert System Selection

Fuzzy systems were selected as the core expert system to provide HEADS with the

direct benefits of linguistic variables including understandability without translation. An
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additional feature of fuzzy systems is how they model uncertainty similar to how humans

manage uncertainty in decision making. These features support the need for human under-

standability and oversight for autonomous systems that operate adjacent to people.

Other expert systems may be appropriate depending on understandability and per-

formance requirements. Any model or system that provides output with some measure of

confidence or uncertainty can be a drop-in replacement to an ensemble. Experts of various

types can be combined in an ensemble under the same constraints of requiring output data

with confidence metrics to be used for output weighting.

5.3.2 Heterogeneous Distribution of Experts

A näıve approach to system design would be to create an equal number of experts

within each ensemble. There is no systemic reason to adopt such a balanced approach.

An ensemble does not require a minimum number of experts to function and can contain as

many experts as needed to capture the output-specific logic. All experts impact the ensemble

output based on their relative confidence measure.

How much of the input-output correlation is captured in an ensemble is more impor-

tant than the number of constituent experts. The designer has the freedom (and perhaps

the obligation) to focus on designing experts on subsets of the input space that are highly

correlated, nonlinear, or otherwise complex. Increasing the number of trained experts in a

complex portion of the input space ensures each individual expert remains a domain-specific

expert. This enables each expert to remain more simple which aligns with the framework

goals of understandability and cooperative decision making. Focusing ensemble growth in

this manner has roots in other ensemble design methods including bagging [50] and boosting

[51].

The same notion holds true for complex system outputs. An ensemble-of-ensembles

may create the top-level output using many lower-level ensembles that each focus on sepa-

rate portions of the signal space. Per-expert and per-ensemble understandability is critical

when autonomous systems cooperate with humans. For many-dimensional spaces that in-
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clude a mix of quantitative and qualitative inputs and intermediate outputs, per-subsystem

simplicity is driven by sharing the problem among many peers.

5.3.3 Parameterization

The structure and design of a fuzzy expert system includes multiple layers of tunable

parameters a designer can use to modify the system. At the highest level, changing the signals

that an expert can access is one way to drive system specificity. Adding to an expert’s signal

subspace may increase its ability to reason about complex problems. It is up to the designer

to make trade decisions when adding to or limiting the per-expert signal space.

Another layer in the fuzzy system is the fuzzy sets that subdivide each input signal.

More fuzzy sets per signal leads to higher granularity and complexity in the possible logic

space. Each fuzzy set is a function with the only requirement to map the input signal to

[0, 1]. These functions are parameterized to activate on parts of a signal domain.

Fuzzy rules are yet another layer within the fuzzy expert system. The rules that

make up the expert logic are made from connections between the antecedent fuzzy sets to

the consequent fuzzy sets. Which combinations of antecedents map to which outputs is the

main method a designer has for capturing input-output correlations. Basing a rule on more

antecedents or antecedent groupings may provide additional constraints on a specific logic

case that ensures appropriate activation for a given signal space.

Each of these layers (signal subspace, fuzzy sets per signal, activation function pa-

rameters for each fuzzy set, and fuzzy rule structure) can be described through careful

parameterization. This becomes important in the later stages of design when performance

measurement and optimization is considered. A reasonable choice is to hold all but one of

these parameter layers constant during the optimization phase to better control and under-

stand how changes manifest in the outputs.

5.3.4 Redundancy and Overlap

In a standard HEADS system, the designer intends to cover as much of the input-

output correlation as possible while maintaining low complexity. This manifests through
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minimizing the size of each layer within the system, including per-expert signal space, rule

set, and fuzzy sets, and also the number of experts within each ensemble.

When the system must become more complex to better model the problem, the

designer may need to add subsystems (ensembles or experts in an ensemble) that overlap

with its peers. This is driven by the complex correlations in the problem space and the

approach to modeling through many cooperative but less complex subsystems. It is logical to

start by covering as much of the problem without overlap since each new expert or ensemble

would solve a previously unhandled state space realization. But, as total coverage of the

problem increases so does the difficulty in finding new independent parts of the problem.

Adding an expert that overlaps with another expert in its ensemble can take many

forms but typically means starting with the same signal space and adding or replacing a

signal (and the associated fuzzy sets and rules). This leaves most of the original expert intact

meaning the two cover mostly the same signal space. The resulting new expert provides some

redundancy to the original expert which can be useful if certain rules or signal subdivisions

are known to show good performance. The major benefit of such slight modification is a

completely new set of correlations to explore that incorporate the new signal and fuzzy sets.

5.4 Notes on Agent Theory and Architecture

As discussed in Section 2.4, the proposed framework is a layered architecture with

logic-based core functions that incorporates agent theory including attributes of belief, obli-

gation, self-confidence, and selecting a ‘good-enough’ option quickly.

Belief and obligation are captured through the fuzzy expert rule and fuzzy set design.

What a specific fuzzy expert believes to be true depends on how its signal space activates

fuzzy sets. A fuzzy set with high activation corresponds to that expert believing the input

signal matters. Fuzzy set activation directly impacts rule activation where specific rules

will dominate given the signal space realization which corresponds to the expert believing it

knows what to do. How the specific rules and fuzzy sets are implemented during the design

phase holds the expert system obligations, where the rules can be designed to activation or
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avoid specific actions under certain circumstances. The expert system is beholden to its peers

in the ensemble, and the system as a whole, to act on its beliefs to achieve its obligations.

The holistic system incorporates the beliefs of its component parts to take action based on

its component obligations.

Agent self-confidence is shown through the expert system self-confidence that prop-

agates through expert output mixing. An expert that has fuzzy sets and rules with high

activation over a portion of the signal space will show high confidence when that signal space

is active. The ensemble has a similar mechanism when it generates the mixed output and

confidence, where the combination of each constituent expert’s output based on that ex-

pert’s self-confidence measure is analogous to a probability distribution with variance. If the

component experts’ outputs are varied across the output domain and each has similar self-

confidence, the mixed output will have low confidence due to the large variance. Conversely,

if the expert systems agree on an output with high confidence, then the mixed output will

have low variance corresponding to high confidence in the cooperative group’s result.

The concept of selecting an action quickly that might not be optimal but is good

enough is known as satisficing (opposed to optimizing). Creating a system that satisfices

rather than optimizes depends on how uncertainty is handled and what methods are available

to reduce uncertainty. Fuzzy expert systems handle non-stochastic uncertainty by computing

degree of fuzzy set activation over signal domains. To reduce the uncertainty means to

minimize the overlap between fuzzy sets on the signal domain which forces one fuzzy set

to activate while neglecting the others. This defeats the purpose of fuzzy sets which are

intended to have overlap to capture uncertain state transition boundaries. Therefore it is

counterproductive to reduce uncertainty at the fuzzy set level. Fuzzy expert uncertainty is

a feature. Due to the overlapping between fuzzy sets and the partial activation of multiple

output fuzzy sets an optimal output is not guaranteed. However, redemption comes from the

fuzzy expert system computational complexity. Evaluating fuzzy set activation functions,

evaluating If-Then logic, combining output fuzzy sets, and finding the bisector of area of the
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resultant output set are inexpensive calculations. There is no recursive search or optimization

to perform to obtain a fuzzy system output. The fuzzy expert system thus exhibits satisficing,

where the output is derived from logic based on uncertainty but is achieved at a rapid pace.
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Chapter 6: HEADS System Implementation and Analysis

Implementing the hierarchical ensembles of autonomous decision systems framework

requires understanding the underlying system. The HEADS design methodology includes

a baseline approach to identifying necessary signals and components followed by iterative

introspective analysis and modification. Top-level data modeling informs bottom-up design.

Analysis is done to measure understandability, complexity, and performance. The general

design process follows:

1. identify input, intermediate derived output, and terminal output signals

2. subsystem experts define logic rules for driving subsystem performance according to

the available signal space

3. expert systems are fully parameterized mapping signal spaces to rule antecedents and

consequents

4. system performance and understandability metrics are assessed

5. iterative updates to each layer are made to achieve design and performance goals

The rest of this chapter outlines this process in detail.

6.1 Define Early, Update Often

Capturing system objectives is at the forefront of the design problem. Assigning

measurement signals to operational goals or system objectives is a clear way to start track-

ing these data for monitoring. How these data are measured is outside the scope of this

dissertation but common methods may include raw telemetry data, activity counters, or

estimated parameters. Once the performance tracking data model is initialized the designer

must account for system inputs and outputs.
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When it comes to large complex systems-of-systems it may be logical to approach

subsystems as independent decision making problems. Each subsystem subject matter expert

is likely better equipped to characterize and present the data model for their problem domain.

A power management expert will know the necessary and sufficient signals to track for

maintaining battery state of charge and knowing when current draw exceeds limits but may

not know how to describe these data for optimal payload operations. The result is modular

in that each subsystem derives its expertise from domain specific knowledge. On the other

hand, there is value to outside opinions and collective problem solving. Approaching the

data modeling problem holistically among subsystem experts may provide further depth of

insight and control.

The rest of the system parameterization defines logic and adds detail to the captured

data model and input-output relationships. For each expert, the fuzzy rule base provides

the logical connection between input and output signals. The fuzzy set subdivisions map

rule antecedents to specific portions of the input signal domain.

A first effort result for the system data model and the internal parameterizations

should not aim to be an exhaustive list of signals or perfect parameter mappings. Limiting

this list to reasonable signals rather than all possible signals helps scope the initial design

problem. The full list of signals can always be appended with derived signals. It is also

likely that later stages of system development will identify data gaps or excess leading to

necessary data model or rule base updates. Each modification updates the accessible data

for logic which may result in identifying further intermediate signals to add to the signal

space. Iteration can expand or contract these data models and expert parameterizations as

needed.

6.2 Outward-In Approach

The design approach discussed so far encompasses an initial top-down data model

design to capture system requirements and then a bottom-up rule design to map signals to

decision making. This outward-in approach leads to a good mix of understanding system
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possibilities and constraints and how they impact the decision space. The system structure

and per-expert rule bases incorporate these possibilities and constraints.

6.2.1 Defining the Signal Space

The signal space Z includes data inputs x and intermediate derived and terminal sys-

tem outputs y. Overall system requirements and structure define what signals are available.

6.2.1.1 Inputs

Inputs are drawn from data-producing devices or modules throughout the system

and may include raw telemetry, mission goal definitions, guidance navigation and control

data, and metadata about the network and an agent’s neighbors. The input space captures

non-decision based data about the agent’s state and environment.

6.2.1.2 Intermediate Outputs

The output space combines both intermediate and terminal outputs. Intermediate

outputs are mid-layer logical conclusions drawn from the signal space but not directly needed

for action selection. These intermediate values are analogous to observable state variables

that are used within an estimation filter to yield control feedback signals. The utility of such

intermediate signals comes from multi-objective logic, where several indirect factors may be

necessary to compare before arriving at a conclusion.

6.2.1.3 Terminal Outputs

Terminal outputs are those that are used for action selection. The terminal output

space is multidimensional since there are often many decisions to make concerning different

parts of a complex system. There may be many decisions for a specific action, for example

operating a sensor may require warmup time, calibration, on-off triggering, focusing actions,

and other control signals that may depend on the current state or system objectives.

6.2.1.4 Signal Space Modularity

The signal space for decision making in the HEADS framework includes all inputs and

outputs. The reason behind this is aligned with the idea of blackboard systems where many
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consumers might depend on any number of signals throughout the system. This modular

approach leads to each expert system within an ensemble being capable of using any subset

of inputs and outputs for logic. The general availability of the data makes it easy to extend

the system through the addition of experts to ensembles or ensembles to the system to

provide new outputs. This attribute leads to modularity without the need to retrain the

entire system.

6.2.1.5 Recommendations for Identifying Signals

In the context of autonomous decision making, every signal available throughout the

system may not be relevant or important. Scrutinizing questions can help designers identify

the necessary and sufficient signals during early stages of design. Terminal outputs drive

system actions. Intermediate outputs can help clarify the internal system logic. Examples

of leading questions and answers are shown in Table 6.1.

Table 6.1 Example questions and answers for identifying the signal space

Question Possible Answers
What are the operating states of the
device?

on, off, standby, warmup, sensing, communi-
cating, processing

What would prevent safe operation
of the device?

low power, proximity to another system, ex-
ceeding duty cycle

What factors might drive a decision
to operate the device now or later?

duration until next known observation target,
utility of gathering data of non-specified tar-
gets, the amount of power reserves available,
whether a neighboring system is operating its
device

What sequence of actions is favorable
for achieving mission goals?

taking observations and sharing post-
processed data, sharing telemetry archives
before purging memory, recalibrating between
observation of high-value targets, waiting for
operator confirmation before proceeding with
the next action

When is it worth risking activity at
or near safety boundaries?

when anticipated reward exceeds some thresh-
old, when no other nearby system can achieve
the task in a reasonable amount of time
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6.2.2 Defining Goal Based Operation

Once the available signals are known through signal space identification, the designer

must map the inputs to outputs through logic rules. These rules must account for system

objectives and are informed by system performance metrics.

The designer defines rule antecedents joined by logical operators that map subsets of

the signal space to an output consequent. As many rule antecedents as necessary are used

to describe the logic rules for a particular expert. However, it is recommended to maintain

coherence in the rule set and align the logic with a particular view of the problem. Doing

this adheres to the design mentality of collaborative decision making by cooperation between

many domain experts. It may be beneficial to ask separate designers to create expert systems

to solve the same problem. Each designer brings a different perspective and the resulting

expert system will add to the robustness of the ensemble.

When selecting signals to use as rule antecedents, some require more pre-processing

than others. Quantitative signals require translation into linguistic variables. For exam-

ple, a temperature signal might be used in a logic rule via the ‘low temperature’ qualifier.

Qualitative signals may be used directly since they tend to describe a state using linguistic

variables already. The qualitative signal ‘operator is uncomfortably warm’ can be used as a

logic antecedent without modification. Each logic antecedent is mapped to an input fuzzy

set µj,p,u via the linguistic variable.

The HEADS framework assigns a single output signal to each ensemble. All ensemble

experts try to answer the same question of whether to activate the output signal. Each

system output may include qualifiers to its activation. For example, ‘soon’ or ‘now’ are

qualifiers to the decision to turn on a sensor. Rather than treat each of these qualified

outputs as individual outputs, they are handled through subdivision of the outputs into

activation domains. These qualified outputs are each a logic consequent to be considered by

the expert systems in an ensemble and are mapped to an output fuzzy set νj,p,v.
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Linguistic variables representing the selected antecedents and consequents are used

for rule making and are joined by standard logic operators including AND, OR, and NOT:

• AND: (A and B) ≡ min (A,B)

• OR: (A or B) ≡ max (A,B)

• NOT: (not A) ≡ (1− A)

Logic statements can be grouped parenthetically to enforce an order of operations:

• (A = 0.5 or B = 0.8) and C = 0.2→ 0.2

• A = 0.5 or (B = 0.8 and C = 0.2)→ 0.5

Each rule then takes the standardized format ‘IF antecedents THEN consequent’ which is

designed to capture human expertise quickly.

Multiple consequents can be considered by a given expert system. Output fuzzy set

combination and output value computation done through aggregation and defuzzification

routines.

6.2.3 Defining Rule Activation Boundaries

Once linguistic variables are defined for the rule antecedents and consequents they

are collected by the input signal used. Each linguistic variable corresponds to a subset of

the input or output signal domain. The linguistic variable activates according to a function

defined on its subset of the signal domain. Common functions including triangles, trapezoids,

and sigmoids are shown in Figure 6.1.

The fuzzification and defuzzification processes define how the fuzzy system will pro-

cess information and deliver an output and confidence value.

Fuzzification is the mapping of input signals through activation functions:

µj,p,u (zj,p,k ∈ zj,p)→ [0, 1] (6.1)
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Figure 6.1 Fuzzy set activation functions

A fuzzy set activation function impacts rule activation through definition of state

transition behavior. A steep edge corresponds to a narrow state transition window and

effectively indicates more certainty in the boundary. It is through these fuzzy set activation

function parameters that fine-tuning system behavior is achieved. For minor changes, a

manual process may be appropriate, since the designer can identify fuzzy sets and rules

that are misfiring. Through direct understanding of what each subject variable means the

designer can adapt parameters to achieve desired performance.

Fuzzy sets activate when their input signal lies within the domain of the fuzzy set

activation function. The impact on rule consequent activation is determined by the fuzzy

logic operators AND, OR, and NOT. The combined antecedent activation rj,p,w,ANT acts as

a range limit for the consequent fuzzy set activation νj,p,v:

rj,p,w,CON = min
y∈yj

[νj,p,w (y) , rj,p,w,ANT ] (6.2)

Careful definition of the fuzzy set parameters is required to achieve the desired rule activation

for a given system and environmental state.
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6.3 Introspection: Signal Space Coverage

HEADS includes many experts across multiple levels of ensembles within the system.

The input space coverage metrics are useful for understanding how specific or widespread a

given expert’s or ensemble’s input utilization is. Binary coverage metrics can grant insight

into whether an ensemble covers an appropriate amount of the system’s signal space. A

weighted metric allows relative signal coverage to be assessed. Signals with large weighted

coverage statistics might indicate to a system designer that it is worth investing to increase

the accuracy and precision of that signal or to subdivide the signal to better capture its

components. Signals with sparse coverage may indicate unimportant or unnecessary data

that could be removed from the system with little impact on performance.

The expert binary coverage vector for expert syste p in ensemble j is defined:

αj,p = [β1, β2, ..., βm+n]T (6.3)

where

βk = 1 if zk used by sj,p (6.4)

with index k indicating position in the system’s signal space Z, and the result a vector of

ones and zeros indicating signal use within expert sj,p.

A weighted coverage vector can be made by summing occurrences of an input use by

individual rules within an expert:

αj,p = [σ1, σ2, ..., σm+n]T (6.5)

with

σk =
∑

w=1,2,...,wj,p


1 if zk used by rj,p,w (mj,p)

0 otherwise

(6.6)
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where a rule is a function of several fuzzy sets that each depend on a signal that may be a

subset of the expert’s signal subspace:

rj,p,w (mj,p) ≡ rj,p,w (zj,p,w ⊆ zj,p) (6.7)

Both binary and weighted coverage can be applied to the ensemble. The ensemble

binary coverage vector for ensemble j is made from combining the per-expert binary coverage

vectors:

αj = [β1, β2, ..., βm+n]T (6.8)

where

βk = max
p=1,2,...,pj

αj,p,k (6.9)

The ensemble weighted coverage vector similarly sums the weights from the per-expert

weighted coverage vectors:

αj = [σ1, σ2, ..., σm+n]T (6.10)

where

σk =
∑

p=1,2,...,pj

αj,p,k (6.11)

The system-level coverage metrics are another straightforward extension:

α = [β1, β2, ..., βm+n]T (6.12)

where

βk = max
j=1,2,...,m

αj,k (6.13)

and

α = [σ1, σ2, ..., σm+n]T (6.14)
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where

σk =
∑

j=1,2,...,m

αj,k (6.15)

6.4 Introspection: System Complexity Metrics

System complexity arises from nonlinearity, uncertainty, degrees of freedom, and non-

separability. These characteristics are inherent to the class of problems considered here. By

definition the network of distributed systems-of-systems (NDSS) has many degrees of freedom

and contains a large number of interrelated processes that exhibit nonlinear and difficult to

model boundary behaviors. The main approach within HEADS to handle this complexity is

through multi-agent cooperative decision making. Each individual agent, or expert system,

contains its own model of a portion of the overall problem space. Combining these sub-parts

that are by design less complex than the whole allows the designed system to capture and

address most of the underlying system’s complexity.

When designing for understandability, reducing complexity helps ensure systems re-

quire minimum analysis and translation. Thus, it is useful to define complexity metrics

that can identify expert systems or ensembles that may need to be reconfigured into more

subcomponents. The overall balance and range of complexity scores will differ based on the

problem at hand. However, the designer can use these metrics to compare iterations of the

same system used to solve a particular problem.

Expert system metrics focus on the variation in information used or created by the

expert. The first metric is the number of rules an expert system contains:

ψj,p,rules = wj,p (6.16)

where j indicates the ensemble, p the specific expert in the ensemble, and w the rule index

for an expert. The number of fuzzy sets in use by an expert complements the rule complexity

metric:

ψj,p,fsets = uj,p (6.17)
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where u is the fuzzy set index for an expert. The number of fuzzy sets defined for a given

input signal is

ψj,p,zl =
∑

k = 1, 2, ..., uj,p


1 if µj,p,k uses zl

0 otherwise

(6.18)

where zl is one signal in an expert’s signal vector zj,p and µ is the fuzzy set activation function

defined on the signal domain. The complexity due to the number of antecedents used by a

rule, sometimes referred to as rule compactness, is

ψj,p,w,ANT =
∑

k=1,2,...,uj,p


1 if µj,p,k used by rj,p,w

0 otherwise

(6.19)

which, when considered at the expert system level, aggregates over all rules used by an expert

either through the maximum or average:

ψj,p,ANT = max
k=1,2,...,wj,p

ψj,p,k,ANT (6.20)

ψj,p,ANT =
1

wj,p

 ∑
k=1,2,...,wj,p

ψj,p,k,ANT

 (6.21)

A metric capturing rule activation is useful as measure of a rule’s impact on an expert

system’s reasoning. Rule activation is the result of fuzzy evaluation of the If-Then logic

rules resulting in a rule consequent:

ψj,p,w,ACT = rj,p,w,CON (6.22)

where rj,p,w,CON is described in Equation 6.2. This metric is most useful when considered

over time, since rule activation changes as system and environment states change. A rule

similarity metric to measure how different or the same a rule is compared to another rule
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with a different consequent results in a rule similarity matrix:

Ψj,p =



1 λ1,2 λ1,3 · · · λ1,wj,p

λ2,1 1 λ2,3 · · · λ2,wj,p

...
...

...
. . .

...

λwj,p,1 λwj,p,2 λwj,p,3 · · · 1


(6.23)

where

λk,l =
1

wj,p

[
ψ
j,p,k,

−−−→
ANT
· ψ

j,p,l,
−−−→
ANT

]
(6.24)

ψ
j,p,w,

−−−→
ANT

=
[
β1, β2, ..., βuj,p

]
(6.25)

βk =


1 if µj,p,u or νj,p,v used by rj,p,w

0 otherwise

(6.26)

The above metrics can be summed over all experts within an ensemble to generate

ensemble-level metrics:

ψj,rules =
∑

k=1,2,...,pj

ψj,k,rules (6.27)

ψj,fsets =
∑

k=1,2,...,pj

ψj,k,fsets (6.28)

ψj,zl =
∑

k=1,2,...,pj

ψj,k,zl (6.29)

where zl is one signal in the ensemble’s signal vector zj. The rule compactness metric is

most meaningful as either the maximum or average across all experts within the ensemble:

ψj,ANT = max
k=1,2,...,pj

ψj,k,ANT (6.30)

ψj,ANT =
1

pj

 ∑
k=1,2,...,pj

ψj,k,ANT

 (6.31)
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Note that the average is computed from the already-aggregated per-expert average rule

compactness. This approach was selected instead of recomputing the average of all rule

compactness between ensembles to ensure each ensemble is given equal weighting for the

combined metric. Recomputing the average using the rules is a valid approach that would

yield slightly different results. Finally, the ensemble-level rule activation has no meaning

other than as already captured by the ensemble’s mixed output yj as built from individual

expert outputs yj,p.

HEADS system-level complexity further aggregates the ensemble metrics:

ψrules =
∑

k=1,2,...,m

ψk,rules (6.32)

ψfsets =
∑

k=1,2,...,m

ψk,fsets (6.33)

ψzl =
∑

k=1,2,...,m

ψk,zl (6.34)

where zl is one signal in the system signal set Z. Once again rule compactness is meaningful

as a maximum or average:

ψANT = max
k=1,2,...,m

ψk,ANT (6.35)

ψANT =
1

m

[ ∑
k=1,2,...,m

ψk,ANT

]
(6.36)

6.5 Introspection: Sensitivity Analysis

The variation in expert system and ensemble outputs as a function of variations or

uncertainty in the signal space is an important metric for understanding the nonlinearities

within the system. However, sensitivity analysis for a multi-dimensional multi-agent decision

making system is not straightforward. Difficulties arise due to the interdependency between

signals through rule evaluation and activation. Rule antecedent dimensionality also poses
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challenges to displaying sensitivity data where any rule with more than two antecedents

cannot be holistically displayed.

The most common solution to the interdependency and dimensionality problems is

to hold all signals at their nominal values and vary one at a time to measure its impact on

the outputs. This is the chosen approach to performing sensitivity analysis for the HEADS

framework. Where a single nominal state is not meaningful for the system the analysis can

be repeated with each combination of states. An example of why this can matter is where the

output action is activating a device. Specific logic may be built into the system to perform

certain maintenance actions when the device is active. Deactivating the device may enable

a different internal set of rules. How the system behaves as a function of deviations and

uncertainty thus depends on two fundamental system states and the designer may wish to

treat each state’s sensitivity analysis separately.

A primary benefit of sensitivity analysis within the HEADS framework is insight into

signals with great impact over system behavior. Identifying such signals can inform the

system designer to potential sources of instability during operation leading design of rules to

avoid those states. When the sensitivity is attributed to uncertainty in a signal, better data

can be sought or safeguards built in through specific rules to identify and mitigate negative

impacts when the system is subject to such uncertainty.
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Chapter 7: HEADS Performance and Optimization

Computational performance and decision making performance are two major per-

spectives that are considered complementary to overall HEADS system performance. Com-

putational performance must be considered for application to the network of distributed

system-of-systems problem due to limited compute power or implementation architecture

constraints. Decision making performance is more aligned with whether the system behaves

as expected. The rest of this chapter concerns these two perspectives on computational and

decision making performance and concludes with optimization techniques.

7.1 Computational Performance

At its core, computational performance concerns the number and speed of the nec-

essary computations and the memory required to hold the necessary data. Profiling the

software implementation of the HEADS framework is beyond the scope of this dissertation.

However, as HEADS is designed with computational simplicity in mind the resource and

computational requirements are worth discussing.

7.1.1 Resource Requirements

The HEADS framework relies on memory for two main purposes including storing

static and dynamic information and intermediate memory for performing reasoning tasks.

The static information consists of the expert system definitions and system connectedness

design. Dynamic resources are used to hold signal variables and intermediate data products

during algorithm execution including rule aggregation, output defuzzification, and ensemble-

level output mixing.

The rules and fuzzy sets are static for the HEADS framework that uses fuzzy sys-

tems as logic experts. Fuzzy sets are defined as parameterized functions and require static
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memory to hold the function type and its parameters. Rules are mappings between fuzzy

set activation functions and are reduced to minimum and maximum comparisons between

fuzzy set function evaluations. There is no formal stored representation of the hierarchical

structure. The structure is instead contained within the fuzzy set definitions defined for

specific input or intermediate output signals.

The signal space is the largest collection of variable memory used by the HEADS

framework. Each input signal holds the variable value and each output signal holds the

variable value and a confidence measure. Other relevant metadata is available including

time of last signal modification. Algorithm execution also requires variable data to support:

• fuzzy system rule evaluation using variable data from signals processed through the

fuzzy set activation functions,

• fuzzy system rule output aggregation via minimum and maximum comparisons,

• fuzzy system output defuzzification and confidence value calculation via computation

of the bisector of area under the aggregated output fuzzy set, and

• ensemble mixing of the expert system outputs.

The variable data used for algorithm execution drives peak memory use above the static

baseline used for system definition.

7.1.2 Computational Requirements

The computational complexity of the HEADS framework using fuzzy systems is gen-

erally low. Most of the calculations are recursive minimum and maximum comparisons be-

tween variables. The fuzzy set activation functions can be as simple or complex as required

to meet performance, although most consist of only a handful of multiplication and division

operations. The defuzzification algorithm is often the most computationally complex since

common methods require integrating under the output fuzzy set. Numerical integration can

be achieved through simple multiplications and additions but the total number of operations

can be large in support of sufficient output accuracy.
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The most impactful design feature of the HEADS framework is the reduction in per-

expert system size compared to a monolithic fuzzy system of similar signal space dimensions.

As discussed in Chapter 4, marginal reductions in the per-expert input space dimensionality

quickly result in total complexity reduction of 90% or more. Of course, the monolithic and

reduced systems are unlikely to require or implement fully-connected input-output combi-

nations so this assessment is more intellectual than practical. Still, efficient computation at

the system level is supported by minimizing each individual expert system’s requirements.

Another computational efficiency to consider is different data rate requirements for

specific decisions to be made. The decision to activate a sensor device that requires significant

warm-up time does not need to be re-made continuously during said warm-up time.

7.2 Decision Making Performance

The expert systems within an ensemble each contribute to selecting actions to meet

operational goals. The HEADS system seeks to achieve mission objectives as written into the

rule set. When multiple objectives are contradictory the decision framework considers the

holistic signal space and selects the action to prioritize. Deconfliction can also be explicitly

designed into the rules.

Performance objectives for a network of distributed systems-of-systems may include:

• maximizing raw time spent sensing, amount of data collected, or amount of data de-

livered,

• completing tasks aligned with a single system’s goals while not interfering with or

impeding other systems,

• maintaining a minimum state of readiness to be able to act quickly on new tasks,

• quickly identifying and proactively mitigating fault conditions,

• rebalancing activity to cover for known unrecoverable faults on other systems, and

• supporting network-wide objectives and performance metrics.
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Each of these objectives can be assigned a numerical score or cost function. The entire

system can be simulated and performance measured for design and evaluation purposes.

The decision of how to apply scoring and what metrics to score are critical for design

iteration and optimization. Through simulation and evaluation, these scoring metrics inform

the designer about decision making performance. Approaches to tuning performance include

both manual and automated editing. Manual editing enables more insight into how the sys-

tem changes and can more easily account for logical consistency during rule or parameter

modification but can be slow and expensive. Automated tuning relies entirely on the numer-

ical score to determine fitness of a specific system parameterization. If a particular action

or outcome is more important to achieve, it should be given a higher weight during scoring.

If actions or outcomes are to be avoided, assigning a zero or negative score is appropriate.

Whichever method is used, the scoring metrics provide the baseline for editing.

7.3 Optimization

Optimization is considered from the perspectives of decision making and simulated

performance. Several competing factors drive specific optimization implementation includ-

ing maintaining the original design, general understandability, and driving the system to-

ward maximum performance. Evolutionary methods are used for their strengths concerning

gradient-free optimization and ability to cover a wide search space in concert with fine ad-

justments near local maxima.

7.3.1 Optimizing for Human Factors

The HEADS framework supports understandability through capture of human ex-

pertise in linguistic variables and logic rules. Comprehension starts with reasoning through

linguistic variables as abstractions to numerical data. Where and how the fuzzy set activa-

tion functions are placed on the signal domain is first done by a human designer and captures

domain-specific relations between the resulting linguistic variables. For example, the vari-

able ‘low temperature’ should cover a lower signal domain subset than ‘high temperature.’

Allowing an optimization technique to rearrange these fuzzy sets would lead to illogical or-
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derings that reduce understandability. This is one example of a constraint on optimization

that supports comprehension. Other possible constraints include:

• setting an upper bound for fuzzy set overlap,

• ensuring fuzzy set domains cover realistic signal domains,

• reducing rule opposites,

• ensuring sufficient differentiation between rules with different consequents, and

• balancing expert system rule and fuzzy set additions that increase the complexity

metrics outlined in Chapter 6.

7.3.2 Optimizing for Performance

Simulation performance based on numerical scoring or cost functions forms the basis

for automated fuzzy set parameter optimization. Iterative system parameter updates and

simulation runs lead to identifying parameter sets that increase overall performance. Then,

the top-scoring parameterization can be implemented directly on the target system. A

strictly numerical approach to optimization can be done without the constraints mentioned

in the previous section. Of course, this may lead to reduced human comprehension of the

underlying system behaviors. This is a design trade available to the system developer.

7.3.3 Evolutionary Optimization

Gradient-free optimization techniques include random search, simulated annealing,

and evolutionary algorithms. These techniques are powerful when objective functions have

many local maxima and necessary when computing a gradient for the objective function

is difficult or impossible. For the HEADS system the objective function is a numerical

score or cost function that rewards actions and positive system states. The signals used as

inputs to the scoring function are not directly linked to the parameters that are optimized,

making gradient-free techniques necessary for automated optimization. The optimization

method of choice for tuning HEADS systems is a variation on genetic algorithms (GA) using
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real-valued chromosomes. Once an initial HEADS system is designed and a simulation or

other test methodology prepared, the GA can be used to iteratively generate new system

parameterizations, or phenotypes, for testing.

7.3.3.1 HEADS as a Genetic Algorithm Problem

Real-valued parameters are used for the HEADS genetic optimization approach. The

fuzzy set activation function parameters form the genotype to be modified by the genetic

algorithm optimization routine. A genotype describes all possible tunable parameters. A

phenotype describes a specific individual parameter set within the population of candidate

systems. Each new phenotype represents an entire system parameterization to be tested

through simulation.

Each activation function parameter set contains a small number of values, typically

two (2) to four (4). The genotype, or set of properties to adapt, is created from real-valued

parameters. This enhances direct comprehension of the internal process during optimization.

The phenotype, or specific instance of the genotype representing an entire system, remains

relatively compact even for systems with several experts in each of many ensembles.

7.3.3.2 Genetic HEADS Primer

A designer develops the HEADS system capturing necessary and sufficient signals,

creating rules mapping inputs to outputs, and designing the rule activation boundaries by

defining fuzzy set activation function parameters. Selection of performance metrics and cre-

ating a scoring methodology then support simulation-based performance analysis. Baseline

performance is increased through design introspection and manual system modification. Fur-

ther simulation of the modified system may lead the designer to determine that fine-tuning

could result in better performance. The genetic algorithm tuning process is begun.

First, the designer exports the system’s initial parameter set as the first population

member. This can be done in many ways but the most straightforward is to create a dic-

tionary containing the general system hierarchy (ensembles, experts, fuzzy sets, fuzzy set

activation function parameters):
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1. y1

(a) s1,1

i. battery low = [a, b]

ii. battery nominal = [a, b, c, d]

iii. battery high = [a, b]

iv. . . .

(b) s1,2

i. . . .

(c) . . .

2. y2

(a) . . .

3. . . .

This dictionary structure is the genotype. When the genotype contains a set of values

describing an individual system parameterization it is a phenotype.

The first phenotype is used to seed an initial population. Each parameter in the initial

phenotype is used as the mean for a stochastic expansion. This results in each population

member having a different phenotype that is similar to the initial member. If optimizing

under constraints for understandability, these constraints would be applied during parameter

generation, and new parameters would be modified according to the constraints to ensure

each phenotype is valid.

Once the initial population is created, each phenotype is evaluated according to the

same simulation to ensure valid scoring comparisons can be made. Each phenotype is given

its score and the top performers across all phenotypes are identified. These top scoring phe-

notypes are used during the evolutionary phase to create new population members through
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stochastic recombination and mutation. The newly created phenotypes are simulated and

scored. The process is repeated until either a minimum score threshold is met or a maximum

number of iterations is reached.

The first evolutionary method creates new phenotypes through stochastic mixing of

two members of the top-scoring group. A binary vector of length equal to the total number

of fuzzy sets is randomly created. The child phenotype is generated from parameter sets

provided by either parent depending on the binary vector value. Each fuzzy parameter set

is copied in its entirety from a single parent. This ensures the child phenotype is valid and

adheres to the constraints applied during evolution without further modification. The result

is one new phenotype for every pair subject to recombination.

The next evolutionary method takes a single member from the top performing group

and copies its entire phenotype into a new individual. This new individual then undergoes

mutation where a relatively small number of individual parameters throughout its phenotype

are stochastically modified. This has the potential to create an invalid phenotype and so the

constraints applied after mutation. The result is a phenotype that is similar to the original

but with a few parameters that differ to a possibly large extent.

Tuning parameters to drive genetic diversity include the stochastic variances used to

create the original population or mutate parameters. These tuning parameters are typically

set so mutation can result in vastly different values to drive population diversity. This

encourages search beyond the local maximum near which most population top-performers

are likely to be found. The process is repeated a sufficient number of times to either meet

some minimum score threshold or maximum iteration count. The GA cannot guarantee the

global maximum will be found, although after sufficient iteration a solution that approaches

the global maximum is likely.
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Chapter 8: HEADS Applied to the NDSS Problem

The hierarchical ensembles of autonomous decision systems framework has thus far

been thoroughly examined through analysis and theory related to complexity, autonomous

agents, and the need for understandability. This chapter is dedicated to showing the HEADS

framework applied to a representative problem from the networks of distributed systems-of-

systems (NDSS) class of problems.

The NDSS problem exhibits complexity at both the individual agent level and across

the network. Objectives may not be shared or even realizable by all members of the net-

work. Individual agents may have multiple objectives that partially overlap with neighboring

agents’ objectives. An agent and its neighbor may be fundamentally different in terms of

capability or resource capacity. Network dynamics including physical reconfiguration and

delays and disruptions to communication further stress cooperating clusters of agents. The

size of the networks in question are perhaps the largest source of complexity as optimizing

or satisficing for all the other problems becomes more difficult at scale. These and other

factors lead to the conclusion that highly-capable per-agent system autonomy is a necessity

for current and future networks of distributed systems-of-systems.

The example problem that follows was chosen as the representative member of the

NDSS class of problems due in part to its relevancy to current commercial, academic, and

government activities in the space domain. The NDSS is made up of a large number of

cooperative spacecraft in low Earth orbit (LEO). Each spacecraft has one of several possible

payload packages made up of sensors, actuators, communicators, and processors that enable

it to be a high performer in its area of expertise. Inter-spacecraft links that provide robust

low-bandwidth and sporadic high-bandwidth connectivity enable communication with neigh-

bors. Tasking is done by request and prioritization where specific requests are added to the
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pool of tasks and each autonomous agent executes tasks according to its on-board decision

making. The spacecraft are distributed across multiple orbital inclinations and can all com-

municate with each other when in range. However, they are also assumed to be from many

tranches placed in orbit over time and therefore subject to occasional partial or total failure.

The problem becomes efficient tasking and oversight of NDSS performance to maximize its

utility and responsiveness. The HEADS framework is implemented as an autonomous agent

‘Flight Director’ to solve the problem.

The rest of this chapter covers the design of the simulation developed as a test plat-

form for this problem, simplifying assumptions and constraints, and the associated perfor-

mance metrics used to evaluate solutions. A HEADS system is designed according to the

methodology presented in Chapter 6. Introspective analysis is presented including coverage,

complexity, and sensitivity measures. The HEADS system is simulated as the on-board au-

tonomous agent for all spacecraft of a particular capability and performance results provided.

The as-designed HEADS system is optimized using an evolutionary algorithm as described

in Chapter 7. Post-optimization performance is presented and compared to the original sys-

tem performance. Generalized performance is proven through application of the optimized

HEADS system to a simulated scenario not used for training.

8.1 Simulation Design Overview

The specific problem approached through this simulation is that of remote observation

of a ground point somewhere on Earth and the subsequent transmission of sensor data to end

users. This remote sensing subproblem requires only a subset of the entire orbital network

of capabilities. Other systems within the network operate in supporting roles to process and

transfer data.

The designer of an operational system tasked with solving this NDSS problem may

wish to explore every aspect in great detail. This representative problem contains several

interesting and complex subproblems including orbital dynamics, sensor performance across

orbital inclinations and altitudes, and communications network dynamics. Each topic has
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been the subject of papers, theses, and dissertations that provide the background for the

simple application of such theory as used here.

Vehicle dynamics are limited to translational point-mass dynamics subject to two-

body gravity forces. Atmospheric, solar radiation pressure, and other perturbances are

ignored. The gravity model is calculated using the second and third zonal harmonics from

[123] and the Legendre polynomials from [124]. Attitude dynamics are ignored.

Each spacecraft type has finite energy storage that is 100% efficient enabling power

to be stored and retrieved without loss. Power generation operates at peak efficiency as soon

as the solar panels are in line of sight with the Sun. As long as the system has positive

stored energy it can continue to operate as driven by the Flight Director autonomous agent.

Interactions with other nodes in the network occur subject to line-of-sight and range

constraints. The ‘nearest neighbors’ include all other spacecraft within 250 km and within

line-of-sight. Proximity to a ‘communications node’ is sufficient to enable delivering sen-

sor data to end users. Proximity to a ‘processing node’ enables transfer of data for edge

processing and combination with other data sources to yield higher-value data.

The simulation itself operates in three main phases as follows:

1. Initialization:

(a) space vehicle translational dynamics are simulated for the entire simulation du-

ration,

(b) network connectivity is computed at each step according to the range and line-

of-sight constraints,

(c) the translational and communications network dynamics are used to create per-

satellite input vectors for states independent from on-board decision making, for

example line of sight to the sun or proximity to a processing node,

(d) each spacecraft is initialized with a state vector using the pre-computed values

where possible and stochastically generated values otherwise, and

87



(e) simulated faults are stochastically generated and replace portions of the computed

state vectors.

2. Simulated Reasoning:

(a) all Flight Director systems perform reasoning using their own state vectors,

(b) action selections are disseminated across the communication network to nearest-

neighbors,

(c) dynamic state variables are computed using the selected actions, any resulting

impacts, and the simulated faults, and

(d) steps 2(a) to 2(c) are repeated until the entire duration is complete.

3. Scoring:

(a) each spacecraft has its state vector and decision vector analyzed and scored, and

(b) a total network-wide score is assigned.

8.1.1 Orbital Remote Sensors

The focus on remote sensor operation is interesting because other network support

activities tend to be reactionary to data creation. The processing and transfer of data to end

users requires data to be created first. This example considers a large network of distributed

sensors that must operate with autonomy. Network-level utility is therefore sensitive to

autonomous agent performance. Basic network support activities are not the subject of

this simulation and are therefore assumed to be more available than the data generation

operations.

Two distinct models of space vehicle are simulated for this problem. The first contains

a wide-angle optical camera, a narrow-angle optical telescope, and a medium-angle near-

infrared sensor. This vehicle type generates solar power at a rate of 21 Watts. The second

hosts a wide-angle optical camera, a synthetic aperture radar, and a laser altimeter and

generates 42 Watts of power in the sun.
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Each individual sensor is modeled as requiring energy to provide valuable data. When

the sensor is on it draws constant power, and when it is off it uses energy at a much lower idle

rate. There is a standard reward assigned to data from each sensor. Some sensors generate

data with increased rewards for continuous use of the sensor.

8.1.2 Network Communications

Translational dynamics are the primary driver behind the space NDSS communica-

tion network dynamics. An automated link is assumed to exist whenever two space vehicles

are within range and are not occluded. When two sensing spacecraft are neighbors, their

inter-satellite communications are robust and zero-latency for transmitting state informa-

tion. Having a communications node as a neighbor enables high-throughput data transfer

into the communications network. The communications nodes are assumed to have suffi-

cient storage and data throughput such that they can always accept data from neighbors.

Finally, a processing node neighbor leverages the same data transfer link as used for the

communications node but results in a value multiplier for any volume of data transferred to

the processor. The processing layer is assumed to transfer its own data product across the

network through the communications layer.

8.1.3 Goal Based Tasking

Tasking is modeled as a simple assignment of ground points of interest and a priority

or score modifier. The network as a whole is left to ingest, disseminate, and process these

tasks. This approach relies on the network to adapt to dynamic task plans without specific

instruction on how to do so. The tasks are uplinked from a ground location and spread

between spacecraft as the dynamic communications network allows.

8.1.4 Simulated Failures

Partial and total failures are simulated at either the payload or the spacecraft level.

Possible failures include excessive power draw when devices are active, transceiver failures

that prevent transmitting or receiving, and payload failures preventing the creation of usable
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data. These failures are applied stochastically to payloads or entire spacecraft with the

dynamic effects impacting state and decision vector updates.

These faults are simulated to show how each individual unit is robust to operating

in a way that causes total system failure as measured by reducing stored energy to zero.

Reactions to these events also show the utility of a distributed network of sensors through

the resilience to loss of nodes.

8.1.5 The NDSS: Spacecraft and Orbits

The distributed spacecraft system includes sensing, processing, and communication

nodes. While the remote sensing satellites are the focus of autonomous decision making

for this study, the other nodes are included to simulate realistic communications network

dynamics. The communications and processing nodes are presumed to work automatically

and at all times. The impact on sensor nodes is through known instances of physical prox-

imity, i.e., when within range of cross-linking communications. The defining characteristics

of the network are number of satellites per orbit, number of orbits, orbit altitudes, orbit

inclinations, and the right ascension of the ascending node (RAAN) for each satellite in an

orbit.

To illustrate the number of satellites required for a high degree of network connec-

tivity, consider a perfectly circular orbit of altitude ao around Earth with radius Re and

maximum inter-satellite range rmax. The number of satellites needed to meet the range

requirements is:

N ≥ π

[
arcsin

(
rmax

2 (Re + ao)

)]−1
(8.1)

For example, at 500 km altitude with maximum communications range of 500 km, the orbit

would need at least 87 satellites to ensure contiguity of links. This assumes a perfectly

even distribution of spacecraft throughout the orbit. To achieve network connectivity and a

reasonable distribution of sensing and processing nodes, many spacecraft in multiple orbits

are required. Table 8.1 shows the distribution of the 540 spacecraft that are simulated for

90



this example. The ‘spread’ metric indicates whether the spacecraft start evenly spread or

stochastically placed around the orbit. Figure 8.1 illustrates the distribution of the entire

constellation in an Earth-centered inertial frame. Figures 8.2-8.4 show each component

spacecraft distribution throughout the simulated orbits for communication (COM), processor

(PROC), and sensor (SEN) nodes respectively. The orbits were selected at common altitudes

and inclinations typical for low Earth orbit satellite deployment. The RAAN parameter was

assigned to provide moderate separation between orbital planes to simulate a well-distributed

network.

Table 8.1 Simulated spacecraft and orbit definitions

Orbit
Index

Spacecraft Function Number of
Spacecraft

Altitude
(km)

Inclination
(degrees)

RAAN
(degrees)

Spread

1 Communications 55 650 53 24 random
2 Communications 35 700 45 125 random
3 Communications 100 900 70 67 even
4 Communications 100 900 70 231 even

5 Processing 20 525 45 65 random
6 Processing 45 375 97 44 random

7 Remote Sensing (type 1) 50 550 98 133 random
8 Remote Sensing (type 1) 30 350 45 90 random
9 Remote Sensing (type 2) 30 350 45 110 even
10 Remote Sensing (type 2) 75 725 98 12 even

8.2 Simulation Performance Metrics

A numerical score is assigned for specific actions taken by each autonomous spacecraft

agent. The scores are multiplied by the duration of each action and accumulated over the

entire simulated duration. The general success criteria for the remote sensing agents include:

• activation of sensors when the target is in view,

• opportunistic observations of secondary targets,

• transferring data to the communication support nodes, and

• maintaining baseline readiness for future tasking.
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Figure 8.1 Distribution of all spacecraft in Earth-centered inertial coordinates

A score of zero is assigned for the entire simulation duration if the spacecraft battery is ever

fully depleted.

8.2.1 Spacecraft Performance

Each sensor earns a different score rate when activated. Bonus scoring is awarded for

activating sensors in combination. Tables 8.2 and 8.3 show the power resource consumption

rates and the scores for each combination of sensor devices active for the first and second

types. A score multiplier is applied when sensors are activated in sight of the tasking target.

Thus, to maximize score, the autonomous agent must activate its entire payload package

92



r
x (10 3

km
) −6

−4
−2

0
2

4
6

ry (10
3 km)

−6
−4

−2
0

2
4

6

r z
(1

0
3

k
m

)

−6

−4

−2

0

2

4

6

COM

Figure 8.2 Distribution of communications spacecraft in Earth-centered
inertial coordinates

when in view of the target. Each satellite is also given a reward when it meets battery

self-preservation metric of at least 25% capacity. The score is nullified for the duration of

the simulation for any individual spacecraft if its battery ever drains to zero stored energy.

The performance of the network is measured by combining the aggregate score of

each individual spacecraft. More complex metrics could be developed to account for latency

of data delivery, propagation of new tasking, mitigating faults before they happen, or other

actions that promote good network behavior. These are beyond the scope of this example
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Figure 8.3 Distribution of processing spacecraft in Earth-centered inertial
coordinates

problem as the focus is on showcasing the decision making system and not communications

dynamics.

8.3 HEADS System Design

This section provides an overview of the HEADS system design process as applied to

the remote sensor spacecraft NDSS problem. First, the signals of interest are defined with

focus on operating the sensor payloads. Each output signal is mapped to a single ensemble

of experts where an individual expert focuses on a specific aspect of the problem. The rules

driving the logic for each expert are then defined followed by fuzzy set parameterizations

94



r
x (10 3

km
) −6

−4
−2

0
2

4
6

ry (10
3 km)

−6
−4

−2
0

2
4

6

r z
(1

0
3

k
m

)

−6

−4

−2

0

2

4

6

SEN

Figure 8.4 Distribution of remote sensing spacecraft in Earth-centered
inertial coordinates

for each rule antecedent. Finally, the design introspection analysis metrics are provided for

the system. As a simplifying measure the same HEADS system design is used for all sensor

nodes in the network.

8.3.1 Signal Identification

The operation of the sensor payloads onboard the sensor nodes of the network is the

primary objective. Of particular interest is operation of the sensors when a ground target is

in view. However, operating the sensors should not put the spacecraft into a negative state.
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Table 8.2 Remote sensing resource use and scoring (type 1)

Active Sensor/Device
WVOC NVOC NIRC DTX Power (W) Score (points per minute)

None (baseline/idle) 3 0
X 4 1

X 5 1
X 7 2

X 12 3
X X 9 3
X X 11 4
X X 16 5

X X 12 5
X X 17 4

X X 19 6
X X X 16 6
X X X 21 7
X X X 23 7

X X X 24 8
X X X X 28 10

The input signals available to a spacecraft typically include onboard telemetry such

as battery power and whether the vehicle is in the sun. Other information can be derived

through cross-linking with neighboring spacecraft or fault identification subsystems. Since

observing a ground target is important for this simulated mission it is assumed the spacecraft

have onboard positioning information and can determine the amount of time until the target

is in view. Output signals include intermediate (self good) and terminal (sensor activation,

crosslink radio activation, fault recovery) signals. Table 8.4 details the input and output

signals, minimum and maximum expected values, and a nominal value used for sensitivity

analysis.

The inputs and outputs span multiple categories of information including power, tar-

get visibility, neighbor counts and conditions, and fault mitigation. Each of these categories

provides the scope for expert reasoning. It is possible for a logic expert to include multiple

correlated categories within its ruleset, however this may lead to increased overall complexity.

8.3.2 Rule Base Definition

The following describes a ruleset from the perspective of assessing spacecraft health

status in the context of power signals:
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Table 8.3 Remote sensing resource use and scoring (type 2)

Active Sensor/Device
WVOC LALT SAR DTX Power (W) Score (points per minute)

None (baseline/idle) 5 0
X 4 1

X 17 3
X 38 8

X 12 3
X X 21 5
X X 42 10
X X 16 5

X X 55 12
X X 29 7

X X 50 13
X X X 59 15
X X X 54 10
X X X 33 15

X X X 67 18
X X X X 71 20

Table 8.4 Input and output signals for sensor node logic

Var. Signal Name In/Out Initial Value Min
Value

Max
Value

Nominal
Value

x1 stored energy input random 0.0 100.0 80.0
x2 sunlit input orbit-dependent False True True
x3 dt sun s input orbit-dependent 0.0 2100.0

x4 target visible input orbit-dependent False True True
x5 dt target s input orbit-dependent 0.0 86400.0 0.0
x6 COM neighbors count input orbit-dependent 0 100 1

x7 PROC neighbors count input orbit-dependent 0 100 1
x8 SEN neighbors count input orbit-dependent 0 100 1
x9 SEN neighbors good input orbit-dependent 0 100 1

x10 SEN neighbors bad input orbit-dependent 0 100 0
x11 fault detected input random False True False
y1 self good output 1.0 0.0 1.0 1.0
y2 sensor 1 active output 0.0 0.0 1.0 1.0
y3 sensor 2 active output 0.0 0.0 1.0 1.0

y4 sensor 3 active output 0.0 0.0 1.0 1.0
y5 dtx active output 0.0 0.0 1.0 1.0
y6 fault recovery output 0.0 0.0 1.0 0.0
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1. If battery is critically low THEN self is bad

2. If battery is low AND time to sun is long THEN self is bad

3. If battery is low AND (time to sun is short OR in the sun) THEN self is marginal

4. IF battery is good AND time to sun is long THEN self is marginal

5. If battery is good AND (time to sun is short OR in the sun) THEN self is good

6. If battery is full THEN self is good

Table 8.5 provides the HEADS-design linguistic rules. The rules prime fuzzy sets for both

inputs and outputs linked to signals as described in Table 8.6. Appendix A shows the rules

and fuzzy sets for the rest of the HEADS system design. Writing rules with few antecedent

terms and minimal parenthetical groupings ensures readability and understandability. Re-

ducing rule complexity supports sustainable logic and leads to better explainability during

system introspection.

Table 8.5 Rules for expert s1,1 of ensemble y1

Rule Index Rule
r 1 1 01 batt critical THEN self bad
r 1 1 02 batt low AND dt sun long THEN self bad
r 1 1 03 batt low AND (dt sun short OR sunlit) THEN self marginal
r 1 1 04 batt good AND dt sun long THEN self marginal
r 1 1 05 batt good AND (dt sun short OR sunlit) THEN self good
r 1 1 06 batt full THEN self good

8.3.3 Fuzzy Set Parameterization

Defining the fuzzy set parameters completes the HEADS system. These parameters

ensure each fuzzy set activates to the correct degree over its signal domain. Fuzzy sets

may overlap as a way to capture uncertainty in degree of activation. Table 8.7 details the

parameters given to the fuzzy sets described in Table 8.6. The rest of the fuzzy set parameters

used for this example problem are found in Appendix A. Figures 8.5-8.8 show the fuzzy set

activation functions used in this example.
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Table 8.6 Fuzzy sets for expert s1,1 of ensemble y1

Antecedent/
Consequent

Fuzzy Set Signal

antecedent batt critical x1: stored energy
antecedent batt low x1: stored energy
antecedent batt good x1: stored energy
antecedent batt full x1: stored energy
antecedent sunlit x2: sunlit
antecedent dt sun short x3: dt sun s
antecedent dt sun long x3: dt sun s

consequent self bad y1: self good
consequent self marginal y1: self good
consequent self good y1: self good

Table 8.7 Fuzzy set parameters for expert s1,1 of ensemble y1

Antecedent/
Consequent

Fuzzy Set Activation
Function

Parameters

antecedent batt critical LTRAP [10, 20]
antecedent batt low TRAP [15, 20, 25, 30]
antecedent batt good TRAP [30, 50, 70, 80]
antecedent batt full RTRAP [60, 80]
antecedent sunlit BINARY []
antecedent dt sun short LTRAP [300, 600]
antecedent dt sun long RTRAP [300, 900]

consequent self bad LTRAP [0.4, 0.5]
consequent self marginal TRAP [0.45, 0.5, 0.55, 0.65]
consequent self good RTRAP [0.6, 0.7]

8.3.4 Design Introspection

Introspection during and after design informs the designer of overall completeness

and complexity of the system, ensembles, and experts. The following discussion covers the

introspection metrics presented in Chapter 6.

8.3.4.1 Binary Coverage

Binary coverage provides a high-level overview of mappings of signals throughout the

system. Table 8.8 shows the system hierarchy and binary coverage at each level. Refer to

Table 8.4 for mappings from input and output state variables to the signal names. A binary

coverage ‘1’ indicates that the signal is used by the system, ensemble, or expert as an input

for logic.
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Figure 8.5 Fuzzy set parameters for ensemble y1, expert s1,1, input signal
stored energy

Note that the output signal y5 has a ‘0’ at the system level. This indicates that this

signal, ‘dtx active,’ is not used as an input for logic and is considered a terminal output. All

of the other outputs are used as input to logic rules and are therefore intermediate outputs.

Note also that there is no reason to not use an intermediate output as a control signal. This

example uses each sensor activation output signal as an input to logic and to drive sensor

payload activity.

8.3.4.2 Weighted Coverage

Weighted coverage provides a high-level overview of signal importance throughout

the system. Table 8.9 shows the weighted coverage across the system hierarchy. Refer to

Table 8.4 for mappings from input and output state variables to the signal names.

The weighted coverage value is a count for how many fuzzy sets use a signal. Larger

values may indicate telemetry or subsystems that have larger impact on the autonomous
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Figure 8.6 Fuzzy set parameters for ensemble y1, expert s1,1, input signal
sunlit

reasoning. The system level weighted coverage is the sum over all ensemble weighted coverage

vectors. Likewise, each ensemble weighted coverage it the sum over its expert’s weighted

coverage vectors.

8.3.4.3 Complexity Metrics

Complexity and understandability are inversely proportional. Measuring complexity

is difficult and important as discussed in Chapters 3 and 4. This analysis is based on mea-

suring system size, interconnectedness, and conflict through methods developed in Chapter

6 including:

• ψj,p,rules ≡ the number of rules

• ψj,p,fsets ≡ the number of fuzzy sets

• ψj,p,zl ≡ the number of fuzzy sets used as rule antecedents defined for a signal

• ψj,p,w,ANT ≡ the number of antecedents for a rule (known as rule compactness)
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dt sun long: mf rtrap [300.0, 900.0]
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Figure 8.7 Fuzzy set parameters for ensemble y1, expert s1,1, input signal
stored energy

• ψj,p,ANT ≡ the maximum value for rule compactness over all rules

• ψj,p,ANT ≡ the average value for rule compactness over all rules

• Ψj,p ≡ the similarity between each pair of rules in an expert system

Recall that yj is used to define an ensemble, and sj,p an expert within an ensemble. The same

subscript indices are used for the complexity metrics. Each metric can be extended upward

through the hierarchy by taking the sum, maximum, or average across all constituent experts

or ensembles. Table 8.10 shows the rules, fuzzy sets, and rule compactness metrics for the

system, first ensemble, and both experts in the ensemble. Table 8.11 presents the count of

fuzzy sets defined using each signal. Tables 8.12-8.13 shows the rule similarity matrices for

experts s1,1 and s1,2 respectively. Complete system, ensemble, and expert complexity metrics

are in Appendix B.
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Figure 8.8 Fuzzy set parameters for ensemble y1, expert s1,1, output signal
self good

8.3.4.4 Sensitivity Analysis

The final introspective analysis to perform is measuring output signal sensitivity to

changes in the signals used by antecedent fuzzy sets. The approach presented here assumed

nominal values for each signal (as shown in Table 8.4) and varied the signals used by each

expert. The output fuzzy set activation and confidence are plotted as a function of the

varied parameter. Figures 8.9-8.11 show sensitivity of expert s1,2 focused on determining

the ‘self good’ signal based on fault-related input signals. For this expert, larger output

activation correlates with better health assessment.

Note that the nominal values used across the rest of the signal space may have a

large impact on the resulting sensitivity analysis. This can be seen in Figure 8.9 where the

output activation does not change regardless of the amount of stored energy. Physically this

means the expert would self-assess health as good even with a dead battery. However, diving

103



Table 8.8 Example HEADS binary coverage

Hierarchy x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 y1 y2 y3 y4 y5 y6
System 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

y1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
s 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 1 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

y2 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1
s 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 2 2 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0
s 2 3 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
s 2 4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

y3 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1
s 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 3 2 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0
s 3 3 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
s 3 4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

y4 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1
s 4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 4 2 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0
s 4 3 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
s 4 4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

y5 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1
s 5 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0
s 5 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

y6 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
s 6 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

into the rules for this expert (see Table A.1) the battery signal must correlate with the fault

signal for the rule to activate. This shows how having more than one set of ‘nominal’ inputs

used for sensitivity analysis can be valuable.

Figure 8.10 shows ‘self good’ sensitivity to the boolean ‘fault detected’ signal. The

self good output (for this expert) is driven to zero if a fault is detected when all other signals

are nominal. The ‘fault recovery’ output signal would be used to drive the system into fault

mitigation modes. As shown in Figure 8.11 the ‘self good’ output is reduced if the fault

recovery output goes above its activation level (0.5). Note however that the self good output

is still above its activation level. This could be due to other nominal signals keeping the

output high or it could indicate the need for rule modification or fuzzy set tuning.
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Table 8.9 Example HEADS weighted coverage

Hierarchy x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 y1 y2 y3 y4 y5 y6
System 26 9 12 6 6 4 4 6 6 6 14 4 4 4 4 0 8

y1 8 2 4 0 0 0 0 0 0 0 3 0 0 0 0 0 1
s 1 1 6 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 1 2 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1

y2 4 2 2 2 2 0 0 2 2 2 2 1 1 1 1 0 1
s 2 1 4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 2 2 0 0 0 2 2 0 0 0 0 0 0 0 1 1 1 0 0
s 2 3 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0
s 2 4 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1

y3 4 2 2 2 2 0 0 2 2 2 2 1 1 1 1 0 1
s 3 1 4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 3 2 0 0 0 2 2 0 0 0 0 0 0 0 1 1 1 0 0
s 3 3 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0
s 3 4 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1

y4 4 2 2 2 2 0 0 2 2 2 2 1 1 1 1 0 1
s 4 1 4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 4 2 0 0 0 2 2 0 0 0 0 0 0 0 1 1 1 0 0
s 4 3 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0
s 4 4 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1

y5 4 1 2 0 0 4 4 0 0 0 2 1 1 1 1 0 2
s 5 1 4 1 2 0 0 4 4 0 0 0 0 0 1 1 1 0 0
s 5 2 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 2

y6 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2
s 6 1 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2

Table 8.10 Example HEADS complexity metrics for rules and fuzzy sets for
ensemble y1

Hierarchy ψrules ψfsets ψw,ANT ψANT ψANT

System
y1 10 11 3 1.75

s 1 1 6 7 3 2.0
r 1 1 01 1
r 1 1 02 2
r 1 1 03 3
r 1 1 04 2
r 1 1 05 3
r 1 1 06 1

s 1 2 4 4 2 1.5
r 1 2 01 2
r 1 2 02 2
r 1 2 03 1
r 1 2 04 1
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Table 8.11 Example HEADS fuzzy set to signal mapping complexity for
ensemble y1

Hierarchy x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 y1 y2 y3 y4 y5 y6
System 18 5 10 3 6 1 1 6 6 6 6 4 4 4 4 0 6

y1 6 1 2 0 0 0 0 0 0 0 1 0 0 0 0 0 1
s 1 1 4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 1 2 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Table 8.12 Example HEADS rule similarity matrix for expert s1,1

Rule r 1 1 01 r 1 1 02 r 1 1 03 r 1 1 04 r 1 1 05 r 1 1 06
r 1 1 01 1.0 0.0 0.0 0.0 0.0 0.0
r 1 1 02 0.0 1.0 0.1 0.1 0.0 0.0
r 1 1 03 0.0 0.1 1.0 0.0 0.2 0.0
r 1 1 04 0.0 0.1 0.0 1.0 0.1 0.0
r 1 1 05 0.0 0.0 0.2 0.1 1.0 0.0
r 1 1 06 0.0 0.0 0.0 0.0 0.0 1.0

Table 8.13 Example HEADS rule similarity matrix for expert s1,2

Rule r 1 2 01 r 1 2 02 r 1 2 03 r 1 2 04
r 1 2 01 1.0 0.14 0.14 0.0
r 1 2 02 0.14 1.0 0.14 0.0
r 1 2 03 0.14 0.14 1.0 0.0
r 1 2 04 0.0 0.0 0.0 1.0
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Figure 8.9 Example HEADS sensitivity for ensemble y1 expert s1,2, output
‘self good’, variable signal x1 (‘stored energy’)
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Figure 8.10 Example HEADS sensitivity for ensemble y1 expert s1,2, output
‘self good’, variable signal x11 (‘fault detected’)
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Figure 8.11 Example HEADS sensitivity for ensemble y1 expert s1,2, output
‘self good’, variable signal y6 (‘fault recovery’)
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Chapter 9: Simulation Results and Performance Analysis

This section provides an overview of the performance for the as-designed system. At

this point no post-simulation analysis or tuning was done to adapt the rules or the fuzzy set

parameters. Metrics are presented for all sensor nodes at a high level with detailed inspection

of specific nodes to show the HEADS system at work. Special attention is given to the score-

based performance metrics chosen for this example including maintaining battery status and

activating sensors when the ground target is in view.

The simulation for this example problem was done in two parts:

1. the orbital dynamics were simulated for all satellites and orbit-dependent state vectors

computed, and

2. the HEADS system was initialized for all sensor nodes in the network and the reasoning

simulation done to compute dynamic input and output states.

The scores were computed during post-processing.

The results for this pre-tuning simulation show the general success of the HEADS

system in operating the sensor network. Most of the sensor nodes maintain positive power

status. Many nodes activate their sensor payloads when the target is in view and use spare

power to make opportunistic observations when the target is not visible. A few possible

improvements are easy to identify relating to fuzzy set activations given known system states.

These issues are simple to mitigate through rule analysis and fuzzy set adaptation. Such a

manual tuning approach is taken with results shown in Chapter 10.

A full complement of system states and outputs and a selection of fuzzy set and rule

activations are shown in detail in Appendix C.
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9.1 Sensor Constellation Performance

There are 185 sensor nodes in the simulated network of satellites. These nodes are

split between four unique orbits as specified in Table 8.1. Two types of spacecraft are

simulated with the primary difference between types being the power required to run each

sensor and the resulting performance score when sensors are active. All nodes are assumed

to have the same amount of energy storage. Scoring is detailed in Table 8.2 and Table 8.3

for nodes of type 1 and type 2 respectively.

The sensor nodes are expected to activate their sensors when the ground target is in

view and maintain a minimum level of stored energy to ensure good health and readiness.

9.1.1 State: Energy and Power

The stored energy state impacts power-related decision making. Figure 9.1 shows

signal x1 for stored energy with detail shown in Figure 9.2. Of note here are the two main

equilibria which correspond to the sensor node type 1 (higher) and type 2 (lower) average

stored energy.

A small but nonzero number of nodes (18 of 185) have stored energy that drops to

zero at least once. Only 5 nodes have zero stored energy for more than half of the simulated

time. These are considered failures as the ruleset should ensure the system deactivates to

prevent total power loss. However, as a non-tuned implementation of the HEADS system,

the ruleset achieves the power management goal for 90% of the sensor network. This shows

that the HEADS framework supports achieving good results without analysis and tuning.

The measure of power differential (where negative means drain and positive means

generation) is a derived metric not used as a system signal but useful for design validation. In

general, maximal utility drives power differential to zero. If a system generates more power

than it uses, it could adapt its use profile to put the positive balance to work. If a system

loses power it must adapt use to ensure total stored energy does not reach zero. Figure 9.3

and Figure 9.4 show the sensor network power differential. The initial negative differential
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Figure 9.1 Sensor node performance: stored energy state

indicates that the sensor network had an excess of stored energy. This excess is quickly used

up and the network achieves steady-state around zero power differential as expected.

9.1.2 State: Target Visible

Whether the target is visible depends on a satellite’s orbit. The target is modeled as

a single ground location at moderate latitude (20°S). The primary objective of the sensor

network is to observe the ground target

Visibility matters for the sensor nodes in the network as it drives the need to activate

sensor payloads. Target visibility across the network depends on distribution of orbits and

satellites within the orbits. Figure 9.5 shows target visibility over the entire simulation while

Figure 9.6 is a detail view.

The target is in view of at least one sensor node a majority (85.8%) of the simulated

time. This metric is useful for orbit design validation. Target visibility can also be a driver

for system and rule design. If the target is often visible perhaps the sensors require less
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Figure 9.2 Sensor node performance: stored energy state (detail of first four
hours)

performance as temporal resolution would mitigate spatial resolution deficiency. From an

operational perspective target visibility informs expected per-spacecraft activity. If a node

has visibility often it may require more energy storage or power generation to meet sensor

demands. The rule designer may also wish to tune performance to not drive the system into

poor health.

9.1.3 State: Fault Detected

This simulation includes random faults applied to each node in the network. The

implementation is stochastic where a small sample (5%) of all nodes are made ‘faulty’ with

a majority of their time (99.9%) in a fault-detected state. Non-faulty nodes also suffer

random fault-detected instances about 0.1% of the time. The simulated fault mechanism is

quadrupled power drain for any idle power or activated subsystem. Figure 9.7 shows the

‘fault-detected’ state for a faulty node and a non-faulty node.
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Figure 9.3 Sensor node performance: power differential

The expected system response to a detected fault is to enter into ‘fault recovery’ mode

(output y6) which discourages all sensor and high-bandwidth communications. The intent is

to support a power-positive state to enable the system to perform fault mitigation activities

and accept assistance from ground operators as needed.

9.2 Performance Detail

Two non-faulty nodes and two faulty nodes were selected to present individual node

performance. Node B5 and node D34 are from type 1 and type 2 sensor families, respectively

and represent nominal performance. Node A6 (type 1) and C28 (type 2) are simulated as

faulty. This section provides a glimpse at input and output signals important to decision

making. Output signals that drive performance scoring are examined in detail. Fuzzy set

and rule activations are analyzed and provide further context for the selected actions.

The selected sensor node scores are compared to their orbit/type companions and

the sensor network as a whole in Table 9.1. The table shows general statistics for the orbits
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Figure 9.4 Sensor node performance: power differential (detail of first four
hours)

including the average score by category. Maximum and minimum-nonzero scores are shown

for the orbit. The maximum or minimum total, subtotal, self good, and stored energy scores

A zero score was awarded to any satellite that had its stored energy go to zero at any time.

A few things stand out as notable:

• the faulty nodes (A6 and C28) have total score close to each node’s orbit average,

• sensor scoring (the Subtotal value) accounts for a majority of scoring for the healthy

nodes (B5 and D34), and

• the different orbits and different satellite types provide different average value to the

sensor network.

Scores and per-orbit statistics for the entire baseline simulation sensor network are in Table

C.2 in Appendix C.
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Figure 9.5 Sensor node performance: target visible state

9.2.1 Node B5 - Type 1 - Nominal

The B5 node is part of the type 1 sensor group meaning it has optical camera payloads

and generates solar power at 21 Watts. The B orbit is relatively low (350 km) and at

mid-inclination (45°). Its low altitude makes sending data to the communications nodes

impossible, since all COM satellites are at altitudes of 650 km or higher and the high-

bandwidth transmitter (DTX) payload works at range up to 250 km. Sensors in orbit B

can pass data to the processor satellite subnetwork. The middle inclination provides good

visibility to the ground target at -20.55°latitude.

Figure 9.8 shows when each sensor and high-bandwidth communications payload

are active and scoring points for activity. The spikes in sensor activation correspond to

ground target visibility shown in Figure 9.9. This indicates the ruleset activates all sensor

payloads when the target is visible which is desired behavior. Sensor 3 is active for much

more time than when the target is in view which proves that the node is capable of and
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Figure 9.6 Sensor node performance: target visible state (detail of first four
hours)

performs opportunistic observations. Note that the data transmission activates often. When

activated with sensor 3, the entire system is in a power-negative state. Since there are no

communication nodes in range and the processor nodes are not so consistently in range (see

Figure 9.10) this is effectively wasting energy.

Why does the DTX payload activate so often? Inspection of the fuzzy sets and rules

that activate provide the necessary insight to answer this question. There are two experts

in the ensemble that drives DTX activation:

• s 5 1 focuses on power and sensor activation signals, and

• s 5 2 focuses on fault signals.

As shown in Figure 9.11, rule r 5 1 01 (batt bad THEN dtx off) dominates while all other

rules never activate. Figure 9.12 shows the other expert’s rule activation, with rule r 5 2 02

(NOT faulty AND NOT fault recovery THEN dtx on) always active and rule r 5 2 03 (NOT
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Figure 9.7 Faulty node (A6) and non-faulty node (B5) fault-detected state
comparison

self good THEN dtx off) oscillating with the self good signal. The combination of these rules

leads to the expert’s output oscillating between turning the DTX payload on and off. Expert

s 5 2 exerts more influence on the ensemble output and turns on the DTX payload. Whether

these activations are correct is up to the designer to validate. However, this kind of analysis

is straightforward to do and easy to understand which support manual adaptation of the

system design.

Node B5 has poor stored energy performance as seen in Figure 9.13. This is due in

part to the over-zealous activation of the DTX payload. However, sensor 3 is also active

constantly which draws significant power. Stored energy does not reach zero, however better

rule design or fuzzy set parameterization may lead to a higher average energy level while

maintaining sensor activity.

The scoring applied to this example problem gives points for having stored energy

greater than 25 Wh, being in the ‘self good’ state, and activating sensors and the high-

bandwidth transmitter. Bonus scoring is achieved when multiple sensors or the transmitter

are on at the same time. A score multiplier is applied to payload activation scoring when

the target is in view. Figure 9.14 shows the total score (including energy and self-health)

and Figure 9.15 shows subtotal score (payloads only).
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Table 9.1 Sensor nodes performance comparison

Hierarchy Total Subtotal Self Good Stored Energy
Grand Total 5306937 2670762 1838960 797215
Grand Total (avg) 28686 14436 9940 4309

SEN A 1562072 605287 626045 330740
SEN A (avg) 31241 12105 12520 6614
SEN A (max) 41285 15982 14400 14400
SEN A (min >0) 14923 973 10 215
SEN B 630010 268190 281715 80105
SEN B (avg) 21000 8939 9390 2670
SEN B (max) 29880 12404 14400 14400
SEN B (min >0) 12845 370 15 50
SEN C 950357 517387 284565 148405
SEN C (avg) 31678 17246 9485 4946
SEN C (max) 50454 21674 14400 14400
SEN C (min >0) 25734 2377 4970 90
SEN D 2164498 1279898 646635 237965
SEN D (avg) 28859 17065 8621 3172
SEN D (max) 51536 22756 14400 14400
SEN D (min >0) 24819 20124 4695 55

A6 29703 1033 14270 14400
B5 16494 10884 4760 850
C28 31519 2719 14400 14400
D34 31869 20674 11080 115

Compared to the B orbit average, node B5 does worse in total score based on its small

amount of time spent in the ‘self good’ state and above the battery threshold. However, B5

outscores its average peer in payload activation.

In general, node B5 can be considered successful. It never reaches a zero-power state.

It takes observation data when the target is visible. It activates sensor 3 opportunistically.

It has done all of this with a general ruleset and parameterization common across all sensor

nodes.

9.2.2 Node D34 - Type 2 - Nominal

Node D34 is part of the type 2 sensor group. It has an optical camera and two

range payloads (radar and lidar) and generates solar power at 42 Watts. The D orbit is

at a high altitude (725 km) Sun-synchronous orbit (SSO) with inclination (98°). Orbit D

satellites have frequent contact with communications nodes and occasional links to processor
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Figure 9.8 Node B5: payload activation and scoring

nodes. The Sun-synchronous orbit provides good visibility to the ground target on a regular

schedule at approximately the same time each day.

Figure 9.16 shows when each sensor and high-bandwidth communications payload

are active and scoring points for activity. Similar to node B5, the spikes in sensor activation

correspond to ground target visibility shown in Figure 9.17. This is good behavior.

Sensors 2 and 3 activate together regularly providing many high-scoring opportunistic

observations. The data transmission also activates often which is appropriate given the

frequent communication node links available. Figure 9.18 shows when communication and

processor nodes are in range.

Stored energy performance for D34, shown in Figure 9.19, is similar to node B5. Node

D34 has a higher average level and more frequent critically-low dips that correspond to the

target being visible while the satellite is not sunlit. Still, the satellite does not drain its

battery to zero.
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Figure 9.9 Node B5: ground target visibility

Node D34 outperforms its peers in all but battery status scoring. Compared to node

B5, D34 attains almost twice the score. This is in part due to the higher score values assigned

to its sensors but can also be attributed to more frequent multi-payload activation. Figure

9.20 shows the total score (including energy and self-health) and Figure 9.21 shows subtotal

score (payloads only).

Node D34 is an exemplary performer in this network simulation. It outperforms the

average score across all sensor orbits. It maintains nonzero stored energy in spite of multiple

occurrences when the target is in view in the dark.

9.2.3 Node A6 - Type 1 - Faulty

Node A6 is another type 1 satellite in a moderate altitude (550 km) and high in-

clination (98°) Sun-synchronous orbit. However, this node is faulty. The simulated fault

manifests as four times the normal power draw and exists for 99.9% of the time.
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Figure 9.10 Node B5: processor nodes in range

As shown in Figure 9.22 the fault condition all but eliminates scoring opportunities

for this node. The sensor payload activation scoring occurs when the target is in view (see

Figure 9.23). Turning sensors on while the satellite is in a known-faulty condition could be

risky. However, the added value of observing the target offsets these risks and is therefore

considered excellent behavior from this sensor node.

Figure 9.24 illustrates how stored energy benefits from the fault condition enforcing

sensor payload deactivation. This puts the satellite in a power-positive state ensuring ample

resources for fault mitigation strategies. The power-positive state also meets the stored

energy scoring threshold which drives about half of the node’s total score as shown in Figure

9.25. The spikes in score rate correlate to when the sensors are active which contributes

about 3% of the total score. The other half of the total score is primarily due to activation

of the ‘self good’ output signal. This could be considered erroneous as there is a known fault.

However, assessing status as good given the fault is a useful metric and is mostly driven by
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Figure 9.11 Node B5: expert s 5 1 rule activation

the stored energy state (see Figure 9.26 which shows that self good is highly sensitive to the

stored energy state).

Overall, node A6 shows expected performance given its faulty state. The activation

of the sensors when the target is in view is a net-positive driven by the ruleset. Stored

energy is maximized to support fault mitigation. The system is rewarded for maintaining

the battery status through both battery and self good threshold scoring.

9.2.4 Node C28 - Type 2 - Faulty

Similar to node B5, node C28 is in a low (350 km) mid-inclination (45°) orbit. This

satellite is a type 2 vehicle with the higher-power sensor and solar generation systems. It is

also a faulty node with the same quadrupled power draw as node A6.

The node’s performance (shown in Figures 9.27-9.28) is similar to node A6 in that

the scoring is driven by the stored energy and self good threshold scoring with some sensor

activation when the target is in view.
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Figure 9.12 Node B5: expert s 5 2 rule activation

9.3 Baseline Performance Conclusions

In general, the sensor network performed well given the initial rule and fuzzy set

parameters design. All sensor nodes activated their payloads when the ground target was in

view. The faulty nodes maintained stored energy levels and also turned sensors on driven

by high-value observations of the target.

However, there were a few notable and suboptimal behaviors. First is the activation

of the high-bandwidth data transmitter regardless of whether a communications or process-

ing satellite node is in range. There were satellites that were power-negative enough to fully

drain their batteries which results in degraded mission capability. These issues are a result

of suboptimal rule definitions and fuzzy set parameters driving rule activation. The mitiga-

tion is to tune and adapt the system based on the introspection metrics and the simulated

performance indicators. A manual tuning process is described and implemented in Chapter

10.
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Figure 9.13 Node B5: stored energy state
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Figure 9.14 Node B5: total score over time (including battery, self good, and
payload scoring)
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Figure 9.15 Node B5: subtotal score over time (including payload scoring)
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Figure 9.16 Node D34: payload activation and scoring
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Figure 9.17 Node D34: ground target visibility
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Figure 9.18 Node D34: communication and processor nodes in range
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Figure 9.19 Node D34: stored energy state
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Figure 9.20 Node D34: total score over time (including battery, self good,
and payload scoring)
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Figure 9.21 Node D34: subtotal score over time (including payload scoring)
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Figure 9.22 Node A6: payload activation and scoring

127



0 10 20 30 40 50

time (h)

0.0

0.2

0.4

0.6

0.8

1.0

ta
rg

et
v
is

ib
le

(T
/F

)

Figure 9.23 Node A6: ground target visibility
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Figure 9.24 Node A6: stored energy
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(b) Total score

Figure 9.25 Node A6: stored energy score and total score
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Figure 9.26 Node A6: self good sensitivity to stored energy status
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Figure 9.27 Node C28: payload activation and scoring
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Figure 9.28 Node C28: total score over time (including battery, self good, and
payload scoring)

130



Chapter 10: Performance Optimization Approaches and Results

The introspective tools presented in Chapter 6 are useful for understanding system

complexity and optimizing the ruleset to avoid redundancy. Sensitivity analysis can also

inform a designer which ensembles, experts, or rules to further scrutinize. Outputs that do

not show expected sensitivity to variations in inputs will lead the designer toward high-return

modifications.

In running the HEADS system through simulation the system designer can also cap-

ture and analyze individual fuzzy sets and rules. This level of insight is possible because of

the fuzzy linguistic variables in use. Considering which rules activate based on which fuzzy

sets activate, and when, can help the designer find and fix suboptimal rules and fuzzy sets.

The rest of this chapter is in two parts. The manual tuning changes are presented

with explanations, and then the performance results are presented with comparison to the

baseline system.

10.1 Manual Tuning Approach

A manually-adapted system was developed using the baseline system and analysis of

the simulation results. Careful review of the sensitivity data, fuzzy set activation, and rule

activation over time led to the following conclusions:

1. the baseline system was too quick to activate the ‘self good’ output when power states

were low,

2. the high-bandwidth transmitter was activated too often, and

3. the sensor activation favored sensor 3 when the target was not in view.
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These assessments drove the manual fuzzy set parameter tuning adaptations that are shown

in Table 10.1. Two rules were also changed:

1. Ensemble 5 (dtx active), Expert 1 (neighbor focus), Rule 2:

• Baseline: batt bad AND ((dt sun short OR sunlit) AND (COM neighbors OR

PROC neighbors)) THEN dtx on

• Adapted: batt good AND ((dt sun short OR sunlit) AND (COM neighbors OR

PROC neighbors)) THEN dtx on

2. Ensemble 5, Expert 2 (fault focus), Rule 2:

• Baseline: NOT faulty AND NOT fault recovery THEN dtx on

• Adapted: NOT faulty AND NOT fault recovery AND self good THEN dtx on

The first rule change is intended to make the ‘dtx active’ output less likely when stored

energy is low. The second rule change encourages waiting until the ‘self good’ output is

active before activating the high-bandwidth transmitter.

Table 10.1 Fuzzy set parameter updates from manual tuning process

yj , sj,p Antecedent/
Consequent

Fuzzy Set Activ.
Func.

Baseline Tuned

y1 s1,1 antecedent batt critical ltrap [10, 20] [20, 30]
antecedent batt low trap [15, 20, 25, 30] [15, 25, 35, 60]
antecedent batt good trap [30, 50, 70, 80] [50, 60, 70, 90]
antecedent batt full rtrap [60, 80] [80, 90]
consequent self bad ltrap [0.4, 0.5] [0.4, 0.45]
consequent self marginal trap [0.45, 0.5, 0.55, 0.65] [0.4, 0.5, 0.55, 0.65]

y3 s3,3 consequent sensor on rtrap [0.35, 0.45] [0.35, 0.95]
s3,4 consequent sensor on rtrap [0.35, 0.7] [0.35, 1.7]

y4 s4,1 consequent sensor off ltrap [0.5, 0.6] [0.3, 0.6]
consequent sensor on rtrap [0.5, 0.6] [0.3, 0.6]

s4,2 consequent sensor off ltrap [0.3, 0.4] [0.3, 0.55]
consequent sensor on rtrap [0.6, 0.7] [0.45, 0.7]

s4,3 consequent sensor off ltrap [0.3, 0.4] [0.4, 0.5]
consequent sensor on rtrap [0.35, 0.45] [0.45, 1.55]

s4,4 consequent sensor off ltrap [0.3, 0.4] [0.4, 0.5]
y5 s5,1 antecedent batt bad ltrap [30, 60] [40, 50]

antecedent batt good rtrap [30, 30] [40, 80]
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10.2 Manual Tuning Results

The simulation was re-run using the modified rules and fuzzy set parameters. Com-

pared to the baseline system the tuned system as a whole saw performance increase on

average by:

• 48% in total score,

• 17% in sensor activation scoring,

• 34% in self good scoring, and

• 185% in stored energy scoring.

Complete scoring comparisons at the system, orbit, and per-satellite level are shown in Table

C.1 in Appendix C.

The increase in performance is visible across the system states and outputs. Figure

10.1 shows the stored energy state for all sensor nodes for the baseline and manual tuning

simulations. There are no satellites that had stored energy go to zero at any time during the

tuned simulation. This is compared to 18 of 185 satellites with the baseline system design

that had some time at zero energy.

Figure 10.2 shows the stored energy score for sensor node D34 compared between

the baseline and tuned simulations. The average stored energy for this node remains much

higher after system tuning leading to score being awarded for the duration of the simulation.

The increased minimum power does not come at the cost of sensor activation with the tuned

system resulting in a score that is 8% higher than the baseline system as seen in Figure

10.3. Finally, Figure 10.4 shows the sensor activation and scoring for node D34. Compared

to the baseline system (see Figure 9.16) the tuned system activates sensors 1 and 2 more

frequently and almost always together. Sensor 3 still sees duty when the ground target is in

view. This is desirable as it maximized opportunistic sensing while maintaining full sensor

activity when the desired target is visible. This proves that the rule and fuzzy set parameter
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Figure 10.1 Stored energy state comparison between the baseline and tuned
systems

modifications successfully reduced the preference for sensor 3. However, the high-bandwidth

transmitter sees constant activation likely due to the increased stored energy state. This is

perhaps a good case for structural modifications to the ensemble through the addition of one

or more specialized experts to enforce neighbor visibility constraints.

10.3 Evolutionary Optimization Approach

Evolutionary optimization through a modified genetic algorithm using real-valued

chromosomes is applied to the HEADS system designed for this example problem. The

manually-tuned parameter set was used as the new baseline for genetic tuning. All results

are presented as compared to the manually-tuned results. The evolutionary optimization

approach is discussed in more detail in Chapter 7. This section provides an overview of how

the genetic algorithm was applied to the example HEADS system.

10.3.1 Evolutionary Mechanisms

The structure of the HEADS ensembles, experts, and fuzzy sets makes up the system

genotype that remains constant through evolution. A phenotype is a specific set of param-

eters within the genotype structure and contains the complete set of fuzzy set parameters

describing a population member.
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Figure 10.2 Node D34 stored energy scoring comparison between the baseline
and tuned systems

Evolutionary optimization takes the genotype (structure) and generates new pheno-

types (parameter sets) to test. Three main evolutionary methods are employed to adapt the

system:

1. local stochastic expansion,

2. child phenotype generation from two parent phenotypes, and

3. mutated phenotype creation from one source phenotype.

Local stochastic expansion is a localized search method that creates new phenotypes that

are normally distributed around the original phenotype. The goal for local search is to find

a slightly different parameter set that may prove to be more performant that the previous

local optimum. Generating child phenotypes using two parent phenotypes is a stochastic

combination of about half of the parameters from one parent with the complementary half

from the other parent. The new phenotypes have a chance to perform better than either

parent if both parents contribute component parameters that performed well over different
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(b) Tuned

Figure 10.3 Node D34 sensor activation scoring comparison between the
baseline and tuned systems

areas of the input space. Finally, mutation is a way to explore beyond local optima by

high-variance stochastic modification of a small number of parameters.

10.3.1.1 Constrained Evolution

There are multiple ways to implement and constrain the genetic algorithm modi-

fications including setting the variance for stochastic methods and allowing or preventing

out-of-bounds parameters. Because of how the fuzzy set parameter activation functions are

defined, the HEADS system enforces monotonically-increasing parameters for each fuzzy

set. If a random parameter is created that is out of order with the others in its set, the new

parameter is used as an anchor and the other parameters changed to be in order.

Genetic mutation was also constrained to enforce fuzzy set parameters to remain

within pre-defined minimum and maximum signal bounds. The designer sets minimum and

maximum logical signal values on each input and output signal. The constraints are enforced

in two ways, including:

• ensuring the mutated parameter is within the signal minimum and maximum value,

and
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Figure 10.4 Node D34: payload activation and scoring for the tuned system

• forcing the other parameters for the fuzzy set to adapt around the mutated parameter

while remaining within the signal bounds.

If a mutated parameter is less than a pre-defined lower boundary value or greater than

the upper boundary, it is re-created by random sample between the boundary values. For

example, suppose the signal is defined between [0, 10] and the second parameter mutates to

−7 with its mutated set being [2,−7, 6, 12]:

• the invalid mutated parameter (−7) is re-sampled from a uniform distribution between

the valid boundaries yielding, for example, [0, 10] = 1.5, and

• the other parameters are adapted for monotonicity and boundary compliance, e.g.,

[1.35, 1.5, 6, 9.1].

10.3.1.2 Logical Ordering Constraints

The designer could also enforce inter-fuzzy set logical ordering where ‘batt low’ must

always be defined on a lower part of the signal domain than ‘batt full’. This constraint was
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not used for this example problem because allowing unconstrained set domain ordering can

provide insight into expert and rule structure issues.

Figure 10.5 shows an example of this where the ‘batt good’ fuzzy set is fully encom-

passed within the ‘batt full’ set. While this is still logically valid it does indicate that the

‘batt good’ fuzzy set may not be used or have great impact on the expert’s output and could

be a candidate for removal to reduce expert complexity.

This assessment can be further validated through sensitivity analysis (Figure 10.6)

and reviewing rule activations based on the signals in question (Figure 10.7). The sensitivity

indicates that the output does depend on the signal used but there is no discernible change

based on where the ‘batt good’ fuzzy set activates around signal value 80. The fuzzy set

activation shows that ‘batt good’ activates but has no impact on the rule activation. If the

system performance is acceptable the fuzzy set ‘batt good’ can be removed without negative

impact.

10.4 Evolutionary Optimization Results

The genetic algorithm was initialized and a subset of non-faulty sensor nodes (A8,

B5, C27, D34) was used during training to provide scoring data for performance analysis.

A new parameter set was generated and applied to all four nodes. The entire simulation

was run for these four nodes and their scores computed and saved. New parameter sets

were generated using the highest-performing sets as inputs to the evolutionary mechanisms

discussed below. This process was repeated until at least 50 new parameter sets were created.

The highest-scoring parameter set was then applied to the entire sensor network and a full-

scale simulation done to provide these results.

The performance gains from evolutionary tuning are modest compared to the increase

seen from manual tuning. Compared to the manually-tuned system, the genetic tuning

resulted in average system-level increases of:

• 6.8% in total score,
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Figure 10.5 Unconstrained fuzzy set ordering for ensemble y4 expert s4,1

• 1.6% in sensor activation scoring,

• 4.7% in self good scoring, and

• 16% in stored energy scoring.

Complete scoring comparisons at the system, orbit, and per-satellite level between the base-

line, manual, and genetic tuned systems are shown in Table C.1 in Appendix C.

The moderate improvements are most evident in the energy levels. Figure 10.8 shows

the stored energy state for all sensor nodes for the manual and genetic tuning simulations.

Genetic tuning had one node (D29) have its stored energy go to zero briefly, compared to

zero nodes for the manually tuned system and 18 for the baseline system. However, across
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Figure 10.6 Ensemble y4 expert s4,1 sensitivity to input signal ‘stored energy’

the sensor network the average stored energy was slightly higher and saw fewer nodes with

energy below the scoring threshold.

10.5 Conclusions

As shown throughout this chapter, the HEADS framework is well-suited for manual

and automated tuning. Simulated performance for the example problem increased on average

48% after manual tuning and another 7% after evolutionary tuning.

The HEADS framework enables direct inspection for performance and rule activation

which supports system modification. A designer or operator can review system outputs

and their underlying rule and fuzzy set activations. This direct insight enables quick and

meaningful conclusions about why and how the system exhibits specific behavior. It is

thus straightforward to identify candidate system modifications to adapt performance and

behavior.
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Figure 10.7 Activation of fuzzy set ‘batt good’ has no impact on rule
activation for ensemble y4 expert s4,1
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Figure 10.8 Stored energy comparison: manual and genetic tuned systems

Leveraging automated tuning techniques can further boost system performance. Ge-

netic algorithm methods are well-suited for systems of this framework especially if the cost

function or performance score is readily available through simulation. It is important to

consider constraints on the evolutionary processes underlying such optimization techniques

to ensure logical consistency of the tuned system.
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Chapter 11: Conclusions

This dissertation presents the Hierarchical Ensembles of Autonomous Decision Sys-

tems (HEADS) framework for multiple objective autonomy across a network of distributed

systems-of-systems (NDSS). HEADS is a design methodology and reasoning structure for

achieving a high degree of fully-autonomous and human-in-the-loop system autonomy. The

framework supports direct inspection of behavior and performance which provides explain-

able autonomy. The details of the HEADS framework and its design, analysis, and opti-

mization process are among the contributions of this dissertation as are the implementation,

analysis, and optimization for a notional low Earth orbit autonomous satellite network of

remote sensor and ancillary capabilities.

The HEADS design is introduced in Chapter 5 with design and analysis tools in

Chapters 6 and 7 respectively. The application to a representative NDSS problem begins in

Chapter 8 with results and analysis spanning Chapters 9 and 10. Refer to Chapter 1 for a

complete list of contributions and chapters.

Understandability and robustness are achieved through the application of multiple

linguistic variable-based fuzzy logic systems. Each expert system performs as a member in

an ensemble that combines outputs to leverage per-system domains of expertise.

11.1 Explainable Autonomy Is Valuable

As networks of systems grow in size and complexity, the ability to operate au-

tonomously becomes imperative to efficient and robust network performance. When these

large complex systems incorporate humans the requirements for autonomy shift to include

safety, security, and explainability. A human-in-the-loop autonomous system without ex-

plainable or verifiable behavior is a liability at best. Real-world problems driving this require-
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ment include autonomous ground vehicles operating on public motorways and human-rated

interplanetary spacecraft, among others.

The HEADS framework supports explainability through the implementation of fuzzy

logic experts as the core reasoning experts. Fuzzy systems based on linguistic variables

offer straightforward rule design and analysis without the need to translate or transcribe

variables into meaning. Introspection of fuzzy systems is likewise direct through observation

and analysis of fuzzy set and rule activation and the impact on system output generation.

11.2 HEADS Is Designer-Friendly

The HEADS design process incorporates a simple sequence:

1. signal identification based on available data and desired decision outputs,

2. rule design mapping signals to outputs, and

3. fuzzy system definition through parameterizing fuzzy set activation functions to sub-

divide signal domains.

This process is designed to be iterative and collaborative. It can easily scale across com-

plex systems through subsystem-focused ensemble and expert development leveraging per-

subsystem engineers and subject matter experts.

Design introspection tools are provided to measure complexity. A system designer

can use these to identify layers in the hierarchy that may require additional subdivision to

ensure any one part does not grow too complex.

Finally, the hierarchical structure itself supports ease of design and modification

through logical collection of signals and rules. Each expert in an ensemble is designed

and trained on a subset of the signal space to provide one output. The other experts in the

same ensemble consider different signal space subsets or different rule paradigms.

11.3 HEADS Offers Robust Performance

Explainability and ease of design should not come at the cost of performance. The

HEADS framework is proven to be performant and robust through application to a com-
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plex low Earth orbit satellite network simulation problem. The 185 simulated sensor node

satellites spread across four different orbits with varying lighting and ground target access

dynamics is itself a complex problem for scheduling and resource management. However,

the same HEADS system design (ruleset and fuzzy set parameterization) applied to each

independent satellite drove the system to meeting primary objectives and maximizing utility

through secondary objectives.

Being able to design a single autonomous system and apply it to different vehicles

in different environments helps reduce development and verification costs. Furthermore,

because the system design is language-based and understandable it is straightforward to

adapt the system, further reducing the investment required to achieve increased performance.

11.4 Performance Metrics Drive Performance

Although this statement appears tautological, signals and behaviors selected for mea-

surement drive system design and adaptation. Manual inspection of system performance

based on scoring is useful for identifying suboptimal behavior for example unexpected de-

vice activation. The importance of careful scoring design is particularly true for automated

optimization since the algorithm seeks parameter sets that maximize the numerical score. If

the scoring mechanism includes unimportant or irrelevant metrics the resulting system will

be optimized to achieve irrelevant goals.

11.5 Future Work

Of the myriad adaptations and applications that could possibly make the HEADS

framework better, a few stand out as potentially high return-on-investment approaches:

• implementing a mixed-expert HEADS system to leverage strengths of different models,

• adding a pre-weighting parameter to expert outputs based on past performance, and

• creating an ensemble-level expert prediction model to estimate which expert will per-

form the best based on the current signal space.
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The HEADS framework as presented leverages fuzzy logic experts for explainability.

Other models or expert types may be well-suited to different problem areas. Experts or

models that provide an output signal with some measure of confidence or (un)certainty

could be added to an ensemble. For example, hierarchical adaptive Kalman filtering has

proven beneficial for adapting to unknown operating environments [88]. This approach could

enable incorporating existing models and tools to the reasoning architecture to leverage prior

investment and expertise.

The per-expert pre-weighting parameter is intended to perform additional gating

based on past expert performance. The notional system tracks how closely each expert

within an ensemble agrees with its peers. Output decisions are also compared to expected

outputs providing a posteriori performance metrics. These two meta-parameters can be

combined to identify experts within an ensemble that consistently underperform compared to

peers. Then, without requiring the entire system to be modified to fix such underperforming

experts, the pre-weighting parameter reduces the impact on an ensemble’s output.

The pre-weighting approach could be further improved by creating an expert pre-

diction model that attempts to identify the most-impactful expert before reasoning is per-

formed, or a priori. This is of potential interest as it could provide metadata about ensemble

performance and HEADS structural design for supporting future modifications. The predic-

tion model paired with the a posteriori performance metrics combine to bring the HEADS

framework toward a traditional recursive filtering system which could enable other interesting

functions such as input signal rejection or underweighting.
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Appendix A: Example HEADS Definitions and Parameterizations

This appendix contains the example problem system designs including the baseline

rules and parameters in Table A.1 and Table A.2 respectively.

The manually-tuned rules and parameters are in Table A.3 and Table A.4 and only

show the differences compared to the baseline system.

Finally, the parameters adapted by genetic algorithm are shown in Table A.5. The

genetic algorithm tuning did not modify any rules compared to the manually-tuned system.

Table A.1 HEADS example - baseline system rule definitions

yj sj,p Rule

Index

Rule Definition

y1 s1,1 01 batt critical THEN self bad

02 batt low AND dt sun long THEN self bad

03 batt low AND (dt sun short OR sunlit) THEN self marginal

04 batt good AND dt sun long THEN self marginal

05 batt good AND (dt sun short OR sunlit) THEN self good

06 batt full THEN self good

s1,2 01 faulty AND batt low THEN self bad

02 faulty AND batt good THEN self marginal

03 NOT faulty THEN self good

04 fault recovery THEN self bad

y2 s2,1 01 batt low THEN sensor off

02 batt good AND (NOT sunlit OR dt sun long) THEN sensor off

03 batt good AND (sunlit OR dt sun short) THEN sensor on

04 batt full THEN sensor on

Table continues on next page
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Table A.1 (continued)

Ensemble Expert Rule

Index

Rule Definition

s2,2 01 NOT target visible THEN sensor off

02 dt target long THEN sensor off

03 dt target short THEN sensor on

04 target visible THEN sensor on

05 sensor 1 active OR sensor 2 active OR sensor 3 active THEN

sensor on

s2,3 01 sn count low THEN sensor on

02 sn count high THEN sensor off

03 sn good low OR sn bad high THEN sensor on

04 sn good high OR sn bad low THEN sensor off

s2,4 01 faulty THEN sensor off

02 NOT faulty THEN sensor on

03 fault recovery THEN sensor off

04 NOT self good THEN sensor off

y3 s3,1 01 batt low THEN sensor off

02 batt good AND (NOT sunlit OR dt sun long) THEN sensor off

03 batt good AND (sunlit OR dt sun short) THEN sensor on

04 batt full THEN sensor on

s3,2 01 NOT target visible THEN sensor off

02 dt target long THEN sensor off

03 dt target short THEN sensor on

04 target visible THEN sensor on

05 sensor 1 active OR sensor 2 active OR sensor 3 active THEN

sensor on

s3,3 01 sn count low THEN sensor on

02 sn count high THEN sensor off

03 sn good low OR sn bad high THEN sensor on

04 sn good high OR sn bad low THEN sensor off

Table continues on next page
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Table A.1 (continued)

Ensemble Expert Rule

Index

Rule Definition

s3,4 01 faulty THEN sensor off

02 NOT faulty THEN sensor on

03 fault recovery THEN sensor off

04 NOT self good THEN sensor off

y4 s4,1 01 batt low THEN sensor off

02 batt good AND (NOT sunlit OR dt sun long) THEN sensor off

03 batt good AND (sunlit OR dt sun short) THEN sensor on

04 batt full THEN sensor on

s4,2 01 NOT target visible THEN sensor off

02 dt target long THEN sensor off

03 dt target short THEN sensor on

04 target visible THEN sensor on

05 sensor 1 active OR sensor 2 active OR sensor 3 active THEN

sensor on

s4,3 01 sn count low THEN sensor on

02 sn count high THEN sensor off

03 sn good low OR sn bad high THEN sensor on

04 sn good high OR sn bad low THEN sensor off

s4,4 1 faulty THEN sensor off

02 NOT faulty THEN sensor on

03 fault recovery THEN sensor off

04 NOT self good THEN sensor off

y5 s5,1 01 batt bad THEN dtx off

02 batt bad AND ((dt sun short OR sunlit) AND (COM neighbors

OR PROC neighbors)) THEN dtx on

03 batt good AND (COM neighbors OR PROC neighbors) THEN

dtx on

Table continues on next page
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Table A.1 (continued)

Ensemble Expert Rule

Index

Rule Definition

04 batt good AND (dt sun long AND (COM neighbors OR

PROC neighbors)) THEN dtx off

05 (sensor 1 active OR sensor 2 active OR sensor 3 active) AND

(COM neighbors OR PROC neighbors) THEN dtx on

s5,2 01 faulty OR fault recovery THEN dtx off

02 NOT faulty AND NOT fault recovery THEN dtx on

03 NOT self good THEN dtx off

y6 s6,1 01 NOT faulty THEN fault recovery off

02 batt critical THEN fault recovery on

03 NOT batt critical THEN fault recovery off

04 (faulty OR fault recovery) THEN fault recovery on

05 NOT faulty AND NOT fault recovery THEN fault recovery off

Table A.2 HEADS example - baseline system fuzzy set parameters

yj sj,p Antecedent/

Consequent

Fuzzy Set Activ.

Func.

Parameters Signal

y1 s1,1 antecedent batt critical ltrap [10, 20] x1: stored energy

batt low trap [15, 20, 25,

30]

x1: stored energy

batt good trap [30, 50, 70,

80]

x1: stored energy

batt full rtrap [60, 80] x1: stored energy

sunlit bool [ ] x2: sunlit

dt sun short ltrap [300, 600] x3: dt sun s

dt sun long rtrap [300, 900] x3: dt sun s

Table continues on next page
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Table A.2 (continued)

yj sj,p Antecedent/

Consequent

Fuzzy Set Activ.

Func.

Parameters Signal

consequent self bad ltrap [0.4, 0.5] y1: self good

self marginal trap [0.45, 0.5,

0.55, 0.65]

y1: self good

self good rtrap [0.6, 0.7] y1: self good

s1,2 antecedent batt low ltrap [40, 60] x1: stored energy

batt good rtrap [50, 70] x1: stored energy

faulty bool [ ] x11: fault detected

fault recovery bool [ ] y6: fault recovery

consequent self bad ltrap [0.3, 0.4] y1: self good

self marginal trap [0.45, 0.5,

0.55, 0.6]

y1: self good

self good rtrap [0.55, 0.7] y1: self good

y2 s2,1 antecedent batt low ltrap [30, 40] x1: stored energy

batt good tri [30, 60] x1: stored energy

batt full rtrap [50, 60] x1: stored energy

sunlit bool [ ] x2: sunlit

dt sun short ltrap [180, 300] x3: dt sun s

dt sun long rtrap [240, 480] x3: dt sun s

consequent sensor off ltrap [0.4, 0.55] y2: sensor 1 active

sensor on rtrap [0.45, 0.6] y2: sensor 1 active

s2,2 antecedent target visible bool [ ] x4: target visible

dt target short ltrap [300, 600] x5: dt target s

dt target long rtrap [480, 780] x5: dt target s

sensor 1 active bool [ ] y2: sensor 1 active

sensor 2 active bool [ ] y3: sensor 2 active

sensor 3 active bool [ ] y4: sensor 3 active

Table continues on next page
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Table A.2 (continued)

yj sj,p Antecedent/

Consequent

Fuzzy Set Activ.

Func.

Parameters Signal

consequent sensor off ltrap [0.4, 0.55] y2: sensor 1 active

sensor on rtrap [0.45, 0.6] y2: sensor 1 active

s2,3 antecedent sn count low ltrap [5, 7] x8: SEN neighbors count

sn count high rtrap [6, 8] x8: SEN neighbors count

sn good low ltrap [2, 3] x9: SEN neighbors good

sn good high rtrap [2, 3] x9: SEN neighbors good

sn bad low ltrap [3, 4] x10: SEN neighbors bad

sn bad high rtrap [3, 4] x10: SEN neighbors bad

consequent sensor off ltrap [0.2, 0.4] y2: sensor 1 active

sensor on rtrap [0.3, 0.5] y2: sensor 1 active

s2,4 antecedent faulty bool [ ] x11: fault detected

fault recovery bool [ ] y6: fault recovery

self good bool [ ] y1: self good

consequent sensor off ltrap [0.5, 0.6] y2: sensor 1 active

sensor on rtrap [0.5, 0.6] y2: sensor 1 active

y3 s3,1 antecedent batt low ltrap [40, 60] x1: stored energy

batt good tri [55, 65] x1: stored energy

batt full rtrap [60, 70] x1: stored energy

sunlit bool [ ] x2: sunlit

dt sun short ltrap [60, 180] x3: dt sun s

dt sun long rtrap [120, 240] x3: dt sun s

consequent sensor off ltrap [0.5, 0.6] y3: sensor 2 active

sensor on rtrap [0.5, 0.6] y3: sensor 2 active

s3,2 antecedent target visible bool [ ] x4: target visible

dt target short ltrap [60, 180] x5: dt target s

dt target long rtrap [120, 300] x5: dt target s

sensor 1 active bool [ ] y2: sensor 1 active

Table continues on next page
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Table A.2 (continued)

yj sj,p Antecedent/

Consequent

Fuzzy Set Activ.

Func.

Parameters Signal

sensor 2 active bool [ ] y3: sensor 2 active

sensor 3 active bool [ ] y4: sensor 3 active

consequent sensor off ltrap [0.4, 0.6] y3: sensor 2 active

sensor on rtrap [0.5, 0.6] y3: sensor 2 active

s3,3 antecedent sn count low ltrap [7, 8] x8: SEN neighbors count

sn count high rtrap [7, 8] x8: SEN neighbors count

sn good low ltrap [4, 5] x9: SEN neighbors good

sn good high rtrap [4, 5] x9: SEN neighbors good

sn bad low ltrap [1, 2] x10: SEN neighbors bad

sn bad high rtrap [1, 2] x10: SEN neighbors bad

consequent sensor off ltrap [0.3, 0.4] y3: sensor 2 active

sensor on rtrap [0.35, 0.45] y3: sensor 2 active

s3,4 antecedent faulty bool [ ] x11: fault detected

fault recovery bool [ ] y6: fault recovery

self good bool [ ] y1: self good

consequent sensor off ltrap [0.3, 0.4] y3: sensor 2 active

sensor on rtrap [0.35, 0.7] y3: sensor 2 active

y4 s4,1 antecedent batt low ltrap [50, 60] x1: stored energy

batt good tri [55, 70] x1: stored energy

batt full rtrap [60, 80] x1: stored energy

sunlit bool [ ] x2: sunlit

dt sun short ltrap [60, 120] x3: dt sun s

dt sun long rtrap [60, 120] x3: dt sun s

consequent sensor off ltrap [0.5, 0.6] y4: sensor 3 active

sensor on rtrap [0.5, 0.6] y4: sensor 3 active

s4,2 antecedent target visible bool [ ] x4: target visible

dt target short ltrap [60, 120] x5: dt target s
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Table A.2 (continued)

yj sj,p Antecedent/

Consequent

Fuzzy Set Activ.

Func.

Parameters Signal

dt target long rtrap [60, 120] x5: dt target s

sensor 1 active bool [ ] y2: sensor 1 active

sensor 2 active bool [ ] y3: sensor 2 active

sensor 3 active bool [ ] y4: sensor 3 active

consequent sensor off ltrap [0.3, 0.4] y4: sensor 3 active

sensor on rtrap [0.6, 0.7] y4: sensor 3 active

s4,3 antecedent sn count low ltrap [6, 8] x8: SEN neighbors count

sn count high rtrap [7, 8] x8: SEN neighbors count

sn good low ltrap [3, 5] x9: SEN neighbors good

sn good high rtrap [4, 6] x9: SEN neighbors good

sn bad low ltrap [1, 3] x10: SEN neighbors bad

sn bad high rtrap [2, 3] x10: SEN neighbors bad

consequent sensor off ltrap [0.3, 0.4] y4: sensor 3 active

sensor on rtrap [0.35, 0.45] y4: sensor 3 active

s4,4 antecedent faulty bool [ ] x11: fault detected

fault recovery bool [ ] y6: fault recovery

self good bool [ ] y1: self good

consequent sensor off ltrap [0.3, 0.4] y4: sensor 3 active

sensor on rtrap [0.5, 0.6] y4: sensor 3 active

y5 s5,1 antecedent batt bad ltrap [30, 60] x1: stored energy

batt good rtrap [30, 60] x1: stored energy

sunlit bool [ ] x2: sunlit

dt sun short ltrap [300, 540] x3: dt sun s

dt sun long rtrap [420, 600] x3: dt sun s

COM neighbors rtrap [0, 1] x6: COM neighbors count

PROC neighbors rtrap [0, 1] x7: PROC neighbors count

sensor 1 active bool [ ] y2: sensor 1 active

Table continues on next page
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Table A.2 (continued)

yj sj,p Antecedent/

Consequent

Fuzzy Set Activ.

Func.

Parameters Signal

sensor 2 active bool [ ] y3: sensor 2 active

sensor 3 active bool [ ] y4: sensor 3 active

consequent dtx off ltrap [0.4, 0.6] y5: dtx active

dtx on rtrap [0.4, 0.6] y5: dtx active

s5,2 antecedent faulty bool [ ] x11: fault detected

fault recovery bool [ ] y6: fault recovery

self good bool [ ] y1: self good

consequent dtx off ltrap [0.4, 0.6] y5: dtx active

dtx on rtrap [0.4, 0.6] y5: dtx active

y6 s6,1 antecedent batt critical ltrap [20, 30] x1: stored energy

faulty bool [ ] x11: fault detected

fault recovery bool [ ] y6: fault recovery

consequent fault recovery off ltrap [0.45, 0.55] y6: fault recovery

fault recovery on rtrap [0.45, 0.55] y6: fault recovery

Table A.3 HEADS example - manually-tuned rule updates

yj sj,p rj,p,w Baseline/

Tuned

Rule

y5 s5,1 r5,1,02 Baseline batt bad AND ((dt sun short OR sunlit) AND (COM neighbors

OR PROC neighbors)) THEN dtx on

Tuned (Manual) batt good AND ((dt sun short OR sunlit) AND (COM neighbors

OR PROC neighbors)) THEN dtx on

s5,2 r5,2,02 Baseline NOT faulty AND NOT fault recovery THEN dtx on

Tuned (Manual) NOT faulty AND NOT fault recovery AND self good THEN

dtx on
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Table A.4 HEADS example - manually-tuned parameter updates

yj sj,p Antecedent/

Consequent

Fuzzy Set Activation

Function

Baseline Parameters Tuned Parameters

y1 s1,1 antecedent batt critical ltrap [10, 20] [20, 30]

batt low trap [15, 20, 25, 30] [15, 25, 35, 60]

batt good trap [30, 50, 70, 80] [50, 60, 70, 90]

batt full rtrap [60, 80] [80, 90]

consequent self bad ltrap [0.4, 0.5] [0.4, 0.45]

self marginal trap [0.45, 0.5, 0.55, 0.65] [0.4, 0.5, 0.55, 0.65]

y3 s3,3 consequent sensor on rtrap [0.35, 0.45] [0.35, 0.95]

s3,4 consequent sensor on rtrap [0.35, 0.7] [0.35, 1.7]

y4 s4,1 consequent sensor off ltrap [0.5, 0.6] [0.3, 0.6]

sensor on rtrap [0.5, 0.6] [0.3, 0.6]

s4,2 consequent sensor off ltrap [0.3, 0.4] [0.3, 0.55]

sensor on rtrap [0.6, 0.7] [0.45, 0.7]

s4,3 consequent sensor off ltrap [0.3, 0.4] [0.4, 0.5]

sensor on rtrap [0.35, 0.45] [0.45, 1.55]

s4,4 consequent sensor off ltrap [0.3, 0.4] [0.4, 0.5]

y5 s5,1 antecedent batt bad ltrap [30, 60] [40, 50]

batt good rtrap [30, 30] [40, 80]

Table A.5 HEADS example - genetic tuning parameter updates

yj sj,p Antecedent/

Consequent

Fuzzy Set Activ.

Func.

Manual Parameters Genetic Parameters

y1 s1,1 antecedent batt critical ltrap [20, 30] [22.21, 26.4]

batt low trap [15, 25, 35, 60] [13.4, 31.06, 32.27, 38.52]

batt good trap [50, 60, 70, 90] [48.49, 68.63, 81.54, 98.51]

batt full rtrap [80, 90] [73.73, 81.28]

dt sun short ltrap [300.0, 600.0] [310.71, 467.92]

Table continues on next page
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Table A.5 (continued)

yj sj,p Antecedent/

Consequent

Fuzzy Set Activ.

Func.

Manual Parameters Genetic Parameters

dt sun long rtrap [300.0, 900.0] [349.63, 861.99]

sunlit bool [ ] [ ]

consequent self bad ltrap [0.4, 0.45] [0.22, 0.55]

self marginal trap [0.4, 0.5, 0.55, 0.65] [0.42, 0.51, 0.54, 0.82]

self good rtrap [0.6, 0.7] [0.63, 0.95]

s1,2 antecedent batt low ltrap [40, 60] [27.19, 64.25]

batt good rtrap [50, 70] [54.21, 65.95]

faulty bool [ ] [ ]

fault recovery bool [ ] [ ]

consequent self bad ltrap [0.3, 0.4] [0.34, 0.42]

self marginal trap [0.45, 0.5, 0.55, 0.6] [0.38, 0.8, 0.97, 0.99]

self good rtrap [0.55, 0.7] [0.83, 0.88]

y2 s2,1 antecedent batt low ltrap [30, 40] [25.11, 36.9]

batt good tri [30, 60] [28.91, 47.84]

batt full rtrap [50, 60] [36.95, 68.94]

dt sun short ltrap [180.0, 300.0] [236.24, 246.33]

dt sun long rtrap [240.0, 480.0] [192.59, 427.14]

sunlit bool [ ] [ ]

consequent sensor off ltrap [0.4, 0.55] [0.45, 0.52]

sensor on rtrap [0.45, 0.6] [0.4, 0.89]

s2,2 antecedent dt target short ltrap [300.0, 600.0] [336.59, 557.68]

dt target long rtrap [480.0, 780.0] [484.2, 771.21]

sensor 1 active bool [ ] [ ]

sensor 2 active bool [ ] [ ]

sensor 3 active bool [ ] [ ]

target visible bool [ ] [ ]
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Table A.5 (continued)

yj sj,p Antecedent/

Consequent

Fuzzy Set Activ.

Func.

Manual Parameters Genetic Parameters

consequent sensor off ltrap [0.4, 0.55] [0.4, 0.65]

sensor on rtrap [0.45, 0.6] [0.46, 0.87]

s2,3 antecedent sn count low ltrap [5, 7] [3.99, 8.16]

sn count high rtrap [6, 8] [7.84, 8.66]

sn good low ltrap [2, 3] [2.25, 3.21]

sn good high rtrap [2, 3] [2.01, 2.2]

sn bad low ltrap [3, 4] [2.94, 3.04]

sn bad high rtrap [3, 4] [2.94, 56.2]

consequent sensor off ltrap [0.2, 0.4] [0.27, 0.35]

sensor on rtrap [0.3, 0.5] [0.32, 0.57]

s2,4 antecedent faulty bool [ ] [ ]

self good bool [ ] [ ]

fault recovery bool [ ] [ ]

consequent sensor off ltrap [0.5, 0.6] [0.37, 0.49]

sensor on rtrap [0.5, 0.6] [0.51, 0.66]

y3 s3,1 antecedent batt low ltrap [40, 60] [40.05, 58.31]

batt good tri [55, 65] [58.61, 79.72]

batt full rtrap [60, 70] [65.78, 76.79]

dt sun short ltrap [60.0, 180.0] [69.33, 223.55]

dt sun long rtrap [120.0, 240.0] [114.34, 253.39]

sunlit bool [ ] [ ]

consequent sensor off ltrap [0.5, 0.6] [0.47, 0.57]

sensor on rtrap [0.5, 0.6] [0.3, 0.6]

s3,2 antecedent dt target short ltrap [60.0, 180.0] [60.23, 159.37]

dt target long rtrap [120.0, 300.0] [131.68, 242.66]

sensor 1 active bool [ ] [ ]

sensor 2 active bool [ ] [ ]

Table continues on next page
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Table A.5 (continued)

yj sj,p Antecedent/

Consequent

Fuzzy Set Activ.

Func.

Manual Parameters Genetic Parameters

sensor 3 active bool [ ] [ ]

target visible bool [ ] [ ]

consequent sensor off ltrap [0.4, 0.6] [0.43, 0.54]

sensor on rtrap [0.5, 0.6] [0.46, 0.62]

s3,3 antecedent sn count low ltrap [7, 8] [5.95, 10.27]

sn count high rtrap [7, 8] [6.52, 8.99]

sn good low ltrap [4, 5] [3.76, 3.9]

sn good high rtrap [4, 5] [4.59, 6.32]

sn bad low ltrap [1, 2] [1.27, 1.35]

sn bad high rtrap [1, 2] [0.77, 2.66]

consequent sensor off ltrap [0.3, 0.4] [0.35, 0.42]

sensor on rtrap [0.35, 0.95] [0.42, 0.84]

s3,4 antecedent faulty bool [ ] [ ]

self good bool [ ] [ ]

fault recovery bool [ ] [ ]

consequent sensor off ltrap [0.3, 0.4] [0.24, 0.43]

sensor on rtrap [0.35, 1.7] [0.34, 0.48]

y4 s4,1 antecedent batt low ltrap [50, 60] [53.66, 86.13]

batt good tri [55, 70] [79.04, 79.76]

batt full rtrap [60, 80] [60.21, 65.73]

dt sun short ltrap [60.0, 120.0] [56.26, 111.39]

dt sun long rtrap [60.0, 120.0] [66.6, 96.37]

sunlit bool [ ] [ ]

consequent sensor off ltrap [0.3, 0.6] [0.27, 0.57]

sensor on rtrap [0.3, 0.6] [0.34, 0.67]

s4,2 antecedent dt target short ltrap [60.0, 120.0] [55.72, 125.28]

dt target long rtrap [60.0, 120.0] [66.18, 140.98]

Table continues on next page
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Table A.5 (continued)

yj sj,p Antecedent/

Consequent

Fuzzy Set Activ.

Func.

Manual Parameters Genetic Parameters

sensor 1 active bool [ ] [ ]

sensor 2 active bool [ ] [ ]

sensor 3 active bool [ ] [ ]

target visible bool [ ] [ ]

consequent sensor off ltrap [0.3, 0.55] [0.29, 0.56]

sensor on rtrap [0.45, 0.7] [0.46, 0.71]

s4,3 antecedent sn count low ltrap [6, 8] [7.19, 19.88]

sn count high rtrap [7, 8] [7.33, 9.5]

sn good low ltrap [3, 5] [3.84, 4.27]

sn good high rtrap [4, 6] [2.99, 5.51]

sn bad low ltrap [1, 3] [1.1, 2.96]

sn bad high rtrap [2, 3] [2.37, 2.65]

consequent sensor off ltrap [0.4, 0.5] [0.29, 0.42]

sensor on rtrap [0.45, 1.55] [0.42, 0.47]

s4,4 antecedent faulty bool [ ] [ ]

self good bool [ ] [ ]

fault recovery bool [ ] [ ]

consequent sensor off ltrap [0.4, 0.5] [0.42, 0.51]

sensor on rtrap [0.5, 0.6] [0.44, 0.44]

y5 s5,1 antecedent batt bad ltrap [40, 50] [42.99, 55.09]

batt good rtrap [40, 80] [35.18, 84.49]

dt sun short ltrap [300.0, 540.0] [237.88, 499.46]

dt sun long rtrap [420.0, 600.0] [398.78, 622.25]

COM neighbors rtrap [0, 1] [0.0, 0.98]

PROC neighbors rtrap [0, 1] [0.0, 1.29]

sensor 1 active bool [ ] [ ]

sensor 2 active bool [ ] [ ]

Table continues on next page
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Table A.5 (continued)

yj sj,p Antecedent/

Consequent

Fuzzy Set Activ.

Func.

Manual Parameters Genetic Parameters

sensor 3 active bool [ ] [ ]

sunlit bool [ ] [ ]

consequent dtx off ltrap [0.4, 0.6] [0.45, 0.6]

dtx on rtrap [0.4, 0.6] [0.38, 0.65]

s5,2 antecedent faulty bool [ ] [ ]

self good bool [ ] [ ]

fault recovery bool [ ] [ ]

consequent dtx off ltrap [0.4, 0.6] [0.37, 0.69]

dtx on rtrap [0.4, 0.6] [0.4, 0.48]

y6 s6,1 antecedent batt critical ltrap [20, 30] [18.52, 29.6]

faulty bool [ ] [ ]

fault recovery bool [ ] [ ]

consequent fault recovery off ltrap [0.45, 0.55] [0.43, 0.82]

fault recovery on rtrap [0.45, 0.55] [0.48, 0.64]
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Appendix B: Example HEADS Complexity Metrics

Table B.1 shows the rules, fuzzy sets, and rule compactness complexity metrics.

Tables B.2-B.10 provide the rule similarity matrices for each expert. Note that the

ensembles for the sensor activation outputs (y2, y3, and y4) share a structure and differ

only in fuzzy set parameterization. This leads the experts in these ensembles to share rule

similarity matrices.

Table B.11 shows the number of fuzzy sets using each signal at each level in the

hierarchy.

Table B.1 Example HEADS complexity metrics for rules and fuzzy sets

Hierarchy ψrules ψfsets ψw,ANT ψANT ψANT

System 74 126 5 1.7

y1 10 17 3 1.75

s 1 1 6 10 3 2.0

r 1 1 01 1

r 1 1 02 2

r 1 1 03 3

r 1 1 04 2

r 1 1 05 3

r 1 1 06 1

s 1 2 4 7 2 1.5

r 1 2 01 2

r 1 2 02 2

r 1 2 03 1

r 1 2 04 1

Table continues on next page
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Table B.1 (continued)

Hierarchy ψrules ψfsets ψw,ANT ψANT ψANT

y2 17 29 3 1.475

s 2 1 4 8 3 2.0

r 2 1 01 1

r 2 1 02 3

r 2 1 03 3

r 2 1 04 1

s 2 2 5 8 3 1.4

r 2 2 01 1

r 2 2 02 1

r 2 2 03 1

r 2 2 04 1

r 2 2 05 3

s 2 3 4 8 2 1.5

r 2 3 01 1

r 2 3 02 1

r 2 3 03 2

r 2 3 04 2

s 2 4 4 5 1 1.0

r 2 4 01 1

r 2 4 02 1

r 2 4 03 1

r 2 4 04 1

y3 17 29 3 1.475

s 3 1 4 8 3 2.0

r 3 1 01 1

r 3 1 02 3

r 3 1 03 3

r 3 1 04 1

s 3 2 5 8 3 1.4

Table continues on next page

173



Table B.1 (continued)

Hierarchy ψrules ψfsets ψw,ANT ψANT ψANT

r 3 2 01 1

r 3 2 02 1

r 3 2 03 1

r 3 2 04 1

r 3 2 05 3

s 3 3 4 8 2 1.5

r 3 3 01 1

r 3 3 02 1

r 3 3 03 2

r 3 3 04 2

s 3 4 4 5 1 1.0

r 3 4 01 1

r 3 4 02 1

r 3 4 03 1

r 3 4 04 1

y4 17 29 3 1.475

s 4 1 4 8 3 2.0

r 4 1 01 1

r 4 1 02 3

r 4 1 03 3

r 4 1 04 1

s 4 2 5 8 3 1.4

r 4 2 01 1

r 4 2 02 1

r 4 2 03 1

r 4 2 04 1

r 4 2 05 3

s 4 3 4 8 2 1.5

r 4 3 01 1
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Table B.1 (continued)

Hierarchy ψrules ψfsets ψw,ANT ψANT ψANT

r 4 3 02 1

r 4 3 03 2

r 4 3 04 2

s 4 4 4 5 1 1.0

r 4 4 01 1

r 4 4 02 1

r 4 4 03 1

r 4 4 04 1

y5 8 17 5 2.63

s 5 1 5 12 5 3.6

r 5 1 01 1

r 5 1 02 5

r 5 1 03 3

r 5 1 04 4

r 5 1 05 5

s 5 2 3 5 2 1.67

r 5 2 01 2

r 5 2 02 2

r 5 2 03 1

y6 5 5 2 1.4

s 6 1 5 5 2 1.4

r 6 1 01 1

r 6 1 02 1

r 6 1 03 1

r 6 1 04 2

r 6 1 05 2
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Table B.2 Example HEADS rule similarity matrix for expert s1,1

Rule r 1 1 01 r 1 1 02 r 1 1 03 r 1 1 04 r 1 1 05 r 1 1 06
r 1 1 01 1.0 0.0 0.0 0.0 0.0 0.0
r 1 1 02 0.0 1.0 0.1 0.1 0.0 0.0
r 1 1 03 0.0 0.1 1.0 0.0 0.2 0.0
r 1 1 04 0.0 0.1 0.0 1.0 0.1 0.0
r 1 1 05 0.0 0.0 0.2 0.1 1.0 0.0
r 1 1 06 0.0 0.0 0.0 0.0 0.0 1.0

Table B.3 Example HEADS rule similarity matrix for expert s1,2

Rule r 1 2 01 r 1 2 02 r 1 2 03 r 1 2 04
r 1 2 01 1.0 0.14 0.14 0.0
r 1 2 02 0.14 1.0 0.14 0.0
r 1 2 03 0.14 0.14 1.0 0.0
r 1 2 04 0.0 0.0 0.0 1.0

Table B.4 Example HEADS rule similarity matrix for expert s2,1, s3,1, and s4,1

Rule r j 1 01 r j 1 02 r j 1 03 r j 1 04
r j 1 01 1.0 0.0 0.0 0.0
r j 1 02 0.0 1.0 0.25 0.0
r j 1 03 0.0 0.25 1.0 0.0
r j 1 04 0.0 0.0 0.0 1.0

Table B.5 Example HEADS rule similarity matrix for expert s2,2, s3,2, and s4,2

Rule r j 2 01 r j 2 02 r j 2 03 r j 2 04 r j 2 05
r j 2 01 1.0 0.0 0.0 0.125 0.0
r j 2 02 0.0 1.0 0.0 0.0 0.0
r j 2 03 0.0 0.0 1.0 0.0 0.0
r j 2 04 0.125 0.0 0.0 1.0 0.0
r j 2 05 0.0 0.0 0.0 0.0 1.0

Table B.6 Example HEADS rule similarity matrix for expert s2,3, s3,3, and s4,3

Rule r j 3 01 r j 3 02 r j 3 03 r j 3 04
r j 3 01 1.0 0.0 0.0 0.0
r j 3 02 0.0 1.0 0.0 0.0
r j 3 03 0.0 0.0 1.0 0.0
r j 3 04 0.0 0.0 0.0 1.0

Table B.7 Example HEADS rule similarity matrix for expert s2,4, s3,4, and s4,4

Rule r j 4 01 r j 4 02 r j 4 03 r j 4 04
r j 4 01 1.0 0.2 0.0 0.0
r j 4 02 0.2 1.0 0.0 0.0
r j 4 03 0.0 0.0 1.0 0.0
r j 4 04 0.0 0.0 0.0 1.0
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Table B.8 Example HEADS rule similarity matrix for expert s5,1

Rule r 5 1 01 r 5 1 02 r 5 1 03 r 5 1 04 r 5 1 05
r 5 1 01 1.0 0.083 0.0 0.0 0.0
r 5 1 02 0.083 1.0 0.167 0.167 0.167
r 5 1 03 0.0 0.167 1.0 0.25 0.167
r 5 1 04 0.0 0.167 0.25 1.0 0.167
r 5 1 05 0.0 0.167 0.167 0.167 1.0

Table B.9 Example HEADS rule similarity matrix for expert s5,2

Rule r 5 2 01 r 5 2 02 r 5 2 03
r 5 2 01 1.0 0.4 0.0
r 5 2 02 0.4 1.0 0.0
r 5 2 03 0.0 0.0 1.0

Table B.10 Example HEADS rule similarity matrix for expert s6,1

Rule r 6 1 01 r 6 1 02 r 6 1 03 r 6 1 04 r 6 1 05
r 6 1 01 1.0 0.0 0.0 0.2 0.2
r 6 1 02 0.0 1.0 0.2 0.0 0.0
r 6 1 03 0.0 0.2 1.0 0.0 0.0
r 6 1 04 0.2 0.0 0.0 1.0 0.4
r 6 1 05 0.2 0.0 0.0 0.4 1.0
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Table B.11 Example HEADS fuzzy set to signal mapping complexity

Hierarchy x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 y1 y2 y3 y4 y5 y6
System 18 5 10 3 6 1 1 6 6 6 6 4 4 4 4 0 6

y1 6 1 2 0 0 0 0 0 0 0 1 0 0 0 0 0 1
s 1 1 4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 1 2 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

y2 3 1 2 1 2 0 0 2 2 2 1 1 1 1 1 0 1
s 2 1 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 2 2 0 0 0 1 2 0 0 0 0 0 0 0 1 1 1 0 0
s 2 3 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0
s 2 4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

y3 3 1 2 1 2 0 0 2 2 2 1 1 1 1 1 0 1
s 3 1 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 3 2 0 0 0 1 2 0 0 0 0 0 0 0 1 1 1 0 0
s 3 3 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0
s 3 4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

y4 3 1 2 1 2 0 0 2 2 2 1 1 1 1 1 0 1
s 4 1 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s 4 2 0 0 0 1 2 0 0 0 0 0 0 0 1 1 1 0 0
s 4 3 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0
s 4 4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

y5 2 1 2 0 0 1 1 0 0 0 1 1 1 1 1 0 1
s 5 1 2 1 2 0 0 1 1 0 0 0 0 0 1 1 1 0 0
s 5 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1

y6 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
s 6 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
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Appendix C: HEADS Performance Scores

Table C.1 shows the performance for all nodes within each orbit as compared between

baseline, manually-tuned, and evolutionarily-tuned systems. The ‘minimum’ metric is the

lowest positive score of any node for the given scoring parameter. Total score sums across the

other scoring metrics. Subtotal score is the sum of all sensor and high-bandwidth transmitter

scoring. Self Good and Stored Energy scores are for individual signals of interest.

Table C.2 shows simulation, orbit, and per-satellite scores for the baseline (untuned)

system design.

Table C.3 shows simulation, orbit, and per-satellite scores for the manually-tuned

system design.

Table C.4 shows simulation, orbit, and per-satellite scores for the system design tuned

via evolutionary algorithm.

Table C.1 HEADS system performance - baseline and tuned comparison

Collection Score Statistic Baseline Manual Genetic

System Total Average 28686 42529 45441

Maximum 51536 52474 52992

Minimum 12845 12713 12744

Subtotal Average 14436 16925 17194

Maximum 22756 23684 24192

Minimum 370 238 269

Self Good Average 9940 13338 13965

Maximum 14400 14400 14400

Minimum 10 5 10

Table continues on next page
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Table C.1 (continued)

Collection Score Statistic Baseline Manual Genetic

Stored Energy Average 4309 12266 14280

Maximum 14400 14400 14400

Minimum 50 180 12475

SEN A Total Average 31241 38863 40415

Maximum 41285 42581 43522

Minimum 14923 14853 14820

Subtotal Average 12105 11619 12527

Maximum 15982 14364 14722

Minimum 973 908 880

Self Good Average 12520 13420 13528

Maximum 14400 14400 14400

Minimum 10 5 10

Stored Energy Average 6614 13823 14358

Maximum 14400 14400 14400

Minimum 215 2035 13805

SEN B Total Average 21000 24461 36957

Maximum 29880 28670 40928

Minimum 12845 12713 12744

Subtotal Average 8939 7965 8932

Maximum 12404 10181 12128

Minimum 370 238 269

Self Good Average 9390 11205 13692

Maximum 14400 13210 14400

Minimum 15 10 7790

Stored Energy Average 2670 5290 14333

Maximum 14400 14400 14400

Minimum 50 1850 12475

SEN C Total Average 31678 47152 49242

Maximum 50454 51369 51536

Table continues on next page
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Table C.1 (continued)

Collection Score Statistic Baseline Manual Genetic

Minimum 25734 24665 31274

Subtotal Average 17246 20343 20464

Maximum 21674 22579 22746

Minimum 2377 2349 2474

Self Good Average 9485 13679 14389

Maximum 14400 14400 14400

Minimum 4970 4945 14365

Stored Energy Average 4946 13129 14388

Maximum 14400 14400 14400

Minimum 90 180 14255

SEN D Total Average 28859 50352 50664

Maximum 51536 52474 52992

Minimum 24819 25763 48238

Subtotal Average 17065 22678 22302

Maximum 22756 23684 24192

Minimum 20124 18938 19608

Self Good Average 8621 14000 14197

Maximum 14400 14400 14400

Minimum 4695 5075 14355

Stored Energy Average 3172 13673 14165

Maximum 14400 14400 14400

Minimum 55 190 13965

Table C.2 HEADS system performance - baseline

Node/Collection Total Subtotal Self Good Stored Energy

Grand Total 5306937 2670762 1838960 797215

Grand Total (avg) 28686 14436 9940 4309

SEN A 1562072 605287 626045 330740

Table continues on next page
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Table C.2 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN A (avg) 31241 12105 12520 6614

SEN A (max) 41285 15982 14400 14400

SEN A (min >0) 14923 973 10 215

SEN B 630010 268190 281715 80105

SEN B (avg) 21000 8939 9390 2670

SEN B (max) 29880 12404 14400 14400

SEN B (min >0) 12845 370 15 50

SEN C 950357 517387 284565 148405

SEN C (avg) 31678 17246 9485 4946

SEN C (max) 50454 21674 14400 14400

SEN C (min >0) 25734 2377 4970 90

SEN D 2164498 1279898 646635 237965

SEN D (avg) 28859 17065 8621 3172

SEN D (max) 51536 22756 14400 14400

SEN D (min >0) 24819 20124 4695 55

SEN A0 17369 3554 10 13805

SEN A1 39596 11571 14370 13655

SEN A2 39491 11516 14220 13755

SEN A3 28775 13655 13810 1310

SEN A4 28896 13291 14390 1215

SEN A5 41023 12228 14395 14400

SEN A6 29703 1033 14270 14400

SEN A7 28110 13005 14170 935

SEN A8 41285 12485 14400 14400

SEN A9 28951 13316 14375 1260

SEN A10 25976 15556 8925 1495

SEN A11 26478 15758 9010 1710

SEN A12 26268 15708 8960 1600

SEN A13 39964 11629 14385 13950

Table continues on next page
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Table C.2 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN A14 14923 973 10 13940

SEN A15 40415 11715 14375 14325

SEN A16 28763 13773 13620 1370

SEN A17 28122 12982 14385 755

SEN A18 27948 12958 14395 595

SEN A19 28974 13324 14400 1250

SEN A20 40193 11698 14380 14115

SEN A21 40684 11884 14400 14400

SEN A22 26586 15806 9005 1775

SEN A23 29314 13559 14355 1400

SEN A24 39540 11530 14375 13635

SEN A25 26850 1015 11435 14400

SEN A26 26280 15640 8970 1670

SEN A27 39352 11517 14385 13450

SEN A28 28468 13168 14375 925

SEN A29 26857 15982 9070 1805

SEN A30 28675 13230 14395 1050

SEN A31 40884 12094 14390 14400

SEN A32 25943 15548 8900 1495

SEN A33 28158 13033 14385 740

SEN A34 28886 13321 14380 1185

SEN A35 40070 11650 14390 14030

SEN A36 26377 15692 8950 1735

SEN A37 27369 12619 14375 375

SEN A38 41105 12325 14380 14400

SEN A39 40534 11784 14395 14355

SEN A40 39443 11478 14150 13815

SEN A41 27876 12916 14390 570

SEN A42 40920 12120 14400 14400
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Table C.2 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN A43 26928 12493 14220 215

SEN A44 26429 15774 9000 1655

SEN A45 27671 12851 14390 430

SEN A46 24629 14444 9090 1095

SEN A47 29857 1057 14400 14400

SEN A48 26847 15972 9050 1825

SEN A49 28317 13057 14390 870

SEN B0 22130 9350 12160 620

SEN B1 20157 12082 6740 1335

SEN B2 20600 8455 12045 100

SEN B3 20594 12404 6850 1340

SEN B4 20103 12038 6720 1345

SEN B5 16494 10884 4760 850

SEN B6 20308 12248 6765 1295

SEN B7 19660 11890 6665 1105

SEN B8 29880 1080 14400 14400

SEN B9 21682 8582 12165 935

SEN B10 15400 985 15 14400

SEN B11 22688 9623 12100 965

SEN B12 21382 11012 9250 1120

SEN B13 21818 10213 10650 955

SEN B14 20579 9254 10990 335

SEN B15 19951 11996 6695 1260

SEN B16 21906 8581 12015 1310

SEN B17 21873 9523 11550 800

SEN B18 19650 11890 6660 1100

SEN B19 21436 8466 12020 950

SEN B20 22189 9424 12115 650

SEN B21 21044 8544 12105 395
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Table C.2 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN B22 21938 8568 12155 1215

SEN B23 12845 370 0 12475

SEN B24 20313 12248 6770 1295

SEN B25 29675 875 14400 14400

SEN B26 20459 8339 12070 50

SEN B27 20895 8530 12070 295

SEN B28 20469 12199 6810 1460

SEN B29 21892 8537 12005 1350

SEN C0 26262 20732 5025 505

SEN C1 25905 20510 4980 415

SEN C2 30805 19525 11185 95

SEN C3 31008 19513 11405 90

SEN C4 0 0 0 0

SEN C5 34186 19916 14065 205

SEN C6 49522 20942 14395 14185

SEN C7 31177 2377 14400 14400

SEN C8 25734 20314 4970 450

SEN C9 49495 20950 14330 14215

SEN C10 30916 19651 11110 155

SEN C11 25874 20434 4995 445

SEN C12 49320 20520 14400 14400

SEN C13 30883 19858 10775 250

SEN C14 26054 20594 5025 435

SEN C15 49970 21180 14390 14400

SEN C16 33497 20132 13200 165

SEN C17 0 0 0 0

SEN C18 31499 19719 11655 125

SEN C19 26155 20700 5055 400

SEN C20 26326 20806 5065 455
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Table C.2 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN C21 0 0 0 0

SEN C22 50454 21674 14380 14400

SEN C23 26103 20708 5030 365

SEN C24 49604 21074 14315 14215

SEN C25 49852 21167 14390 14295

SEN C26 32120 19725 12255 140

SEN C27 26077 20682 4995 400

SEN C28 31519 2719 14400 14400

SEN C29 50040 21265 14375 14400

SEN D0 0 0 0 0

SEN D1 50415 21955 14320 14140

SEN D2 50708 22048 14385 14275

SEN D3 50647 22012 14375 14260

SEN D4 26883 21388 5085 410

SEN D5 0 0 0 0

SEN D6 0 0 0 0

SEN D7 50414 21924 14325 14165

SEN D8 34999 20869 13880 250

SEN D9 0 0 0 0

SEN D10 26794 21324 5100 370

SEN D11 26810 21350 5090 370

SEN D12 26643 21258 5075 310

SEN D13 0 0 0 0

SEN D14 35005 21030 13735 240

SEN D15 51122 22497 14375 14250

SEN D16 31769 21124 10355 290

SEN D17 0 0 0 0

SEN D18 34846 20776 13910 160

SEN D19 34942 20932 13835 175
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Table C.2 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN D20 50235 21915 14255 14065

SEN D21 33870 21250 12510 110

SEN D22 49832 21752 14175 13905

SEN D23 34566 21271 13180 115

SEN D24 33027 20667 12275 85

SEN D25 26866 21416 5065 385

SEN D26 26780 21370 5060 350

SEN D27 50254 21944 14250 14060

SEN D28 50087 21912 14220 13955

SEN D29 0 0 0 0

SEN D30 50133 21908 14185 14040

SEN D31 32273 20973 11075 225

SEN D32 30733 20448 10225 60

SEN D33 32305 20970 11100 235

SEN D34 31869 20674 11080 115

SEN D35 0 0 0 0

SEN D36 24819 20124 4695 0

SEN D37 31884 20674 11105 105

SEN D38 32240 20850 11200 190

SEN D39 32258 20938 11070 250

SEN D40 31402 20592 10730 80

SEN D41 32322 20927 11130 265

SEN D42 31627 20677 10850 100

SEN D43 25070 20310 4760 0

SEN D44 32116 21051 10740 325

SEN D45 32130 21120 10660 350

SEN D46 31911 20591 11265 55

SEN D47 33907 21282 12230 395

SEN D48 50751 21951 14400 14400
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Table C.2 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN D49 35038 20943 13845 250

SEN D50 27542 21852 5200 490

SEN D51 27269 21674 5160 435

SEN D52 0 0 0 0

SEN D53 35104 21089 13740 275

SEN D54 51160 22380 14395 14385

SEN D55 33076 20791 12145 140

SEN D56 27430 21810 5165 455

SEN D57 32482 20727 11630 125

SEN D58 27384 21764 5165 455

SEN D59 27453 21808 5190 455

SEN D60 29586 21391 7810 385

SEN D61 0 0 0 0

SEN D62 0 0 0 0

SEN D63 27059 21584 5085 390

SEN D64 0 0 0 0

SEN D65 51536 22756 14380 14400

SEN D66 50904 22264 14385 14255

SEN D67 0 0 0 0

SEN D68 0 0 0 0

SEN D69 50424 22004 14305 14115

SEN D70 31214 20409 10700 105

SEN D71 51390 22610 14380 14400

SEN D72 26708 21308 5050 350

SEN D73 34475 20690 13570 215

SEN D74 0 0 0 0
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Table C.3 HEADS system performance - manually-tuned

Node/Collection Total Subtotal Self Good Stored Energy

Grand Total 7868001 3131136 2467580 2269285

Grand Total (avg) 42529 16925 13338 12266

SEN A 1943155 580975 671000 691180

SEN A (avg) 38863 11619 13420 13823

SEN A (max) 42581 14364 14400 14400

SEN A (min >0) 14853 908 5 2035

SEN B 733834 238974 336155 158705

SEN B (avg) 24461 7965 11205 5290

SEN B (max) 28670 10181 13210 14400

SEN B (min >0) 12713 238 10 1850

SEN C 1414583 610298 410390 393895

SEN C (avg) 47152 20343 13679 13129

SEN C (max) 51369 22579 14400 14400

SEN C (min >0) 24665 2349 4945 180

SEN D 3776429 1700889 1050035 1025505

SEN D (avg) 50352 22678 14000 13673

SEN D (max) 52474 23684 14400 14400

SEN D (min >0) 25763 18938 5075 190

SEN A0 17115 3300 10 13805

SEN A1 39857 11597 14320 13940

SEN A2 39489 11514 14220 13755

SEN A3 41967 13167 14400 14400

SEN A4 41752 12952 14400 14400

SEN A5 41019 12224 14395 14400

SEN A6 29818 1018 14400 14400

SEN A7 41382 12597 14385 14400

SEN A8 41283 12483 14400 14400

SEN A9 41791 12991 14400 14400
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189



Table C.3 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN A10 42106 13306 14400 14400

SEN A11 42339 13549 14390 14400

SEN A12 42243 13448 14395 14400

SEN A13 39960 11625 14385 13950

SEN A14 14853 908 5 13940

SEN A15 40411 11711 14375 14325

SEN A16 41984 13184 14400 14400

SEN A17 41811 13011 14400 14400

SEN A18 41870 13080 14390 14400

SEN A19 41797 12997 14400 14400

SEN A20 40189 11694 14380 14115

SEN A21 40680 11880 14400 14400

SEN A22 42415 13635 14380 14400

SEN A23 41993 13193 14400 14400

SEN A24 39821 11561 14320 13940

SEN A25 15349 949 0 14400

SEN A26 42197 13397 14400 14400

SEN A27 39776 11571 14295 13910

SEN A28 41984 13184 14400 14400

SEN A29 42565 13765 14400 14400

SEN A30 41700 12900 14400 14400

SEN A31 40878 12088 14390 14400

SEN A32 42143 13348 14395 14400

SEN A33 41799 12999 14400 14400

SEN A34 41769 12969 14400 14400

SEN A35 40066 11646 14390 14030

SEN A36 42313 13528 14385 14400

SEN A37 41561 12806 14385 14370

SEN A38 41101 12321 14380 14400
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Table C.3 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN A39 40530 11780 14395 14355

SEN A40 39439 11474 14150 13815

SEN A41 41855 13070 14385 14400

SEN A42 40910 12125 14385 14400

SEN A43 41350 12565 14385 14400

SEN A44 42318 13528 14390 14400

SEN A45 29748 13958 12895 2895

SEN A46 27469 14364 11070 2035

SEN A47 29852 1052 14400 14400

SEN A48 42581 13806 14375 14400

SEN A49 41957 13157 14400 14400

SEN B0 24958 8988 12350 3620

SEN B1 27772 9867 12665 5240

SEN B2 22061 8186 12025 1850

SEN B3 27876 10181 12630 5065

SEN B4 27932 9832 12680 5420

SEN B5 26409 9394 12495 4520

SEN B6 27624 10044 12590 4990

SEN B7 27543 9603 12695 5245

SEN B8 28670 1060 13210 14400

SEN B9 23006 8301 12160 2545

SEN B10 14940 525 15 14400

SEN B11 26947 9247 12620 5080

SEN B12 27210 9615 12645 4950

SEN B13 26970 9405 12615 4950

SEN B14 23942 8582 12215 3145

SEN B15 27450 9755 12620 5075

SEN B16 23339 8304 12200 2835

SEN B17 26295 9095 12545 4655
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Table C.3 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN B18 27551 9651 12640 5260

SEN B19 22978 8238 12170 2570

SEN B20 24955 9055 12320 3580

SEN B21 22498 8228 12105 2165

SEN B22 23414 8304 12235 2875

SEN B23 12713 238 0 12475

SEN B24 27718 10043 12595 5080

SEN B25 15170 760 10 14400

SEN B26 22133 8058 12070 2005

SEN B27 22430 8210 12075 2145

SEN B28 28220 9955 12740 5525

SEN B29 23110 8250 12220 2640

SEN C0 51369 22579 14390 14400

SEN C1 51184 22389 14395 14400

SEN C2 50710 21935 14375 14400

SEN C3 50739 21954 14385 14400

SEN C4 24665 19540 4945 180

SEN C5 49601 20801 14400 14400

SEN C6 49855 21305 14345 14205

SEN C7 30804 2349 14055 14400

SEN C8 50905 22140 14365 14400

SEN C9 49874 21329 14330 14215

SEN C10 50155 21375 14380 14400

SEN C11 50955 22180 14375 14400

SEN C12 50361 21561 14400 14400

SEN C13 50839 22049 14390 14400

SEN C14 51105 22315 14390 14400

SEN C15 50384 21594 14390 14400

SEN C16 50872 22092 14380 14400
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Table C.3 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN C17 35011 18271 11520 5220

SEN C18 50891 22111 14380 14400

SEN C19 51123 22343 14380 14400

SEN C20 51299 22519 14380 14400

SEN C21 26414 19394 6680 340

SEN C22 50669 21889 14380 14400

SEN C23 51191 22406 14385 14400

SEN C24 49949 21419 14315 14215

SEN C25 50207 21522 14365 14320

SEN C26 50920 22130 14390 14400

SEN C27 51221 22461 14360 14400

SEN C28 30881 2691 13790 14400

SEN C29 50430 21655 14375 14400

SEN D0 51563 22763 14400 14400

SEN D1 50799 22314 14295 14190

SEN D2 51144 22474 14380 14290

SEN D3 51072 22437 14345 14290

SEN D4 52101 23301 14400 14400

SEN D5 52030 23235 14395 14400

SEN D6 51734 22939 14395 14400

SEN D7 50832 22312 14305 14215

SEN D8 50589 21789 14400 14400

SEN D9 50340 21540 14400 14400

SEN D10 51943 23143 14400 14400

SEN D11 51963 23178 14385 14400

SEN D12 51816 23016 14400 14400

SEN D13 26925 19970 6740 215

SEN D14 51667 22867 14400 14400

SEN D15 51365 22745 14335 14285
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Table C.3 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN D16 51805 23005 14400 14400

SEN D17 25763 20498 5075 190

SEN D18 51979 23189 14390 14400

SEN D19 36358 18938 11675 5745

SEN D20 50711 22261 14280 14170

SEN D21 51870 23110 14375 14385

SEN D22 50412 22082 14225 14105

SEN D23 51887 23112 14375 14400

SEN D24 51745 23055 14385 14305

SEN D25 52062 23267 14395 14400

SEN D26 51970 23190 14380 14400

SEN D27 50812 22322 14280 14210

SEN D28 50665 22235 14250 14180

SEN D29 50211 21936 14150 14125

SEN D30 50708 22248 14270 14190

SEN D31 51645 22865 14380 14400

SEN D32 50543 21958 14325 14260

SEN D33 51657 22877 14380 14400

SEN D34 51107 22337 14370 14400

SEN D35 50447 22027 14240 14180

SEN D36 50062 21672 14215 14175

SEN D37 51012 22217 14395 14400

SEN D38 51831 23041 14390 14400

SEN D39 51669 22884 14385 14400

SEN D40 50003 21213 14390 14400

SEN D41 52037 23282 14355 14400

SEN D42 50169 21389 14380 14400

SEN D43 50550 22050 14265 14235

SEN D44 51874 23099 14375 14400
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Table C.3 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN D45 51959 23174 14385 14400

SEN D46 51129 22339 14390 14400

SEN D47 52025 23240 14385 14400

SEN D48 51667 22902 14365 14400

SEN D49 51525 22730 14395 14400

SEN D50 52456 23681 14375 14400

SEN D51 52315 23520 14395 14400

SEN D52 52369 23574 14395 14400

SEN D53 52426 23636 14390 14400

SEN D54 51567 22787 14395 14385

SEN D55 52105 23330 14375 14400

SEN D56 52474 23684 14390 14400

SEN D57 52095 23305 14390 14400

SEN D58 52464 23664 14400 14400

SEN D59 52466 23671 14395 14400

SEN D60 52234 23434 14400 14400

SEN D61 52090 23305 14385 14400

SEN D62 52160 23360 14400 14400

SEN D63 52287 23502 14385 14400

SEN D64 52328 23533 14395 14400

SEN D65 51757 22977 14380 14400

SEN D66 51312 22657 14385 14270

SEN D67 27140 20050 6750 340

SEN D68 52240 23440 14400 14400

SEN D69 50832 22382 14280 14170

SEN D70 51883 23103 14380 14400

SEN D71 51636 22856 14380 14400

SEN D72 52034 23239 14395 14400

SEN D73 52052 23257 14395 14400
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Table C.3 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN D74 51955 23175 14380 14400

Table C.4 HEADS system performance - genetic tuning

Node/Collection Total Subtotal Self Good Stored Energy

Grand Total 8406604 3180969 2583700 2641935

Grand Total (avg) 45441 17194 13965 14280

SEN A 2020750 626375 676445 717930

SEN A (avg) 40415 12527 13528 14358

SEN A (max) 43522 14722 14400 14400

SEN A (min >0) 14820 880 10 13805

SEN B 1108739 267989 410760 429990

SEN B (avg) 36957 8932 13692 14333

SEN B (max) 40928 12128 14400 14400

SEN B (min >0) 12744 269 7790 12475

SEN C 1477269 613939 431690 431640

SEN C (avg) 49242 20464 14389 14388

SEN C (max) 51536 22746 14400 14400

SEN C (min >0) 31274 2474 14365 14255

SEN D 3799846 1672666 1064805 1062375

SEN D (avg) 50664 22302 14197 14165

SEN D (max) 52992 24192 14400 14400

SEN D (min >0) 48238 19608 14355 13965

SEN A0 17130 3315 10 13805

SEN A1 41537 12897 14380 14260

SEN A2 41356 12816 14400 14140

SEN A3 43046 14246 14400 14400

SEN A4 43501 14701 14400 14400

SEN A5 42249 13454 14395 14400
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Table C.4 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN A6 29854 1054 14400 14400

SEN A7 42408 13623 14385 14400

SEN A8 41991 13191 14400 14400

SEN A9 43503 14703 14400 14400

SEN A10 43006 14206 14400 14400

SEN A11 43262 14462 14400 14400

SEN A12 43174 14374 14400 14400

SEN A13 41696 12946 14385 14365

SEN A14 14820 880 0 13940

SEN A15 41766 13001 14375 14390

SEN A16 43046 14246 14400 14400

SEN A17 42449 13649 14400 14400

SEN A18 42396 13606 14390 14400

SEN A19 43520 14720 14400 14400

SEN A20 41785 13010 14380 14395

SEN A21 41916 13116 14400 14400

SEN A22 43340 14560 14380 14400

SEN A23 43057 14257 14400 14400

SEN A24 41508 12863 14375 14270

SEN A25 15430 1030 0 14400

SEN A26 43110 14310 14400 14400

SEN A27 41561 12886 14385 14290

SEN A28 42576 13776 14400 14400

SEN A29 43465 14665 14400 14400

SEN A30 42782 13982 14400 14400

SEN A31 42123 13333 14390 14400

SEN A32 43077 14277 14400 14400

SEN A33 42456 13656 14400 14400

SEN A34 43522 14722 14400 14400
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Table C.4 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN A35 41726 12966 14390 14370

SEN A36 43209 14409 14400 14400

SEN A37 42115 13330 14385 14400

SEN A38 41911 13131 14380 14400

SEN A39 41859 13064 14395 14400

SEN A40 41250 12775 14370 14105

SEN A41 42349 13564 14385 14400

SEN A42 42156 13371 14385 14400

SEN A43 41990 13205 14385 14400

SEN A44 43273 14483 14390 14400

SEN A45 42211 13421 14390 14400

SEN A46 43437 14637 14400 14400

SEN A47 29882 1082 14400 14400

SEN A48 43483 14708 14375 14400

SEN A49 42481 13696 14385 14400

SEN B0 38721 9921 14400 14400

SEN B1 39498 10718 14380 14400

SEN B2 38050 9325 14385 14340

SEN B3 39783 10993 14390 14400

SEN B4 39477 10687 14390 14400

SEN B5 39897 11097 14400 14400

SEN B6 39628 10828 14400 14400

SEN B7 39269 10469 14400 14400

SEN B8 29908 1108 14400 14400

SEN B9 38227 9432 14395 14400

SEN B10 29490 690 14400 14400

SEN B11 39913 11113 14400 14400

SEN B12 40928 12128 14400 14400

SEN B13 39097 10302 14395 14400
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Table C.4 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN B14 38401 9606 14395 14400

SEN B15 39386 10606 14380 14400

SEN B16 38252 9467 14385 14400

SEN B17 38789 10004 14385 14400

SEN B18 39341 10541 14400 14400

SEN B19 38119 9329 14390 14400

SEN B20 38791 9991 14400 14400

SEN B21 38180 9390 14390 14400

SEN B22 38251 9456 14395 14400

SEN B23 12744 269 0 12475

SEN B24 39596 10826 14370 14400

SEN B25 22991 801 7790 14400

SEN B26 37982 9202 14390 14390

SEN B27 38155 9380 14390 14385

SEN B28 39633 10858 14375 14400

SEN B29 38242 9452 14390 14400

SEN C0 51536 22746 14390 14400

SEN C1 51369 22569 14400 14400

SEN C2 50354 21579 14375 14400

SEN C3 50366 21581 14385 14400

SEN C4 50165 21365 14400 14400

SEN C5 47377 18577 14400 14400

SEN C6 49743 20983 14395 14365

SEN C7 31274 2474 14400 14400

SEN C8 51066 22301 14365 14400

SEN C9 49633 20988 14390 14255

SEN C10 50536 21756 14380 14400

SEN C11 51131 22356 14375 14400

SEN C12 50537 21737 14400 14400
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Table C.4 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN C13 50749 21959 14390 14400

SEN C14 51280 22490 14390 14400

SEN C15 49978 21188 14390 14400

SEN C16 50573 21793 14380 14400

SEN C17 50850 22050 14400 14400

SEN C18 50581 21801 14380 14400

SEN C19 51355 22555 14400 14400

SEN C20 51499 22719 14380 14400

SEN C21 49987 21187 14400 14400

SEN C22 50489 21709 14380 14400

SEN C23 51411 22611 14400 14400

SEN C24 49789 21114 14390 14285

SEN C25 49925 21200 14390 14335

SEN C26 50599 21809 14390 14400

SEN C27 51429 22629 14400 14400

SEN C28 31632 2832 14400 14400

SEN C29 50056 21281 14375 14400

SEN D0 48364 19749 14400 14215

SEN D1 50676 21936 14375 14365

SEN D2 50854 22069 14385 14400

SEN D3 50805 22030 14375 14400

SEN D4 52270 23470 14400 14400

SEN D5 51530 22735 14395 14400

SEN D6 51227 22432 14395 14400

SEN D7 50662 21947 14390 14325

SEN D8 48267 19622 14400 14245

SEN D9 48238 19608 14400 14230

SEN D10 52165 23365 14400 14400

SEN D11 52193 23393 14400 14400
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Table C.4 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN D12 52059 23259 14400 14400

SEN D13 50759 21959 14400 14400

SEN D14 48387 19722 14400 14265

SEN D15 51185 22410 14375 14400

SEN D16 51861 23061 14400 14400

SEN D17 51497 22697 14400 14400

SEN D18 51582 22792 14390 14400

SEN D19 51726 22926 14400 14400

SEN D20 50559 21969 14400 14190

SEN D21 51440 22665 14375 14400

SEN D22 50277 21827 14385 14065

SEN D23 51477 22702 14375 14400

SEN D24 51390 22605 14385 14400

SEN D25 52301 23501 14400 14400

SEN D26 52223 23423 14400 14400

SEN D27 50579 21969 14395 14215

SEN D28 50480 21925 14380 14175

SEN D29 0 0 0 0

SEN D30 50504 21939 14395 14170

SEN D31 51510 22730 14380 14400

SEN D32 50758 22043 14390 14325

SEN D33 51482 22702 14380 14400

SEN D34 51548 22778 14370 14400

SEN D35 51125 22775 14385 13965

SEN D36 50573 22098 14385 14090

SEN D37 51577 22782 14395 14400

SEN D38 51845 23055 14390 14400

SEN D39 51925 23140 14385 14400

SEN D40 51544 22754 14390 14400
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Table C.4 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN D41 51902 23147 14355 14400

SEN D42 51632 22852 14380 14400

SEN D43 50937 22342 14380 14215

SEN D44 51622 22847 14375 14400

SEN D45 51683 22898 14385 14400

SEN D46 51363 22573 14390 14400

SEN D47 51741 22956 14385 14400

SEN D48 51638 22873 14365 14400

SEN D49 51882 23087 14395 14400

SEN D50 52589 23814 14375 14400

SEN D51 52417 23617 14400 14400

SEN D52 52992 24192 14400 14400

SEN D53 51974 23184 14390 14400

SEN D54 51114 22329 14395 14390

SEN D55 51646 22871 14375 14400

SEN D56 52571 23781 14390 14400

SEN D57 51628 22838 14390 14400

SEN D58 52589 23789 14400 14400

SEN D59 52578 23783 14395 14400

SEN D60 52311 23511 14400 14400

SEN D61 51605 22820 14385 14400

SEN D62 52797 24037 14400 14360

SEN D63 52375 23575 14400 14400

SEN D64 51828 23033 14395 14400

SEN D65 51412 22632 14380 14400

SEN D66 51003 22243 14385 14375

SEN D67 48482 19812 14400 14270

SEN D68 51704 22904 14400 14400

SEN D69 50689 21979 14385 14325
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Table C.4 (continued)

Node/Collection Total Subtotal Self Good Stored Energy

SEN D70 51350 22570 14380 14400

SEN D71 51274 22494 14380 14400

SEN D72 52153 23353 14400 14400

SEN D73 51534 22739 14395 14400

SEN D74 51407 22627 14380 14400
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