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Special thanks to Professor Catherine Bénéteau, Professor Yuncheng You, Professor Boris Shekht-

man, Professor Masahico Saito, Dr. Brian Curtin and Dr. Dmytro Savchuk for their help and

discussions during my coursework study. They always show the beauty of mathematics in a clear

transparent way.

Many thanks to my friend and collaborator Dr. Alle Adjiri for the discussions we had through-

out the years of study. It was very enjoyable and entertaining experience to do research together

through the years and aiming for more research work to come in future. I also like to thank

Dr. Fudong Wang, Dr. Yehui Huang and Dr. Solomon Mankure for the fruitful discussions and

comments we had during our seminars and weekly sessions. Their advice were appreciable and

presentations were very helpful.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 History and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The KdV equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 A literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Hirota bilinear form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Abstract

For many years, the study of integrable systems has been one of the most fascinating branches of

mathematics and has been thought to be an interesting area for both mathematicians and physi-

cists alike. Many natural phenomena can be predicted by using integrable systems, particularly

by studying their different solutions, as well as analyzing and exploring their properties and struc-

tures. They are commonly found in nonlinear optics, plasmas, ocean and water waves, gravitational

fields, and fluid dynamics. Typical examples of integrable systems include the Korteweg-de Vries

(KdV) equation, the nonlinear Schrödinger (NLS) equation, and the Kadomtsev-Petviashvili (KP)

equation. Solitons are intrinsic solutions for these equations, and various types of solitons can be

obtained, such as bright and dark solitons, lump and rogue waves, and breathers.

In the dissertation, we present and investigate a novel nonlocal nonlinear reverse-spacetime Sasa-

Satsuma equation, which is a KdV-type equation. Furthermore, we analyze it and determine its

Hamiltonian structure. This equation is derived from an AKNS spectral problem involving a non-

local 5 × 5 matrix. Also, as part of our investigation, we also develop a higher-order nonlocal

reverse-time NLS-type equation that originates from the analysis of a local 4 × 4 matrix spec-

tral problem. By using vectors lying in the kernel of the Jost solutions, we can generate soliton

solutions for the nonlocal Sasa-Satsuma and the nonlocal NLS-type equations using the Riemann-

Hilbert problem with the real line being the contour.

v



When the reflection coefficients vanish, the jump matrix is taken to be the identity matrix, which

provides explicit soliton solutions through the corresponding Riemann-Hilbert problem. This al-

lows us to explore the dynamical behaviors for both equations; the nonlocal reverse-spacetime

Sasa-Satsuma equation and the higher-order nonlocal reverse-time NLS-type equation. These dy-

namical behaviors depend on the configuration of the eigenvalues in the spectral plane and how

they are chosen, sometimes under specific conditions.
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Chapter 1

Introduction

1.1 History and background

1.1.1 The KdV equation

In 1834, Scott Russell observed an unusual wave on the Edinburgh-Glasgow canal, which he called

”the great wave” [1]. He described it as ”...a rounded, smooth and well-defined heap of water,

which continued its course along the channel apparently without change of form or diminution

of speed.”. This was the first reported description of a solitary wave. A solitary wave is a stable

localized wave that keeps its form and speed as it travels through space. Further, S. Russell’s

interest continued and later he showed that this wave can be created in lab by dropping some

weight on the water at the edge of a tunnel. He eventually obtained an explicit formula for its

speed. Hence, he showed that it is a gravity wave, in the sense that, its amplitude a and speed c

depend on the gravity force acting on the weight dropped, as well as on the water depth h. He

showed that the speed of the wave is

c2 = g(h+ a) (1.1)

Later in 1871 and 1876, using equations of motion, both J. Boussineq and L. Rayleigh obtained

Russell’s formula for the wave speed and also a stabilized profile of the wave [2]-[3]

u(x, t) = asech2(β(x− ct)) (1.2)

where β is a parameter depending on h and a. But they were unsuccessful to present any math-

ematical model that have the profile equation as a solution. Later on, the work was completed

1



by Diederik Korteweg and his student Gustav de Vries in 1895, where they obtained a simple

mathematical model for shallow water waves, namely the Korteweg-de Vries (KdV) equation [4]:

ut − 6uux + uxxx = 0. (1.3)

Thus, the KdV equation arose as a mathematical equation that has the solitary wave as a one-class

solution for it. The terms uux and uxxx correspond to the dissipative and dispersive phenomena

in nonlinear interactions. The KdV describes waves of finite small amplitudes in long periods of

time. It turns out that this partial differential equation is exactly solvable, i.e., it has solutions that

can be precisely obtained. In addition, it has numerous applications in real life. For instance, it

arises in the flow of a rotating fluid, low temperature plasmas, pressure waves, longitudinal waves,

etc. [5]-[7]. Another interesting equation with even more applications than the KdV equation is

the well-known nonlinear Schrödinger equation (NLS):

iut + uxx + |u|2u = 0. (1.4)

This equation first appeared in a linear form in 1925 by Erwin Schrödinger who used it to explain

the wave function in quantum mechanics. Interestingly, the NLS equation can be derived from

the KdV equation [8]. Thus, the NLS equation also describes small amplitude waves in deep

inviscid fluid. Moreover, the NLS is very important and has enormous applications in many of

our real life problems. It is significantly useful in nonlinear fiber optics, low and high temperature

plasma, Bose-Einstein condensate, propagation of waves beams and even in biological systems on

a molecular level, etc. Since these two equations describe the time evolution of waves in a medium

or a space, we call them ”evolution” equations.

Another equation that is derived from the KdV equation, is the modified-KdV equation (mKdV),

which can be derived as follows:

Using the Miura transformation

u = v2 ± vx (1.5)
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the KdV equation (1.3) is rewritten as:

(
2v ± ∂

∂x

)
(vt − 6v2vx + vxxx) = 0. (1.6)

Thus, if v is a solution of the mKdV equation

vt − 6v2vx + vxxx = 0, (1.7)

then u is a solution of the KdV equation [9]-[10].

Remark 1.1.1. Note that the inverse of the latter result is not true. Since the ker(2v ± ∂x) ̸= 0.

Hence, the Bäcklund transformation is a mapping from v to u.

This huge research effort and tremendous study of the KdV and NLS equations led to the discov-

ery of many interesting evolution equations. However, before we look into these equations, their

properties and solutions, Hamiltonian structures, etc..., we take a brief look at some of the previous

literature and then introduce some techniques for solving these equations, along with some basic

notions and definitions, as we proceed.

1.1.2 A literature review

In 1974, M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur obtained some of the fundemental

integrable evolution equations, like the NLS and the KdV equations from simple reductions of

the general AKNS scheme [11]. For the NLS equation, they started with the so-called AKNS

scattering problem:

ψx = Uψ. (1.8)

Here ψ = ψ(x, t) is a two-component vector ψ(x, t) = (ψ1(x, t), ψ2(x, t))
T and u is the vector;

u = (q(x, t), r(x, t))T , q, r are complex valued functions (potentials), with q, r → 0 sufficiently
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rapidly as x→ ±∞ and λ is a spectral parameter. The matrix U = U(u, λ) is defined as:

U =

 −iλ q(x, t)

r(x, t) iλ

 . (1.9)

The time evolution equation associated with (1.8) is:

ψt = V ψ (1.10)

where,

V =

A B

C −A

 . (1.11)

with

A = i2λ2 + iq(x, t)r(x, t), (1.12)

B = −2λq(x, t)− iqx(x, t), (1.13)

C = −2λr(x, t) + irx(x, t). (1.14)

The compatibility condition:

ψxt = ψtx (1.15)

gives the system:


iqt(x, t) = qxx(x, t)− 2r(x, t)q2(x, t),

−irt(x, t) = rxx(x, t)− 2q(x, t)r2(x, t).

(1.16)

For five decades the standard AKNS symmetry reduction:

r(x, t) = σ
∗
q(x, t), σ = ±1 (1.17)
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was used to reduce the system (1.16) to the scalar local NLS equation:

iqt(x, t) = qxx(x, t)− 2σ|q(x, t)|2q(x, t). (1.18)

In 2016, Ablowitz and Musslimani found new symmetry reductions that reduce the system (1.16) to

new nonlocal nonlinear NLS-type equations and mKdV-type evolution equations [12]-[13]. More-

over, they showed that the obtained equations are integrable and PT symmetric, i.e., they are in-

variant under the joint transformation x → −x, t → −t and i → −i. The three examples of the

NLS-type reductions they found are: the reverse-time symmetry, the PT preserving symmetry and

the reverse space-time symmetry:

r(x, t) = σq(x,−t), (1.19)

r(x, t) = σ
∗
q(−x, t), (1.20)

r(x, t) = σq(−x,−t), q ∈ C. (1.21)

They reduce the system (1.16) to:

iqt(x, t) = qxx(x, t)− 2σq2(x, t)q(x,−t), (1.22)

iqt(x, t) = qxx(x, t)− 2σ
∗
q(−x, t)q2(x, t), (1.23)

iqt(x, t) = qxx(x, t)− 2σq(−x,−t)q2(x, t), (1.24)

the nonlocal reverse-time, reverse-space and reverse-spacetime NLS equations, respectively. These

equations are integrable and PT symmetric. Additionally, they also found nonlocal mKdV equa-

5



tions, by taking

A = −i4λ3 − i2λqrqxr − qrx (1.25)

B = 4λ2q + i2λqx + 2q2r − qxx (1.26)

C = 4λ2r − i2λrx + 2qr2 − rxx (1.27)

the compatibility condition gives the coupled system:


qt(x, t) = −qxxx(x, t) + 6q(x, t)r(x, t)qx(x, t),

rt(x, t) = −rxxx(x, t) + 6r(x, t)q(x, t)rx(x, t).

(1.28)

Under two new nonlocal reductions found by Ablowitz and Musslimani, namely the PT symmetric

complex reverse-spacetime symmetry and the PT symmetric real reverse-spacetime symmetry:

r(x, t) = σ
∗
q(−x,−t), (1.29)

r(x, t) = σq(−x,−t), q ∈ R. (1.30)

the system (1.28) reduces to:

qt(x, t) = −qxxx(x, t) + 6σq(x, t)
∗
q(−x,−t)qx(x, t), (1.31)

qt(x, t) = −qxxx(x, t) + 6σq(x, t)q(−x,−t)qx(x, t), (1.32)

the complex and real nonlocal reverse-spacetime mKdV-type equations, respectively.

Later in 2019, in the framework of Riemann-Hilbert and inverse scattering, Jianke Yang obtained

the fundamental and the general multi-soliton solutions to the previously mentioned nonlocal NLS

equations. As a consequence, this resulted in different kinds of soliton structures and dynamical

behaviors depending on the choice and configuration of the eigenvalues in the spectral plane [14]-

[15].
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1.1.3 Motivation

Based on the previous literature, most known integrable systems have been derived from ”local

AKNS hierarchies”. One can also produce nonlocal integrable systems by using nonlocal reduc-

tions, such as those proposed by M. Ablowitz and Z. Musslimani. In some cases, these reductions,

however, are not always sufficient to guarantee the integrability of the resulting systems. Consid-

ering this, we construct a nonlocal integrable hierarchy, where the nonlocal nature is embodied

within the hierarchy’s structure. The latter construction allows nonlocal systems to be constructed

without using reductions and guarantees integrability. A second novel result is the derivation of

the bi-Hamiltonian structures for a new nonlocal two-component Sasa-Satsuma equation.

1.2 Preliminaries

1.2.1 Hirota bilinear form

The Hirota bilinear form or commonly known as, the bilinear form was introduced by Ryogo

Hirota in 1971. He applied it to a wide variety of nonlinear evolution equations [16]-[17]. His

method states that under suitable transformations, the original nonlinear equation can be mapped

to a new bilinear equation. The resulting equation can be written in bilinear derivatives form, that

is, with a new bilinear differential operator acting on it. In most simple cases, the transformations

are taken to be

u(x, t) = a
∂2

∂x2
log f (1.33)

or

u(x, t) = b
∂

∂x
log f (1.34)

where a and b are constants and fx, fxx, . . . → 0 as x → ±∞. Hirota beautifully defined the

bilinear operator by:

Dm
t D

n
x(f · g) =

( ∂
∂t

− ∂

∂t′

)m( ∂
∂x

− ∂

∂x′

)n
f(x, t)g(x′, t′)

∣∣∣∣
x′=x
t′=t

(1.35)
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For example, D4
x and DtDx give:

D4
x(f · g) = fxxxxg − 4fxxxgx + 6fxxgxx − 4fxgxxx + f gxxxx, (1.36)

DtDx(f · g) = fxtg − f tgx − fxgt + f gxt. (1.37)

Example 1. Consider the KdV equation:

ut − 6uux + uxxx = 0, (1.38)

where u = u(x, t). The N -soliton solutions of this equation can, in general, be written in the form

(1.33). Substituting that in the KdV equation (1.38) and integrating, we get:

f fxt − fxf t + f fxxxx − 4fxfxxx + 3f 2
xx = 0 (1.39)

where f can be taken as the determinant of an appropriate matrix. Using the Hirota method, we can

obtain the soliton solutions by transforming u to f and solve the corresponding bilinear equation.

To do that, write f as an integral power series in ε, that is

f =
∞∑
n=0

εnfn(x, t), (1.40)

where f 0 = 1. Now since,

D4
x(f · f ) = 2(f fxxxx − 4fxfxxx + 3f 2

xx), (1.41)

DtDx(f · f ) = 2(f fxt − fxf t), (1.42)

from (1.39), equations (1.41) and (1.42) suggest that DtDx +D4
x is a bilinear operator of the KdV

equation. For simplicity of calculations, denote the bilinear operator BL = DtDx + D4
x. Using
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the operator BL on the expansion of f , we see that

BL(f · f ) = BL(1 · 1) + εBL(f 1 · 1 + 1 · f 1) (1.43)

+ ε2BL(f 2 · 1 + f 1 · f 1 + 1 · f 2) + ε3BL(f 3 · 1 + f 2 · f 1 + f 1 · f 2 + 1 · f 3)

+ . . .+ ϵNBL(
N∑
i=0

fN−i · f i) + . . . = 0.

Since the coefficients of εN for N ≥ 1 must all be zero, BL(f 1 · 1 + 1 · f 1) = 0 implies that

( ∂
∂t

+
∂3

∂x3

)
f 1 = 0. (1.44)

A direct observable solution for (1.44) is of exponential form,

f 1 = ek1x+l1t+θ. (1.45)

By substituting this, we can easily obtain the dispersion relation l1 = −k31 . Thus f 1 = ekx−k3t+θ

generates the one-soliton solution for the KdV equation

u(x, t) = −2k2
ekx−k3t+θ

(1 + ekx−k3t+θ)2
. (1.46)

For the two-soliton solution, we can apply the same idea. First we notice that since the equation

(1.44) is linear, we can have an arbitrary exponential terms. Let

f 1 = ek1x+l1t+θ1 + ek2x+l2t+θ2 (1.47)

Using the next relations in the coefficients of powers of ε:

2BL(f 2 · 1) = BL(f 1 · f 1), (1.48)

2BL(f 3 · 1) = −BL(f 1 · f 2 + f 2 · f 1), (1.49)
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we can solve for f 2 and deduce at ε = 1 after a similar procedure that

u(x, t) = −2
N(x, t)

D(x, t)
, (1.50)

where

N(x, t) = (k1 + k2)
2(k1 − k2)

2

[
k21e

(k1+2k2)x−(k31+2k32)t+(θ1+2θ2) + k22e
(2k1+k2)x−(2k31+k32)t+(2θ1+θ2)

+ 2(k1 + k2)
2e(k1+k2)x−(k31+k32)t+(θ1+θ2)

]
, (1.51)

D(x, t) =

[
(k1 − k2)

2e(k1+k2)x−(k31+k32)t+(θ1+θ2) + (k1 + k2)
2(ek1x−k31t+θ1 + ek2x−k32t+θ2 + 1)

]2
,

(1.52)

is the two-soliton solution for the KdV equation [18]-[20].

1.2.2 Bäcklund transformation

Bäcklund Transformations originally arose in differential geometry and differential equations as

a solving technique in the 1880s. It was primarily used in geometrical transformations of sur-

faces that share the associated properties in different spaces [20]-[21]. To see how the Bäcklund

transformation works, let’s begin with the definition.

Definition 1.2.1. Given two uncoupled partial differential equations:

P (u) = 0, (1.53)

Q(v) = 0, (1.54)
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where u = u(x, t), v = v(x, t) and P , Q are, in general, nonlinear operators. Let

F1 = F1(x, t, u, v, ut, vt, ux, vx, . . .) = 0, (1.55)

...

Fn = Fn(x, t, u, v, ut, vt, ux, vx, . . .) = 0, (1.56)

be a set of relations between u and v . Then {F1, . . . , Fn} is called a Bäcklund transformation

if P (u) = 0 implies Q(v) = 0, and vice versa. If P = Q, then {F1, . . . , Fn} is called an auto-

Bäcklund transformation.

Example 2. Solitary wave solutions of the KdV equation

Let u and v be solutions of the KdV equation and the mKdV equation, respectively. Since the KdV

equation is Galilean invariant, that is invariant under the transformations

x→ x− λt, t→ t, u → u +
1

6
λ, (1.57)

then from the Miura transformation, we have

u − λ = v2 ± vx, (1.58)

where λ is a constant. Introduce

u1 = w1x = λ + v2 + vx, (1.59)

u2 = w2x = λ + v2 − vx. (1.60)

We can eliminate v from equations (1.59) and (1.60), to get the auxiliary equations relating w1 and
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w2:

(w1 + w2)x = 2λ +
1

2
(w1 − w2)

2, (1.61)

(w1 − w2)t = 3(w2
1x − w2

2x)− (w1 − w2)xxx. (1.62)

These equations constitute an auto-Bäcklund transformation for the KdV equation. Adding equa-

tions (1.61) and (1.62), we see that:

w1t − 3w2
1x + w1xxx = w2t − 3w2

2x + w2xxx, (1.63)

thus w1 satisfies the potential KdV equation if and only if w2 does. Equations (1.61) and (1.62)

allow us to obtain solutions for w1 and w2 from an initial zero solution. For example, start by

taking w2(x, t) = 0 for all x and t. Thus equation (1.61) becomes

w1x = 2λ +
1

2
w2

1. (1.64)

Integrating and using equation (1.62), the final solution can be written as:

w1(x, t) = −2c tanh(c(x− x0 − 4c2t)), (1.65)

where c2 = −λ and λ > 0. Thus, the set of solitary wave solutions for the KdV is given by

u1(x, t) = −2c2sech2(c(x− x0 − 4c2t)), c >
1

2
|w1|2. (1.66)

As a result, by applying this procedure again, we can construct new solutions, i.e.,w12,w21 fromw1

and w2 by this iteration process and successively obtain solutions u2, u3, . . . to the KdV equation,

starting with a given solution u1 = w1x.
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1.2.3 Inverse scattering transform

The inverse scattering transform (IST) is a method of solving Cauchy problems of nonlinear inte-

grable partial differential equations (PDEs). It is analogous to the Fourier transform, by which we

transform a linear PDE with initial conditions, u(x, 0), ut(x, 0) to an ordinary differential equation

(ODE) equation with a Fourier coefficient A(k). Then solving this ODE by finding the time evo-

lution of the Fourier transform; A(k)e−iω(k)t and finally using the Fourier inverse transform to get

the solution u(x, t) of the original PDE problem.

In a similar pattern, the inverse scattering transform reduces some nonlinear PDE to a class of

linear PDEs or a system of solvable linear ODEs. It consists of three main steps [22]-[27]:

1. The direct scattering: it maps a decaying potential u(x, 0) ∈ L2 to scattering data S(λi) at

an initial time (i.e. t = 0), where the λi are time-independent eigenvalues of the associated

spectral problems. The initial condition u(x, 0) determines normalized eigenfunctions which

are characterized by the scattering data.

2. The time evolution: it tells us how the scattering data S(λi, t = 0) evolute in time to S(λi, t =

t1), t1 is arbitrary, in other words, it gives the scattering data at any time t. The scattering data

needed are the transmission and reflection coefficients, respectively (they are the coefficients of

the reflected and transmitted waves of eigenfunctions), the normalization constants (a constant

depending on λi to normalize the eigenfunctions) and the associated eigenvalues.

3. The inverse scattering: it reconstructs the solution u(x, t) of the nonlinear PDE from the

evolved scattering data S(λi, t) by solving certain integral equations, i.e., the Gel’fand-Levitan-

Marchenko (GLM) equations or a Riemann-Hilbert problem.

The following diagram summaries the process of the inverse scattering transform:
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u(x, 0) S(λi, 0)

u(x, t) S(λi, t)

Direct
scattering

Time evolution
of scattering data

scattering
Inverse

Figure 1.: Inverse scattering procedure

1.2.4 Lax pair

In 1968, Peter Lax introduced what is known as the ”Lax pair” [28]. He used some transformations

like the Miura transformation and the Riccati transformation along with a compatability condition

to relate nonlinear PDEs to two linear operators L and M .

Let’s consider the KdV equation to see how to obtain a Lax pair. Consider u(x, t) and v(x, t), the

solutions of the KdV and mKdV equations:

ut − 6uux + uxxx = 0, (1.67)

vt − 6v2vx + vxxx = 0. (1.68)

Introduce a time-dependent eigenfunction ψ and recall the Miura transformation u = v2 + vx − λ.

Let

v =
ψx

ψ
(1.69)

be a Riccati transformation for v . Under this transformation the Miura relation can be written as a

second-order linear ODE

ψxx − u(x, t)ψ = λψ, (1.70)

or equivalently

Lψ = λψ, (1.71)
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where L = ∂2x−u(x, t) and λ the eigenvalue, called the spectral parameter, is independent of time

or isospectral, in other words, λt = 0. Now substituting (1.69) into the mKdV equation (1.68) and

eliminating v , one can obtain after some manipulations, the time evolution equation for ψ, that is:

ψt =Mψ, (1.72)

where M = 3ux + 6u∂x − 4∂3x + C, with some constant of integration C. Thus, we have the Lax

equations:

Lψ = λψ, (1.73)

ψt =Mψ, (1.74)

and L,M are said to be the Lax pair for the KdV equation. The linear differential operators L and

M satisfy an isospectral property:

Lt + [L,M ] = 0. (1.75)

To show this, we start by taking the t-derivative of equation (1.73) to get:

Ltψ + Lψt = λtψ + λψt (1.76)

⇒Ltψ + LMψ = λMψ (1.77)

⇒Ltψ + LMψ −MLψ = 0 (1.78)

⇒(Lt + [L,M ])ψ = 0. (1.79)

Since the Lax pair has nontrivial solutions (ψ ̸= 0), thus when u(x, t) satisfies the KdV equation

then the linear differential operators L,M satisfy the corresponding isospectral property (1.75).
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1.2.5 Hamiltonian structure

Definition 1.2.2. An evolution differential equation possess a Hamiltonian structure (with respect

to J), if it can be written in the form [29]-[32]:

ut = J
δH

δu
, (1.80)

where J is called a Hamiltonian operator with coefficients depending on x, u, ux, . . . etc., andH is

the functional H = H(x, u, ux, . . .), called a Hamiltonian functional, in addition, the variational

derivative is defined by:

δ

δu
=

∂

∂u
− d

dx

∂

∂ux
+

d2

dx2
∂2

∂uxx
− . . .+ (−1)n

dn

dxn
∂n

∂unx
+ . . . . (1.81)

Along with a Hamiltonian structure, we define a Poisson bracket:

{f, g}J =

∞∫
−∞

[(δf
δu

)T
J
δg

δu

]
dx (1.82)

which satisfies the following elementary properties of the Poisson bracket:

1. Skew-symmetric: {f, g} = −{g, f}.

2. The Jacobi identity: {f, {g, h}}+ cyclic(f, g, h) = 0.

Moreover, if an evolution equation can be written as:

ut = K = J1
δH1

δu
= J2

δH2

δu
, (1.83)

then, it is said to have a bi-Hamiltonian structure, where {J1, J2} is a Hamiltonian pair, andH1, H2

are two Hamiltonian functionals. Here a Hamiltonian pair means that

C1J1 + C2J2 (1.84)
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where C1, C2 are arbitrary constants, is again a Hamiltonian operator.

Let K0 = J1
δH1

δu
, where H1 is the first Hamiltonian functional and let Φ be the recursion operator

Φ = J2J
−1
1 . Define

Km = ΦKm−1, m ≥ 1, (1.85)

then, there exists a sequence of Hamiltonian functionals, Hm for m ≥ 1, such that they satisfy the

following properties:

1. The skew-symmetry, that is for any Hamiltonian functional Hi, we have:

{Hi, Hi}J1 = {Hi, Hi}J2 = 0, i ≥ 1. (1.86)

2. The Hamiltonian functionals Hi are in involution with respect to either Poisson brackets:

{Hi, Hj}J1 = {Hi, Hj}J2 = 0, i, j ≥ 1. (1.87)

Example 3. The bi-Hamiltonian structure of the KdV equation

The KdV equation has two different Hamiltonian structures [33]. The first one arises from the

conserved energy:

H1 =

∞∫
−∞

(u3 +
1

2
u2x)dx, (1.88)

associated with the Hamiltonian operator J1 = ∂x, while the second structure arises from the

conserved momentum:

H2 =

∞∫
−∞

1

2
u2dx, (1.89)

with the associated Hamiltonian operator J2 = −∂3x+4u∂x+2ux. To show that ∂x is a Hamiltonian

operator, we can check if it satisfies the antisymmetry and the Jacobi identity.

17



For the anti-symmetry, we see that:

{f, g}+ {g, f} =

∞∫
−∞

(δf
δu
∂x
δg

δu
+
δg

δu
∂x
δf

δu

)
dx (1.90)

=

∞∫
−∞

∂x

(δf
δu

δg

δu

)
dx

= 0.

Also, without loss of generality, let f = f(x, u), g = g(x, u) and h = h(x, u), (f = f(x, u, ux, . . .)

can be generalized). Then since

{f, {g, h}} =

∞∫
−∞

(δf
δu
∂x

δ

δu
{g, h}

)
dx (1.91)

= −
∞∫

−∞

(
∂x

(δf
δu

) δ

δu
{g, h}

)
dx

and using

∂x
δf

δu
= fux + fuuux (1.92)

δ

δu
{g, h} =

δ

δu

∞∫
−∞

( δg
δu
∂x
δh

δu

)
dx (1.93)

=
δ

δu

∞∫
−∞

gu(hux + huuux)dx

= guuhux − huugux.

Thus,

{f, {g, h}}+cyclic(f, g, h) =
∞∫

−∞

(fux+fuuux)(guuhux−huugux)dx+cyclic(f, g, h) = 0. (1.94)
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In addition, it can also be easily checked that

ut = J1
δH1

δu
= ∂x

δ

δu

∞∫
−∞

(u3 +
1

2
u2x)dx (1.95)

= ∂x

[ ∂
∂u

(u3 +
1

2
u2x)−

d

dx

∂

∂ux
(u3 +

1

2
u2x)
]

= ∂x(3u
2 − uxx)

= 6uux − uxxx.

Also,

ut = J2
δH2

δu
= (−∂3x + 4u∂x + 2ux)

δ

δu

∞∫
−∞

1

2
u2dx (1.96)

= (−∂3x + 4u∂x + 2ux)
∂

∂u

1

2
u2

= 6uux − uxxx.

1.2.6 Trace identity

Hamiltonian structures of evolution equations can be formulated from what is known as the trace

identity. In 1989, G. Tu showed that using the stationary zero-curvature equation:

Wx = [U,W ], (1.97)

we can obtain a hierarchy of evolution equations along with its Hamiltonians (conserved densities)

by applying a trace identity [34].

Starting from a matrix semi-simple Lie algebra g; i.e. a direct sum of simple Lie algebras (non-

abelian Lie algebras that have no trivial ideals), Tu showed that if W is a solution of (1.97), then
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we can prove the following trace identity:

δ

δu

∫ 〈
W,

∂U

∂λ

〉
dx = λ−γ ∂

∂λ

[
λγ
〈
W,

∂U

∂u

〉]
, (1.98)

where
〈
·, ·
〉

is the Cartan-Killing form, γ = −λ
2

d
dλ
ln|
〈
W,W

〉
| and u is a column vector of func-

tions.

Recall that the Killing form of a Lie algebra over some field F is a bilinear map
〈
·, ·
〉
: g× g → F:

〈
a, b
〉
= tr(ad(a)ad(b)), a, b ∈ g, (1.99)

where ad(x) is the adjoint linear transformatiom from g to itself, defined by:

ad(x)y := [x, y], y ∈ g, (1.100)

where [·, ·] is the Lie product of g. In the case of semi-simple Lie algebra,
〈
·, ·
〉

is non-degenerate,

symmetric and the above Cartan-Killing form is the trace (see p.10789 of [31] ), and so we can

have 〈
a, b
〉
= tr(ab), a, b ∈ g, (1.101)

where g is a matrix Lie algebra. As a result, the formula (1.98) is reduced to the following trace

identity:
δ

δu

∫
tr
(
W
∂U

∂λ

)
dx = λ−γ ∂

∂λ

[
λγtr

(
W
∂U

∂u

)]
, (1.102)

with γ = −λ
2

d
dλ
ln|tr(W 2)|. We will use this method to derive Hamiltonian conserved quantities.
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Chapter 2

Examples of hierarchies of integrable equations

In this chapter, we will take a look on different hierarchies and how integrable equations arise by

using the stationary zero-curvature equation and the trace identity previously derived. In addition,

we apply the trace identity to obtain Hamiltonian structures of the resulting integrable equations.

2.1 AKNS hierarchy

We begin with the most well-known AKNS hierarchy. Let’s start with the spectral problem:

−iφx = Uφ, (2.1)

where U is the matrix defined by

U = U(u, λ) =

α1λ q

r α2λ

 , (2.2)

where λ is the spectral parameter and u is the 2-dimensional vector u = (q, r)T .

To derive the associated integrable hierarchy, we start by solving the stationary zero curvature

equation

Wx = i[U,W ] (2.3)

21



with the solution W to be in the following form:

W =

a b

c d

 . (2.4)

So, the stationary zero curvature equation is equivalent to the set of equations:

ax = i(−rb + qc) = −dx, (2.5)

bx = i(αλb − qa + qd), (2.6)

cx = i(−αλc + ra − rd), (2.7)

where α = α1 − α2. Expanding the matrix W in Laurent series, that is,

W =
∞∑

m=0

Wmλ
−m (2.8)

with

a =
∞∑

m=0

a[m]λ−m, b =
∞∑

m=0

b[m]λ−m, (2.9)

c =
∞∑

m=0

c[m]λ−m, d =
∞∑

m=0

d[m]λ−m, (2.10)

we see that the system (2.5)-(2.7) gives the recursion relations:

a[0]x = 0, b[0] = 0, c[0] = 0, d[0]x = 0, (2.11)

b[m+1] =
1

α
(−ib[m]

x + qa[m] − qd[m]), (2.12)

c[m+1] =
1

α
(ic[m]

x + ra[m] − rd[m]), m ≥ 0. (2.13)

a[m+1]
x = i(−rb[m+1] + qc[m+1]) = −d[m+1]

x , (2.14)
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By choosing the initial values:

a[0] = β1, and d[0] = β2, (2.15)

where the β1, β2 are arbitrary real constants, and taking zero constants of integration, we uniquely

generate:

a[1] = 0 = d[1], b[1] =
β

α
q, c[1] =

β

α
r, (2.16)

a[2] = − β

α2
qr = −d[2], b[2] = −i

β

α2
qx, c

[2] = i
β

α2
rx, (2.17)

a[3] = −i
β

α3
(qrx − qxr) = −d[3], (2.18)

b[3] = − β

α3
(qxx + 2q2r), c[3] = − β

α3
(rxx + 2qr2), (2.19)

a[4] = − β

α4
(qxrx − 3q2r2 − qxxr − qrxx) = −d[4], (2.20)

b[4] = i
β

α4
(qxxx + 6qqxr), c

[4] = −i
β

α4
(rxxx + 6qrrx), (2.21)

a[5] = i
β

α5
(qrxxx − qxxxr + 6q2rrx − 6qqxr

2 + qxxrx − qxrxx) = −d[5], (2.22)

b[5] =
β

α5
(qxxxx + 6q3r2 + 8qqxxr + 2q2rxx + 4qqxrx + 6q2xr), (2.23)

c[5] =
β

α5
(rxxxx + 6q2r3 + 8qrrxx + 2qxxr

2 + 4qxrrx + 6qr2x), (2.24)

a[6] = − β

α6

(
qxxxxr + qrxxxx + qxxrxx − qxrxxx − qxxxrx (2.25)

+ 10(q3r3 + qqxxr
2 + q2rrxx) + 5(q2r2x + q2xr

2)
)
= −d[6],

b[6] = −i
β

α6

(
qxxxxx + 10(qqxxxr + q2xrx + qqxrxx + qqxxrx) (2.26)

+ 20qxqxxr + 30q2qxr
2
)
,

c[6] = i
β

α6

(
rxxxxx + 10(qrrxxx + qxr

2
x + qxxrrx + qxrrxx) (2.27)

+ 20qrxrxx + 30q2r2rx

)
,
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where β = β1 − β2. To find a soliton hierarchy, we begin by introducing a series of Lax matrices

V [m] = (λmW )+ +∆m, for m ≥ 0, (2.28)

where + means to take the polynomial part. Taking the modification terms ∆m = 0, for m ≥ 0 we

can generate the soliton hierarchy

utm = Km(x, t, q, r, qx, rx, . . .), m ≥ 0, (2.29)

associated with the zero curvature equations

Utm − V [m]
x + i[U, V [m]] = 0, m ≥ 0. (2.30)

Upon using the zero curvature equations along with the zero modification terms and the recursion

relations (2.12)-(2.14), the hierarchy can be written explicitly in the following form:

utm =

q
r


tm

= iα

 b[m+1]

−c[m+1]

 . (2.31)

For m = 2, m = 3 and m = 5, we obtain the corresponding systems:


qt2 = −i β

α2 (qxx + 2q2r),

rt2 = i β
α2 (rxx + 2qr2),

(2.32)


qt3 = − β

α3 (qxxx + 6qqxr),

rt3 = β
α3 (rxxx + 6qrrx),

(2.33)
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
qt5 = β

α5

(
qxxxxx + 10(qqxxxr + q2xrx + qqxrxx + qqxxrx) + 20qxqxxr + 30q2qxr

2
)
,

rt5 = − β
α5

(
rxxxxx + 10(qrrxxx + qxr

2
x + qxxrrx + qxrrxx) + 20qrxrxx + 30q2r2rx

)
,

(2.34)

respectively. Taking r =
∗
q for the first system and r = q for the second and third, these systems

reduce respectively to the NLS equation, the third-order and the fifth-order mKdV equations:

qt2 + i
β

α2
(qxx + 2|q|2q) = 0, (2.35)

qt3 +
β

α3
(qxxx + 6q2qx) = 0, (2.36)

qt5 −
β

α5
(qxxxxx + 10q3x + 10q2qxxx + 30q4qx + 40qqxqxx) = 0. (2.37)

2.1.1 Bi-Hamiltonian structure of the AKNS hierarchy

In this section, we derive a bi-Hamiltonian structure of the hierarchy (2.31). To proceed, we use

the trace identity
δ

δu

∫
tr
(
W
∂U

∂λ

)
dx = λ−γ ∂

∂λ

[
λγtr

(
W
∂U

∂u

)]
, (2.38)

where γ = −λ
2

d
dλ
ln|tr(W 2)|. We have

tr
(
W
∂U

∂λ

)
= α1

∞∑
m=0

a[m]λ−m + α2

∞∑
m=0

d[m]λ−m, (2.39)

tr
(
W
∂U

∂q

)
=

∞∑
m=0

c[m]λ−m, tr
(
W
∂U

∂r

)
=

∞∑
m=0

b[m]λ−m. (2.40)

Plugging these into the trace identity and matching the powers of λ−m−1, we see that

δ

δu

∫ (
α1a

[m+1] + α2d
[m+1]

)
dx = (γ −m)

c[m]

b[m]

 , m ≥ 1. (2.41)
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When m = 0, we deduce that γ = 0. Thus, the Hamiltonians can be taken as

Hm = − i

m

∫ (
α1a

[m+1] + α2d
[m+1]

)
dx, m ≥ 1. (2.42)

Explicitly, the first three Hamiltonians read:

H1 =
β

α

∫
(qr)dx, (2.43)

H2 = i
β

2α2

∫
(qrx − qxr)dx, (2.44)

H3 =
β

3α3

∫
(qxrx − 3q2r2 − qxxr − qrxx)dx. (2.45)

From (2.41), we deduce

δHm

δu
= i

c[m]

b[m]

 , m ≥ 1. (2.46)

Hence from the above equalities, the bi-Hamiltonian structure reads:

utm = Km = J1
δHm+1

δu
= J2

δHm

δu
, m ≥ 1, (2.47)

where the Hamiltonian pair are {J1, J2}, with J2 = J1Φ. Explicitly we have

J1 =

 0 α

−α 0

 , Φ =
i

α

∂ + 2r∂−1q −2r∂−1r

2q∂−1q −∂ − 2q∂−1r

 , (2.48)

and the recursive formula is defined by:

c[m+1]

b[m+1]

 = Φ

c[m]

b[m]

 , m ≥ 1. (2.49)

26



2.2 Kaup-Newell (KN) hierarchy

To begin with the KN hierarchy, we similarly consider the spectral problem:

φx = Uφ, (2.50)

In this case, U is the matrix defined by

U = U(u, λ) =

λ2 λp

λq −λ2

 , (2.51)

where λ is the spectral potential and u is the 2-dimensional vector u = (p, q)T .

First, we solve the following stationary zero curvature equation to obtain an associated integrable

hierarchy:

Wx = [U,W ] (2.52)

assuming the solution W is as follows:

W =

a b

c −a

 . (2.53)

This implies a set of equations that corresponds to the stationary zero curvature equation:

ax = −λqb + λpc, (2.54)

bx = −2λpa + 2λ2b, (2.55)

cx = 2λqa − 2λ2c. (2.56)

In the Laurent series, the matrix W is expanded as follows:

W =
∞∑

m=0

Wmλ
−m (2.57)
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with its components being given by

a =
∞∑

m=0

a[m]λ−2m, b =
∞∑

m=0

b[m]λ−2m−1, c =
∞∑

m=0

c[m]λ−2m−1. (2.58)

then (2.54)-(2.56) give the following recursion relations:

a[m+1]
x = −1

2
(qb[m]

x + pc[m]
x ), (2.59)

b[m+1] =
1

2
b[m]
x + pa[m+1], m ≥ 0. (2.60)

c[m+1] = −1

2
c[m]
x + qa[m+1], (2.61)

With the initial values chosen as follows:

a[0] = 1, b[0] = p, c[0] = q, (2.62)

we can uniquely generate:

a[1] = −1

2
pq, b[1] =

1

2
(px − p2q), c[1] = −1

2
(qx + pq2), (2.63)

a[2] =
3

8
pq +

1

4
pqx −

1

4
pxq, (2.64)

b[2] =
1

4
pxx +

3

8
p3q2 − 3

4
ppxq, c

[2] =
1

4
qxx +

3

8
p2q3 +

3

4
pqqx, (2.65)

a[3] =
1

8
pxqx −

5

16
p3q3 +

3

8
ppxq

2 − 3

8
p2qqx −

1

8
pxxq −

1

8
pqxx, (2.66)

b[3] =
1

8
pxxx −

1

4
ppxqx −

1

8
p2qxx −

3

8
p2xq −

1

2
ppxxq +

15

16
p2pxq

2 − 5

16
p4q3, (2.67)

c[3] = −1

8
qxxx −

1

4
pxqqx −

1

8
pxxq

2 − 3

8
pq2x −

1

2
pqqxx −

15

16
p2q2qx −

5

16
p3q4. (2.68)

The soliton hierarchy is determined by a series of Lax matrices:

V [m] = (λ2m+2W )+ +∆m, for m ≥ 0. (2.69)
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Based on the following modification term

∆m =

−a[m+1] 0

0 a[m+1]

 , m ≥ 0. (2.70)

A soliton hierarchy can be generated as follows:

utm = Km(x, t, p, q, px, qx, . . .), m ≥ 0, (2.71)

from the zero curvature equations

Utm − V [m]
x + [U, V [m]] = 0, m ≥ 0. (2.72)

The hierarchy can be written explicitly in the following form using the zero curvature equations,

the modification terms, and recursion relations (2.59)-(2.61):

utm =

p
q


tm

=

b[m]

c[m]


x

. (2.73)

For m = 1 and m = 2, the following systems are derived:


pt1 = 1

2
pxx − ppxq − 1

2
p2qx,

qt1 = −1
2
qxx − pqqx − 1

2
pxq

2,

(2.74)


pt2 = 1

4
pxxx − 3

4
ppxxq − 3

4
ppxqx − 3

4
p2xq +

9
8
p2pxq

2 + 3
4
p3qqx,

qt2 = 1
4
qxxx +

3
4
pqqxx +

3
4
pxqqx +

3
4
pq2x +

9
8
p2q2qx +

3
4
ppxq

3.

(2.75)
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Taking q = p these two systems reduce respectively to the following second-order derivative NLS

equation and the mKdV-type equation:

pt1 =
1

2
pxx −

3

2
p2px, (2.76)

pt2 =
1

4
pxxx −

3

2
pp2x −

3

4
p2pxx +

15

8
p4px. (2.77)

2.2.1 Bi-Hamiltonian structure of the KN hierarchy

In order to derive the bi-Hamiltonian structure of the hierarchy (2.73), we use the trace identity

(2.38). We have the components:

tr
(
W
∂U

∂λ

)
= 4

∞∑
m=0

a[m]λ−2m+1 + q
∞∑

m=0

b[m]λ−2m−1 + p
∞∑

m=0

c[m]λ−2m−1, (2.78)

tr
(
W
∂U

∂p

)
=

∞∑
m=0

c[m]λ−2m, tr
(
W
∂U

∂q

)
=

∞∑
m=0

b[m]λ−2m. (2.79)

As a result of plugging these into the trace identity and matching the powers of λ−2m−1, we observe

the following:

δ

δu

∫ (
4a[m+1] + qb[m] + pc[m]

)
dx = (γ − 2m)

c[m]

b[m]

 , m ≥ 1. (2.80)

When m = 1, we deduce that γ = 0. Consequently, the Hamiltonians can be taken for this

hierarchy as follows:

Hm = − 1

2m

∫ (
4a[m+1] + qb[m] + pc[m]

)
dx, m ≥ 1. (2.81)
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Here, the first three Hamiltonians read explicitly as follows:

H1 = −1

4

∫
(pqx − pxq + p2q2)dx, (2.82)

H2 =
1

16

∫
(pqxx + pxxq − 2pxqx + 3p2qqx − 3ppxq

2 + 2p3q3)dx, (2.83)

H3 = − 1

48

∫
(pqxxx − pxxxq + 2pxxqx − 2pxqxx + 2p2q2x + 2p2xq

2

− 4ppxqqx + 5ppxxq
2 + 5p2qqxx +

15

2
p3q2qx −

15

2
p2pxq

3 +
15

4
p4q4)dx. (2.84)

We can conclude from (2.80) that

δHm

δu
=

c[m]

b[m]

 , m ≥ 1. (2.85)

So, from the above equalities, we derive the bi-Hamiltonian structure as follows:

utm = J1
δHm+1

δu
= J2

δHm

δu
, m ≥ 1, (2.86)

the Hamiltonian pair {J1, J2} are as follows:

J1 =

 −2p∂−1p 2 + 2p∂−1q

−2 + 2q∂−1p −2q∂−1q

 , J2 =

0 ∂

∂ 0

 . (2.87)

2.3 TC hierarchy

Let us begin with the following isospectral problem for the TC hierarchy:

φx = Uφ, (2.88)
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where we set the matrix U to be:

U = U(u, λ) =

 0 1 + q+r
2λ

λ+ q−r
2

0

 , (2.89)

where λ is the spectral potential and u is the 2-dimensional vector u = (q, r)T .

As before, in order to determine an associated integrable hierarchy, we first solve the stationary

zero curvature equation (2.52), with the matrix W being taken the form:

W =

 1
2
a 1

2λ
(b+ c)

1
2
(b− c) −1

2
a

 . (2.90)

Thus, from the stationary zero curvature equation, the following equations are obtained:

ax = −λ−1qc − 2c + λ−1rb, (2.91)

bx = −ra, (2.92)

cx = −2λa − qa. (2.93)

Upon expanding the matrix W as in the Laurent series (2.57), that is, with a =
∞∑

m=0

a[m]λ−m,

b =
∞∑

m=0

b[m]λ−m and c =
∞∑

m=0

c[m]λ−m, the system (2.91)-(2.93) gives the recursion relations:

a[0]x = −2c[0], b[0]x = −ra[0], (2.94)

a[m+1] =
1

2
(−qa[m] − c[m]

x ), (2.95)

b[m+1] = −∂−1ra[m+1], m ≥ 0. (2.96)

c[m+1] =
1

2
(rb[m] − qc[m] − a[m+1]

x ), (2.97)
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Starting from the initial values:

c[0] = 0, a[0] = 0, and b[0] = β, (2.98)

where β is an arbitrary real constant, and taking zero constants of integration, we can work out

that:

a[1] = 0, b[1] = 0, c[1] =
1

2
βr, (2.99)

a[2] = −1

4
βrx, b

[2] =
1

8
βr2, c[2] =

1

8
β(rxx − 2qr), (2.100)

a[3] = − 1

16
β(rxxx − 4qrx − 2qxr), (2.101)

b[3] = − 1

32
β(r2x + 4qr2 − 2rrxx), (2.102)

c[3] =
1

32
β(rxxxx + 4q2r + 2r3 − 6qrxx − 6qxrx − 2qxxr). (2.103)

We begin by computing a series of Lax matrices in order to determine a soliton hierarchy

V [m] = (λmW )+ +∆m, for m ≥ 0. (2.104)

While taking into account the modification terms:

∆m =

 0 1
2λ
( q
r
c[m] − b[m])

1
2
( q
r
c[m] − b[m]) 0

 , (2.105)

we can generate the soliton hierarchy

utm = Km(x, t, q, r, qx, rx, . . .), m ≥ 0, (2.106)

associated with the zero curvature equations

Utm − V [m]
x + [U, V [m]] = 0, m ≥ 0. (2.107)
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Thus, one can easily show that the hierarchy can be expressed explicitly as

utm =

q
r


tm

=

∂( qrc[m] − b[m])

∂c[m] − q
r
∂b[m]

 , m ≥ 0. (2.108)

For m = 2 and m = 3, we obtain the systems:


qt2 = − β

8r2
(4qqxr

2 + 2r3rx + qrxrxx − qrrxxx − qxrrxx),

rt2 = −β
8
(4qrx + 2qxr − rxxx),

(2.109)


qt3 = β

32r2
(12q2qxr

2 + 12qr3rx + 6qxr
4 + 6q2rxrxx − 6q2rrxxx + 6qqxr

2
x − 6qqxxrrx − 2r3rxxx

−2qqxxxr
2 − 18qqxrrxx − 6q2xrrx − 2qxqxxr

2 − qrxrxxxx + qrrxxxxx + qxrrxxxx),

rt3 = β
32
(12q2rx + 12qqxr + 6r2rx − 8qrxxx − 2qxxxr − 12qxrxx − 8qxxrx + rxxxxx),

(2.110)

respectively. With β = 8 and taking r = q , the first system reduces to the KdV equation:

qt2 + 6qqx − qxxx = 0, (2.111)

while the second one reduces to the fifth-order mKdV-type equation:

qt3 −
15

2
q2qx +

5

2
qqxxx + 5qxqxx −

1

4
qxxxxx = 0. (2.112)
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2.3.1 Bi-Hamiltonian structure of the TC hierarchy

To obtain a bi-Hamiltonian structure of the hierarchy (2.108), we continue to use the trace identity

(2.38), to have

tr
(
W
∂U

∂λ

)
=

1

2λ

∞∑
m=0

(b[m] + c[m])λ−m − 1

4λ2
(q + r)

∞∑
m=0

(b[m] − c[m])λ−m, (2.113)

tr
(
W
∂U

∂q

)
=

1

2λ

∞∑
m=0

b[m]λ−m, tr
(
W
∂U

∂r

)
= − 1

2λ

∞∑
m=0

c[m]λ−m. (2.114)

After substituting these components into the trace identity and matching the powers of λ−m−2, we

get

δ

δu

∫ (1
2
(b[m+1] + c[m+1])− 1

4
(q + r)(b[m] − c[m])

)
dx =

1

2
(γ −m− 1)

 b[m]

−c[m]

 , m ≥ 0.

(2.115)

We deduce that γ = 1
2

when m = 0. Therefore, the Hamiltonians can be taken as

Hm = − 1

2m+ 1

∫ (
2(b[m+1] + c[m+1])− (q + r)(b[m] − c[m])

)
dx, m ≥ 0. (2.116)

The first three Hamiltonians are:

H0 = β

∫
qdx, (2.117)

H1 = − β

12

∫
(3r2 + rxx)dx, (2.118)

H2 = − β

160

∫
(−20qr2 − 2r2x + 8rrxx − 8qrxx − 12qxrx − 4qxxr + 2rxxxx)dx. (2.119)

We derive from (2.115) that

δHm

δu
=

 b[m]

−c[m]

 , m ≥ 0, (2.120)
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and the bi-Hamiltonian structure is:

utm = Km = J1
δHm

δu
= J2

δHm−1

δu
, m ≥ 1, (2.121)

where {J1, J2} are the Hamiltonian pair, with J2 = J1Φ, and

J1 =

 −∂ −∂( q
r
·)

− q
r
∂ −∂

 , Φ =

 −1
2
∂−1q∂ −1

2
∂−1r∂

−1
2
r + 1

4
∂( q

r
)∂ −1

2
q + 1

4
∂2

 . (2.122)

The recursive formula is defined by:

 b[m+1]

−c[m+1]

 = Φ

 b[m]

−c[m]

 , m ≥ 0. (2.123)

2.4 TA hierarchy

Starting with the spectral problem:

φx = Uφ, (2.124)

where U is the matrix defined by

U = U(u, λ) =

 0 1

λ+ q + r
λ

0

 , (2.125)

where λ is the spectral parameter and u is the 2-dimensional vector u = (q, r)T . We use the sta-

tionary zero curvature equation (2.52) to derive an integrable hierarchy, with W being the matrix:

W =

 1
2
a 1

2λ
(b+ c)

1
2
(b− c) −1

2
a

 . (2.126)
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The stationary zero curvature equation gives the following equations:

ax = −λ−1(b + c)q − λ−2(b + c)r − 2c, (2.127)

bx = (q + λ−1r)a, (2.128)

cx = −(q + λ−1r + 2λ)a. (2.129)

Expanding the matrix W in Laurent series (2.57), with a =
∞∑

m=0

a[m]λ−m, b =
∞∑

m=0

b[m]λ−m and

c =
∞∑

m=0

c[m]λ−m, using the equations (2.127)-(2.129), we get the recursion relations:

a[0] = 0, c[0] = 0, b[0]x = 0, (2.130)

a[1]x = −2c[1] − qb[0], b[1]x = qa[1], c[1]x = −qa[1] − 2a[2], (2.131)

a[m+1] =
1

2
(−qa[m] − c[m]

x ), (2.132)

b[m+1] = −∂−1ra[m+1], m ≥ 1. (2.133)

c[m+1] =
1

2
(rb[m] − qc[m] − a[m+1]

x ), (2.134)

Taking the initial values to be:

b[0] = 2β, a[1] = 0, (2.135)

and rewriting, we get

b[1] = 0, c[1] = −βq, (2.136)

a[m]
x = −q(b[m−1] + c[m−1])− r(b[m−2] + c[m−2])− 2c[m], (2.137)

b[m]
x = qa[m] + ra[m−1], m ≥ 2. (2.138)

c[m]
x = −qa[m] − ra[m−1] − 2a[m+1], (2.139)
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Let d[m] = 1
2
(b[m] + c[m]). Thus, through some manipulations the above system can be rewritten in

the simplified form:

d[0] = β, d[1] = −1

2
βq (2.140)

d[m+1] =
(1
4
∂2 − q +

1

2
∂−1qx

)
d[m] +

(
− r +

1

2
∂−1rx

)
d[m−1], m ≥ 1. (2.141)

As before, in this case we need the non-zero modification terms:

∆m =

 0 −d[m]λ−1

−d[m] + rd[m−1]λ−1 0

 , m ≥ 1. (2.142)

Hence, we can construct the soliton hierarchy by using the zero curvature equations:

utm =

q
r


tm

=

 −2d
[m]
x

2rd
[m−1]
x + rxd

[m−1]

 , m ≥ 1. (2.143)

For m = 2 and m = 3, we obtain the systems:


qt2 = 1

4
β(qxxx − 6qqx + 4rx),

rt2 = −β(rqx + 1
2
rxq),

(2.144)


qt3 = β

16
(qxxxxx + 4rxxx − 20qxqxx − 24qrx − 10qqxxx − 24qxr + 30q2qx),

rt3 = −β
8
(2qxxxr + qxxrx + 12rrx − 3q2rx − 12qqxr),

(2.145)

respectively. Taking β = 4 and r = 0, the first system reduces to the KdV equation (2.111) as

well, while the second one reduces to the fifth-order mKdV-type equation (2.112).
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2.4.1 Bi-Hamiltonian structure of the TA hierarchy

Let’s derive a bi-Hamiltonian structure of the soliton hierarchy (2.143). As usual, we use the trace

identity (2.38), to obtain

tr
(
W
∂U

∂λ

)
=

1

2
(λ−1 − rλ−3)

∞∑
m=0

(b[m] + c[m])λ−m, (2.146)

tr
(
W
∂U

∂q

)
=

1

2λ

∞∑
m=0

(b[m] + c[m])λ−m, (2.147)

tr
(
W
∂U

∂r

)
=

1

2λ2

∞∑
m=0

(b[m] + c[m])λ−m. (2.148)

As a result of matching the powers of λ−m and using the trace identity, we observe

δ

δu

∫ (
d[m−1] − rd[m−3]

)
dx = (γ −m+ 1)

d[m−2]

d[m−3]

 , m ≥ 3. (2.149)

The case where m = 0 implies that γ = 1
2
. Therefore, the Hamiltonians can be taken as

Hm = − 2

2m+ 1

∫ (
d[m+1] − rd[m−1]

)
dx, m ≥ 1. (2.150)

The first three Hamiltonians are:

H1 =
β

12

∫
(qxx − 3q2 + 12r)dx, (2.151)

H2 =
β

80

∫
(qxxxx + 10q3 − 40qr − 10qqxx − 5q2x + 4rxx)dx, (2.152)

H3 =
β

448

∫
(qxxxxxx + 4rxxxx − 30qxqxxx − 48qxrx − 128r2 − 56qxxr (2.153)

− 20q2xx − 14qqxxxx − 40qrxx + 80qq2x + 192q2r + 70q2qxx − 40q4)dx,
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and from (2.149), we can write

δHm

δu
=

 d[m]

d[m−1]

 , m ≥ 1. (2.154)

The bi-Hamiltonian structure thus reads:

utm = Km = J1
δHm

δu
= J2

δHm−1

δu
, m ≥ 2, (2.155)

with the Hamiltonian pair are {J1, J2}, with J2 = J1Φ and

J1 =

−2∂ 0

0 2r∂ + rx

 , Φ =

1
4
∂2 − q + 1

2
∂−1qx −r + 1

2
∂−1rx

1 0

 . (2.156)

with the recursive formula: d[m+1]

d[m]

 = Φ

 d[m]

d[m−1]

 , m ≥ 1. (2.157)

2.5 Boiti-Pempinelli-Tu (BPT) hierarchy

We begin with the spatial spectral problem:

φx = Uφ, (2.158)

where U is the matrix defined by

U = U(u, λ) =

 λ + 1
2
λ−1s 1

2
(q + λ−1r)

1
2
(q − λ−1r) −λ − 1

2
λ−1s

 , (2.159)
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where λ is the spectral potential and u is the 3-dimensional vector u = (q, r, s)T . After solving

the stationary zero curvature equation (2.52) with the solution W being taken as:

W =

 1
2
a 1

2
(b+ c)

1
2
(b− c) −1

2
a

 . (2.160)

We obtain the system of equations

ax = −qc + λ−1rb, (2.161)

bx = 2λc − λ−1ra + λ−1sc, (2.162)

cx = 2λb − qa + λ−1sb. (2.163)

Expanding the matrix W in Laurent series (2.57), with a =
∞∑

m=0

a[m]λ−m, b =
∞∑

m=0

b[m]λ−m and

c =
∞∑

m=0

c[m]λ−m, we get the corresponding recursion relations:

a[0]x = 0, b[0] = 0, c[0] = 0, c[1] = 0, b[1] =
1

2
qa[0], (2.164)

a[m+1] = ∂−1(−qc[m+1] + rb[m]), (2.165)

b[m+1] =
1

2
(c[m]

x + qa[m] − sb[m−1]), m ≥ 1. (2.166)

c[m+1] =
1

2
(b[m]

x + ra[m−1] − sc[m−1]), (2.167)

By choosing the initial value:

a[0] = 2β, (2.168)
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with β is an arbitrary real constant, and taking zero constants of integration we uniquely generate

the concrete expressions:

a[1] = 0, b[1] = βq, c[1] = 0,

a[2] = −1

4
βq2, b[2] = 0, c[2] = β(

1

2
qx + r),

a[3] = 0, b[3] =
1

4
β(qxx + 2rx −

1

2
q3 − 2qs), c[3] = 0,

a[4] =
β

64
(3q4 + 16q2s + 4q2x + 16qxr + 16r2 − 8qqxx − 16qrx), b

[4] = 0,

c[4] =
β

8
(qxxx −

3

2
q2qx − q2r − 4qxs − 4rs − 2qsx + 2rxx),

a[5] = 0,

b[5] =
β

128
(8qxxxx + 16rxxx + 3q5 + 24q3s − 20qq2x + 16qr2 − 20q2qxx

− 24q2rx + 32qs2 − 48qxsx − 32rsx − 16qsxx − 48qxxs − 64rxs),

c[5] = 0,

a[6] = − β

512
(16qqxxxx + 5q6 + 48q4s − 40q3qxx − 48q3rx + 96q2s2 + 48q2r2 (2.169)

+ 48q2qxr − 20q2q2x − 32qs − 128qqs − 192qrxs − 64qqxsx + 128rs

+ 192qxrs + 64q2xs + 32qrxxx − 32qxxxr − 16qxqxxx − 64rrxx − 32qxrxx

+ 8q2xx + 32qxxrx + 32r2x), b
[6] = 0,

c[6] =
β

256
(8qxxxxx + 48q2rs − 16qqxxr − 20q3x − 48qqxrx + 96qssx + 8q2xr − 16qsxxx + 32r3

+ 96q2qxs − 20q2qxxx + 6q4r + 64rs2 − 80qqxqxx + 16rxxxx + 15q4qx − 64qxxxs − 96rxxs

− 96qxxsx − 32rsxx − 96rxsx − 64qxsxx + 24q3sx + 48qxr
2 − 24q2rxx + 96qxs

2).
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By taking the modification terms ∆m = 03, m ≥ 0, with 03 being the 3 × 3 zero matrix, we can

generate the soliton hierarchy:

utm =


q

r

s


tm

=


2c[2m]

−sb[2m−1]

−rb[2m−1]

 , m ≥ 1. (2.170)

For m = 2 and m = 3, we obtain the systems:


qt2 = β

4
(qxxx + 2rxx − 3

2
q2qx − q2r − 2qsx − 4qxs − 4rs),

rt2 = −β
4
s(qxx + 2rx − 1

2
q3 − 2qs),

st2 = −β
4
r(qxx + 2rx − 1

2
q3 − 2qs),

(2.171)



qt3 = β
128

(8qxxxxx + 48q2rs − 16qqxxr − 20q3x − 48qqxrx + 96qssx + 8q2xr − 16qsxxx

+32r3 + 96q2qxs − 20q2qxxx + 6q4r + 64rs2 − 80qqxqxx + 16rxxxx + 15q4qx

−64qxxxs − 96rxxs − 96qxxsx − 32rsxx − 96rxsx − 64qxsxx + 24q3sx + 48qxr
2

−24q2rxx + 96qxs
2)

rt3 = − β
128
s(8qxxxx + 16rxxx + 3q5 + 24q3s − 20qq2x + 16qr2 − 20q2qxx − 24q2rx + 32qs2

−48qxsx − 32rsx − 16qsxx − 48qxxs − 64rxs),

st3 = − β
128
r(8qxxxx + 16rxxx + 3q5 + 24q3s − 20qq2x + 16qr2 − 20q2qxx − 24q2rx + 32qs2

−48qxsx − 32rsx − 16qsxx − 48qxxs − 64rxs),

(2.172)

respectively. Taking β = 4 and r = s = 0, the first system reduces to the mKdV equation too:

qt2 = qxxx −
3

2
q2qx, (2.173)
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while the second one reduces to the fifth-order mKdV-type equation:

qt3 =
1

4
(qxxxxx − 10qqxqxx +

15

8
q4qx −

5

2
q3x −

5

2
q2qxxx). (2.174)

2.5.1 Bi-Hamiltonian structure of the BPT hierarchy

For the BPT hierarchy, the components of the trace identity (2.38) are

tr
(
W
∂U

∂λ

)
= (1− 1

2
λ−2s)

∞∑
m=0

a[m]λ−m +
1

2
λ−2r

∞∑
m=0

c[m]λ−m (2.175)

tr
(
W
∂U

∂q

)
=

1

2

∞∑
m=0

b[m]λ−m, tr
(
W
∂U

∂r

)
= − 1

2λ

∞∑
m=0

c[m]λ−m, (2.176)

tr
(
W
∂U

∂s

)
=

1

2λ

∞∑
m=0

a[m]λ−m. (2.177)

Substituting them in the trace identity and matching the powers of λ−m, we obtain

δ

δu

∫ (
a[2m+2] − 1

2
sa[2m] +

1

2
rc[2m]

)
dx =

1

2
(γ − 2m+ 1)


b[2m+1]

−c[2m]

a[2m]

 , m ≥ 0. (2.178)

The case where m = 0 requires that γ = 0. Therefore, the Hamiltonians for the soliton hierarchy

(2.170) can be taken as

Hm = − 2

2m+ 1

∫ (
a[2m+2] − 1

2
sa[2m] +

1

2
rc[2m]

)
dx, m ≥ 0. (2.179)

The first three Hamiltonians are the following:

H0 =
β

2

∫
(q2 + 4s)dx, (2.180)

H1 = − β

96

∫
(3q4 + 24q2s − 16qrx − 8qqxx + 48r2 + 32qxr + 4q2x)dx, (2.181)
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H2 =
β

1280

∫
(5q6 + 16qqxxxx − 256qrxs + 96q2qxr − 64qqxsx + 384qxrs (2.182)

− 160qqxxs + 64qrsx + 60q4s + 160q2s2 + 80q2r2 + 320r2s − 128rrxx

− 16qxqxxx + 80q2xs − 20q2q2x − 32qxrxx + 32qxxrx − 40q3qxx − 64qxxxr

+ 32qrxxx − 32q2sxx + 32r2x + 8q2xx − 48q3rx)dx. (2.183)

From (2.178), we deduce

δHm

δu
=


b[2m+1]

−c[2m]

a[2m]

 , m ≥ 0, (2.184)

and the bi-Hamiltonian structure:

utm = Km = J1
δHm

δu
= J2

δHm−1

δu
, m ≥ 1, (2.185)

in which the Hamiltonian pair are {J1, J2} and J2 = J1Φ, explicitly we have

J1 =


0 −2 0

2 ∂ −q

0 q −∂

 , (2.186)

Φ =
1

4


∂2 − 2s − q2 + q∂−1(2r + qx) ∂s − q∂−1(qs) ∂r − q∂−1(qr)

−2∂ −2s −2r

−2q + ∂−1(2qx + 4r) −2∂−1(qs) −2∂−1(qr)

 . (2.187)

Here, the recursive formula is given by:


b[2m+1]

−c[2m]

a[2m]

 = Φ


b[2m−1]

−c[2m−2]

a[2m−2]

 , m ≥ 1. (2.188)
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Chapter 3

Riemann-Hilbert problems of a non-local reverse-time AKNS

system of sixth-order and its exact soliton solutions

3.1 Introduction

In this chapter, we investigate the solvability of a nonlinear nonlocal reverse-time six-component

sixth-order AKNS system. We use reverse-time reduction to reduce the coupled system to an

integrable sixth-order NLS-type equation. Starting from the spectral problem of the AKNS system,

a Riemann-Hilbert problem will be formulated. Soliton solutions are generated by using vectors in

the kernel of the matrix Jost solutions. In the case of zero reflection coefficients, the jump matrix is

identity, and the corresponding Riemann-Hilbert problem gives solitons, which allows to explore

soliton dynamics [35]. We formulate the AKNS hierarchy for the six-component AKNS system of

sixth-order and solve the resulting Riemann-Hilbert problem, with the contour being the real line

[37]-[44].

3.2 Six-component AKNS hierarchy system of sixth-order

3.2.1 Six-component AKNS soliton hierarchy of coupled

sixth-order integrable systems

Consider the 4× 4 matrix spatial spectral problem [39]

φx = iUφ, (3.1)
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where φ is the eigenfunction and U(u, λ) the spectral matrix is given by

U(u, λ) =



α1λ p1 p2 p3

r1 α2λ 0 0

r2 0 α2λ 0

r3 0 0 α2λ


= λΛ+ P (u), (3.2)

where Λ = diag(α1, α2, α2, α2), λ is the spectral parameter, α1, α2 are two distinct real constants,

u = (p, rT )T is a vector of six potentials, where p = (p1, p2, p3) and r = (r1, r2, r3)
T are vector

functions of (x, t) and {pi, ri}i=1,2,3 ∈ S(R), the Schwartz space, and

P =



0 p1 p2 p3

r1 0 0 0

r2 0 0 0

r3 0 0 0


. (3.3)

Let’s construct the AKNS system of sixth-order. To do so, we need to solve the stationary zero

curvature equation

Wx = i[U,W ], (3.4)

to which

W =



a b1 b2 b3

c1 d11 d12 d13

c2 d21 d22 d23

c3 d31 d32 d33


(3.5)
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is a solution, where a, bi, ci, dij are scalar components for i, j ∈ {1, 2, 3}. From the stationary zero

curvature equation, we get:



ax = i
(
−

3∑
i=1

biri +
3∑

i=1

cipi
)
,

bi,x = i(αλbi − api + d1ip1 + d2ip2 + d3ip3), i ∈ {1, 2, 3},

ci,x = i(−αλci + ari − di1r1 − di2r2 − di3r3), i ∈ {1, 2, 3},

dij,x = i(bjri − cipj), i, j ∈ {1, 2, 3},

(3.6)

where α = α1 − α2. We expand W in Laurent series:

W =
∞∑

m=0

Wmλ
−m with Wm =



a[m] b
[m]
1 b

[m]
2 b

[m]
3

c
[m]
1 d

[m]
11 d

[m]
12 d

[m]
13

c
[m]
2 d

[m]
21 d

[m]
22 d

[m]
23

c
[m]
3 d

[m]
31 d

[m]
32 d

[m]
33


, (3.7)

explicitly, i.e., set

a =
∞∑

m=0

a[m]λ−m, bj =
∞∑

m=0

b
[m]
j λ−m, (3.8)

cj =
∞∑

m=0

c
[m]
j λ−m, djk =

∞∑
m=0

d
[m]
jk λ

−m, (3.9)
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for j, k ∈ {1, 2, 3}. The system (3.6) generates the recursion relations:

b
[0]
j = 0, c

[0]
j = 0, for j ∈ {1, 2, 3}, (3.10)

a[0]x = 0, (3.11)

d
[0]
jk,x = 0, for j, k ∈ {1, 2, 3}, (3.12)

b
[m+1]
j =

1

α
(−ib

[m]
j,x + a[m]pj − d

[m]
1j p1 − d

[m]
2j p2 − d

[m]
3j p3), j ∈ {1, 2, 3}, (3.13)

c
[m+1]
j =

1

α
(ic

[m]
j,x + a[m]rj − d

[m]
j1 r1 − d

[m]
j2 r2 − d

[m]
j3 r3), j ∈ {1, 2, 3}, (3.14)

a[m]
x = i(−

3∑
j=1

b
[m]
j rj +

3∑
j=1

c
[m]
j pj), (3.15)

d
[m]
jk,x = i(b

[m]
k rj − c

[m]
j pk), j, k ∈ {1, 2, 3}, (3.16)

where m ≥ 0. Particularly, we can work out



a[0] = β1, a[1] = 0, a[2] = − β
α2T0,0, a[3] = −i β

α3 (T0,1 −T1,0),

a[4] = β
α4

[
3T2

0,0 +T0,2 −T1,1 +T2,0

]
,

a[5] = i β
α5

[
6T0,0(T0,1 −T1,0) +T0,3 −T3,0 +T2,1 −T1,2

]
,

a[6] = − β
α6

[
10T3

0,0 + 10T0,0(T0,2 +T2,0) + 5
(
T2

1,0 +T2
0,1

)
+(T0,4 +T4,0 −T1,3 −T3,1 +T2,2)

]
,

a[7] = −i β
α7

[
30T2

0,0(T0,1 −T1,0) + 5T0,0(T2,1 −T1,2) + 10T0,0(T0,3 −T3,0)

+10T1,1(T0,1 −T1,0) + 5(T0,1T2,0 −T1,0T0,2) + 20(T0,1T0,2 −T1,0T2,0)

+5(T5,0 −T4,1 +T3,2 −T2,3 +T1,4 −T0,5)

]
,

(3.17)
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

b
[0]
k = 0, b

[1]
k = β

αpk, b
[2]
k = −i β

α2 pk,x, b
[3]
k = − β

α3

[
pk,xx + 2T0,0pk

]
,

b
[4]
k = i β

α4

[
pk,xxx + 3T0,0pk,x + 3T1,0pk

]
,

b
[5]
k = β

α5

[
pk,xxxx + 4T0,0pk,xx + (6T1,0 + 2T0,1)pk,x + (4T2,0 + 2T1,1 + 2T0,2 + 6T2

0,0)pk

]
,

b
[6]
k = −i β

α6

[
pk,xxxxx + 5T0,0pk,xxx + (10T1,0 + 5T0,1)pk,xx

+

(
10T2,0 + 5T0,2 + 10T1,1 + 10T2

0,0

)
pk,x +

(
5T3,0 + 5T2,1 + 5T1,2 + 20T0,0T1,0

)
pk

]
,

b
[7]
k = − β

α7

[
pk,xxxxxx + 6T0,0pk,xxxx + (9T0,1 + 15T1,0)pk,xxx

+(15T2
0,0 + 11T0,2 + 20T2,0 + 25T1,1)pk,xx

+

(
T0,0(15T0,1 + 45T1,0) + 15T3,0 + 4T0,3 + 20T1,2 + 25T2,1

)
pk,x

+

(
(20T3

0,0 +T0,0(20T0,2 + 35T2,0 + 25T1,1)) + 10T2
0,1

+25T2
1,0 + 20T1,0T0,1 + 2T0,4 + 6T4,0 + 4T1,3 + 9T3,1 + 11T2,2

)
pk

]
,

(3.18)


c
[0]
k = 0, c

[1]
k = β

αrk, c
[2]
k = i β

α2 rk,x, c
[3]
k = − β

α3

[
rk,xx + 2T0,0rk

]
,

c
[4]
k = −i β

α4

[
rk,xxx + 3T0,0rk,x + 3T0,1rk

]
,

c
[5]
k = β

α5

[
rk,xxxx + 4T0,0rk,xx + (6T0,1 + 2T1,0)rk,x + (4T0,2 + 2T1,1 + 2T2,0 + 6T2

0,0)rk

]
,

c
[6]
k = i β

α6

[
rk,xxxxx + 5T0,0rk,xxx + (10T0,1 + 5T1,0)rk,xx

+

(
10T0,2 + 5T2,0 + 10T1,1 + 10T2

0,0

)
rk,x +

(
5T0,3 + 5T1,2 + 5T2,1 + 20T0,0T0,1

)
rk

]

c
[7]
k = − β

α7

[
rk,xxxxxx + 6T0,0rk,xxxx + (15T0,1 + 9T1,0)rk,xxx

+(15T2
0,0 + 20T0,2 + 11T2,0 + 25T1,1)rk,xx

+

(
T0,0(45T0,1 + 15T1,0) + 4T3,0 + 15T0,3 + 25T1,2 + 20T2,1

)
rk,x

+

(
(20T3

0,0 +T0,0(35T0,2 + 20T2,0 + 25T1,1)) + 25T2
0,1

+10T2
1,0 + 20T1,0T0,1 + 6T0,4 + 2T4,0 + 9T1,3 + 4T3,1 + 11T2,2

)
rk

]
,

(3.19)
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where k ∈ {1, 2, 3}.

d
[0]
kj = β2, for k = j, and d

[0]
kj = 0, for k ̸= j, where k, j ∈ {1, 2, 3}

d
[1]
kj = 0, d

[2]
kj = β

α2 pjrk, d
[3]
kj = −i β

α3 (pj,xrk − pjrk,x),

d
[4]
kj = − β

α4

[
3T0,0pjrk + pj,xxrk − pj,xrk,x + pjrk,xx

]
,

d
[5]
kj = i β

α5

[
2(T1,0 −T0,1)pjrk + 4T0,0(pj,xrk − pjrk,x)

+pj,xxxrk − pjrk,xxx + pj,xrk,xx − pj,xxrk,x

]
,

d
[6]
kj = β

α6

[(
T2

0,0 + 5(T0,2 +T1,1 +T2,0)

)
pjrk + 5T0,1pjrk,x + 5T1,0pj,xrk

+5T0,0(pjrk,xx − pj,xrk,x + pj,xxrk)

+pj,xxxxrk − pj,xxxrk,x + pj,xxrk,xx − pj,xrk,xxx + pjrk,xxxx

]
d
[7]
kj = −i β

α7

[(
T0,0(T1,0 −T0,1)− 4(T3,0 −T0,3) + (T2,1 −T1,2)

)
pjrk

+

(
15T2

0,0 + 8T0,2 + 11T2,0 + 13T1,1

)
pj,xrk −

(
15T2

0,0 + 11T0,2 + 8T2,0 + 13T1,1

)
pjrk,x

+

(
3T0,1 + 9T1,0

)
pj,xxrk +

(
3T0,1 − 3T1,0

)
pj,xrk,x −

(
9T0,1 + 3T1,0

)
pjrk,xx

+6T0,0(pj,xxxrk − pj,xxrk,x + pj,xrk,xx − pjrk,xxx)

+pj,xxxxxrk − pj,xxxxrk,x + pj,xxxrk,xx − pj,xxrk,xxx + pj,xrk,xxxx − pjrk,xxxxx

]
,

(3.20)

where β = β1 − β2 and



T0,0 =
3∑

j=1
pjrj , T0,1 =

3∑
j=1

pjrj,x, T1,0 =
3∑

j=1
pj,xrj ,

T0,2 =
3∑

j=1
pjrj,xx, T2,0 =

3∑
j=1

pj,xxrj , T1,1 =
3∑

j=1
pj,xrj,x,

T0,3 =
3∑

j=1
pjrj,xxx, T1,2 =

3∑
j=1

pj,xrj,xx, T2,1 =
3∑

j=1
pj,xxrj,x, T3,0 =

3∑
j=1

pj,xxxrj ,

T0,4 =
3∑

j=1
pjrj,xxxx, T1,3 =

3∑
j=1

pj,xrj,xxx, T2,2 =
3∑

j=1
pj,xxrj,xx,

T3,1 =
3∑

j=1
pj,xxxrj,xT4,0 =

3∑
j=1

pj,xxxxrj .
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We always assume that b[m] = (b
[m]
1 , b

[m]
2 , b

[m]
3 ) and c[m] = (c

[m]
1 , c

[m]
2 , c

[m]
3 )T , for m ∈ {1, 2, 3, 4, 5, 6, 7}.

To derive the sixth-order six-component AKNS integrable system, we take the Lax matrices

V [6] = V [6](u, λ) = (λ6W )+ =

6∑
m=0

Wmλ
6−m, (3.21)

by setting the modification terms to be zero.

We begin with the spatial and temporal equations of the spectral problems, with the associated Lax pair

{U, V }:

φx = iUφ, (3.22)

φt = iV φ, (3.23)

where V = V [6] and φ is the eigenfunction [39].

The Lax matrix operator V is determined by the compatibility condition φxt = φtx which leads to the zero

curvature equation:

Ut − Vx + i[U, V ] = 0, (3.24)

which gives the six-component system of soliton equations

ut =

pT
r


t

= i

 αb[7]T

−αc[7],

 (3.25)

where b[7] and c[7] are defined earlier, and

V =



V11 V12 V13 V14

V21 V22 V23 V24

V31 V32 V33 V34

V41 V42 V43 V44


, (3.26)
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where

V11 = a[0]λ6 +

6∑
l=2

a[l]λ6−l, V12 =
6∑

l=1

b
[l]
1 λ

6−l, V13 =
6∑

l=1

b
[l]
2 λ

6−l, V14 =
6∑

l=1

b
[l]
3 λ

6−l, (3.27)

V21 =

6∑
l=1

c
[l]
1 λ

6−l, V22 = d
[0]
11λ

6 +

6∑
l=2

d
[l]
11λ

6−l, V23 =

6∑
l=2

d
[l]
12λ

6−l, V24 =

6∑
l=2

d
[l]
13λ

6−l, (3.28)

V31 =
6∑

l=1

c
[l]
2 λ

6−l, V32 =
6∑

l=2

d
[l]
21λ

6−l, V33 = d
[0]
22λ

6 +
6∑

l=2

d
[l]
22λ

6−l, V34 =
6∑

l=2

d
[l]
23λ

6−l, (3.29)

V41 =
6∑

l=1

c
[l]
3 λ

6−l, V42 =
6∑

l=2

d
[l]
31λ

6−l, V43 =
6∑

l=2

d
[l]
32λ

6−l, V44 = d
[0]
33λ

6 +
6∑

l=2

d
[l]
33λ

6−l. (3.30)

Thus, we deduce the coupled AKNS system of sixth-order equations [39]:

pk,t = −i
β

α6

[
pk,xxxxxx + 6(

3∑
i=1

piri)pk,xxxx + (9
3∑

i=1

piri,x + 15
3∑

i=1

pi,xri)pk,xxx

+

(
15(

3∑
i=1

piri)
2 + 11

3∑
i=1

piri,xx + 20
3∑

i=1

pi,xxri + 25
3∑

i=1

pi,xri,x

)
pk,xx

+

(
(

3∑
i=1

piri)(15
3∑

i=1

piri,x + 45
3∑

i=1

pi,xri) + 15
3∑

i=1

pi,xxxri + 4
3∑

i=1

piri,xxx

+ 20

3∑
i=1

pi,xri,xx + 25

3∑
i=1

pi,xxri,x

)
pk,x

+

(
20(

3∑
i=1

piri)
3 + (

3∑
i=1

piri)(20
3∑

i=1

piri,xx + 35
3∑

i=1

pi,xxri + 25
3∑

i=1

pi,xri,x)

+ 10(
3∑

i=1

piri,x)
2 + 20(

3∑
i=1

pi,xri)(
3∑

i=1

piri,x) + 25(
3∑

i=1

pi,xri)
2

+ 2
3∑

i=1

piri,xxxx + 4
3∑

i=1

pi,xri,xxx + 11
3∑

i=1

pi,xxri,xx + 9
3∑

i=1

pi,xxxri,x + 6
3∑

i=1

pi,xxxxri

)
pk

]
,
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rk,t = i
β

α6

[
rk,xxxxxx + 6(

3∑
i=1

piri)rk,xxxx + (15
3∑

i=1

piri,x + 9
3∑

i=1

pi,xri)rk,xxx

+

(
15(

3∑
i=1

piri)
2 + 20

3∑
i=1

piri,xx + 11
3∑

i=1

pi,xxri + 25
3∑

i=1

pi,xri,x

)
rk,xx

+

(
(

3∑
i=1

piri)(45

3∑
i=1

piri,x + 15

3∑
i=1

pi,xri) + 4

3∑
i=1

pi,xxxri + 15

3∑
i=1

piri,xxx

+ 25
3∑

i=1

pi,xri,xx + 20
3∑

i=1

pi,xxri,x

)
rk,x

+

(
20(

3∑
i=1

piri)
3 + (

3∑
i=1

piri)(35
3∑

i=1

piri,xx + 20
3∑

i=1

pi,xxri + 25
3∑

i=1

pi,xri,x)

+ 25(

3∑
i=1

piri,x)
2 + 20(

3∑
i=1

pi,xri)(

3∑
i=1

piri,x) + 10(

3∑
i=1

pi,xri)
2

+ 6

3∑
i=1

piri,xxxx + 9

3∑
i=1

pi,xri,xxx + 11

3∑
i=1

pi,xxri,xx + 4

3∑
i=1

pi,xxxri,x + 2

3∑
i=1

pi,xxxxri

)
rk

]
,

(3.31)

where k ∈ {1, 2, 3}.

3.2.2 Nonlocal reverse-time six-component AKNS

system of sixth-order

We study the nonlocal reverse-time by considering specific reductions for the spectral matrix

UT (x,−t,−λ) = −CU(x, t, λ)C−1, (3.32)

where C =

1 0

0 Σ

 and Σ is a constant invertible symmetric 3× 3 matrix, in other words detΣ ̸= 0 and

ΣT = Σ, see [38].

Because U(x, t, λ) = λΛ + P (x, t), for P =

0 p

r 0

, using the reduction (3.32) we can easily prove

that

P T (x,−t) = −CP (x, t)C−1. (3.33)
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It follows from (3.33) that

pT (x,−t) = −Σr(x, t) i.e. r(x, t) = −Σ−1pT (x,−t). (3.34)

Similarly from V (x, t, λ) = λ6Ω + Q(x, t, λ) along with (3.34), one can prove with a tedious calculation

that

QT (x,−t,−λ) = CQ(x, t, λ)C−1, (3.35)

and

V T (x,−t,−λ) = CV (x, t, λ)C−1, (3.36)

where Ω = diag(β1, β2, β2, β2).

It is interesting that the two nonlocal Lax matrices UT (x,−t,−λ) and V T (x,−t,−λ) satisfy the equivalent

zero curvature equation:

UT
t (x,−t,−λ) + V T

x (x,−t,−λ) + i
[
UT (x,−t,−λ), V T (x,−t,−λ)

]
= 0. (3.37)

By takingΣ = diag(ρ−1
1 , ρ−1

2 , ρ−1
3 ), where ρ1, ρ2, ρ3 are non-zero real, we deduce from (3.34) the nonlocal

relation between the components of the vectors p and r, that is

ri(x, t) = −ρipi(x,−t) for i ∈ {1, 2, 3}. (3.38)

Hence, we can reduce the coupled equations (3.31) to the nonlocal reverse-time sixth-order equation:
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pk,t(x, t) = −i
β

α6

[
pk,xxxxxx(x, t)

− 6

( 3∑
i=1

ρipi(x, t)pi(x,−t)
)
pk,xxxx

−
(
9

3∑
i=1

ρipi(x, t)pi,x(x,−t) + 15

3∑
i=1

ρipi,x(x, t)pi(x,−t)
)
pk,xxx

+

(
15
( 3∑
i=1

ρipi(x, t)pi(x,−t)
)2 − 11

3∑
i=1

ρipi(x, t)pi,xx(x,−t)

− 20
3∑

i=1

ρipi,xx(x, t)pi(x,−t)− 25
3∑

i=1

ρipi,x(x, t)pi,x(x,−t)
)
pk,xx

+

(( 3∑
i=1

ρipi(x, t)pi(x,−t)
)(

15
3∑

i=1

ρipi(x, t)pi,x(x,−t) + 45
3∑

i=1

ρipi,x(x, t)pi(x,−t)
)

− 15

3∑
i=1

ρipi,xxx(x, t)pi(x,−t)− 4

3∑
i=1

ρipi(x, t)pi,xxx(x,−t)

− 20

3∑
i=1

ρipi,x(x, t)pi,xx(x,−t)− 25

3∑
i=1

ρipi,xx(x, t)pi,x(x,−t)

)
pk,x

+

(
− 20

( 3∑
i=1

ρipi(x, t)pi(x,−t)
)3

+

( 3∑
i=1

ρipi(x, t)pi(x,−t)
)(

20
3∑

i=1

ρipi(x, t)pi,xx(x,−t)

+ 35
3∑

i=1

ρipi,xx(x, t)pi(x,−t) + 25
3∑

i=1

ρipi,x(x, t)pi,x(x,−t)
)

+ 10
( 3∑
i=1

ρipi(x, t)pi,x(x,−t)
)2

+ 20

( 3∑
i=1

ρipi,x(x, t)pi(x,−t)
)( 3∑

i=1

ρipi(x, t)pi,x(x,−t)
)

+ 25
( 3∑
i=1

ρipi,x(x, t)pi(x,−t)
)2 − 2

3∑
i=1

ρipi(x, t)pi,xxxx(x,−t)

− 4
3∑

i=1

ρipi,x(x, t)pi,xxx(x,−t)− 11
3∑

i=1

ρipi,xx(x, t)pi,xx(x,−t)

− 9
3∑

i=1

ρipi,xxx(x, t)pi,x(x,−t)− 6
3∑

i=1

ρipi,xxxx(x, t)pi(x,−t)

)
pk

]

for k ∈ {1, 2, 3}.

We can see that when all ρi < 0 for i ∈ {1, 2, 3}, the dispersive term and the nonlinear terms attract. Hence,

we obtain the focusing nonlocal reverse-time six-component sixth-order equation. Otherwise, if ρi’s are not
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all negative for i ∈ {1, 2, 3}, then we have combined focussing and defocussing cases.

3.3 Riemann-Hilbert problems

The spatial and temporal spectral problem of the six-component sixth-order AKNS equations can be written:

φx = iUφ = i(λΛ+ P )φ, (3.39)

φt = iV φ = i(λ6Ω +Q)φ, (3.40)

where Ω = diag(β1, β2, β2, β2), and

Q =



Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44


, (3.41)

with components

Q11 =
6∑

l=2

a[l]λ6−l, Q12 =
6∑

l=1

b
[l]
1 λ

6−l, Q13 =
6∑

l=1

b
[l]
2 λ

6−l, Q14 =
6∑

l=1

b
[l]
3 λ

6−l, (3.42)

Q21 =

6∑
l=1

c
[l]
1 λ

6−l, Q22 =

6∑
l=2

d
[l]
11λ

6−l, Q23 =

6∑
l=2

d
[l]
12λ

6−l, Q24 =

6∑
l=2

d
[l]
13λ

6−l, (3.43)

Q31 =
6∑

l=1

c
[l]
2 λ

6−l, Q32 =
6∑

l=2

d
[l]
21λ

6−l, Q33 =
6∑

l=2

d
[l]
22λ

6−l, Q34 =
6∑

l=2

d
[l]
23λ

6−l, (3.44)

Q41 =
6∑

l=1

c
[l]
3 λ

6−l, Q42 =
6∑

l=2

d
[l]
31λ

6−l, Q43 =
6∑

l=2

d
[l]
32λ

6−l, Q44 =
6∑

l=2

d
[l]
33λ

6−l. (3.45)

Throughout the dissertation, we assume that α = α1 − α2 < 0 and β = β1 − β2 < 0.

To find soliton solutions we begin with an initial condition (p(x, 0), rT (x, 0))T and evolute in time to reach

(p(x, t), rT (x, t))T . Taking pj and rj in Schwartz space, they will decay exponentially, and so, pj → 0

and rj → 0 as x, t → ±∞ for j ∈ {1, 2, 3}. Therefore from the spectral problems (3.39) and (3.40), the

57



asymptotic behaviour of the fundamental matrix φ can be written as

φ(x, t) ; eiλΛx+iλ6Ωt. (3.46)

Hence, the solution of the spectral problems can be written in the form:

φ(x, t) = ψ(x, t)eiλΛx+iλ6Ωt. (3.47)

The Jost solution of the eigenfunction (3.47) requires that [20, 45]

ψ(x, t) → I4, as x, t→ ±∞, (3.48)

where I4 is the 4 × 4 identity matrix. The Lax pair (3.39) and (3.40) can be rewritten in terms of ψ using

equation (3.47), which gives the equivalent expression of the spectral problems

ψx = iλ[Λ,ψ] + iPψ, (3.49)

ψt = iλ6[Ω,ψ] + iQψ. (3.50)

To construct the Riemann-Hilbert problems and their solutions in the reflectionless case, we are going to use

the adjoint spectral problems of φx = iUφ and φt = iV φ. Their adjoints are

φ̃x = −iφ̃U, (3.51)

φ̃t = −iφ̃V, (3.52)

and the equivalent adjoint spectral problems read

ψ̃x = −iλ[ψ̃, Λ]− iψ̃P, (3.53)

ψ̃t = −iλ6[ψ̃, Ω]− iψ̃Q. (3.54)
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Because tr(iP ) = 0 and tr(iQ) = 0, using Liouvilles’s formula [45], it is easy to see that the (det(ψ))x =

0, that is, det(ψ) is a constant, and utilizing the boundary condition (3.48), we conclude

det(ψ) = 1, (3.55)

and hence the Jost matrix ψ is invertible.

Furthermore, as ψ−1
x = −ψ−1ψxψ

−1, we can derive from (3.49),

ψ−1
x = −iλ[ψ−1, Λ]− iψ−1P. (3.56)

We can also show that both satisfies the temporal adjoint equation (3.54) as well.

Notice that if the eigenfunction ψ(x, t, λ) is a solution of the spectral problem (3.49), then ψ−1(x, t, λ)

is a solution of the adjoint spectral problem (3.53), implying that Cψ−1(x, t, λ) is also a solution of (3.53)

with the same eigenvalue because ψ−1
x = −ψ−1ψxψ

−1. In a similar way, the nonlocal ψT (x,−t,−λ)C

is also a solution of the spectral adjoint problem (3.53). Since the boundary condition is the same for both

solutions as x→ ±∞, this guarantees the uniqueness of the solution, and so

ψT (x,−t,−λ) = Cψ−1(x, t, λ)C−1. (3.57)

As a result, if λ is an eigenvalue of the spectral problems, then −λ is also an eigenvalue and the relation

(3.57) holds.

Now, we are going to work with the spatial spectral problem (3.49), assuming that the time is t = 0.

For the notation simplicity, we denote Y + and Y − to indicate the boundary conditions are set as x → ∞

and x→ −∞, respectively.

We know that

ψ± → I4 when x→ ±∞. (3.58)

From (3.47), this allows us to write

φ± = ψ±eiλΛx. (3.59)

Both φ+ and φ− satisfy the spectral spatial differential equation (3.39), i.e., both are two solutions of that
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equation. Also, note that both (ψ+)−1 and (ψ−)−1 satisfies the spatial adjoint equation (3.53). Thus, they

are linearly dependent, hence there exists a scattering matrix S(λ), such that

φ− = φ+S(λ). (3.60)

Substituting (3.59) into (3.60) leads to

ψ− = ψ+eiλΛxS(λ)e−iλΛx, for λ ∈ R, (3.61)

where

S(λ) = (sjk)4×4 =



s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44


. (3.62)

Given that det(ψ±) = 1, we obtain

det(S(λ)) = 1. (3.63)

In addition, we can show from (3.61) and (3.57) that S(λ) possess the involution relation

ST (−λ) = CS−1(λ)C−1. (3.64)

We deduce from (3.64) that

ŝ11(λ) = s11(−λ), (3.65)

where the inverse scattering data matrix S−1 = (ŝjk)4×4 for j, k ∈ {1, 2, 3, 4}.

From ψ− = ψ+eiλΛxS(λ)e−iλΛx, ψ± → I4 when x → ±∞. In order to formulate Riemann-Hilbert

problems we need to analyse the analyticity of the Jost matrix ψ±.

To do so, we can use the Volterra integral equations to write the solutions ψ± in a uniquely manner by using
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the spatial spectral problem (3.39):

ψ−(x, λ) = I4 + i

x∫
−∞

eiλΛ(x−y)P (y)ψ−(y, λ)eiλΛ(y−x)dy, (3.66)

ψ+(x, λ) = I4 − i

+∞∫
x

eiλΛ(x−y)P (y)ψ+(y, λ)eiλΛ(y−x)dy. (3.67)

We denote the matrix ψ− to be

ψ− =



ψ−
11 ψ−

12 ψ−
13 ψ−

14

ψ−
21 ψ−

22 ψ−
23 ψ−

24

ψ−
31 ψ−

32 ψ−
33 ψ−

34

ψ−
41 ψ−

42 ψ−
43 ψ−

44


. (3.68)

and ψ+ is denoted similarly. So from (3.66) the components of the first column of ψ− are

ψ−
11 = 1 + i

∫ x

−∞
(p1(y)ψ

−
21(y, λ) + p2(y)ψ

−
31(y, λ) + p3(y)ψ

−
41(y, λ))dy, (3.69)

ψ−
21 = i

∫ x

−∞
r1(y)ψ

−
11(y, λ)e

−iλα(x−y)dy, (3.70)

ψ−
31 = i

∫ x

−∞
r2(y)ψ

−
11(y, λ)e

−iλα(x−y)dy, (3.71)

ψ−
41 = i

∫ x

−∞
r3(y)ψ

−
11(y, λ)e

−iλα(x−y)dy. (3.72)

Similarly, the components of the second column of ψ− are

ψ−
12 = i

∫ x

−∞

(
p1(y)ψ

−
22(y, λ) + p2(y)ψ

−
32(y, λ) + p3(y)ψ

−
42(y, λ)

)
eiλα(x−y)dy, (3.73)

ψ−
22 = 1 + i

∫ x

−∞
r1(y)ψ

−
12(y, λ)dy, (3.74)

ψ−
32 = i

∫ x

−∞
r2(y)ψ

−
12(y, λ)dy, (3.75)

ψ−
42 = i

∫ x

−∞
r3(y)ψ

−
12(y, λ)dy, (3.76)
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and the components of the third column of ψ− are

ψ−
13 = i

∫ x

−∞

(
p1(y)ψ

−
23(y, λ) + p2(y)ψ

−
33(y, λ) + p3(y)ψ

−
43(y, λ)

)
eiλα(x−y)dy, (3.77)

ψ−
23 = i

∫ x

−∞
r1(y)ψ

−
13(y, λ)dy, (3.78)

ψ−
33 = 1 + i

∫ x

−∞
r2(y)ψ

−
13(y, λ)dy, (3.79)

ψ−
43 = i

∫ x

−∞
r3(y)ψ

−
13(y, λ)dy, (3.80)

and finally the components of the fourth column of ψ− are

ψ−
14 = i

∫ x

−∞

(
p1(y)ψ

−
24(y, λ) + p2(y)ψ

−
34(y, λ) + p3(y)ψ

−
44(y, λ)

)
eiλα(x−y)dy, (3.81)

ψ−
24 = i

∫ x

−∞
r1(y)ψ

−
14(y, λ)dy, (3.82)

ψ−
34 = i

∫ x

−∞
r2(y)ψ

−
14(y, λ)dy, (3.83)

ψ−
44 = 1 + i

∫ x

−∞
r3(y)ψ

−
14(y, λ)dy. (3.84)

Recall that α < 0. If Im(λ) > 0 and y < x then, Re(e−iλα(x−y)) decays exponentially and so each integral

of the first column of ψ− converges. As a result, the components of the first column of ψ−, are analytic in

the upper half complex plane for λ ∈ C+, and continuous for λ ∈ C+ ∪ R.

In the same way, for y > x, the components of the last three columns of ψ+ are analytic in the upper half

plane for λ ∈ C+ and continuous for λ ∈ C+ ∪ R.

It is worth mentioning the case when Im(λ) < 0, then the first column of ψ+ is analytic in the lower half

plane for λ ∈ C− and continuous for λ ∈ C− ∪ R, and the components of the last three columns of ψ− are

analytic in the lower half plane for λ ∈ C− and continuous for λ ∈ C− ∪ R.

Now, let us construct the associated Riemann-Hilbert problems. To construct the analytic matrix P+ in the

upper-half plane, we note that

ψ± = φ±e−iλΛx. (3.85)

62



Let ψ±
j be the jth column of ψ± for j ∈ {1, 2, 3, 4}, hence the first Jost matrix solution can be taken as

P+(x, λ) = (ψ−
1 , ψ

+
2 , ψ

+
3 , ψ

+
4 ) = ψ−H1 + ψ+H2, (3.86)

where H1 = diag(1, 0, 0, 0) and H2 = diag(0, 1, 1, 1).

Therefore, P+ is then analytic for λ ∈ C+ and continuous for λ ∈ C+ ∪ R.

For the lower-half plane, we can construct P− ∈ C− which is the analytic counterpart of P+ ∈ C+. To do

so, we utilize the equivalent spectral adjoint equation (3.56). Because ψ̃± = (ψ±)−1 and φ± = ψ±eiλΛx,

we have

(ψ±)−1 = eiλΛx(φ±)−1. (3.87)

Let ψ̃±
j be the jth row of ψ̃± for j ∈ {1, 2, 3, 4}. As above, we can get

P−(x, λ) =

(
ψ̃−
1 , ψ̃

+
2 , ψ̃

+
3 , ψ̃

+
4

)T

= H1(ψ
−)−1 +H2(ψ

+)−1. (3.88)

Hence, P− is analytic for λ ∈ C− and continuous for λ ∈ C− ∪ R.

Since both ψ− and ψ+ satisfy

ψT (x,−t,−λ) = Cψ−1(x, t, λ)C−1, (3.89)

using (3.86), we have

P+(x,−t,−λ) = ψ−(x,−t,−λ)H1 + ψ+(x,−t,−λ)H2, (3.90)

or equivalently

(P+)T (x,−t,−λ) = HT
1 (ψ

−)T (x,−t,−λ) +HT
2 (ψ

+)T (x,−t,−λ). (3.91)

63



Substituting (3.89) in (3.91), we have the nonlocal involution property

(P+)T (x,−t,−λ) = CP−(x, t, λ)C−1. (3.92)

Employing the analyticity of both P+ and P−, we can construct the Riemann-Hilbert problems

P−P+ = J, (3.93)

where J = eiλΛx(H1 +H2S)(H1 + S−1H2)e
−iλΛx for λ ∈ R.

Replacing (3.61) in (3.86), we have

P+(x, λ) = ψ+(eiλΛxSe−iλΛxH1 +H2). (3.94)

Because ψ+(x, λ) → I4 when x→ +∞, we get

lim
x→+∞

P+ =



s11(λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, for λ ∈ C+ ∪ R. (3.95)

In the same way,

lim
x→−∞

P− =



ŝ11(λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, for λ ∈ C− ∪ R. (3.96)

Thus if we choose

G+(x, λ) = P+(x, λ)



s−1
11 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


and (G−)−1(x, λ) =



ŝ−1
11 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


P−(x, λ) ,

(3.97)
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the two generalized matrices G+(x, λ) and G−(x, λ) generate the matrix Riemann-Hilbert problems on the

real line for the six-component AKNS system of sixth-order given by

G+(x, λ) = G−(x, λ)G0(x, λ), for λ ∈ R, (3.98)

where the jump matrix G0(x, λ) can be cast as

G0(x, λ) =



ŝ−1
11 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


J



s−1
11 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (3.99)

This reads

G0(x, λ) =



s−1
11 ŝ

−1
11 ŝ12ŝ

−1
11 e

iλαx ŝ13ŝ
−1
11 e

iλαx ŝ14ŝ
−1
11 e

iλαx

s21s
−1
11 e

−iλαx 1 0 0

s31s
−1
11 e

−iλαx 0 1 0

s41s
−1
11 e

−iλαx 0 0 1


, (3.100)

and its canonical normalization conditions are:

G+(x, λ) → I4 as λ ∈ C+ ∪ R → ∞, (3.101)

G−(x, λ) → I4 as λ ∈ C− ∪ R → ∞. (3.102)

From (3.92) along with (3.97) and using (3.65), we deduce the nonlocal involution property

(G+)T (x,−t,−λ) = C(G−)−1(x, t, λ)C−1. (3.103)

Furthermore, we derive from (3.99) and (3.65), the following nonlocal involution property for G0:

GT
0 (x,−t,−λ) = CG0(x, t, λ)C

−1. (3.104)
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3.3.1 Time evolution of the scattering data

Reaching this point, we need to determine the scattering data as they evolute in time. In order to do that ,

we differentiate equation (3.61) with respect to time t and applying (3.50) gives

St = iλ6[Ω,S], (3.105)

and thus

St =



0 iβλ6s12 iβλ6s13 iβλ6s14

−iβλ6s21 0 0 0

−iβλ6s31 0 0 0

−iβλ6s41 0 0 0


. (3.106)

As a result, we have 

s12(t, λ) = s12(0, λ)e
iβλ6t,

s13(t, λ) = s13(0, λ)e
iβλ6t,

s14(t, λ) = s14(0, λ)e
iβλ6t,

s21(t, λ) = s21(0, λ)e
−iβλ6t,

s31(t, λ) = s31(0, λ)e
−iβλ6t,

s41(t, λ) = s41(0, λ)e
−iβλ6t,

(3.107)

and s11, s22, s23, s24, s32, s33, s34, s42, s43, s44 are constants.

3.4 Soliton solutions

3.4.1 General case

The determinant of the matrix G± determines the type of soliton solutions generated using the Riemann-

Hilbert problems. In the regular case, when det(G±) ̸= 0, we obtain the unique solution. In the non-regular

case, that is to say when det(G±) = 0, it could generate discrete eigenvalues in the spectral plane. This

non-regular case can be transformed into the regular case to solve for soliton solutions [45].
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From (3.94) and det(ψ±) = 1, we can show that

det(P+(x, λ)) = s11(λ), (3.108)

and in the same way,

det(P−(x, λ)) = ŝ11(λ). (3.109)

Because det(S(λ)) = 1, this implies that S−1(λ) =

(
cof(S(λ))

)T

and

ŝ11 =

∣∣∣∣∣∣∣∣∣∣
s22 s23 s24

s32 s33 s34

s42 s43 s44

∣∣∣∣∣∣∣∣∣∣
, (3.110)

which should be zero for the non-regular case.

To give rise to soliton solutions, we need the solutions of det(P+(x, λ)) = det(P−(x, λ)) = 0 to be simple.

When det(P+(x, λ)) = s11(λ) = 0, we assume s11(λ) has simple zeros producing discrete eigenvalues

λk ∈ C+ for k ∈ {1, 2, ..., N}, while for det(P−(x, λ)) = ŝ11(λ) = 0, we assume ŝ11(λ) has simple

zeros producing discrete eigenvalues λ̂k ∈ C− for k ∈ {1, 2, ..., N}, which are the poles of the transmission

coefficients [20].

From ŝ11(λ) = s11(−λ) and det(P±(x, λ)) = 0, we have the nonlocal involution relation

λ̂ = −λ. (3.111)

Each Ker(P+(x, λk)) contains only a single column vector vk, and similarly each Ker(P−(x, λ̂k)) con-

tains only a single row vector v̂k such that:

P+(x, λk)vk = 0 for k ∈ {1, 2, ..., N}, (3.112)

and

v̂kP
−(x, λ̂k) = 0 for k ∈ {1, 2, ..., N}. (3.113)
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To obtain explicit soliton solutions, we take G0 = I4 in the Riemann-Hilbert problems. This will force the

reflection coefficients s21 = s31 = s41 = 0 and ŝ12 = ŝ13 = ŝ14 = 0.

In that case, the Riemann-Hilbert problems can be presented as follows [26]:

G+(x, λ) = I4 −
N∑

k,j=1

vk(M
−1)kj v̂j

λ− λ̂j
, (3.114)

and

(G−)−1(x, λ) = I4 +
N∑

k,j=1

vk(M
−1)kj v̂j

λ− λk
, (3.115)

where M = (mkj)N×N is a matrix defined by

mkj =


v̂kvj

λj−λ̂k
, if λj ̸= λ̂k,

0, if λj = λ̂k,

k, j ∈ {1, 2, ..., N}. (3.116)

Since the zeros λk and λ̂k are constants, they are independent of space and time. We can explore the spatial

and temporal evolution of the scattering vectors vk(x, t) and v̂k(x, t) for 1 ≤ k ≤ N .

Taking the x-derivative of both sides of the equation

P+(x, λk)vk = 0, 1 ≤ k ≤ N, (3.117)

and knowing that P+ satisfies the spectral spatial equivalent equation (3.49), along with (3.112), we obtain

P+(x, λk)

(
dvk
dx

− iλkΛvk

)
= 0 for k, j ∈ {1, 2, ..., N}. (3.118)

In a similar manner, taking the t-derivative and using the temporal equation (3.50) and (3.112), we acquire

P+(x, λk)

(
dvk
dt

− iλ6kΩvk

)
= 0 for k, j ∈ {1, 2, ..., N}. (3.119)
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For the adjoint spectral equations (3.53) and (3.54) , we can obtain the following similar results

(
dv̂k
dx

+ iλ̂kv̂kΛ

)
P−(x, λ̂k) = 0, (3.120)

and (
dv̂k
dt

+ iλ̂6kv̂kΩ

)
P−(x, λ̂k) = 0. (3.121)

Because vk is a single vector in the kernel of P+, so dvk
dx − iλkΛvk and dvk

dt − iλ6kΩvk are scalar multiples

of vk.

Hence without loss of generality, we can take the space dependence of vk to be:

dvk
dx

= iλkΛvk, 1 ≤ k ≤ N (3.122)

and the time dependence of vk as:

dvk
dt

= iλ6kΩvk, 1 ≤ k ≤ N. (3.123)

In this way, we can conclude that

vk(x, t) = eiλkΛx+iλ6
kΩtwk for k ∈ {1, 2, ..., N}, (3.124)

by solving equations (3.122) and (3.123), where wk is a constant column vector. Likewise, we get

v̂k(x, t) = ŵke
−iλ̂kΛx−iλ̂6

kΩt for k ∈ {1, 2, ..., N}, (3.125)

where ŵk is a constant row vector.

From (3.112) and using the formula (3.92), it is easy to see

vTk (x,−t, λk)(P+)T (x,−t, λk) = vTk (x,−t, λk)CP−(x, t,−λk)C−1 = 0. (3.126)

69



Because vTk (x,−t, λk)CP−(x, t,−λk) can be zero and using (3.113), this leads to

vTk (x,−t, λk)CP−(x, t, λ̂k) = v̂k(x, t, λ̂k)P
−(x, t, λ̂k) (3.127)

= v̂k(x, t,−λk)P−(x, t,−λk) = 0. (3.128)

From (3.111), we have λ̂k = −λk for k ∈ {1, 2, ..., N}, and we can take

v̂k(x, t, λ̂k) = vTk (x,−t, λk)C. (3.129)

Thus, the involution relations (3.124) and (3.125) give

vk(x, t) = eiλkΛx+iλ6
kΩtwk, (3.130)

v̂k(x, t) = wT
k e

−iλ̂kΛx−iλ̂6
kΩtC. (3.131)

Because the jump matrix G0 = I4, we can solve the Riemann-Hilbert problem precisely. As a result, we

can determine the potentials by computing the matrix P+. Because P+ is analytic, we can expand G+ as

follows:

G+(x, λ) = I4 +
1

λ
G+

1 (x) +O(
1

λ2
), when λ→ ∞. (3.132)

BecauseG+ satisfies the spectral problem, substituting it in (3.49) and matching the coefficients of the same

power of 1
λ , at order O(1), we get

P = −[Λ,G+
1 ]. (3.133)

If we denote

G+
1 =



(G+
1 )11 (G+

1 )12 (G+
1 )13 (G+

1 )14

(G+
1 )21 (G+

1 )22 (G+
1 )23 (G+

1 )24

(G+
1 )31 (G+

1 )32 (G+
1 )33 (G+

1 )34

(G+
1 )41 (G+

1 )42 (G+
1 )43 (G+

1 )44


, (3.134)
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then

P = −[Λ,G+
1 ] =



0 −α(G+
1 )12 −α(G+

1 )13 −α(G+
1 )14

α(G+
1 )21 0 0 0

α(G+
1 )31 0 0 0

α(G+
1 )41 0 0 0


. (3.135)

Consequently, we can recover the potentials pj and rj for j ∈ {1, 2, 3}:

p1 = −α(G+
1 )12, r1 = α(G+

1 )21,

p2 = −α(G+
1 )13, r2 = α(G+

1 )31, (3.136)

p3 = −α(G+
1 )14, r3 = α(G+

1 )41.

It can be seen from (3.132) that

G+
1 = λ lim

λ→∞
(G+(x, λ)− I4), (3.137)

and then using equation (3.114), we deduce

G+
1 = −

N∑
k,j=1

vk(M
−1)k,j v̂j . (3.138)

In addition, by the use of equations (3.33) and (3.133), we can easily prove the following nonlocal involution

property

(G+
1 )

T (x,−t) = CG+
1 (x, t)C

−1. (3.139)

By substituting (3.138) into (3.136) and using (3.130) and (3.131), we generate theN -soliton solution to the

nonlocal reverse-time six-component AKNS system of sixth-order

pi = α
N∑

k,j=1

vk,1(M
−1)kj v̂j,i+1 for i ∈ {1, 2, 3}, (3.140)

where wk is an arbitrary constant column vector in C4, and

vk = (vk,1, vk,2, vk,3, ..., vk,n+1)
T , v̂k = (v̂k,1, v̂k,2, v̂k,3, ..., v̂k,n+1).
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3.5 Exact soliton solutions and their dynamics

3.5.1 Explicit one-soliton solution and its dynamics

A general explicit solution for a single soliton in the reverse-time case when N = 1, and w1 =

(w11, w12, w13, w14)
T , with λ1 ∈ C an arbitrary, with λ̂1 = −λ1, the solution is given by

p1(x, t) =
2ρ2ρ3λ1(α1 − α2)w11w12e

iλ1(α1+α2)x+iλ6
1(β1−β2)t

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e

2iλ1α2x
, (3.141)

p2(x, t) =
2ρ1ρ3λ1(α1 − α2)w11w13e

iλ1(α1+α2)x+iλ6
1(β1−β2)t

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e

2iλ1α2x
, (3.142)

p3(x, t) =
2ρ1ρ2λ1(α1 − α2)w11w14e

iλ1(α1+α2)x+iλ6
1(β1−β2)t

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e

2iλ1α2x
. (3.143)

We can get the amplitude of p1:

|p1(x, t)| = 2Ae−βtIm(λ6
1) (3.144)

where

A =

∣∣∣∣∣ 2λ1ρ2ρ3(α1 − α2)w11w12e
−Im(λ1(α1+α2)x)

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e

2iλ1α2x

∣∣∣∣∣. (3.145)

We can see from p1 that the frequency is zero, thus the velocity is zero. Hence the one-soliton is not a

travelling wave, and it is stationary in space.

Fixing x = x0, the amplitude is |p1(x, t)| = 2A|x=x0e
−βtIm(λ6

1). If Im(λ61) < 0 the amplitude decays

exponentially, while it grows exponentially for Im(λ61) > 0 and when Im(λ61) = 0, the amplitude remains

constant over the time.

In this reverse-time case, the resulting one-soliton does not collapse, either it strictly increases, decreases or

stays constant.

From the spectral plane, let λ1 = ξ + iη = |λ1|eiθ, where |λ1| > 0, and 0 < θ < 2π then:

if



θ ∈
{
(n6π,

n+1
6 π)

}
, then the amplitude of the soliton is increasing for n = {0, 2, 4, . . .},

θ ∈
{
(n6π,

n+1
6 π)

}
, the amplitude of the soliton is decreasing for n = {1, 3, 5, . . .},

θ ∈
(
n
6 mod{n}

)
π, the amplitude of the soliton is constant for n = {0, 1, 2, 3, 4, 5, . . .},

θ ∈ {nπ}, we obtain one breather with constant amplitude for n = {0, 1, 2, 3, 4, 5, . . .}.

(3.146)
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This illustration is shown by the figure below.

Figure 2.: Spectral plane of eigenvalues.

For the one-soliton solution, when λ1 does not lie on the real axis, the imaginary axis or the trisectors,

i.e. λ /∈ {ξ, iη, (1 ± i
√
3)ξ, (1 ± i 1√

3
)ξ}, the amplitude of the potential grows and decays exponentially, if

Im(λ61) > 0 and Im(λ61) < 0, respectively. In Figure 3 and Figure 4, we have two examples where the

amplitude grows and decays exponentially.

The amplitude does not change when Im(λ61) = 0, i.e. that means when λ1 belongs to the real axis, the

imaginary axis or the trisectors. If λ1 lies on the imaginary axis or the trisectors, then we have a fundamental

soliton as seen in figure 5. If λ1 is purely imaginary, then the Lax matrixU(u, λ) is a skew-Hermitian matrix.

On the other hand, if λ1 lies on the real axis, we have a breather which is a periodic one-soliton with period

π
|αλ1| as seen in figure 6. This is a consequence of the Lax matrix U(u, λ) being a Hermitian matrix.
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Figure 3.: Spectral plane along with 3D, 2D and contour plots of |p1| in the focussing case of the one-
soliton with parameters (ρ1, ρ2, ρ3, α1, α2, β1, β2) = (−1,−2,−1,−1, 1,−1, 1), λ1 = −0.1 + 0.5i, w1 =
(1, i, 2 + i, 1).

Figure 4.: Spectral plane along with 3D, 2D and contour plots of |p1| in the focussing case of the one-
soliton with parameters (ρ1, ρ2, ρ3, α1, α2, β1, β2) = (−1,−2,−1,−1, 1,−1, 1), λ1 = 0.1 + 0.5i, w1 =
(1, i, 2 + i, 1).
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Figure 5.: Spectral plane along with 3D, 2D and contour plots of |p1| of the one-soliton with parameters
(ρ1, ρ2, ρ3, α1, α2, β1, β2) = (1,−2,−1,−1, 1,−1, 1), λ1 = 2i, w1 = (1, i, 2 + i, 1).

Figure 6.: Spectral plane along with 3D, 2D and contour plots of |p1| of the one-soliton with parameters
(ρ1, ρ2, ρ3, α1, α2, β1, β2) = (1, 1, 1,−1, 1,−1, 1), λ1 = 0.5, w1 = (1, i, 2 + i, 1).
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Remark 3.5.1. In the case of one-soliton solutions, when the AKNS spectral problem (3.22) has higher

even-orders (NLS-type), i.e., λ2m1 = |λ1|2mei2mθ, m ∈ N, the amplitude of p1 can be written in the form:

|p1(x, t)| = Ae−Im(λ2m
1 (β1−β2)t+λ1(α1+α2)x) (3.147)

where A is a constant. From (3.147) if Im(λ2m1 ) = |λ1|2msin(2mθ) = 0, that gives the partition of the

complex plane by 2m-sectors.

If 0 < |λ1| < 1, then lim
m→∞

Im(λ2m1 ) = 0, and this means for any λ1 lying inside the disk of radius 1, the

soliton has a constant amplitude.

If |λ1| = 1, i.e., it lies on the circle of radius 1, then the amplitude |p1(x, t)| will be bounded by Aeβt ≤

|p1(x, t)| ≤ Ae−βt, when β = β1 − β2 < 0.

If |λ1| > 1, then lim
m→∞

Im(λ2m1 ) → ±∞, and so the amplitude will grow exponentially or it will decay to

zero exponentially.

3.5.2 Explicit two-soliton solution and its dynamics

A general explicit two-soliton solution in the reverse-time case when N = 2, w1 = (w11, w12, w13, w14)
T ,

w2 = (w21, w22, w23, w24)
T , (λ1, λ2) ∈ C2 are arbitrary, and λ̂1 = −λ1, λ̂2 = −λ2, is given if λ1 ̸= −λ2

by

p1(x, t) = 2ρ2ρ3(λ1 + λ2)(α1 − α2)
A(x, t)

B(x, t)
, (3.148)

p2(x, t) = 2ρ1ρ3(λ1 + λ2)(α1 − α2)
C(x, t)

B(x, t)
, (3.149)

p3(x, t) = 2ρ1ρ2(λ1 + λ2)(α1 − α2)
D(x, t)

B(x, t)
, (3.150)

where

A(x, t) = ei[λ
6
2(β1−β2)t+λ2(α1+α2)x]·

[(
w22M(λ1 + λ2)− 2w12Kλ1

)
w21λ2e

i2α2λ1x

− ρ1ρ2ρ3(λ1 − λ2)w
2
11w21w22λ2e

i2α1λ1x

]
+ei[λ

6
1(β1−β2)t+λ1(α1+α2)x]·

[(
w12N(λ1 + λ2)− 2w22Kλ2

)
w11λ1e

i2α2λ2x

+ ρ1ρ2ρ3(λ1 − λ2)w11w12w
2
21λ1e

i2α1λ2x

]
,

(3.151)
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B(x, t) = −4ρ1ρ2ρ3λ1λ2w11w21Ke
i(λ1+λ2)(α1+α2)x ·

[
ei(λ

6
1−λ6

2)(β1−β2)t + e−i(λ6
1−λ6

2)(β1−β2)t

]
+ ρ1ρ2ρ3w

2
21M(λ1 + λ2)

2ei2(α1λ2+α2λ1)x + ρ1ρ2ρ3w
2
11N(λ1 + λ2)

2ei2(α1λ1+α2λ2)x

+ ρ21ρ
2
2ρ

2
3w

2
11w

2
21(λ1 − λ2)

2ei2α1(λ1+λ2)x +

[
(λ21 + λ22)MN + (2MN − 4K2)λ1λ2

]
ei2α2(λ1+λ2)x,

(3.152)C(x, t) = ei[λ
6
2(β1−β2)t+λ2(α1+α2)x]·

[(
w23M(λ1 + λ2)− 2w13Kλ1

)
w21λ2e

i2α2λ1x

− ρ1ρ2ρ3(λ1 − λ2)w
2
11w21w23λ2e

i2α1λ1x

]
+ei[λ

6
1(β1−β2)t+λ1(α1+α2)x]·

[(
w13N(λ1 + λ2)− 2w23Kλ2

)
w11λ1e

i2α2λ2x

+ ρ1ρ2ρ3(λ1 − λ2)w11w13w
2
21λ1e

i2α1λ2x

]
,

(3.153)

D(x, t) = ei[λ
6
2(β1−β2)t+λ2(α1+α2)x]·

[(
w24M(λ1 + λ2)− 2w14Kλ1

)
w21λ2e

i2α2λ1x

− ρ1ρ2ρ3(λ1 − λ2)w
2
11w21w24λ2e

i2α1λ1x

]
+ei[λ

6
1(β1−β2)t+λ1(α1+α2)x]·

[(
w14N(λ1 + λ2)− 2w24Kλ2

)
w11λ1e

i2α2λ2x

+ ρ1ρ2ρ3(λ1 − λ2)w11w14w
2
21λ1e

i2α1λ2x

]
,

(3.154)

and M = ρ2ρ3w
2
12 + ρ1ρ3w

2
13 + ρ1ρ2w

2
14, N = ρ2ρ3w

2
22 + ρ1ρ3w

2
23 + ρ1ρ2w

2
24 and K = ρ2ρ3w12w22 +

ρ1ρ3w13w23 + ρ1ρ2w14w24.

For the two-soliton dynamics, we notice that either both the two solitons are moving (repeatedly or not) in

opposite directions or both are stationary, i.e., they don’t move with respect to space. In figure 7, we have

two travelling waves that move in opposite directions, keeping the same amplitude before and after interac-

tion in an elastic collision, that is, no energy radiation emitted [45]. Whereas in figure 8, the amplitudes of

the two waves change after interaction to new constant amplitudes resembling Manakov waves [46].

In figure 9, we have two solitons with exponentially decaying amplitude and stationary over the time, i.e.,

they do not move in space. On the other hand, we can have as in figure 10, two solitons with exponentially

decaying amplitude but moving apart over the time.

Aside, if both λ1 and λ2 lie on the real axis, then we will obtain breather solitons with the time pe-

riod 2π
β(λ6

1−λ6
2)

. An example is shown in figure 11, where the breather waves coincide for t = 5 and

t = 6.015873016.
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Figure 7.: Spectral plane along with 3D, 2D and contour plots of |p1| of the two-soliton with parameters
(ρ1, ρ2, ρ3, α1, α2, β1, β2) = (−1,−1, 1,−2, 1,−1, 2), (λ1, λ2) = (1.2 + 0.5i,−1.2 + 0.5i), w1 = (1, 1−
3i,−i, 1 + i), w2 = (2, 1− 3i,−i, 1 + i).

Figure 8.: Spectral plane along with 3D, 2D and contour plots of |p1| of the two-soliton with parameters
(ρ1, ρ2, ρ3, α1, α2, β1, β2) = (−1, 1,−1,−2, 1,−2, 1), (λ1, λ2) = (−0.4 + 0.8i, 0.4 + 0.8i), w1 = (1, 1−
i,−0.1 + i, 1 + i), w2 = (−1 + 2i, 1− 0.1i, 3 + i, 0).
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Figure 9.: Spectral plane along with 3D, 2D and contour plots of |p1| in the focussing case of the two-soliton
with parameters (ρ1, ρ2, ρ3, α1, α2, β1, β2) = (−1,−2,−3,−2, 1,−1, 2), (λ1, λ2) = (−0.01 + i,−0.03 +
i), w1 = (1, 0, 2 + i, 0), w2 = (1, 2− i, 0, 1).

Figure 10.: Spectral plane along with 3D, 2D and contour plots of |p1| in the focussing case of the two-soliton
with parameters (ρ1, ρ2, ρ3, α1, α2, β1, β2) = (−1,−2,−3,−2, 1,−1, 2), (λ1, λ2) = (0.01+ i,−0.03+ i),
w1 = (1, i, 2 + i, 1), w2 = (1, 2− i, i, 1).
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Figure 11.: Spectral plane along with 3D, 2D and contour plots of |p1| in the focussing case of the two-soliton
with parameters (ρ1, ρ2, ρ3, α1, α2, β1, β2) = (−1,−1,−1,−2, 1,−1/64π, 1/64π), (λ1, λ2) = (1, 2),
w1 = (1, 0, 2 + i, 1− i), w2 = (−1, 1− 2i,−i, 0).

3.5.3 Dynamics of a three-soliton solution

The three-soliton solution is given, for which we take N = 3, w1 = (w11, w12, w13, w14)
T , w2 =

(w21, w22, w23, w24)
T , w3 = (w31, w32, w33, w34)

T , (λ1, λ2, λ3) ∈ C3, and λ̂1 = −λ1, λ̂2 = −λ2,

λ̂3 = −λ3, by

p1 = α

3∑
k,j=1

vk,1(M
−1)kj v̂j,2, (3.155)

p2 = α

3∑
k,j=1

vk,1(M
−1)kj v̂j,3, (3.156)

p3 = α

3∑
k,j=1

vk,1(M
−1)kj v̂j,4. (3.157)

Without loss of generality, for the three-soliton solution, we take all three eigenvalues in the upper-half plane

in such a way that λj ̸= λk for j, k ∈ {1, 2, 3}.

Here, we can look at some examples of the three-soliton solution dynamics. We have two solitons moving
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in opposite directions interacting with one stationary soliton. After the interaction either the three solitons

keep their amplitudes or the amplitudes change to new constant amplitudes. An example is shown in figure

12.

Another behaviour could be the interaction of three solitons that are embedded into two solitons after the

interaction, where the stationary soliton keeps or changes its amplitude after collision as seen in figure 13.

We may have the opposite case where the two solitons unfold to three solitons.

A different class of behaviour shows that three solitons can interact and get embedded into a single soliton

after interaction.

In figure 14, we have three solitons, of which two are moving in opposite directions and one is stationary.

All of them have constant amplitudes before interaction. After the interaction, they are embedded into a

one stationary soliton with constant amplitude. We may have the opposite case where one stationary soliton

unfolds to three different solitons, each keeping its amplitude.

In figure 15, we also have three solitons, two solitons moving in opposite directions interacting with an

exponentially decreasing stationary soliton. In that case, after the interaction, they are embedded into one

stationary decreasing soliton over the time due to an effect of energy radiation.

In contrast, we can have one stationary increasing soliton that unfolds to three soltions, of which two of are

moving in opposite directions keeping their amplitude while the other is stationary and increasing exponen-

tially over the time.

In figure 16, we have three solitons, two solitons moving in opposite directions interacting with an expo-

nentially decreasing stationary soliton. They are embedded into a one moving soliton that keeps its constant

amplitude after the interaction where the stationary soliton vanish.

In contrary, one moving soliton can also unfold to three different solitons, where two are moving in opposite

direct keeping the amplitude and the other is increasing exponentially over the time [47].
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Figure 12.: Spectral plane along with 3D, 2D and contour plots of |p1| in the focussing case of the
three-soliton with parameters (ρ1, ρ2, ρ3, α1, α2, β1, β2) = (−1,−1,−1,−2, 1,−1, 1), (λ1, λ2, λ3) =
(1 + 0.5i,−1 + 0.5i, 0.5i), w1 = (1, 1 + 2i, 0, 0), w2 = (−1, 1− 2i, 0, 0), w3 = (2 + i, 1 + 2i, 1, 2i).

Figure 13.: Spectral plane along with 3D, 2D and contour plots of |p1| of the three-soliton with parameters
(ρ1, ρ2, ρ3, α1, α2, β1, β2) = (1, 1, 1,−2, 1,−2, 1), (λ1, λ2, λ3) = (1 + 0.5i,−1 + 0.5i, 0.75i), w1 =
(1, 0, 2 + i, 1− i), w2 = (−1, 1− 2i,−i, 0), w3 = (2 + i, 1 + 2i, 1, 2i).
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Figure 14.: Spectral plane along with 3D, 2D and contour plots of |p1| of the three-soliton with parameters
(ρ1, ρ2, ρ3, α1, α2, β1, β2) = (1, 1, 1,−1, 1,−2, 1), (λ1, λ2, λ3) = (1 + 0.5i,−1 + 0.5i, 0.75i), w1 =
(1, 0, 2 + i, 1− i), w2 = (−1, 5− 2i,−i, 0), w3 = (2 + i, 1 + 2i, 1, 2i).

Figure 15.: Spectral plane along with 3D, 2D and contour plots of |p1| of the three-soliton with parameters
(ρ1, ρ2, ρ3, α1, α2, β1, β2) = (1, 1, 1,−2, 1,−2, 1), (λ1, λ2, λ3) = (1 + 0.5i,−1 + 0.5i,−0.05 + 0.75i),
w1 = (1, 0, 2 + i, 1− i), w2 = (−1, 5− 2i,−i, 0), w3 = (2 + i, 1 + 2i, 1, 2i).
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Figure 16.: Spectral plane along with 3D, 2D and contour plots of |p1| in the focussing case of the
three-soliton with parameters (ρ1, ρ2, ρ3, α1, α2, β1, β2) = (−1,−1,−1,−2, 1,−1, 1), (λ1, λ2, λ3) =
(1+0.5i,−1+0.5i, 0.5+0.5i), w1 = (1, 0, 2+i, 1−i), w2 = (−1, 1−2i,−i, 0), w3 = (2+i, 1+2i, 1, 2i).

3.5.4 Dynamics of a four-soliton solution

The four-soliton solution is given, for which we take N = 4, w1 = (w11, w12, w13, w14)
T , w2 =

(w21, w22, w23, w24)
T , w3 = (w31, w32, w33, w34)

T , w4 = (w41, w42, w43, w44)
T , (λ1, λ2, λ3, λ4) ∈ C4,

and λ̂1 = −λ1, λ̂2 = −λ2, λ̂3 = −λ3, λ̂4 = −λ4, by

p1 = α

4∑
k,j=1

vk,1(M
−1)kj v̂j,2, (3.158)

p2 = α

4∑
k,j=1

vk,1(M
−1)kj v̂j,3, (3.159)

p3 = α

4∑
k,j=1

vk,1(M
−1)kj v̂j,4. (3.160)

Without loss of generality, for the four-soliton solution, we take all four eigenvalues in the upper-half plane

in such a way that λj ̸= λk for j, k ∈ {1, 2, 3, 4}.

For the four-soliton dynamics, we have the interactions of four solitons. Two of them can be stationary or
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all the four solitons are moving.

Figure 17 exhibits the interaction of two exponentially increasing solitons moving in opposite directions

and interacting with two moving solitons with constant amplitudes. After interaction the middle two solitons

keep moving with increasing amplitudes, while the two other solitons keep moving with constant amplitudes.

We can notice that the middle two solitons can decrease exponentially while moving and interacting with

the other two solitons.

Remark 3.5.2. The speed of the far right and left solitons are larger than the speed of the middle two solitons

such that all four solitons collide together.

Another behaviour is shown in figure 18, where two solitons moving in opposite directions interact with

two stationary solitons with constant amplitudes. After the interaction, the two stationary solitons remain

stationary and the two moving solitons continue to move in opposite directions, but their amplitudes can

change to new constant amplitudes or it can stay unchanged.

As for figure 19, we have the interaction of four moving solitons. Two waves move in the same direction

and interact with the other two waves coming from the opposite direction. After the interaction, each of the

four solitons can keep its amplitude unchanged or its amplitude can change to a new constant amplitude. In

the case that each soliton keeps its amplitude before and after the interaction, we have four travelling waves.

Finally in figure 20, four moving solitons are embedded into three moving solitons. After the interaction

each soliton keeps its amplitude unchanged or it can be changed to a new constant amplitude over the time.
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Figure 17.: Spectral plane along with 3D, 2D and contour plots of |p1| of the four-soliton with parame-
ters (ρ1, ρ2, ρ3, α1, α2, β1, β2) = (1,−2, 1,−2, 1,−2, 1), (λ1, λ2, λ3, λ4) = (1 + 0.5i,−1 + 0.5i, 0.02 +
i,−0.01 + i), w1 = (1− 2i, 1 + 3i,−i, 1 + i), w2 = (−1 + 2i, 1− 3i, i, 1− i), w3 = (1+ i, 1 + 2i, 0, 2i),
w4 = (1, i, 2 + i, 1).

Figure 18.: Spectral plane along with 3D, 2D and contour plots of |p1| of the four-soliton with parameters
(ρ1, ρ2, ρ3, α1, α2, β1, β2) = (1, 1, 1,−2, 1,−2, 1), (λ1, λ2, λ3, λ4) = (0.8+0.5i,−0.8+0.5i, i, 3i), w1 =
(1−0.5i, 1+3i,−i, 1+i), w2 = (−1+2i, 1−1.5i, i, 1−i), w3 = (30, i, 2+i, 1), w4 = (−0.0005, 1, 2, 1).
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Figure 19.: Spectral plane along with 3D, 2D and contour plots of |p1| in the focussing case of the four-
soliton with parameters (ρ1, ρ2, ρ3, α1, α2, β1, β2) = (−1,−1,−1,−1, 1,−1, 1), (λ1, λ2, λ3, λ4) = (0.5 +
i,−0.5+ i, 0.4+ 0.8i,−0.4+ 0.8i, ), w1 = (−1.5+ 2i, 2− 3i, i, 1− i), w2 = (3+ 2i,−1+ 3i,−i, 1+ i),
w3 = (i, 1, 1− 2i, 1− i), w4 = (−i, 1− 2i, 1, 1 + i).

Figure 20.: Spectral plane along with 3D, 2D and contour plots of |p1| in the focussing case of the four-
soliton with parameters (ρ1, ρ2, ρ3, α1, α2, β1, β2) = (−1,−1,−1,−2, 1,−2, 1), (λ1, λ2, λ3, λ4) = (1 +
0.5i,−1 + 0.5i, 0.3 + 0.75i,−0.3 + 0.75i), w1 = (1 + 4i, 0, 2 + i, i), w2 = (−1 + 4i, i, 1 − 2i, 0),
w3 = (−2 + i, 0.5 + i,−2 + i, 1), w4 = (2 + i, 1− 0.5i, 1, 1).
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3.5.5 Remarks

An interesting observation is that we can explore the one and two soliton solutions for any nth-order (n is

even) six-component AKNS integrable system for our spectral matrix U(u, λ).

That is the general explicit one-soliton solution for a reverse-time nth-order six-component system when

λ̂1 = −λ1 is given by

p1(x, t) =
2ρ2ρ3λ1(α1 − α2)w11w12e

iλ1(α1+α2)x+iλn
1 (β1−β2)t

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e

2iλ1α2x
, (3.161)

similarly for p2(x, t) and p3(x, t).

As for the two-soliton solution, the general explicit solution when λ̂1 = −λ1, λ̂2 = −λ2, if λ1 ̸= −λ2, is

given by

p1(x, t) = 2ρ2ρ3(λ1 + λ2)(α1 − α2)
A(x, t)

B(x, t)
, (3.162)

where

A(x, t) = ei[λ
n
2 (β1−β2)t+λ2(α1+α2)x]·

[(
w22M(λ1 + λ2)− 2w12Kλ1

)
w21λ2e

i2α2λ1x

− ρ1ρ2ρ3(λ1 − λ2)w
2
11w21w22λ2e

i2α1λ1x

]
+ei[λ

n
1 (β1−β2)t+λ1(α1+α2)x]·

[(
w12N(λ1 + λ2)− 2w22Kλ2

)
w11λ1e

i2α2λ2x

+ ρ1ρ2ρ3(λ1 − λ2)w11w12w
2
21λ1e

i2α1λ2x

]
,

(3.163)

B(x, t) = −4ρ1ρ2ρ3λ1λ2w11w21Ke
i(λ1+λ2)(α1+α2)x ·

[
ei(λ

n
1−λn

2 )(β1−β2)t + e−i(λn
1−λn

2 )(β1−β2)t

]
+ ρ1ρ2ρ3w

2
21M(λ1 + λ2)

2ei2(α1λ2+α2λ1)x + ρ1ρ2ρ3w
2
11N(λ1 + λ2)

2ei2(α1λ1+α2λ2)x

+ ρ21ρ
2
2ρ

2
3w

2
11w

2
21(λ1 − λ2)

2ei2α1(λ1+λ2)x

+

[
(λ21 + λ22)MN + (2MN − 4K2)λ1λ2

]
ei2α2(λ1+λ2)x,

(3.164)
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and M = ρ2ρ3w
2
12 + ρ1ρ3w

2
13 + ρ1ρ2w

2
14, N = ρ2ρ3w

2
22 + ρ1ρ3w

2
23 + ρ1ρ2w

2
24 and K = ρ2ρ3w12w22 +

ρ1ρ3w13w23 + ρ1ρ2w14w24. Similarly we can present the formulas for p2(x, t) and p3(x, t).

For higher-order non-local reverse-time AKNS systems, the N -soliton exhibits a similar dynamics (or com-

binations of dynamics) to the ones discussed and in the previous work [35].
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Chapter 4

Nonlocal reverse-spacetime Sasa-Satsuma equation

4.1 Introduction

We will discuss in this chapter the new nonlocal reverse-spacetime two-component Sasa-Satsuma equation

given by [48]-[50]:

ut(x, t) = − β

α3

[
uxxx(x, t) (4.1)

− 3
(
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)
ux(x, t)

− 3
(
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)
x
u(x, t)

+ 3
(
u(x, t)

∗
ux(x, t)− u(−x,−t)∗ux(−x,−t)

+ v(x, t)
∗
vx(x, t)− v(−x,−t)∗vx(−x,−t)

)
u(x, t)

]
,

vt(x, t) = − β

α3

[
vxxx(x, t) (4.2)

− 3
(
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)
vx(x, t)

− 3
(
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)
x
v(x, t)

+ 3
(
u(x, t)

∗
ux(x, t)− u(−x,−t)∗ux(−x,−t)

+ v(x, t)
∗
vx(x, t)− v(−x,−t)∗vx(−x,−t)

)
v(x, t)

]
.

Unlike the previous reverse-time sixth-order NLS-type equation which was obtained from a nonlocal re-

duction through a local AKNS hierarchy, we derive this Sasa-Satsuma equation from a nonlocal hierarchy.

Starting with a nonlocal 5×5 spectral matrix problem, we formulate a kind of Riemann-Hilbert problems for

the above nonlocal two-component Sasa-Satsuma equation with still the real line being its contour, and solve

the resulting Riemann-Hilbert problems with identity jump matrix to present its soliton solutions [36]-[42].

We explore the one- and two-soliton solution and classify the different cases for the explicit two-soliton
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solution according to the configuration of the eigenvalues in the spectral plane. As a final step, we explore

their dynamical behaviors.

4.2 Two-component nonlocal hierarchy

Consider the nonlocal 5× 5 matrix AKNS spatial spectral problem [39]

φx = iUφ, (4.3)

where φ is the eigenfunction and the spectral matrix U(u, λ) is given by

U(u, λ) =



α1λ u(x, t) u(−x,−t) v(x, t) v(−x,−t)

−∗
u(x, t) α2λ 0 0 0

−∗
u(−x,−t) 0 α2λ 0 0

−∗
v(x, t) 0 0 α2λ 0

−∗
v(−x,−t) 0 0 0 α2λ


= λΛ+ P (u), (4.4)

where Λ = diag(α1, α2I4), λ is the spectral parameter, α1, α2 are two distinct real constants and u is the

column vector of two potentials, where we assume that u and xu belong to the L2 space and

P =



0 u(x, t) u(−x,−t) v(x, t) v(−x,−t)

−∗
u(x, t) 0 0 0 0

−∗
u(−x,−t) 0 0 0 0

−∗
v(x, t) 0 0 0 0

−∗
v(−x,−t) 0 0 0 0


. (4.5)

Remark 4.2.1. One can see that the matrix U has the symmetry properties:


U †(−x,−t,−

∗
λ) = −C1U(x, t, λ)C−1

1 ,

U(−x,−t,−λ) = −C2U(x, t, λ)C−1
2 ,

(4.6)
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where

C1 =



1 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0


, C2 =



1 0 0 0 0

0 0 −1 0 0

0 −1 0 0 0

0 0 0 0 −1

0 0 0 −1 0


. (4.7)

Note that Cj are symmetric and orthogonal matrices, i.e., Cj = CT
j and Cj = C−1

j , for j ∈ {1, 2}.

In addition, since U(x, t, λ) = λΛ+ P (x, t), we can easily prove that


P †(−x,−t) = −C1P (x, t)C

−1
1 ,

P (−x,−t) = −C2P (x, t)C
−1
2 .

(4.8)

Let’s construct the associated two-component Sasa-Satsuma soliton hierarchy. To do so, we need to solve

the stationary zero curvature equation

Wx = i[U,W ], (4.9)

for

W =



a b1 b2 b3 b4

c1 d11 d12 d13 d14

c2 d21 d22 d23 d24

c3 d31 d32 d33 d34

c4 d41 d42 d43 d44


, (4.10)

where a, bj , cj , djk are scalar components for j, k ∈ {1, 2, 3, 4}. From the stationary zero curvature equa-

tion, we get:

ax = i
[∗
u(x)b1 +

∗
u(−x)b2 +

∗
v(x)b3 +

∗
v(−x)b4 + u(x)c1 + u(−x)c2 + v(x)c3 + v(−x)c4

]
, (4.11)
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d11,x = −i
[∗
u(x)b1 + u(x)c1

]
,

d21,x = −i
[∗
u(−x)b1 + u(x)c2

]
,

d31,x = −i
[∗
v(x)b1 + u(x)c3

]
,

d41,x = −i
[∗
v(−x)b1 + u(x)c4

]
,

d12,x = −i
[∗
u(x)b2 + u(−x)c1

]
,

d22,x = −i
[∗
u(−x)b2 + u(−x)c2

]
,

d32,x = −i
[∗
v(x)b2 + u(−x)c3

]
,

d42,x = −i
[∗
v(−x)b2 + u(−x)c4

]
,

(4.12)

d13,x = −i
[∗
u(x)b3 + v(x)c1

]
,

d23,x = −i
[∗
u(−x)b3 + v(x)c2

]
,

d33,x = −i
[∗
v(x)b3 + v(x)c3

]
,

d43,x = −i
[∗
v(−x)b3 + v(x)c4

]
,

d14,x = −i
[∗
u(x)b4 + v(−x)c1

]
,

d24,x = −i
[∗
u(−x)b4 + v(−x)c2

]
,

d34,x = −i
[∗
v(x)b4 + v(−x)c3

]
,

d44,x = −i
[∗
v(−x)b4 + v(−x)c4

]
,

(4.13)

b1,x = i
[
αλb1 − u(x)a + u(x)d11 + u(−x)d21 + v(x)d31 + v(−x)d41

]
, (4.14)

b2,x = i
[
αλb2 − u(−x)a + u(x)d12 + u(−x)d22 + v(x)d32 + v(−x)d42

]
, (4.15)

b3,x = i
[
αλb3 − v(x)a + u(x)d13 + u(−x)d23 + v(x)d33 + v(−x)d43

]
, (4.16)

b4,x = i
[
αλb4 − v(−x)a + u(x)d14 + u(−x)d24 + v(x)d34 + v(−x)d44

]
, (4.17)

c1,x = i
[
αλc1 −

∗
u(x)a +

∗
u(x)d11 +

∗
u(−x)d12 +

∗
v(x)d13 +

∗
v(−x)d14

]
, (4.18)

c2,x = i
[
αλc2 −

∗
u(−x)a +

∗
u(x)d21 +

∗
u(−x)d22 +

∗
v(x)d23 +

∗
v(−x)d24

]
, (4.19)

c3,x = i
[
αλc3 −

∗
v(x)a +

∗
u(x)d31 +

∗
u(−x)d32 +

∗
v(x)d33 +

∗
v(−x)d34

]
, (4.20)

c4,x = i
[
αλc4 −

∗
v(−x)a +

∗
u(x)d41 +

∗
u(−x)d42 +

∗
v(x)d43 +

∗
v(−x)d44

]
, (4.21)

where α = α1 − α2.

We expand W in Laurent series:

W =
∞∑

m=0

Wmλ
−m with Wm =



a[m] b
[m]
1 b

[m]
2 b

[m]
3 b

[m]
4

c
[m]
1 d

[m]
11 d

[m]
12 d

[m]
13 d

[m]
14

c
[m]
2 d

[m]
21 d

[m]
22 d

[m]
23 d

[m]
24

c
[m]
3 d

[m]
31 d

[m]
32 d

[m]
33 d

[m]
34

c
[m]
4 d

[m]
41 d

[m]
42 d

[m]
43 d

[m]
44


, (4.22)
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explicitly,

a =

∞∑
m=0

a[m]λ−m, djk =

∞∑
m=0

d
[m]
jk λ

−m, i ∈ {1, 2, 3, 4},

bj =
∞∑

m=0

b
[m]
j λ−m, i ∈ {1, . . . , 4}, cj =

∞∑
m=0

c
[m]
j λ−m, j, k ∈ {1, . . . , 4},

where m ≥ 0. The system (4.12) generates the recursive relations:

b
[0]
j = c

[0]
j = 0, j ∈ {1, . . . , 4}, (4.23)

a[m]
x = i

[∗
u(x)b

[m]
1 +

∗
u(−x)b[m]

2 +
∗
v(x)b

[m]
3 +

∗
v(−x)b[m]

4

+ u(x)c
[m]
1 + u(−x)c[m]

2 + v(x)c
[m]
3 + v(−x)c[m]

4

]
, (4.24)

d
[m]
11,x = −i

[∗
u(x)b

[m]
1 + u(x)c

[m]
1

]
,

d
[m]
21,x = −i

[∗
u(−x)b[m]

1 + u(x)c
[m]
2

]
,

d
[m]
31,x = −i

[∗
v(x)b

[m]
1 + u(x)c

[m]
3

]
,

d
[m]
41,x = −i

[∗
v(−x)b[m]

1 + u(x)c
[m]
4

]
,

d
[m]
12,x = −i

[∗
u(x)b

[m]
2 + u(−x)c[m]

1

]
,

d
[m]
22,x = −i

[∗
u(−x)b[m]

2 + u(−x)c[m]
2

]
,

d
[m]
32,x = −i

[∗
v(x)b

[m]
2 + u(−x)c[m]

3

]
,

d
[m]
42,x = −i

[∗
v(−x)b[m]

2 + u(−x)c[m]
4

]
,

(4.25)

d
[m]
13,x = −i

[∗
u(x)b

[m]
3 + v(x)c

[m]
1

]
,

d
[m]
23,x = −i

[∗
u(−x)b[m]

3 + v(x)c
[m]
2

]
,

d
[m]
33,x = −i

[∗
v(x)b

[m]
3 + v(x)c

[m]
3

]
,

d
[m]
43,x = −i

[∗
v(−x)b[m]

3 + v(x)c
[m]
4

]
,

d
[m]
14,x = −i

[∗
u(x)b

[m]
4 + v(−x)c[m]

1

]
,

d
[m]
24,x = −i

[∗
u(−x)b[m]

4 + v(−x)c[m]
2

]
,

d
[m]
34,x = −i

[∗
v(x)b

[m]
4 + v(−x)c[m]

3

]
,

d
[m]
44,x = −i

[∗
v(−x)b[m]

4 + v(−x)c[m]
4

]
,

(4.26)

b
[m+1]
1 =

1

α

[
− ib

[m]
1,x + u(x)a[m] − u(x)d

[m]
11 − u(−x)d[m]

21 − v(x)d
[m]
31 − v(−x)d[m]

41

]
, (4.27)

b
[m+1]
2 =

1

α

[
− ib

[m]
2,x + u(−x)a[m] − u(x)d

[m]
12 − u(−x)d[m]

22 − v(x)d
[m]
32 − v(−x)d[m]

42

]
, (4.28)

b
[m+1]
3 =

1

α

[
− ib

[m]
3,x + v(x)a[m] − u(x)d

[m]
13 − u(−x)d[m]

23 − v(x)d
[m]
33 − v(−x)d[m]

43

]
, (4.29)

b
[m+1]
4 =

1

α

[
− ib

[m]
4,x + v(−x)a[m] − u(x)d

[m]
14 − u(−x)d[m]

24 − v(x)d
[m]
34 − v(−x)d[m]

44

]
, (4.30)
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c
[m+1]
1 =

1

α

[
ic
[m]
1,x − ∗

u(x)a[m] +
∗
u(x)d

[m]
11 +

∗
u(−x)d[m]

12 +
∗
v(x)d

[m]
13 +

∗
v(−x)d[m]

14

]
, (4.31)

c
[m+1]
2 =

1

α

[
ic
[m]
2,x − ∗

u(−x)a[m] +
∗
u(x)d

[m]
21 +

∗
u(−x)d[m]

22 +
∗
v(x)d

[m]
23 +

∗
v(−x)d[m]

24

]
, (4.32)

c
[m+1]
3 =

1

α

[
ic
[m]
3,x − ∗

v(x)a[m] +
∗
u(x)d

[m]
31 +

∗
u(−x)d[m]

32 +
∗
v(x)d

[m]
33 +

∗
v(−x)d[m]

34

]
, (4.33)

c
[m+1]
4 =

1

α

[
ic
[m]
4,x − ∗

v(−x)a[m] +
∗
u(x)d

[m]
41 +

∗
u(−x)d[m]

42 +
∗
v(x)d

[m]
43 +

∗
v(−x)d[m]

44

]
. (4.34)

The first few involved functions can be worked out as follows:



a[0] = β1,

a[1] = 0,

a[2] = β
α2

(
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)
,

a[3] = 2 β
α3 Im

(
ux(x, t)

∗
u(x, t) + u(−x,−t)∗ux(−x,−t)

+vx(x, t)
∗
v(x, t) + v(−x,−t)∗vx(−x,−t)

)
,

a[4] = β
α4

[
3
(
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)2
−2Re

(
u(x, t)

∗
uxx(x, t) + u(−x,−t)∗uxx(−x,−t)

+v(x, t)
∗
vxx(x, t) + v(−x,−t)∗vxx(−x,−t)

)
+
(
|ux(x, t)|2 + |ux(−x,−t)|2 + |vx(x, t)|2 + |vx(−x,−t)|2

)]
,

(4.35)



b
[0]
1 = 0,

b
[1]
1 = β

αu(x, t),

b
[2]
1 = −i β

α2ux(x, t),

b
[3]
1 = − β

α3

[
uxx(x, t)− 2

(
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)
u(x, t)

]
,

b
[4]
1 = i β

α4

[
uxxx(x, t) + 3T1ux(x, t) + 3T2u(x, t)

]
,

(4.36)

95





b
[0]
3 = 0,

b
[1]
3 = β

αv(x, t),

b
[2]
3 = −i β

α2 vx(x, t),

b
[3]
3 = − β

α3

[
vxx(x, t)− 2

(
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)
v(x, t)

]
,

b
[4]
3 = i β

α4

[
vxxx(x, t) + 3T1vx(x, t) + 3T2v(x, t)

]
,

(4.37)



d
[0]
11 = β2,

d
[1]
11 = 0,

d
[2]
11 = − β

α2 |u(x, t)|2,

d
[3]
11 = 2 β

α3 Im
(∗
ux(x, t)u(x, t)

)
,

d
[4]
11 = β

α4

[
3T1|u(x, t)|2 +

∗
u(x, t)uxx(x, t)− |ux(x, t)|2 +

∗
uxx(x, t)u(x, t)

]
,

(4.38)



d
[0]
21 = 0,

d
[1]
21 = 0,

d
[2]
21 = − β

α2

∗
u(−x,−t)u(x, t),

d
[3]
21 = i β

α3

(∗
u(−x,−t)ux(x, t) +

∗
ux(−x,−t)u(x, t)

)
,

d
[4]
21 = β

α4

[
3T1

∗
u(−x,−t)u(x, t) + ∗

u(−x,−t)uxx(x, t) +
∗
ux(−x,−t)ux(x, t) +

∗
uxx(−x,−t)u(x, t)

]
,

(4.39)



d
[0]
31 = 0,

d
[1]
31 = 0,

d
[2]
31 = − β

α2u(x, t)
∗
v(x, t),

d
[3]
31 = −i β

α3

(
− ∗
v(x, t)ux(x, t) +

∗
vx(x, t)u(x, t)

)
,

d
[4]
31 = β

α4

[
3T1

∗
v(x, t)u(x, t) +

∗
v(x, t)uxx(x, t)−

∗
vx(x, t)ux(x, t) +

∗
vxx(x, t)u(x, t)

]
,

(4.40)
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

d
[0]
41 = 0,

d
[1]
41 = 0,

d
[2]
41 = − β

α2u(x, t)
∗
v(−x,−t),

d
[3]
41 = i β

α3

(∗
v(−x,−t)ux(x, t) +

∗
vx(−x,−t)u(x, t)

)
,

d
[4]
41 = β

α4

[
3T1

∗
v(−x,−t)u(x, t) + ∗

v(−x,−t)uxx(x, t) +
∗
vx(−x,−t)ux(x, t) +

∗
vxx(−x,−t)u(x, t)

]
,

(4.41)



d
[0]
13 = 0,

d
[1]
13 = 0,

d
[2]
13 = − β

α2

∗
u(x, t)v(x, t),

d
[3]
13 = −i β

α3

(
− ∗
u(x, t)vx(x, t) +

∗
ux(x, t)v(x, t)

)
,

d
[4]
13 = β

α4

[
3T1

∗
u(x, t)v(x, t) +

∗
u(x, t)vxx(x, t)−

∗
ux(x, t)vx(x, t) +

∗
uxx(x, t)v(x, t)

]
,

(4.42)



d
[0]
23 = 0,

d
[1]
23 = 0,

d
[2]
23 = − β

α2

∗
u(−x,−t)v(x, t),

d
[3]
23 = i β

α3

(∗
u(−x,−t)vx(x, t) +

∗
ux(−x,−t)v(x, t)

)
,

d
[4]
23 = β

α4

[
3T1

∗
u(−x,−t)v(x, t) + ∗

u(−x,−t)vxx(x, t) +
∗
ux(−x,−t)vx(x, t) +

∗
uxx(−x,−t)v(x, t)

]
,

(4.43)
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

d
[0]
33 = β2,

d
[1]
33 = 0,

d
[2]
33 = − β

α2 |v(x, t)|2,

d
[3]
33 = −2 β

α3 Im
(∗
v(x, t)vx(x, t)

)
,

d
[4]
33 = β

α4

[
3T1|v(x, t)|2 +

∗
v(x, t)vxx(x, t)− |vx(x, t)|2 +

∗
vxx(x, t)v(x, t)

]
,

(4.44)



d
[0]
43 = 0,

d
[1]
43 = 0,

d
[2]
43 = − β

α2 v(x, t)
∗
v(−x,−t),

d
[3]
43 = i β

α3

(∗
v(−x,−t)vx(x, t) +

∗
vx(−x,−t)v(x, t)

)
,

d
[4]
43 = β

α4

[
3T1

∗
v(−x,−t)v(x, t) + ∗

v(−x,−t)vxx(x, t) +
∗
vx(−x,−t)vx(x, t) +

∗
vxx(−x,−t)v(x, t)

]
,

(4.45)

where β = β1 − β2, and



T1 = −
(
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)
,

T2 = −ux(x, t)
∗
u(x, t) + ux(−x,−t)

∗
u(−x,−t)− vx(x, t)

∗
v(x, t) + vx(−x,−t)

∗
v(−x,−t),

T3 = −u(x, t)∗ux(x, t) + u(−x,−t)∗ux(−x,−t)− v(x, t)
∗
vx(x, t) + v(−x,−t)∗vx(−x,−t).

Remark 4.2.2. Under the symmetry relations (4.8), one can show that W satisfies the equations:


W †(−x,−t,−

∗
λ) = C1W (x, t, λ)C−1

1 ,

W (−x,−t,−λ) = C2W (x, t, λ)C−1
2 ,

(4.46)

for a solution W to the stationary zero curvature equation. Using the Laurent expansion (4.22) of W , we

get the relations:
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b
[m]
1 (−x,−t) = (−1)m

∗
c
[m]
2 (x, t), b

[m]
2 (−x,−t) = (−1)m

∗
c
[m]
1 (x, t), (4.47)

b
[m]
3 (−x,−t) = (−1)m

∗
c
[m]
4 (x, t), b

[m]
4 (−x,−t) = (−1)m

∗
c
[m]
3 (x, t), (4.48)

∗
a[m](−x,−t) = (−1)ma[m](x, t),

∗
d
[m]
11 (−x,−t) = (−1)md

[m]
22 (x, t), (4.49)

∗
d
[m]
21 (−x,−t) = (−1)md

[m]
21 (x, t),

∗
d
[m]
31 (−x,−t) = (−1)md

[m]
24 (x, t), (4.50)

∗
d
[m]
41 (−x,−t) = (−1)md

[m]
23 (x, t),

∗
d
[m]
12 (−x,−t) = (−1)md

[m]
12 (x, t), (4.51)

∗
d
[m]
32 (−x,−t) = (−1)md

[m]
14 (x, t),

∗
d
[m]
42 (−x,−t) = (−1)md

[m]
13 (x, t), (4.52)

∗
d
[m]
33 (−x,−t) = (−1)md

[m]
44 (x, t),

∗
d
[m]
43 (−x,−t) = (−1)md

[m]
43 (x, t), (4.53)

∗
d
[m]
34 (−x,−t) = (−1)md

[m]
34 (x, t), (4.54)

and

b
[m]
1 (−x,−t) = (−1)m+1b

[m]
2 (x, t), b

[m]
3 (−x,−t) = (−1)m+1b

[m]
4 (x, t), (4.55)

a[m](−x,−t) = (−1)ma[m](x, t), (4.56)

d
[m]
11 (−x,−t) = (−1)md

[m]
22 (x, t), d

[m]
12 (−x,−t) = (−1)md

[m]
21 (x, t), (4.57)

d
[m]
13 (−x,−t) = (−1)md

[m]
24 (x, t), d

[m]
14 (−x,−t) = (−1)md

[m]
23 (x, t), (4.58)

d
[m]
31 (−x,−t) = (−1)md

[m]
42 (x, t), d

[m]
32 (−x,−t) = (−1)md

[m]
41 (x, t), (4.59)

d
[m]
33 (−x,−t) = (−1)md

[m]
44 (x, t), d

[m]
34 (−x,−t) = (−1)md

[m]
43 (x, t). (4.60)

99



We introduce the Lax matrix

V [m] = V [m](u, λ) = (λmW )+ =

m∑
i=0

Wiλ
m−i

=
m∑
i=0



a[i]λm−i b
[i]
1 λ

m−i b
[i]
2 λ

m−i b
[i]
3 λ

m−i b
[i]
4 λ

m−i

c
[i]
1 λ

m−i d
[i]
11λ

m−i d
[i]
12λ

m−i d
[i]
13λ

m−i d
[i]
14λ

m−i

c
[i]
2 λ

m−i d
[i]
21λ

m−i d
[i]
22λ

m−i d
[i]
23λ

m−i d
[i]
24λ

m−i

c
[i]
3 λ

m−i d
[i]
31λ

m−i d
[i]
32λ

m−i d
[i]
33λ

m−i d
[i]
34λ

m−i

c
[i]
4 λ

m−i d
[i]
41λ

m−i d
[i]
42λ

m−i d
[i]
43λ

m−i d
[i]
44λ

m−i


,

where the modification terms are zero, and we get the spatial and temporal equations of the spectral problems

[39], with the associated Lax pair {U, V [m]}:

φx = iUφ, (4.61)

φtm = iV [m]φ. (4.62)

The compatibility conditions of equations (4.61)-(4.62) give rise to the zero curvature equations

Utm − V [m]
x + i[U, V [m]] = 0. (4.63)

This gives the two-component Sasa-Satsuma integrable hierarchy

utm = Km(u) =

u(x, t)
v(x, t)


tm

= iα

b[m+1]
1

b
[m+1]
3

 , m ≥ 0. (4.64)

This soliton hierarchy possesses a bi-Hamiltonian structure

utm = ΦmK0 = J1
δHm+1

δu
= J2

δHm

δu
, (4.65)

where Hm are the Hamiltonian functionals and Φ is the recursion operator.

We derive from the recursive relations (4.27)-(4.34) and the relations (4.47)-(4.60), the following recursive
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formula between {b[m+1]
1 , b

[m+1]
3 } and {b[m]

1 , b
[m]
3 }:

b[m+1]
1

b
[m+1]
3

 = Φ

b[m]
1

b
[m]
3

 , (4.66)

where the recursion operator Φ reads:

Φ =
i

α

Φ11 Φ12

Φ21 Φ22

 , (4.67)

with components

Φ11 = −∂ + u(−x)∂−1 ∗u(−x) + v(x)∂−1∗v(x) + v(−x)∂−1∗v(−x) + i4u(x)∂−1Im(
∗
u(x))

+ i2(−1)−m−1u(x)∂−1Im(
∗
u(−x)Γ−) + (−1)−mu(−x)∂−1u(x)

∗
Γ−, (4.68)

Φ12 = i2u(x)∂−1Im(
∗
v(x)) + i2(−1)−m−1u(x)∂−1Im(

∗
v(−x)Γ−)− v(x)∂−1u(x)

∗
Γ+

+ (−1)−mv(−x)∂−1u(x)
∗
Γ−, (4.69)

Φ21 = i2v(x)∂−1Im(
∗
u(x)) + i2(−1)−m−1v(x)∂−1Im(

∗
u(−x)Γ−)− u(x)∂−1v(x)

∗
Γ+

+ (−1)−mu(−x)∂−1v(x)
∗
Γ−, (4.70)

Φ22 = −∂ + v(−x)∂−1∗v(−x) + u(x)∂−1 ∗u(x) + u(−x)∂−1 ∗u(−x) + i4v(x)∂−1Im(
∗
v(x))

+ i2(−1)−m−1v(x)∂−1Im(
∗
v(−x)Γ−) + (−1)−mv(−x)∂−1v(x)

∗
Γ−, (4.71)

and where the operators Γ−,
∗
Γ± are defined by:

Γ−f(x, t) = f(−x,−t), (4.72)
∗
Γ+f(x, t) =

∗
f(x, t), (4.73)

∗
Γ−f(x, t) =

∗
f(−x,−t), (4.74)

with Γ+ being the identity operator, i.e., Γ+f(x, t) = Idf(x, t) = f(x, t).
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4.2.1 Nonlocal two-component Sasa-Satsuma equation

To derive a two-component nonlocal Sasa-Satsuma equation, we take the Lax matrix

V [3] = V [3](u, λ) = (λ3W )+. (4.75)

The spatial and temporal equations of the spectral problems (4.61) and (4.62) with the associated Lax pair

{U, V [3]} read

φx = iUφ, (4.76)

φt3 = iV [3]φ, (4.77)

while the zero curvature equation

Ut3 − V [3]
x + i[U, V [3]] = 0 (4.78)

gives the two-component Sasa-Satsuma equation

ut3 =

u(x, t)
v(x, t)


t3

= iα

b[4]1

b
[4]
3

 . (4.79)

The V [3] reads

V [3] =



V11 V12 V13 V14 V15

V21 V22 V23 V24 V25

V31 V32 V33 V34 V35

V41 V42 V43 V44 V45

V51 V52 V53 V54 V55


, (4.80)
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where

V11 = a[0]λ3 + a[1]λ2 + a[2]λ+ a[3], V21 = c
[0]
1 λ

3 + c
[1]
1 λ

2 + c
[2]
1 λ+ c

[3]
1 ,

V12 = b
[0]
1 λ

3 + b
[1]
1 λ

2 + b
[2]
1 λ+ b

[3]
1 , V22 = d

[0]
11λ

3 + d
[1]
11λ

2 + d
[2]
11λ,+d

[3]
11 ,

V13 = b
[0]
2 λ

3 + b
[1]
2 λ

2 + b
[2]
2 λ+ b

[3]
2 , V23 = d

[0]
12λ

3 + d
[1]
12λ

2 + d
[2]
12λ+ d

[3]
12 ,

V14 = b
[0]
3 λ

3 + b
[1]
3 λ

2 + b
[2]
3 λ+ b

[3]
3 , V24 = d

[0]
13λ

3 + d
[1]
13λ

2 + d
[2]
13λ+ d

[3]
13 ,

V15 = b
[0]
4 λ

3 + b
[1]
4 λ

2 + b
[2]
4 λ+ b

[3]
4 , V25 = d

[0]
14λ

3 + d
[1]
14λ

2 + d
[2]
14λ+ d

[3]
14 ,

V31 = c
[0]
2 λ

3 + c
[1]
2 λ

2 + c
[2]
2 λ+ c

[3]
2 , V41 = c

[0]
3 λ

3 + c
[1]
3 λ

2 + c
[2]
3 λ+ c

[3]
3 ,

V32 = d
[0]
21λ

3 + d
[1]
21λ

2 + d
[2]
21λ,+d

[3]
21 , V42 = d

[0]
31λ

3 + d
[1]
31λ

2 + d
[2]
31λ+ d

[3]
31 ,

V33 = d
[0]
22λ

3 + d
[1]
22λ

2 + d
[2]
22λ,+d

[3]
22 , V43 = d

[0]
32λ

3 + d
[1]
32λ

2 + d
[2]
32λ+ d

[3]
32 ,

V34 = d
[0]
23λ

3 + d
[1]
23λ

2 + d
[2]
23λ,+d

[3]
23 , V44 = d

[0]
33λ

3 + d
[1]
33λ

2 + d
[2]
33λ+ d

[3]
33 ,

V35 = d
[0]
24λ

3 + d
[1]
24λ

2 + d
[2]
24λ+ d

[3]
24 , V45 = d

[0]
34λ

3 + d
[1]
34λ

2 + d
[2]
34λ+ d

[3]
34 ,

V51 = c
[0]
4 λ

3 + c
[1]
4 λ

2 + c
[2]
4 λ+ c

[3]
4 ,

V52 = d
[0]
41λ

3 + d
[1]
41λ

2 + d
[2]
41λ+ d

[3]
41 ,

V53 = d
[0]
42λ

3 + d
[1]
42λ

2 + d
[2]
42λ+ d

[3]
42 ,

V54 = d
[0]
43λ

3 + d
[1]
43λ

2 + d
[2]
43λ+ d

[3]
43 ,

V55 = d
[0]
44λ

3 + d
[1]
44λ

2 + d
[2]
44λ+ d

[3]
44 .

The matrix V exhibits the properties of symmetry:


V [3]†(−x,−t,−

∗
λ) = −C1V

[3](x, t, λ)C−1
1 ,

V [3](−x,−t,−λ) = −C2V
[3](x, t, λ)C−1

2 .

(4.81)
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The equation (4.79) leads explicitly to the nonlocal reverse-spacetime Sasa-Satsuma equation:

ut3(x, t) = − β

α3

[
uxxx(x, t) + 3T1ux(x, t) + 3T2u(x, t)

]
, (4.82)

vt3(x, t) = − β

α3

[
vxxx(x, t) + 3T1vx(x, t) + 3T2v(x, t)

]
, (4.83)

where T1 and T2 are defined by

T1 = −
(
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)
,

T2 = −ux(x, t)
∗
u(x, t) + ux(−x,−t)

∗
u(−x,−t)− vx(x, t)

∗
v(x, t) + vx(−x,−t)

∗
v(−x,−t).

4.2.2 Bi-Hamiltonian structure

We start to find a bi-Hamiltonian structure of the soliton hierarchy (4.64). To do so, we are going to use the

trace identity
δ

δu

∫
tr
(
W
∂U

∂λ

)
dx = λ−γ ∂

∂λ

[
λγtr

(
W
∂U

∂u

)]
, (4.84)

where

γ = −λ
2

d

dλ
ln |tr

(
W 2
)
|. (4.85)

Let u = (u, v, p1, p2, p3, q1, q2, q3)
T be a representation of the components of the P matrix, such that:

p1 = u(−x,−t), p2 =
∗
u, p3 =

∗
u(−x,−t), (4.86)

q1 = v(−x,−t), q2 =
∗
v, q3 =

∗
v(−x,−t), (4.87)

and ut = Km(u, v, pi, qi, ux, vx, pi,x, qi,x, . . .), this can be written equivalently as

ut = Km(u, v, ux, vx, . . .). Thus, from the matrix U , one can easily compute ∂U
∂u to obtain,

tr

[
W
∂U

∂λ

]
= α1a(x, t) + α2

4∑
i=1

dii(x, t),

tr

[
W

∂U

∂u(x, t)

]
= c1, tr

[
W

∂U

∂v(x, t)

]
= c3.
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By substituting these in the trace identity formula (4.84), and matching the powers of λ−m−1, we get

δ

δu

∫ (
α1a

[m+1] + α2(1 + (−1)−m−1
∗
Γ−)(d

[m+1]
11 + d

[m+1]
33 )

)
dx = (γ −m)

−
∗
Γ+b

[m]
1

−
∗
Γ+b

[m]
3

 , m ≥ 1.

(4.88)

where δ
δu is defined as:

δ

δu
=

 δ
δu(x,t)

δ
δv(x,t)

 . (4.89)

When m = 2, this yields γ = 0. Hence, the Hamiltonians can be taken as

Hm = − i

m

∫
α1a

[m+1] + α2(1 + (−1)−m−1
∗
Γ−)(d

[m+1]
11 + d

[m+1]
33 )dx, m ≥ 1, (4.90)

and we have

δHm

δu
= i

−
∗
Γ+b

[m]
1

−
∗
Γ+b

[m]
3

 , m ≥ 0. (4.91)

Since

utm = iα

b[m+1]
1

b
[m+1]
3

 = J1
δHm+1

δu
= J1

−i
∗
Γ+b

[m+1]
1

−i
∗
Γ+b

[m+1]
3

 (4.92)

= J1Φ
δHm

δu
= J2

δHm

δu
, (4.93)

where
∗
Γ+(c

∗
Γ+f) =

∗
cf , and c is any complex number.

Moreover, we can deduce the Hamiltonian pair J1 and J2 as follows:

J1 =

α ∗
Γ+ 0

0 α
∗
Γ+

 (4.94)

and

J2 = ΦJ1 = i

Φ11

∗
Γ+ Φ12

∗
Γ+

Φ21

∗
Γ+ Φ22

∗
Γ+

 . (4.95)
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Using the matrix U , we can find the first four Hamiltonian functionals:

H1 = −i
β

α

∫ (
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)
dx, (4.96)

H2 = −i
β

α2

∫
Im
(
ux(x, t)

∗
u(x, t) + u(−x,−t)∗ux(−x,−t)

+ vx(x, t)
∗
v(x, t) + v(−x,−t)∗vx(−x,−t)

)
dx,

H3 = −i
β

3α3

∫ [
3
(
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)2
− 2Re

(
u(x, t)

∗
uxx(x, t) + u(−x,−t)∗uxx(−x,−t) + v(x, t)

∗
vxx(x, t) + v(−x,−t)∗vxx(−x,−t)

)
+
(
|ux(x, t)|2 + |ux(−x,−t)|2 + |vx(x, t)|2 + |vx(−x,−t)|2

)]
dx,

H4 = −i
β

2α4

∫ [
6
(
|u(x, t)|2 + |u(−x,−t)|2 + |v(x, t)|2 + |v(−x,−t)|2

)
·(

Im
(
ux(x, t)

∗
u(x, t) + u(−x,−t)∗ux(−x,−t) + vx(x, t)

∗
v(x, t) + v(−x,−t)∗vx(−x,−t)

))
−Im

(
uxxx(x, t)

∗
u(x, t) +

∗
uxxx(−x,−t)u(−x,−t) + vxxx(x, t)

∗
v(x, t) +

∗
vxxx(−x,−t)v(−x,−t)

)
−Im

(
ux(x, t)

∗
uxx(x, t) + uxx(−x,−t)

∗
ux(−x,−t) + vx(x, t)

∗
vxx(x, t) + vxx(−x,−t)

∗
vx(−x,−t)

)]
dx.

4.3 Riemann-Hilbert problems

The spatial and temporal spectral problems of the two-component nonlocal Sasa-Satsuma equation can be

written as:

φx = iUφ = i(λΛ+ P )φ, (4.97)

φt = iV [3]φ = i(λ3Ω +Q)φ, (4.98)

where Λ = diag(α1, α2I4), Ω = diag(β1, β2I4), and

P =



0 u(x, t) u(−x,−t) v(x, t) v(−x,−t)

−∗
u(x, t) 0 0 0 0

−∗
u(−x,−t) 0 0 0 0

−∗
v(x, t) 0 0 0 0

−∗
v(−x,−t) 0 0 0 0


, (4.99)
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Q =



Q11 Q12 Q13 Q14 Q15

Q21 Q22 Q23 Q24 Q25

Q31 Q32 Q33 Q34 Q35

Q41 Q42 Q43 Q44 Q45

Q51 Q52 Q53 Q54 Q55


, (4.100)

with components

Q11 = a[1]λ2 + a[2]λ+ a[3], Q21 = c
[0]
1 λ

3 + c
[1]
1 λ

2 + c
[2]
1 λ+ c

[3]
1 ,

Q12 = b
[0]
1 λ

3 + b
[1]
1 λ

2 + b
[2]
1 λ+ b

[3]
1 , Q22 = d

[1]
11λ

2 + d
[2]
11λ,+d

[3]
11 ,

Q13 = b
[0]
2 λ

3 + b
[1]
2 λ

2 + b
[2]
2 λ+ b

[3]
2 , Q23 = d

[0]
12λ

3 + d
[1]
12λ

2 + d
[2]
12λ+ d

[3]
12 ,

Q14 = b
[0]
3 λ

3 + b
[1]
3 λ

2 + b
[2]
3 λ+ b

[3]
3 , Q24 = d

[0]
13λ

3 + d
[1]
13λ

2 + d
[2]
13λ+ d

[3]
13 ,

Q15 = b
[0]
4 λ

3 + b
[1]
4 λ

2 + b
[2]
4 λ+ b

[3]
4 , Q25 = d

[0]
14λ

3 + d
[1]
14λ

2 + d
[2]
14λ+ d

[3]
14 ,

Q31 = c
[0]
2 λ

3 + c
[1]
2 λ

2 + c
[2]
2 λ+ c

[3]
2 , Q41 = c

[0]
3 λ

3 + c
[1]
3 λ

2 + c
[2]
3 λ+ c

[3]
3 ,

Q32 = d
[0]
21λ

3 + d
[1]
21λ

2 + d
[2]
21λ,+d

[3]
21 , Q42 = d

[0]
31λ

3 + d
[1]
31λ

2 + d
[2]
31λ+ d

[3]
31 ,

Q33 = d
[1]
22λ

2 + d
[2]
22λ,+d

[3]
22 , Q43 = d

[0]
32λ

3 + d
[1]
32λ

2 + d
[2]
32λ+ d

[3]
32 ,

Q34 = d
[0]
23λ

3 + d
[1]
23λ

2 + d
[2]
23λ,+d

[3]
23 , Q44 = d

[1]
33λ

2 + d
[2]
33λ+ d

[3]
33 ,

Q35 = d
[0]
24λ

3 + d
[1]
24λ

2 + d
[2]
24λ+ d

[3]
24 , Q45 = d

[0]
34λ

3 + d
[1]
34λ

2 + d
[2]
34λ+ d

[3]
34 ,

Q51 = c
[0]
4 λ

3 + c
[1]
4 λ

2 + c
[2]
4 λ+ c

[3]
4 ,

Q52 = d
[0]
41λ

3 + d
[1]
41λ

2 + d
[2]
41λ+ d

[3]
41 ,

Q53 = d
[0]
42λ

3 + d
[1]
42λ

2 + d
[2]
42λ+ d

[3]
42 ,

Q54 = d
[0]
43λ

3 + d
[1]
43λ

2 + d
[2]
43λ+ d

[3]
43 ,

Q55 = d
[1]
44λ

2 + d
[2]
44λ+ d

[3]
44 .
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Here we assume that α = α1 − α2 < 0 and β = β1 − β2 < 0, where β1 + 4β2 = 0.

To find soliton solutions, we begin with an initial condition {u(x, 0), v(x, 0)} and evolute in time to reach

{u(x, t), v(x, t)}. Assume that u and v decay exponentially, i.e., u → 0 and v → 0 as x, t → ±∞.

Therefore from the spectral problems (4.97) and (4.98), the asymptotic behaviour of the fundamental matrix

φ can be written as

φ(x, t) ; eiλΛx+iλ3Ωt. (4.101)

Hence, the solution of the spectral problems can be written in the form:

φ(x, t) = ψ(x, t)eiλΛx+iλ3Ωt. (4.102)

The Jost solution of the eigenfunction (4.102) requires that [20, 45]

ψ(x, t) → I5, as x, t→ ±∞, (4.103)

where I5 is the 5× 5 identity matrix. We denote

ψ± → I5, when x→ ±∞. (4.104)

Using equation (4.102), the spectral problems (4.97) and (4.98) can be written equivalently as:

ψx = iλ[Λ,ψ] + iPψ, (4.105)

ψt3 = iλ3[Ω,ψ] + iQψ. (4.106)

To construct the Riemann-Hilbert problems and their solutions in the reflectionless case, we are going to use

the adjoint scattering equations of the spectral problems φx = iUφ and φt3 = iV [3]φ. Their adjoints are

φ̃x = −iφ̃U, (4.107)

φ̃t3 = −iφ̃V [3], (4.108)
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and the equivalent spectral adjoint equations read

ψ̃x = −iλ[ψ̃, Λ]− iψ̃P, (4.109)

ψ̃t3 = −iλ3[ψ̃, Ω]− iψ̃Q. (4.110)

Because tr(iP ) = 0 and tr(iQ) = 0, using Liouville’s formula [45], it is easy to see that the (det(ψ))x = 0,

that is, det(ψ) is a constant, and utilizing the boundary condition (4.103), we conclude

det(ψ) = 1, (4.111)

and hence the Jost matrix ψ is invertible.

Furthermore, as ψ−1
x = −ψ−1ψxψ

−1, we can derive from (4.105),

ψ−1
x = −iλ[ψ−1, Λ]− iψ−1P. (4.112)

Thus, we can see that both (ψ+)−1 and (ψ−)−1 satisfies the spatial adjoint equation (4.109). We can also

show that both satisfies the temporal adjoint equation (4.110) as well.

It can be shown that if eigenfunctionψ(x, t, λ) is a solution to the spectral problem (4.105), thenψ−1(x, t, λ)

is a solution to the adjoint spectral problem (4.109).

This implies that C1ψ
−1(x, t, λ) is also a solution of (4.109) with the same eigenvalue, because ψ−1

x =

−ψ−1ψxψ
−1. In a similar way, the nonlocal ψ†(−x,−t,−

∗
λ)C1 is also a solution of the spectral adjoint

problem (4.109). Since the boundary condition is the same for both solutions as x → ±∞, this guarantees

the uniqueness of the solution, so

ψ†(−x,−t,−
∗
λ) = C1ψ

−1(x, t, λ)C−1
1 . (4.113)

As a result, if λ is an eigenvalue of equation (4.105) or (4.109), then −
∗
λ is also an eigenvalue and the rela-

tion (4.113) is satisfied.

In the same way, one can prove that ψ(x, t, λ)C−1
2 andC−1

2 ψ(−x,−t,−λ) satisfy (4.105), using the bound-
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ary condition and by uniqueness of the solution, we can also derive

ψ(−x,−t,−λ) = C2ψ(x, t, λ)C
−1
2 . (4.114)

Now, we are going to work with the spatial spectral problem (4.105), assuming that the time is t = 0.

For notation simplicity, we denote Y + and Y − to indicate the boundary conditions are set as x → ∞ and

x→ −∞, respectively.

We know that

ψ± → I5 when x→ ±∞. (4.115)

From (4.102), we can write

φ± = ψ±eiλΛx. (4.116)

Both φ+ and φ− satisfy the spectral spatial differential equation (4.97), i.e. both are two solutions of that

equation. Thus, they are linearly dependent. So, there exists a scattering matrix S(λ) such that

φ− = φ+S(λ), (4.117)

and substituting (4.116) into (4.117), leads to

ψ− = ψ+eiλΛxS(λ)e−iλΛx, for λ ∈ R, (4.118)

where

S(λ) = (sij)5×5 =



s11 s12 s13 s14 s15

s21 s22 s23 s24 s25

s31 s32 s33 s34 s35

s41 s42 s43 s44 s45

s41 s42 s43 s44 s55


. (4.119)

Given that det(ψ±) = 1, we obtain

det(S(λ)) = 1. (4.120)
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In addition, we can show from (4.113) and (4.118) that S(λ) possesses the involution relation

S†(−
∗
λ) = C1S

−1(λ)C−1
1 . (4.121)

We deduce from (4.121) that

ŝ11(λ) =
∗
s11(−

∗
λ), (4.122)

where the inverse of the scattering data matrix is denoted by S−1 = (ŝjk)5×5 for j, k ∈ {1, 2, 3, 4, 5}.

We can show similarly from (4.114) and (4.118) that S(λ) satisfies

S(−λ) = C2S(λ)C
−1
2 . (4.123)

This leads us to deduce

s11(−λ) = s11(λ). (4.124)

In order to formulate Riemann-Hilbert problems, we need to analyse the analyticity of the Jost matrix ψ±.

Our solutions ψ± to this problem can be uniquely written by using the Volterra integral equations in con-

junction with the spatial spectral problem (4.97):

ψ−(x, λ) = I5 + i

x∫
−∞

eiλ(x−y)ΛP (y)ψ−(y, λ)eiλ(y−x)Λdy, (4.125)

ψ+(x, λ) = I5 − i

+∞∫
x

eiλ(x−y)ΛP (y)ψ+(y, λ)eiλ(y−x)Λdy. (4.126)

We denote the matrix ψ− to be

ψ− =



ψ−
11 ψ−

12 ψ−
13 ψ−

14 ψ−
15

ψ−
21 ψ−

22 ψ−
23 ψ−

24 ψ−
25

ψ−
31 ψ−

32 ψ−
33 ψ−

34 ψ−
35

ψ−
41 ψ−

42 ψ−
43 ψ−

44 ψ−
45

ψ−
51 ψ−

52 ψ−
53 ψ−

54 ψ−
55


, (4.127)
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and ψ+ is denoted similarly. Thus from (4.125) the components of the first column of ψ− are

ψ−
11 = 1 + i

∫ x

−∞
(u(y)ψ−

21(y, λ) + u(−y)ψ−
31(y, λ) + v(y)ψ−

41(y, λ) + v(−y)ψ−
51(y, λ))dy,

ψ−
21 = −i

∫ x

−∞

∗
u(y)ψ−

11(y, λ)e
−iλα(x−y)dy, ψ−

31 = −i
∫ x

−∞

∗
u(−y)ψ−

11(y, λ)e
−iλα(x−y)dy,

ψ−
41 = −i

∫ x

−∞

∗
v(y)ψ−

11(y, λ)e
−iλα(x−y)dy, ψ−

51 = −i
∫ x

−∞

∗
v(−y)ψ−

11(y, λ)e
−iλα(x−y)dy.

Similarly, the components of the second column of ψ− are

ψ−
12 = i

∫ x

−∞

(
u(y)ψ−

22(y, λ) + u(−y)ψ−
32(y, λ) + v(y)ψ−

42(y, λ) + v(−y)ψ−
52(y, λ)

)
eiλα(x−y)dy,

ψ−
22 = 1− i

∫ x

−∞

∗
u(y)ψ−

12(y, λ)dy, ψ−
32 = −i

∫ x

−∞

∗
u(−y)ψ−

12(y, λ)dy,

ψ−
42 = −i

∫ x

−∞

∗
v(y)ψ−

12(y, λ)dy, ψ−
52 = −i

∫ x

−∞

∗
v(−y)ψ−

12(y, λ)dy,

and the components of the third column of ψ− are

ψ−
13 = i

∫ x

−∞

(
u(y)ψ−

23(y, λ) + u(−y)ψ−
33(y, λ) + v(y)ψ−

43(y, λ) + v(−y)ψ−
53(y, λ)

)
eiλα(x−y)dy,

ψ−
23 = −i

∫ x

−∞

∗
u(y)ψ−

13(y, λ)dy, ψ−
33 = 1− i

∫ x

−∞

∗
u(−y)ψ−

13(y, λ)dy,

ψ−
43 = −i

∫ x

−∞

∗
v(y)ψ−

13(y, λ)dy, ψ−
53 = −i

∫ x

−∞

∗
v(−y)ψ−

13(y, λ)dy,

the components of the fourth column of ψ− are

ψ−
14 = i

∫ x

−∞

(
u(y)ψ−

24(y, λ) + u(−y)ψ−
34(y, λ) + v(y)ψ−

44(y, λ) + v(−y)ψ−
54(y, λ)

)
eiλα(x−y)dy,

ψ−
24 = −i

∫ x

−∞

∗
u(y)ψ−

14(y, λ)dy, ψ−
34 = −i

∫ x

−∞

∗
u(−y)ψ−

14(y, λ)dy,

ψ−
44 = 1− i

∫ x

−∞

∗
v(y)ψ−

14(y, λ)dy, ψ−
54 = −i

∫ x

−∞

∗
v(−y)ψ−

14(y, λ)dy,
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and finally the components of the fifth column of ψ− are

ψ−
15 = i

∫ x

−∞

(
u(y)ψ−

25(y, λ) + u(−y)ψ−
35(y, λ) + v(y)ψ−

45(y, λ) + v(−y)ψ−
55(y, λ)

)
eiλα(x−y)dy,

ψ−
25 = −i

∫ x

−∞

∗
u(y)ψ−

15(y, λ)dy, ψ−
35 = −i

∫ x

−∞

∗
u(−y)ψ−

15(y, λ)dy,

ψ−
45 = −i

∫ x

−∞

∗
v(y)ψ−

15(y, λ)dy, ψ−
55 = 1− i

∫ x

−∞

∗
v(−y)ψ−

15(y, λ)dy.

Recall that α < 0. If Im(λ) > 0 and y < x then, Re(e−iλα(x−y)) decays exponentially and so each integral

of the first column of ψ− converges. As a result, the components of the first column of ψ−, are analytic in

the upper half complex plane for λ ∈ C+, and continuous for λ ∈ C+ ∪ R.

In the same way for y > x, the components of the last four columns of ψ+ are analytic in the upper half

plane for λ ∈ C+ and continuous for λ ∈ C+ ∪ R.

It is worth mentioning the case when Im(λ) < 0, then the first column ψ+ is analytic in the lower half plane

for λ ∈ C− and continuous for λ ∈ C−∪R, and the components of the last four columns of ψ− are analytic

in the lower half plane for λ ∈ C− and continuous for λ ∈ C− ∪ R.

Now, let us construct the Riemann-Hilbert problems. To construct the Jost matrix in the upper-half plane we

note that

ψ± = φ±e−iλΛx. (4.128)

Let ψ±
j be the jth column of ψ± for j ∈ {1, 2, 3, 4, 5}. Hence the first Jost matrix solution can be taken as

P+(x, λ) = (ψ−
1 , ψ

+
2 , ψ

+
3 , ψ

+
4 , ψ

+
5 ) = ψ−H1 + ψ+H2, (4.129)

where H1 = diag(1, 0, 0, 0, 0) and H2 = diag(0, 1, 1, 1, 1).

Therefore P+ is analytic for λ ∈ C+ and continuous for λ ∈ C+ ∪ R.

For the lower-half plane, we can construct P− ∈ C− which is the analytic counterpart of P+ ∈ C+. We do

this by utilizing the equivalent spectral adjoint equation (4.112). Because ψ̃± = (ψ±)−1 and

φ± = ψ±eiλΛx, we have

(ψ±)−1 = eiλΛx(φ±)−1. (4.130)
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Let ψ̃±
j be the jth row of ϕ̃± for j ∈ {1, 2, 3, 4, 5}. As above, we can get

P−(x, λ) =

(
ψ̃−
1 , ψ̃

+
2 , ψ̃

+
3 , ψ̃

+
4 , ψ̃

+
5

)T

= H1(ψ
−)−1 +H2(ψ

+)−1. (4.131)

Hence, P− is analytic for λ ∈ C− and continuous for λ ∈ C− ∪ R.

Since both ψ− and ψ+ satisfy

ψ†(−x,−t,−
∗
λ) = C1ψ

−1(x, t, λ)C−1
1 , (4.132)

using (4.129), we have

P+(−x,−t,−
∗
λ) = ψ−(−x,−t,−

∗
λ)H1 + ψ+(−x,−t,−

∗
λ)H2 (4.133)

or equivalently

(P+)†(−x,−t,−
∗
λ) = H1(ψ

−)†(−x,−t,−
∗
λ) +H2(ψ

+)†(−x,−t,−
∗
λ). (4.134)

Substituting (4.132) in (4.134), we have the nonlocal symmetry property

(P+)†(−x,−t,−
∗
λ) = C1P

−(x, t, λ)C−1
1 . (4.135)

One can prove as well that

P+(−x,−t,−λ) = C2P
+(x, t, λ)C−1

2 . (4.136)

Employing analyticity of both P+ and P−, one can construct the Riemann-Hilbert problems

P−P+ = J, (4.137)

where J = eiλΛx(H1 +H2S)(H1 + S−1H2)e
−iλΛx for λ ∈ R.
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Replacing (4.118) in (4.129), we have

P+(x, λ) = ψ+(eiλΛxSe−iλΛxH1 +H2). (4.138)

Because ψ+(x, λ) → I5 when x→ +∞, we get

lim
x→+∞

P+ =

s11(λ) 0

0 I4

 , for λ ∈ C+ ∪ R. (4.139)

In the same way,

lim
x→−∞

P− =

ŝ11(λ) 0

0 I4

 , for λ ∈ C− ∪ R. (4.140)

Thus, if we choose

G+(x, λ) = P+(x, λ)

s−1
11 (λ) 0

0 I4

 and (G−)−1(x, λ) =

ŝ−1
11 (λ) 0

0 I4

P−(x, λ) , (4.141)

the two generalized matrices G+(x, λ) and G−(x, λ) generate the matrix Riemann-Hilbert problems on the

real line for the resulting two-component nonlocal Sasa-Satsuma equation, given by

G+(x, λ) = G−(x, λ)G0(x, λ), for λ ∈ R, (4.142)

where the jump matrix G0(x, λ) can be cast as

G0(x, λ) =

ŝ−1
11 (λ) 0

0 I4

 J

s−1
11 (λ) 0

0 I4

 , (4.143)
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which reads

G0(x, λ) =



s−1
11 ŝ

−1
11 ŝ12ŝ

−1
11 e

iλαx ŝ13ŝ
−1
11 e

iλαx ŝ14ŝ
−1
11 e

iλαx ŝ15ŝ
−1
11 e

iλαx

s21s
−1
11 e

−iλαx 1 0 0 0

s31s
−1
11 e

−iλαx 0 1 0 0

s41s
−1
11 e

−iλαx 0 0 1 0

s51s
−1
11 e

−iλαx 0 0 0 1



, (4.144)

and whose canonical normalization conditions are:

G+(x, λ) → I5 as λ ∈ C+ ∪ R → ∞, (4.145)

G−(x, λ) → I5 as λ ∈ C− ∪ R → ∞. (4.146)

From (4.135) along with (4.141) and using (4.122), we deduce the nonlocal involution properties


(G+)†(−x,−t,−

∗
λ) = C1(G

−)−1(x, t, λ)C−1
1 ,

G+(−x,−t,−λ) = C2G
+(x, t, λ)C−1

2 .

(4.147)

Furthermore, from (4.143),(4.122) and (4.142),(4.147), we derive the following nonlocal involution proper-

ties for G0 
G†

0(−x,−t,−
∗
λ) = C1G0(x, t, λ)C

−1
1 ,

G0(−x,−t,−λ) = C2G0(x, t, λ)C
−1
2 ,

λ ∈ R. (4.148)

4.3.1 Time evolution of the scattering data

At this point, we have to determine how the scattering data evolves over time. In order to do that, we

differentiate equation (4.118) with respect to time t and applying (4.106) gives

St = iλ3[Ω,S], (4.149)
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and thus

St =



0 iβλ3s12 iβλ3s13 iβλ3s14 βλ3s15

−iβλ3s21 0 0 0 0

−iβλ3s31 0 0 0 0

−iβλ3s41 0 0 0 0

−iβλ3s51 0 0 0 0


. (4.150)

As a result, we have



s12(t, λ) = s12(0, λ)e
iβλ3t,

s13(t, λ) = s13(0, λ)e
iβλ3t,

s14(t, λ) = s14(0, λ)e
iβλ3t,

s15(t, λ) = s15(0, λ)e
iβλ3t,

s21(t, λ) = s21(0, λ)e
−iβλ3t,

s31(t, λ) = s31(0, λ)e
−iβλ3t,

s41(t, λ) = s41(0, λ)e
−iβλ3t,

s51(t, λ) = s51(0, λ)e
−iβλ3t,

(4.151)

and s11, s2j , s3j , s4j , s5j are constants for j ∈ {2, ..., 5}.

4.4 Soliton solutions

4.4.1 General case

Based on the Riemann-Hilbert problems, the type of soliton solutions generated is determined by the deter-

minant of the matrix G±. When det(G±) ̸= 0, the regular case leads to a unique solution. On the other

hand, the non-regular case det(G±) = 0, generates discrete eigenvalues in the spectral plane. To solve for

soliton solutions, we can transform the non-regular case into the regular case.

The following can be shown from (4.138) and det(ψ±) = 1

det(P+(x, λ)) = s11(λ), (4.152)

det(P−(x, λ)) = ŝ11(λ). (4.153)

117



Since det(S(λ)) = 1, thus it follows that S−1(λ) =

(
cof(S(λ))

)T

. So

ŝ11 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

s22 s23 s24 s25

s32 s33 s34 s35

s42 s43 s44 s45

s52 s53 s54 s55

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.154)

which should be zero for the non-regular case.

The solutions to det(P+(x, λ)) = det(P−(x, λ)) = 0 have to be simple in order to obtain soliton solutions.

In the case of det(P+(x, λ)) = s11(λ) = 0, we assume s11(λ) has simple zeros generating discrete eigen-

values λk ∈ C+ for k ∈ {1, 2, ..., 2N1 = N}, whereas in the case of det(P−(x, λ)) = ŝ11(λ) = 0, we

assume ŝ11(λ) has simple zeros generating discrete eigenvalues λ̂k ∈ C− for k ∈ {1, 2, ..., 2N1 = N}.

From ŝ11(λ) =
∗
s11(−

∗
λ) and det(P±(x, λ)) = 0, one can see that if λ ∈ C+, then −

∗
λ ∈ C+. Also, from

s11(−λ) = s11(λ) and det(P±(x, λ)) = 0, we deduce that if λ ∈ C+, then −λ ∈ C−. In other words,

if λ ∈ C+, then


−

∗
λ ∈ C+,

−λ ∈ C−,

λ /∈ iR. (4.155)

If λ = im ∈ iR, for m > 0, the couple (λ,−
∗
λ) ∈ C2

+ coincide, forcing λ̂ = −λ = −im ∈ C−.

To make this clearer, we can view the choices of the eigenvalues in a more systematic way. Recall that

the Riemann-Hilbert problem requires the same number of eigenvalues in the upper-half plane and in the

lower-half plane. Assume λk ∈ C+ for all k = 1, 2, . . . , 2N1. Fix n for 1 ≤ n ≤ N1 and λn lies off the

imaginary axis. The eigenvalues are given by the N1-couples (λn, λN1+n) = (λ,−
∗
λ) ∈ C2

+, which are

assumed to be the zeros of det(P+(x, λ)) = 0. For any λn, the choice of λN1+n depends on λn, that is,

λn = −
∗
λN1+n, where λn is freely chosen. If λn lies on the imaginary axis, then the coupled pair coincide.

In the lower-half plane, we have λ̂k ∈ C− for all k = 1, 2, . . . , 2N1 and similarly the eigenvalues are given

by theN1-couples (λ̂n, λ̂N1+n) = (−λ,
∗
λ) ∈ C2

−, which are assumed to be the zeros of det(P−(x, λ)) = 0,

and λ̂n = −
∗
λ̂N1+n.
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In other words, if λn is not pure imaginary, then the scheme of the eigenvalues take the form

(λn, λN1+n, λ̂n, λ̂N1+n) = (λ,−
∗
λ,−λ,

∗
λ). (4.156)

Each Ker(P+(x, λk)) contains only a single column vector vk, similarly each Ker(P−(x, λ̂k)) contains

only a single row vector v̂k such that:

P+(x, λk)vk = 0 for k ∈ {1, 2, ..., 2N1}, (4.157)

and

v̂kP
−(x, λ̂k) = 0 for k ∈ {1, 2, ..., 2N1}. (4.158)

To obtain explicit soliton solutions, we take G0 = I5 in the Riemann-Hilbert problems. This will force the

reflection coefficients s21 = s31 = s41 = s51 = 0 and ŝ12 = ŝ13 = ŝ14 = ŝ15 = 0.

In that case, the Riemann-Hilbert problems can be presented as follows [26]:

G+(x, λ) = I5 −
N∑

k,j=1

vk(M
−1)kj v̂j

λ− λ̂j
, (4.159)

and

(G−)−1(x, λ) = I5 +
N∑

k,j=1

vk(M
−1)kj v̂j

λ− λk
, (4.160)

where M = (mkj)N×N is a matrix defined by [26]

mkj =


v̂kvj

λj−λ̂k
, if λj ̸= λ̂k,

0, if λj = λ̂k,

k, j ∈ {1, 2, ..., N}. (4.161)

Since the zeros λk and λ̂k are constants, because they are independent of space and time, we can explore the

spatial and temporal evolution of the scattering vectors vk(x, t) and v̂k(x, t), 1 ≤ k ≤ N .

Taking the x-derivative of both sides of the equation

P+(x, λk)vk = 0, 1 ≤ k ≤ N, (4.162)
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and knowing that P+ satisfies the spectral spatial equivalent equation (4.105) together with (4.157), we

obtain

P+(x, λk)

(
dvk
dx

− iλkΛvk

)
= 0 for k, j ∈ {1, 2, ..., N}. (4.163)

In a similar manner, taking the t-derivative and using the temporal equation (4.106) with (4.157), we acquire

P+(x, λk)

(
dvk
dt

− iλ3kΩvk

)
= 0 for k, j ∈ {1, 2, ..., N}. (4.164)

For the adjoint spectral equations (4.109) and (4.110), we can obtain the following similar results

(
dv̂k
dx

+ iλ̂kv̂kΛ

)
P−(x, λ̂k) = 0, (4.165)

and (
dv̂k
dt

+ iλ̂3kv̂kΩ

)
P−(x, λ̂k) = 0. (4.166)

Because vk is a single vector in the kernel of P+, so dvk
dx − iλkΛvk and dvk

dt − iλ3kΩvk

are scalar multiples of vk.

Hence without loss of generality, we can take the space dependence of vk to be:

dvk
dx

= iλkΛvk, 1 ≤ k ≤ N (4.167)

and the time dependence of vk as:

dvk
dt

= iλ3kΩvk, 1 ≤ k ≤ N. (4.168)

so, we can conclude that

vk(x, t) = vk(x, t, λk) = eiλkΛx+iλ3
kΩtwk for k ∈ {1, 2, ..., N}, (4.169)

by solving equations (4.167) and (4.168). Likewise, we get

v̂k(x, t) = v̂k(x, t, λ̂k) = ŵke
−iλ̂kΛx−iλ̂3

kΩt for k ∈ {1, 2, ..., N}, (4.170)
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where wk and ŵk are constant column and row vectors in C5, respectively. In addition, they need to satisfy

the orthogonality condition:

ŵkwl = 0, when λl = λ̂k, 1 ≤ k, l ≤ N. (4.171)

From (4.157) and using the formula (4.135), it is easy to see

v†k(−x,−t,
∗
λk)(P

+)†(−x,−t,
∗
λk) = v†k(−x,−t,

∗
λk)C1P

−(x, t,−λk)C1 = 0. (4.172)

Because v†k(−x,−t,−
∗
λk)C1P

−(x, t, λk) can be zero and using (4.158) this leads to

v†k(−x,−t,
∗
λk)C1P

−(x, t,−λk) = v†k(−x,−t,
∗
λk)C1P

−(x, t,−λk) (4.173)

= v̂k(x, t, λ̂k)P
−(x, t, λ̂k) = 0, (4.174)

thus, we can take

v̂k(x, t, λ̂k) = v†k(−x,−t,
∗
λk)C1. (4.175)

Therefore, the involution relations (4.169) and (4.170) give

vk(x, t) = eiλkΛx+iλ3
kΩtwk, (4.176)

v̂k(x, t) = w†
ke

−iλ̂kΛx−iλ̂3
kΩtC1. (4.177)

Now, in order to satisfy the orthogonality condition (4.171), one can notice that we require:

w†
kC1wl = 0, as λl = λ̂k, 1 ≤ k, l ≤ N. (4.178)

As a consequence, λ̂k = λk still occurs for λk ∈ iR and λ̂k = −
∗
λk holds, when λk ̸= λ̂k.

Because the jump matrix G0 = I5, we can solve the Riemann-Hilbert problem precisely. As a result, we

can determine the potentials by computing the matrix P+. Because P+ is analytic, we can expand G+ as

follows:

G+(x, λ) = I5 +
1

λ
G+

1 (x) +O
( 1

λ2

)
, when λ→ ∞. (4.179)
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Because G+ satisfies the spectral problem, substituting it in (4.105) and matching the coefficients of the

same power of 1
λ , at order O(1), we get

P = −[Λ,G+
1 ]. (4.180)

If we denote

G+
1 =



(G+
1 )11 (G+

1 )12 (G+
1 )13 (G+

1 )14 (G+
1 )15

(G+
1 )21 (G+

1 )22 (G+
1 )23 (G+

1 )24 (G+
1 )25

(G+
1 )31 (G+

1 )32 (G+
1 )33 (G+

1 )34 (G+
1 )35

(G+
1 )41 (G+

1 )42 (G+
1 )43 (G+

1 )44 (G+
1 )45

(G+
1 )51 (G+

1 )52 (G+
1 )53 (G+

1 )54 (G+
1 )55


(4.181)

then

P = −[Λ,G+
1 ] =



0 −α(G+
1 )12 −α(G+

1 )13 −α(G+
1 )14 −α(G+

1 )15

α(G+
1 )21 0 0 0 0

α(G+
1 )31 0 0 0 0

α(G+
1 )41 0 0 0 0

α(G+
1 )51 0 0 0 0


. (4.182)

Matching the components of (4.182) to the components of the P matrix, P can be rewritten in the form:

P =



0 −α(G+
1 (x))12 −α(G+

1 (−x))12 −α(G+
1 (x))14 −α(G+

1 (−x))14

α(
∗
G+

1 (x))12 0 0 0 0

α(
∗
G+

1 (−x))12 0 0 0 0

α(
∗
G+

1 (x))14 0 0 0 0

α(
∗
G+

1 (−x))14 0 0 0 0


. (4.183)

As a result, we can recover the potentials u and v as

u(x, t) = −α(G+
1 (x, t))12, (4.184)

v(x, t) = −α(G+
1 (x, t))14. (4.185)
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It can be seen from (4.179) that

G+
1 = λ lim

λ→∞
(G+(x, λ)− I5), (4.186)

and then using equation (4.159), we deduce

G+
1 = −

N∑
k,j=1

vk(M
−1)k,j v̂j , (4.187)

where

vk = (vk,1, vk,2, vk,3, vk,4, vk,5)
T , v̂k = (v̂k,1, v̂k,2, v̂k,3, v̂k,4, v̂k,5).

In addition, by the use of equations (4.8) and (4.180), we can easily prove the symmetry relation


(G+

1 )
†(−x,−t) = C1G

+
1 (x, t)C

−1
1

G+
1 (−x,−t) = C2G

+
1 (x, t)C

−1
2

(4.188)

We deduce that the specific Riemann-Hilbert problem solutions determined by (4.159)-(4.161), satisfy

(4.147). Hence the matrix G+
1 posses the symmetry relation (4.188), which is genereted from the non-

local symmetry (4.6).

Now, by substituting (4.187) into (4.184) and using (4.176) and (4.177), we generate the N -soliton solution

to the nonlocal reverse-spacetime two-component AKNS system of third-order

u(x, t) = α
N∑

k,j=1

vk,1(M
−1)kj v̂j,2, (4.189)

v(x, t) = α

N∑
k,j=1

vk,1(M
−1)kj v̂j,4. (4.190)

4.5 Exact soliton solutions and their dynamics

4.5.1 Explicit one-soliton solution

For a general explicit formula for the one-soliton solution of the Sasa-Satsuma equation (4.1) and (4.2), i.e.,

when N = 1, we choose λ1 = im and λ̂1 = −im, where m > 0, in order to fulfill condition (4.155). This
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Sasa-Satsuma equation requires a further orthogonality condition

w†
kC2wl = 0, for λl = λ̂k, 1 ≤ k, l ≤ N. (4.191)

which will impose the choice of w1 to be:

w1 = (w11,w12,w12,w14,w14)
T . (4.192)

in order to satisfy the Sasa-Satsuma equation (4.1). As a consequence, the solution to the two-component

nonlocal reverse-spacetime Sasa-Satsuma equation (4.82)-(4.83) reads

u(x, t) =
i2αmw11

∗
w12

Aeαmx−βm3t +Be−αmx+βm3t
, (4.193)

v(x, t) =
i2αmw11

∗
w14

Aeαmx−βm3t +Be−αmx+βm3t
, (4.194)

where

A = 2(|w12|2 + |w14|2), B = |w11|2. (4.195)

4.5.1.1 The dynamics of the one-soliton

For the one-soliton, the soliton moves with speed V = β
αm

2 along the line x = β
αm

2t. In that case, the

amplitude is given by

|u(x, t)| = α2m|w11||w12|
A +B

. (4.196)

The amplitude of the moving soliton stays constant as seen in figure 21. In the case when λ1 = m is real,

we get a breather with period π
|βm3| as in figure 22.
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Figure 21.: Spectral plane along with 3D, 2D and contours plots of |u(x, t)| of the one-soliton with param-
eters (α, β) = (−2,−2), (λ1, λ̂1) = (i,−i), w1 = (1, 0.5, 0.5, 0.5, 0.5).

Figure 22.: Spectral plane along with 3D, 2D and contours plots of |u(x, t)| of the one-soliton breather with
parameters (α, β) = (−4,−4), (λ1, λ̂1) = (1,−1), w1 = (1,−0.5,−0.5, 1.5, 1.5).
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4.5.2 Two-soliton solutions

For a general explicit formula for two-soliton solutions of the Sasa-Satsuma equation (4.1) and (4.2),

i.e., when N = 2, the configuration of the eigenvalues for this equation is given by (λ1, λ2, λ̂1, λ̂2) =

(λ,−
∗
λ,−λ,

∗
λ). As a result, we have three distinct cases as shown in figure 23. In all cases, the eigenvalues

λ1, λ2 ∈ C+ ∪ R and λ̂1, λ̂2 ∈ C− ∪ R are all taken to be distinct, i.e., λ1 ̸= λ2 and λ̂1 ̸= λ̂2.

(a) Case I (b) Case II (c) Case III

Figure 23.: Spectral planes of two-soliton eigenvalues cases

4.5.2.1 Explicit two-soliton solutions: Case I

If all eigenvalues in the complex plane are pure imaginary, that is λ1 = im1, λ2 = im2, λ̂1 = −im1,

λ̂2 = −im2, for m1,m2 > 0 and w1 = (w11,w12,w12,w14,w14)
T , then for simplicity of the solution, we

take w2 = w1. Hence, the solution in this nonlocal reverse-spacetime case is given by:

u(x, t) = −iαw11
∗
w12

N1(x, t)

D1(x, t)
, (4.197)

v(x, t) = iαw11
∗
w14

N1(x, t)

D1(x, t)
, (4.198)

where

126



N1(x, t) = m1A1e
−
(
α1m1+α2(m1+2m2)

)
x+
(
β1m3

1+β2(m3
1+2m3

2)
)
t

−m2A1e
−
(
α1m2+α2(2m1+m2)

)
x+
(
β1m3

2+β2(2m3
1+m3

2)
)
t

+m1A2e
−
(
α2m1+α1(m1+2m2)

)
x+
(
β2m3

1+β1(m3
1+2m3

2)
)
t

−m2A2e
−
(
α2m2+α1(2m1+m2)

)
x+
(
β2m3

2+β1(2m3
1+m3

2)
)
t

(4.199)

and

D1(x, t) = A3e
−2α2(m1+m2)x+2β2(m3

1+m3
2)t +A4e

−2(α1m2+α2m1)x+2(β1m3
2+β2m3

1)t

+ 2A5e
−(α1+α2)(m1+m2)x+(β1+β2)(m3

1+m3
2)t +A4e

−2(α1m1+α2m2)x+2(β1m3
1+β2m3

2)t

+A6e
−2α1(m1+m2)x+2β1(m3

1+m3
2)t,

(4.200)

where the coefficients are

A1 = 4(m2
1 −m2

2)(|w12|2 + |w14|2), A2 = 2(m2
1 −m2

2)|w11|2,

A3 = 4(m1 −m2)
2(|w12|2 + |w14|2)2, A4 = 2(m1 +m2)

2|w11|2(|w12|2 + |w14|2),

A5 = −8m1m2|w11|2(|w12|2 + |w14|2), A6 = (m1 −m2)
2|w11|4.

4.5.2.2 The dynamics of the two-soliton solution: Case I

If the eigenvalues λ1 = −λ̂1 and λ2 = −λ̂2, then the two solitons move in the same direction before and

after the elastic collision, where the faster soliton overtakes the slower one. An overlay of two traveling

waves is shown in figure 24, in which the amplitude pre and post collision remains unchanged, and the

speed of the soliton S2 is larger than the speed of the soliton S1.
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Figure 24.: Spectral plane along with 3D, 2D and contours plots of |u(x, t)| of the two solitons inter-
action with parameters (α, β) = (−2,−2), (λ1, λ2, λ̂1, λ̂2) = (0.5i, 0.7i,−0.5i,−0.7i), w1 = w2 =
(1, 0.5, 0.5, 0.5, 0.5).

4.5.2.3 Explicit two-soliton solutions: Case II

In that case, if λ1, λ2 ∈ C+ are not pure imaginary, then the involution property (4.155) requires that

λ2 = −
∗
λ1, while in the lower half-plane λ̂1 = −λ1 and λ̂2 =

∗
λ1.

Let w1 = (w11,w12,w12,w14,w14)
T and w2 = w1. the solution in this nonlocal reverse-spacetime case is

given by:

u(x, t) = −αw11
∗
w12

N2(x, t)

D2(x, t)
, (4.201)

v(x, t) = −αw11
∗
w14

N2(x, t)

D2(x, t)
, (4.202)
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where

N2(x, t) =
∗
λ1B1e

i
(
−α1

∗
λ1+α2(2λ1−

∗
λ1)
)
x+i
(
−β1

∗
λ3
1+β2(2λ3

1−
∗
λ3
1)
)
t

+
∗
λ1B2e

i
(
α1(2λ1−

∗
λ1)−α2

∗
λ1

)
x+i
(
β1(2λ3

1−
∗
λ3
1)−β2

∗
λ3
1

)
t

+ λ1B2e
i
(
α1(λ1−2

∗
λ1)+α2λ1

)
x+i
(
β1(λ3

1−2
∗
λ3
1)+β2λ3

1

)
t

+ λ1B1e
i
(
α1λ1+α2(λ1−2

∗
λ1)
)
x+i
(
β1λ3

1+β2(λ3
1−2

∗
λ3
1)
)
t,

(4.203)

D2(x, t) = B3e
−4α2Im(λ1)x−4β2Im(λ3

1)t + B4e
i2(α1λ1−α2

∗
λ1)x+i2(β1λ3

1−β2
∗
λ3
1)t

+ 2B5e
−2(α1+α2)Im(λ1)x−2(β1+β2)Im(λ3

1)t + B4e
−i2(α1

∗
λ1−α2λ1)x−i2(β1

∗
λ3
1−β2λ3

1)t

+ B6e
−4α1Im(λ1)x−4β1Im(λ3

1)t,

(4.204)

with coefficients

B1 = i16Im(λ1)Re(λ1)(|w12|2 + |w14|2), B2 = i8Im(λ1)Re(λ1)|w11|2,

B3 = −
(
4Re(λ1)(|w12|2 + |w14|2)

)2
, B4 = 8(Im(λ1))

2|w11|2(|w12|2 + |w14|2),

B5 = −8|λ1|2|w11|2(|w12|2 + |w14|2), B6 = −
(
2|w11|2Re(λ1)

)2
.

4.5.2.4 The dynamics of the two-soliton solution: Case II

In this configuration of the eigenvalues, the two solitons S1 and S2 move in the same direction as shown in

figure 25. The soliton wave S2 with the higher speed overtakes the wave S1 and after the collision, the wave

S1 gains speed and overtakes S2. Therefore, we have a continuously occurring phenomenon of periodic

elastic collisions.
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Figure 25.: Spectral plane along with 3D, 2D and contours plots of |u(x, t)| of the two solitons interaction
with parameters (α, β) = (−3,−3), (λ1, λ2, λ̂1, λ̂2) = (0.1 + 0.4i,−0.1 + 0.4i,−0.1 − 0.4i, 0.1 − 0.4i),
w1 = w2 = (1, 0.5, 0.5, 1 + i, 1 + i).

4.5.2.5 Explicit two-soliton solutions: Case III

In that case, if λ1 = im ∈ iR+ is pure imaginary and λ2 = n ∈ R+, then the involution property (4.155)

requires that λ̂1 = −im and λ̂2 = −n.

Let w1 = w2 = (w11,w12,w12,w14,w14)
T . The solution for this nonlocal reverse-spacetime case reads:

u(x, t) = −2α(m2 + n2)w11
∗
w12

N3(x, t)

D3(x, t)
, (4.205)

v(x, t) = −2α(m2 + n2)w11
∗
w14

N3(x, t)

D3(x, t)
, (4.206)

where

N3(x, t) = C1e

(
−(α1+α2)m+i2α2n

)
x+
(
(β1+β2)m3+i2β2n3

)
t + C2e

(
i(α1+α2)n−2α2m

)
x+
(
i(β1+β2)n3+2β2m3

)
t

+ C3e

(
i(α1+α2)n−2α1m

)
x+
(
i(β1+β2)n3+2β1m3

)
t + C4e

(
−(α1+α2)m+i2α1n

)
x+
(
(β1+β2)m3+i2β1n3

)
t,

(4.207)
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D3(x, t) = C5e

(
−2α2(m−in)

)
x+
(
2β2(m3+in3)

)
t + C6e

(
−2α1m+i2α2n

)
x+
(
2β1m3+i2β2n3

)
t

+ C7e

(
−(α1+α2)(m−in)

)
x+
(
(β1+β2)(m3+in3)

)
t + C8e

(
−2α2m+i2α1n

)
x+
(
2β2m3+i2β1n3

)
t

+ C9e

(
−2α1(m−in)

)
x+
(
2β1(m3+in3)

)
t,

(4.208)

where the coefficients are

C1 = i2m(|w12|2 + |w14|2), C2 = −2n(|w12|2 + |w14|2), C3 = −n|w11|2, C4 = im|w11|2,

C5 = −4(i2mn+m2 − n2)(|w12|2 + |w14|2)2, C6 = 2(i2mn−m2 + n2)|w11|2(|w12|2 + |w14|2),

C7 = −i16mn|w11|2(|w12|2 + |w14|2), C8 = 2(i2mn−m2 + n2)|w11|2(|w12|2 + |w14|2),

C9 = −(i2mn+m2 − n2)|w11|4.

4.5.2.6 The dynamics of the two-soliton solution: Case III

Taking a look at this dynamics, we can observe a soliton moving in one direction, and a breather moving

in the opposite direction. They interact continuously while the soliton travels through the breather. This is

shown in figure 26.

Figure 26.: Spectral plane along with 3D, 2D and contours plots of |u(x, t)| of the continuous interaction
between the soliton wave and the breather. The parameters are (α, β) = (−4,−4), (λ1, λ2, λ̂1, λ̂2) =
(0.5i, 1.5,−0.5i,−1.5), w1 = w2 = (1,−1 + i,−1 + i, 1 + i, 1 + i).
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4.5.3 Breathers

In this particular case, the configuration (4.156) compels a two-soliton breather to behave as a one-soliton

breather, if all eigenvalues are real. That is, since λ1 ̸= λ2 and λ̂1 ̸= λ̂2, then λ2 and λ̂2 are redundant and

we take λ2 = λ̂2 = 0, which reduces to the one-soliton breather solution, previously mentioned (figure 22).

Figure 27.: Spectral plane of the two-soliton breather

4.6 Remarks

In this chapter, we investigated a nonlocal reverse-spacetime two-component Sasa-Satsuma equation. The

nonlocality is embedded within the framework of a nonlocal integrable hierarchy, thus resulting in this

equation. This technique allows the construction of nonlocal systems without reductions and ensures their

integrability.
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Chapter 5

Conclusion

To summarize, we investigated a nonlocal reverse-spacetime two-component Sasa-Satsuma equation, which

was derived from a nonlocal hierarchy. This equation presents a special configuration of the eigenvalues in

the spectral plane, that is (λ,−
∗
λ,−λ,

∗
λ) must hold whenever the eigenvalue λ is not pure imaginary. In the

case where λ is pure imaginary, then the latter configuration reduces to (λ,−λ). In contrary, the reverse-

time sixth-order NLS-type equation exhibits the simple eigenvalue configuration (λ,−λ) in the spectral

plane. This configuration (λ,−λ) of eigenvalues makes the Riemann-Hilbert problem easier to be solved in

the reverse-time than in the reverse-spacetime [14]. As can be seen from the eigenvalues configuration of the

nonlocal Sasa-Satsuma equation, which involves two symmetry relations. The first is associated with time,

and the second with space. Further, a kind of soliton solutions was generated, and the Hamiltonian structure

was derived for the resulting nonlocal Sasa-Satsuma equation.

Furthermore, looking at the dynamics, the reverse-spacetime equations exhibit very different dynamical

behaviors than reverse-time and reverse-space equations [14]. For instance, in the reverse-spacetime Sasa-

Satsuma equation, the one-soliton is a moving soliton, while in the reverse-time and reverse-space NLS-type

equation, it is stationary [35].

It is also noteworthy that the two solitons collide elastically and move in the same direction in the reverse-

spacetime Sasa-Satsuma equation resembling fundamental solitons, whereas in the reverse-time NLS-type

equation, two solitons coming from opposite directions can collide in an elastic or inelastic manner.

At last one can ask: in general, can we construct nonlocal hierarchies starting with a nonlocal spectral matrix

to obtain nonlocal integrable systems?
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