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ABSTRACT

This study presents a comparative analysis of contemporary applications of time series models, focusing

on the Bayesian approach. In contrast to many nonparametric studies, the Bayesian approach circumvents

the common issue of bandwidth selection by offering systematic estimation and avoiding ad hoc methods.

Specifically, we delve into the Bayesian approach for estimating the autocovariance function of a time series

model’s error term. Traditional time series models often make the unrealistic assumption of a constant

error term. Furthermore, models such as autoregressive conditional heteroskedasticity (ARCH) and general

autoregressive conditional heteroskedasticity (GARCH) address the limitation of constant variance by as-

suming an autoregressive error term. However, this may still fail to capture the actual error accurately. The

Bayesian method overcomes these assumptions by leveraging actual sample data and employing the Markov

Chain Monte Carlo (MCMC) method for parameter estimation. We elucidate the transformation of the time

series error term into the frequency domain via spectral density. Spectral density, a population concept,

is estimated using a periodogram with discrete Fourier transform. Utilizing sample data, we construct the

periodogram in the frequency domain. Asymptotically, the periodogram follows an exponential distribution

approximated by a mixture of five Gaussian distributions. This thesis thoroughly examines the Bayesian

method and evaluates its efficacy using real-world time series data, such as exchange rates and stocks. Per-

formance assessment involves comparing traditional time series autoregressive (AR) (1) models and machine

learning recurrent neural network (RNN) models, which provide valuable reference points for analysis. The

Bayesian model outperforms the AR model by effectively capturing and reflecting fluctuation patterns in

the data. The Bayesian model’s root mean squared error (RMSE) was consistently smaller than that of the

AR(1) process. This indicates that the errors of the Bayesian method were smaller than those of AR(1),

indicating superior performance of the Bayesian model compared to AR(1).

iv



CHAPTER 1:

INTRODUCTION

1.1 Background

Time series data is one of the most prevalent data types in various domains. Any dataset involving time,

regardless of the domain, falls under this category. From routine activities like tracking a baby’s weight to

analyzing complex phenomena such as minute-by-minute stock market behavior, time series data permeates

numerous aspects of life. Given the integral role of time in our daily routines, time series data is omnipresent.

Among various topics within time series data, stock market data is prominent due to its substantial

role in capitalist societies. The stock market consistently dominates daily news headlines, reflecting its

importance in financial systems. Many companies and individuals actively seek financial gain from stock

market investments, leading to a continuous influx of data. The allure of stock market investments, driven by

capitalist principles, extends worldwide, with almost every country having its stock market, resulting in over

130 stock markets globally. [1] Despite the vast number, there are approximately 20 major stock markets

worldwide. While every investor aims to predict individual stock prices accurately, inherent complexities

make prediction challenging. Consequently, achieving near-precise stock price forecasting that closely aligns

with actual outcomes would unlock the key to successful investment. The pursuit of financial gain continually

attracts the interest of academia and industry in stocks, with thousands of financial analysts worldwide

releasing reports on stock prices. Despite extensive analysis, successful prediction remains challenging, even

at the company level, making it even more difficult for individuals.

The 2020 stock market chart events starkly demonstrated the challenge of forecasting stock prices. The

sudden emergence of COVID-19 in December 2019 caught the world off guard and defied all prior predictions.

This unexpected virus not only took a toll on human health but also had profound implications for global

stock market activity. Throughout 2020, the influence of COVID-19 on the stock market was substantial,

resulting in considerable fluctuations characterized by sharp declines and followed by rapid recoveries. The

uncertainties stemming from the pandemic prompted heightened scrutiny of financial markets and spurred

dynamic shifts in investment strategies and stock valuations. Adding complexity to this evolving landscape,

ChatGPT, a generative language model (GLM) or large language model (LLM) that emerged on November

30, 2022, ushered in a new era of interest in the stock market intricacies infused with artificial intelligence
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(AI). Constructed from a vast dataset of human language sentences, the LLM is adept at generating lan-

guage tailored to specific contexts. Through exposure to billions of sentences, it has acquired the ability to

respond with the most appropriate words and phrases based on its extensive training. This versatile tool can

tackle various tasks, from sentence editing to answering general knowledge questions and coding assignments.

While it may occasionally provide inaccurate responses in specialized domains, it generally offers reasonably

accurate information, particularly concerning common, publicly available knowledge. Many anticipate sub-

stantial advancements in LLM technology, with its increasing sophistication expected to profoundly impact

various aspects of human life, akin to the transformative effects of inventions such as the steam engine, cars,

computers, the internet, and smartphones.

Consequently, there is a natural inclination for individuals to invest in AI-related companies, reflecting

an inherent trend. The introduction of ChatGPT also resulted in a notable surge in specific stock prices.

Notably, Nvidia, a prominent technology firm renowned for its graphics processing unit (GPU) innovations,

witnessed a meteoric ascent. As it turned out, the GPU played a pivotal role in LLMs. Thus, within seven

months of ChatGPT’s inception, Nvidia’s stock price had tripled. This underscores both the transformative

influence of AI advancements and the inherent volatility in stock markets. Nvidia’s extraordinary trajectory

sparked heightened market interest in technology-driven sectors, serving as a motivation factor for this

research.

While the emergence of AI has spurred the development of new machine learning techniques for pre-

dicting time series data, traditional time series models retain certain advantages over their modern coun-

terparts. Despite the superior predictive accuracy often exhibited by machine learning, particularly neural

networks, these models lack explicit insight into the influence of individual inputs. This characteristic, called

“black-box” analysis, hinders researchers’ ability to draw meaningful inferences from the data. In contrast,

traditional time series models calculate distinct coefficients for each factor, enabling practitioners to inter-

pret the impact of each variable. Consequently, there remains a continued interest in refining traditional

models. A substantial research challenge lies in the underlying assumptions of basic conventional time se-

ries models. Due to computational or theoretical constraints, these models frequently rely on assumptions

that may not align with real-world scenarios. For instance, the widely utilized autoregressive integrated

moving average (ARIMA) model assumes constant variance in the error term; a condition rarely met in

practice. More sophisticated models have been developed to address this limitation, such as autoregressive

conditional heteroskedasticity (ARCH) or general autoregressive conditional heteroskedasticity (GARCH).

Unlike ARIMA, ARCH, and GARCH do not assume constant variance but model variance autoregressively.

However, they still presuppose that the error term follows a normal distribution, which may not hold for

many real-world datasets, particularly those characterized by high volatility, such as stock prices. More-
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over, ARCH and GARCH processes inherently assume uncorrelated errors, which may not reflect reality.

Conversely, models incorporate because the variable of interest is not in the self-dependent structure. How-

ever, this assumption may not hold in the real world. Conversely, models incorporating heteroskedastic

time-varying volatility imply that error terms are dependent and unconditionally correlated, as noted by

Kim and Kim. [2] A nonparametric approach has emerged as an appealing, attractive alternative to address

these limitations. “Nonparametric” signifies a departure from conventional parametric modeling, although

some nonparametric methods may still entail weak parametric assumptions, leading to their classification as

semi-parametric. Despite this nuance, ”nonparametric” is commonly used for consistency. Nonparametric

methods, including kernel density estimation (KDE), can derive probability density function (PDF) from

data without rigid assumptions about their underlying distribution. Instead, they construct PDFs based on

the collected data, allowing for flexible adaptation over time. KDE, a notable technique in this category,

employs kernel smoothing to estimate PDF, as expressed below:

f̂n(x) =
1

nh

n∑
i=1

K

(
Xi − x

h

)
In this equation, h > 0 is often referred to as the bandwidth, serving as a smoothing parameter for the

function. K represents the kernel, a function possessing symmetric and normalization properties (such as its

integral over the entire real line equaling 1), essential for shaping the estimation. Commonly utilized kernel

functions comprise Gaussian, uniform, triangle, and quadratic.

However, even this nonparametric approach has its challenges. Selecting an appropriate bandwidth

remains a critical concern, often requiring the application of rule-of-thumb techniques in practice. A rule-of-

thumb method can be ad hoc, prompting the need for a more systematic approach for researchers’ use. This

study investigates a Bayesian approach for estimating the density function to overcome these limitations.

By introducing the autocovariance error term from a Bayesian perspective, this research aims to provide

novel insights into addressing bandwidth selection issues, thereby enhancing the accuracy and applicability

of nonparametric estimations for time series data. This approach can introduce novel avenues for refining

forecasting techniques in time series analysis.
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1.2 Goal

The primary objective of this study is to investigate a time series model proposed by Dey [3], apply it to

forecast future values in financial market data, and assess its performance compared to a current machine

learning method. Existing time series models face a major challenge due to their reliance on parametric

assumptions. By employing Bayesian methods to estimate the autocovariance of error terms, this model is

expected to outperform traditional time series approaches, such as the AR process.

One of the key difficulties with current time series models stems from their parametric assumption,

which categorizes them as parametric models. These models operate on the premise of a specific parametric

distribution, necessitating the selection of a single probability distribution to construct the model. Typically,

a normal distribution is chosen for computational ease or convenience. However, further exploration within

the parametric model becomes futile if the underlying assumption is not met during analysis. Despite

contributing to advancing statistical models based on robust theory, parametric models often prove unsuitable

for real-life data, particularly those exhibiting high volatility. Nonparametric models have emerged as a

promising alternative to address this limitation. They offer distinct advantages over parametric models,

particularly in requiring fewer assumptions about the underlying populations derived from collected data.

This contrasts with many traditional parametric models that assume normality in the underlying populations.

[4]

Conventional time series models typically rely on assumptions of white noise (as seen in ARIMA models)

or autoregressive conditional heteroscedasticity (ARCH, GARCH). Heteroskedasticity is frequently observed

in financial return processes or macroeconomics and plays a vital role in economic time series. [5] However,

when these assumptions do not hold for real-world data, the resulting predictions can deviate substantially

from the actual data trends. In contrast, the Bayesian methods in this study operate semi-operatively, with

weaker assumptions regarding autocovariance, enabling them to better adapt to the complexities inherent in

real-world data. Similarly, the application of KDE presents challenges in selecting an appropriate bandwidth.

With Bayesian estimation, this concern is mitigated, thereby enhancing the robustness of the estimation.

Consequently, the primary aim of this study is to examine a model that outperforms the traditional time

series model.

Furthermore, a secondary objective of this research is to perform a comparative analysis by utilizing

machine learning techniques. In the era of burgeoning AI, machine learning algorithms have become in-

creasingly accessible, and complex models can now be easily implemented. Neural networks have proven

remarkably adept at forecasting tasks among machine learning algorithms. Specifically, for sequential data

such as time series data, the use of RNNs has garnered attention for their efficacy.
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Establishing a robust baseline is crucial for assessing the performance of a model. In this context,

renowned for their predictive capabilities, neural network models are a suitable benchmark. Through a

thorough comparison, our goal is to ascertain how the performance of our Bayesian-based time series model

aligns with the predictive power demonstrated by advanced machine learning algorithms. This approach will

clarify the model’s effectiveness across various scenarios, contributing to a more comprehensive understanding

of its potential applications. Bayesian estimation avoids assuming a specific parametric form for any time-

dependent structure. Instead, it enables the incorporation of relevant information into covariance matrix

estimation through the prior spectral density distribution. This method helps to mitigate the risk of model

misspecification. [6]
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CHAPTER 2:

LITERATURE REVIEW

This study aims to compare time series models with nonparametric Bayesian estimation of the error

term autocovariance. Nonparametric research has been conducted on time series modeling. Jonestone and

Silverman [7] examined an estimator based on wavelet thresholding designed for data with correlated noise.

Robinson [8] explored nonparametric regression within the context of a linear process by incorporating

semiparametric modeling of spectral density. Martins-Filho and Yao [9] derived the asymptotic distribution

of a local linear estimator for nonparametric regression in the presence of dependent errors by incorporating

a general parametric covariance model. Except for Su and Ullah [10], previous researchers assumed specific

parametric and semiparametric autocovariance functions. In contrast, Su and Ullah [10] assumed that the

error possesses a finite-order nonlinear structure. Given the considerable challenge of directly estimating the

autocovariance function of the error term, an alternative approach is necessary. Our chosen method utilizes

spectral density, analogous to the frequency domain probability density function.

Spectral density operates within the frequency domain as an analytical tool for frequency analysis. Fre-

quency and time domain share numerous similarities, with frequency being a series that often exhibits

cyclical or periodic behavior. Spectral analysis has been instrumental in identifying amplitudes of periodic

frequencies and breaking the series down into distinct cycles or periods, similar to how a prism decomposes

colors into primary colors (spectrum). The term “spectral” is derived from the light spectrum. Due to

this parallel, researchers have extensively explored the use of this method for studying both time series and

frequency, revealing that the Fourier transformation can convert the autocovariance of a stationary time

series into a unique spectral distribution function in the frequency domain when the autocovariance function

is summable. [11]

Furthermore, the inverse Fourier transformation allows the autocovariance function to be reconstructed

from the spectral distribution function. Consequently, spectral density will be the primary tool for analyzing

the autocovariance function of the error term in the model presented in this study. Additional steps are

required before utilizing the Bayesian method. First, we estimate the prior log of the autocovariance function

in the frequency domain. Subsequently, the prior is updated using the Whittle approximation for the

likelihood function. [12] Due to the complexity of computing this posterior, we resort to an approximation.
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This approximation uses a mixture of five known Gaussian distributions with known proportions, introduced

by Carter et al. [13], to estimate the posterior method. We employ the periodogram, a nonparametric method

for estimating spectral density, to facilitate this approximation. The detailed mathematical expression and

process will be elucidated in the main body of the paper.

Once the model is constructed, evaluating its performance becomes crucial. This assessment can be

conducted by comparing its performance against traditional statistics and time-series models, including, but

not limited to, AR, OLS, and random walk. If the model demonstrates satisfactory performance in this

comparison, it is evaluated against machine learning models. Previous efforts have utilized machine learning

and traditional time modeling across various domains. Given the well-established history and comprehensive

explanations of time series models, as detailed in [11], this section focuses on machine learning models for

exploring time series data. Various models have been employed, and our investigation will explore the

different models utilized for specific topics. Machine learning has become commoditized and can be applied

across domains where time is a dependent variable, allowing prevalent models to be categorized into various

industries.

Slater et al. [14] employed a hybrid model combining traditional methods and neural networks for climate

prediction. Kisi et al. [15] utilized a combination of neural networks, an adaptive-neuro-fuzzy inference

system (ANFIS), and gene expression programming (GEP) to forecast daily lake levels. Wang et al. [16]

endeavored to predict water discharge using ARIMA, neural network, ANFIS, genetic programming (GP),

and support vector machine (SVM). Liu et al. [17] utilized machine learning techniques to forecast natural

gas consumption. Adil Masood et al. [18] applied AI techniques to predict air pollution, comparing artificial

neural networks (ANN), deep neural networks (DNN), SVM, and fuzzy logic.

Yaseen et al. [19] conducted stream flow forecasting, which is crucial for water resource management.

Predicting stream flow is challenging due to its substantial implications for human life. Traditional forecasting

methods, such as ARIMA, ARIMAX, and linear regression, rely on linear assumptions and may not capture

nonlinear, nonstationary relationships. Researchers have developed an innovative AI approach that can

mimic hydrologic models to address these limitations.

Lipu at el. [20] investigated AI-based wind power generation forecasting. Electricity is undoubtedly

essential for human life, and its demand is increasing. According to various studies, fossil fuels account for

63% of electricity production, while renewable energy comprises up to 25% of the world’s energy produc-

tion. This study focuses on wind energy among the few commercialized renewable energy sources. Because

electricity generation from wind is subject to natural conditions, wind power is unstable and intermittent,

posing challenges for accurate production forecasting. However, power grids must maintain reliability for

practical usage. Otherwise, insufficient capacity may lead to power outages, while excess reserve capacity
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could increase operational costs. Therefore, precise wind power forecasting is crucial for cost savings and

promoting wind energy utilization. The article reviews previous research on wind power forecast models,

summarizes their findings, and proposes a new hybridization approach.

Non-academic, industry-related studies have also been extensively conducted. Amirrkolaii et al. [21]

employed neural networks for demand forecasting for irregular aircraft spare parts, while Kaushik et al.

[22] utilized an ARIMA neural network, LSTM, and ensemble for predicting healthcare expenditures. With

the ever-increasing volume of health data, healthcare research has focused on patient privacy concerns.

Anonymization, which serves as the link between data and individuals, has become commonplace. Kaushik

et al. [22] attempted to predict the cost of two pain medications, one of which is among the most popular

medicines in the US. In contrast to previous research, this article aimed to construct an ensemble model

comprising statistical and neural network models. Two models were utilized in the literature, comprising one

statistical model and one neural network model. The study employed the persistence model (AR) among the

statistical time-series models. The remaining model is recurrent neural network (RNN) models. The study

aimed to identify the best model by combining the predictions of these two models, employing an ensembling

architecture approach. A weighted average ensemble, which dynamically weights the best predictions of

individual models, was utilized for the ensembling approach. Dropout, a technique of regularization and

data shuffling, was employed to enhance the general learning of the data and address the common problem

of overfitting. In separate research endeavors, Hadavandi et al. [23] investigated tourist arrival forecasting

using a hybrid AI model consisting of a genetic algorithm (GA) and genetic fuzzy systems. Daut et al. [24]

applied a hybrid AI model utilizing swarm intelligence (SI) and SVM to forecast electric consumption in a

commercial building. Wang et al. [25] examined crude oil price prediction using a hybrid AI model and a

data fluctuation network (DFN), along with several AI algorithms. Raza et al. [26] investigated electrical

load forecasting for building a smart grid using hybrid ANN models, including wavelet-based neural networks

(WNN), fuzzy logic, and SVM.

Studies on the stock market have also been conducted. Ding et al. [27] employed a convolutional neural

network (CNN) combined with natural language processing (NLP) to predict stock prices. The model

constituted an event-driven stock prediction model that analyzed real-life events affecting stock prices using

NLP and processed them utilizing the CNN model. Wei Li et al. [28] utilized a hybrid LSTM and relational

graph convolutional network model to investigate the relationship between previous close and open prices.

They used a relational graph convolutional network to evaluate Reuters Financial News during stock market

closure to evaluate stock connections. Akita et al. [29] also employed LSTM, paragraph vector, and deep

learning to forecast financial time series. They utilized newspaper articles in paragraph vectors and modeled

the effects of events on opening prices using LSTM. Soni [30] surveyed ANN for stock prediction using stock
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market data. Hadavandi et al. [31] used genetic fuzzy systems and ANNs to forecast stock prices. They

utilized stepwise regression to identify factors and divided them into k clusters using a self-organizing map.

They independently fed those clusters into genetic fuzzy systems and utilized data from the IT and airline

sectors. Hassan and Nath utilized the hidden Markov model for stock market forecasting. Xing et al. [32]

employed natural language processing for forecasting stocks. Ren et al. [33] utilized sentiment analysis and

SVM to predict the stock market, while Yan et al. [34] employed a Bayesian regularization neural network

based on AI optimization.

Researchers have explored not only the US market but also other global markets. Tsang et al. [35]

utilized a neural network and SVM to build a stock price forecasting model for the Hong Kong market.

Nayak et al. [36] examined the impact of data normalization on an ANN model for stock index forecasting in

the Indian market. Chen et al. [37] employed a backpropagation neural network, extreme learning machine,

and radial basis function neural network for predicting the Chinese stock market. Wei et al. [38] applied an

adaptive network fuzzy inference system to forecast the stock market in Taiwan. Huynh et al. [39] utilized

AI for cryptocurrency forecasting.

Overall, the most commonly used models in previous studies included SVM, evolutionary algorithms

families (evolution strategies (ES), genetic (evolutionary) programming, GA), fuzzy logic families (adaptive-

neuro fuzzy inference systems and genetic fuzzy systems), and neural networks families (CNN, ANN, RNN,

DNN, WNN, LSTM). In the following section, we will briefly outline the fundamental concepts of these

commonly used models. An SVM is a generalized technique involving optimal separating hyperplanes com-

monly employed in classification or regression models. [40] The algorithm can be applied more generally to

independent and dependent variable modeling rather than being a specialized method specifically for time

series.

Another commonly used method in the literature is the evolutionary algorithm (EA). Paulo et al. [41]

compared the performance of traditional time series models, such as exponential smoothing and ARIMA,

and concluded that evolutionary algorithms outperformed these traditional models. The three main streams

within evolutionary algorithms are evolutionary strategies, evolutionary programming, and GAs. [42] Evo-

lutionary computation emerged in the 1950s and 1960s as early computer science researchers aimed to derive

optimized solutions for engineering problems. The term “evolution” was incorporated into its name to mirror

the natural process of expanding the population of living organisms on Earth, involving genetic variation and

natural selection. [43] Rechenberg introduced “evolution strategies” as an optimization method for real-value

device parameters like airfoils. [44]

In 1966, Fogel introduced “evolutionary programming,” wherein candidate solutions for specific tasks

were represented as finite-state machines. These machines evolved through random mutations in their
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state-transition diagrams, with the fittest being selected. [45] GAs originated in the 1960s and 1970s, with

John Holland playing a pivotal role in their development. Unlike evolution strategies and evolutionary

programming, Holland’s primary aim was not to create algorithms tailored to specific problems but to

systematically explore natural adaptation and integrate the mechanisms of natural adaptation into computer

systems.

Holland’s influential book, “Adaptation in Natural and Artificial Systems,” [46], introduced the GA as

an abstraction of biological evolution, providing a theoretical framework for adaptation within GAs. The

GA designed by Holland facilitates the transition from one population of “chromosomes” (e.g., sequences

of ones and zeros or “bits”) to a new population through a process of ”natural selection” combined with

genetics-inspired operations, such as crossover, mutation, and inversion. [47]
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CHAPTER 3:

METHODOLOGY

3.1 Basic Linear Structure

A linear relationship is often considered a reasonable starting point when investigating the relationship

between two variables. Utilizing a linear model is a prevalent approach for establishing the relationship

between dependent and independent variables in statistical analysis. Notably, a time series model can

also be conceptualized as linear. When representing a time series within a linear model framework, the

relationship at a specific time point, denoted as t, can be expressed as follows:

yt = f(xt) + εt, t = 1, ..., T

where yt represents the dependent variable of interest, xt is a vector of n independent variables, f : Rn → R

is a function defining the relationship between the dependent and independent variables, and εt denotes the

error term.

Several nonparametric methods for estimating the function f such as spline smoothing, kernel smoothing,

and wavelet methods, have been explored for independent errors εt. [48] We assume that {εt}Tt=0 is a

weakly stationary process with a mean of 0, constant variance, and an autocovariance function γ. Further

investigation into the estimation of f has been carried out in cases where εt exhibits autocorrelation, as

examined by Hall and Hart. [49] Then, for any positive integer k, γ can be explicitly expressed as:

γ(k) = Cov(εt, εt+k) = E[(εt − µt)(εt+k − µt+k)]

where µt = E[εt].

A common assumption in time series modeling is that the model exhibits a constant variance. While

this assumption holds theoretical significance, it proves inadequate for high-volatility data, such as stock

prices, as it does not align with the characteristics of the data. Most high-volatility datasets deviate from

constant variance, rendering the basic time series model less effective due to the mismatch between the model

assumption and the data. Consequently, there arises a need for alternative models that do not presuppose

11



constant variance in error terms. This study proposes alternative nonparametric methods to address this

issue. Specifically, this study investigates a Bayesian approach for estimating the autocovariance function of

a stationary process {εt}Tt=0 where the entire model can be expressed as:

y =Xβ+ ε (3.1)

where

y = (y1, ..., yT )
′ ∈ RT ,

β = (β1, ..., βp)
′ ∈ Rp,

ε = (ε1, ..., εT )
′ ∈ RT ,

X =



x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...

xT1 xT2 . . . xTp


∈ RT×p.

Let ΓT×T denote an autocovariance matrix of ε. For any independent error terms εs and εt, Cov(εs, εt) =

0. Therefore,

ΓT×T =



Cov(ε1, ε1), Cov(ε1, ε2) . . . Cov(ε1, εT )

Cov(ε2, ε1), Cov(ε2, ε2) . . . Cov(ε2, εT )

...
...

. . .
...

Cov(εT , ε1), Cov(εT , ε2) . . . Cov(εT , εT )


=



V ar(ε1) 0 . . . 0

0 V ar(ε2) . . . 0

...
...

. . .
...

0 0 . . . V ar(εT )


which is γ(0)IT×T where IT×T is a T×T identity matrix. Since X is known, we need to estimate β and γ(0).

We can use conjugate families for a clear calculation when applying the Bayesian approach to estimating β

and γ(0). Let γ0 := γ(0). Next, let the prior distributions of β and γ(0) be a multivariate normal distribution

with a mean vector of µβ and a covariance of Σ and an inverse gamma distribution with a shape parameter

a and scale parameter b. Then, by applying the conjugate property, the posterior distribution of β would

also follow a normal distribution, and the posterior distribution of γ0 would also follow the inverse-gamma

distribution.

While the linear structure is a potent model for elucidating the relationship between independent and

dependent variables, it often falls short of explaining time series data adequately. A linear model primarily

identifies the relationships between the current dependent and independent variables. However, in many
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cases, the dependent variable in time series data is intricately linked to past dependent and independent

variables. For instance, if a company’s stock price closed at $100 yesterday, today’s stock price will likely

start around $100; it would hardly commence from extremes such as $1 or $10,000. This demonstrates that

the present value is influenced by past values. Therefore, it would be advantageous to incorporate past data

into explanatory variables for modeling. This concept is known as an autoregressive format and will be

elaborated on in the subsequent chapter.

3.2 Frequency Domain

If γ0 is known, calculating the posterior distribution of β can be easily calculated. However, when γ0

is unknown, β can be estimated by transforming the time domain of the series into the frequency domain.

Both time and frequency domains exhibit similar characteristics, revealing the cycles in the data. In the

frequency domain, a cycle is typically defined as one complete period of a sine or cosine function within a

unit time interval. [11] Since the definition of a cycle involves sine or cosine functions, we can consider a

sinusoidal waveform model, which can be conceptualized as a periodic process:

pt = A cos(2πωt+ ϕ), (3.2)

where A represents the amplitude, ω signifies the oscillation frequency, ϕ denotes a phase shift, and t

represents a specific time point. Since a sine function can be transformed into a cosine function and vice

versa using the trigonometric identity sin(π2 − θ) = cos(θ), representing a random sinusoidal waveform is

effectively accomplished. Moreover, A, ω, and ϕ suffice to encapsulate all variations within any sinusoidal

waveform. However, it is common for A and ϕ to be unknown. Therefore, expressing equation 3.2 in the

following form proves to be useful:

A cos(2πωt+ ϕ) = A cos(ϕ) cos(2πωt)−A sin(ϕ) sin(2πωt),

The equality follows from another trigonometric identity,

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β).

Substituting U1 for A cos(ϕ) and U2 for −A sin(ϕ), the equation becomes:

pt = U1 cos(2πωt) + U2 sin(2πωt). (3.3)
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Then the amplitude A is given by
√
U2
1 + U2

2 , and the phase ϕ is obtained by tan−1
(
−U2

U1

)
, where U2

U1
=

−A sin(ϕ)
A cos(ϕ) = − tan(ϕ). Assuming that U1 and U2 are random variables with mean 0 and variance σ2 and

are not correlated, then pt in (3.3) is a stationary process with E(pt) = 0. Let γp(h) be the autocovariance

function of pt. Notably,

γp(h) = Cov(pt+h, pt), (3.4)

= σ2(cos(2πω(t+ h)) cos(2πωt) + sin(2πω(t+ h)) sin(2πωt)),

= σ2 cos(2πω(t+ h)− 2πωt),

= σ2 cos(2πωh),

where the second-to-last inequality follows from the trigonometric identity. Note that V ar(pt) = γp(0) = σ2.

We can use the sample variance S2 as an unbiased estimator to estimate σ2. If we observe U1 = u and

U2 = v, then S2 = 1
2−1 (u

2 + v2) = u2 + v2, the estimate of σ2. Because σ2 was the variance of U1 and U2

and the mean of U1 and U2 is 0, the variance of the sample is S2 = 1
n−1 [(u− 0)2+(v− 0)2], where n denotes

the sample size, in this case 2. Because this applied to one periodic series, we can generalize it by summing

a mixture of multiple sinusoidal amplitudes and frequencies as follows:

pt =

q∑
k=1

[U1k cos(2πωkt) + U2k sin(2πωkt)],

where U1k , U2k for k = 1, 2, . . . , q are uncorrelated random variables with mean 0 and variance σ2
k, and ωk are

distinct frequencies. Then, following the process of (3.4), the autocovariance function γp for a time difference

h would be

γp(h) =

q∑
k=1

σ2
k cos(2πωkh).

Therefore, the autocovariance function of a random periodic series pt can be expressed as the sum of cosine

functions with amplitude σ2
k. Because the cosine function is centered at 0 without a phase, pt is a stationary

process with a mean of 0 and variance γp(0), explicitly

γp(0) = cov(pt, pt+0) = var(pt) =

q∑
k=1

σ2
k

Hence, the variance of the whole process {pt} is the sum of each component k, σ2
k. Similar to the single period

case, when we observe U1k = uk and U2k = vk for k = 1, . . . , q, the estimate for σ2
k would be S2

k = u2k + v2k.

The estimate of the total variance σ2 would be
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γ̂p(0) = ˆV ar(pt) =

q∑
k=1

(u2k + v2k)

3.3 Spectral Density

The spectral density is a fundamental tool in the frequency domain, enabling a deeper understanding of

stationary processes. Just as Wold decomposition [50] elucidates the application of linear regression in time

series analysis, theorems of spectral representation provide a theoretical basis for decomposing stationary

time series in the frequency domain. This decomposition unveils the inherent variance of the series. For a

stationary process pt with a constant frequency ω0, it can be expressed as:

pt = U1 cos(2πω0t) + U2 sin(2πω0t),

where U1 and U2 are random variables with a mean of 0 and are uncorrelated, both having equal variance

σ2. Since the cosine and sine functions exhibit a cycle of 2π, one cycle for pt necessitates a time period of

ω−1
0 . The process pt completes ω0 cycles for each time point t. With Euler’s formula eiα = cos(α)+ i sin(α),

γ(h) can be expressed as:

γ(h) = σ2 cos(2πω0h) =

∫ 1
2

− 1
2

e2πiωhdF (ω).

If an autocovariance function γ(h) for a stationary process pt satisfies the following condition:

∞∑
h=−∞

|γ(h)|<∞,

then according to the theorem by Shumway and Stoffer [11], the spectral density of pt is given by

f(ω) =

∞∑
h=−∞

γ(h)e−2πiωh.

A periodogram is a sample-based concept, whereas spectral density is a population-based concept. When

data {pt}nt=1 are given, the discrete Fourier transform is defined as follows:

d(ωj) = n−
1
2

n∑
t=1

pte
−2πiωjt,

where j = 0, 1, . . . , n − 1, and j
n is called the fundamental frequency or the Fourier frequency. The peri-

odogram I(ωj) is then defined as I(ωj) = |d(ωj)|2. This representation indicates that any stationary process

can be viewed as a random sum of cosines and sines.
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3.4 Markov Chain Monte Carlo Procedure

3.4.1 Introduction

Due to the inherent self-dependency within the basic structure of time series models, it is imperative

to incorporate the most recent data point into the model. Utilizing the latest data, such as yesterday’s

observations, is deemed more valuable than older data, such as those from a year ago. The most recent data

point is considered paramount for forecasting the subsequent value. Consequently, data at time t holds the

highest efficacy in estimating the data at time t + 1. This principle also holds for traditional time series

models like ARIMA or GARCH, where coefficients associated with older data points are inherently smaller

than those linked to more recent observations.

Time series data often lends itself to analysis using Bayesian statistics methods such as MCMC, partic-

ularly employing the Gibbs sampler. Within MCMC techniques, the Gibbs sampler is a specific instance

of the Metropolis-Hastings algorithm, which has proven especially useful for estimating multivariate cases.

The underlying principle of the Gibbs sampler lies in its ability to address challenges in sampling from the

joint distributions. Instead of directly sampling from the joint distribution and then marginalizing other

parameters, the Gibbs sampler samples from the conditional distribution for each parameter, facilitating

the identification of specific parameters. Given the complexity of the model, employing Gibss sampling is

a prudent choice. This study adopts the Bayesian estimation process outlined in [3]. Having a root in [3],

following sections will borrow the notations and summarize the proposed method in detail: e.g., posterior

probability distributions of parameters. In this model, two variables require estimation, and sampling from

the joint distribution may be arduous, with marginalization potentially infeasible. Therefore, employing

Gibbs sampling for β and γ(0). The steps for Gibbs sampling are as follows:

1. The initial step involves estimating γ(0) and β. Given γ(0), β can be determined. Therefore, we begin

by assigning random values to the parameters a and b of inverse-Gamma distribution that γ(0) follows.

Let a and b be denoted as a0 and b0, respectively, with random values.

2. The subsequent step entails assuming that a0 and b0 represent the real parameter of γ(0). With these

values, it becomes feasible to determine Γn∗n, indicating that var(ε) is known, thereby facilitating the

sampling of β values.

3. Repeat steps 1-2 until the parameters converge.

Given that γ is defined based on the expected statistical value, it exists for every lag h. Consequently, in

the frequency domain ranging from −∞ to ∞, there exists a monotonic function s(τ) such that
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s(τ) =

∞∑
k=−∞

γ(k)e−2πikτ for τ ∈ [0, 1)

where i =
√
−1. This represents a commonly utilized transformation from the time domain to the frequency

domain known as the Fourier transformation, with the function s(τ) referred to as the spectral density.

Assuming that εt is invertible and γ is absolutely summable, we can express s(τ) in the inverse Fourier

transform as follows:

γ(k) =

∫ 1

0

s(τ)e2iπkτdτ

Therefore, we now obtain γ(k) back from the spectral density. This implies we can derive the autocovariance

function γ when modeling the spectral density using the inverse Fourier transform. Since s(τ) > 0, and

considering that 0 ≤ infτ s ≤ supτ s ≤ ∞, we can take logarithm of s(τ) and define θ(τ) as θ(τ) = log(s(τ)).

We assume that θ follows a Gaussian process with a mean function ι and a covariance kernel κ. These

steps can be applied to the Bayesian framework. The same concept applies to γ(0) and β. Assuming that θ

follows a Gaussian process, we can consider θ to have a Gaussian process prior. As assumed earlier, β in the

Gaussian process is distributed as β ∼ N(µβ , σ
2
0In). However, calculating θ(·|s, γ,β) is not straightforward.

The variables are interrelated, making their integration complex. One approach to address this challenge is

to leverage the discrete nature of the data. Since time data comprises a finite number of observations, we

can utilize the discrete inverse Fourier transform, expressed as:

γm(k) =
1

m

m−1∑
i=0

s(τi)e
2iπkτi (3.5)

where τi = i/m represents the Fourier frequency. As m→ ∞, γm(k) → γ(k), so by obtaining s(τ) from θ(τ)

for i = 0, 1, · · · ,m− 1, it becomes possible to approximate γ(k) for i = 0, 1, · · · ,m− 1.

To estimate the posterior density of θ, a nonparametric method for spectral density s, periodogram is

utilized. The posterior density of θ can be estimated by the truncated form of the Fourier transform, known

as the periodogram, which is defined as:

Im(τ) =
1

m

∣∣∣∣ m∑
t=1

εte
−2πitτ

∣∣∣∣2 for τ ∈ [0, 1) (3.6)

With the stationary assumption of ε, Im(τ) asymptotically follows an exponential distribution with mean

s(τ). Moreover, Im(τ0), Im(τ1), Im(τ2), · · · , Im(τm
2
) are asymptotically independent for Fourier frequencies.

[51] We may estimate the logarithm of a standard exponential random variable to estimate an exponential

random variable. We can use a mixture of five Gaussian random variables to estimate standard exponential
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random variables with known means and variances. Then, the relationship between the variables becomes:

log Im(τ) = log s(τ) + ξ(τ)

When assigning ξ for the mixture of five Gaussian random variables, then the distribution for π will be given

as

π(ξ) ≈
5∑
l=1

plϕvl(ξ − kl)

where ϕvl follows Gaussian distribution with mean zero and variance v2l pl, kl, vl for l = 1, 2, · · · , 5 are known.

According to [13], utilizing a Gaussian process before the logarithmic transformation of the spectral density

captures the temporal dependence structure in the error process, enhancing the precision of the forecast

by yielding a more accurate estimate of the model error. [3] Now, we elucidate the relationship between

variables and determine how to estimate each, approximating the posterior distribution of θ. Subsequently,

we can employ the MCMC method to ascertain the posterior distributions for these variables.

3.4.2 Posterior Distributions of Bayesian Estimators

Hyperparameters need to be established for the proposed MCMC approach, aligning with the method-

ology outlined in [3]. For the mean function ι and the covariance kernel κ, we assume ι ≡ 0, κ(τx, τy) =

1
κ2
0
e−ρ||τx−τy||, where ||·|| denotes the Euclidean norm. For κ20, we assume it follows Gamma(a,b) and ρ

follows a non-informative prior.

We need to determine the posterior densities of unknown quantities from the data. The unknown variables

in the model are β, θ, information on the compositions of the mixture in ξ = (ξ0, ..., ξm
2
), κ20, and ρ. We

introduce ψj for the label of the mixture component of ξj , which takes values in {1, ..., 5}. Introducing

ψj simplifies the expression for posterior densities. The update steps for κ20 and ρ0 are skipped, because

they are typical of conjugacy. Here is a description of how a Gibbs sampler works in sampling β, θ, and

ψ = (ψ0, ..., ψm):

1. Update β: Given θ, we approximate Γn×n using equation 3.5 and denote it by Γ̃n×n. This will update

β. The conditional posterior density for β with a Gaussian prior, β ∼ N(β0, σ
2
0Ip), is given by:

β|· · · ∼ N(µ∗
β ,σ

2
∗),

where |· · · means conditioning on all other variables are given.
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σ2
∗ = (X′Γ̃−1

n×nX + σ−2
0 Ip)

−1,

µ∗
β = σ2

∗(X
′Γ̃−1
n×ny + σ−2

0 β0).

2. Update θ: Given f(Xt∗n) = Xβ, we can compute φ = (φ0, ..., φm
2
), where φj = log(Ij(ωj)) using

equation 3.6 with ε = y −Xβ. Then, we have the following conditional distribution for θ:

θ|· · · ∼ N(ι∗,Υ∗),

where

Υ∗ = (Υ−1 + V −1
ψ )−1, ι∗ = Γ∗V −1

ψ (φ− κψ − ι) + ι,

with ι = (ι(τ0), ..., ι(τm)), Υ = (κ(τx, τy))x,y=0,...,m2
, κψ = (κψ0

, ..., κψm
)′, and Vψ = diag{v2ψ0

, ..., v2ψm
}.

3. Update ψ: Given β and θ, we can obtain the discrete posterior density for ψj such that, for l = 1, ..., 5:

P (ψj = l|β, θ) = plϕvl(φj − θ(ωj)− κl).

The calculation of Γ̃−1
n×n can be obtained efficiently by modeling s.

Γ̃n×n = QnΛnQ
∗
n, (3.7)

whereΛn = diag{λ(ω0), ..., λ(ωn−1)},Qn is an n×nmatrix with (u, v)-th entry being qu,v =
1√
n
e

i(u−1)(v−1)2π
n ,

and Q∗
n is the complex conjugate matrix of Qn. Note that Λn is a real symmetric and positive definite

matrix, even though Qn and Q∗
n involve complex numbers. One can show the equality in 3.7 by using the

expression of γn(·) discrete inverse Fourier transform. Because Qn is a unitary matrix (QnQ
∗
n = I), we have

Γ̃−1
n×n = QnΛ

−1
n Q

∗
n, where Λ−1

n = diag{λ−1(ω0), ..., λ
−1(ωn−1)}.

We can utilized the fitted model to forecast future values, particularly predicting a k step forward value

of y given a value of x and the observed data. The prediction of yf = x′
fβ + εf is given as x′

f β̂ + E(εf |ε),

where β̂ is the estimate obtained from the estimation procedure in the previous section. The conditional

expectation of εf given ε is E(εf |ε) = h′Γ−1
n ε, h = Cov(ε, εf ) = (γ(k + n − 1), . . . , γ(k))′, E(ε) = 0 and

V ar(ε) = Γn. This prediction concept is integrated into the Gibbs sampling steps. In the r-th iteration, we

obtain β(r) and Γ
(r)
n . From these, we derive ε(r) = y−x′β(r). Then y

(r)
f is computed as y

(r)
f = x′

fβ
(r)+ε

(r)
f ,

where ε
(r)
f = E(εf |ε(r)) = h(r)′Γ−1(r)

n ε(r)
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To complete the forecasting step, we require h(r), which comprises γ(k + n − 1), ..., γ(k) at the r-th

iteration. γ(n − 1), ..., γ(0) are available from Γ
(r)
n but we lack γ(k + n − 1), ..., γ(n). These quantities can

be estimated as follows: we have λ(r)(ω0), ..., λ
(r)(ωn−1), where wj = j

n , representing Fourier frequencies

with n. We interpolate these to obtain λ̂(ω) for ω ∈ [0, 1), so that we obtain Λ̂f = diag{λ̂(ω∗
0), ..., λ̂(ω

∗
f−1)},

where ω∗
j = j

f . Then, the estimate of h, h(r), is obtained from Γf = Qf Λ̂fQ
∗
f . The methodology outlined

in this paper was applied to tackle the task of forecasting exchange rates. A notable demand in current

macrofinance literature is developing a method or model to predict foreign exchange rates accurately. [52]
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CHAPTER 4:

COMPARISON OF THE BAYESIAN METHOD WITH THE AUTOREGRESSIVE

PROCESS

In this section, we will compare the Bayesian method described in the previous section with another

time series approach using real data. To facilitate comparison, we will calculate prediction results for both

methods.

4.1 Autoregressive Process

One of the fundamental models in time series analysis is the autoregressive (AR) process, utilized for

analyzing and forecasting time series data. This model acknowledges the influence of previous values on

the current value in the time series data. In the AR process, the current value is expressed as a linear

combination of its past values, hence the term “autoregressive,” indicating the dependence of the current

value on its historical values. A crucial parameter in the AR process is its order, denoted by “p,” which

specifies the number of past values considered in the model. If xt represents the time series data at time t,

then the AR(p) process can be formulated as:

xt =

p∑
i=1

ζixt−i + ϵt

where ζi are the parameters of the model and ϵt is the error term, which is assumed to be independent of

xt−i. If p = 1, then the model is simplified to:

xt = ζ1xt−1 + ϵt, (4.1)

which is the AR(1) process.

A fundamental assumption for the AR process is that it is weakly stationary (or simply stationary),

making it possible to build a forecasting model for future values. Because time series data are random and

not deterministic, predicting future values is extremely difficult or impossible if the random components
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are not stationary. Therefore, a critical assumption is that the time series is stationary. For the weak

stationarity, the time series is assumed to satisfy the following conditions:

(i) E(xt) = µ <∞,

(ii) V ar(xt) = E(xt − µ)2 = σ2 <∞,

(iii) and Cov(xt, xt+k) = E(xt − µ)(xt+k − µ) = σk <∞, ∀k.

In addition, it is assumed that the absolute value of coefficient ζ should be less than 1. Otherwise, it is no

longer stationary. The particular case of a nonstationary model occurs when ζ = 1: xt = xt−1 + ϵt, which is

called a random walk. For the error term in a time series, one of the most popular models is the white noise

process given the following conditions:

(i) E(ϵt) = 0,

(ii) E(ϵ2t ) = γ2,

(iii) and E(ϵtϵt) = 0, ∀t ̸= s.

Order selection is crucial for AR model estimation. We need to include the relevant previous values to

estimate the current value. To determine the order p, we use the autocorrelation function (ACF) or the

partial autocorrelation function (PACF) to identify how the data relate to previous values. Additionally,

it is essential to leverage domain knowledge and other statistical metrics, such as the Akaike information

criterion (AIC), to select the appropriate p since the real p is often unknown.

This study will utilize the AR(1) model due to its computational simplicity. Additionally, real data

have exhibited patterns consistent with AR(1), which further justifies its selection for comparison in the

subsequent section. We risk overlooking discernible patterns in the data by opting for a higher-order p or

a more complex model. Hence, we have opted for the simplest model for forecasting future values. It is

important to note that AR models assume a linear relationship between past and current values, with the

error term assumed to follow a normal distribution with constant variance. However, these models may not

adequately capture complex nonlinear patterns or long-term dependencies within the data. To address this

limitation, we will modify the assumption regarding error terms in this study.
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4.2 Real Examples: Exchange Rate Data

Before introducing the neural network model, we aim to assess the effectiveness of the proposed methodol-

ogy using actual exchange currency data. The currency exchange market is an ideal example of a time series

data source characterized by a global market with rates fluctuating continuously. While the rate volatility in

this market may not be as pronounced as that in the stock market, it provides valuable data for validating

the performance of traditional time series models.

4.2.1 Forecasting

When forecasting future exchange rate values, we will utilize two distinct models: the forward premium

regression of the exchange rate proposed by FAMA [53] and the AR model for both the Bayesian and AR

processes. The FAMA model leverages data from the spot and 30-day forward exchange rates. The spot

exchange rate represents the closing rate at time t, while the 30-day forward rate signifies the pre-agreed

rate at time t to trade the currency at time t+30. The detailed format for the model is outlined as follows.

St+k − St = β0 + β1(Ft − St) + ϵt+1

In this model, St represents the logarithm of the spot exchange rate at time t, while Ft represents the

logarithm of the corresponding 30-day forward rate at time t. The prediction error at time t is denoted as

ϵt. If we conceptualize this model linearly, St+k − St serves as the dependent variable, whereas Ft − St acts

as the independent variable with coefficients β1 and intercept β0. Therefore, we will estimate β0 and β1

using the linear model in equation 3.1. It is worth noting that both β0 and β1 will vary upon the choice of

different k, and hence, their estimators will depend on k. For the AR method, the model in equation 4.1

will be utilized, whereby,

St+k = β0 + β1St + εt,

and β0 and β1 will be estimated. Compared to the AR model, the FAMA model offers several advantages.

First, it allows us to incorporate additional information into the model. Because the forward rate itself is

already a prediction made by experts, its inclusion aids in rate forecasting. Additionally, by obtaining the

difference between St+k and St, we can effectively eliminate any potential trends within the data.

We examined currency exchange rates for the US dollar against the Euro, Mexican Peso, and Indian

Rupee. The analysis included the maximum possible period of currency data for each currency. The results

of forecasting 1, 3, 6, and 12 days in advance are illustrated below and provide clear insight into the models’

performance.
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Four subplots were consolidated into a single figure, each corresponding to a distinct time horizon k in

St+k: 1, 3, 6, and 12. The horizontal axis represents days, and the vertical axis represents the rate. The black

dotted line in figures indicates the actual data. In contrast, the blue line represents the forecast generated

by the AR model, and the red line denotes the prediction derived from the Bayesian method. Prediction

involves forecasting St+k–St using the most accurate actual values up to time t. This approach anticipates

the gap between the logarithm of the spot rate at time t and the rate at t + k, enabling the prediction

of the logarithm of the spot rate for k days in advance. Upon analysis, a consistent trend was observed:

the forecasts of currency exchange rates one day (k = 1) in advance were relatively close for both models.

However, as the value of k increased, the forecasts diverged, and hence the forecasting performances for both

models degrade. Another notable trend revealed through visualization is that the Bayesian model can detect

changes in direction, whereas the AR model follows the trend.

The visualization below illustrates the predictions of the two models for the Euro, spanning from January

2014 to December 2023, the recent decade’s data.

(a) 1 day in advance (b) 3 days in advance

(c) 6 days in advance (d) 12 days in advance

Figure 1. Euro prediction
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Given the global significance of the US dollar and the Euro, their exchange rates exhibit more stability than

other currencies depicted in the visualization. However, although generally stable, they are not consistently

steady, leaving room for prediction. The Bayesian model consistently outperformed the AR model across

at various time intervals (k = 1, 3, 6, and 12). Notably, the Bayesian model excels at capturing recent

fluctuation patterns, enabling accurate prediction of future trends, particularly during periods of sharp

deviations from previous patterns. The RMSE for each model at each time interval k is presented below,

demonstrating the Bayesian method’s superior performance over the AR model across all values of k.

Table 1. RMSE table of Euro

Interval AR Bayesian

1 day 0.0100 0.0041

3 days 0.0099 0.0043

6 days 0.0097 0.0006

12 days 0.0091 0.0017

Below is the visualization for the Mexican Peso. The format is similar to that of the Euro.

(a) 1 day in advance (b) 3 days in advance

(c) 6 days in advance (d) 12 days in advance

Figure 2. Mexican Peso prediction

25



In contrast to the Euro, the Mexican Peso’s exchange rate displayed substantial fluctuations. While the AR

model struggled to capture the recent pattern, the Bayesian model excelled. The Bayesian method demon-

strated strong performance for the 1-day and 3-day predictions but notably underestimated the difference

for the 6-day and 12-day predictions.

Table 2. RMSE table of Mexican Peso

Interval AR Bayesian

1 day 0.3547 0.0743

3 days 0.3654 0.1709

6 days 0.3656 0.3827

12 days 0.4679 0.6037

The Bayesian method outperformed the AR model for k values of 1 and 3, but not for 6 or 12 days. During

these periods, the rate fluctuated significantly, causing the Bayesian method to be overly sensitive to recent

values when predicting rates, leading to deviations from the actual values.

Below is the prediction for the Indian Rupee. Data spans from September 2017 to December 2023.

(a) 1 day in advance (b) 3 days in advance

(c) 6 days in advance (d) 12 days in advance

Figure 3. Indian Rupee prediction
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During the analysis period, the Indian Rupee fluctuated less than the Peso but more than the Euro. The

Bayesian method performed superiorly in capturing the fluctuation pattern and showed minimal deviation

from the actual values. The RMSE table below illustrates the effectiveness of the Bayesian method.

Table 3. RMSE table of Indian Rupee

Interval AR Bayesian

1 day 1.6144 0.0475

3 days 1.5400 0.1078

6 days 1.4948 0.2661

12 days 1.4671 0.5781

We conclude this section by comparing and summarizing the performances of both models. For the Euro

and Indian Rupee, the Bayesian model outperformed the AR method. For the Euro, the AR model showed

a better performance for larger k while the opposite was true for smaller k. The most prominent fact is

that both Bayesian and AR reported relatively poor performance for forecasting the future value of the

Euro. While there can be a number of reasons for the poor performance of the AR method, the breach of

the assumption of (weak) stationarity of the Euro data is presumed to be a fundamental reason. On the

contrary, the poor performance of Bayesian method for the case of Euro is not convincing. However, a simple

remedy against the poor performance is to try different prior distributions for the parameters. To this end,

non-informative prior distributions – e.g., a flat distribution – that are known to be more data-oriented can

be suggested as a more fundamental solution. It should be admitted that lacking other prior distributions

is one of the limitations of this study: it would, however, form future research.
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CHAPTER 5:

COMPARISON OF THE BAYESIAN MODEL WITH RECURRENT OF NEURAL

NETWORKS

5.1 RNN

Time series data possesses unique characteristics compared to other data types: data points are sequen-

tially related and, therefore, not independent. Typical machine learning models rely on the assumption of

independent and identically distributed input data, making them unsuitable for time series data. Instead,

specialized models designed for sequential data are required. One of the most popular machine learning

models for time series data is the RNN. RNN is a specialized variant of standard neural networks character-

ized by its recurrence property. This means that hidden states within a hidden layer influence themselves

recursively. When configuring the parameters for the time series AR(1) model, the model ϕ is defined as

follows:

yt = ϕyt−1 + εt (5.1)

The parameter ϕ iteratively impact the model as follows: If ϕ < 1, then any yt can be expressed as:

yt =

∞∑
j=0

ϕjεt−j (5.2)

Hence, it is imperative for ϕ to remain less than 1; otherwise, the equation will fail to converge.

Given the sequential nature of the data, the RNN model endeavors to retain information from previous

steps by employing the same weight, denoted as Whh, throughout the model. In contrast, standard neural

networks require a continuous flow of data. For example, in a regression project to predict house prices using

neural networks, the target value price would rely on explanatory variables such as house size and location.

In this scenario, the model aims to estimate the price solely based on these explanatory variables. Let pt

represent the house price at time t; in this case, pt−1 is excluded from the equation for p, which is expressed

as p = Xβ + ϵ, while the time series model would incorporate pt−1. Consequently, the regression variables

are treated as independent and can be inputted into the neural networks and trained concurrently.
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While considering a sequence model, specifically an RNN in our case, let xt represent the input data and

yt denote the output data. Subsequently, we define a hidden state ht and a pre-activation ηt for each time

step t. Then, for the initial sequence data x1, η1 will be calculated as:

η1 =Wxhx1 + bh

where Wxh is the weight matrix between the input x1 and the hidden state h1, and bh serves as the bias

term for all hidden states h. Activation functions are employed in neural networks, including RNNs, to

process the results of hidden states, such as the pre-activation η, based on the model’s objective. Denoting

the activation function for the hidden state as ψh, the expression for h1 in an RNN would be:

h1 = ψh(η1) = ψh(Wxhx1 + bh).

From the subsequent input x2, we must incorporate the previous h1 for the computatuin of h2 as follows:

h2 = ψh(Wxhx2 +Whhh1 + bh)

where Whh represents the weight matrix corresponding to the recurrent edge, carrying data from ht−1 to

ht. This process can be generalized as

ht = ψh(Wxhxt +Whhht−1 + bh).

The output yt also requires an activation function of ht to emerge from the hidden state. Denoting ψo as

the output activation function and Who as the weight matrix between the hidden state and output state,

the output yt can be calculated as:

yt = ψo(Whoht + bo) = ψo(Who ∗ ψh(Wxhxt +Whhht−1 + bh) + bo).

Figure 4 depicts the above procedure.

To find the weights Wxh,Whh,Who, we utilize gradient descent, as in NNs. The loss function L is defined

as the sum of squared errors:

L =

T∑
t=1

(yt − ŷt)
2.
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Figure 5. Structure of RNN

where ŷt is the value predicted at time t. In time t, losses are dependent on previously hidden units at all

previous time 1, ..., t− 1. Therefore, the gradient will be as follows:

∂Lt
∂Whh

=
∂Lt
∂yt

∗ yt
ht

∗ (
t∑

k=1

∂ht
∂hk

∗ ∂hk
∂Whh

)

where ∂ht

∂hk
can be computed as a multiplication of adjacent time steps:

∂ht
∂hk

=

t∏
i=k+1

∂hi
∂hi−1
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CHAPTER 6:

DATA ANALYSIS

6.1 Data Visualization

Understanding time series data comprehensively can be challenging, especially over long durations. Data

visualization, which presents data graphically, is invaluable for gaining insights into the data. Therefore, this

section utilizes data visualization to analyze various US stocks, focusing mainly on those related to Nvidia.

Selecting stocks closely associated with Nvidia is crucial for analysis, as relevant data are pivotal in building

effective time series models. Gathering a diverse range of related data enhances the model-building process,

even if the effectiveness of some points may be uncertain. Hence, it is essential to include relevant stock data

to ensure optimal model performance.

Moreover, incorporating additional data typically improves machine learning models without adverse

effects, and collecting surrounding or related data can prove beneficial. For our analysis, we gathered and

utilized various types of stock data, including AMD, Apple, Google, Microsoft, and Nvidia. The forthcoming

visualizations illustrate stock data in candlestick chart format from September 1, 2022, to July 31, 2023.

The x-axis denotes time, while the y-axis represents prices in the candlestick plot. Each business day is

represented by a box plot, encapsulating five crucial pieces of information: open, close, high, low, and the

day’s price trend.

The color of each box plot indicates the price movement on the given day. In a bearish market, where

prices decline, the color is red. Conversely, the color is green in a bullish market with rising prices. Thus,

the color provides information on the price trend for the day. In the stock market, instead of whiskers, we

use the term “wick” and refer to the chart as a candlestick chart.

Another critical aspect is the box’s boundary. A red box indicates that the closing price is lower than

the market opening price. In this scenario, the upper box boundary represents the opening price, while the

lower boundary represents the closing price. Conversely, in a green box, the upper boundary represents the

closing price, and the lower boundary represents the opening price. Therefore, the box boundary contains

information about the opening and closing prices.

The whiskers represent the day’s highest and lowest prices. The top of the upper wick denotes the highest

price of the day, while the end of the lower wick indicates the lowest price.
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Figure 6 illustrates the essential elements of the candlestick chart, offering clarity on its interpretation.

A vertically elongated box indicates a substantial gap between the open and closed prices, indicating a

substantial variation for that day. Likewise, the candle wick in the plot indicates a substantial deviation

between the high and low prices from the open-close price, indicating high volatility for that day.

Candlestick Plot

Bullish(Increasing)

Open

Close

Highest

Lowest

Real Body

Bearish(Decreasing)

Close

Open

Highest

Lowest

Upper Wick

Lower Wick

Figure 6. Candlestick chart explanation

The main focus of our study was the surge in Nvidia stock, making it imperative to examine Nvidia’s

candlestick chart, as depicted in Figure 7.

Figure 7. Nvidia candlestick chart
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With the introduction of ChatGPT by OpenAI on November 30, 2022, there has been a surge in interest

in LLMs, elevating them to a central focus in AI. This has led to substantial investments and exerted a

global influence. AI has been a prominent field for over a decade, beginning with the emergence of Al-

phaGo, which ignited research into computation techniques for constructing AI models. These models are

essentially programmed algorithms, and as they become more sophisticated, they demand extensive compu-

tational resources. Researchers have concentrated on methods to accelerate computation speed to enhance

AI performance. Parallelization has emerged as a crucial approach for expediting computations compared to

traditional methods. While computations were traditionally handled primarily by central processing units

(CPUs), researchers found that graphics processing units (GPUs) outperform CPUs when parallelized com-

putations. Initially designed for graphical processing, GPUs have become indispensable in AI research and

development. The introduction of ChatGPT has sparked interest in LLMs, leading to widespread investment

and global research by corporations and researchers alike. Constructing an LLM is computationally intensive

and is expected to drive increased demand for GPUs. Consequently, Nvidia’s leading GPU manufacturer is

anticipated to experience substantial revenue growth, attracting investor interest in its stock.

The primary impetus for our study stemmed from the extraordinary surge in Nvidia stock, prompting

a natural inclination to scrutinize Nvidia’s candlestick chart. A notable observation is that it expanded

three-fold in just 231 days. The opening price on November 30, 2022, stood at $156.97; on July 19, 2023, it

had soared to $470.77.

Figure 8 illustrates the candlestick chart of the NASDAQ Composite Index, identified by the ticker

symbols IXIC or COMP.

Figure 8. NASDAQ index candlestick chart
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The index was launched on February 5, 1971, with an initial value of 100. [54]. Comprising over 3500

stocks listed on the NASDAQ stock exchange, it functions as a weighted market capitalization index. [55]

Although variations exist based on stock types (ordinary and preferred stock), the fundamental concept

remains consistent. For instance, if today’s COMP is 15,000, it implies that the total market capitalization

of NASDAQ is 150 times larger than it was on February 5, 1971.

The COMP index is a pivotal indicator for comprehending the US stock market. This significance has

been magnified with the ascent of major tech conglomerates like Apple, Microsoft, Google, Amazon, Nvidia,

Meta, and Tesla. These entities experienced notable surges during the COVID-19 pandemic and the AI era.

The pandemic-induced transition to remote work accentuated the importance of virtual systems, with these

companies playing instrumental roles in facilitating remote operations. Furthermore, the normalization of

remote work and virtual meetings post-COVID has cemented these companies’ positions as trailblazers in the

new virtual landscape. Moreover, AI has emerged as a central focal point, offering substantial advantages

to major tech players. These companies are poised to maintain substantial advantages in the AI age as

pioneering contributors to AI development and implementation.

Figure 9 illustrates the candlestick chart of the Dow Jones index, with the Bloomberg ticker being INDU.

Figure 9. Dow Jones industrial index candlestick chart

INDU represents a US stock market index comprising 30 blue-chip companies. As one of the oldest and most

extensively monitored indexes, it is price-based and was inaugurated on May 26, 1896, with a base value

40.94. [56]

Figure 10 illustrates the candlestick chart of the S&P 500 index, identified by the ticker symbol SPX.
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Figure 10. S&P 500 index candlestick chart

“S&P” stands for Standard & Poor’s, a financial analysis company, and ”500” includes 500 companies.

Consequently, the S&P 500 functions as an index of 500 large public companies on the US stock market

meticulously selected by S&P. Operating as a capitalization-weighted average, the S&P 500 was launched

on March 4, 1957. It encompassed stocks from the NYSE and NASDAQ, utilizing a base of 10 from 1941 to

1943. Widely acknowledged as the premier indicator of large-cap U.S. equities, the S&P 500 comprises 500

leading companies, representing approximately 80% of the available market capitalization. [57]

Figure 11 illustrates Microsoft’s candlestick chart.

Figure 11. Microsoft candlestick chart

Microsoft currently has the second-largest market capitalization globally. Strategically, Microsoft has in-

vested in OpenAI, acquiring a substantial 49% ownership stake. This effectively positions Microsoft as the
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principal owner of OpenAI. As OpenAI is not publicly traded, individuals seeking to invest in It indirectly

do so by purchasing Microsoft stock. This approach has proven remarkably successful in just a few months.

Below is the candlestick chart of AMD stock data.

Figure 12. AMD candlestick chart

Given that one of the focal points of this article is understanding NVIDIA stock, comprehending related

stocks is paramount. NVIDIA is a dominant GPU market force and is AMD’s primary competitor. AMD,

or Advanced Micro Devices, is a multinational semiconductor company renowned for producing computer

processors and GPUs.

AMD holds a substantial position as one of NVIDIA’s primary rivals in the GPU manufacturing sector.

Together with Nvidia, AMD commands a considerable presence in this industry. AMD is prominently listed

on the NASDAQ 100 and S&P 100 indices, making it a crucial subject for analysis in understanding NVIDIA.

Following the release of ChatGPT in November 2022, AMD’s stock price exhibited an upward trajectory,

continuing this trend until the end of July 2023. The advent of ChatGPT sparked widespread interest in

LLMs, prompting extensive investment and research endeavors by researchers and corporations worldwide.

Given that LLMs necessitate substantial computational resources, GPU manufacturers are poised to reap

substantial benefits from this trend. AMD’s stock price reflects these expectations, underscoring its position

as one of the leading GPU manufacturers.

Figure 13 illustrates Apple’s candlestick chart.
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Figure 13. Apple candlestick chart

Apple is currently the company with the highest total market capitalization globally. Throughout November

2022, the price showed lateral movement, but from January 2023 onwards, there has been a consistent upward

trend.

Figure 14 displays Google’s candlestick chart.

Figure 14. Google candlestick chart

Google did not directly benefit from ChatGPT’s emergence. Instead, it faced competition from ChatGPT

in the search engine market. While ChatGPT is not a full-fledged search engine, its ability to provide quick

text responses has made it a favored choice for some users over traditional search engines like Google. As a
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result, Google’s stock price did not see the same increase as other related stocks; instead, it experienced a

decline and remained relatively stable for a period.

Table 4. Descriptive statistics of stocks

Ticker avgprice Stdprice avgreturn STdreturn avgvolume Stdvolume

NVDA 211.34 53.60 0.239% 0.03657 48,041,451 17,421,533

AMD 85.53 19.45 0.201% 0.03349 68,853,260 22,572,211

AAPL 157.97 18.22 0.113% 0.01838 70,896,956 24,079,656

GOOG 104.53 12.05 0.108% 0.00108 27,873,067 11,255,415

MSFT 273.69 39.06 0.133% 0.0204 30,044,626 11,057,702

SPX 4045.95 229.57 0.071% 0.0118 - -

SOX 2951.44 426.98 0.195% 0.0224 - -

COMP 11854.50 1069.18 0.098% 0.0150 - -

INDU 33032.89 1413.17 0.056% 0.0100 - -

6.1.1 Real Predictions

In this section, we train an RNN model using the time series data of the stocks analyzed in the previous

section. We utilize the trained model to forecast the future values of these stocks and compare the predicted

values with the real values. During the training of the RNN model, we experimented with various hyper-

parameters, such as the number of hidden layers, and empirically selected the optimal ones that yield the

closest predictions of the selected stocks.

RNN demonstrates remarkable effectiveness in capturing the intricate dynamics of time series models.

One of its notable strengths lies in its ability to handle non-stationary processes, making it suitable for

data exhibiting varying trends, cycles, or seasonality. The RNN adeptly replicates the overarching patterns

observed in stock data movements by fine-tuning hyperparameters. However, our analysis has uncovered

occasional discrepancies within the model, particularly noticeable when the market reacts unexpectedly to

exceptional circumstances. In scenarios where stock movements are less pronounced than such outliers, the

RNN consistently offers accurate predictions for the future of the time series. The following visualization

illustrates the predictions made by the RNN model alongside the actual stock price of Nvidia. The predictions

were generated to forecast the stock price using current data and anticipate the stock’s future price at intervals

of 1, 3, 6, and 12 days in advance—the data span from September 2022 to July 2023. The hyperparameters
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used for training were set at 20, with a hidden state size of 100, representing the optimal combination of

hyperparameters.

(a) 1 day in advance (b) 3 days in advance

(c) 6 days in advance (d) 12 days in advance

Figure 15. Predicted Nvidia stock prices using RNN

As depicted in the figure, the actual price of the stock, represented by the blue line, exhibited a notable

increase from an initial $100 to surpass $400 within a few months. Conversely, the red line, indicating

the RNN model prediction, initially started at 0. However, as more data became available, it rapidly

captured the genuine trend of the stock price. Over recent years, Nvidia’s stock has encountered substantial

surges multiple times, rendering it one of the most volatile stocks on the NASDAQ 100. Although the

model did not perfectly anticipate surges and drops on specific days, it generally reflected the most recent

changes in predicting future values. However, as previously stated, this outcome was achieved using the best

hyperparameters.
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The figure below illustrates the critical role of hyperparameter tuning in the performance of RNN. While

it may seem intuitive that a more complex model with higher hyperparameters would yield better results, this

is not always the case. As depicted, the performance increases from 20 to 100 hidden states, but with 1000

hidden states, the model oscillates and fails to make accurate predictions. This underscores the challenge

of hyperparameter selection in RNN, necessitating careful tuning akin to ad hoc methods like bandwidth

selection in KDE.

(a) 20 hidden states (b) 50 hidden states

(c) 100 hidden states (d) 100 hidden states

Figure 16. Predicted Nvidia stock prices on the number of hidden states in RNN

The figure below illustrates the RNN prediction of AMD’s stock price using the same set of data dates.
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(a) 1 day in advance (b) 3 days in advance

(c) 6 days in advance (d) 12 days in advance

Figure 17. Predicted AMD stock prices using RNN

Like Nvidia, AMD’s stock price has experienced substantial fluctuations, spiking several times and dou-

bling within a few months. Consequently, AMD’s time series data are far from steady and characterized by

considerable volatility. After digesting the data for a few days, the RNN forecast started at 0 but quickly

caught up with the actual value. Figure 18 shows Google’s stock price.
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(a) 1 day in advance (b) 3 days in advance

(c) 6 days in advance (d) 12 days in advance

Figure 18. Predicted Google stock prices using RNN

Google, with two stock tickers, is represented by GOOG in this chart. While primarily known for its

search engine, Google offers a diverse range of services in the tech industry. Concerns arose following the

introduction of ChatGPT that Google might lose market share in the search engine industry due to Chat-

GPT’s capabilities. This briefly impacted Google’s stock price, but it swiftly rebounded. Despite ChatGPT

potentially diverting some search traffic, Google remains the most popular search engine. Additionally,

Google acknowledges the significance of AI and launched Bard four months after ChatGPT’s debut. Many

anticipate that major technology companies will play a pivotal role in the AI era, ensuring Google’s stock

price remains robust. However, while RNN effectively captured price patterns, it struggled to account for

sudden spikes. The figure below illustrates Apple’s stock price.
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(a) 1 day in advance (b) 3 days in advance

(c) 6 days in advance (d) 12 days in advance

Figure 19. Predicted Apple stock prices using RNN

Apple, boasting the largest market capitalization, offers an AI service named Siri, primarily functioning

as a digital assistant for mobile devices rather than as an LLM akin to ChatGPT. Unlike Nvidia or AMD,

Apple has not demonstrated a significant response to LLM technology since the emergence of ChatGPT.

This has raised doubts about Apple’s AI capabilities, which is evident in its stock price. This has raised

doubts about Apple’s AI capabilities, which is evident in its stock price. Apple’s stock price surge is more

closely linked to its product sales than LLM developments. Nonetheless, as one of the premier tech companies

globally, optimism surrounds Apple’s potential unveiling of innovative products, thus preventing a significant

decline in its stock price. Below is the depiction of Microsoft’s stock price.
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(a) 1 day in advance (b) 3 days in advance

(c) 6 days in advance (d) 12 days in advance

Figure 20. Predicted Microsoft stock prices using RNN

Microsoft recently invested over $11 billion in OpenAI, establishing a robust partnership between the

two entities. While the specific terms of their agreement remain undisclosed, their collaboration is evident.

Following the successful launch of chatGPT by OpenAI, Microsoft has announced its intention to integrate

the platform into its web browser, Bing. Despite Bing’s relatively modest market share in the search engine

industry, this integration is poised to drive its growth. Microsoft’s substantial investment in OpenAI also

indicates potential benefits from the latter’s success. As a result, Microsoft’s stock price has surged by

more than 40% in recent months. Given Microsoft’s prominence, substantial fluctuations in its stock price

typically occur only in response to notable events, highlighting the transformative impact of ChatGPT’s

innovation.
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We conclude this section by comparing RNN with the Bayesian method. For the comparison purpose,

both methods will use MS stock data for forecasts. The Bayesian methos will use the NASDAQ index as

an independent variable while RNN doesn’t require any. Figure 21 depicts the Microsoft stock price and

forecasts by the Bayesian method and RNN. For the fair comparison, both used the same 100 lagged data

for training.

(a) Bayesian method: utilizing NASDAQ index as X (b) RNN: model trained with Microsoft 100 previous days

Figure 21. Microsoft stock price forecast

A quick glance reveals that the Bayesian method outperformed RNN. In the previous analysis, RNN suffered

from tuning hyperparameters (especially, h the number of hidden states). When h = 100 – RNN with which

showed the best performance – was tried, RNN showed a huge discrepancy and tried to catch up the true

values as shown in Figures 15–20. However, RNN tended to show worse performance as the training data

is getting large, and it displayed only a increasing, smooth trend without showing any fluctuation while

the Bayesian method displayed a constant up and down pattern together with a increasing trend, which

closely accords with true values. Consequently, the figure serves to demonstrate effectiveness of the Bayesian

method in capturing and tracking the movement of the real data. The inherent structural variances between

RNN and the Bayesian method lead to differences in input data, thereby complicating direct performance

comparisons. Nevertheless, the graph effectively illustrates the capability of the Bayesian method.
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CHAPTER 7:

CONCLUSION

Bayesian statistics offer several advantages over frequentist statistics. One significant advantage is the

Bayesian method’s ability to update its posterior distribution as new samples are obtained. In contrast,

frequentist statistics require all samples to be collected simultaneously. This fundamental characteristic

allows the Bayesian approach to demonstrate a remarkable ability to quickly adjust its predictions based

on recent trends, a capability lacking in the AR model. The comparison of prediction figures from the two

models clearly illustrates the superior performance of the Bayesian method over the AR model. While the

AR model may not be the most suitable method with the given dataset, it is commonly used due to its

constant-variance assumption. However, the results demonstrate how this assumption can lead to different

results, contradicting the Bayesian approach. Additionally, RNNs, with their multiple hidden states to

capture relations, typically perform well in prediction. However, the model’s performance relies heavily on

selecting hyperparameters, presenting a challenge for RNNs. Moreover, the parameterization of the RNN

model remains a black box, so we do not have insight into its internal workings. For specific application

cases, inference is crucial rather than simply obtaining the prediction result.

Through this study, we have confirmed that the Bayesian method adeptly predicts time series data and

estimates the coefficients of each explanatory variable, making it a valuable tool for inferential studies.

However, the study was not designed to directly compare the Bayesian method’s and RNN’s performance

due to differences in their model structures. The Bayesian method relies on a linear model base, while the

RNN utilizes an AR method-based self-dependent algorithm.

Future research should delve deeper into comparing Bayesian methods with machine learning techniques

to enhance Bayesian models and align them with machine learning methods’ predictive capabilities. This

endeavor can potentially enhance comprehension and application of Bayesian approaches across diverse

domains.
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