University of South Florida

DIGITAL COMMONS Digital Commons @ University of

@ UNIVERSITY OF SOUTH FLORIDA South Florida
USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations
April 2024

Quandle Rings, Idempotents and Cocycle Invariants of Knots

Dipali Swain
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

b Part of the Mathematics Commons

Scholar Commons Citation

Swain, Dipali, "Quandle Rings, Idempotents and Cocycle Invariants of Knots" (2024). USF Tampa Graduate
Theses and Dissertations.

https://digitalcommons.usf.edu/etd/10249

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.


https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F10249&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.usf.edu%2Fetd%2F10249&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Quandle Rings, Idempotents and Cocycle Invariants of Knots

Dipali Swain

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Mathematics and Statistics
College of Arts and Sciences
University of South Florida

Major Professor: Mohamed Elhamdadi, Ph.D.
Dmytro Savchuk, Ph.D.
Boris Shekhtman, Ph.D.
Nasir Ghani, Ph.D.

Date of Approval:
April 04, 2024

Keywords: Quandles, Quandle rings, Idempotents, Quandle 2 cocycle, Knots and links

Copyright (©) 2024, Dipali Swain



Dedication

To BABA who pushed me to take up Mathematics in high school, and BOU for her

dream to become a Mathematician.



Acknowledgments

I want to express my sincere gratitude to Professor Mohamed Elhamdadi for his amaz-
ing guidance and mentorship during my academic journey. His insightful publications and
thought-provoking questions about knot theory have really shaped my research path. The
regular meetings and interesting conversations with Professor Elhamdadi have been crucial
in helping me think critically and creatively, significantly advancing my research.

I extend my gratitude to Dr. Mahender Singh for his mentorship while writing the first
paper with him. His impeccable knowledge of algebra helped me understand quandles much
better and improved me as a mathematician. I would also thank Dr. Manpreet Singh for
his support specifically in Python programming and improving my mathematical rigour.

[ also want to thank the committee members, Dr. Dmytro Savchuk and Dr. Boris Shekhtman
for reading my drafts and providing valuable feedback throughout the dissertation process.
Special thanks to Dr. Masahico Saito for reading both my thesis and my second paper and
providing valuable feedback for the same.

Lastly, a big shout-out to my husband Sudheendra for his unwavering support. His generos-
ity and understanding have allowed me to pursue my academic goals, who always believed

in my dreams and helped me realize them.



Table of Contents

List of Tables . . . . . . . . . . e
List of Figures . . . . . . . . . .
Abstract . . . . . . .
Chapter 1: Preliminaries . . . . . . . . . . . .. ..
1.1 Introduction . . . . . . . . . . . ...

1.2 Review of Knot Theory . . . . . . .. .. ... .. ... ... .. ..

1.2.1 Knot Diagrams . . . . . . . .. ..o

1.2.2 Classical Braids . . . . . .. .. .. ... ...

1.2.3 Symmetries in Knots . . . . . ... .. ... ... ... ..

Chapter 2: Algebraic Structures from Knots . . . . . . ... ... ... ... ...
21 Quandles. . . . ..

2.2 Knot Quandles . . . . . .. ..

2.3 Quandle Cocycle Invariants of Knots and Links . . . . . . ... ...
Chapter 3: Idempotents, Free Products and Quandle Coverings . . . . . .. . ..
3.1 Group Rings . . . . . . . . ..

3.2 Quandle Rings . . . . . .. ...

3.2.1 Idempotents in Quandle Rings . . . . . . ... ... ... ..

3.3 Idempotents from Quandle Coverings . . . . . . ... .. ... .. ..

3.4 Idempotents in Quandle Rings of Free Products . . . . . . ... ...

3.5 Idempotents in Quandle Rings of Unions . . . . . ... .. ... ...

3.6 Remarks and Some Open Questions . . . . . . . ... .. ... ....
Chapter 4: Cocycle Invariants and Idempotents in Quandle Rings . . . . . . . ..
4.1 Distinguishing Knots up to 12 crossings . . . . . . . . . .. ... ...

4.2 Distinguishing Knots of 13 crossings . . . . . . . . . . ... ... ...

4.3 Description of the Algorithm . . . . . . . .. ... ... ... ... ..
References . . . . . . . .
Appendix A: List of Quandles used in Computation . . . . . . . .. .. ... ...
Appendix B: Copyright Clearance Form . . . . . . . ... .. .. ... ... ...

Appendix C: ArXiv License . . . . . . . . ..o



Table 4.1

Table 4.2

Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7

Table 4.8

List of Tables

Distinguishing knots using two connected quandles and its idempotents

Distinguishing non-alternating knots of 12 crossings using two
connected quandles and its idempotents . . . . .. ... ... . ...

Distinguishing all knots of 9 crossings part 1 . . . . . . .. ... ...
Distinguishing all knots of 9 crossings part 2 . . . . . . .. ... ...
Distinguishing 11 crossings and 12 crossings knots . . . . . . . . . ..
Distinguishing knots from its mirror image . . . . . . . .. ... ...

Distinguishing knots of 13 crossings using iteration of idempotents
inquandlerings . . . . . . ...

Distinguishing 13 crossings knots . . . . . . .. . ... ... ... ..

95

55
26
57
58
29

60
60



List of Figures

Figure 1.1 Examples of knot diagrams . . . . . . . . . . ... ... ... .....
Figure 1.2 Reidemeister moves for link diagrams . . . . . . . ... .. ... ...
Figure 1.3 Connected sum of two oriented knots . . . . . . . ... .. ... ...
Figure 1.4 Generators of the braid group B, . . . . . . .. .. .. .. ... ...
Figure 1.5 Braid diagram for the trefoil knot . . . . . .. ... ... . ... ...
Figure 1.6 Left hand trefoil and Right hand trefoil . . . . . . ... .. ... ...
Figure 1.7 Wirtinger relations on crossings . . . . . . . . . .. .. .. ... ...
Figure 2.1 Quandle crossing relation . . . . . . . . . .. . ... ... ... ...
Figure 2.2 Quandle axioms from Reidemeister I, IT and 11T . . . . . . . .. ...
Figure 2.3 Figure 8 knot . . . . . . . . .. ...
Figure 2.4 Rules of colorings at crossing . . . . . . . . . . ... ... ... ....
Figure 2.5 Boltzmann weights at crossing . . . . . . . . .. .. .. ... ... ..
Figure 2.6 Boltzmann weights from Reidemeister [and IT . . . . . . . . .. . ..
Figure 2.7 The quandle 2-cocycle condition (2.3.1) from Reidemeister 111

Figure 3.1 Hopflink . . .. . .. ...



Abstract

Quandles are sets with self-distributive binary operations that axiomatize the three Rei-
demeister moves in classical knot theory. In an attempt to bring ring theoretic techniques to
the study of quandles, a theory of quandle rings analogous to the classical theory of group
rings where several interconnections between quandles and their associated quandle rings
have been explored. Functoriality of the construction implies that morphisms of quandle
rings give a natural enhancement of the well-known quandle coloring and quandle 2 cocycle
invariant of knots and links.

The dissertation is structured into two main parts. In the first part, we delve into quandle
rings obtained from non-trivial quandles over rings. We demonstrate that integral quandle
rings emerging from non-trivial involutory coverings possess infinitely many non-trivial idem-
potents which, themselves form quandles, contributing to a comprehensive understanding of
their structure. Applying these findings to knot theory, we deduce that the quandle ring
associated with the knot quandle of a non-trivial long knot exhibits non-trivial idempotents.
Furthermore, we explore free products of quandles and establish that integral quandle rings
of free quandles exclusively feature trivial idempotents, yielding an infinite family of such
quandles.

In the second part, we focus on leveraging idempotents in quandle rings to enhance the
quandle 2-cocycle invariant of knots and links. By combining idempotents with state sum
invariants of knots, we successfully distinguish all 12965 prime oriented knots with up to 13
crossings, utilizing only 21 connected quandles and three quandles made of idempotents in
quandle rings. Additionally, we distinguish from knots their mirror images using the same

set of 24 quandles.

vii



Chapter 1: Preliminaries

1.1 Introduction

The field of knot theory revolves around the examination and the study of embeddings
of the unit circle S! in the three-dimensional Euclidean space R3® or its compactification
S3. Such embeddings are known as knots and they become the focal point of investiga-
tion. Equivalence between two knots is established under the criterion of the existence of
an ambient isotopy that transforms one knot into the other which is further found in the
topological and geometric properties inherent in these embeddings, providing a foundation
for the systematic understanding and classification of knots. In other words, two knots K
and K’ are said to be equivalent (denoted by K = K’) if there exists a continuous map
f:]0,1] x R® — R3 such that f(0,K) = K and f(1, K) = K’ and f(t, -) is a homeomorphism
for all t. One of the problems in Knot theory is on classifying knots. Knots are considered
equivalent if we can smoothly transform one into the other. This is an equivalence relation
on the set of knots and thus we obtain equivalence classes of knots. An invariant of knots
is a function that is constant within each equivalence class. Invariants of knots are used to
distinguish knots. For instance, if a knot invariant gives different values for two knots, thus
the knots are not equivalent. These invariants can take well defined algebraic forms, such as
numbers, polynomials, or groups, and serve as algebraic tools in the classification of knots.

Reidemeister [29] showed that the study of knots in the 3-space is the same as the study
of knot diagrams in the plane modulo the planar isotopy and the so called Reidemeister
moves I, IT and IIT as shown in Figure 1.2. More precisely, he proved that two links are
equivalent if and only if any link diagram of one can be transformed to any link diagram of

the other by a finite sequence of Reidemeister moves and planar isotopies.



Axiomatisation of the three Reidemeister moves of planar diagrams of knots and links in
the 3-space led to algebraic structures known as quandles [23]. Besides being fundamental to
knot theory, these structures arise in a variety of contexts such as set-theoretic solutions to
the Yang-Baxter equation [5], Yetter-Drinfeld Modules [13], Riemannian symmetric spaces
[26], Hopf algebras [1] and mapping class groups [35, 36, 37], to name a few.

In an attempt to bring ring theoretic techniques to the study of quandles, a theory of
quandle rings analogous to the classical theory of group rings has been proposed in [3],
where several interconnections between quandles and their associated quandle rings have
been explored. Functoriality of the construction implies that morphisms of quandle rings
give a natural enhancement of the well-known quandle coloring invariant of knots and links.
Quandle rings of non-trivial quandles are non-associative, and it has been proved in [14]
that these rings are not even power-associative, which is the other end of the spectrum of
associativity. Furthermore, quandle rings of non-trivial quandles over rings of characteristic
more than three cannot be alternative or Jordan algebras since alternative and Jordan algeras
are power associative [4].

The objective of this thesis is to explore idempotents in quandle rings and their relation
with quandle coverings. It is shown that integral quandle rings of finite quandles with
non-trivial coverings over nice base quandles admit infinitely many non-trivial idempotents
which form quandle. The quandles that admit a set of non trivial idempotents which form
a quandle are used to construct stronger invariant of knots by combining cocycle invariant
of knots and idempotents.

This thesis is organised as follows: In Chapter 1 we review some basics of knot theory
and algebraic structures from knots. We discuss some knot invariants using these algebraic
structures such as quandle coloring and quandle 2 cocycle invariant. In Chapter 2 we define
quandle rings analogous to group rings and explore various properties of these quandle rings

in particular. In Chapter 3, we consider the notion of idempotents in quandle rings and give



the following sufficient condition on a quandle X for its quandle ring k[X] over the ring k to

admit non-trivial idempotents (Proposition 3.2.8):

Let X be a quandle containing a trivial subquandle Y of order more than one. Then k[X]

has non-trivial idempotents.

We also relate idempotents with quandle coverings in the following (see statement of Propo-

sition 3.3.6):

If L is a non-trivial long knot (see Definition 3.3.5), then the quandle ring k[Q(L)] of its

knot quandle Q(L) has non-trivial idempotents.

As one of the main results of Chapter 3, we prove that if p : X — Y is a non-trivial
quandle covering such that X is involutory and k[Y] has only trivial idempotents, then
k[X] has many non-trivial idempotents and we give their precise description in the following

theorem (Theorem 3.3.2).

Let p: X = Y be a non-trivial quandle covering where X is an involutory quandle. If k[Y]

has only trivial idempotents, then the set of idempotents of k[X] is

kX) = {3 X adetewd) (X aved) |

yed xel,, > ax=0 X'€lyy, Yag=1

JeFWY), LeFP ) b€ Flp ), €l YEY, axaxe k}.

We also consider free products of quandles and overcome the lack of associativity in
quandles through an appropriate length function for elements in free products. As the

second main result, we prove the following result (Theorem 3.4.3):
Let FQ, be the free quandle of rank n > 1. Then Z[FQ,] has only trivial idempotents.

This gives an infinite family of quandles whose integral quandle rings have only trivial
idempotents. Lastly, as an application in Chapter 4 we use idempotents in quandle rings

in combination with the state sum invariants of knots to distinguish all of the 12965 prime

3



oriented knots up to 13 crossings using only 21 connected quandles and three quandles made
of idempotents in quandle rings. We also distinguish all knots up to 13 crossings from their
mirror images using the same 24 quandles. Furthermore, we distinguish all of the 2977 prime
oriented knots up to 12 crossings using only 10 connected quandles and three quandles made

of idempotents in quandle rings improving a result in [7] .

1.2 Review of Knot Theory

A knot is the image of an embedding of a circle S! into the 3-sphere S3. A knot is
said to be oriented if there is a preferred direction to travel around the knot. Two knots
are considered to be equivalent if one can be transformed into the other by a continuous

deformation. Precisely,

Definition 1.2.1. Two knots K and K’ are said to be equivalent (denoted byK = K’) if
there exists a continuous map f : [0, 1] x R® — R3 such that (0, K) = K and f(1,K) = K’

and f(t,-) is a homeomorphism for all t.

A link is a collection of disjoint union of finitely many knots. Each knot in a link is
termed as a component. Thus, a knot is a link with one component. Equivalence of links
can be defined in the same manner as that of knots. It is easy to note that each link can be
projected on the plane R? or on the 2-sphere S2. A projection is said to be generic if there are
only finitely many multiple points, and that the multiple points are only transversal double

points.

1.2.1 Knot Diagrams

Of fundamental importance to the classification of knots and links, is the concept of a
diagram of a knot or a link. This is a generically immersed closed plane curve together with

over/under crossing information corresponding to each double point.



Definition 1.2.2. A link diagram is a generic projection of a link with the information of

over- and under-crossing arcs at the double points.

It is easy to see that such a diagram always exists. The following figure gives some

diagrams of the knot, trefoil and figure eight knot.

O & ®

Trivial knot Trefoil knot Figure eight knot

Figure 1.1 Examples of knot diagrams

In 1920s, Reidemeister [29] showed that the study of equivalence classes of links in S? is
equivalent to the study of link diagrams on the plane modulo three local moves known as

the Reidemeister moves (See Figure 1.2).

Theorem 1.2.1. [29] Two links are equivalent if and only if their link diagrams are re-
lated by a finite sequence of Reidemeister moves and planar isotopies (orientation preserving

homeomorphisms of plane onto itself ).

The above interpretation of links in terms of their diagrams is one of the most important
results in knot theory which has lead to the study of links from a combinatorial perspective.

As a result, various invariants have been constructed for the classifications of knots.

P iéH \%\H %\

RI RII R III

Figure 1.2 Reidemeister moves for link diagrams

Let K; and K; be two oriented knots. Then the connected sum [31] of K7 and K5, denoted

by Ki#K>, is shown below in the Figure 1.3



K>
-

Figure 1.3 Connected sum of two oriented knots

Definition 1.2.3. A knot is said to be prime if it cannot be written as a connected sum of
two non-trivial knots. For example, torus knots (knots which lie on the surface of a torus)

are prime.

1.2.2 Classical Braids

A geometric braid [31] on n strands is a subset 8 of R? x | consisting of n disjoint closed

intervals such that following conditions are satisfied :
e 3N (R?x0)={(1,0,0),(2,0,0),...(n,0,0)},
e AN(R*>x1)={(1,0,1),(2,0,1),...(n,0,1)},
e cach strand of 3 intersects with R? x {t} on a point for all t € [0, 1].

Two geometric braids $; and [, are said to be isotopic if there exists an ambient isotopy

fr(REx 1) x1—R*x|

such that f(51,0) = (1, f(S1,1) = B2 and f(B1, t) is geometric braid at each time t.
Clearly, isotopy induces an equivalence relation on the set of geometric braids on n
strands. These equivalence classes are called braids. As in case of links, geometric braids
can be studied via diagrams on the plane.
Two braid diagrams are said to be equivalent if they are related by a finite sequence of

planar isotopies and local moves shown in Figure 1.2.



Definition 1.2.4. The braid group B, is the group with a presentation having n - 1 gener-

ators o1, ..., 0,_1 and following set of relations:
e gigj =00 for |i—j|>2and i, je{l,2,...,n—1},
® 00,110, = 0j410i0i41 for i € {1,...n—2}.

1 -1 i+1i+2n 1 i-1 i+1i+2n

I YA
vV \ vV vV / vV

g; -1

Figure 1.4 Generators of the braid group B,

The closure of a braid is the link C/(b) obtained from b by connecting the lower ends of
the braid with the upper ends; (see Figure 1.5). Obviously, isotopic braids generate isotopic
links. Closures of braids are usually taken to be oriented: all strands of the braid are oriented

from the top to the bottom (See Figure 1.4).
Theorem 1.2.5. Each link can be represented as the closure of a braid.

One can obtain a link diagram from a braid diagram. By closure of a braid diagram D, we
mean a diagram obtained by connecting the boundary points of D having the same second
coordinate with smooth non-intersecting arcs. Obviously, closure of a braid is a well-defined
operation as closures of any two equivalent braid diagrams give equivalent link diagrams.
From now onwards, we will denote the closure of a braid g by C/(3). Knots are, in particular,

closed braids. Figure 1.5 illustrates the braid diagram of the trefoil knot.

Definition 1.2.6. For a knot K, the braid index [25], denoted b(K), is the fewest number
of strings needed to express K as a closed braid. The braid length [25] of the knot K is the
fewest number of crossings needed to express K as a closed braid. For example, in Figure

1.5, the braid index and the braid length for the trefoil respectively are 2 and 3.



&R

Figure 1.5 Braid diagram for the trefoil knot

1.2.3 Symmetries in Knots

If a knot is viewed as an oriented homeomorphism class of an oriented pair, K = (S3, St),
with S" homeomorphic to S', there are four oriented knots associated to any particular knot
K. In addition to K itself, there is the reverse, r(K) = (S3 —S!), the concordance inverse,

—K = (—S?, —S!), and the mirror image, m(K) = (—S3, S')[25].

Definition 1.2.7. [7] By a symmetry we mean that a knot K remains unchanged under one

of r,m,rm. As in the definition of symmetry type in [25] we say that a knot K is

e reversible if the only symmetry it has is K = r(K),

negative amphicheiral if the only symmetry it has is K = rm(K) ,

e positive amphicheiral if the only symmetry it has is K = m(K),

fully amphicheiral if it has all three symmetries, that is, K = r(K) = m(K) = rm(K),

chiral if K # r(K) # m(K) # rm(K).

Note that there exists non-equivalent knots which are not mirror images with isomorphic
knot groups.

Figure 1.6 gives diagrams of the trefoil knot and its mirror image.

Definition 1.2.8. [30] The Wirtinger presentation is a finite group presentation of the

fundamental group of the complement of a knot in 3-space.



& &

Figure 1.6 Left hand trefoil and Right hand trefoil

For an oriented knot K, let D(K) be the knot diagram of K. We label each arc in D with
x; and define the relation at each crossing as shown in the Figure 1.7 below Let r; denote each

ith relation obtained at each crossing. Then, the group m(R3\ K) = {x1, X2, ..., Xp; 11, ... n}

Xj o _:k
T 't 4 4
> —|—
Xi |‘_ _| Xip1 xi |_ _>| Xiy1
Xer1 Xpt1

Pyt XpXi = X1 Xk XX = XpXi1

Figure 1.7 Wirtinger relations on crossings

Theorem 1.2.2. [10, 31] An n-component link L is trivial if and only if m1(C(L)) is isomor-

phic to the free group of rank n.



Chapter 2: Algebraic Structures from Knots

2.1 Quandles
In this section, we introduce the main objects of our study.

Definition 2.1.1. A quandle is a non-empty set X with a binary operation (x,y) — x x y

satisfying the following axioms:
e xxx = x for all x € X,
e For any x, y € Q there exists a unique z € X such that x =z x y.
o (xxy)xz=(xxz)*x(yx*z)foral x,y,z€ X.

Using oritented links, we can give quandle crossing relation as follows

Some basic examples of quandles are as follows:

Example 2.1.2. The set X = {1,2,3, ..., n} with binary operation xxy = x for all x,y € X.
In other words, the map S, : X x X — X such that 5,(x) = x * y is an identity map. This
set X, equipped with the binary operation * is known as trivial quandle denoted by T,. A

cayley table for trivial quandle T, of order n looks like the following:

|1 2 3 n
111 1 1 1
2 |2 2 2 2

3 3 3 3
n n n n n

10



Example 2.1.3. Let X = {0, 1,2} with operation x xy = 2y — x (mod 3) is a quandle. The

cayley table is as follows:

*x 10 1 2
0]0 2 1
112 1 0
2|11 0 2

Example 2.1.4. Let G be a multiplicative group. Then the binary operation x * y = yxy !
is a quandle on G known as conjugation quandle denoted by Conj(G). Conjugacy classes in
groups are a rich source of quandles. Another way of defining a quandle operation on such

groups G can be obtained by the following example.

Example 2.1.5. Given a multiplicative group G, define a binary operation by x*y = yx~1y.
Then (G, %) is a quandle known as core quandle denoted by Core(G). For abelian groups
(written additively) the operation becomes x * y = 2y — x. In particular, the cyclic group
of order n > 2 gives the dihedral quandle R, = {0,1,2,...,n — 1} of order n. For n = 3,

(Example 2.1.3) represents Rj.

Example 2.1.6. Let G be a group and let ¢ € Aut(G) be a group automorphism. Define
a binary operation * such that x * y = ¢(xy~!)y. Then, the set G equipped with * forms a

quandle known as the generalised Alezander quandle of G with respect to ¢.

Definition 2.1.7. Let (X, ) and (Y, *) be two quandles and f : (X, x) — (Y, %) be a map.
Then,

e fis a quandle homomorphism if f(x x y) = f(x) x f(y).
e f is a quandle isomorphsim if f is a bijective quandle homomorphism.
e f is a quandle automorphsim if f is a quandle isomorphism of X with itself.

Let X be a quandle. We denote set of all automorphisms of X as Aut(X). For a given

element x € X, the inner automorphism induced by x is a map S, : X — X such that

11



S«(y) = y * x. The subgroup of Aut(X) generated by the set {Si|x € X} is known as the
inner automorphism group of X, and is denoted by Inn(X). Henceforth, the word orbit would

correspond to an orbit in X under the action of Inn(X).

Remark 2.1.8. It turns out that quandle axioms are simply algebraic formulations of the

three Reidemeister moves of planar diagrams of knots and links in the 3-space which can be

seen below.
X y y X
y X*y XF¥y / y
Figure 2.1 Quandle crossing relation
X X X y x Y Xy z xy z
A
X X (xfy/)y yooox Yy 2 yxz F T k2 x(yx2)

(xxy)*z

Figure 2.2 Quandle axioms from Reidemeister I, IT and III

Besides being fundamental to knot theory, quandles arise in a variety of contexts such
as set-theoretic solutions to the Yang-Baxter equation [5], Yetter-Drinfeld Modules [13],
Riemannian symmetric spaces [26], Hopf algebras [1] and mapping class groups [35, 36, 37],

to name a few.

Definition 2.1.9. A quandle X is called connected [31] if the inner automorphism group
Inn(X) acts transitively on X. In other words, X cannot be written as disjoint union of its

orbits. For example, the dihedral quandle R,,,; is connected, whereas R», is not.

Definition 2.1.10. A quandle X is said to be involutory [31] if for each x € X, the inner

automorphism S, is an involution, that is, (y * x) x x = y for all x, y € X. For example, for

12



any group G, the core quandle Core(G) is involutory, whereas Conj(F,) is not involutory for

a free group F, of rank n > 2.

Definition 2.1.11. A quandle X is called latin if each left multiplication L, : X — X given

by L(y) = x xy for y € X, is bijective, and called semi-latin if each L, is injective.

Example 2.1.12. For example, dihedral quandles R,,.1 are latin. A simple way of checking
latin quandles is to observe that elements in each row are non-repeating. (Refer to Example

2.1.3)

Definition 2.1.13. A quandle X is said to be simple [31] if for any quandle Y, every quandle
homomorphism X — Y is either injective or constant. For example, if G is a simple group,
then Core(G) is a simple quandle. On the other hand, the dihedral quandle Ry, is neither

latin nor simple.

Definition 2.1.14. A quandle X is said to be commutative [31] if for any x,y € X, xxy =
y * x. For example, R; (see Example 2.1.3) is commutative but Ry is not. Furthermore, X is

said to be quasicommutative if at least one of the following holds:
1. xxy=yxx,
2. Xxy=x%y,
3. X*y=yxXx,
4. x ¥ y =y % X.

Every commutative quandle is quasicommutative but not vice versa. For example, Consider
group (R, +) and its automorphism ¢ : R — R defined as ¢(x) = 2x. Then, the Alexander

quandle R with respect to ¢ is quasi-commutative but not commutative.

2.2 Knot Quandles

Analogous to knot group also known as fundamental group of a knot K, we define the

fundamental quandle or Knot quandle for a knot K
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Definition 2.2.1. Let K be an oriented knot. We label each arc of K with a unique
arbitrary symbol and at each crossing note the relation given in Figure 2.1.The resulting
quandle associated to this knot K is a free quandle generated by these symbols modulo the
relations denoted by Q(K). That is, the quandle ssociated to K is the set of formal strings
of arc labels separated by * and * using parentheses to indicate association. Furthermore,
to each homeomorphism of knots we assign the unique isomorphism of quandles induced by
the Reidemeister moves (refer to Figure 2.2). We call Q(K) as the fundamental quandle or

the knot quandle of the knot K.

There exists a covariant functor between the category of knot diagrams and the category

of its respective knot quandles [24].

Theorem 2.2.1. [2/, 28] Let K and K’ be two oriented knots in the 3-sphere, S®, and let :
D(K) and D(K') be their associated knot diagrams. Then K’ is ambient isotopic to either K
or the mirror image of K with direction reversed if and only if the fundamental quandles of

K and K’ are isomorphic.
Below is an example of the figure-8 knot and its associated knot quandle

Example 2.2.2. Consider the following knot K. We label each of its arcs with symbols
a,b,c and d. At each crossing, we use the relation given in Figure 2.1 to note down the

relation.

C

S

Figure 2.3 Figure 8 knot

Then, the knot quandle Q(K) is a free quandle with the symbols and relations given as

Q(K)=<a, b, c,d : dxa=c, bxc=a axb=d, d*xc=b>

14



which can further be reduced to three generators
Q(K)=<a, b,c : (axb)xa=c, bxc=a, (a*b)xc=b>

2.3 Quandle Cocycle Invariants of Knots and Links

Let X be a quandle and K be a classical knot or a link diagram. Let R be a set of arcs.
Then a coloring of K by the quandle X is a map from R to X such that at every crossing,
the relations in Figure 2.4 hold. Alternately, it is a homomorphism from the knot quandle

(see for example [17, 24, 28]) of K to the quandle X.

Theorem 2.3.1. Let Q(K) be the knot quandle for a knot K and X be some finite quandle.
Then |[Hom(Q(K), X| is invariant under the Reidemeister moves, thus forming an invariant

for knots.

X y y X

AN /
y \X*y XFy / y

Figure 2.4 Rules of colorings at crossing

Let X be a finite quandle and let A be an abelian group. Let CX(X) be the free abelian
group generated by n-tuples (x, ..., x,) of elements X. We define a homomorphism 0, :

Cr(X) = CR4(X) by

3n(X1,X2,---,Xn)
n
= Z(_l)l [(Xlr X2y vy Xi—1y Xig1y oo an)
i=2
— (X1 % Xi, X2 % Xj, ooy Xim1 % Xy Xit 1y oee s Xn)]

for n > 2 and 9, =0 for n < 1. Then CR(X) = {CR(X), ,} is a chain complex.

15



Let CP(X) be the subset of CR(X) generated by n-tuples (xi,...,x,) with x; = x;1
for some i € {1,...,n — 1} if n > 2; otherwise let CP(X) = 0. If X is a quandle, then
On(CP(X)) € CP,(X) and CP(X) = {CP(X),D,} is a sub-complex of CR(X). Consider
the quotient complex {CR(X)} with CR(X) = CR(X)/CP(X). For quandles, the chain and

cochain complexes with coefficient in an abelian group A are given by

CX;A) = CX)® A, 0=0®id

C5(X; A) = Hom(C2(X), A), § = Hom(, id).

The nth quandle homology group and the nth quandle cohomology group [6] of a quandle

X with coefficient group A are given by
HI(X; A) = Ho(C(X; A)),  H3(X: A) = HP(CS(X: A)).

For more details on quandle cohomology see [6]. In this thesis we will focus on low dimen-
sional cohomology and precisely 2-cocycles as they are needed to define the quandle cocycle
invariant of knots. A function ¢ : X x X — A is called a quandle 2-cocycle if it satisfies the

2-cocycle condition:

S, y) — d(x.2) + d(x+y. z) — d(xx 2,y +2) =0;  Vx,y,z€ X (2.3.1)
and
$(x,x) =0, VxeX (2.3.2)
X y y X*xy
cb(Xy} —p(x,y) /

y X%y x/ y

Figure 2.5 Boltzmann weights at crossing
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Figure 2.6 Boltzmann weights from Reidemeister I and II

\&”
X*_yZ H Cb(y Z)

oy, 2) ¢(x, z \) (x*x2z,yx2)

-

Y*Z (xxy) Y*Z (xxz)*(y*2z)

Figure 2.7 The quandle 2-cocycle condition (2.3.1) from Reidemeister 111

Let X be a quandle and ¢ : X x X — A be a 2-cocycle. Consider a knot K and let Cx(K)
be a coloring of K. The Boltzmann weight at a crossing 7 is defined by ¢(x, y)¢, where €
is the sign of the crossings (see Figure 2.5). Thus one sees that equation (2.3.1) can be

obtained from Figure 2.7.

Definition 2.3.1. [6] Let X be a quandle and ¢ be a 2-cocycle with coefficient in an abelian
group A. Let D(K) be a diagram of a knot K. The state sum of the knot diagram D(K) is

given by
=> [Iotxy) (2.3.3)

where the product is taken over all crossings of D and the sum is taken over all the possible

colorings of D.

Observe that in Definition 2.3.1, the group A is assumed to be multiplicative group. The

Boltzmann state sum is an element of the group ring of A i.e. ®(D) € Z[A].
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Theorem 2.3.2. [6, Theorem 4.4, page 3954] Let ¢ be a 2-cocycle with coefficient in an
abelian group A. Let D(K) be a diagram of a knot K. The state sum (D) is invariant

under the three Reidemeister moves, thus it is denoted by ®4(K).
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Chapter 3: Idempotents, Free Products and Quandle Coverings

In this chapter we explore idempotents in quandle rings, specifically their connection to
quandle coverings. We establish that integral quandle rings arising from non-trivial invo-
lutory coverings over well-behaved base quandles possess infinitely many non-trivial idem-
potents, offering a complete characterization of these idempotents. Notably, the collected
idempotents constitute a quandle in their own right. Applying these results to knot the-
ory, we infer that the quandle ring of the knot quandle for a non-trivial long knot exhibits
non-trivial idempotents. Additionally, we investigate free products of quandles, proving that
integral quandle rings of free quandles exclusively feature trivial idempotents, yielding an
infinite family of such quandles. We extend our analysis to describe idempotents in quandle
rings associated with unions and specific twisted unions of quandles. This work contributes
to the mathematical understanding of quandle structures and their relationships with idem-

potents in diverse algebraic settings. The present chapter is based on [19].

3.1 Group Rings

Let k be a field and let G be a multiplicative group. A group ring k[G] is an associative
k-algebra with the elements of G as a basis and with multiplication defined distributively
using the group multiplication in G. To be more precise, k[G] consists of all formal finite

sums of the form
0= a-x

with a, € k. Here, finiteness means all of the coefficients a, are zero except finitely many.
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If (k, +, -) is an integral domain implies an associative and commutative ring with unity

and without zero-divisors with unity:.

Definition 3.1.1. Let k[G] be a group ring where k is an associative ring with unity. Then,
the surjective ring homomorphism defined by ¢ : k[G] — k is called the augmentation map

given by

@(Zagg> = Zag

geaG e

3.2 Quandle Rings

Definition 3.2.1. Let (X, %) be a quandle and k an integral domain with unity 1. Let k[X]
be the set of all formal expressions of the form } _, a,e., where each e, is a unique symbol
corresponding to x € X and «, € k such that all o, = 0 except finitely many. The addition

in k[X] is defined as usual and the multiplication is given by

(Zaxex> <Zﬂyey> = Byl

xeX yeX x,yeX

where x,y € X and ay, §, € k. This turns k[X] into a ring (rather a k-algebra) called the

quandle ring of X with coefficients in k.

Clearly, the multiplication is distributive with respect to addition from both left and
right, and k[X] forms a ring, which we call the quandle ring of X with coefficients in the
ring k. Since X is non-associative, unless it is a trivial quandle, it follows that k[X] is a
non-associative ring, in general. It follows that {e, | x € X} forms a basis for the k-algebra
k[X].

Remark 3.2.2. Observe that a quandle with a left multiplicative identity has only one ele-
ment. For, let e € X be the left identity of X. Then e x x = x for all x € X. But, we have
x *x x = x. Now, by axiom invertibility of right multiplication, we must have e = x for all
x € X, and hence X = {e}. Thus, k[X] is a non-associative ring without unity, unless X is

a singleton.
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Definition 3.2.3. Let X be a quandle. Consider k[X] as the quandle ring where k is a ring

with unity. Then, the surjective ring homomorphism ¢ : k[X] — k given by

(Tae)=Ya

xeX xeX

is called the augmentation map. The kernel of € is a two-sided ideal of k[X], called the
augmentation ideal of k[X].We make a distinction between the product in a quandle and the

product in its associated quandle ring.

Since k[X] is a ring without unity, it is desirable to embed it into a ring with unity. The
ring

k°[X] == k[X] @ ke,

where e is a symbol (not in X) satisfying e( Zia;x;) = . ox = (Z, a;x,-)e, is called the
extended quandle ring of X. For convenience, we denote the unity le of k°[X] by e. We can
extend the augmentation map to ¢ : k°[Q] — k and define the extended augmentation ideal

as

Ao (Q) := ker(e : k°[Q] — k).
As before, it is easy to see that the set {x —e | x € X} is a basis for A (X) as an k-module.

Definition 3.2.4. Let X be a quandle and k an associative ring. Then {e, — e, | x,y € X}
is a generating set for Ax(X) as an k-module. Further, if x, € X is a fixed element, then the

set {ex — e, | x € X\ {x0}} is a basis for Ag(X) as an k-module.
Using Definition 3.2.4, the article [3] makes the following obseervation

1. Let X be a quandle and k an associative ring. Then x*y +y*x =x+y mod AZ(X)

for all x, y € X.

2. Let X be a trivial quandle, Y a subquandle of X and k an associative ring. Then

Ay(Y) is a two-sided ideal of k[X].
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3. Let X be a quandle and k an associative ring. Then the quandle X is trivial if and
only if AZ(X) = {0}.

A group algebra can be studied using methods of associative algebras. Recall that quandle
algebras are not associative for non-trivial quandles. On the other hand, some classes of non
associative algebras, for instance, alternative algebras, Jordan algebras and Lie algebras, are
well studied. Thus, it is interesting to know whether quandle algebras belong to these classes

of algebras.

3.2.1 Idempotents in Quandle Rings

Definition 3.2.5. Let X be a quandle and k an integral domain with unity. A non-zero
element v € k[X] is called an idempotent if v> = v. The set of all idempotents of k[X] is

denoted by

Z(k[X]) = {v e k[X] | v* = v}

Unlike in group rings, where the units play a fundamental role in the structure theory
of the group ring, quandle rings have idempotents as the natural object since each quandle
element is, by definition, an idempotent of the quandle ring i.e {e, | x € X} are idempotents
of k[X], and we refer to them as trivial idempotents. A non-trivial idempotent is an element
of k[X] that is not of the form e, for any x € X.

In ring theory, figuring out idempotents is a key challenge. Likewise, exploring idempo-
tents in a quandle ring is based on the search for new quandles within the quandle ring. To
find the set Z(k[X]) of non-zero idempotents in a quandle ring k[X], we start with a basic
idea: every quandle element is an idempotent in its own ring, called “trivial idempotents.”
Unlike integral group rings, which lack non-trivial idempotents, extended quandle rings have

a unique twist. The identity element and elements of the form e — x, where x € X, are
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non-trivial idempotents, offering a distinct perspective on idempotent behavior in quandle
rings.

It is a well-known result of Swan [32, p.571] that if G is a finite group, then the group
ring k[G] has a non-trivial idempotent if and only if some prime divisor of |G| is invertible
in k. Although, we do not have Lagrange’s theorem for finite quandles, a partial one way

analogue of this result does hold for finite quandles.

Proposition 3.2.6. Let X be a finite quandle having a subquandle Y with more than one

element such that | Y| is invertible in k. Then k[X] has a non-trivial idempotent.

Proof. Since the subquandle Y has more than one element, a direct check shows that the
element

u= |—\1,| >, cy & is a non-trivial idempotent of k[X].

Remark 3.2.7. The converse of Proposition 3.2.6 does not hold. For example, consider the
quandle

X ={1,2,3} given in terms of its multiplication table as follows:

11 2 3
111 1 2
212 2 1
313 3 3

Here, (/,j)-th entry of the matrix represents the element i * j. The quandle ring Z[X] has
non-trivial idempotents of the form ae; + (1 — a)e, for a € Z, but X has no subquandle Y

with more than one element such that |Y/| is invertible in Z.

The following proposition gives a sufficient condition that guarantees the existence of

non-trivial idempotents.

Proposition 3.2.8. Let X be a quandle containing a trivial subquandle Y of order more

than one. Then k[X] has non-trivial idempotents.
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Proof. Consider the element v = 27:1 ajey,, where n > 2, y; € Y and a; € k such that

Y=L

A direct check shows that u? = u, and hence v is a non-trivial idempotent of k[X].

Lemma 3.2.1. Let X be a faithful quandle. If x,y € X be two distinct elements such that

xXxy=x,theny*xx=y.

Proof. Since 5,5« = Sy, S, and x * y = x, it follows that S, and S, commute.
Thus, the identity 5.5, = S,., S« implies that S,. = S,. Since X is faithful, we get yxx =y,

which is desired.

Proposition 3.2.9. Let X be a faithful quandle such that S, has more than one fixed-point

for some x € X. Then k[X] has non-trivial idempotents.

Proof. Since S, has a non-trivial fixed-point, we have y x x = y for some y € X with y # x.
But, X is faithful, and hence by Lemma 3.2.1, we have x x y = x. Thus, the set {x, y}
forms a trivial subquandle in X. From Proposition 3.2.8, we have (ae, + (1 —a)e,)* =

ae, + (1 — a)e,. Thus k[X] has non-trivial idempotents.
Proposition 3.2.10. If G is a non-trivial group, then k[(G)] has non-trivial idempotents.

Proof. Note that, for each non-identity element x € G and distinct integers /7, /, the set

{x",x/} forms a trivial subquandle. The result now follows from Proposition 3.2.8.
As an application of quandle rings for link quandles, we have the following proposition.

Proposition 3.2.11. Let L be a link containing the Hopf link and Q(L) the corresponding

link quandle of L. Then k[Q(L)] has non-trivial idempotents.

Proof. Let H be the Hopf link. The knot quandle Q(H) is given by

Q(H):<X, Yy X*xy =X, y*x:y>:{x,y}
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Figure 3.1 Hopf link

It follows from the construction of the link quandle [23, 28] that Q(L) contains Q(H) as a

subquandle with two elements. Using Proposition 3.2.8, we have the desired result.

It has been speculated in [4] that connected quandles have only trivial idempotents. We

give two examples showing that this is not true in general.

Example 3.2.12. Consider X = C[8,1] = {1,2,3,...8} (The notation C[8, 1] means that we
are considering the first connected quandle of order 8 given in [33]). The right multiplications

of X as products of disjoint cycles are as follows:

Si=5=(367)(458), S3=S5,=(186)(257), Ss=5=(147)(238),

S7=5=(153)(264)
We see that X has trivial subquandles {1,2},{3,4},{5,6} and {7,8}. From proposition

3.2.8, we have e — e, 63 — €4, & — g and e; — eg are non-trivial idempotents in Z[X].

Example 3.2.13. Consider the connected quandle X = C[12,9] = {1,2,...,12} of order
12 (As in the previous example C[12, 9] is the ninth connected quandle of order 12 given in

[33]). The right multiplications of X as products of disjoint cycles are as follows:

S =(51179)(612810), S, =(512710)(61189), S3= (597 11)(6108 12),
S, =(510712)(69811), S;=(19311)(210412), Se=(110312)(294 11),
S;=(11139)(212410), S;=(112310)(21149), So=(1735)(2846),

So=(1836)(2745), Su,=(1537)(2648), Sp=(1638)(2547).

We see that X has trivial subquandles {1,2,3,4}, {5,6,7,8} and {9,10,11,12}. By

Proposition 3.2.8, the elements ae; + fey + yes + (1 —a — 5 — v)ey, aes + feg + ver + (1 —
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a— 8 —7)eg and ey + Serg + verr + (1 — a— 5 — 7)ern are non-trivial idempotents of Z[X]

for any «, 8,7 € Z.

A computer assisted check [27] with quandles of order less than seven suggests the fol-

lowing.

Conjecture 3.2.14. If X is a finite latin quandle then the quandle ring Z[X] has only trivial

idempotents.

Every group G can be turned into a quandle (G) by setting x xy = yx 'y, and called the
core quandle of G. For abelian groups G (written additively), the quandle operation becomes
x x y = 2y — x. In particular, the cyclic group of order n > 2 gives the dihedral quandle of
order n, denoted by R, = {0,1,2,...,n—1}. As a supporting evidence to Conjecture 3.2.14,

we prove the following.

Proposition 3.2.15. Let G be an abelian group without 2 and 3-torsion. Then Z[(G)] has

no non-trivial idempotent built up with at most three distinct basis elements.

Proof. Let u = aex + e, + ve, be an idempotent of Z[(G)], where x,y,z € G are distinct
and «, 3,7 € Z. We have the following two cases:
Case 1: Suppose that precisely two of «, 8 and 7 are non-zero. Without loss of generality,

we can take u = ae, + e, with a # 0 and 3 # 0. Then u = u? gives

aex + fe, = e, + BZey + afer—y + afey, . (3.2.1)

Clearly, exx—, # e, and ex_, # e, since G has no 2-torsion. Similarly, e, ., # e, and
&y_x 7 €,. Hence, we must have a8 = 0, a contradiction. Thus, this case does not arise.

Case 2: Suppose that all of ., 3 and v are non-zero. Then u = u? gives

ae+Be, +ye, = alec+5%e, +Pe, Fafexn—y Fafesy x+Bvery+ByeryFayer, xtayen;.
(3.2.2)
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Note that ey,_, # ey, &y« # e, and e, # e, since G has no 3-torsion. We
compare coefficients of e, on both the sides of (3.2.2). Clearly, ex # ey, e, €y, €.
Further, e, # ey,_«, €, since G has no 2-torsion.

Case 2(a): If e, = e,_,, then

a=a?+ By, (3.2.3)

But, e, = &, _, also implies that e, = e, _,. Comparing coefficients of e, on both the sides
of (3.2.2) gives

v =9%+ap. (3.2.4)

Adding (3.2.3) and (3.2.4) gives a +v = a? + 7* + S(a + 7). Now we compare coefficients
of e, on both the sides of (3.2.2). If e, appears only once on the right hand side of (3.2.2),
then 3 = (32, and hence 3 = 1. This gives a®+~? = 0, which further implies that o = v = 0,
a contradiction. If e, = ey,_,, then e, = ey,_,, a contradiction. Similarly, if e, = e,,_, then
e, = e,_,, which is again a contradiction. Hence Case 2(a) does not arise.

Case 2(b): If e, = ey,_,,, we proceed as above, and see that this subcase does not arise.

It follows that e, appears on the right hand side of (3.2.2) precisely once. Hence a@ = o2,
and consequently o = 1. Repeating the process for e, and e,, we obtain f =1 and v = 1.

But, this gives ¢(u) = 3, a contradiction. Hence Z[(G)] has no non-trivial idempotent built

up with at most three distinct basis elements.

Remark 3.2.16. Given a non-empty set X and a ring k, let k[X] be the free k-module on
the set X. Then a binary operation on X can be used to define a ring structure on k[X] by
imitating the construction of a quandle or a group ring. An idempotent quasigroup is a set
X with a binary operation such that both left and right multiplications by elements of X are
bijections of X and x % x = x for all x € X. It is worth mentioning that Conjecture 3.2.14
does not hold if we replace latin quandles by idempotent quasigroups. As a counterexample,

consider the idempotent quasigroup with multiplication table as follows:
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11 2 3 45 6 7 8
111 3 2 5 6 4 8 7
2/5 2 1 7 8 3 46
314 6 3 8 7 1 5 2
416 8 7 4 3 5 2 1
518 7 4 6 5 2 1 3
6|7 4 8 2 1 6 3 5
7 5 6 1 2 8 7 4
812 1 5 3 4 7 6 8

A direct computation shows that u = e, — e3 — €5 + €7 is an idempotent of the ring Z[X].
This suggests that a proof of Conjecture 3.2.14 should use the right-distributivity of the

quandle in an essential way.

Definition 3.2.17. A quandle X is called medial if (x * y) * (z*xw) = (x* z) * (y * w) for all
x,y,z,w € X. These are precisely the quandles for which the natural map X x X — X given
by (x,y) + x * y is a quandle homomorphism, where X x X is equipped with the product

quandle structure. The following result is interesting in its own.
Proposition 3.2.18. Let X be a medial quandle. Then the following hold:
1. The right multiplication by an idempotent is a ring endomorphism of k[X].

2. If X is finite, then right multiplications by distinct idempotents give distinct ring

endomorphisms of k[X].
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Proof. Let u= Y7, aje; be an idempotent of k[X]. Let S, : k[X] — k[X] be the map given

by S,(w) = wu for all w € k[X]. Let e, e be two basis elements of k[X]. Then, we see that

n
gu(eke,) = €4y (Z a;aje;*j), since u = u?
ij=1

= Z OGO (el (i)

ij=1

n
= E QO €kxi)(1j),  Since X is medial
ij=1

n
= E OO €y €l

ij=1

n n
= Z ek ( Z ajers))
i=1 j=1

= S,(ex) Su(e).

Since §,, is k-linear, it is a ring homomorphism, which proves (1).
For assertion (2), suppose that X is finite of order n. Let u = Y7 aye;and v = > | Bie
be two idempotents of k[X]. If S, =S, then S Qi€ = gu(ek) = Sv(ek) =0 Bilksi

for any basis element e,. But, this gives a; = 5; for all i, which implies that u = v.

Remark 3.2.19. Consider the quandle X = C[6, 1] from [33] with multiplication table as

follows:

416 5 4 4 2 1
513 4 1 2 5 5
614 3 2 1 6 6
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Take k = Q, u = %(el + &) and S, the right multiplication by u. Then v is an idempotent

of Q[X] and e; — & € ker(5,). Thus, the k-linear map S, need not be injective in general.

Remark 3.2.20. The set of idempotents of a quandle ring fails to satisfy the right-distributivity
in general. For example, consider the quandle ring Z[X] of the quandle X of Remark 3.2.19.
Take the idempotents u = e;, v = e; and w = aes + (1 — a)eg. Then a direct check shows
that (uv)w = e5, whereas (uw)(vw) = (2a —2a?)es + (2a® — 2a.+ 1)eg. This implies that the
set of idempotents of a quandle may not form a quandle. The article [18] provides a table of
quandles up to order 5 with their idempotents computed with coefficients in Z and Z, and

states the cases when such a set of idempotents is a quandle.

In associative algebras, the operator induced by multiplication by an idempotent is a
projection onto a subspace, and hence has eigenvalues 1 and 0. For non-associative algebras,
the eigenvalues of the operator induced by an idempotent can be arbitrary in general. Given
an idempotent v of a non-associative algebra k over C, let o(v) denote the Peirce spectrum of
v, which is the set of all eigenvalues of the operator induced by v. The Peirce spectrum of an
idempotent v induces the Peirce decomposition of the algebra k, which is the decomposition

of k into a direct sum of corresponding eigenspaces.

Remark 3.2.21. Let X be a non-trivial quandle and k a field. On the contrary to associative
algebras, the right multiplication S, by an idempotent u of k[X] is not a projection of the
underlying k-vector space k[X]. Thus, the spectrum of the idempotent u (defined as the

spectrum of the k-linear map 3,,) may be arbitrary.

3.3 Idempotents from Quandle Coverings

In this section, we use quandle coverings for computing idempotents in quandle rings
of involutory quandles. The notion of a quandle covering was introduced in the work of

Eisermann [11, 12].
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Definition 3.3.1. A quandle homomorphism p : X — Y is called a quandle covering if p is
surjective and S, = S,» whenever p(x) = p(x’) for any x, x’ € X. Clearly, an isomorphism of

quandles is a quandle covering, called a trivial covering.
Example 3.3.2. Some examples of quandle coverings are:

1. A surjective group homomorphism p : G — H yields a quandle covering (G) — (H) if

and only if ker(p) is a central subgroup of G.

2. A surjective group homomorphism p : G — H yields a quandle covering (G) — (H) if

and only if ker(p) is a central subgroup of G of exponent two.

3. Let X be a quandle and F a non-empty set viewed as a trivial quandle. Consider X x F
with the product quandle structure (x,s) * (y,t) = (x * y,s). Then the projection
p: X x F— X given by (x,s) — x is a quandle covering, called trivial covering with

fibre F.

4. Let X be a quandle and A an abelian group. A map a : X x X — A is called a quandle
2-cocycle if it satisfies

Qxy Oxxy z = Ox 7z Qxsz yxz

and

Qx x = 1

for x,y,z € X. Given a 2-cocyle «, the set X x A turns into a quandle with the binary

operation

(x,8)x(y, t) = (x Xy, S a(x,y)),

for x,y € X and s,t € A. The quandle so obtained is called an extension of X by A
through «, and is denoted by X x, A. We refer the reader to [1] for generalities and
related results. A direct check shows that the projection p : X x, A — X given by

p(x,s) = x is a quandle covering.
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The following lemma summarises some basic properties of quandle coverings.
Lemma 3.3.1. If p: X — Y is a quandle covering, then the following hold:
1. Each fibre p~*(y) is a trivial subquandle of X.
2. Fach inner automorphism of X permutes fibres.
3. The fibres over any two elements of the same connected component of Y are isomorphic.

Proof. If p: X — Y is a quandle homomorphism, then each fibre p~1(y) is a subquandle of X.
Since p is a covering, S, = S, whenever x, x' € p~*(y). This gives x*x' = Sy(x) = S, (x) = x
and x" * x = 5,(x’) = S¢(x’) = x/, which proves assertion (1).

For assertion (2), it is enough to check that if x;, x2 € p~1(y), then S (x;) and S,(x) are
in the same fibre. Indeed, p(S«(x1)) = p(x1 * x) = y * p(x) = p(x2 * x) = p(S«(x2)), and we
are done.

Let y, y’ be elements of the same connected component of Y. Then there exists elements
Vi, Y2, Yo € Y and pg, fio, ..., ptn € {1, —1} such that y’ = y "1 yy %42 y, - - - %ty Here the
parentheses are left normalised. For each i, choose one element x; € p~*(y;). If x € p~(y),

then we see that

p(X *;,Ll X1 *,uz POREE *,U«n Xn) — y *,ul )/1 *NQ y2 .. *Mn yn — y/-
Thus, the inner automorphism S#» S+ - - §#1 maps the fibre p~*(y) bijectively onto p~*(y’),

which proves (3).

Proposition 3.3.3. If p : X — Y is a non-trivial quandle covering, then k[X] has non-trivial

idempotents.

Proof. Since p is a non-trivial covering, there is at least one connected component of Y such
that |p~*(y)| > 2 for all elements y in that connected component. By Lemma 3.3.1(1),

p~l(y) is a trivial subquandle of X. The result now follows from Proposition 3.2.8.
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Example 3.3.4. Consider X = C[12, 3] the third connected quandle [33] of order 12. As a
set X = {1,2,...,12}, Its quandle operationc * is given in terms of right multiplications as

follows:

$;=(21251011)(38674) S, =(1117412)(351069) S;=(127610)(498512)

S,=(111685)(279312) S5 =(1123810)(2496 11

( )

( ) Se=(15342)(71110809)
(396105) Sy=(21110512)(347638)
( )

)
)
S;=(1108312)(211694) Sg= (11257 11)
So=(158611)(212397) S;=(110672)(412589

Consider Y = {1, ..., 24}. Tts quandle operation « is given in terms of right multiplications

as follows:

= S;3=(21251011)(3 8 6 7 4)(14 24 17 22 23)(15 20 18 19 16)

Sy =S =(1117412)(35 106 9)(13 23 19 16 24)(15 17 22 18 21)
— (1276 10)(4 985 12)(13 14 19 18 22)(16 21 20 17 24)
Si=Si5=(111685)(27 93 12)(13 23 18 20 17)(14 19 21 15 16)
= (1123810)(249611)(13 24 15 20 22)(14 16 21 18 23)
= (153 42)(7 1110 8 9)(13 17 15 16 14)(19 23 22 20 18)
S; = Sio=(1108312)(2 11 6 9 4)(13 22 20 15 24)(14 23 18 21 16)
= (11257 11)(3 9 6 10 5)(13 24 16 19 23)(15 21 18 22 17)
= Sy = (211105 12)(3 4 7 6 8)(14 23 22 17 24)(15 16 19 18 20)
Sio=Sp=(158611)(212397)(13 17 20 18 23)(14 24 15 21 19)
Sii=S;=(110672)(4125809)(13 22 18 19 14)(16 24 17 20 21)
Si2= Sy =(12435)(79810 11)(13 14 16 15 17)(19 21 20 22 23)
Let ¢ : (Y, *) — (X, %) be a map such that ¢(y) = y(mod12) for all y € Y. It is easy to check

that ¢ is a quandle homomorphism as for any a, b € Y, we have ¢(a* b) = (ab) mod (12) =
(a mod 12)(b mod 12) = ¢(a) * ¢(b). By the nature of the map, ¢ is surjective and not
injective(as |X| < |Y]). Thus, ¢ is a non-trivial covering. Then by Proposition 3.3.3, we

have k[X] has non trivial idempotents. In particular, Z,[X] has non-trivial idempotents.
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Definition 3.3.5. An embedding ¢ : R — R3 is called a long knot if there exist o, 3 € R
such that

¢(t) =(0,0,t) for any t < o or t > f.

The following proposition about long knots is also an immediate application of the Propo-

sition 3.3.3.

Proposition 3.3.6. If L is a non-trivial long knot, then the quandle ring k[Q(L)] of its knot

quandle Q(L) has non-trivial idempotents.

Proof. Let L be a long knot and K its corresponding closed knot defined in the obvious way.
Let Q(L) and Q(K) be knot quandles of L and K, respectively. Note that Q(K) is obtained
from Q(L) by adjoining one extra relation corresponding to the first and the last arc of L. By
[11, Theorem 35|, the natural projection p : Q(L) — Q(K) is a non-trivial quandle covering,

and the result follows from Proposition 3.3.3.

Remark 3.3.7. Let p: X — Y be a quandle covering, and F(Y) the set of all finite subsets
of Y. For each y € Y, let F(p~*(y)) be the set of all finite subsets of p~*(y), and denote a

typical element of this set by /,. The main result of this section is the following theorem.

Theorem 3.3.2. Let p: X = Y be a non-trivial quandle covering where X is involutory. If

k[Y] has only trivial idempotents, then the set of idempotents of k[X] is

Z(k[X]) = {Z ( Z oy (ex + ex*xo)> + ( Z Oéx’ex’> ‘

yed xel,, > ax=0 x'€lyy, Y ags=1

JEFY), b eFE ) b€ F(p ' 00)) %0 € he Yo €Y, axaw dkdD)

Proof. Since p is a quandle covering, we have S, = S, for any x,x’ € p~!(y). Hence the

induced automorphisms of the quandle ring k[X] are identical for any x,x’ € p~*(y). This
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together with direct computations give

(Zﬁxex> ( Z ax’ex’> (332)
xeJ x'ely, Y ag=1
— Z (65% < Z ﬁxex> €/
x'ely, Y ay=1 xeJ
= Z Qs < Z ﬁxex> &, for any fixed xp € /,
x'ely, Y ay=1 xeJ
- Z (65% < Z /BXeX*X())
x'ely, Y ay=1 xeJ
= Z Px€xixgr  SINCE Z e =1,
xeJ x'ely, Y agy=1
and
(Zﬁxex) ( Z Oéx’ex/> (333)

xeJ x'ely, Y a.=0
- E (659 < E 5xex) Ex
x'€ly, >l ay=0 xeJ
= g aX/( E Bxex*xo), for any fixed xp € /,
x'€ly, >l ay=0 xeJ
= ( E ax’) ( E /BXeX*X())
X’EIy, ZCMXIZO xeK
= 0, since E o, =0,

x'€ly,

> o y=0

where J € F(X), I, € F(p~*(y)), y € Y and By, ax € k. Let u = v + w, where

v = E ( E ax(ex + ex*x0)>y
yed xel,, > ax=0

w = E Qlxr Ex,
X/Elyo, ZO&X/:].
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J € F(Y) and xp € I, a fixed element. Equations (3.3.2) and (3.3.3) imply that w? = w,
wv = 0 and v? = 0. Since X is involutory, it follows that (€ + €x )€y = € T Exsxo-
Consequently, vw = v, and hence v? = u.

For the converse, let u be an idempotent of k[X]. Since X is the disjoint union of fibres

of p, we can write u uniquely in the form

=3 (Y ae)

yed xe€l,

for some J € F(Y) and I, € F(p~*(y)) for each y € J. If p : k[ X] = k[Y] is the induced ho-
momorphism of rings, then p(v) is an idempotent of k[Y]. It follows from the decomposition

of u that

p(u) = Z (Zax) e.

yed xe€l,
Since k[Y] has only trivial idempotents, it follows that either p(u) = 0 or precisely one of
the coefficients of p(u) is 1 and all other coefficients are 0. If p(u) =0, then }° ., ax =0

for each y € J. Writing

u:Z( Z Oéxex>,

yed xel,, > ax=0
it follows from (3.3.3) that u = u® = 0, which is a contradiction as u # 0. Hence, there exists
yo € J such that Zx'elyo o, =1 and er/y ay = 0 for all y # yg. Then can write v = v + w,

where

v = Z < Z Oéxex>

yed, y#yo x€l,, Y ax=0

and

w = E Oyt €yt .

Xlelyo, ZO&XIZI

Again, equations (3.3.2) and (3.3.3) imply that w? = w, wv = 0 and v = 0. Thus, we have

u:u2:v2—|—W2+vw+Wv:W+vw,
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and consequently vw = v. This implies that

> ( > axex>exoz > ( > axex>

YEJ, y#yo  x€ly, Y ax=0 yeJd, y#yo  x€ly, > ax=0

for some fixed xp € /,,. Comparing coefficients of e, on both the sides give o, = yuy,- Thus,

v has the form

v=>_ ( > ax(ex+ex*xo)>,

yed, y#yo x€l,, 3 =0

which completes the proof of the theorem.

Corollary 3.3.3. If X is a trivial quandle, then

Z(k[X]) = {Zaxex | Je F(X), ax € k such that Zax = 1}.

xed xed

Proof. 1t {z} is a one element quandle, then the constant map ¢ : X — {z} is a quandle

covering. The proof now follows from Theorem 3.3.2.

Corollary 3.3.4. Let p: X — Y be a non-trivial quandle covering such that k[Y] has only

trivial idempotents. Then every idempotent of k[X] has augmentation value 1.

Proof. The assertion follows from the proof of the converse part of Theorem 3.3.2. Note that

we do not need our quandles to be involutory.

It has been shown in [4] that the integral quandle ring of R3 has only trivial idempotents.
A computational check shows that the same assertion holds for the integral quandle ring
of Rs as well. As an application of the preceding theorem, we characterise idempotents in
quandle rings of certain dihedral quandles of even order under the assumption of Conjecture

3.2.14.
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Corollary 3.3.5. Let n =2m+1 be an odd integer with m > 1. Assume that k[R,] has only

trivial idempotents. Then the set of idempotents of k[Ran] is given by

m

I(k[R2n]) = {(Bej+(1—ﬁ)en+j)+z a,-(e,-—e,,+,-+e2j_,-—e,,+2j_,-) ‘ 0<j<n—1and aj, B € k}.
i=0

Proof. Note that the natural map p : Ry, — R, given by reduction modulo n is a non-trivial
quandle covering. Further, for each i € R,, we have p~*(/) = {i,n + i}. The result now

follows from Theorem 3.3.2.

Proposition 3.3.8. Let p: X — Y be a non-trivial quandle covering. Then k[X] has right

zero-divisors.

Proof. Let J € F(X), y € Y and I, € F(p~*(y)) such that |f,| > 2. Then for any

D oxel, S anoOx& and 3- . ; Buey, it follows from (3.3.3) that

(Z ﬁx'exf) ( Z ozxex) =0

x'ed xely, Y ax=0

and hence ) S~ a,—0 Ox€x is a right zero-divisor of k[X].

x€ly,
Proposition 3.3.9. Let X be an involutory quandle such that k[X] has only trivial idempo-
tents. Let A be a non-trivial abelian group and « : X x X — A a quandle 2-cocycle satisfying
Qxayy = a;} for all x,y € X. Then the extension X x, A is involutory and k[X x, A] has

non-trivial idempotents.

Proof. A direct check shows that the condition ay.,,, = 04;)1, is equivalent to X x, A being
involutory. Since the map p : X X, A — X is a non-trivial quandle covering, the result

follows from Theorem 3.3.2. In fact, Theorem 3.3.2 gives the precise set of idempotents.

Proposition 3.3.10. Let p: X — Y be a quandle covering. Then the set

! = {Z ( Z ozx(ex + ex*xo)> + ( Z ozxfex/> ‘

yed xel,, Y ax=0 x'€ly,, Say=1

J E F(Y)' ly E ‘F‘(pil(y))' /yo e ‘F(pil(yo))v XO 6 Iyov )/0 E Yr CKXV ax’ 6 k}
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of idempotents is a quandle with respect to the ring multiplication.

Proof. Consider the elements

u = Z ( Z ax(ex + ex*xl)> + ( Z OzX/eX/>,

yeh x€ly, > ax=0 X' €lyy, Y as=1
=3 X Bletew))t( X Beer)
y€h x€l,, > Bx=0 x'€lyy, Y Bu=1

in the set /, where J; € F(Y) and I, € F(p~'(y)), yi € Y and x; € I,,. Then we have

uv
= (Z < Z CVx(ex + ex*xl)> + < Z Ckx’ex’)>
yeh x€l,, > ax=0 X'€lyy, Y ag=1
(Z ( > Belet ex*xz)> + ( > Bx/exf>>
yEh x€l,, 3 Bx=0 Xl 3 Bu=1
= <Z ( Z CKX(GX + ex*xl)> + ( Z CkX/eX/>> ( Z ﬂx/exl>>,
yeh x€l,, > ax=0 xX'€ly, Y ag=1 xX'€ly,, Y Bu=1
by (3.3.3)
= (Z ( Z 04X(eX + ex*xl)> + < Z aX/eX/>>eX2, by (3.3.2)
y€h x€l,, Y ax=0 x'€ly;, Yag=1
= Z ( Z &X(eX*XQ + e(x*xl)*x2)> + ( Z aX/eXI*X2)
yeh x€l,, > ax=0 x'€ly, Yag=1
= Z ( Z aX(eX*XQ + e(X*XQ)*(Xl*XQ))) + ( Z ax'eX/*X2)'
YEN  xxx2€lyuy,, D ax=0 X'4x2€ 1 wyy, Y 0r=1

where x1 * X2 € I,4y,.

Thus, we have proved that uv € [. The preceding computation also shows that the right
multiplication by v is precisely the right multiplication by e,, for any fixed x, € /,,. In other
words, the right multiplication by v is the ring automorphism §X2 of k[X]. This proves that

the set / is a quandle.

As an immediate consequence of Proposition 3.3.10, we have the following.
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Corollary 3.3.6. Let p: X — Y be a quandle covering such that X is involutory and k[Y]

has only trivial idempotents. Then the following hold:
1. The set of all idempotents of k[X] is a quandle with respect to the ring multiplication.

2. The right multiplication by each idempotent of k[X] is a ring automorphism induced by

some trivial idempotent of k[X].

Note that Proposition 3.2.18 already proves the endomorphism assertion of Corollary

3.3.6(2) for all medial quandles.

3.4 Idempotents in Quandle Rings of Free Products

Definition 3.4.1. Let X; = (S5; | R;) be a collection of n > 2 quandles given in terms
of presentations. Then their free product X; x X5 * --- x X,, is the quandle defined by the

presentation

Xix Xk x Xg=(S5USU---US, | RRURU---UR,).

Example 3.4.2. The free quandle FQ, of rank n can be seen as

FQ, = (x1) x (x2) * - - % (X,),

the free product of n copies of trivial one element quandles (x;).

It follows from the right distributivity axiom in a quandle X that

x* (y ' z) = ((x*"z)*y) "z (3.4.1)

forall x,y,z € X and ¢, u € {—1, 1}. For ease of notation, we write a left-associated product

((- - ((x0 % x1) %P xp) %% -+ ) 71 x, 1) % x,,
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simply as

€n

Xp * xq k2 - x5 X,

Remark 3.4.3. A repeated use of equation (3.4.1) gives the following result [34, Lemma 4.4.8].

Lemma 3.4.1. Let X be a quandle. Then the product
(X0 % xq P -+ %™ x,) k10 (yp #H yp #H2 )
of two left-associated expressions in X is the left-associated expression
Xo ¥ Xy KPR KT X kT Ty g TR TRy Oy g g2y

The quandle axioms imply that each element of a quandle X has a canonical left-
associated expression xg* xq x2- - -x x,,, where xg # x1, and if x; = x; 41 forany 1 <j < n—1,
then €; = €;41.

Lack of associativity in quandles makes it hard to have a normal form for elements in
free products of quandles. We overcome this difficulty by defining a length for elements in
free products. Let X = X; x X % - -+ % X,, be the free product of n > 2 quandles. Given an

element w € X, we define the length {(w) of w as

/(w) = min {r | w can be written as a canonical left associated product of r

elements from X; U X, L --- U X,,}.

Notice that each w € X has a reduced left associated expression attaining the length ¢(w).
This can be done by gathering together all the leftmost alphabets in a left associated ex-
pression of w that lie in the same component quandle X;, and rename it as a single element

of X;. This shows that ¢(w) = 1 if and only if w € X; for some i. Equivalently, ¢(w) > 2
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if and only if w € X\ (U1_,X;). For example, if x;,x, € X; and y1, y» € X; for i # j, then
Uxa*xx) =1, 00axx+x1x))=1L0q*xy) =2, Lxyxy1xys) =3 and {(x; * y1 % yo x x0) = 4.

Note that, if X = X; x Xo % - - - % X, then every u € k[X] can be written uniquely in the
form

Uu=u+ur~+---+u,+v, (3.4.2)
where each u; € k[X], v =>_7 | ykew, with each £(wy) > 2 and v« € k.

Proposition 3.4.4. Let X = X; x X5 x - - - % X,, be the free product of n quandles such that
each k[Xj] has only trivial idempotents. Then any idempotent v of k[X] can be written
uniquely as

U= 016 + €, + -+ Qpé, +V,
where x; € X;, v =Y/, Vkew, with ¢(wy) > 2 and «;, v« € k for all i and k.

Proof. For each i, fix an element z; € X;. Then the maps p; : X — X; defined by setting

x if xe X,
pi(x) =
zi if xe X; for j#1i.
The universal property of free products implies that each p; is a quandle homomorphism. Let
U=u+ U+ -+ u,+ v be an idempotent of k[X], where each u; € k[X;], v =1 Ykew,
with ¢(wy) > 2 and 7, € k. Then p;(uv) is an idempotent in k[X;] for each i. Since each k[X]

has only trivial idempotents and

)= u + Z e(uj)es + pi(v),

Jj#i, j=1

it follows that u; = aje,, for some x; € X; and «; € k. Note that if e(u;) # 0 for any j # i,

then x; = z;. Thus, u = aje,, + azey,, + -+ + e, + v, and we are done.
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Lemma 3.4.2. Let X = X1 x Xo x - - - x X,, be the free product of n quandles with n > 2. Let
u € k[X] be an idempotent and u = uy + tp + - - - + u, + v be its unique decomposition as in

(3.4.2). Suppose that

1. Uwy * wy) > 2 for any k and |.

2. U(wy x x) > 2 for any x € U?_; Xs and any k.
Then u; is an idempotent of k[X;] for each i.

Proof. Since u = u?, we have

nAtpt Ut v=u Bt ARV Y s+ Y vt Y v (34.3)
i), ij=1 i=1 j=1

If v =0, then (3.4.3) takes the form

nA+mtduy =+ Z ujuj. (3.4.4)
i), ij=1
For 1 < # j < n, each basis element of k[X] appearing in a product u;u; corresponds to
a quandle element from X \ (L2_;X;). For each 1 < < n, gathering all the summands on
the right hand side of (3.4.4) corresponding to elements from the quandle X; implies that
u; = u?, which is desired.

Now suppose that v # 0. For each 1 < k, | < m, the condition ¢(wy * w;) > 2 implies that
the basis element of k[X] corresponding to the quandle element wj x w; does not appear as
a summand for any u;. Further, each basis element appearing in a product u;v corresponds
to a quandle element of the form x x wj for some x € X; and some 1 < kK < m. But, we have
U(x % wy) > 2 for such elements. Lastly, the condition ¢(wj x x) > 2 for any x € LZ_; X also
implies that the basis element of k[X] corresponding to the quandle element wy * x does not
appear as a summand for any u;. For each 1 </ < n, gathering together all the summands
on the right hand side of (3.4.3) corresponding to elements from the quandle X; imply that

u; = u?, which is desired.
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Theorem 3.4.3. Let FQ, be the free quandle of rank n > 1. Then Z[FQ,] has only trivial

1dempotents.

Proof. An analogue of the Nielsen—Schreier theorem stating that every subquandle of a free
quandle is free has been proved recently in [22]. Let FQ> = (x) x (y) be the free quandle of

rank two. Then,

FQn= (x) x (x*xy)x (xkysky)*---Kk(Xkykys---xy)
and embeds as a subquandle of FQ, for each n > 3. Thus, it suffices to prove that Z[FQ»]
has only trivial idempotents.

Let u = ae, + e, + v be an idempotent of Z[FQ], where v = > | yxey, with {(wy) > 2
and o, 8,7« € Z. If v = 0, then Lemma 3.4.2 implies that ae, = a’e, and fe, = ?e,.
Hence, either u = e, or u = ¢, and v is a trivial idempotent.

Now, suppose that v £ 0. Note that the first two leftmost alphabets in the reduced left
associated expression of each wy are distinct. We claim that v, = 1 for each k. This will be
achieved by transforming the idempotent v into a new idempotent such that conditions of

Lemma 3.4.2 are satisfied. Fix a k such that 1 < k < m and write
Wi = Xp *7 X %2 xp % -+ % X,

in its reduced left associated expression, where x; € {x,y} and ¢; € Z for each i. Since the
expression is reduced, without loss of generality, we can assume that x = x and x; = y.

Consider the inner automorphism

O = 56505415, S TS

X0~'x1 X

of FQ,. We analyse the effect of ¢ on each summand of u. First note that ¢(wy) = xo = x.

Consider any fixed w; for i # k and write w; = yp %"t yq %2 yp %3 ... xHs y o in its reduced left
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associated expression, where y; € {x, y} and u, € Z for each t. We have

gb(w,-) =V s " M2 Vo wH3 L s Vs € X, w€r1 X, 1 %62 ... g X1 % Xo * Xo.

Considering the cases s = r, s > r and s < r, and using the fact that the set of alphabets is
{x,y}, we obtain ¢(¢(w;)) > 3. This clearly implies that ¢(w;) * x, p(w;) x y & {x, y} for any
i # k. Now consider another w; for j # k and j # i and write w; = z %" z; %2 zp "3 - - - ¥V Z
in its reduced left associated expression, where z; € {x,y} and v; € Z for each t. Then

Lemma 3.4.1 gives

P(wi) * d(w;)

= (wi*w)

= (o yr o oo ye) (20 7 21 #7 -+  21))
*TX kT T Xk T2 kT Xy %k Xg % X

vi—2 v

= Y *Hl "1 *,u2 e *Ns Vs *—V/ Z *—l//—l Zi_1 * . *—m z1 % 2 *l/l z *1/2 cexY Z

¥7Ox kT Xk 2 kT X % X % Xp.

As before, by comparing (w; * w;) and r, we obtain £(¢(w;) * ¢(w;)) > 3. If o and 3 are
non-zero, then ¢(¢(x)), £(¢(y)) > 3 for the same reason. Thus, the only summand of the
idempotent ¢(u) = cveyx)+Bes(y)+ D peq TkEs(w,) that corresponds to an element from {x, y}
is ¢(wy), and all the summands corresponding to ¢(w;) for i # k satisfy the conditions of
Lemma 3.4.2. Thus, we obtain Yx€s(w,) = (Vk€s(w,))? and hence v, = 1, which proves the

claim. On plugging this information back to u, we can write u = ae, + fe, + >, | €w,.
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Since u is an idempotent, we have

m m
2 2
ae, + Be, + g ew, = a‘e.+ (% + E Ewesw, + By + ey
k=1 Kk, 1=1

m m m m
+a E Exsmy T QX E Eweex T § Eysw, T E gy -
k=1 k=1 k=1 k=1

Comparing coefficients of e, gives
a=ao?, a=ao’>+ Z 1, a=a’+p or a=a*+ Z 1+ 5.
Wi x W) =X Wi x W) =X
Similarly, comparing coefficients of e, gives
B=F B=F+ Y 1, B=F+a o =5+ > 1l+a
Wi xwi=y Wi xwi=y

A direct check shows that the only possible cases are

a=a? and f=p3%
a=a’+f and =4,
a=a® and B=p+a,

a=0o’+p and B=p+a.

This together with the fact that e(v) = o+ 8+ m shows that « = = 0 and m = 1. Hence,

u = e, for some w € FQ,, and the proof is complete.

Since the link quandle of a trivial link with n components is the free quandle of rank n,

we have
Corollary 3.4.4. If L is a trivial link, then Z[Q(L)] has only trivial idempotents.

We denote by ying(k[X]) the group of k-algebra automorphisms of k[X], that is, ring

automorphisms of k[X] that are k-linear. Let WB, be the welded braid group on n-strands.
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See [9] for a nice survey of these groups. As an application to automorphisms of quandle

rings, we have
Corollary 3.4.5. n(Z[FQu]) Zguandaie (FQy) = WB, for each n > 1.

Proof. Obviously, each automorphism of FQ, induces an automorphism of Z[FQ,]. Con-
versely, if ¢ Eying (Z[FQ,,]), then ¢ is a bijection of the set Z (Z[FQ,,]) of all idempotents.
Since Z[FQ,] has only trivial idempotents, FQ, = Z(Z[FQ,]) via the map x — e, and hence
¢ can be viewed as an automorphism of FQ,, proving the first isomorphism. The second

isomorphism is a well-known result from [21].

3.5 Idempotents in Quandle Rings of Unions

Definition 3.5.1. Let {(X;, *;)}; be a family of quandles. Then the binary operation

xx;y if x,y € X;,
X*y =

X if x € Xj and y € X; for i # j,

turns the disjoint union LI;X; into a quandle called the union quandle.

Proposition 3.5.2. Let X = X; U X5 L --- U X, be the disjoint union of n > 2 quandles.

Then k[X] contains idempotents of the following form:
L. >0, ajuj, where u; € k[Xj] is an idempotent with e(u;) = 1 for each jand 377, o = 1.

2. >0, uj, where u; € k[Xi] is an idempotent with e(u;) = 1 and u; € k[X;] satisfy u} =0

for each j # i.
3. 2071 0(Xkex; &), where |Xj| < oo and Y57, ai| Xi| = 1.

Proof. We begin by noting that if u € k[X;] and v € k[X,] for i # k, then uv = ¢(v)u. For

assertion (1), take w = 7

-1 ajuj, where u; is an idempotent of k[X;] and > ; @; = 1. Then
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we have

n n n n
W2 = E aiojuil; = E O Ozj UJ E QiU = E aj( E a,-u,-) = E oW = w.
=1 i=1 Jj=1

ij=1 ij=1 ij=1

For assertion (2), take w = 37

satisfy u? = 0 for each j # i. Since e(u;) = 0 for all j # i and e(u;) = 1, it follows that

L Uj, where u; is an idempotent in k[X;] and u; € k[X]]

n n n

w? = Z UjUk+ZUjU;: Z €(Uk)Uj+Z€(U)U:

ki, kj=1 j=1 ki, kj=1

For assertion (3), suppose that |Xj| < oo for each j and take w = 77, a;v;, where

‘/j:

erxj e, and > ., ;| X;| = 1. Then we see that

n

w —Zozozjv,vj Zan|X|v,—Z(ZaJ|X| a;v;) Zozv,—w

ij=1 ij=1 i=1 j=1

Remark 3.5.3. Note that Proposition 3.5.2 holds for arbitrary families of quandles. Further,
it appears that the proposition gives all idempotents of the quandle ring of a union of

quandles.

The union construction for two quandles has a twisted version when the quandles act on
each other by automorphisms (see [2, Proposition 11]). We consider a simple case of this
construction when both the quandles are trivial. Note that the automorphism group of a
trivial quandle is the permutation group of the underlying set. Let X, Y be trivial quandles,
fe(X)and g € (Y). For x € X and y € Y, setting x *x y = f(x) and y * x = g(y) defines
a quandle structure on the disjoint union X U Y, and we denote this quandle by X L, Y.

We prove a twisted version of Proposition 3.5.2.

Proposition 3.5.4. Let X and Y be trivial quandles of orders n and m, respectively. Let

f € Aut(X) and g € Aut(Y') be automorphisms acting transitively on X and Y, respectively.
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Then

T(kXUrg Y1) = Z(IXDU Z(YD) U{a (Y e) +B( Y e) | B €k such that an+fm=1}.

xeX yey

Proof. Note that any u € k[X U, Y] can be written uniquely as v = v + w, where v =
D vex xe Ek[X] and w =37\ Be, € k[Y]. If u = v?, then

V—|—W:V2—|—W2+VW+WV:€( W +e(w)w + e(w Zaxef(x)+€ Zﬂyeg(y
xeX yey

and consequently

v=c¢(v)v+e(w Zaxef(x) and w =¢e(w)w +e(v Zﬁyeg

xeX yey
Comparing coefficients give
o = e(V)ayx + e(w)ar-1(4 (3.5.1)
and
By = 5(W)6y + 5(V)6g*1(y) (3.5.2)

for all x € X and y € Y. Adding (3.5.1) for all x € X gives ¢(v) = ¢(v)e(u). Similarly,
adding (3.5.2) for all y € Y gives e(w) = g(w)e(u). If e(u) = 0, then e(v) = e(w) = 0, and
hence u = 0, a contradiction. So, we can assume that e(u) = 1, and hence at least one of
g(v) or e(w) is non-zero. If e(v) # 0, then (3.5.2) gives f, = Bg-1(,) for all y € Y. Since
g acts transitively on Y, it follows that 8, = § (say) for all y € Y. If § =0, then w = 0.
In this case, u = ) _y aye., where > o, = 1, and hence u € I(k[X]). If g # 0, then
e(w) = mB # 0, and (3.5.1) gives a, = ar-1(x) for all x € X. Since f also acts transitively

on X, it follows that o, = « (say) for all x € X. Thus, we have

u=a(Ye) +8(Ye).

xeX yYeyYy

49



where nav + m = 1. Similarly, if e(w) # 0 and « = 0, then we get v = 0. In this case,

u= Zyeyﬁyey, where Zyevﬁy =1, and hence u € I(k[Y]). This completes the proof.

3.6 Remarks and Some Open Questions

We conclude with some remarks and open problems motivated by the results in the

preceding sections.

1. All the idempotents computed in the preceding sections have augmentation value one,

and we believe that this is the case in general.

Conjecture 3.6.1. Every non-zero idempotent of a quandle ring has augmentation

value one.

2. Let Q(L) be the link quandle of a link L in R and X any quandle. It is well-known that
the set (Q( L), X ) of all quandle homomorphisms extends the classical Fox colouring
invariant of links. A link invariant which determines the quandle coloring invariant is
called an enhancement of the quandle coloring invariant. Further, an enhancement is
proper if there are examples in which the enhancement distinguishes links which have
the same quandle coloring invariant. For instance, the quandle cocycle invariant is a
proper enhancement arising from quandle cohomology. Since each quandle homomor-
phism f : Q(L) — X induces a homomorphism f : k[Q(L)] — k[X] of quandle rings, it
turns out that g (k[@Q(L)], k[X]) is an enhancement of (Q(L), X). It is worth exploring

whether this enhancement has a cohomolgical interpretation.

3. If a quandle has a subquandle of order two, then Proposition 3.2.8 shows that its
quandle ring has non-trivial idempotents. A look at the table of quandles of order
upto 35 seems to suggest that every faithful and non-latin quandle has a subquandle

of order two.
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4. Proposition 3.2.11 shows that the quandle ring of the link quandle of the Hopf link
admit non-trivial idempotents. Similarly, Corollary 3.3.6 proves that the quandle ring
of the knot quandle of the long knot has non-trivial idempotents. It is interesting to

determine idempotents of quandle rings associated to other knots and links.

5. Quandle rings that have only trivial idempotents, quandle rings discussed in [4] and
quandle rings covered by Corollary 3.3.6 have the property that the right multiplication
by each idempotent is an automorphism of the quandle ring. Proposition 3.2.18 proves
that the right multiplication by an idempotent is always a ring endomorphism for
medial quandles. Remark 3.2.19 shows that the right multiplication by an idempotent
need not be injective over the field of rationals. Further, Remark 3.2.20 shows that
idempotents fail to satisfy right-distributivity in general. In view of these observations,
it would be interesting to classify quandles for which the set of all idempotents of their
quandle rings over appropriate coefficients form a quandle with respect to the ring

multiplication.

6. Our proof of Theorem 3.4.3 crucially uses the fact that FQ, is the free product of
one element quandles. We believe that the result holds for arbitrary free products of

quandles whose quandle rings have only trivial idempotents.
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Chapter 4: Cocycle Invariants and Idempotents in Quandle Rings

In this chapter, we distinguish all of the 12965 prime oriented knots up to 13 crossings
using only 21 connected quandles and three quandles made of idempotents in quandle rings.
We also distinguish the 12965 knots from their mirror image using the same 24 quandles.
This chapter is based on [20]

Notation: C[i,j] stands for j-th connected quandle of order i. The knot 12,155 represents
the 125-th alternating knot with 12 crossings, likewise 12,105 represents the 125-th non-

alternating knot with 12 crossings.(see [33])

4.1 Distinguishing Knots up to 12 crossings

Recall the Definition 2.3.1 of quandle 2-cocycle : For a quandle X and ¢, a 2-cocycle with
coefficient in an abelian group A, if D(K) is a diagram of a knot K, then, the state sum of

the knot diagram D(K) is given by

o(D) =Y [Iotxy)
c T

where the product is taken over all crossings of D and the sum is taken over all the possible
colorings of D.

It is known [6] that the coloring invariant of link is weaker than the quandle 2-cocycle
invariant of the link.
Below is an example of classes of knots which were not distinguished by coloring [7]. However,
we were able to distinguish them by using the 2-cocycle of C[12,3], Z(Z[C[12,3]]) and
C[13, 4].
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Example 4.1.1. Let X = C[12, 3] be the third connected quandle [33] of order 12. As a set

X ={1,2,...,12}. Its quandle operation is given in terms of right multiplications as follows:

$1=(21251011)(38674) S,=(1117412)(351069) S;=(127610)(498512)
S,=(111685)(279312) S5 =(1123810)(249611) Se=(15342)(71110809)
S;=(1108312)(211694) Sg=(1125711)(396105) Se=(21110512)(347 6 8)

S10=(158611)(212397) $5:;=(110672)(412589) S;,=(12435)(7981011).
Using Maple software, we obtained the following 2-cocycle with coefficients in Z,. The map

¢ X x X — Z, is given explicitly by

6(3,2)=1, ¢(3,4)=1, 6(4,7) =1, $(4,11) =1, ¢(6,5)=1, ¢(6,8)=
0(7,6)=1,  $(83)=1, $(8,12) =1, $(9,2) =1, ¢93)=1 ¢094)=1,
$(9,5)=1,  $(9,6) =1, $(9,7) =1, $(9,8) =1, ¢(9,10)=1, ¢(9,11)=1,

#(9,12) =1 and ¢(x,y) =0 for all other x,y € Y.

Note that this 2-cocycle is not a coboundary since the value of the quandle cocycle invariant
of the knot 12n36g is given by ®(cp2.3),6)(12n368) = 40 + 32u.

The 2-cocycle invariant ®(x 4)(K) of the knots K € {913, 914, 916, 920, 923, 924, 10123, 1210572,
12n0s576, 12ng578, 12n0580 } has value 72.

To distinguish these knots further, we use the following quandle Y = Z(Z,[X]). As a set, we
write Y = {1,2,...,24} and we give its quandle structure by listing its right multiplication
given below:

S1=513=(21251011)(3 86 7 4)(14 24 17 22 23)(15 20 18 19 16)
)

= (11174 12)(351069)(13 23 19 16 24)(15 17 22 18 21)
S;=S15=(127610)(498512)(13 14 19 18 22)(16 21 20 17 24)
= (111685)(279312)(13 23 18 20 17)(14 19 21 15 16)
= (1123810)(24 96 11)(13 24 15 20 22)(14 16 21 18 23)
Se = Si5=(15342)(71110 8 9)(13 17 15 16 14)(19 23 22 20 18)
= (11083 12)(2 11 6 9 4)(13 22 20 15 24)(14 23 18 21 16)
Se =S = (11257 11)(3 96 10 5)(13 24 16 19 23)(15 21 18 22 17)
Se =Sy = (211105 12)(3 4 7 6 8)(14 23 22 17 24)(15 16 19 18 20)
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S10="5p»=(158611)(212 39 7)(13 17 20 18 23)(14 24 15 21 19)
Si1=S3=(110672)(412589)(13 22 18 19 14)(16 24 17 20 21)
Si2 =S =(12435)(79810 11)(13 14 16 15 17)(19 21 20 22 23)

with 2-cocycle map v : Y X Y — Z, given by

$(3,2) =1, ¥(3.4)=1, ¥(3,16) = 1, W4, 7) =1, (4 11) =
0(4,19) =1,  ¥(4,23) =1, »(7,6) =1, $(7,10) =1, 1(7,18) =
W(7,22) =1,  ¥(8,3)=1, ¥(8,12) = 1, ¥(8,15) =1, 1(8,24) =
(9.2) =1, ¥(9.3)=1, ¥(9,4) =1, ¥(9,5) = ¥(9,6) =1,
»(9,7) =1,  ¥(9,8)=1, $(9,10) = 1, $(9,11) = $(9,12) = 1,
$(9,14) =1,  ¥(9,15) =1, (9,20) = 1, $(9,22) =1, (9,23) =1,

¥(9,24) =1, and ¢(x,y) =0 for all other x,y € Y.
This further breaks down the set of knots into the following partition {913, 914, 916, 920, 923, 924 } L

{10123, 12n0572 } L {12n0576 } LI {12n0s78 } LI {12ngsg0 } since the cocycle invariants for each par-
tition are respectively 144,106 + 38u, 58 + 86u, 120 + 24u and 64 + 80u.

To completely distinguish all the knots, we use the following quandle C[13,4]. As a set we
denote it by W = {1,2,3, ..., 13}. Its quandle operation is given in terms of right multipli-
cations by

29136

341211)(57108) S, =(17310)(45 13 12)(6 8 11 9)

~——

11356)(28411)(791210

)
15117

(
(

( (

( ( ) (395 12)(8 10 13 11
(112911)(2783)(410613) S5 = )(

( ) ) S

( (

)
)

(

S, =(1672
( 2131012)(3894
= (

)
)
111133)(26128)(49 105 14212)(37139)(510 11 6)
11048)(25313)(6 1112 7) Sy = (136 4)(2 11 59)(7 12 13 8)

S =(19813)(2475)(312610) Spp=(12109)(3586)(4 137 11)
Si3=(18125)(231110)(469 7).

Now we consider the following 2-cocycle map v : W x W — Z3 given by
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Table 4.1 Distinguishing knots using two connected quandles and its idempotents

K | Px0)(K) | Vv (K) Ow,)(K)
943 72 144 11?2 +42u + 52
9y 72 144 20u® +5u + 14
916 72 144 69 + 14u
99 72 144 70>+ 13u+ 20
03 72 144 13
94 72 144 45u° +37u+ 13
10123 72 106 +38u | 3u? + 20u + 17
12,,0572 72 106 + 38u 100U2 + 70u + 11
12n0576 72 58 + 86u 20U2 + 135u + 10
12,0578 72 120 + 24u | 16u° + 104u + 13
12,0580 72 64 +80u | 78u% 4+ 90u + 11
9(1,12) =1 9(2,10) =1, 9(3,8) =1, 9(4,6)=19(54) =1,
9(6,2) =1, 9(7,13) =1, 9(8,11) =1, 9(9,1) =2, 9(9,2) =2
9(9,3) = 2, 9(9,4) = 2, 9(9,5) =2, 9(9,6) =2, 9(9,7)=2,
9(9,8) = 2, 9(9,10) = 2, 9(9,11) =2, 9(9,12) =2, 9(9,13) =2,
9(10,7) = 1 9(11,5) = 1, 9(12,3) =1, 9(13,1) =1 and
Y(x,y) =0 for all other x,y € W.

Finally, we are able to distinguish all the above knots in the following table:
In a similar manner, we present a table that distinguish some non-alternating knots of

12 crossings.

Table 4.2 Distinguishing non-alternating knots of 12 crossings using two connected
quandles and its idempotents

K1 Cx(K) | Px)(K) | Yivw(K)
12nps73 | 132 68 + 64u | 136 + 128u
12n0s575 132 48 +84u | 172+ 92u
12n0s77 | 132 | 48 +84u [ 144 + 1200
12/70579 132 76 + 56u 96 + 168u
12npsg1 | 192 94 4-98u | 196 + 188u
].2/70594 192 94 + 98u 240 + 144u
12ngs74 | 312 | 72+ 240u | 320 + 304u
].2/70737 312 72 + 240u | 324 + 300u
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In conclusion, the triplet (®(x 4)(K), W(y,4)(K), Ow,9)(K)) distinguishes all the above men-
tioned knots completely. Following this strategy we were able to distinguish all knots up to
12 crossings using 13 quandles listed in the (see AppendixA).

The following example distinguishes all the knots of 9 crossings using only 3 connected

quandles and quandles made of its idempotents in quandle rings.

Example 4.1.2. Consider X = C[12,3], Y = Z(Z,[X]) Z = C[13,7] and W = C[16, 3].
Let o : XXX = Zop, 0 : YXY = Zp,v: XL — Zp, ¥ : WX W — Zj be respectively the 2-
cocycle maps of X, Y, Z and W. Then the quadruple (®(x,¢)(K), V(v,4)(K), Tz (K), Ow,9(K))
distinguishes all the knots of 9 crossings fully given below.

Table 4.3 Distinguishing all knots of 9 crossings part 1

K | ?x.0)(K) | Viva)(K) | Tz (K) | Ow.)(K)
9, 72 144 13 241
913 72 144 13 82 + 86u
914 72 144 13 49 + 104u
916 72 144 13 16
959 72 144 13 90 + 51u
s 72 144 13 70 + 98u
95 72 48 + 96u 13 16
9% 72 90 + 54u 13 16

Similarly, the following example distinguishes knots of 11 crossings and 12 crossings
(alternating and non-alternating) using 4 connected quandles and quandles makde out of its

idempotents in quandle rings.

Example 4.1.3. Consider the quandles X = C[12,3], Y = Z(Z,[X]), Z = C[13,7],
W = C[16,3] and V = CJ[16,4] (see Appendix A for these quandles in terms of its right
multiplication).

Let ¢ : X x X — Zs, v : YXY — Z3, v : ZxZ — Z3, 9 : Wx W — Zs,
¢ : V xV — Zsz be respectively the 2-cocycle maps of X,Y,Z, W and V. Then the
quintuple (®x 4)(K), V(v,6)(K), T(z)(K), Qw9 (K), {v.c)(K)) fully distinguishes the given

set of knots of 11 crossings and 12 crossings (alternating and non-alternating).
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Table 4.4 Distinguishing all knots of 9 crossings part 2

K | 2xe)(K) | Yiva(K) | Tzn(K) | Ow.wn(K)
9, 12 24 70 4+ 99u 16

9% 12 24 54 + 106u 16

99 12 24 169 16

950 12 24 13 16

911 12 24 84 + 85u 16

95 12 24 13 87 + 160u
9, 12 24 13 85 + 160u
926 12 24 27 +38u | 85+ 160u
943 12 24 169 85 + 160u
9; 12 24 23 +42u | 87 4 156u
944 12 24 57+ 8u | 87 + 156u
915 12 24 13 32 +48u
917 12 24 13 86 + 158u
951 12 24 13 104 + 54u
O, 12 24 13 96 + 90u
931 12 24 13 80 + 112u
933 12 24 169 160 + 32u
934 12 24 169 54 + 16u
945 12 24 169 84 + 116u
O45 12 24 169 32+ 48u
9% | 36 +36u | 60+ 84u | 151+ 18u | 104 + H54u
92 | 36 +36u | 48+ 96u 13 87 + 56u
O3 | 40+32u | 92452u | 65+ 20u | 110 + 48u
939 | 404+ 32u | 96 + 48u 65 +20u | 124 4 34u
O40 | 42+ 30u | 48+ 96u 169 124 + 34u
947 | 40+ 32u 144 169 48 + 30u
O49 | 404+ 32u | 98+ 46u 13 48 + 30u
937 | 404+ 32u | 92+ H2u 13 64 + 64u
Q55 | 44 4 28u 144 48 +96u | 64 + 64u
935 132 264 13 87 + 148u
937 132 264 118 +51u | 85 + 146u
946 132 120 + 144u 13 85 + 146u
948 132 140 + 124u | 100 + 69u | 85 + 146u
941 132 120 4 144u 13 87 + 54u

57



Table 4.5 Distinguishing 11

crossings and 12 crossings knots

K ®(x.4)(K) Viv,6)(K) Mz (K) Ow.0)(K) §v.o(K)
11,107 72 144 1442 + 13u + 38 16 16
11,130 72 144 1342 +42u + 10 16 56u + 80 + 70
11,174 72 144 1302 4+ 42u + 10 16 48u% +80u + 78
11,75 | 24u% + 6u+ 42 48u% +12u + 84 13 2407 +48u + 78 16
12,388 2402 + 6u+ 42 24u% + 48u + 72 13 2442 + 96u + 24 16
12,380 | 300+ 6u+ 36 42u% + 16u + 88 169 16 16
12,300 | 30u? + 6u+ 36 2402 +48u+72 | 14?7 +13u+ 38 16 16
11,129 132 60u? + 168u + 36 13 24u% + 96u + 24 16
11,176 132 264 13 24u° +90u + 30 16
11177 132 72u% +168u + 24 13 24u° 4+ 90u + 30 16
11,175 | 36u? +84u+12 | 72u? + 168u + 24 13 24u% + 48u+ 78 16
11,179 | 36u? +84u+12 | 60u% + 168u + 36 13 2402 + 48u + 78 16
12,412 | 32u? + 84u+ 16 264 13 16 24u? 4+ 48u + 16
12,413 | 32u? + 84u+16 264 13 16 24u7 + 42u + 22
11,126 252 504 85u2 4+ 69u + 15 | 2402 + 96u + 24 16
11,132 252 504 13u% + 42u + 10 | 24u? 4+ 90u + 30 16
11172 252 504 169 16 16
11,173 | 12002 + 84u + 48 | 240u® + 168u + 96 13 16 16
12,387 | 120u? + 84u + 48 | 240u® + 168u + 96 169 16 16
12,301 | 12002 + 84u + 48 | 240u? + 168u+ 96 | 13u? + 42u + 10 | 240 + 48u + 78 16
11,108 12 24 1402 + 13u + 38 16 24u% 4+ 24u + 30
11,131 12 24 14u? + 13u + 38 16 1207 + 24u + 42
12,418 12 24 13 16 56u” 4+ 80u + 70
124410 12 24 13 16 160 + 24u + 38
12,417 12 24 13 T2u% + 240+ 48 | 24u% + 16u + 48
114133 12 24 85u% + 69u + 15 | 60u? + 60u + 16 16
124414 12 24 85u? + 69u + 15 | 48u% + 32u + 16 16
12,415 12 24 169 7202 + 24u + 48 | 2002 + 24u + 34
12,416 12 24 1302 +42u + 10 | 72u% + 24u + 48 | 24u? + 16u + 48

Based on the above examples, we formulate the following conjecture for knots up to 12

crossings.

Conjecture 4.1.4. Let X be a quandle and ¢ : X x X — A be a 2-cocycle. Let Y =
Z(Z»[X]) be the set of idempotents in the quandle ring Z,[X] such that Y is a quandle and
¥ Y x Y — Abe a 2-cocycle. Then the cocycle invariant Wy 4)(K) is an enhancement of

the cocycle invariant ®(x 4)(K) for all prime oriented knots up to 12 crossings.

This can further be extended to give the following generalized conjecture

Conjecture 4.1.5. There exists a finite sequence of quandles (Xi, X5, X, ..., Xi) such that

lU(K) = ((D(led’l)(K)' ""¢(Xk,¢k)(K)'¢(I(Z2[X1]),1/)1)(K)' ""¢(I(Z2[Xk])ywk)(K)) iS an invariant. In
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other words,

d(K) = ®(K’) if and only if K = K’ for all K in the list of knots up to 12 crossings.

Example 4.1.6. For a knot K let m(K) denote the mirror image of K. We say that a knot K
is positive amphicheiral if K = m(K). In this example, we give two knots which are not dis-
tinguished from their mirror image by the Jones polynomial or by the quandle coloring, but
we are able to distinguish them using the pair of 2-cocycle invariants (®(x 4)(K), @y ) (K))
where X = C[12,3] and Y = Z(Z,[C[12, 3]]).

Table 4.6 Distinguishing knots from its mirror image

K Cx(K) Jones Polynomial (Px.6)(K), Vv ) (K))
945 24 tS3—t2 4+t -1+ (24, 48)
m(942) 24 t—t>+ 3 (24,32u + 16)
123669 24 | =t p 2t — At 46t 3 -7t 4+ 9ot -0 (24, 48)
m(12a669) | 24 Ot — 7t2 + 63 — 4t* + 2t° — t° (24,12u + 36)

4.2 Distinguishing Knots of 13 crossings

We extended our computation towards 13 crossing knots for both alternating and non-
alternating to support our Conjecture 4.1.5. It turns out that we needed 24 quandles to
distinguish these knots up to 13 crossings. For example, consider the quandle X = C[12, 3]
and Y = Z(Z[X]). We compute the 2-cocycle invariants ®(x 4 (K) and W(y ) (K) using
these two quandles. Now, we iterate the process of taking idempotents and consider the
set W = T(Z[Z(Z[X])]). We find that this set W also forms a quandle. Additionally,
the 2-cocycle invariant ©(w g)(K) from W is stronger than the previous 2-cocycle invariant
D (x,0)(K) and Yy 4y(K) from X and Y respectively. The following table further supports
the claim:

Below in another example of knots of 13 crossings (alternating and non-alternating)
distinguished fully using 4 connected quandles and quandles made out of its idempotents in

quandle rings.
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Table 4.7 Distinguishing knots of 13 crossings using iteration of idempotents in quandle

rings
K | Px0(K) | Yivan(K) | Ow.e(K)
13120 132 264 528
1345 132 264 280 + 248u
13455 | 48 + 84u | 144 + 120u | 252 + 276u
13455 | 48 + 84u | 144 + 120u | 240 + 288u
131506 | 48 + 84u | 144 + 120u | 360 + 1680

Example 4.2.1. Consider X = C[12,3], Y = Z(Z,[X]), Z = C[13,7], W = C[16, 3] and

V = C[16, 4] (see Appendix A for these quandles in terms of its right multiplication).

Letg : X X X = Z3, 0 : Y XY =73, v: L XZ =73, WXW —Z3,(: VXV —Z3

be respectively the 2-cocycle maps of X, Y, Z, W and V.

Then the quintuple (®x 4)(K), V(v.6)(K), T(z)(K), Qw0 (K), {v.)(K)) fully distin-

guishes the given set of knots of 13 crossings (alternating and non-alternating) as given

below.
Table 4.8 Distinguishing 13 crossings knots
K P (x.0)(K) Vv (K) [(z)(K) Ow,n(K)) §v.o(K)
13,2363 12 24 13 60u? + 60u + 16 16
13,2366 12 24 13 48u° +32u + 16 16
13,2367 12 24 169 24u° +48u + 78 16
13,8506 12 24 169 24u° + 96u + 24 16
13n8809 12 24 169 72u2 + 24U —|— 48 16
13,8810 | 24u> +6u+42 | 24u% +48u+72 | 14u° +13u+ 38 16 16
13,8811 | 24u? + 6u+ 42 2402 +48u+72 | 13u%2 4+ 42u+ 10 16 56u° + 80u + 70
13,8807 | 24u? + 6u+ 42 242 + 48u+ 72 | 85u% + 69u + 15 16 56u2 + 80u + 70
13,2364 24 2407 + 16u + 8 13 240 + 48u+ 78 | 24u® +24u+30
13,0365 24 16u% + 16u + 16 13 24u% 4+ 48u + 78 | 2412 + 24u+ 30
13,8508 24 1207 + 20u + 16 13 24u% 4+ 48u + 78 | 20u? + 24u + 34
13,8518 24 8u? + 16u + 24 13 2412 + 48u + 78 | 20u? + 24u + 34
13,8817 | 40u® +50u+42 | 90u? + 96u + 78 169 24u% + 96u + 24 16
13,0371 | 300> +60u+42 | 82u® + 90u + 92 169 240° + 96u + 24 16
13,0372 | 36uw® +56u+ 42 | 60u® +92u + 112 169 2402 + 96u + 24 16
13,8816 | 20u” + 72u + 40 264 14u%> +13u + 38 16 56u% + 80u + 70
13,8815 20u? + 72u + 40 264 1402 + 13u + 38 16 20u” + 24u + 34
13,0368 | 20u? + 72u + 40 264 85u° + 69u + 15 16 24u° + 24u + 30
13.0360 | 48u° +72u+24 | 48u° +80u+40 | 85u® +69u + 15 16 1207 4 24u + 42
1340370 | 48u% +72u+24 | 80u? + 160u + 120 | 1302 + 42u + 10 16 2407 + 16u + 48
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The article [7] defines some similarity of quandles. Precisely, for any two quandles X7, X;
and a family of knots C, we say X; =~ X; if Cx,(K) = Cx,(K) for every K € K.

In a similar manner we introduce a more general similarity of quandles using 2-cocycle
invariant of knots; i.e. for any two quandles and their respective 2-cocycles given by
(X1, 9), (X2,v) and a family of knots IC, we say X1 ~ Xo if ®(x,0)(K) = V(x,4)(K) for
every K € K.

Based on this, we have the following observation for all 12965 prime oriented knots up

to 13 crossings and the 24 quandles in our computation:

e There are a total of 3520 classes of ~ consisting more than one quandle for knots up

to 13 crossings. For example:
— C[12,3] ~ C[12,6] for K € K = {92, 93,94, 97, 99, 912, 913, 11a172, 11a190, 112101,
12n9370, 1209371, 1200373, 12n376, 133108}-
— C[13,7] ~ C[13,10] for K € K = {74, 76, 77,87, 89, 813, 817, 815, 1046, 1047, 104,

1049, 1050, 1051, 1052, 11a151, 11a;52, 112171, 13528, 133109, 139080, 139090}-

e From the 3520 classes, there are 1460 classes containing more than two quandles for

knots up to 13 crossings.

- C[12, 3] ~ C[12, 4] ~ C[12, 6] for Ke K= {93, 95, 97, 98: 99, 12”0370, 12”0371,

12n9373, 12n376 } .

- C[16, 3] ~ C[].6, 4] ~ I(ZQ[C[S, 1]]) for K e K = {12”370, 12”371, 12”372, 12n373,
12n374, 12n376, 134039, 13535, 13544 }

4.3 Description of the Algorithm

In this section, we give a complete description of the algorithm. The following algorithm

was inspired by http://shell.cas.usf.edu/~saito/Maple/. The algorithm has three steps
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e Step 1. Given a quandle X, we check when the set of idempotents Z (ZQ[X]) is a

quandle.

e Step 2. Using X and Z(Z,[X]), we calculate the colorings of a given knot K using its

braid representation.

e Step 3. After obtaining the coloring, we calculate the State Sum Invariant of the knot

K.
Now we describe each of the 3 steps in details.

e Checking the set of idempotents Z(Z,[X]) is a quandle: We will denote by X
the family of quandles used in our computation. For a given X € X, the following

algorithm checks if Y = Z(Z[X]) is a quandle.

Given a finite set Y with binary operation we use Algorithm 4.1, Algorithm 4.2 and
Algorithm 4.3 to check if Y is a quandle. Precisely, we check that the set of idempo-
tents, with multiplication as the binary operation, is a quandle. Let n be the number

of elements in Y.

We first check the right-distributivity axiom for Y. If Y does not satisfy this axiom,
we stop the algorithm and return the statement: The Cayley table does not represent
a quandle. The algorithm for checking right-distributivity is described in Algorithm
4.1ie. forall a,b,ce Y, (axb)xc=(axc)x(bxc).
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Algorithm 4.1 Right Distributivity
Input: Y - the Cayley table representing a candidate quandle

Input: n - the cardinality of the quandle described by Y

for a from 1 to n do
for b from 1 to n do
for ¢ from 1 to n do

if Y[Y[a, b], ¢ is not equal to Y[Y][a, c|, Y[b, c||] then

return False
end if
end for
end for

end for

After checking the right-distributivity axiom, we check that right multiplications in Y
is invertible. In other words, for any a, b € Y, we verify that ax (ax b) = ax b. We
check the invertibility of right multiplication by running two loops; one on a and one
on b. Fix a =1 and vary on b from 1 to n. If ax(a*b) # ax b then return value False.
If a (ax b) = b then set a =2, and vary b from 1 to n and so on. The algorithm for

invertibility of right multiplication is given below.
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Algorithm 4.2 Invertibility of Right Multiplication

Input: Y - the Cayley table representing a candidate quandle

Input: n - the cardinality of the quandle described by Y

for a from 1 to n do
for b from 1 to n do

if Yl[a, Y[a,b]] is not equal to Y[a,b] then

return False
end if
end for

end for

Lastly, we use Algorithm 4.3 to check idempotency i.e. for any a € Y, we have axa = a.
Fix a = 1 and check for a* a. If a*x a # a then return value False else proceed in

setting a = 2 and so on.

Algorithm 4.3 Idempotency Property

Input: Y - the Cayley table representing a candidate quandle
Input: n - the cardinality of the quandle described by Y

for a from 1 to n do
if Yla, a] is not equal to a then

return False
end if
end for

¢ Finding the colorings of a knot K: Since every knot is the closure of a braid, to

obtain a coloring of the knot, we first color the braid as follows.

1. Let m be the braid index of the knot K.
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2. Let X = (x1, X2, X3, -+, Xi, Xit1, ---» Xm) € X™ be the top color of the braid.

3. At any it crossing, if it is positive, then X becomes (xq, ..., X1 1, X; * Xi 11, .-, Xm ). if
the it crossing is negative, then X becomes (x, ..., Xy 1%X;, Xi, ..., Xm)- Let (y1, V2, ..., Ym)

be the bottom vector of the braid.

4. A solution of the system of equations y; = xi, ..., ¥m = X, is a coloring of knot K

by the quandle X. We abuse the notation and use X to denote this coloring.

Python uses a list to store the braid representation and braid index of knots up to
13 crossings (The data of which is collected from [25] for knots up to 12 crossings
and from http://shell.cas.usf.edu/~saito/QuandleColor/12965knotsGAP.txt for all 13
crossing knots). Python also uses a list to store the cayley table of all the 24 quandles

used in our computation.
e Calculating State Sum Invariant of K

1. Let X = (x1, X2, X3, ..., Xm) € C be a coloring.

2. At a positive with input color x;, x;11 , we assign the Boltzmann weight ¢(x;, xj11)
(refer to the left picture of Figure 2.5). Similarly at a negative crossings with
output colour x;, x;;1 we assign the Boltzmann weight —¢(x;, x;11) (refer to the

right picture of Figure 2.5).

3. Now, compute the state sum invariant (D) = > . [[, #(x, y)° to get the state

sum invariant for K
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Appendix A: List of Quandles used in Computation

In this Appendix we provide the list of quandles and some of their idempotent quandles

Note: The notation C[i,j] stands for the j-th connected quandle of order i (see [33]). The

right multiplications Sx in the quandle are given by Si(/) = I * k. As permutations, right

multiplications are written below as product of cycles.

e C[8,1]

$51=5=(367)(4528) S53=5,=(186)(257) S5 =S5=(147)238)

S;=S5=(153)(264)

o I(Z[C[8,1]]). As a set Z(Zo[C[8,1]]) = {1, ...,16}.

S =S5 ="S5="510=(367)(458)(15 11 14)(12 13 16)

S3 =5, =511 = S12 = (18 6)(25 7)(13 10 15)(9 16 14

) ) )
S5 =55 = S13=S14 = (147)(238)(9 12 15)(10 11 16)
) ) )

(
)
(
(

S; =S =S5 = S16= (153)(2 6 4)(9 13 11)(10 14 12

o C[12,3]
$;=(21251011)(3867 4

)

S;3=(127610)(498512)

Ss=(1123810)(2496 11

S;=(1108312)(211 69 4)

So=(21110512)(34768
S11=(110672)(412589

)

)
)

S, =(1117412)(351069)
S, =(111685)(279312)
Se=(15342)(7111089)
Ss=(1125711)(396 10 5)
So=(158611)(212397)
S1=(12435)(7981011).
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. I(ZZ[C[12 3]]). As a set Z(Z[C[12,3]]) ={1,...,24

}
= S13=(212510 11)(3 8 6 7 4)(14 24 17 22 23)(15 20 18 19 16)
(

(
=514=(1117412)(351069)(13 2319 16 24)(15 17 22 18 21)

=515=(127610)(498512)(13 141918 22

(
S, = Si6 = 111685)(279312

16 21 20 17 24)

~— =
~—

(

( )

( ( (

( (13 23 18 20 17)(14 19 21 15 16)
= S17=(1123810)(24 96 11)(13 24 15 20 22)(14 16 21 18 23)
Se = S15=(15342)(7 11108 9)(13 17 15 16 14)(19 23 22 20 18)
= S10=(1108312)(2 11 6 9 4)(13 22 20 15 24)(14 23 18 21 16)
= S =(1125711)(3 9 6 10 5)(13 24 16 19 23)(15 21 18 22 17)

(

= Sy = (211105 12)(3 4 7 6 8)(14 23 22 17 24)(15 16 19 18 20)

( (

( (

( (
Si0=5=(158611)(2123 9 7)(13 17 20 18 23)(14 24 15 21 19
( (

( (

) ) )
Si1=S3 = (11067 2)(4 1258 9)(13 22 18 19 14)(16 24 17 20 21)
) ) )

S120=54=(12435)(7981011)(13 14 16 15 17)(19 21 20 22 23

C[12,4]
9)(234)(611810712) S, =(610)(143)(51279811)

711)(124)(51089612) S;=(812)(132)(511697 10)
(1

12394 11)

=(5 (

( ( ) )
(19)(678)(211410312) Se=(210)(587)
(311)(568)(11049212) Sg=(412)(576)(1 1129 3 10)
= (15)(101112)(274638) S;o=(26)(91211)(1835 4

Sii=(7)(91012)(164528) Sy, =(48)(91110)(172536).

C[12, 6]

Sy = (3 4)(5 9)(6 10)(8 11)(7 12)
Sy = (1 2)(5 12)(6 11)(7 10)(8 11)
S = (1 9)(2 10)(3 12)(4 11)(7 8)

S = (1 12)(2 11)(3 10)(4 9)(5 6)

[y
(=)}
~—
—~
N
o1
~—
—~
w
~
~—
—~~
KN
oo
~—
—~
—
=
=
N
~
95
-
o
|
—~~
=
o1
~
—~
N
(@)}
~
—~
w
[o0]
~
—~~
ESN
~
~
—~
—_
[y
[y
N
~
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Siu=(17)(28)(35)(46)(910) Sio = (18)(27)(36)(45)(9 10).

C[13,4]
—=(29136)(341211)(57108)
= (11356)(28411)(7 9 12 10)
= (112911)(2783)(4106 13)
= (111133)(26128)(49105)
So=(11048)(25313)(6 11 12 7)

(
S11=(19813)(2475)(3126 10
)

)
S13=(18125)(231110)(469 7).

C[13,7]
S1=(26139)(311124)(58107)
)

S3=(16513)(21148)(7 10 12 9)

(

(
S5 = (1119 12)(2 38 7)(4 13 6 10)
S;=(131311)(28126)(45109)
So=(18410)(21335)(67 1211

)
S11=(11389)(2574)(3106 12)
) )

S13=(15128)(210113)(4796).

C[13, 10]

S, =(17310)(451312)(68 11 9)
Sy =(1672)(39512)(810 13 11)
Se=(15117)(2131012)(389 4)
Sg=(14212)(37139)(510 11 6)
Sio=(1364)(211509)(7 12 13 8)
S1=(12109)(3586)(4 137 11)

S,=(11037)(4 1213 5)(6 9 8 11)
Sy =(1276)(31259)(8 11 13 10)
Se=(17115)(2121013)(3498)
Se=(11224)(39137)(5 6 11 10)
Sio=(1463)(29511)(7 813 12)
S12=(19102)(3685)(4 117 13)

=(2711910313846512) S, =(195761338121011 4)

S53=(1491311125210687)

S4=(1121363117982510)
Se=(1285139111047 12 3)

$57=(1101211581342396) S3=(1534107211131269)

(

(
—(1741281093611213)

(

(

=(1137102645118312)

S10=(181137561294132)

S;;1=(132912486713105) S;,=(11162431013597 8)
)-

$13=(161089212735411
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o C[16,3]
S1=(235916)(4 7138 15)(6 11 12 10 14)
S3=(1711144)(2515613)(89 10 12 16)
Ss=(1131267)(215 16 14 10)(3 9 4 11 8)
S;=(111296)(3 1510 8 5)(4 13 14 16 12)
So=(18101113)(26 133 4)(5 16 7 12 15)

S11=(124816)(3612915)(510 13 7 14)

S13=(11231611)(210 7 8 6)(4 14 15 9 5)

Si5=(1149310)(216 13 11 7)(4 12 5 6 8)

C[16,4]
S =(2134935)(614 16 12 11 7)(8 10 15)
S3=(17415211)(58 16 14 10 9)(6 12 13)
Ss=(1698137)(2101216 15 3)(4 14 11)
S;=(1412101413)(38 116 15 5)(2 16 9)
So=(11113105 12)(3 15 14 6 8 4)(2 7 16)
S11=(11316862)(39 15127 10)(4 5 14)

S13=(116515914)(24 8 7 11 10)(3 12 6)
)

Si5=(2659124)(314 7 13 11 16)(1 10 8)

C[16,8]
$,=(23591012168 156 11 14 4 7 13)
S3=(17111210146138 91625 15 4)
Ss=(1131416124112151083 96 7)
S;=(1118531516 141029 4 13 12 6)
So=(124816714361215510 11 13)
$11=(1810137129153 426 14 5 16)

S, =(1461015)(3814716)(512 11 9 13)
S, = (16165 14)(2 81213 3)(7 10 9 11 15)
Se= (1161513 9)(214 11 5 8)(3 12 7 4 10)
Sg=(1105212)(314131511)(4 16 9 7 6)
Sio=(151343)(2791214)(6 15 8 11 16)
S1p=(137152)(45111016)(6 9 14 8 13)
S14=(19875)(2114 15 12)(3 13 16 10 6)
Si6=(11514128)(2131049)(311657)

S, =(11431046)(513 151112 8)(7 9 16)

Sy =(11228316)(67 15139 10)(5 11 14)
Se=(191115164)(25107 14 8)(3 13 12)
Se=(231191314)(47 12516 6)(1 15 10)

S10=1(212149611)(3 416 135 7)(1 8 15)
S12=(12141575)(4 1016 11 8 9)(3 16 13)

S1a=(1378129)(2156 16 10 13)(4 11 5)
S16=(15610113)(4138141215)(297)

$=(14610911157165121338141)
S4=(161632812119135147 10 15)
Se=(1169741058214131511312)
Sg=(110314115212764 16 1513 9)
S10=(1371581345111669 12 14)
S12=(1513615279148111016 4 3)
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S13=(1141595684123107 216 11)
S15=(112541493161311786210)

$514=(1151221316106573114938)
S16=(192116313104151412875)

74



Appendix B: Copyright Clearance Form

Below is the permission for the material included in Chapter 3.

® « &« ~ e
Fri 3/1/2024 2:11 AM

Rights <rights@wspc.com>
To: Dipali Swain

You don't often get email from rights@wspc.com. Learn why this is important

Dear Dipali Swain

Thanks for your email.
You are allowed to include your own final version of the article in your thesis, provided that full credit been given to the original

source.

Kind regards
Tu Ning

From: Dipali Swain <dipaliswain@usf.edu>

Sent: Friday, March 1, 2024 7:13 AM

To: Rights <rights@wspc.com>

Subject: Peermission to include the paper as part of PhD Dissertation thesis

You don't often get email from dipaliswain@usf edu. Learn why, this is important

75



Appendix C: ArXiv License

According to arXiv license information, I have the right to freely utilize material from

the papers I have submitted to arXiv, without any specific permission.

arXiv / Help /¢ arXiv License Information
arXiwv License Information

arxiv is a repository for scholarly material, and perpetual access is necessary to maintain the scholarly
record. As such, arXiv keeps a permanent record of every submission and replacement announced.

arxiv does not ask that copyright be transferred. Howewver. we require sufficient rights to allow us to
distribute submitted articles in perpetuity. In order to submit an article to arXiv, the submitter must either:

+ grant arXiv.org a non-exclusive and irrevocable license to distribute the article, and certify that the
submitter has the right to grant this license;
= certify that the work is available under one of the following Creative Commons licenses and that the

submitter has the right to assign this license:

o Creative Commons Attribution license (CC BY 4.0}

© Creative Commons attribution-Sharealike license (CC BY-SA 4.0)

o Creative Commaons Attribution-Moncommercial-Sharealike license (CC BY-MNC-SA 4.0);

= or dedicate the work to the public domain by associating the Creative Commaons Public Domain
Dedication (CCO 1.0) with the submission.

In the most common case, authors hawve the right to grant these licenses because they hold copyright in
their own work.
We currently support three of the Creative Commons licenses. If you wish to use a different CC license,
then select arXiv's non-exclusive license to distribute in the arXiv submission process and indicate the
desired Creative Commons license in the actual article.
wote: if you intend to submit, or have submitted, your article to a journal then you should verify that the
license you select during arXiv submission does not conflict with the journal's license or copyright transfer
agreement. Many journal agreements permit submission to arXiv using the non-exclusive license to
distribute, which arxiv has used since 2004. ¥Yet the CC By and CC BY-SA licenses permit commercial reuse

and may therefore conflict with some journal agreements.

Metadata license

To the extent that the depositor or arxiv has a copyright interest in metadata accompanying the
submission, a Creative Commons CCO 1.0 Universal Public Domain Dedication will apply.

S S S,

76



	Quandle Rings, Idempotents and Cocycle Invariants of Knots
	Scholar Commons Citation

	tmp.1719349923.pdf.fiCvu

