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Abstract

Quandles are sets with self-distributive binary operations that axiomatize the three Rei-

demeister moves in classical knot theory. In an attempt to bring ring theoretic techniques to

the study of quandles, a theory of quandle rings analogous to the classical theory of group

rings where several interconnections between quandles and their associated quandle rings

have been explored. Functoriality of the construction implies that morphisms of quandle

rings give a natural enhancement of the well-known quandle coloring and quandle 2 cocycle

invariant of knots and links.

The dissertation is structured into two main parts. In the first part, we delve into quandle

rings obtained from non-trivial quandles over rings. We demonstrate that integral quandle

rings emerging from non-trivial involutory coverings possess infinitely many non-trivial idem-

potents which, themselves form quandles, contributing to a comprehensive understanding of

their structure. Applying these findings to knot theory, we deduce that the quandle ring

associated with the knot quandle of a non-trivial long knot exhibits non-trivial idempotents.

Furthermore, we explore free products of quandles and establish that integral quandle rings

of free quandles exclusively feature trivial idempotents, yielding an infinite family of such

quandles.

In the second part, we focus on leveraging idempotents in quandle rings to enhance the

quandle 2-cocycle invariant of knots and links. By combining idempotents with state sum

invariants of knots, we successfully distinguish all 12965 prime oriented knots with up to 13

crossings, utilizing only 21 connected quandles and three quandles made of idempotents in

quandle rings. Additionally, we distinguish from knots their mirror images using the same

set of 24 quandles.

vii



Chapter 1: Preliminaries

1.1 Introduction

The field of knot theory revolves around the examination and the study of embeddings

of the unit circle S1 in the three-dimensional Euclidean space R3 or its compactification

S3. Such embeddings are known as knots and they become the focal point of investiga-

tion. Equivalence between two knots is established under the criterion of the existence of

an ambient isotopy that transforms one knot into the other which is further found in the

topological and geometric properties inherent in these embeddings, providing a foundation

for the systematic understanding and classification of knots. In other words, two knots K

and K ′ are said to be equivalent (denoted by K ∼= K ′) if there exists a continuous map

f : [0, 1]×R3 → R3 such that f (0,K ) = K and f (1,K ) = K ′ and f (t, ·) is a homeomorphism

for all t. One of the problems in Knot theory is on classifying knots. Knots are considered

equivalent if we can smoothly transform one into the other. This is an equivalence relation

on the set of knots and thus we obtain equivalence classes of knots. An invariant of knots

is a function that is constant within each equivalence class. Invariants of knots are used to

distinguish knots. For instance, if a knot invariant gives different values for two knots, thus

the knots are not equivalent. These invariants can take well defined algebraic forms, such as

numbers, polynomials, or groups, and serve as algebraic tools in the classification of knots.

Reidemeister [29] showed that the study of knots in the 3-space is the same as the study

of knot diagrams in the plane modulo the planar isotopy and the so called Reidemeister

moves I, II and III as shown in Figure 1.2. More precisely, he proved that two links are

equivalent if and only if any link diagram of one can be transformed to any link diagram of

the other by a finite sequence of Reidemeister moves and planar isotopies.
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Axiomatisation of the three Reidemeister moves of planar diagrams of knots and links in

the 3-space led to algebraic structures known as quandles [23]. Besides being fundamental to

knot theory, these structures arise in a variety of contexts such as set-theoretic solutions to

the Yang-Baxter equation [5], Yetter-Drinfeld Modules [13], Riemannian symmetric spaces

[26], Hopf algebras [1] and mapping class groups [35, 36, 37], to name a few.

In an attempt to bring ring theoretic techniques to the study of quandles, a theory of

quandle rings analogous to the classical theory of group rings has been proposed in [3],

where several interconnections between quandles and their associated quandle rings have

been explored. Functoriality of the construction implies that morphisms of quandle rings

give a natural enhancement of the well-known quandle coloring invariant of knots and links.

Quandle rings of non-trivial quandles are non-associative, and it has been proved in [14]

that these rings are not even power-associative, which is the other end of the spectrum of

associativity. Furthermore, quandle rings of non-trivial quandles over rings of characteristic

more than three cannot be alternative or Jordan algebras since alternative and Jordan algeras

are power associative [4].

The objective of this thesis is to explore idempotents in quandle rings and their relation

with quandle coverings. It is shown that integral quandle rings of finite quandles with

non-trivial coverings over nice base quandles admit infinitely many non-trivial idempotents

which form quandle. The quandles that admit a set of non trivial idempotents which form

a quandle are used to construct stronger invariant of knots by combining cocycle invariant

of knots and idempotents.

This thesis is organised as follows: In Chapter 1 we review some basics of knot theory

and algebraic structures from knots. We discuss some knot invariants using these algebraic

structures such as quandle coloring and quandle 2 cocycle invariant. In Chapter 2 we define

quandle rings analogous to group rings and explore various properties of these quandle rings

in particular. In Chapter 3, we consider the notion of idempotents in quandle rings and give

2



the following sufficient condition on a quandle X for its quandle ring k[X ] over the ring k to

admit non-trivial idempotents (Proposition 3.2.8):

Let X be a quandle containing a trivial subquandle Y of order more than one. Then k[X ]

has non-trivial idempotents.

We also relate idempotents with quandle coverings in the following (see statement of Propo-

sition 3.3.6):

If L is a non-trivial long knot (see Definition 3.3.5), then the quandle ring k[Q(L)] of its

knot quandle Q(L) has non-trivial idempotents.

As one of the main results of Chapter 3, we prove that if p : X → Y is a non-trivial

quandle covering such that X is involutory and k[Y ] has only trivial idempotents, then

k[X ] has many non-trivial idempotents and we give their precise description in the following

theorem (Theorem 3.3.2).

Let p : X → Y be a non-trivial quandle covering where X is an involutory quandle. If k[Y ]

has only trivial idempotents, then the set of idempotents of k[X ] is

I
(
k[X ]

)
=

{∑
y∈J

( ∑
x∈Iy ,

∑
αx=0

αx

(
ex + ex∗x0

))
+
( ∑

x ′∈Iy0 ,
∑
αx′=1

αx ′ex ′
) ∣∣

J ∈ F(Y ), Iy ∈ F(p−1(y)), Iy0 ∈ F(p−1(y0)), x0 ∈ Iy0 , y0 ∈ Y , αx ,αx ′ ∈ k
}
.

We also consider free products of quandles and overcome the lack of associativity in

quandles through an appropriate length function for elements in free products. As the

second main result, we prove the following result (Theorem 3.4.3):

Let FQn be the free quandle of rank n ≥ 1. Then Z[FQn] has only trivial idempotents.

This gives an infinite family of quandles whose integral quandle rings have only trivial

idempotents. Lastly, as an application in Chapter 4 we use idempotents in quandle rings

in combination with the state sum invariants of knots to distinguish all of the 12965 prime

3



oriented knots up to 13 crossings using only 21 connected quandles and three quandles made

of idempotents in quandle rings. We also distinguish all knots up to 13 crossings from their

mirror images using the same 24 quandles. Furthermore, we distinguish all of the 2977 prime

oriented knots up to 12 crossings using only 10 connected quandles and three quandles made

of idempotents in quandle rings improving a result in [7] .

1.2 Review of Knot Theory

A knot is the image of an embedding of a circle S1 into the 3-sphere S3. A knot is

said to be oriented if there is a preferred direction to travel around the knot. Two knots

are considered to be equivalent if one can be transformed into the other by a continuous

deformation. Precisely,

Definition 1.2.1. Two knots K and K ′ are said to be equivalent (denoted byK ∼= K ′) if

there exists a continuous map f : [0, 1]× R3 → R3 such that f (0,K ) = K and f (1,K ) = K ′

and f (t, ·) is a homeomorphism for all t.

A link is a collection of disjoint union of finitely many knots. Each knot in a link is

termed as a component. Thus, a knot is a link with one component. Equivalence of links

can be defined in the same manner as that of knots. It is easy to note that each link can be

projected on the plane R2 or on the 2-sphere S2. A projection is said to be generic if there are

only finitely many multiple points, and that the multiple points are only transversal double

points.

1.2.1 Knot Diagrams

Of fundamental importance to the classification of knots and links, is the concept of a

diagram of a knot or a link. This is a generically immersed closed plane curve together with

over/under crossing information corresponding to each double point.

4



Definition 1.2.2. A link diagram is a generic projection of a link with the information of

over- and under-crossing arcs at the double points.

It is easy to see that such a diagram always exists. The following figure gives some

diagrams of the knot, trefoil and figure eight knot.

Figure 1.1 Examples of knot diagrams

In 1920s, Reidemeister [29] showed that the study of equivalence classes of links in S3 is

equivalent to the study of link diagrams on the plane modulo three local moves known as

the Reidemeister moves (See Figure 1.2).

Theorem 1.2.1. [29] Two links are equivalent if and only if their link diagrams are re-

lated by a finite sequence of Reidemeister moves and planar isotopies (orientation preserving

homeomorphisms of plane onto itself ).

The above interpretation of links in terms of their diagrams is one of the most important

results in knot theory which has lead to the study of links from a combinatorial perspective.

As a result, various invariants have been constructed for the classifications of knots.

↔↔↔

R I R II R III

Figure 1.2 Reidemeister moves for link diagrams

Let K1 and K2 be two oriented knots. Then the connected sum [31] of K1 and K2, denoted

by K1#K2, is shown below in the Figure 1.3

5



K1 K2 K2 K1

Figure 1.3 Connected sum of two oriented knots

Definition 1.2.3. A knot is said to be prime if it cannot be written as a connected sum of

two non-trivial knots. For example, torus knots (knots which lie on the surface of a torus)

are prime.

1.2.2 Classical Braids

A geometric braid [31] on n strands is a subset β of R2 × I consisting of n disjoint closed

intervals such that following conditions are satisfied :

• β ∩ (R2 × 0) = {(1, 0, 0), (2, 0, 0), ... (n, 0, 0)},

• β ∩ (R2 × 1) = {(1, 0, 1), (2, 0, 1), ... (n, 0, 1)},

• each strand of β intersects with R2 × {t} on a point for all t ∈ [0, 1].

Two geometric braids β1 and β2 are said to be isotopic if there exists an ambient isotopy

f : (R2 × I )× I → R2 × I

such that f (β1, 0) = β1, f (β1, 1) = β2 and f (β1, t) is geometric braid at each time t.

Clearly, isotopy induces an equivalence relation on the set of geometric braids on n

strands. These equivalence classes are called braids. As in case of links, geometric braids

can be studied via diagrams on the plane.

Two braid diagrams are said to be equivalent if they are related by a finite sequence of

planar isotopies and local moves shown in Figure 1.2.

6



Definition 1.2.4. The braid group Bn is the group with a presentation having n - 1 gener-

ators σ1, ... ,σn−1 and following set of relations:

• σiσj = σjσi for |i − j | ≥ 2 and i , j ∈ {1, 2, ... , n − 1},

• σiσi+1σi = σi+1σiσi+1 for i ∈ {1, ... n − 2}.

1 i − 1 i i + 1 i + 2 n 1 i − 1 i i + 1 i + 2 n

σi σ−1
i

... ... ... ...

Figure 1.4 Generators of the braid group Bn

The closure of a braid is the link Cl(b) obtained from b by connecting the lower ends of

the braid with the upper ends; (see Figure 1.5). Obviously, isotopic braids generate isotopic

links. Closures of braids are usually taken to be oriented: all strands of the braid are oriented

from the top to the bottom (See Figure 1.4).

Theorem 1.2.5. Each link can be represented as the closure of a braid.

One can obtain a link diagram from a braid diagram. By closure of a braid diagram D, we

mean a diagram obtained by connecting the boundary points of D having the same second

coordinate with smooth non-intersecting arcs. Obviously, closure of a braid is a well-defined

operation as closures of any two equivalent braid diagrams give equivalent link diagrams.

From now onwards, we will denote the closure of a braid β by Cl(β). Knots are, in particular,

closed braids. Figure 1.5 illustrates the braid diagram of the trefoil knot.

Definition 1.2.6. For a knot K , the braid index [25], denoted b(K ), is the fewest number

of strings needed to express K as a closed braid. The braid length [25] of the knot K is the

fewest number of crossings needed to express K as a closed braid. For example, in Figure

1.5, the braid index and the braid length for the trefoil respectively are 2 and 3.

7



Figure 1.5 Braid diagram for the trefoil knot

1.2.3 Symmetries in Knots

If a knot is viewed as an oriented homeomorphism class of an oriented pair, K = (S3,S1),

with Si homeomorphic to Si , there are four oriented knots associated to any particular knot

K . In addition to K itself, there is the reverse, r(K ) = (S3,−S1), the concordance inverse,

−K = (−S3,−S1), and the mirror image, m(K ) = (−S3,S1)[25].

Definition 1.2.7. [7] By a symmetry we mean that a knot K remains unchanged under one

of r ,m, rm. As in the definition of symmetry type in [25] we say that a knot K is

• reversible if the only symmetry it has is K = r(K ),

• negative amphicheiral if the only symmetry it has is K = rm(K ) ,

• positive amphicheiral if the only symmetry it has is K = m(K ),

• fully amphicheiral if it has all three symmetries, that is, K = r(K ) = m(K ) = rm(K ),

• chiral if K ̸= r(K ) ̸= m(K ) ̸= rm(K ).

Note that there exists non-equivalent knots which are not mirror images with isomorphic

knot groups.

Figure 1.6 gives diagrams of the trefoil knot and its mirror image.

Definition 1.2.8. [30] The Wirtinger presentation is a finite group presentation of the

fundamental group of the complement of a knot in 3-space.

8



Figure 1.6 Left hand trefoil and Right hand trefoil

For an oriented knot K , let D(K ) be the knot diagram of K. We label each arc in D with

xi and define the relation at each crossing as shown in the Figure 1.7 below Let ri denote each

ith relation obtained at each crossing. Then, the group π(R3 \ K ) = {x1, x2, ... , xn; r1, ... rn}

Figure 1.7 Wirtinger relations on crossings

Theorem 1.2.2. [10, 31] An n-component link L is trivial if and only if π1(C (L)) is isomor-

phic to the free group of rank n.

9



Chapter 2: Algebraic Structures from Knots

2.1 Quandles

In this section, we introduce the main objects of our study.

Definition 2.1.1. A quandle is a non-empty set X with a binary operation (x , y) 7→ x ∗ y

satisfying the following axioms:

• x ∗ x = x for all x ∈ X ,

• For any x , y ∈ Q there exists a unique z ∈ X such that x = z ∗ y .

• (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for all x , y , z ∈ X .

Using oritented links, we can give quandle crossing relation as follows

Some basic examples of quandles are as follows:

Example 2.1.2. The set X = {1, 2, 3, ... , n} with binary operation x ∗y = x for all x , y ∈ X .

In other words, the map Sx : X × X → X such that Sy (x) = x ∗ y is an identity map. This

set X , equipped with the binary operation ∗ is known as trivial quandle denoted by Tn. A

cayley table for trivial quandle Tn of order n looks like the following:

∗ 1 2 3 ... n

1

2

3

...

n

1

2

3

...

n

...2

3

...

n

2

3

...

n

2

3

...

n

...

...

...

1 1 1
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Example 2.1.3. Let X = {0, 1, 2} with operation x ∗ y = 2y − x (mod 3) is a quandle. The

cayley table is as follows:

∗ 0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

Example 2.1.4. Let G be a multiplicative group. Then the binary operation x ∗ y = yxy−1

is a quandle on G known as conjugation quandle denoted by Conj(G ). Conjugacy classes in

groups are a rich source of quandles. Another way of defining a quandle operation on such

groups G can be obtained by the following example.

Example 2.1.5. Given a multiplicative group G , define a binary operation by x ∗y = yx−1y .

Then (G , ∗) is a quandle known as core quandle denoted by Core(G ). For abelian groups

(written additively) the operation becomes x ∗ y = 2y − x . In particular, the cyclic group

of order n ≥ 2 gives the dihedral quandle Rn = {0, 1, 2, ... , n − 1} of order n. For n = 3,

(Example 2.1.3) represents R3.

Example 2.1.6. Let G be a group and let ϕ ∈ Aut(G ) be a group automorphism. Define

a binary operation ∗ such that x ∗ y = ϕ(xy−1)y . Then, the set G equipped with ∗ forms a

quandle known as the generalised Alexander quandle of G with respect to ϕ.

Definition 2.1.7. Let (X , ∗) and (Y , ⋆) be two quandles and f : (X , ∗) → (Y , ⋆) be a map.

Then,

• f is a quandle homomorphism if f (x ∗ y) = f (x) ⋆ f (y).

• f is a quandle isomorphsim if f is a bijective quandle homomorphism.

• f is a quandle automorphsim if f is a quandle isomorphism of X with itself.

Let X be a quandle. We denote set of all automorphisms of X as Aut(X ). For a given

element x ∈ X , the inner automorphism induced by x is a map Sx : X → X such that
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Sx(y) = y ∗ x . The subgroup of Aut(X ) generated by the set {Sx |x ∈ X} is known as the

inner automorphism group of X , and is denoted by Inn(X ). Henceforth, the word orbit would

correspond to an orbit in X under the action of Inn(X ).

Remark 2.1.8. It turns out that quandle axioms are simply algebraic formulations of the

three Reidemeister moves of planar diagrams of knots and links in the 3-space which can be

seen below.

x

x ∗ yy

y

y

y x

x∗y

Figure 2.1 Quandle crossing relation

x z

z

y

z

zyx

y ∗ z
(x ∗ y) ∗ z

y ∗ z
(x ∗ z) ∗ (y ∗ z)

↔

x y

y x

x

y

y

↔

(x ∗ y)∗y

x

x ∗ x

x

x

↔

Figure 2.2 Quandle axioms from Reidemeister I, II and III

Besides being fundamental to knot theory, quandles arise in a variety of contexts such

as set-theoretic solutions to the Yang-Baxter equation [5], Yetter-Drinfeld Modules [13],

Riemannian symmetric spaces [26], Hopf algebras [1] and mapping class groups [35, 36, 37],

to name a few.

Definition 2.1.9. A quandle X is called connected [31] if the inner automorphism group

Inn(X ) acts transitively on X . In other words, X cannot be written as disjoint union of its

orbits. For example, the dihedral quandle R2n+1 is connected, whereas R2n is not.

Definition 2.1.10. A quandle X is said to be involutory [31] if for each x ∈ X , the inner

automorphism Sx is an involution, that is, (y ∗ x) ∗ x = y for all x , y ∈ X . For example, for

12



any group G , the core quandle Core(G ) is involutory, whereas Conj(Fn) is not involutory for

a free group Fn of rank n ≥ 2.

Definition 2.1.11. A quandle X is called latin if each left multiplication Lx : X → X given

by Lx(y) = x ∗ y for y ∈ X , is bijective, and called semi-latin if each Lx is injective.

Example 2.1.12. For example, dihedral quandles R2n+1 are latin. A simple way of checking

latin quandles is to observe that elements in each row are non-repeating. (Refer to Example

2.1.3)

Definition 2.1.13. A quandle X is said to be simple [31] if for any quandle Y , every quandle

homomorphism X → Y is either injective or constant. For example, if G is a simple group,

then Core(G ) is a simple quandle. On the other hand, the dihedral quandle R2n is neither

latin nor simple.

Definition 2.1.14. A quandle X is said to be commutative [31] if for any x , y ∈ X , x ∗ y =

y ∗ x . For example, R3 (see Example 2.1.3) is commutative but R4 is not. Furthermore, X is

said to be quasicommutative if at least one of the following holds:

1. x ∗ y = y ∗ x ,

2. x ∗ y = x ∗̄ y ,

3. x ∗̄ y = y ∗ x ,

4. x ∗̄ y = y ∗̄ x .

Every commutative quandle is quasicommutative but not vice versa. For example, Consider

group (R, +) and its automorphism ϕ : R → R defined as ϕ(x) = 2x . Then, the Alexander

quandle R with respect to ϕ is quasi-commutative but not commutative.

2.2 Knot Quandles

Analogous to knot group also known as fundamental group of a knot K , we define the

fundamental quandle or Knot quandle for a knot K

13



Definition 2.2.1. Let K be an oriented knot. We label each arc of K with a unique

arbitrary symbol and at each crossing note the relation given in Figure 2.1.The resulting

quandle associated to this knot K is a free quandle generated by these symbols modulo the

relations denoted by Q(K ). That is, the quandle ssociated to K is the set of formal strings

of arc labels separated by ∗ and ∗̄ using parentheses to indicate association. Furthermore,

to each homeomorphism of knots we assign the unique isomorphism of quandles induced by

the Reidemeister moves (refer to Figure 2.2). We call Q(K ) as the fundamental quandle or

the knot quandle of the knot K .

There exists a covariant functor between the category of knot diagrams and the category

of its respective knot quandles [24].

Theorem 2.2.1. [24, 28] Let K and K ′ be two oriented knots in the 3-sphere, S3, and let :

D(K ) and D(K ′) be their associated knot diagrams. Then K ′ is ambient isotopic to either K

or the mirror image of K with direction reversed if and only if the fundamental quandles of

K and K ′ are isomorphic.

Below is an example of the figure-8 knot and its associated knot quandle

Example 2.2.2. Consider the following knot K . We label each of its arcs with symbols

a, b, c and d . At each crossing, we use the relation given in Figure 2.1 to note down the

relation.

a

b

c
d

Figure 2.3 Figure 8 knot

Then, the knot quandle Q(K ) is a free quandle with the symbols and relations given as

Q(K ) =< a, b, c , d : d ∗ a = c , b ∗ c = a, a ∗̄ b = d , d ∗̄ c = b >

14



which can further be reduced to three generators

Q(K ) =< a, b, c : (a ∗̄ b) ∗ a = c , b ∗ c = a, (a ∗̄ b) ∗ c = b >

2.3 Quandle Cocycle Invariants of Knots and Links

Let X be a quandle and K be a classical knot or a link diagram. Let R be a set of arcs.

Then a coloring of K by the quandle X is a map from R to X such that at every crossing,

the relations in Figure 2.4 hold. Alternately, it is a homomorphism from the knot quandle

(see for example [17, 24, 28]) of K to the quandle X .

Theorem 2.3.1. Let Q(K ) be the knot quandle for a knot K and X be some finite quandle.

Then |Hom(Q(K ),X | is invariant under the Reidemeister moves, thus forming an invariant

for knots.

x

x ∗ yy

y

y

y x

x∗y

Figure 2.4 Rules of colorings at crossing

Let X be a finite quandle and let A be an abelian group. Let CR
n (X ) be the free abelian

group generated by n-tuples (x1, ... , xn) of elements X . We define a homomorphism ∂n :

CR
n (X ) → CR

n−1(X ) by

∂n(x1, x2, ... , xn)

=
n∑

i=2

(−1)i [(x1, x2, ... , xi−1, xi+1, ... , xn)

− (x1 ∗ xi , x2 ∗ xi , ... , xi−1 ∗ xi , xi+1, ... , xn)]

for n ≥ 2 and ∂n = 0 for n ≤ 1. Then CR
∗ (X ) = {CR

n (X ), ∂n} is a chain complex.

15



Let CD
n (X ) be the subset of CR

n (X ) generated by n-tuples (x1, ... , xn) with xi = xi+1

for some i ∈ {1, ... , n − 1} if n ≥ 2; otherwise let CD
n (X ) = 0. If X is a quandle, then

∂n(C
D
n (X )) ⊂ CD

n−1(X ) and CD
∗ (X ) = {CD

n (X ), ∂n} is a sub-complex of CR
∗ (X ). Consider

the quotient complex {CQ
∗ (X )} with CQ

n (X ) = CR
n (X )/CD

n (X ). For quandles, the chain and

cochain complexes with coefficient in an abelian group A are given by

CQ
∗ (X ;A) = CQ

∗ (X )⊗ A, ∂ = ∂ ⊗ id;

C ∗
Q(X ;A) = Hom(CQ

∗ (X ),A), δ = Hom(∂, id).

The nth quandle homology group and the nth quandle cohomology group [6] of a quandle

X with coefficient group A are given by

HQ
n (X ;A) = Hn(C

Q
∗ (X ;A)), Hn

Q(X ;A) = Hn(C ∗
Q(X ;A)).

For more details on quandle cohomology see [6]. In this thesis we will focus on low dimen-

sional cohomology and precisely 2-cocycles as they are needed to define the quandle cocycle

invariant of knots. A function ϕ : X × X → A is called a quandle 2-cocycle if it satisfies the

2-cocycle condition:

ϕ(x , y)− ϕ(x , z) + ϕ(x ∗ y , z)− ϕ(x ∗ z , y ∗ z) = 0; ∀x , y , z ∈ X (2.3.1)

and

ϕ(x , x) = 0, ∀x ∈ X (2.3.2)

x

ϕ(x , y)

y

y

y

y

x

−ϕ(x , y)

x ∗ y

x ∗ y

Figure 2.5 Boltzmann weights at crossing
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ϕ(x , y)

−ϕ(x , y)

x y

yx x

x

y

y

ϕ(x , x)

x

x ∗ x

x

x

↔ ↔

Figure 2.6 Boltzmann weights from Reidemeister I and II

x z

z

y

ϕ(y , z)

ϕ(x ∗ y , z)

z

zyx

ϕ(x ∗ z , y ∗ z)
ϕ(y , z)

ϕ(x , y)

y ∗ z (x ∗ y) ∗ z
y ∗ z (x ∗ z) ∗ (y ∗ z)

ϕ(x , z)

↔

Figure 2.7 The quandle 2-cocycle condition (2.3.1) from Reidemeister III

Let X be a quandle and ϕ : X ×X → A be a 2-cocycle. Consider a knot K and let CX (K )

be a coloring of K . The Boltzmann weight at a crossing τ is defined by ϕ(x , y)ϵ, where ϵ

is the sign of the crossings (see Figure 2.5). Thus one sees that equation (2.3.1) can be

obtained from Figure 2.7.

Definition 2.3.1. [6] Let X be a quandle and ϕ be a 2-cocycle with coefficient in an abelian

group A. Let D(K ) be a diagram of a knot K . The state sum of the knot diagram D(K ) is

given by

Φ(D) =
∑
C

∏
τ

ϕ(x , y)ϵ (2.3.3)

where the product is taken over all crossings of D and the sum is taken over all the possible

colorings of D.

Observe that in Definition 2.3.1, the group A is assumed to be multiplicative group. The

Boltzmann state sum is an element of the group ring of A i.e. Φ(D) ∈ Z[A].

17



Theorem 2.3.2. [6, Theorem 4.4, page 3954] Let ϕ be a 2-cocycle with coefficient in an

abelian group A. Let D(K ) be a diagram of a knot K . The state sum Φ(D) is invariant

under the three Reidemeister moves, thus it is denoted by Φϕ(K ).
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Chapter 3: Idempotents, Free Products and Quandle Coverings

In this chapter we explore idempotents in quandle rings, specifically their connection to

quandle coverings. We establish that integral quandle rings arising from non-trivial invo-

lutory coverings over well-behaved base quandles possess infinitely many non-trivial idem-

potents, offering a complete characterization of these idempotents. Notably, the collected

idempotents constitute a quandle in their own right. Applying these results to knot the-

ory, we infer that the quandle ring of the knot quandle for a non-trivial long knot exhibits

non-trivial idempotents. Additionally, we investigate free products of quandles, proving that

integral quandle rings of free quandles exclusively feature trivial idempotents, yielding an

infinite family of such quandles. We extend our analysis to describe idempotents in quandle

rings associated with unions and specific twisted unions of quandles. This work contributes

to the mathematical understanding of quandle structures and their relationships with idem-

potents in diverse algebraic settings. The present chapter is based on [19].

3.1 Group Rings

Let k be a field and let G be a multiplicative group. A group ring k[G ] is an associative

k-algebra with the elements of G as a basis and with multiplication defined distributively

using the group multiplication in G . To be more precise, k[G ] consists of all formal finite

sums of the form

α =
∑
x∈G

ax · x

with ax ∈ k. Here, finiteness means all of the coefficients ax are zero except finitely many.
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If (k, +, ·) is an integral domain implies an associative and commutative ring with unity

and without zero-divisors with unity.

Definition 3.1.1. Let k[G ] be a group ring where k is an associative ring with unity. Then,

the surjective ring homomorphism defined by φ : k[G ] → k is called the augmentation map

given by

φ
(∑

g∈G

αgg
)
=

∑
g∈G

αg

3.2 Quandle Rings

Definition 3.2.1. Let (X , ∗) be a quandle and k an integral domain with unity 1. Let k[X ]

be the set of all formal expressions of the form
∑

x∈X αxex , where each ex is a unique symbol

corresponding to x ∈ X and αx ∈ k such that all αx = 0 except finitely many. The addition

in k[X ] is defined as usual and the multiplication is given by

(∑
x∈X

αxex
)(∑

y∈X

βyey
)
=

∑
x ,y∈X

αxβyex∗y ,

where x , y ∈ X and αx , βy ∈ k. This turns k[X ] into a ring (rather a k-algebra) called the

quandle ring of X with coefficients in k.

Clearly, the multiplication is distributive with respect to addition from both left and

right, and k[X ] forms a ring, which we call the quandle ring of X with coefficients in the

ring k. Since X is non-associative, unless it is a trivial quandle, it follows that k[X ] is a

non-associative ring, in general. It follows that {ex | x ∈ X} forms a basis for the k-algebra

k[X ].

Remark 3.2.2. Observe that a quandle with a left multiplicative identity has only one ele-

ment. For, let e ∈ X be the left identity of X . Then e ∗ x = x for all x ∈ X . But, we have

x ∗ x = x . Now, by axiom invertibility of right multiplication, we must have e = x for all

x ∈ X , and hence X = {e}. Thus, k[X ] is a non-associative ring without unity, unless X is

a singleton.
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Definition 3.2.3. Let X be a quandle. Consider k[X ] as the quandle ring where k is a ring

with unity. Then, the surjective ring homomorphism ε : k[X ] → k given by

ε
(∑

x∈X

αxex
)
=

∑
x∈X

αx

is called the augmentation map. The kernel of ε is a two-sided ideal of k[X ], called the

augmentation ideal of k[X ].We make a distinction between the product in a quandle and the

product in its associated quandle ring.

Since k[X ] is a ring without unity, it is desirable to embed it into a ring with unity. The

ring

k◦[X ] := k[X ]⊕ ke,

where e is a symbol (not in X ) satisfying e
(∑

i αixi
)
=

∑
i αixi =

(∑
i αixi

)
e, is called the

extended quandle ring of X . For convenience, we denote the unity 1e of k◦[X ] by e. We can

extend the augmentation map to ε : k◦[Q] → k and define the extended augmentation ideal

as

∆k◦(Q) := ker(ε : k◦[Q] → k).

As before, it is easy to see that the set {x − e | x ∈ X} is a basis for ∆k◦(X ) as an k-module.

Definition 3.2.4. Let X be a quandle and k an associative ring. Then {ex − ey | x , y ∈ X}

is a generating set for ∆k(X ) as an k-module. Further, if x0 ∈ X is a fixed element, then the

set
{
ex − ex0 | x ∈ X \ {x0}

}
is a basis for ∆k(X ) as an k-module.

Using Definition 3.2.4, the article [3] makes the following obseervation

1. Let X be a quandle and k an associative ring. Then x ∗ y + y ∗ x ≡ x + y mod ∆2
k(X )

for all x , y ∈ X .

2. Let X be a trivial quandle, Y a subquandle of X and k an associative ring. Then

∆k(Y ) is a two-sided ideal of k[X ].
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3. Let X be a quandle and k an associative ring. Then the quandle X is trivial if and

only if ∆2
k(X ) = {0}.

A group algebra can be studied using methods of associative algebras. Recall that quandle

algebras are not associative for non-trivial quandles. On the other hand, some classes of non

associative algebras, for instance, alternative algebras, Jordan algebras and Lie algebras, are

well studied. Thus, it is interesting to know whether quandle algebras belong to these classes

of algebras.

3.2.1 Idempotents in Quandle Rings

Definition 3.2.5. Let X be a quandle and k an integral domain with unity. A non-zero

element v ∈ k[X ] is called an idempotent if v 2 = v . The set of all idempotents of k[X ] is

denoted by

I(k[X ]) =
{
v ∈ k[X ] | v 2 = v

}
Unlike in group rings, where the units play a fundamental role in the structure theory

of the group ring, quandle rings have idempotents as the natural object since each quandle

element is, by definition, an idempotent of the quandle ring i.e {ex | x ∈ X} are idempotents

of k[X ], and we refer to them as trivial idempotents. A non-trivial idempotent is an element

of k[X ] that is not of the form ex for any x ∈ X .

In ring theory, figuring out idempotents is a key challenge. Likewise, exploring idempo-

tents in a quandle ring is based on the search for new quandles within the quandle ring. To

find the set I(k[X ]) of non-zero idempotents in a quandle ring k[X ], we start with a basic

idea: every quandle element is an idempotent in its own ring, called “trivial idempotents.”

Unlike integral group rings, which lack non-trivial idempotents, extended quandle rings have

a unique twist. The identity element and elements of the form e − x , where x ∈ X , are
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non-trivial idempotents, offering a distinct perspective on idempotent behavior in quandle

rings.

It is a well-known result of Swan [32, p.571] that if G is a finite group, then the group

ring k[G ] has a non-trivial idempotent if and only if some prime divisor of |G | is invertible

in k. Although, we do not have Lagrange’s theorem for finite quandles, a partial one way

analogue of this result does hold for finite quandles.

Proposition 3.2.6. Let X be a finite quandle having a subquandle Y with more than one

element such that |Y | is invertible in k. Then k[X ] has a non-trivial idempotent.

Proof. Since the subquandle Y has more than one element, a direct check shows that the

element

u = 1
|Y |

∑
y∈Y ey is a non-trivial idempotent of k[X ].

Remark 3.2.7. The converse of Proposition 3.2.6 does not hold. For example, consider the

quandle

X = {1, 2, 3} given in terms of its multiplication table as follows:

* 1 2 3

1 1 1 2

2 2 2 1

3 3 3 3

Here, (i , j)-th entry of the matrix represents the element i ∗ j . The quandle ring Z[X ] has

non-trivial idempotents of the form αe1 + (1− α)e2 for α ∈ Z, but X has no subquandle Y

with more than one element such that |Y | is invertible in Z.

The following proposition gives a sufficient condition that guarantees the existence of

non-trivial idempotents.

Proposition 3.2.8. Let X be a quandle containing a trivial subquandle Y of order more

than one. Then k[X ] has non-trivial idempotents.
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Proof. Consider the element u =
∑n

i=1 αieyi , where n ≥ 2, yi ∈ Y and αi ∈ k such that∑n
i=1 αi = 1.

A direct check shows that u2 = u, and hence u is a non-trivial idempotent of k[X ].

Lemma 3.2.1. Let X be a faithful quandle. If x , y ∈ X be two distinct elements such that

x ∗ y = x , then y ∗ x = y .

Proof. Since SySx = Sx∗ySy and x ∗ y = x , it follows that Sx and Sy commute.

Thus, the identity SxSy = Sy∗xSx implies that Sy∗x = Sy . Since X is faithful, we get y ∗x = y ,

which is desired.

Proposition 3.2.9. Let X be a faithful quandle such that Sx has more than one fixed-point

for some x ∈ X . Then k[X ] has non-trivial idempotents.

Proof. Since Sx has a non-trivial fixed-point, we have y ∗ x = y for some y ∈ X with y ̸= x .

But, X is faithful, and hence by Lemma 3.2.1, we have x ∗ y = x . Thus, the set {x , y}

forms a trivial subquandle in X . From Proposition 3.2.8, we have (αex + (1− α)ey )
2 =

αex + (1− α)ey . Thus k[X ] has non-trivial idempotents.

Proposition 3.2.10. If G is a non-trivial group, then k[(G )] has non-trivial idempotents.

Proof. Note that, for each non-identity element x ∈ G and distinct integers i , j , the set

{x i , x j} forms a trivial subquandle. The result now follows from Proposition 3.2.8.

As an application of quandle rings for link quandles, we have the following proposition.

Proposition 3.2.11. Let L be a link containing the Hopf link and Q(L) the corresponding

link quandle of L. Then k[Q(L)] has non-trivial idempotents.

Proof. Let H be the Hopf link. The knot quandle Q(H) is given by

Q(H) =< x , y : x ∗ y = x , y ∗ x = y >= {x , y}
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x y

Figure 3.1 Hopf link

It follows from the construction of the link quandle [23, 28] that Q(L) contains Q(H) as a

subquandle with two elements. Using Proposition 3.2.8, we have the desired result.

It has been speculated in [4] that connected quandles have only trivial idempotents. We

give two examples showing that this is not true in general.

Example 3.2.12. Consider X = C [8, 1] = {1, 2, 3, ... 8} (The notation C [8, 1] means that we

are considering the first connected quandle of order 8 given in [33]). The right multiplications

of X as products of disjoint cycles are as follows:

S1 = S2 = (3 6 7)(4 5 8), S3 = S4 = (1 8 6)(2 5 7), S5 = S6 = (1 4 7)(2 3 8),

S7 = S8 = (1 5 3)(2 6 4)

We see that X has trivial subquandles {1, 2}, {3, 4}, {5, 6} and {7, 8}. From proposition

3.2.8, we have e1 − e2, e3 − e4, e5 − e6 and e7 − e8 are non-trivial idempotents in Z[X ].

Example 3.2.13. Consider the connected quandle X = C [12, 9] = {1, 2, ... , 12} of order

12 (As in the previous example C [12, 9] is the ninth connected quandle of order 12 given in

[33]). The right multiplications of X as products of disjoint cycles are as follows:

S1 = (5 11 7 9)(6 12 8 10), S2 = (5 12 7 10)(6 11 8 9), S3 = (5 9 7 11)(6 10 8 12),

S4 = (5 10 7 12)(6 9 8 11), S5 = (1 9 3 11)(2 10 4 12), S6 = (1 10 3 12)(2 9 4 11),

S7 = (1 11 3 9)(2 12 4 10), S8 = (1 12 3 10)(2 11 4 9), S9 = (1 7 3 5)(2 8 4 6),

S10 = (1 8 3 6)(2 7 4 5), S11 = (1 5 3 7)(2 6 4 8), S12 = (1 6 3 8)(2 5 4 7).

We see that X has trivial subquandles {1, 2, 3, 4}, {5, 6, 7, 8} and {9, 10, 11, 12}. By

Proposition 3.2.8, the elements αe1 + βe2 + γe3 + (1− α− β − γ)e4, αe5 + βe6 + γe7 + (1−

25



α− β − γ)e8 and αe9 + βe10 + γe11 + (1− α− β − γ)e12 are non-trivial idempotents of Z[X ]

for any α, β, γ ∈ Z.

A computer assisted check [27] with quandles of order less than seven suggests the fol-

lowing.

Conjecture 3.2.14. If X is a finite latin quandle then the quandle ring Z[X ] has only trivial

idempotents.

Every group G can be turned into a quandle (G ) by setting x ∗ y = yx−1y , and called the

core quandle of G . For abelian groups G (written additively), the quandle operation becomes

x ∗ y = 2y − x . In particular, the cyclic group of order n ≥ 2 gives the dihedral quandle of

order n, denoted by Rn = {0, 1, 2, ... , n− 1}. As a supporting evidence to Conjecture 3.2.14,

we prove the following.

Proposition 3.2.15. Let G be an abelian group without 2 and 3-torsion. Then Z[(G )] has

no non-trivial idempotent built up with at most three distinct basis elements.

Proof. Let u = αex + βey + γez be an idempotent of Z[(G )], where x , y , z ∈ G are distinct

and α, β, γ ∈ Z. We have the following two cases:

Case 1: Suppose that precisely two of α, β and γ are non-zero. Without loss of generality,

we can take u = αex + βey with α ̸= 0 and β ̸= 0. Then u = u2 gives

αex + βey = α2ex + β2ey + αβe2x−y + αβe2y−x . (3.2.1)

Clearly, e2x−y ̸= ex and e2x−y ̸= ey since G has no 2-torsion. Similarly, e2y−x ̸= ex and

e2y−x ̸= ey . Hence, we must have αβ = 0, a contradiction. Thus, this case does not arise.

Case 2: Suppose that all of α, β and γ are non-zero. Then u = u2 gives

αex+βey+γez = α2ex+β2ey+γ2ez+αβe2x−y+αβe2y−x+βγe2y−z+βγe2z−y+αγe2z−x+αγe2x−z .

(3.2.2)
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Note that e2y−z ̸= e2z−y , e2y−x ̸= e2x−y and e2z−x ̸= e2x−z since G has no 3-torsion. We

compare coefficients of ex on both the sides of (3.2.2). Clearly, ex ̸= ey , ez , e2x−y , e2x−z .

Further, ex ̸= e2y−x , e2z−x since G has no 2-torsion.

Case 2(a): If ex = e2y−z , then

α = α2 + βγ. (3.2.3)

But, ex = e2y−z also implies that ez = e2y−x . Comparing coefficients of ez on both the sides

of (3.2.2) gives

γ = γ2 + αβ. (3.2.4)

Adding (3.2.3) and (3.2.4) gives α + γ = α2 + γ2 + β(α + γ). Now we compare coefficients

of ey on both the sides of (3.2.2). If ey appears only once on the right hand side of (3.2.2),

then β = β2, and hence β = 1. This gives α2+γ2 = 0, which further implies that α = γ = 0,

a contradiction. If ey = e2x−z , then ez = e2x−y , a contradiction. Similarly, if ey = e2z−x , then

ex = e2z−y , which is again a contradiction. Hence Case 2(a) does not arise.

Case 2(b): If ex = e2z−y , we proceed as above, and see that this subcase does not arise.

It follows that ex appears on the right hand side of (3.2.2) precisely once. Hence α = α2,

and consequently α = 1. Repeating the process for ey and ez , we obtain β = 1 and γ = 1.

But, this gives ε(u) = 3, a contradiction. Hence Z[(G )] has no non-trivial idempotent built

up with at most three distinct basis elements.

Remark 3.2.16. Given a non-empty set X and a ring k, let k[X ] be the free k-module on

the set X . Then a binary operation on X can be used to define a ring structure on k[X ] by

imitating the construction of a quandle or a group ring. An idempotent quasigroup is a set

X with a binary operation such that both left and right multiplications by elements of X are

bijections of X and x ∗ x = x for all x ∈ X . It is worth mentioning that Conjecture 3.2.14

does not hold if we replace latin quandles by idempotent quasigroups. As a counterexample,

consider the idempotent quasigroup with multiplication table as follows:
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* 1 2 3 4 5 6 7 8

1 1 3 2 5 6 4 8 7

2 5 2 1 7 8 3 4 6

3 4 6 3 8 7 1 5 2

4 6 8 7 4 3 5 2 1

5 8 7 4 6 5 2 1 3

6 7 4 8 2 1 6 3 5

7 3 5 6 1 2 8 7 4

8 2 1 5 3 4 7 6 8

A direct computation shows that u = e2 − e3 − e6 + e7 is an idempotent of the ring Z[X ].

This suggests that a proof of Conjecture 3.2.14 should use the right-distributivity of the

quandle in an essential way.

Definition 3.2.17. A quandle X is called medial if (x ∗ y) ∗ (z ∗w) = (x ∗ z) ∗ (y ∗w) for all

x , y , z ,w ∈ X . These are precisely the quandles for which the natural map X ×X → X given

by (x , y) 7→ x ∗ y is a quandle homomorphism, where X × X is equipped with the product

quandle structure. The following result is interesting in its own.

Proposition 3.2.18. Let X be a medial quandle. Then the following hold:

1. The right multiplication by an idempotent is a ring endomorphism of k[X ].

2. If X is finite, then right multiplications by distinct idempotents give distinct ring

endomorphisms of k[X ].
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Proof. Let u =
∑n

i=1 αiei be an idempotent of k[X ]. Let Ŝu : k[X ] → k[X ] be the map given

by Ŝu(w) = wu for all w ∈ k[X ]. Let ek , el be two basis elements of k[X ]. Then, we see that

Ŝu(ekel) = ek∗l
( n∑
i ,j=1

αiαjei∗j
)
, since u = u2

=
n∑

i ,j=1

αiαje(k∗l)∗(i∗j)

=
n∑

i ,j=1

αiαje(k∗i)(l∗j), since X is medial

=
n∑

i ,j=1

αiαjek∗iel∗j

=
( n∑

i=1

αiek∗i
)( n∑

j=1

αjel∗j
)

= Ŝu(ek) Ŝu(el).

Since Ŝu is k-linear, it is a ring homomorphism, which proves (1).

For assertion (2), suppose that X is finite of order n. Let u =
∑n

i=1 αiei and v =
∑n

i=1 βiei

be two idempotents of k[X ]. If Ŝu = Ŝv , then
∑n

i=1 αiek∗i = Ŝu(ek) = Ŝv (ek) =
∑n

i=1 βiek∗i

for any basis element ek . But, this gives αi = βi for all i , which implies that u = v .

Remark 3.2.19. Consider the quandle X = C [6, 1] from [33] with multiplication table as

follows:

* 1 2 3 4 5 6

1 1 1 5 6 3 4

2 2 2 6 5 4 3

3 5 6 3 3 1 2

4 6 5 4 4 2 1

5 3 4 1 2 5 5

6 4 3 2 1 6 6
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Take k = Q, u = 1
2
(e1 + e2) and Ŝu the right multiplication by u. Then u is an idempotent

of Q[X ] and e3 − e4 ∈ ker(Ŝu). Thus, the k-linear map Ŝu need not be injective in general.

Remark 3.2.20. The set of idempotents of a quandle ring fails to satisfy the right-distributivity

in general. For example, consider the quandle ring Z[X ] of the quandle X of Remark 3.2.19.

Take the idempotents u = e1, v = e4 and w = αe5 + (1 − α)e6. Then a direct check shows

that (uv)w = e6, whereas (uw)(vw) = (2α−2α2)e5+(2α2−2α+1)e6. This implies that the

set of idempotents of a quandle may not form a quandle. The article [18] provides a table of

quandles up to order 5 with their idempotents computed with coefficients in Z and Z2 and

states the cases when such a set of idempotents is a quandle.

In associative algebras, the operator induced by multiplication by an idempotent is a

projection onto a subspace, and hence has eigenvalues 1 and 0. For non-associative algebras,

the eigenvalues of the operator induced by an idempotent can be arbitrary in general. Given

an idempotent v of a non-associative algebra k over C, let σ(v) denote the Peirce spectrum of

v , which is the set of all eigenvalues of the operator induced by v . The Peirce spectrum of an

idempotent v induces the Peirce decomposition of the algebra k, which is the decomposition

of k into a direct sum of corresponding eigenspaces.

Remark 3.2.21. Let X be a non-trivial quandle and k a field. On the contrary to associative

algebras, the right multiplication Ŝu by an idempotent u of k[X ] is not a projection of the

underlying k-vector space k[X ]. Thus, the spectrum of the idempotent u (defined as the

spectrum of the k-linear map Ŝu) may be arbitrary.

3.3 Idempotents from Quandle Coverings

In this section, we use quandle coverings for computing idempotents in quandle rings

of involutory quandles. The notion of a quandle covering was introduced in the work of

Eisermann [11, 12].
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Definition 3.3.1. A quandle homomorphism p : X → Y is called a quandle covering if p is

surjective and Sx = Sx ′ whenever p(x) = p(x ′) for any x , x ′ ∈ X . Clearly, an isomorphism of

quandles is a quandle covering, called a trivial covering.

Example 3.3.2. Some examples of quandle coverings are:

1. A surjective group homomorphism p : G → H yields a quandle covering (G ) → (H) if

and only if ker(p) is a central subgroup of G .

2. A surjective group homomorphism p : G → H yields a quandle covering (G ) → (H) if

and only if ker(p) is a central subgroup of G of exponent two.

3. Let X be a quandle and F a non-empty set viewed as a trivial quandle. Consider X ×F

with the product quandle structure (x , s) ∗ (y , t) = (x ∗ y , s). Then the projection

p : X × F → X given by (x , s) → x is a quandle covering, called trivial covering with

fibre F .

4. Let X be a quandle and A an abelian group. A map α : X ×X → A is called a quandle

2-cocycle if it satisfies

αx ,y αx∗y ,z = αx ,z αx∗z,y∗z

and

αx ,x = 1

for x , y , z ∈ X . Given a 2-cocyle α, the set X ×A turns into a quandle with the binary

operation

(x , s) ∗ (y , t) =
(
x ∗ y , s α(x , y)

)
,

for x , y ∈ X and s, t ∈ A. The quandle so obtained is called an extension of X by A

through α, and is denoted by X ×α A. We refer the reader to [1] for generalities and

related results. A direct check shows that the projection p : X ×α A → X given by

p(x , s) = x is a quandle covering.
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The following lemma summarises some basic properties of quandle coverings.

Lemma 3.3.1. If p : X → Y is a quandle covering, then the following hold:

1. Each fibre p−1(y) is a trivial subquandle of X .

2. Each inner automorphism of X permutes fibres.

3. The fibres over any two elements of the same connected component of Y are isomorphic.

Proof. If p : X → Y is a quandle homomorphism, then each fibre p−1(y) is a subquandle of X .

Since p is a covering, Sx = Sx ′ whenever x , x
′ ∈ p−1(y). This gives x ∗x ′ = Sx ′(x) = Sx(x) = x

and x ′ ∗ x = Sx(x
′) = Sx ′(x

′) = x ′, which proves assertion (1).

For assertion (2), it is enough to check that if x1, x2 ∈ p−1(y), then Sx(x1) and Sx(x2) are

in the same fibre. Indeed, p(Sx(x1)) = p(x1 ∗ x) = y ∗ p(x) = p(x2 ∗ x) = p(Sx(x2)), and we

are done.

Let y , y ′ be elements of the same connected component of Y . Then there exists elements

y1, y2, ... , yn ∈ Y and µ1,µ2, ... ,µn ∈ {1,−1} such that y ′ = y ∗µ1 y1 ∗µ2 y2 · · · ∗µn yn. Here the

parentheses are left normalised. For each i , choose one element xi ∈ p−1(yi). If x ∈ p−1(y),

then we see that

p(x ∗µ1 x1 ∗µ2 x2 · · · ∗µn xn) = y ∗µ1 y1 ∗µ2 y2 · · · ∗µn yn = y ′.

Thus, the inner automorphism Sµnxn S
µn−1
xn−1 · · · Sµ1x1

maps the fibre p−1(y) bijectively onto p−1(y ′),

which proves (3).

Proposition 3.3.3. If p : X → Y is a non-trivial quandle covering, then k[X ] has non-trivial

idempotents.

Proof. Since p is a non-trivial covering, there is at least one connected component of Y such

that |p−1(y)| ≥ 2 for all elements y in that connected component. By Lemma 3.3.1(1),

p−1(y) is a trivial subquandle of X . The result now follows from Proposition 3.2.8.
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Example 3.3.4. Consider X = C [12, 3] the third connected quandle [33] of order 12. As a

set X = {1, 2, ..., 12}, Its quandle operationc ∗ is given in terms of right multiplications as

follows:

S1 = (2 12 5 10 11)(3 8 6 7 4) S2 = (1 11 7 4 12)(3 5 10 6 9) S3 = (1 2 7 6 10)(4 9 8 5 12)

S4 = (1 11 6 8 5)(2 7 9 3 12) S5 = (1 12 3 8 10)(2 4 9 6 11) S6 = (1 5 3 4 2)(7 11 10 8 9)

S7 = (1 10 8 3 12)(2 11 6 9 4) S8 = (1 12 5 7 11)(3 9 6 10 5) S9 = (2 11 10 5 12)(3 4 7 6 8)

S10 = (1 5 8 6 11)(2 12 3 9 7) S11 = (1 10 6 7 2)(4 12 5 8 9) S12 = (1 2 4 3 5)(7 9 8 10 11).

Consider Y = {1, ... , 24}. Its quandle operation ⋆ is given in terms of right multiplications

as follows:

S1 = S13 = (2 12 5 10 11)(3 8 6 7 4)(14 24 17 22 23)(15 20 18 19 16)

S2 = S14 = (1 11 7 4 12)(3 5 10 6 9)(13 23 19 16 24)(15 17 22 18 21)

S3 = S15 = (1 2 7 6 10)(4 9 8 5 12)(13 14 19 18 22)(16 21 20 17 24)

S4 = S16 = (1 11 6 8 5)(2 7 9 3 12)(13 23 18 20 17)(14 19 21 15 16)

S5 = S17 = (1 12 3 8 10)(2 4 9 6 11)(13 24 15 20 22)(14 16 21 18 23)

S6 = S18 = (1 5 3 4 2)(7 11 10 8 9)(13 17 15 16 14)(19 23 22 20 18)

S7 = S19 = (1 10 8 3 12)(2 11 6 9 4)(13 22 20 15 24)(14 23 18 21 16)

S8 = S20 = (1 12 5 7 11)(3 9 6 10 5)(13 24 16 19 23)(15 21 18 22 17)

S9 = S21 = (2 11 10 5 12)(3 4 7 6 8)(14 23 22 17 24)(15 16 19 18 20)

S10 = S22 = (1 5 8 6 11)(2 12 3 9 7)(13 17 20 18 23)(14 24 15 21 19)

S11 = S23 = (1 10 6 7 2)(4 12 5 8 9)(13 22 18 19 14)(16 24 17 20 21)

S12 = S24 = (1 2 4 3 5)(7 9 8 10 11)(13 14 16 15 17)(19 21 20 22 23)

Let ϕ : (Y , ⋆) → (X , ∗) be a map such that ϕ(y) = y(mod12) for all y ∈ Y . It is easy to check

that ϕ is a quandle homomorphism as for any a, b ∈ Y , we have ϕ(a ∗ b) = (ab) mod (12) =

(a mod 12)(b mod 12) = ϕ(a) ⋆ ϕ(b). By the nature of the map, ϕ is surjective and not

injective(as |X | < |Y |). Thus, ϕ is a non-trivial covering. Then by Proposition 3.3.3, we

have k[X ] has non trivial idempotents. In particular, Z2[X ] has non-trivial idempotents.
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Definition 3.3.5. An embedding ϕ : R → R3 is called a long knot if there exist α, β ∈ R

such that

ϕ(t) = (0, 0, t) for any t < α or t > β.

The following proposition about long knots is also an immediate application of the Propo-

sition 3.3.3.

Proposition 3.3.6. If L is a non-trivial long knot, then the quandle ring k[Q(L)] of its knot

quandle Q(L) has non-trivial idempotents.

Proof. Let L be a long knot and K its corresponding closed knot defined in the obvious way.

Let Q(L) and Q(K ) be knot quandles of L and K , respectively. Note that Q(K ) is obtained

from Q(L) by adjoining one extra relation corresponding to the first and the last arc of L. By

[11, Theorem 35], the natural projection p : Q(L) → Q(K ) is a non-trivial quandle covering,

and the result follows from Proposition 3.3.3.

Remark 3.3.7. Let p : X → Y be a quandle covering, and F(Y ) the set of all finite subsets

of Y . For each y ∈ Y , let F(p−1(y)) be the set of all finite subsets of p−1(y), and denote a

typical element of this set by Iy . The main result of this section is the following theorem.

Theorem 3.3.2. Let p : X → Y be a non-trivial quandle covering where X is involutory. If

k[Y ] has only trivial idempotents, then the set of idempotents of k[X ] is

I
(
k[X ]

)
=

{∑
y∈J

( ∑
x∈Iy ,

∑
αx=0

αx

(
ex + ex∗x0

))
+
( ∑

x ′∈Iy0 ,
∑
αx′=1

αx ′ex ′
) ∣∣

J ∈ F(Y ), Iy ∈ F(p−1(y)), Iy0 ∈ F(p−1(y0)), x0 ∈ Iy0 , y0 ∈ Y , αx ,αx ′ ∈ k
}
.(3.3.1)

Proof. Since p is a quandle covering, we have Sx = Sx ′ for any x , x ′ ∈ p−1(y). Hence the

induced automorphisms of the quandle ring k[X ] are identical for any x , x ′ ∈ p−1(y). This
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together with direct computations give

(∑
x∈J

βxex
)( ∑

x ′∈Iy ,
∑
αx′=1

αx ′ex ′
)

(3.3.2)

=
∑

x ′∈Iy ,
∑
αx′=1

αx ′

(∑
x∈J

βxex
)
ex ′

=
∑

x ′∈Iy ,
∑
αx′=1

αx ′

(∑
x∈J

βxex
)
ex0 , for any fixed x0 ∈ Iy

=
∑

x ′∈Iy ,
∑
αx′=1

αx ′

(∑
x∈J

βxex∗x0

)
=

∑
x∈J

βxex∗x0 , since
∑

x ′∈Iy ,
∑
αx′=1

αx ′ = 1,

and

(∑
x∈J

βxex
)( ∑

x ′∈Iy ,
∑
αx′=0

αx ′ex ′
)

(3.3.3)

=
∑

x ′∈Iy ,
∑
αx′=0

αx ′

(∑
x∈J

βxex
)
ex ′

=
∑

x ′∈Iy ,
∑
αx′=0

αx ′

(∑
x∈J

βxex∗x0

)
, for any fixed x0 ∈ Iy

=
( ∑

x ′∈Iy ,
∑
αx′=0

αx ′

)(∑
x∈K

βxex∗x0

)
= 0, since

∑
x ′∈Iy ,

∑
αx′=0

αx ′ = 0,

where J ∈ F(X ), Iy ∈ F(p−1(y)), y ∈ Y and βx ,αx ′ ∈ k. Let u = v + w , where

v =
∑
y∈J

( ∑
x∈Iy ,

∑
αx=0

αx

(
ex + ex∗x0

))
,

w =
∑

x ′∈Iy0 ,
∑
αx′=1

αx ′ex ′ ,
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J ∈ F(Y ) and x0 ∈ Iy0 a fixed element. Equations (3.3.2) and (3.3.3) imply that w 2 = w ,

wv = 0 and v 2 = 0. Since X is involutory, it follows that (ex + ex∗x0)ex0 = ex + ex∗x0 .

Consequently, vw = v , and hence u2 = u.

For the converse, let u be an idempotent of k[X ]. Since X is the disjoint union of fibres

of p, we can write u uniquely in the form

u =
∑
y∈J

(∑
x∈Iy

αxex
)

for some J ∈ F(Y ) and Iy ∈ F(p−1(y)) for each y ∈ J . If p̂ : k[X ] → k[Y ] is the induced ho-

momorphism of rings, then p̂(u) is an idempotent of k[Y ]. It follows from the decomposition

of u that

p̂(u) =
∑
y∈J

(∑
x∈Iy

αx

)
ey .

Since k[Y ] has only trivial idempotents, it follows that either p̂(u) = 0 or precisely one of

the coefficients of p̂(u) is 1 and all other coefficients are 0. If p̂(u) = 0, then
∑

x∈Iy αx = 0

for each y ∈ J . Writing

u =
∑
y∈J

( ∑
x∈Iy ,

∑
αx=0

αxex
)
,

it follows from (3.3.3) that u = u2 = 0, which is a contradiction as u ̸= 0. Hence, there exists

y0 ∈ J such that
∑

x ′∈Iy0
αx ′ = 1 and

∑
x∈Iy αx = 0 for all y ̸= y0. Then can write u = v +w ,

where

v =
∑

y∈J, y ̸=y0

( ∑
x∈Iy ,

∑
αx=0

αxex
)

and

w =
∑

x ′∈Iy0 ,
∑
αx′=1

αx ′ex ′ .

Again, equations (3.3.2) and (3.3.3) imply that w 2 = w , wv = 0 and v 2 = 0. Thus, we have

u = u2 = v 2 + w 2 + vw + wv = w + vw ,
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and consequently vw = v . This implies that

∑
y∈J, y ̸=y0

( ∑
x∈Iy ,

∑
αx=0

αxex
)
ex0 =

∑
y∈J, y ̸=y0

( ∑
x∈Iy ,

∑
αx=0

αxex
)

for some fixed x0 ∈ Iy0 . Comparing coefficients of ex on both the sides give αx = αx∗x0 . Thus,

v has the form

v =
∑

y∈J, y ̸=y0

( ∑
x∈Iy ,

∑
αx=0

αx

(
ex + ex∗x0

))
,

which completes the proof of the theorem.

Corollary 3.3.3. If X is a trivial quandle, then

I
(
k[X ]

)
=

{∑
x∈J

αxex | J ∈ F(X ), αx ∈ k such that
∑
x∈J

αx = 1
}
.

Proof. If {z} is a one element quandle, then the constant map c : X → {z} is a quandle

covering. The proof now follows from Theorem 3.3.2.

Corollary 3.3.4. Let p : X → Y be a non-trivial quandle covering such that k[Y ] has only

trivial idempotents. Then every idempotent of k[X ] has augmentation value 1.

Proof. The assertion follows from the proof of the converse part of Theorem 3.3.2. Note that

we do not need our quandles to be involutory.

It has been shown in [4] that the integral quandle ring of R3 has only trivial idempotents.

A computational check shows that the same assertion holds for the integral quandle ring

of R5 as well. As an application of the preceding theorem, we characterise idempotents in

quandle rings of certain dihedral quandles of even order under the assumption of Conjecture

3.2.14.
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Corollary 3.3.5. Let n = 2m+1 be an odd integer with m ≥ 1. Assume that k[Rn] has only

trivial idempotents. Then the set of idempotents of k[R2n] is given by

I
(
k[R2n]

)
=

{(
βej+(1−β)en+j

)
+

m∑
i=0

αi

(
ei−en+i+e2j−i−en+2j−i

) ∣∣ 0 ≤ j ≤ n−1 and αi ,β ∈ k
}
.

Proof. Note that the natural map p : R2n → Rn given by reduction modulo n is a non-trivial

quandle covering. Further, for each i ∈ Rn, we have p−1(i) = {i , n + i}. The result now

follows from Theorem 3.3.2.

Proposition 3.3.8. Let p : X → Y be a non-trivial quandle covering. Then k[X ] has right

zero-divisors.

Proof. Let J ∈ F(X ), y ∈ Y and Iy ∈ F(p−1(y)) such that |Iy | ≥ 2. Then for any∑
x∈Iy ,

∑
αx=0 αxex and

∑
x ′∈J βx ′ex ′ , it follows from (3.3.3) that

(∑
x ′∈J

βx ′ex ′
)( ∑

x∈Iy ,
∑
αx=0

αxex
)
= 0

and hence
∑

x∈Iy ,
∑
αx=0 αxex is a right zero-divisor of k[X ].

Proposition 3.3.9. Let X be an involutory quandle such that k[X ] has only trivial idempo-

tents. Let A be a non-trivial abelian group and α : X ×X → A a quandle 2-cocycle satisfying

αx∗y ,y = α−1
x ,y for all x , y ∈ X . Then the extension X ×α A is involutory and k[X ×α A] has

non-trivial idempotents.

Proof. A direct check shows that the condition αx∗y ,y = α−1
x ,y is equivalent to X ×α A being

involutory. Since the map p : X ×α A → X is a non-trivial quandle covering, the result

follows from Theorem 3.3.2. In fact, Theorem 3.3.2 gives the precise set of idempotents.

Proposition 3.3.10. Let p : X → Y be a quandle covering. Then the set

I =
{∑

y∈J

( ∑
x∈Iy ,

∑
αx=0

αx

(
ex + ex∗x0

))
+
( ∑

x ′∈Iy0 ,
∑
αx′=1

αx ′ex ′
) ∣∣

J ∈ F(Y ), Iy ∈ F(p−1(y)), Iy0 ∈ F(p−1(y0)), x0 ∈ Iy0 , y0 ∈ Y , αx ,αx ′ ∈ k
}
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of idempotents is a quandle with respect to the ring multiplication.

Proof. Consider the elements

u =
∑
y∈J1

( ∑
x∈Iy ,

∑
αx=0

αx

(
ex + ex∗x1

))
+
( ∑

x ′∈Iy1 ,
∑
αx′=1

αx ′ex ′
)
,

v =
∑
y∈J2

( ∑
x∈Iy ,

∑
βx=0

βx
(
ex + ex∗x2

))
+
( ∑

x ′∈Iy2 ,
∑
βx′=1

βx ′ex ′
)

in the set I , where Ji ∈ F(Y ) and Iy ∈ F(p−1(y)), yi ∈ Y and xi ∈ Iyi . Then we have

uv

=
(∑

y∈J1

( ∑
x∈Iy ,

∑
αx=0

αx

(
ex + ex∗x1

))
+
( ∑

x ′∈Iy1 ,
∑
αx′=1

αx ′ex ′
))

(∑
y∈J2

( ∑
x∈Iy ,

∑
βx=0

βx
(
ex + ex∗x2

))
+
( ∑

x ′∈Iy2 ,
∑
βx′=1

βx ′ex ′
))

=
(∑

y∈J1

( ∑
x∈Iy ,

∑
αx=0

αx

(
ex + ex∗x1

))
+
( ∑

x ′∈Iy1 ,
∑
αx′=1

αx ′ex ′
))( ∑

x ′∈Iy2 ,
∑
βx′=1

βx ′ex ′
))

,

by (3.3.3)

=
(∑

y∈J1

( ∑
x∈Iy ,

∑
αx=0

αx

(
ex + ex∗x1

))
+
( ∑

x ′∈Iy1 ,
∑
αx′=1

αx ′ex ′
))

ex2 , by (3.3.2)

=
∑
y∈J1

( ∑
x∈Iy ,

∑
αx=0

αx

(
ex∗x2 + e(x∗x1)∗x2

))
+
( ∑

x ′∈Iy1 ,
∑
αx′=1

αx ′ex ′∗x2

)
=

∑
y∈J1

( ∑
x∗x2∈Iy∗y2 ,

∑
αx=0

αx

(
ex∗x2 + e(x∗x2)∗(x1∗x2)

))
+
( ∑

x ′∗x2∈Iy1∗y2 ,
∑
αx′=1

αx ′ex ′∗x2

)
,

where x1 ∗ x2 ∈ Iy1∗y2 .

Thus, we have proved that uv ∈ I . The preceding computation also shows that the right

multiplication by v is precisely the right multiplication by ex2 for any fixed x2 ∈ Iy2 . In other

words, the right multiplication by v is the ring automorphism Ŝx2 of k[X ]. This proves that

the set I is a quandle.

As an immediate consequence of Proposition 3.3.10, we have the following.
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Corollary 3.3.6. Let p : X → Y be a quandle covering such that X is involutory and k[Y ]

has only trivial idempotents. Then the following hold:

1. The set of all idempotents of k[X ] is a quandle with respect to the ring multiplication.

2. The right multiplication by each idempotent of k[X ] is a ring automorphism induced by

some trivial idempotent of k[X ].

Note that Proposition 3.2.18 already proves the endomorphism assertion of Corollary

3.3.6(2) for all medial quandles.

3.4 Idempotents in Quandle Rings of Free Products

Definition 3.4.1. Let Xi = ⟨Si | Ri⟩ be a collection of n ≥ 2 quandles given in terms

of presentations. Then their free product X1 ⋆ X2 ⋆ · · · ⋆ Xn is the quandle defined by the

presentation

X1 ⋆ X2 ⋆ · · · ⋆ Xn = ⟨S1 ⊔ S2 ⊔ · · · ⊔ Sn | R1 ⊔ R2 ⊔ · · · ⊔ Rn⟩.

Example 3.4.2. The free quandle FQn of rank n can be seen as

FQn = ⟨x1⟩ ⋆ ⟨x2⟩ ⋆ · · · ⋆ ⟨xn⟩,

the free product of n copies of trivial one element quandles ⟨xi⟩.

It follows from the right distributivity axiom in a quandle X that

x ∗ϵ (y ∗µ z) =
((
x ∗−µ z

)
∗ϵ y

)
∗µ z (3.4.1)

for all x , y , z ∈ X and ϵ,µ ∈ {−1, 1}. For ease of notation, we write a left-associated product

((· · · ((x0 ∗ϵ1 x1) ∗ϵ2 x2) ∗ϵ3 · · · ) ∗ϵn−1 xn−1) ∗ϵn xn
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simply as

x0 ∗ϵ1 x1 ∗ϵ2 · · · ∗ϵn xn.

Remark 3.4.3. A repeated use of equation (3.4.1) gives the following result [34, Lemma 4.4.8].

Lemma 3.4.1. Let X be a quandle. Then the product

(x0 ∗ϵ1 x1 ∗ϵ2 · · · ∗ϵm xm) ∗µ0 (y0 ∗µ1 y1 ∗µ2 · · · ∗µn yn)

of two left-associated expressions in X is the left-associated expression

x0 ∗ϵ1 x1 ∗ϵ2 · · · ∗ϵm xm ∗−µn yn ∗−µn−1 yn−1 ∗−µn−2 · · · ∗−µ1 y1 ∗µ0 y0 ∗µ1 y1 ∗µ2 · · · ∗µn yn.

The quandle axioms imply that each element of a quandle X has a canonical left-

associated expression x0∗ϵ1 x1∗ϵ2 · · ·∗ϵn xn, where x0 ̸= x1, and if xi = xi+1 for any 1 ≤ i ≤ n−1,

then ϵi = ϵi+1.

Lack of associativity in quandles makes it hard to have a normal form for elements in

free products of quandles. We overcome this difficulty by defining a length for elements in

free products. Let X = X1 ⋆ X2 ⋆ · · · ⋆ Xn be the free product of n ≥ 2 quandles. Given an

element w ∈ X , we define the length ℓ(w) of w as

ℓ(w) = min
{
r | w can be written as a canonical left associated product of r

elements from X1 ⊔ X2 ⊔ · · · ⊔ Xn

}
.

Notice that each w ∈ X has a reduced left associated expression attaining the length ℓ(w).

This can be done by gathering together all the leftmost alphabets in a left associated ex-

pression of w that lie in the same component quandle Xi , and rename it as a single element

of Xi . This shows that ℓ(w) = 1 if and only if w ∈ Xi for some i . Equivalently, ℓ(w) ≥ 2

41



if and only if w ∈ X \ (⊔n
s=1Xs). For example, if x1, x2 ∈ Xi and y1, y2 ∈ Xj for i ̸= j , then

ℓ(x1 ∗ x2) = 1, ℓ(x1 ∗ x2 ∗−1 x1) = 1, ℓ(x1 ∗ y1) = 2, ℓ(x1 ∗ y1 ∗ y2) = 3 and ℓ(x1 ∗ y1 ∗ y2 ∗ x2) = 4.

Note that, if X = X1 ⋆ X2 ⋆ · · · ⋆ Xn, then every u ∈ k[X ] can be written uniquely in the

form

u = u1 + u2 + · · ·+ un + v , (3.4.2)

where each ui ∈ k[Xi ], v =
∑m

k=1 γkewk
with each ℓ(wk) ≥ 2 and γk ∈ k.

Proposition 3.4.4. Let X = X1 ⋆ X2 ⋆ · · · ⋆ Xn be the free product of n quandles such that

each k[Xi ] has only trivial idempotents. Then any idempotent u of k[X ] can be written

uniquely as

u = α1ex1 + α2ex2 + · · ·+ αnexn + v ,

where xi ∈ Xi , v =
∑m

k=1 γkewk
with ℓ(wk) ≥ 2 and αi , γk ∈ k for all i and k .

Proof. For each i , fix an element zi ∈ Xi . Then the maps pi : X → Xi defined by setting

pi(x) =

 x if x ∈ Xi ,

zi if x ∈ Xj for j ̸= i .

The universal property of free products implies that each pi is a quandle homomorphism. Let

u = u1 + u2 + · · ·+ un + v be an idempotent of k[X ], where each ui ∈ k[Xi ], v =
∑m

k=1 γkewk

with ℓ(wk) ≥ 2 and γk ∈ k. Then p̂i(u) is an idempotent in k[Xi ] for each i . Since each k[Xi ]

has only trivial idempotents and

p̂i(u) = ui +
n∑

j ̸=i , j=1

ϵ(uj)ezi + p̂i(v),

it follows that ui = αiexi for some xi ∈ Xi and αi ∈ k. Note that if ϵ(uj) ̸= 0 for any j ̸= i ,

then xi = zi . Thus, u = α1ex1 + α2ex2 + · · ·+ αnexn + v , and we are done.
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Lemma 3.4.2. Let X = X1 ⋆ X2 ⋆ · · · ⋆ Xn be the free product of n quandles with n ≥ 2. Let

u ∈ k[X ] be an idempotent and u = u1 + u2 + · · ·+ un + v be its unique decomposition as in

(3.4.2). Suppose that

1. ℓ(wk ∗ wl) ≥ 2 for any k and l .

2. ℓ(wk ∗ x) ≥ 2 for any x ∈ ⊔n
s=1Xs and any k.

Then ui is an idempotent of k[Xi ] for each i .

Proof. Since u = u2, we have

u1 + u2 + · · ·+ un + v = u2
1 + u2

2 + · · ·+ u2
n + v 2 +

n∑
i ̸=j , i ,j=1

uiuj +
n∑

i=1

uiv +
n∑

j=1

vuj . (3.4.3)

If v = 0, then (3.4.3) takes the form

u1 + u2 + · · ·+ un = u2
1 + u2

2 + · · ·+ u2
n +

n∑
i ̸=j , i ,j=1

uiuj . (3.4.4)

For 1 ≤ i ̸= j ≤ n, each basis element of k[X ] appearing in a product uiuj corresponds to

a quandle element from X \ (⊔n
s=1Xs). For each 1 ≤ i ≤ n, gathering all the summands on

the right hand side of (3.4.4) corresponding to elements from the quandle Xi implies that

ui = u2
i , which is desired.

Now suppose that v ̸= 0. For each 1 ≤ k , l ≤ m, the condition ℓ(wk ∗wl) ≥ 2 implies that

the basis element of k[X ] corresponding to the quandle element wk ∗ wl does not appear as

a summand for any uj . Further, each basis element appearing in a product uiv corresponds

to a quandle element of the form x ∗wk for some x ∈ Xi and some 1 ≤ k ≤ m. But, we have

ℓ(x ∗ wk) ≥ 2 for such elements. Lastly, the condition ℓ(wk ∗ x) ≥ 2 for any x ∈ ⊔n
s=1Xs also

implies that the basis element of k[X ] corresponding to the quandle element wk ∗ x does not

appear as a summand for any uj . For each 1 ≤ i ≤ n, gathering together all the summands

on the right hand side of (3.4.3) corresponding to elements from the quandle Xi imply that

ui = u2
i , which is desired.
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Theorem 3.4.3. Let FQn be the free quandle of rank n ≥ 1. Then Z[FQn] has only trivial

idempotents.

Proof. An analogue of the Nielsen–Schreier theorem stating that every subquandle of a free

quandle is free has been proved recently in [22]. Let FQ2 = ⟨x⟩ ⋆ ⟨y⟩ be the free quandle of

rank two. Then,

FQn
∼= ⟨x⟩ ⋆ ⟨x ∗ y⟩ ⋆ ⟨x ∗ y ∗ y⟩ ⋆ · · · ⋆ ⟨x ∗ y ∗ y ∗ · · · ∗ y︸ ︷︷ ︸

(n−1) times

⟩

and embeds as a subquandle of FQ2 for each n ≥ 3. Thus, it suffices to prove that Z[FQ2]

has only trivial idempotents.

Let u = αex +βey +v be an idempotent of Z[FQ2], where v =
∑m

k=1 γkewk
with ℓ(wk) ≥ 2

and α, β, γk ∈ Z. If v = 0, then Lemma 3.4.2 implies that αex = α2ex and βey = β2ey .

Hence, either u = ex or u = ey , and u is a trivial idempotent.

Now, suppose that v ̸= 0. Note that the first two leftmost alphabets in the reduced left

associated expression of each wk are distinct. We claim that γk = 1 for each k . This will be

achieved by transforming the idempotent u into a new idempotent such that conditions of

Lemma 3.4.2 are satisfied. Fix a k such that 1 ≤ k ≤ m and write

wk = x0 ∗ϵ1 x1 ∗ϵ2 x2 ∗ϵ3 · · · ∗ϵr xr ,

in its reduced left associated expression, where xi ∈ {x , y} and ϵi ∈ Z for each i . Since the

expression is reduced, without loss of generality, we can assume that x0 = x and x1 = y .

Consider the inner automorphism

ϕ = Sx0Sx0S
−ϵ1
x1

S−ϵ2
x2

· · · S−ϵr−1
xr−1

S−ϵr
xr

of FQ2. We analyse the effect of ϕ on each summand of u. First note that ϕ(wk) = x0 = x .

Consider any fixed wi for i ̸= k and write wi = y0 ∗µ1 y1 ∗µ2 y2 ∗µ3 · · · ∗µs ys in its reduced left
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associated expression, where yt ∈ {x , y} and µt ∈ Z for each t. We have

ϕ(wi) = y0 ∗µ1 y1 ∗µ2 y2 ∗µ3 · · · ∗µs ys ∗−ϵr xr ∗−ϵr−1 xr−1 ∗−ϵr−2 · · · ∗−ϵ1 x1 ∗ x0 ∗ x0.

Considering the cases s = r , s > r and s < r , and using the fact that the set of alphabets is

{x , y}, we obtain ℓ(ϕ(wi)) ≥ 3. This clearly implies that ϕ(wi) ∗ x ,ϕ(wi) ∗ y ̸∈ {x , y} for any

i ̸= k . Now consider another wj for j ̸= k and j ̸= i and write wj = z0 ∗ν1 z1 ∗ν2 z2 ∗ν3 · · · ∗νl zl

in its reduced left associated expression, where zt ∈ {x , y} and νt ∈ Z for each t. Then

Lemma 3.4.1 gives

ϕ(wi) ∗ ϕ(wj)

= ϕ(wi ∗ wj)

=
(
(y0 ∗µ1 y1 ∗µ2 · · · ∗µs ys)(z0 ∗ν1 z1 ∗ν2 · · · ∗νl zl)

)
∗−ϵr xr ∗−ϵr−1 xr−1 ∗−ϵr−2 · · · ∗−ϵ1 x1 ∗ x0 ∗ x0

= y0 ∗µ1 y1 ∗µ2 · · · ∗µs ys ∗−νl zl ∗−νl−1 zl−1 ∗−νl−2 · · · ∗−ν1 z1 ∗ z0 ∗ν1 z1 ∗ν2 · · · ∗νl zl

∗−ϵr xr ∗−ϵr−1 xr−1 ∗−ϵr−2 · · · ∗−ϵ1 x1 ∗ x0 ∗ x0.

As before, by comparing ℓ(wi ∗ wj) and r , we obtain ℓ
(
ϕ(wi) ∗ ϕ(wj)

)
≥ 3. If α and β are

non-zero, then ℓ(ϕ(x)), ℓ(ϕ(y)) ≥ 3 for the same reason. Thus, the only summand of the

idempotent ϕ(u) = αeϕ(x)+βeϕ(y)+
∑m

k=1 γkeϕ(wk ) that corresponds to an element from {x , y}

is ϕ(wk), and all the summands corresponding to ϕ(wi) for i ̸= k satisfy the conditions of

Lemma 3.4.2. Thus, we obtain γkeϕ(wk ) = (γkeϕ(wk ))
2, and hence γk = 1, which proves the

claim. On plugging this information back to u, we can write u = αex + βey +
∑m

k=1 ewk
.
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Since u is an idempotent, we have

αex + βey +
m∑

k=1

ewk
= α2ex + β2ey +

m∑
k, l=1

ewk∗wl
+ αβex∗y + αβey∗x

+α
m∑

k=1

ex∗wk
+ α

m∑
k=1

ewk∗x + β
m∑

k=1

ey∗wk
+ β

m∑
k=1

ewk∗y .

Comparing coefficients of ex gives

α = α2, α = α2 +
∑

wk∗wl=x

1, α = α2 + β or α = α2 +
∑

wk∗wl=x

1 + β.

Similarly, comparing coefficients of ey gives

β = β2, β = β2 +
∑

wk∗wl=y

1, β = β2 + α or β = β2 +
∑

wk∗wl=y

1 + α.

A direct check shows that the only possible cases are

α = α2 and β = β2,

α = α2 + β and β = β2,

α = α2 and β = β2 + α,

α = α2 + β and β = β2 + α.

This together with the fact that ε(u) = α+ β +m shows that α = β = 0 and m = 1. Hence,

u = ew for some w ∈ FQ2, and the proof is complete.

Since the link quandle of a trivial link with n components is the free quandle of rank n,

we have

Corollary 3.4.4. If L is a trivial link, then Z[Q(L)] has only trivial idempotents.

We denote by ring(k[X ]) the group of k-algebra automorphisms of k[X ], that is, ring

automorphisms of k[X ] that are k-linear. Let WBn be the welded braid group on n-strands.
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See [9] for a nice survey of these groups. As an application to automorphisms of quandle

rings, we have

Corollary 3.4.5. ring

(
Z[FQn]

) ∼=quandle (FQn) ∼= WBn for each n ≥ 1.

Proof. Obviously, each automorphism of FQn induces an automorphism of Z[FQn]. Con-

versely, if ϕ ∈ring

(
Z[FQn]

)
, then ϕ is a bijection of the set I

(
Z[FQn]

)
of all idempotents.

Since Z[FQn] has only trivial idempotents, FQn
∼= I

(
Z[FQn]

)
via the map x 7→ ex , and hence

ϕ can be viewed as an automorphism of FQn, proving the first isomorphism. The second

isomorphism is a well-known result from [21].

3.5 Idempotents in Quandle Rings of Unions

Definition 3.5.1. Let {(Xi , ∗i)}i be a family of quandles. Then the binary operation

x ∗ y =


x ∗i y if x , y ∈ Xi ,

x if x ∈ Xi and y ∈ Xj for i ̸= j ,

turns the disjoint union ⊔iXi into a quandle called the union quandle.

Proposition 3.5.2. Let X = X1 ⊔ X2 ⊔ · · · ⊔ Xn be the disjoint union of n ≥ 2 quandles.

Then k[X ] contains idempotents of the following form:

1.
∑n

j=1 αjuj , where uj ∈ k[Xj ] is an idempotent with ε(uj) = 1 for each j and
∑n

i=1 αi = 1.

2.
∑n

j=1 uj , where ui ∈ k[Xi ] is an idempotent with ε(ui) = 1 and uj ∈ k[Xj ] satisfy u2
j = 0

for each j ̸= i .

3.
∑n

j=1 αj(
∑

x∈Xj
ex), where |Xj | <∞ and

∑n
i=1 αi |Xi | = 1.

Proof. We begin by noting that if u ∈ k[Xi ] and v ∈ k[Xk ] for i ̸= k , then uv = ε(v)u. For

assertion (1), take w =
∑n

j=1 αjuj , where uj is an idempotent of k[Xj ] and
∑n

i=1 αi = 1. Then
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we have

w 2 =
n∑

i ,j=1

αiαjuiuj =
n∑

i ,j=1

αiαjε(uj)ui =
n∑

i ,j=1

αiαjui =
n∑

j=1

αj

( n∑
i=1

αiui
)
=

n∑
j=1

αjw = w .

For assertion (2), take w =
∑n

j=1 uj , where ui is an idempotent in k[Xi ] and uj ∈ k[Xj ]

satisfy u2
j = 0 for each j ̸= i . Since ε(uj) = 0 for all j ̸= i and ε(ui) = 1, it follows that

w 2 =
n∑

k ̸=i , k,j=1

ujuk +
n∑

j=1

ujui =
n∑

k ̸=i , k,j=1

ε(uk)uj +
n∑

j=1

ε(ui)uj = w .

For assertion (3), suppose that |Xj | < ∞ for each j and take w =
∑n

j=1 αjvj , where

vj =
∑

x∈Xj
ex and

∑n
i=1 αi |Xi | = 1. Then we see that

w 2 =
n∑

i ,j=1

αiαjvivj =
n∑

i ,j=1

αiαj |Xj |vi =
n∑

i=1

( n∑
j=1

αj |Xj |
)
(αivi) =

n∑
i=1

αivi = w .

Remark 3.5.3. Note that Proposition 3.5.2 holds for arbitrary families of quandles. Further,

it appears that the proposition gives all idempotents of the quandle ring of a union of

quandles.

The union construction for two quandles has a twisted version when the quandles act on

each other by automorphisms (see [2, Proposition 11]). We consider a simple case of this

construction when both the quandles are trivial. Note that the automorphism group of a

trivial quandle is the permutation group of the underlying set. Let X ,Y be trivial quandles,

f ∈ (X ) and g ∈ (Y ). For x ∈ X and y ∈ Y , setting x ∗ y = f (x) and y ∗ x = g(y) defines

a quandle structure on the disjoint union X ⊔ Y , and we denote this quandle by X ⊔f ,g Y .

We prove a twisted version of Proposition 3.5.2.

Proposition 3.5.4. Let X and Y be trivial quandles of orders n and m, respectively. Let

f ∈ Aut(X ) and g ∈ Aut(Y ) be automorphisms acting transitively on X and Y , respectively.
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Then

I
(
k[X⊔f ,gY ]

)
= I

(
k[X ]

)
⊔ I

(
k[Y ]

)
⊔
{
α
(∑
x∈X

ex
)
+β

(∑
y∈Y

ey
) ∣∣ α,β ∈ k such that αn+βm = 1

}
.

Proof. Note that any u ∈ k[X ⊔f ,g Y ] can be written uniquely as u = v + w , where v =∑
x∈X αxex ∈ k[X ] and w =

∑
y∈Y βyey ∈ k[Y ]. If u = u2, then

v + w = v 2 + w 2 + vw + wv = ε(v)v + ε(w)w + ε(w)
∑
x∈X

αxef (x) + ε(v)
∑
y∈Y

βyeg(y),

and consequently

v = ε(v)v + ε(w)
∑
x∈X

αxef (x) and w = ε(w)w + ε(v)
∑
y∈Y

βyeg(y).

Comparing coefficients give

αx = ε(v)αx + ε(w)αf −1(x) (3.5.1)

and

βy = ε(w)βy + ε(v)βg−1(y) (3.5.2)

for all x ∈ X and y ∈ Y . Adding (3.5.1) for all x ∈ X gives ε(v) = ε(v)ε(u). Similarly,

adding (3.5.2) for all y ∈ Y gives ε(w) = ε(w)ε(u). If ε(u) = 0, then ε(v) = ε(w) = 0, and

hence u = 0, a contradiction. So, we can assume that ε(u) = 1, and hence at least one of

ε(v) or ε(w) is non-zero. If ε(v) ̸= 0, then (3.5.2) gives βy = βg−1(y) for all y ∈ Y . Since

g acts transitively on Y , it follows that βy = β (say) for all y ∈ Y . If β = 0, then w = 0.

In this case, u =
∑

x∈X αxex , where
∑

x∈X αx = 1, and hence u ∈ I
(
k[X ]

)
. If β ̸= 0, then

ε(w) = mβ ̸= 0, and (3.5.1) gives αx = αf −1(x) for all x ∈ X . Since f also acts transitively

on X , it follows that αx = α (say) for all x ∈ X . Thus, we have

u = α
(∑
x∈X

ex
)
+ β

(∑
y∈Y

ey
)
,

49



where nα + mβ = 1. Similarly, if ε(w) ̸= 0 and α = 0, then we get v = 0. In this case,

u =
∑

y∈Y βyey , where
∑

y∈Y βy = 1, and hence u ∈ I
(
k[Y ]

)
. This completes the proof.

3.6 Remarks and Some Open Questions

We conclude with some remarks and open problems motivated by the results in the

preceding sections.

1. All the idempotents computed in the preceding sections have augmentation value one,

and we believe that this is the case in general.

Conjecture 3.6.1. Every non-zero idempotent of a quandle ring has augmentation

value one.

2. Let Q(L) be the link quandle of a link L in R3 and X any quandle. It is well-known that

the set
(
Q(L),X

)
of all quandle homomorphisms extends the classical Fox colouring

invariant of links. A link invariant which determines the quandle coloring invariant is

called an enhancement of the quandle coloring invariant. Further, an enhancement is

proper if there are examples in which the enhancement distinguishes links which have

the same quandle coloring invariant. For instance, the quandle cocycle invariant is a

proper enhancement arising from quandle cohomology. Since each quandle homomor-

phism f : Q(L) → X induces a homomorphism f̂ : k[Q(L)] → k[X ] of quandle rings, it

turns out that ring

(
k[Q(L)], k[X ]

)
is an enhancement of

(
Q(L),X

)
. It is worth exploring

whether this enhancement has a cohomolgical interpretation.

3. If a quandle has a subquandle of order two, then Proposition 3.2.8 shows that its

quandle ring has non-trivial idempotents. A look at the table of quandles of order

upto 35 seems to suggest that every faithful and non-latin quandle has a subquandle

of order two.
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4. Proposition 3.2.11 shows that the quandle ring of the link quandle of the Hopf link

admit non-trivial idempotents. Similarly, Corollary 3.3.6 proves that the quandle ring

of the knot quandle of the long knot has non-trivial idempotents. It is interesting to

determine idempotents of quandle rings associated to other knots and links.

5. Quandle rings that have only trivial idempotents, quandle rings discussed in [4] and

quandle rings covered by Corollary 3.3.6 have the property that the right multiplication

by each idempotent is an automorphism of the quandle ring. Proposition 3.2.18 proves

that the right multiplication by an idempotent is always a ring endomorphism for

medial quandles. Remark 3.2.19 shows that the right multiplication by an idempotent

need not be injective over the field of rationals. Further, Remark 3.2.20 shows that

idempotents fail to satisfy right-distributivity in general. In view of these observations,

it would be interesting to classify quandles for which the set of all idempotents of their

quandle rings over appropriate coefficients form a quandle with respect to the ring

multiplication.

6. Our proof of Theorem 3.4.3 crucially uses the fact that FQ2 is the free product of

one element quandles. We believe that the result holds for arbitrary free products of

quandles whose quandle rings have only trivial idempotents.
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Chapter 4: Cocycle Invariants and Idempotents in Quandle Rings

In this chapter, we distinguish all of the 12965 prime oriented knots up to 13 crossings

using only 21 connected quandles and three quandles made of idempotents in quandle rings.

We also distinguish the 12965 knots from their mirror image using the same 24 quandles.

This chapter is based on [20]

Notation: C [i , j ] stands for j-th connected quandle of order i . The knot 12a125 represents

the 125-th alternating knot with 12 crossings, likewise 12n125 represents the 125-th non-

alternating knot with 12 crossings.(see [33])

4.1 Distinguishing Knots up to 12 crossings

Recall the Definition 2.3.1 of quandle 2-cocycle : For a quandle X and ϕ, a 2-cocycle with

coefficient in an abelian group A, if D(K ) is a diagram of a knot K , then, the state sum of

the knot diagram D(K ) is given by

Φ(D) =
∑
C

∏
τ

ϕ(x , y)ϵ

where the product is taken over all crossings of D and the sum is taken over all the possible

colorings of D.

It is known [6] that the coloring invariant of link is weaker than the quandle 2-cocycle

invariant of the link.

Below is an example of classes of knots which were not distinguished by coloring [7]. However,

we were able to distinguish them by using the 2-cocycle of C [12, 3], I
(
Z2[C [12, 3]]

)
and

C [13, 4].
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Example 4.1.1. Let X = C [12, 3] be the third connected quandle [33] of order 12. As a set

X = {1, 2, ..., 12}. Its quandle operation is given in terms of right multiplications as follows:

S1 = (2 12 5 10 11)(3 8 6 7 4) S2 = (1 11 7 4 12)(3 5 10 6 9) S3 = (1 2 7 6 10)(4 9 8 5 12)

S4 = (1 11 6 8 5)(2 7 9 3 12) S5 = (1 12 3 8 10)(2 4 9 6 11) S6 = (1 5 3 4 2)(7 11 10 8 9)

S7 = (1 10 8 3 12)(2 11 6 9 4) S8 = (1 12 5 7 11)(3 9 6 10 5) S9 = (2 11 10 5 12)(3 4 7 6 8)

S10 = (1 5 8 6 11)(2 12 3 9 7) S11 = (1 10 6 7 2)(4 12 5 8 9) S12 = (1 2 4 3 5)(7 9 8 10 11).

Using Maple software, we obtained the following 2-cocycle with coefficients in Z2. The map

ϕ : X × X → Z2 is given explicitly by

ϕ(3, 2) = 1, ϕ(3, 4) = 1, ϕ(4, 7) = 1, ϕ(4, 11) = 1, ϕ(6, 5) = 1, ϕ(6, 8) = 1,

ϕ(7, 6) = 1, ϕ(8, 3) = 1, ϕ(8, 12) = 1, ϕ(9, 2) = 1, ϕ(9, 3) = 1, ϕ(9, 4) = 1,

ϕ(9, 5) = 1, ϕ(9, 6) = 1, ϕ(9, 7) = 1, ϕ(9, 8) = 1, ϕ(9, 10) = 1, ϕ(9, 11) = 1,

ϕ(9, 12) = 1 and ϕ(x , y) = 0 for all other x , y ∈ Y .

Note that this 2-cocycle is not a coboundary since the value of the quandle cocycle invariant

of the knot 12n368 is given by Φ(C [12,3],ϕ)(12n368) = 40 + 32u.

The 2-cocycle invariant Φ(X ,ϕ)(K ) of the knots K ∈ {913, 914, 916, 920, 923, 924, 10123, 12n0572,

12n0576, 12n0578, 12n0580} has value 72.

To distinguish these knots further, we use the following quandle Y = I
(
Z2[X ]

)
. As a set, we

write Y = {1, 2, ..., 24} and we give its quandle structure by listing its right multiplication

given below:

S1 = S13 = (2 12 5 10 11)(3 8 6 7 4)(14 24 17 22 23)(15 20 18 19 16)

S2 = S14 = (1 11 7 4 12)(3 5 10 6 9)(13 23 19 16 24)(15 17 22 18 21)

S3 = S15 = (1 2 7 6 10)(4 9 8 5 12)(13 14 19 18 22)(16 21 20 17 24)

S4 = S16 = (1 11 6 8 5)(2 7 9 3 12)(13 23 18 20 17)(14 19 21 15 16)

S5 = S17 = (1 12 3 8 10)(2 4 9 6 11)(13 24 15 20 22)(14 16 21 18 23)

S6 = S18 = (1 5 3 4 2)(7 11 10 8 9)(13 17 15 16 14)(19 23 22 20 18)

S7 = S19 = (1 10 8 3 12)(2 11 6 9 4)(13 22 20 15 24)(14 23 18 21 16)

S8 = S20 = (1 12 5 7 11)(3 9 6 10 5)(13 24 16 19 23)(15 21 18 22 17)

S9 = S21 = (2 11 10 5 12)(3 4 7 6 8)(14 23 22 17 24)(15 16 19 18 20)
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S10 = S22 = (1 5 8 6 11)(2 12 3 9 7)(13 17 20 18 23)(14 24 15 21 19)

S11 = S23 = (1 10 6 7 2)(4 12 5 8 9)(13 22 18 19 14)(16 24 17 20 21)

S12 = S24 = (1 2 4 3 5)(7 9 8 10 11)(13 14 16 15 17)(19 21 20 22 23)

with 2-cocycle map ψ : Y × Y → Z2 given by

ψ(3, 2) = 1, ψ(3, 4) = 1, ψ(3, 16) = 1, ψ(4, 7) = 1, ψ(4, 11) = 1,

ψ(4, 19) = 1, ψ(4, 23) = 1, ψ(7, 6) = 1, ψ(7, 10) = 1, ψ(7, 18) = 1,

ψ(7, 22) = 1, ψ(8, 3) = 1, ψ(8, 12) = 1, ψ(8, 15) = 1, ψ(8, 24) = 1,

ψ(9, 2) = 1, ψ(9, 3) = 1, ψ(9, 4) = 1, ψ(9, 5) = 1, ψ(9, 6) = 1,

ψ(9, 7) = 1, ψ(9, 8) = 1, ψ(9, 10) = 1, ψ(9, 11) = 1, ψ(9, 12) = 1,

ψ(9, 14) = 1, ψ(9, 15) = 1, ψ(9, 20) = 1, ψ(9, 22) = 1, ψ(9, 23) = 1,

ψ(9, 24) = 1, and ψ(x , y) = 0 for all other x , y ∈ Y .

This further breaks down the set of knots into the following partition {913, 914, 916, 920, 923, 924}⊔

{10123, 12n0572} ⊔ {12n0576} ⊔ {12n0578} ⊔ {12n0580} since the cocycle invariants for each par-

tition are respectively 144, 106 + 38u, 58 + 86u, 120 + 24u and 64 + 80u.

To completely distinguish all the knots, we use the following quandle C [13, 4]. As a set we

denote it by W = {1, 2, 3, ..., 13}. Its quandle operation is given in terms of right multipli-

cations by

S1 = (2 9 13 6)(3 4 12 11)(5 7 10 8) S2 = (1 7 3 10)(4 5 13 12)(6 8 11 9)

S3 = (1 13 5 6)(2 8 4 11)(7 9 12 10) S4 = (1 6 7 2)(3 9 5 12)(8 10 13 11)

S5 = (1 12 9 11)(2 7 8 3)(4 10 6 13) S6 = (1 5 11 7)(2 13 10 12)(3 8 9 4)

S7 = (1 11 13 3)(2 6 12 8)(4 9 10 5) S8 = (1 4 2 12)(3 7 13 9)(5 10 11 6)

S9 = (1 10 4 8)(2 5 3 13)(6 11 12 7) S10 = (1 3 6 4)(2 11 5 9)(7 12 13 8)

S11 = (1 9 8 13)(2 4 7 5)(3 12 6 10) S12 = (1 2 10 9)(3 5 8 6)(4 13 7 11)

S13 = (1 8 12 5)(2 3 11 10)(4 6 9 7).

Now we consider the following 2-cocycle map ϑ : W ×W → Z3 given by
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Table 4.1 Distinguishing knots using two connected quandles and its idempotents

K Φ(X ,ϕ)(K ) Ψ(Y ,ψ)(K ) Θ(W ,ϑ)(K )
913 72 144 11u2 + 42u + 52
914 72 144 20u2 + 5u + 14
916 72 144 69 + 14u
920 72 144 7u2 + 13u + 20
923 72 144 13
924 72 144 45u2 + 37u + 13
10123 72 106 + 38u 3u2 + 20u + 17
12n0572 72 106 + 38u 100u2 + 70u + 11
12n0576 72 58 + 86u 20u2 + 135u + 10
12n0578 72 120 + 24u 16u2 + 104u + 13
12n0580 72 64 + 80u 78u2 + 90u + 11

ϑ(1, 12) = 1, ϑ(2, 10) = 1, ϑ(3, 8) = 1, ϑ(4, 6) = 1, ϑ(5, 4) = 1,

ϑ(6, 2) = 1, ϑ(7, 13) = 1, ϑ(8, 11) = 1, ϑ(9, 1) = 2, ϑ(9, 2) = 2,

ϑ(9, 3) = 2, ϑ(9, 4) = 2, ϑ(9, 5) = 2, ϑ(9, 6) = 2, ϑ(9, 7) = 2,

ϑ(9, 8) = 2, ϑ(9, 10) = 2, ϑ(9, 11) = 2, ϑ(9, 12) = 2, ϑ(9, 13) = 2,

ϑ(10, 7) = 1, ϑ(11, 5) = 1, ϑ(12, 3) = 1, ϑ(13, 1) = 1, and

ϑ(x , y) = 0 for all other x , y ∈ W .

Finally, we are able to distinguish all the above knots in the following table:

In a similar manner, we present a table that distinguish some non-alternating knots of

12 crossings.

Table 4.2 Distinguishing non-alternating knots of 12 crossings using two connected
quandles and its idempotents

K CX (K ) Φ(X ,ϕ)(K ) Ψ(Y ,ψ)(K )
12n0573 132 68 + 64u 136 + 128u
12n0575 132 48 + 84u 172 + 92u
12n0577 132 48 + 84u 144 + 120u
12n0579 132 76 + 56u 96 + 168u
12n0581 192 94 + 98u 196 + 188u
12n0594 192 94 + 98u 240 + 144u
12n0574 312 72 + 240u 320 + 304u
12n0737 312 72 + 240u 324 + 300u
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In conclusion, the triplet (Φ(X ,ϕ)(K ), Ψ(Y ,ϕ)(K ), Θ(W ,ϑ)(K )) distinguishes all the above men-

tioned knots completely. Following this strategy we were able to distinguish all knots up to

12 crossings using 13 quandles listed in the (see AppendixA).

The following example distinguishes all the knots of 9 crossings using only 3 connected

quandles and quandles made of its idempotents in quandle rings.

Example 4.1.2. Consider X = C [12, 3], Y = I
(
Z2[X ]

)
Z = C [13, 7] and W = C [16, 3].

Let ϕ : X×X → Z2, ψ : Y ×Y → Z2, γ : Z×Z → Z2, ϑ : W×W → Z2 be respectively the 2-

cocycle maps of X ,Y ,Z andW . Then the quadruple (Φ(X ,ϕ)(K ), Ψ(Y ,ϕ)(K ), Γ(Z ,γ)(K ), Θ(W ,ϑ)(K ))

distinguishes all the knots of 9 crossings fully given below.

Table 4.3 Distinguishing all knots of 9 crossings part 1

K Φ(X ,ϕ)(K ) Ψ(Y ,ψ)(K ) Γ(Z ,γ)(K ) Θ(W ,ϑ)(K )
91 72 144 13 241
913 72 144 13 82 + 86u
914 72 144 13 49 + 104u
916 72 144 13 16
920 72 144 13 90 + 51u
923 72 144 13 87 + 56u
924 72 144 13 70 + 98u
95 72 48 + 96u 13 16
96 72 90 + 54u 13 16

Similarly, the following example distinguishes knots of 11 crossings and 12 crossings

(alternating and non-alternating) using 4 connected quandles and quandles makde out of its

idempotents in quandle rings.

Example 4.1.3. Consider the quandles X = C [12, 3], Y = I
(
Z2[X ]

)
, Z = C [13, 7],

W = C [16, 3] and V = C [16, 4] (see Appendix A for these quandles in terms of its right

multiplication).

Let ϕ : X × X → Z3, ψ : Y × Y → Z3, γ : Z × Z → Z3, ϑ : W × W → Z3,

ζ : V × V → Z3 be respectively the 2-cocycle maps of X ,Y ,Z ,W and V . Then the

quintuple (Φ(X ,ϕ)(K ), Ψ(Y ,ϕ)(K ), Γ(Z ,γ)(K ), Θ(W ,ϑ)(K ), ξ(V ,ζ)(K )) fully distinguishes the given

set of knots of 11 crossings and 12 crossings (alternating and non-alternating).
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Table 4.4 Distinguishing all knots of 9 crossings part 2

K Φ(X ,ϕ)(K ) Ψ(Y ,ψ)(K ) Γ(Z ,γ)(K ) Θ(W ,ϑ)(K )
92 12 24 70 + 99u 16
98 12 24 54 + 106u 16
99 12 24 169 16
910 12 24 13 16
911 12 24 84 + 85u 16
912 12 24 129 + 40u 16
936 12 24 114 + 55u 16
93 12 24 13 87 + 160u
94 12 24 13 85 + 160u
926 12 24 27 + 38u 85 + 160u
943 12 24 169 85 + 160u
97 12 24 23 + 42u 87 + 156u
922 12 24 13 87 + 156u
944 12 24 57 + 8u 87 + 156u
915 12 24 13 32 + 48u
917 12 24 13 86 + 158u
918 12 24 13 90 + 150u
919 12 24 13 48 + 32u
921 12 24 13 104 + 54u
928 12 24 13 96 + 90u
931 12 24 13 80 + 112u
933 12 24 169 160 + 32u
934 12 24 169 54 + 16u
942 12 24 169 84 + 116u
945 12 24 169 32 + 48u
926 36 + 36u 60 + 84u 151 + 18u 104 + 54u
929 36 + 36u 48 + 96u 13 87 + 56u
938 40 + 32u 92 + 52u 65 + 20u 110 + 48u
939 40 + 32u 96 + 48u 65 + 20u 124 + 34u
940 42 + 30u 48 + 96u 169 124 + 34u
947 40 + 32u 144 169 48 + 30u
949 40 + 32u 98 + 46u 13 48 + 30u
931 40 + 32u 92 + 52u 13 64 + 64u
928 44 + 28u 144 48 + 96u 64 + 64u
935 132 264 13 87 + 148u
937 132 264 118 + 51u 85 + 146u
946 132 120 + 144u 13 85 + 146u
948 132 140 + 124u 100 + 69u 85 + 146u
941 132 120 + 144u 13 87 + 54u
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Table 4.5 Distinguishing 11 crossings and 12 crossings knots

K Φ(X ,ϕ)(K ) Ψ(Y ,ϕ)(K ) Γ(Z ,γ)(K ) Θ(W ,ϑ)(K ) ξ(V ,ζ)(K )
11a127 72 144 14u2 + 13u + 38 16 16
11a130 72 144 13u2 + 42u + 10 16 56u2 + 80 + 70
11n174 72 144 13u2 + 42u + 10 16 48u2 + 80u + 78
11n175 24u2 + 6u + 42 48u2 + 12u + 84 13 24u2 + 48u + 78 16
12n388 24u2 + 6u + 42 24u2 + 48u + 72 13 24u2 + 96u + 24 16
12n389 30u2 + 6u + 36 42u2 + 16u + 88 169 16 16
12n390 30u2 + 6u + 36 24u2 + 48u + 72 14u2 + 13u + 38 16 16
11a129 132 60u2 + 168u + 36 13 24u2 + 96u + 24 16
11n176 132 264 13 24u2 + 90u + 30 16
11n177 132 72u2 + 168u + 24 13 24u2 + 90u + 30 16
11n178 36u2 + 84u + 12 72u2 + 168u + 24 13 24u2 + 48u + 78 16
11n179 36u2 + 84u + 12 60u2 + 168u + 36 13 24u2 + 48u + 78 16
12a412 32u2 + 84u + 16 264 13 16 24u2 + 48u + 16
12a413 32u2 + 84u + 16 264 13 16 24u2 + 42u + 22
11a126 252 504 85u2 + 69u + 15 24u2 + 96u + 24 16
11a132 252 504 13u2 + 42u + 10 24u2 + 90u + 30 16
11n172 252 504 169 16 16
11n173 120u2 + 84u + 48 240u2 + 168u + 96 13 16 16
12n387 120u2 + 84u + 48 240u2 + 168u + 96 169 16 16
12n391 120u2 + 84u + 48 240u2 + 168u + 96 13u2 + 42u + 10 24u2 + 48u + 78 16
11a128 12 24 14u2 + 13u + 38 16 24u2 + 24u + 30
11a131 12 24 14u2 + 13u + 38 16 12u2 + 24u + 42
12a418 12 24 13 16 56u2 + 80u + 70
12a419 12 24 13 16 16u2 + 24u + 38
12a417 12 24 13 72u2 + 24u + 48 24u2 + 16u + 48
11a133 12 24 85u2 + 69u + 15 60u2 + 60u + 16 16
12a414 12 24 85u2 + 69u + 15 48u2 + 32u + 16 16
12a415 12 24 169 72u2 + 24u + 48 20u2 + 24u + 34
12a416 12 24 13u2 + 42u + 10 72u2 + 24u + 48 24u2 + 16u + 48

Based on the above examples, we formulate the following conjecture for knots up to 12

crossings.

Conjecture 4.1.4. Let X be a quandle and ϕ : X × X → A be a 2-cocycle. Let Y =

I(Z2[X ]) be the set of idempotents in the quandle ring Z2[X ] such that Y is a quandle and

ψ : Y × Y → A be a 2-cocycle. Then the cocycle invariant Ψ(Y ,ψ)(K ) is an enhancement of

the cocycle invariant Φ(X ,ϕ)(K ) for all prime oriented knots up to 12 crossings.

This can further be extended to give the following generalized conjecture

Conjecture 4.1.5. There exists a finite sequence of quandles (X1,X2,X3, ...,Xk) such that

Ψ(K ) =
(
Φ(X1,ϕ1)(K ), ..., Φ(Xk ,ϕk )(K ), Φ(I(Z2[X1]),ψ1)(K ), ..., Φ(I(Z2[Xk ]),ψk )(K )

)
is an invariant. In
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other words,

Φ(K ) = Φ(K ′) if and only if K = K ′ for all K in the list of knots up to 12 crossings.

Example 4.1.6. For a knot K let m(K ) denote the mirror image of K . We say that a knot K

is positive amphicheiral if K = m(K ). In this example, we give two knots which are not dis-

tinguished from their mirror image by the Jones polynomial or by the quandle coloring, but

we are able to distinguish them using the pair of 2-cocycle invariants (Φ(X ,ϕ)(K ), Φ(Y ,ψ)(K ))

where X = C [12, 3] and Y = I
(
Z2[C [12, 3]]

)
.

Table 4.6 Distinguishing knots from its mirror image

K CX (K ) Jones Polynomial
(
Φ(X ,ϕ)(K ), Ψ(Y ,ψ)(K )

)
942 24 t−3 − t−2 + t−1 − 1+ (24, 48)

m(942) 24 t − t2 + t3 (24, 32u + 16)
12a669 24 −t−6 + 2t−5 − 4t−4 + 6t−3 − 7t−2 + 9t−1 − 9+ (24, 48)

m(12a669) 24 9t − 7t2 + 6t3 − 4t4 + 2t5 − t6 (24, 12u + 36)

4.2 Distinguishing Knots of 13 crossings

We extended our computation towards 13 crossing knots for both alternating and non-

alternating to support our Conjecture 4.1.5. It turns out that we needed 24 quandles to

distinguish these knots up to 13 crossings. For example, consider the quandle X = C [12, 3]

and Y = I
(
Z2[X ]

)
. We compute the 2-cocycle invariants Φ(X ,ϕ)(K ) and Ψ(Y ,ψ)(K ) using

these two quandles. Now, we iterate the process of taking idempotents and consider the

set W = I
(
Z2[I

(
Z2[X ]

)
]
)
. We find that this set W also forms a quandle. Additionally,

the 2-cocycle invariant Θ(W ,ϑ)(K ) from W is stronger than the previous 2-cocycle invariant

Φ(X ,ϕ)(K ) and Ψ(Y ,ψ)(K ) from X and Y respectively. The following table further supports

the claim:

Below in another example of knots of 13 crossings (alternating and non-alternating)

distinguished fully using 4 connected quandles and quandles made out of its idempotents in

quandle rings.
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Table 4.7 Distinguishing knots of 13 crossings using iteration of idempotents in quandle
rings

K Φ(X ,ϕ)(K ) Ψ(Y ,ψ)(K ) Θ(W ,θ)(K )
13120 132 264 528
13482 132 264 280 + 248u
13484 48 + 84u 144 + 120u 252 + 276u
13485 48 + 84u 144 + 120u 240 + 288u
131596 48 + 84u 144 + 120u 360 + 168u

Example 4.2.1. Consider X = C [12, 3], Y = I
(
Z2[X ]

)
, Z = C [13, 7], W = C [16, 3] and

V = C [16, 4] (see Appendix A for these quandles in terms of its right multiplication).

Letϕ : X × X → Z3, ψ : Y × Y → Z3, γ : Z × Z → Z3, ϑ : W ×W → Z3, ζ : V × V → Z3

be respectively the 2-cocycle maps of X ,Y ,Z ,W and V .

Then the quintuple (Φ(X ,ϕ)(K ), Ψ(Y ,ϕ)(K ), Γ(Z ,γ)(K ), Θ(W ,ϑ)(K ), ξ(V ,ζ)(K )) fully distin-

guishes the given set of knots of 13 crossings (alternating and non-alternating) as given

below.

Table 4.8 Distinguishing 13 crossings knots

K Φ(X ,ϕ)(K ) Ψ(Y ,ϕ)(K ) Γ(Z ,γ)(K ) Θ(W ,ϑ)(K )) ξ(V ,ζ)(K )
13a2363 12 24 13 60u2 + 60u + 16 16
13a2366 12 24 13 48u2 + 32u + 16 16
13a2367 12 24 169 24u2 + 48u + 78 16
13n8806 12 24 169 24u2 + 96u + 24 16
13n8809 12 24 169 72u2 + 24u + 48 16
13n8810 24u2 + 6u + 42 24u2 + 48u + 72 14u2 + 13u + 38 16 16
13n8811 24u2 + 6u + 42 24u2 + 48u + 72 13u2 + 42u + 10 16 56u2 + 80u + 70
13n8807 24u2 + 6u + 42 24u2 + 48u + 72 85u2 + 69u + 15 16 56u2 + 80u + 70
13a2364 24 24u2 + 16u + 8 13 24u2 + 48u + 78 24u2 + 24u + 30
13a2365 24 16u2 + 16u + 16 13 24u2 + 48u + 78 24u2 + 24u + 30
13n8808 24 12u2 + 20u + 16 13 24u2 + 48u + 78 20u2 + 24u + 34
13n8818 24 8u2 + 16u + 24 13 24u2 + 48u + 78 20u2 + 24u + 34
13n8817 40u2 + 50u + 42 90u2 + 96u + 78 169 24u2 + 96u + 24 16
13a2371 30u2 + 60u + 42 82u2 + 90u + 92 169 24u2 + 96u + 24 16
13a2372 36u2 + 56u + 42 60u2 + 92u + 112 169 24u2 + 96u + 24 16
13n8816 20u2 + 72u + 40 264 14u2 + 13u + 38 16 56u2 + 80u + 70
13n8815 20u2 + 72u + 40 264 14u2 + 13u + 38 16 20u2 + 24u + 34
13a2368 20u2 + 72u + 40 264 85u2 + 69u + 15 16 24u2 + 24u + 30
13a2369 48u2 + 72u + 24 48u2 + 80u + 40 85u2 + 69u + 15 16 12u2 + 24u + 42
13a2370 48u2 + 72u + 24 80u2 + 160u + 120 13u2 + 42u + 10 16 24u2 + 16u + 48
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The article [7] defines some similarity of quandles. Precisely, for any two quandles X1,X2

and a family of knots K, we say X1 ≈ X2 if CX1(K ) = CX2(K ) for every K ∈ K.

In a similar manner we introduce a more general similarity of quandles using 2-cocycle

invariant of knots; i.e. for any two quandles and their respective 2-cocycles given by

(X1,ϕ), (X2,ψ) and a family of knots K, we say X1 ∼ X2 if Φ(X1,ϕ)(K ) = Ψ(X2,ψ)(K ) for

every K ∈ K.

Based on this, we have the following observation for all 12965 prime oriented knots up

to 13 crossings and the 24 quandles in our computation:

• There are a total of 3520 classes of ∼ consisting more than one quandle for knots up

to 13 crossings. For example:

– C [12, 3] ∼ C [12, 6] for K ∈ K = {92, 93, 94, 97, 99, 912, 913, 11a172, 11a190, 11a191,

12n0370, 12n0371, 12n0373, 12n376, 133108}.

– C [13, 7] ∼ C [13, 10] for K ∈ K = {74, 76, 77, 87, 89, 813, 817, 818, 1046, 1047, 1048,

1049, 1050, 1051, 1052, 11a151, 11a152, 11a171, 13528, 133109, 139089, 139090}.

• From the 3520 classes, there are 1460 classes containing more than two quandles for

knots up to 13 crossings.

– C [12, 3] ∼ C [12, 4] ∼ C [12, 6] for K ∈ K = {93, 95, 97, 98, 99, 12n0370, 12n0371,

12n0373, 12n376} .

– C [16, 3] ∼ C [16, 4] ∼ I
(
Z2[C [8, 1]]

)
for K ∈ K = {12n370, 12n371, 12n372, 12n373,

12n374, 12n376, 134039, 13535, 13544}

4.3 Description of the Algorithm

In this section, we give a complete description of the algorithm. The following algorithm

was inspired by http://shell.cas.usf.edu/∼saito/Maple/. The algorithm has three steps
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• Step 1. Given a quandle X, we check when the set of idempotents I
(
Z2[X ]

)
is a

quandle.

• Step 2. Using X and I
(
Z2[X ]

)
, we calculate the colorings of a given knot K using its

braid representation.

• Step 3. After obtaining the coloring, we calculate the State Sum Invariant of the knot

K .

Now we describe each of the 3 steps in details.

• Checking the set of idempotents I
(
Z2[X ]

)
is a quandle: We will denote by X

the family of quandles used in our computation. For a given X ∈ X , the following

algorithm checks if Y = I
(
Z2[X ]

)
is a quandle.

Given a finite set Y with binary operation we use Algorithm 4.1, Algorithm 4.2 and

Algorithm 4.3 to check if Y is a quandle. Precisely, we check that the set of idempo-

tents, with multiplication as the binary operation, is a quandle. Let n be the number

of elements in Y .

We first check the right-distributivity axiom for Y . If Y does not satisfy this axiom,

we stop the algorithm and return the statement: The Cayley table does not represent

a quandle. The algorithm for checking right-distributivity is described in Algorithm

4.1 i.e. for all a, b, c ∈ Y , (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).
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Algorithm 4.1 Right Distributivity

Input: Y - the Cayley table representing a candidate quandle

Input: n - the cardinality of the quandle described by Y

for a from 1 to n do

for b from 1 to n do

for c from 1 to n do

if Y[Y[a, b], c] is not equal to Y[Y[a, c], Y[b, c]] then

return False

end if

end for

end for

end for

After checking the right-distributivity axiom, we check that right multiplications in Y

is invertible. In other words, for any a, b ∈ Y , we verify that a ∗ (a ∗ b) = a ∗ b. We

check the invertibility of right multiplication by running two loops; one on a and one

on b. Fix a = 1 and vary on b from 1 to n. If a∗ (a∗b) ̸= a∗b then return value False.

If a ∗ (a ∗ b) = b then set a = 2, and vary b from 1 to n and so on. The algorithm for

invertibility of right multiplication is given below.
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Algorithm 4.2 Invertibility of Right Multiplication

Input: Y - the Cayley table representing a candidate quandle

Input: n - the cardinality of the quandle described by Y

for a from 1 to n do

for b from 1 to n do

if Y[a, Y[a,b]] is not equal to Y[a,b] then

return False

end if

end for

end for

Lastly, we use Algorithm 4.3 to check idempotency i.e. for any a ∈ Y , we have a∗a = a.

Fix a = 1 and check for a ∗ a. If a ∗ a ̸= a then return value False else proceed in

setting a = 2 and so on.

Algorithm 4.3 Idempotency Property

Input: Y - the Cayley table representing a candidate quandle
Input: n - the cardinality of the quandle described by Y

for a from 1 to n do
if Y[a, a] is not equal to a then

return False
end if

end for

• Finding the colorings of a knot K : Since every knot is the closure of a braid, to

obtain a coloring of the knot, we first color the braid as follows.

1. Let m be the braid index of the knot K .

64



2. Let x⃗ = (x1, x2, x3, ..., xi , xi+1, ..., xm) ∈ Xm be the top color of the braid.

3. At any i th crossing, if it is positive, then x⃗ becomes (x1, ..., xi+1, xi ∗ xi+1, ..., xm). if

the i th crossing is negative, then x⃗ becomes (x1, ..., xi+1∗̄xi , xi , ..., xm). Let (y1, y2, ..., ym)

be the bottom vector of the braid.

4. A solution of the system of equations y1 = x1, ..., ym = xm is a coloring of knot K

by the quandle X . We abuse the notation and use x⃗ to denote this coloring.

Python uses a list to store the braid representation and braid index of knots up to

13 crossings (The data of which is collected from [25] for knots up to 12 crossings

and from http://shell.cas.usf.edu/∼saito/QuandleColor/12965knotsGAP.txt for all 13

crossing knots). Python also uses a list to store the cayley table of all the 24 quandles

used in our computation.

• Calculating State Sum Invariant of K

1. Let x⃗ = (x1, x2, x3, ..., xm) ∈ C be a coloring.

2. At a positive with input color xi , xi+1 , we assign the Boltzmann weight ϕ(xi , xi+1)

(refer to the left picture of Figure 2.5). Similarly at a negative crossings with

output colour xi , xi+1 we assign the Boltzmann weight −ϕ(xi , xi+1) (refer to the

right picture of Figure 2.5).

3. Now, compute the state sum invariant Φ(D) =
∑

C
∏

τ ϕ(x , y)
ϵ to get the state

sum invariant for K
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Appendix A: List of Quandles used in Computation

In this Appendix we provide the list of quandles and some of their idempotent quandles

Note: The notation C [i , j ] stands for the j-th connected quandle of order i (see [33]). The

right multiplications Sk in the quandle are given by Sk(l) = l ∗ k . As permutations, right

multiplications are written below as product of cycles.

• C [8, 1]

S1 = S2 = (3 6 7)(4 5 8) S3 = S4 = (1 8 6)(2 5 7) S5 = S6 = (1 4 7)(2 3 8)

S7 = S8 = (1 5 3)(2 6 4)

• I
(
Z2[C [8, 1]]

)
. As a set I

(
Z2[C [8, 1]]

)
= {1, ... , 16}.

S1 = S2 = S9 = S10 = (3 6 7)(4 5 8)(15 11 14)(12 13 16)

S3 = S4 = S11 = S12 = (1 8 6)(2 5 7)(13 10 15)(9 16 14)

S5 = S6 = S13 = S14 = (1 4 7)(2 3 8)(9 12 15)(10 11 16)

S7 = S8 = S15 = S16 = (1 5 3)(2 6 4)(9 13 11)(10 14 12)

• C [12, 3]

S1 = (2 12 5 10 11)(3 8 6 7 4) S2 = (1 11 7 4 12)(3 5 10 6 9)

S3 = (1 2 7 6 10)(4 9 8 5 12) S4 = (1 11 6 8 5)(2 7 9 3 12)

S5 = (1 12 3 8 10)(2 4 9 6 11) S6 = (1 5 3 4 2)(7 11 10 8 9)

S7 = (1 10 8 3 12)(2 11 6 9 4) S8 = (1 12 5 7 11)(3 9 6 10 5)

S9 = (2 11 10 5 12)(3 4 7 6 8) S10 = (1 5 8 6 11)(2 12 3 9 7)

S11 = (1 10 6 7 2)(4 12 5 8 9) S12 = (1 2 4 3 5)(7 9 8 10 11).
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• I
(
Z2[C [12, 3]]

)
. As a set I

(
Z2[C [12, 3]]

)
= {1, ... , 24}.

S1 = S13 = (2 12 5 10 11)(3 8 6 7 4)(14 24 17 22 23)(15 20 18 19 16)

S2 = S14 = (1 11 7 4 12)(3 5 10 6 9)(13 23 19 16 24)(15 17 22 18 21)

S3 = S15 = (1 2 7 6 10)(4 9 8 5 12)(13 14 19 18 22)(16 21 20 17 24)

S4 = S16 = (1 11 6 8 5)(2 7 9 3 12)(13 23 18 20 17)(14 19 21 15 16)

S5 = S17 = (1 12 3 8 10)(2 4 9 6 11)(13 24 15 20 22)(14 16 21 18 23)

S6 = S18 = (1 5 3 4 2)(7 11 10 8 9)(13 17 15 16 14)(19 23 22 20 18)

S7 = S19 = (1 10 8 3 12)(2 11 6 9 4)(13 22 20 15 24)(14 23 18 21 16)

S8 = S20 = (1 12 5 7 11)(3 9 6 10 5)(13 24 16 19 23)(15 21 18 22 17)

S9 = S21 = (2 11 10 5 12)(3 4 7 6 8)(14 23 22 17 24)(15 16 19 18 20)

S10 = S22 = (1 5 8 6 11)(2 12 3 9 7)(13 17 20 18 23)(14 24 15 21 19)

S11 = S23 = (1 10 6 7 2)(4 12 5 8 9)(13 22 18 19 14)(16 24 17 20 21)

S12 = S24 = (1 2 4 3 5)(7 9 8 10 11)(13 14 16 15 17)(19 21 20 22 23)

• C [12, 4]

S1 = (5 9)(2 3 4)(6 11 8 10 7 12) S2 = (6 10)(1 4 3)(5 12 7 9 8 11)

S3 = (7 11)(1 2 4)(5 10 8 9 6 12) S4 = (8 12)(1 3 2)(5 11 6 9 7 10)

S5 = (1 9)(6 7 8)(2 11 4 10 3 12) S6 = (2 10)(5 8 7)(1 12 3 9 4 11)

S7 = (3 11)(5 6 8)(1 10 4 9 2 12) S8 = (4 12)(5 7 6)(1 11 2 9 3 10)

S9 = (1 5)(10 11 12)(2 7 4 6 3 8) S10 = (2 6)(9 12 11)(1 8 3 5 4

S11 = (3 7)(9 10 12)(1 6 4 5 2 8) S12 = (4 8)(9 11 10)(1 7 2 5 3 6).

• C [12, 6]

S1 = (3 4)(5 10)(6 9)(8 12)(7 11) S2 = (3 4)(5 9)(6 10)(8 11)(7 12)

S3 = (1 2)(5 11)(6 12)(7 9)(8 10) S4 = (1 2)(5 12)(6 11)(7 10)(8 11)

S5 = (1 10)(2 9)(3 11)(4 12)(7 8) S6 = (1 9)(2 10)(3 12)(4 11)(7 8)

S7 = (1 11)(2 12)(3 9)(4 10)(5 6) S8 = (1 12)(2 11)(3 10)(4 9)(5 6)

S9 = (1 6)(2 5)(3 7)(4 8)(11 12) S10 = (1 5)(2 6)(3 8)(4 7)(11 12)
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S11 = (1 7)(2 8)(3 5)(4 6)(9 10) S12 = (1 8)(2 7)(3 6)(4 5)(9 10).

• C [13, 4]

S1 = (2 9 13 6)(3 4 12 11)(5 7 10 8) S2 = (1 7 3 10)(4 5 13 12)(6 8 11 9)

S3 = (1 13 5 6)(2 8 4 11)(7 9 12 10) S4 = (1 6 7 2)(3 9 5 12)(8 10 13 11)

S5 = (1 12 9 11)(2 7 8 3)(4 10 6 13) S6 = (1 5 11 7)(2 13 10 12)(3 8 9 4)

S7 = (1 11 13 3)(2 6 12 8)(4 9 10 5) S8 = (1 4 2 12)(3 7 13 9)(5 10 11 6)

S9 = (1 10 4 8)(2 5 3 13)(6 11 12 7) S10 = (1 3 6 4)(2 11 5 9)(7 12 13 8)

S11 = (1 9 8 13)(2 4 7 5)(3 12 6 10) S12 = (1 2 10 9)(3 5 8 6)(4 13 7 11)

S13 = (1 8 12 5)(2 3 11 10)(4 6 9 7).

• C [13, 7]

S1 = (2 6 13 9)(3 11 12 4)(5 8 10 7) S2 = (1 10 3 7)(4 12 13 5)(6 9 8 11)

S3 = (1 6 5 13)(2 11 4 8)(7 10 12 9) S4 = (1 2 7 6)(3 12 5 9)(8 11 13 10)

S5 = (1 11 9 12)(2 3 8 7)(4 13 6 10) S6 = (1 7 11 5)(2 !2 10 13)(3 4 9 8)

S7 = (1 3 13 11)(2 8 12 6)(4 5 10 9) S8 = (1 12 2 4)(3 9 13 7)(5 6 11 10)

S9 = (1 8 4 10)(2 13 3 5)(6 7 12 11) S10 = (1 4 6 3)(2 9 5 11)(7 8 13 12)

S11 = (1 13 8 9)(2 5 7 4)(3 10 6 12) S12 = (1 9 10 2)(3 6 8 5)(4 11 7 13)

S13 = (1 5 12 8)(2 10 11 3)(4 7 9 6).

• C [13, 10]

S1 = (2 7 11 9 10 3 13 8 4 6 5 12) S2 = (1 9 5 7 6 13 3 8 12 10 11 4)

S3 = (1 4 9 13 11 12 5 2 10 6 8 7) S4 = (1 12 13 6 3 11 7 9 8 2 5 10)

S5 = (1 7 4 12 8 10 9 3 6 11 2 13) S6 = (1 2 8 5 13 9 11 10 4 7 12 3)

S7 = (1 10 12 11 5 8 13 4 2 3 9 6) S8 = (1 5 3 4 10 7 2 11 13 12 6 9)

S9 = (1 13 7 10 2 6 4 5 11 8 3 12) S10 = (1 8 11 3 7 5 6 12 9 4 13 2)

S11 = (1 3 2 9 12 4 8 6 7 13 10 5) S12 = (1 11 6 2 4 3 10 13 5 9 7 8)

S13 = (1 6 10 8 9 2 12 7 3 5 4 11).
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• C [16, 3]

S1 = (2 3 5 9 16)(4 713 8 15)(6 11 12 10 14) S2 = (1 4 6 10 15)(3 8 14 7 16)(5 12 11 9 13)

S3 = (1 7 11 14 4)(2 5 15 6 13)(8 9 10 12 16) S4 = (1 6 16 5 14)(2 8 12 13 3)(7 10 9 11 15)

S5 = (1 13 12 6 7)(2 15 16 14 10)(3 9 4 11 8) S6 = (1 16 15 13 9)(2 14 11 5 8)(3 12 7 4 10)

S7 = (1 11 2 9 6)(3 15 10 8 5)(4 13 14 16 12) S8 = (1 10 5 2 12)(3 14 13 15 11)(4 16 9 7 6)

S9 = (1 8 10 11 13)(2 6 13 3 4)(5 16 7 12 15) S10 = (1 5 13 4 3)(2 7 9 12 14)(6 15 8 11 16)

S11 = (1 2 4 8 16)(3 6 12 9 15)(5 10 13 7 14) S12 = (1 3 7 15 2)(4 5 11 10 16)(6 9 14 8 13)

S13 = (1 12 3 16 11)(2 10 7 8 6)(4 14 15 9 5) S14 = (1 9 8 7 5)(2 11 4 15 12)(3 13 16 10 6)

S15 = (1 14 9 3 10)(2 16 13 11 7)(4 12 5 6 8) S16 = (1 15 14 12 8)(2 13 10 4 9)(3 11 6 5 7)

• C [16, 4]

S1 = (2 13 4 9 3 5)(6 14 16 12 11 7)(8 10 15) S2 = (1 14 3 10 4 6)(5 13 15 11 12 8)(7 9 16)

S3 = (1 7 4 15 2 11)(5 8 16 14 10 9)(6 12 13) S4 = (1 12 2 8 3 16)(6 7 15 13 9 10)(5 11 14)

S5 = (1 6 9 8 13 7)(2 10 12 16 15 3)(4 14 11) S6 = (1 9 11 15 16 4)(2 5 10 7 14 8)(3 13 12)

S7 = (1 4 12 10 14 13)(3 8 11 6 15 5)(2 16 9) S8 = (2 3 11 9 13 14)(4 7 12 5 16 6)(1 15 10)

S9 = (1 11 13 10 5 12)(3 15 14 6 8 4)(2 7 16) S10 = (2 12 14 9 6 11)(3 4 16 13 5 7)(1 8 15)

S11 = (1 13 16 8 6 2)(3 9 15 12 7 10)(4 5 14) S12 = (1 2 14 15 7 5)(4 10 16 11 8 9)(3 16 13)

S13 = (1 16 5 15 9 14)(2 4 8 7 11 10)(3 12 6) S14 = (1 3 7 8 12 9)(2 15 6 16 10 13)(4 11 5)

S15 = (2 6 5 9 12 4)(3 14 7 13 11 16)(1 10 8) S16 = (1 5 6 10 11 3)(4 13 8 14 12 15)(2 9 7)

• C [16, 8]

S1 = (2 3 5 9 10 12 16 8 15 6 11 14 4 7 13) S2 = (1 4 6 10 9 11 15 7 16 5 12 13 3 8 14 1)

S3 = (1 7 11 12 10 14 6 13 8 9 16 2 5 15 4) S4 = (1 6 16 3 2 8 12 11 9 13 5 14 7 10 15)

S5 = (1 13 14 16 12 4 11 2 15 10 8 3 9 6 7) S6 = (1 16 9 7 4 10 5 8 2 14 13 15 11 3 12)

S7 = (1 11 8 5 3 15 16 14 10 2 9 4 13 12 6) S8 = (1 10 3 14 11 5 2 12 7 6 4 16 15 13 9)

S9 = (1 2 4 8 16 7 14 3 6 12 15 5 10 11 13) S10 = (1 3 7 15 8 13 4 5 11 16 6 9 12 14)

S11 = (1 8 10 13 7 12 9 15 3 4 2 6 14 5 16) S12 = (1 5 13 6 15 2 7 9 14 8 11 10 16 4 3)
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S13 = (1 14 15 9 5 6 8 4 12 3 10 7 2 16 11) S14 = (1 15 12 2 13 16 10 6 5 7 3 11 4 9 8)

S15 = (1 12 5 4 14 9 3 16 13 11 7 8 6 2 10) S16 = (1 9 2 11 6 3 13 10 4 15 14 12 8 7 5)
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Appendix B: Copyright Clearance Form

Below is the permission for the material included in Chapter 3.
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Appendix C: ArXiv License

According to arXiv license information, I have the right to freely utilize material from

the papers I have submitted to arXiv, without any specific permission.

76


	Quandle Rings, Idempotents and Cocycle Invariants of Knots
	Scholar Commons Citation

	tmp.1719349923.pdf.fiCvu

