2019

The Epidemiology, Demographics, and Geographical Distribution of Human Non-Tuberculosis Mycobacteria (NTM) Disease in the Endemic Central Florida Region

Cristina Vanessa
University of South Florida

Greg Matthew E. Teo
University of South Florida

Jamie P. Morano
University of South Florida, jmorano@usf.edu

Beata Casanas
University of South Florida, beata@usf.edu

Sadaf Aslam
University of South Florida, saslam@usf.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.usf.edu/intmed_facpub

Scholar Commons Citation

Vanessa, Cristina; Teo, Greg Matthew E.; Morano, Jamie P.; Casanas, Beata; Aslam, Sadaf; Montero, Jose; Zeitler, Kristen; Jariwala, Ripal; and Cannella, Anthony, "The Epidemiology, Demographics, and Geographical Distribution of Human Non-Tuberculosis Mycobacteria (NTM) Disease in the Endemic Central Florida Region" (2019). *Internal Medicine Faculty Publications*. 132.
https://digitalcommons.usf.edu/intmed_facpub/132

This Article is brought to you for free and open access by the Internal Medicine at Digital Commons @ University of South Florida. It has been accepted for inclusion in Internal Medicine Faculty Publications by an authorized administrator of Digital Commons @ University of South Florida. For more information, please contact scholarcommons@usf.edu.
Authors
Cristina Vanessa, Greg Matthew E. Teo, Jamie P. Morano, Beata Casanas, Sadaf Aslam, Jose Montero, Kristen Zeitler, Ripal Jariwala, and Anthony Cannella
2121. Isavuconazole (ISAV) as Primary Anti-Fungal Prophylaxis (PAP) in Patients with Acute Myeloid Leukemia (AML) or Myelodysplastic Syndrome (MDS): An Open-Label, Prospective Study

Prithviraj Bose, MD; David McCue, MD; Sebastian Wurster, MD; Nathan P. Wiederhold, PharmD; Tapan M. Kadia, MD; Gautam Borthakur, MD; Farhad Ravandi, MD; Lucia Masarova, MD; Marina Konopleva, MD; Zeev Estrov, MD; Kochi Takahashi, MD; Musa Yilmaz, MD; Caitlin R. Rausch, PharmD; Kayleigh Marx, PharmD; Wei Qiao, PhD; Xuexin Huang, PhD; Carol B. Bivens, MD; Sherry A. Pierce, MD; Hagop M. Kantarjian, MD; Dimitrios P. Kontoyiannis, MD; The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas Health Science Center at San Antonio, San Antonio, Texas

Session: 242. Antifungals
Saturday, October 5, 2019: 12:15 PM

Background. Mold-active antifungal prophylaxis (pPAP) is recommended in neutropenic patients with newly diagnosed AML or MDS. ISAV is an extended spectrum triazole with superior tolerability, reliability of absorption, fewer drug-drug interactions, lack of QT, prolongation or need for therapeutic drug monitoring, approved for the treatment of invasive aspergillosis (IA) and mucormycosis. NCT03019939 is an investigator-initiated, phase 2 trial of PAP with ISAV in patients with AML-MDS.

Methods. Treatment-naive adult patients with AML or MDS initiating remission induction chemotherapy (RIC) received ISAV per the dosing recommendations in the United States label until recovery from neutropenia (neutrophils (ANC) ≥ 0.5 x 10^9/L) and attainment of complete remission (CR), occurrence of proven or probable invasive fungal infection (IFI), BORTC/MSCG criteria, or for a maximum of 15 days. The primary endpoint was incidence of proven/probable IFI during the study period (up to 30 days from the last dose of ISAV).

Results. 67 patients were enrolled (April 28, 2017 to February 14, 2019) and 60 patients were eligible for assessment (median age 67 years, 57 patients with AML, median ANC on enrollment was 660). Reasons for study completion were achievement of CR with ANC recovery (n = 35), completion of 12 weeks of PAP (n = 9), possible IFI (n = 7, investigator decision (n = 5), death (n = 2, 1 disease progression, 1 cardiac arrest), proven/probable IFI (n = 3), and mild transaminitis, possibly ISAV-related (n = 2). The median durations of neutropenia and ISAV ppx were 33 (7–86) and 31 (7–86) days, respectively. One microbiologically-confirmed (glutal ace due to Candida glabrata) and 2 cases of probable breakthrough IFIs (probable IA with positive galactomannan) occurred (IFI incidence 5%). ISAV trough serum concentrations were available in 31 patients on both day 8 (median 3.74 µg/mL, 2.03–7.65) and day 15 (median 4.10 µg/mL, 2.17–9.25), and were not significantly different.

Conclusion. ISAV is a safe and effective alternative for PAP in patients with newly diagnosed AML/MDS undergoing RIC, with a breakthrough (proven/probable) IFI rate of 5%. ISAV serum levels were adequate in patients with AML/MDS undergoing RIC. Pharmacological features make ISAV attractive for PAP in the era of recently approved or emerging small-molecule AML therapies.

Disclosures. All authors: No reported disclosures.

2122. Isavuconazonium for Invasive Fungal Therapy: Single-Center Pediatric Experience

Kanokpoom Mongkolrattanath, MD; Sindhu Mohandas, MD; Leslie Stach, PharmD; Regina Orbach, PharmD; Michael Neely, MD; Children's Hospital Los Angeles, Los Angeles, California

Session: 242. Antifungals
Saturday, October 5, 2019: 12:15 PM

Background. Isavuconazonium (ISZ), dosed as the pre-drug isavuconazonium (ISM), is a new mold-active agent against a wide variety of clinically important fungal pathogens. ISZ is approved for the treatment of invasive aspergillosis and mucormycosis in adults ≥ 18 years of age. We present our experience with ISM to treat proven or to prevent fungal infection in pediatric patients.

Methods. In a retrospective review of patients who received ISM at our institution between April 2016 and April 2019, we abstracted demographic information, primary diagnosis, indication for ISM therapy, ISZ serum concentrations if available, and outcomes.

Results. Of the 16 patients who received ISM, 12 were < 18 years of age (range 6–17 years). Underlying conditions included leukemia (n = 8), lymphoma (n = 1), post BMT (n = 1), diabetes (n = 1), and cardiac transplant (n = 1). Nine (75%) had proven invasive fungal infection with aspergillosis (n = 2), zygomycosis (n = 3), mixed aspergillosis and zygomycosis (n = 2), mixed Rhizopus and Scedosporium (n = 1), and pathology only (n = 1). Five of these 9 patients received combination ISM and liposomal amphotericin initially, followed by monotherapy with ISM in 4 patients after a mean of 26 days (range 6–63), and continued dual therapy in the fifth. The other 4 received liposomal amphotericin with or without other azoles prior to changing to ISM monotherapy. ISM dosing was 10 mg/kg q8h on days 1 and 2, followed by q24h thereafter, up to a maximum of 372 mg/dose. There were 19 measured ISZ serum concentrations obtained from 8 patients after > 1 week of verified imatinib dosing, ranging from 1.0 to 7.5 µg/mL, above the MIC in all cases when known. Fifty (42%) patients died of underlying non-mycological causes, 1 (8%) died of progressive sepsis/disease, and 6 (50%) improved. The two patients receiving ISM prophylaxis did not suffer a breakthrough fungal infection. ISM was well tolerated with no dose-limiting, drug-related toxicities noted.

Conclusion. ISM is a well-tolerated therapeutic option in pediatric patients at risk for or with invasive mycosis. Only 1 of our 12 patients died from progressive fungal disease.

Disclosures. All authors: No reported disclosures.

2123. Rapid Phenotypic Detection of Gram-Negative Bacilli-Resistant to Oximinocephalosporins and Carbapenems in Positive Blood Cultures Using a Novel Protocol

Diego Jose, MSc; Gissel Bustos-Moya, MSc; Soad Yousef, MD; Stephanie Crevisios, MD; Edwin Silva, MD; Natalia Lopez, BSc; Rafael Leal, BSc; Isabel Torres, MD; Juan Pablo Osorio, MD; Gerson Arias, MD; Luis Felipe. Reyes, MD, PhD; Fundación Clínica Shiao, Bogota, Cundinamarca, Colombia; Universidad de La Sabana, Bogota, Cundinamarca, Colombia

Session: 243. Bacterial Diagnostics
Saturday, October 5, 2019: 12:15 PM

Background. Early and adequate antibiotic treatment are the cornerstones to improve clinical outcomes in patients with Bloodstream infections (BSI). Delays in appropriate antimicrobial therapy have catastrophic consequences for patients with BSI. Microbiological characterization of multi-drug-resistant pathogens (MDRP) allow clinicians to provide appropriate treatments. Current available microbiologic techniques may take up to 96 hours to identify causative pathogens and their resistant patterns. Therefore, there is an important need to develop rapid diagnostic strategies for MDRP. However, rapid detection techniques are costly and are not widely available. We tested a modified protocol designed to detect Gram-negative bacilli (GNB) resistant to oximinocephalosporins and carbapenems from positive blood cultures.

Methods. This is a prospective, cohort study of consecutive patients with bacteremia. We developed a modified protocol using HB&L® system to detect MDRP. We then attempted to determine accuracy, concordance and reduction of identification time of this novel method in a reference hospital. Descriptive statistics and logistical regressions were used.

Results. Ninety-six patients with BSI were included in the study. A total of 161 positive blood cultures were analyzed. Escherichia coli (50%, 81/161), which is the most frequently identified pathogen followed by Klebsiella pneumoniae (15%, 24/161) and Pseudomonas aeruginosa (8%, 13/161). 32% of isolations had usual resistance patterns. However, in 29/161 (18%) of identified pathogens were producer of carbapenemases and 21/161 (13%) of extended-spectrum β-lactamases. Concordance among our HB&L® modified protocol and traditional method was 99% (159/161). Finally, identification times were significantly shorter using our HB&L® modified protocol than traditional methods (Mean, hours [SD], 20.8 [6.22] vs. 62.8 [6.22], P < 0.001).

Conclusion. Here we provided novel evidence that using our HB&L® modified protocol is an effective strategy to reduce the time to MDRP detection/identification; with a great concordance rate when compared with the gold standard. Further studies are needed to confirm these findings and to determine whether this method may improve clinical outcomes.

Disclosures. All authors: No reported disclosures.

2124. The Epidemiology, Demographics, and Geographical Distribution of Human Non-Tuberculosis Mycobacteria (NTM) Disease in the Endemic Central Florida Region

Cristina Vanessa. Garcia, MD; Greg Matthew E. Teo, MD; Jamie P. Moran, MD, MPH; Beata Casanas, DO; Sadaf Aslam, MD, MS; Jose Montero, MD; Kristen Zeitzler, PharmD; Ipal Rijwarla, PharmD; Anthony Cannella, MD, MSc; University of South Florida, M. Petersburg, Florida; University of South Florida, James A Haley Veterans Administration Hospital, Tampa, Florida; University of South Florida, Tampa General Hospital, Tampa, Florida; University of Florida, NF/GS Veterans Health Administration, Gainesville, Florida

Session: 243. Bacterial Diagnostics
Saturday, October 5, 2019: 12:15 PM

Background. Of the >100,000 people in the United States infected yearly with non-tuberculosis mycobacteria (NTM), Florida has the highest yearly incidence and prevalence of NTM disease. However, little has been documented on the epidemiology and distribution of NTM disease within Central Florida.

Methods. A retrospective case review study was conducted from January, 2011 to December, 2017 at a large tertiary acute care medical center in Tampa, Florida to identify all NTM infection cases. Demographics (age, sex at birth, ethnicity), common bidities, HIV testing status, residential zip code, NTM species, and specimen sources were collected.

Results. Of the 507 isolates, Mycobacterium abscessus group was the most common (45%, n = 230), and contained M. abscessus s. abscessus (34%, n = 175), M. abscessus spp. massiliae (8.7%, n = 44), and M. abscessus spp. bolletii (1.18%, n = 6). Other rapid growers were M. fortuitum species (6.9%, n = 35) and M. chelonae
(2.56%; n = 13). Of the slower growers, M. gordonae (19.9%; n = 101) and M. avium complex (8.28%; n = 42) were the most common. Of the M. avium complex, M. chimaera was most common (4.9%; n = 25). Samples were mostly isolated from sputum (51.7%; n = 262), bronchial lavage (26%; n = 132), skin and soft tissue (11%; n = 58), and blood (7.1%; n = 36). Of the 361 unique patients, average age was 59.2 years (12 to 95 years), with 47.6% (n = 172) greater than 65 years of age, and mostly male 57.9% (n = 208). Caucasians represented 73.4% (n = 265) of our cohort, and African Americans and Hispanics represented 16.3% (n = 59) and 6.8% (n = 24), respectively. Most cases were in those residing outside the Tampa Bay metro area 81.2% (n = 293/361). Notable comorbidities included COPD (n = 83), cystic fibrosis (n = 41), lung transplant (n = 40), heart transplant (n = 12), pulmonary fibrosis (n = 12), and renal transplant (n = 7). A total of 145 individuals received HIV testing at the hospital facility, and of these 44 individuals were living with HIV.

Conclusions. This study identified a diversity of NTM species across a wide geographical and demographic distribution in the endemic Central Florida region. M. abscessus group had the highest prevalence. This is valuable in understanding which populations are at risk for developing NTM infection in this area of Florida.

Table 1. Demographics.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>N = 361</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-19 years</td>
<td>30 (8.3%)</td>
</tr>
<tr>
<td>20-29 years</td>
<td>82 (22.7%)</td>
</tr>
<tr>
<td>30-39 years</td>
<td>104 (28.8%)</td>
</tr>
<tr>
<td>40-49 years</td>
<td>65 (18.0%)</td>
</tr>
<tr>
<td>50-59 years</td>
<td>72 (19.9%)</td>
</tr>
<tr>
<td>60-69 years</td>
<td>26 (7.2%)</td>
</tr>
</tbody>
</table>

Table 2. Non-tuberculous Mycobacteria from January 2011-December 2017.

<table>
<thead>
<tr>
<th>Mycobacteria</th>
<th>Number of specimens isolated (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. abscessus</td>
<td>230 (45.36)</td>
</tr>
<tr>
<td>M. abscessus subsp. Abscessus</td>
<td>175 (34.52)</td>
</tr>
<tr>
<td>M. abscessus subsp. Becketti</td>
<td>6 (1.18)</td>
</tr>
<tr>
<td>M. abscessus subsp. Massileae</td>
<td>44 (8.68)</td>
</tr>
<tr>
<td>Not subtyped</td>
<td>5 (0.99)</td>
</tr>
<tr>
<td>M. fortuitum complex</td>
<td>35 (6.90)</td>
</tr>
<tr>
<td>M. peregrinium</td>
<td>31 (6.11)</td>
</tr>
<tr>
<td>M. porcinum</td>
<td>4 (0.79)</td>
</tr>
<tr>
<td>M. chimaera</td>
<td>0</td>
</tr>
<tr>
<td>M. marinum</td>
<td>0</td>
</tr>
<tr>
<td>M. smegmatis</td>
<td>0</td>
</tr>
<tr>
<td>M. maccapraeformis</td>
<td>8 (1.58)</td>
</tr>
</tbody>
</table>

Figure 1. Distribution of Specimen Sources of NTM Isolates.

Figure 2. All NTM Isolated by Specimen Source.

Disclosures. All authors: No reported disclosures.